

Title	On lifting property on direct sums of hollow modules
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1980, 17(3), p. 783-791
Version Type	VoR
URL	https://doi.org/10.18910/10136
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Harada, M.
Osaka J. Math.
17 (1980), 783-791

ON LIFTING PROPERTY ON DIRECT SUMS OF HOLLOW MODULES

MANABU HARADA

(Received July 9, 1979)

Following E. Mares [12] and H. Bass [2] we shall first consider a semi-perfect module P over a ring R . One of the important properties of P is the lifting property as follows: Let $P/J(P)=\sum_I \bigoplus K_\alpha$ be a decomposition of $P/J(P)$, then there exists a decomposition of $P: P=\sum_I \bigoplus P_\alpha$ such that $\varphi(P_\alpha)=K_\alpha$ for all $\alpha \in I$, where $J(P)$ is the Jacobson radical of P and φ is the natural epimorphism of P onto $P/J(P)$. In case the module is injective, we have studied irredundant sum of indecomposable injective modules and the lifting property of decomposition over a perfect ring satisfying a certain condition in [7].

In this note we shall generalize those properties over an arbitrary ring. In order to do so, it is quite natural to take a module M_α such that $M_\alpha/J(M_\alpha)$ is a simple module instead of P_α , namely a hollow module [3]. For a direct sum of hollow modules M we shall give some characterizations of the lifting property of simple module and of decomposition of M (see the definition in §1). Finally, we shall give characterizations of artinian rings with lifting property (namely, generalized uniserial ring and semi-simple ring). We shall study the dual property -the extending property- of simple module in [8].

1. Definitions

Throughout this paper we consider a ring R with identity and we assume every module M is a unitary right R -module. We shall denote the Jacobson radical of M by $J(M)$.

Let $\{M_\alpha\}_I$ be a set of submodules of M . If $M=\sum_I M_\alpha$ and $M \neq \sum_J M_\beta$ for any proper subset J of I , we call $\sum_I M_\alpha$ be an irredundant sum [7]. If $\sum_K M_\gamma$ is a direct summand of M for every finite subset K of I , we say $\sum_I M_\alpha$ be a locally direct summand of M [9]. We denote the natural epimorphism of M onto $M/J(M)$ by φ . If there exists a direct summand M_α of M such that $\varphi(M_\alpha)=A_\alpha$ for each simple submodule A_α of $M/J(M)$, then we say M have the lifting property of simple module.

Now, $A_\alpha \approx M_\alpha/N_\alpha$ and $N_\alpha \supset J(M_\alpha)$. In this paper we are interested in modules such that $N_\alpha = J(M_\alpha)$ and N_α is small in M_α . In this case M_α is cyclic and $M_\alpha \approx R/A'_\alpha$, where A'_α is a right ideal of R and A'_α is contained in a unique maximal right ideal. We call such a module *cyclic hollow module* [3]. Furthermore, we only consider modules M which are direct sums of cyclic hollow modules M_α . Let $M = \sum_I \bigoplus M_\alpha$. Then $\varphi_M|N = \varphi_N$ for every direct summand N of M and $\varphi|K = \varphi_K$ for a cyclic hollow submodule K with $K \not\subseteq J(M)$. If $\varphi(M_\alpha) \neq 0$ for all α and $\sum_J \varphi(M_\alpha) = \sum_J \bigoplus \varphi(M_\alpha)$, we say $\sum_J M_\alpha$ be a *direct sum modulo* $J(M)$. Finally, if for any decomposition $\varphi(M) = \sum_I \bigoplus A_\alpha$ with A_α simple, there exists a decomposition $M = \sum_I \bigoplus M_\alpha$ of M such that $\varphi(N_\alpha) = A_\alpha$ for each α , then we say M have the *lifting property of decomposition*. We shall denote $\varphi(M)$ by \bar{M} if there are no confusions.

Here we shall give some remarks on hollow modules. Let N be an R -module. If $\text{End}_R(N)$ is a local ring, we say N *completely indecomposable*. We do not know whether a cyclic hollow module is completely indecomposable or not (cf. [3] and [6]). In this note we are interested in completely indecomposable and cyclic hollow modules. If R is a commutative, every cyclic hollow module N is completely indecomposable, since every epimorphism of N onto itself is isomorphic. We shall consider the above property.

(E-I) *Every epimorphism of N onto itself is isomorphic.*

REMARKS. 1. If N is noetherian, N satisfies (E-I).
 2. If R is directly finite i.e. $xy=1$ implies $yx=1$ and R/A is hollow for a two-sided ideal A , R/A satisfies (E-I).
 3. Let R be a right perfect ring. Then every indecomposable and quasi-projective module is a hollow module satisfying (E-I) (see §3).

We note that if a hollow module N satisfies (E-I), N is completely indecomposable. Let $\{M_\alpha\}_I$ be a set of hollow modules satisfying (E-I). We define a partial order \succ in $\{M_\alpha\}_I$. If $M_\alpha \approx M_\beta$, we put $M_\alpha \equiv M_\beta$. If there exists an epimorphism f of M_α onto M_β , we put $M_\alpha \succ M_\beta$. We know from (E-I) that \succ and \equiv define a partial order in $\{M_\alpha\}_I$. Let $M_1 \geqslant M_2$, then $\bar{M}_1 \approx \bar{M}_2$. If every element in $\text{Hom}_R(\bar{M}_1, \bar{M}_2)$ is induced by some element in $\text{Hom}_R(M_1, M_2)$, then we say $\text{Hom}_R(\bar{M}_1, \bar{M}_2)$ be induced from $\text{Hom}_R(M_1, M_2)$.

2. Lifting property

Let R be a ring and $J = J(R)$.

Lemma 1. *Let M be an R -module and $\{M_\alpha\}_I$ a set of cyclic hollow submodules of M such that $M = \sum_I M_\alpha$. Then $M = \sum_I M_\alpha$ is an irredundant sum of M*

if $\varphi(M) = \sum_I \oplus \varphi(M_\alpha)$ and $\varphi(M_\alpha) \neq 0$ for all α . If $J(M)$ is small in M , the converse is valid.

Proof. It is clear.

First we give a proposition concerning with (E-I).

Proposition 1. Let $\{M_i\}_1^n$ be a finite set of cyclic hollow modules with (E-I). We assume if $f: M_i \rightarrow M_j$ is epimorphic, f is isomorphic for any pair i and j . Then $M = \sum \oplus M_i$ satisfies (E-I).

Proof. We can express any element of $\text{End}_R(M)$ by a matrix (f_{ij}) , where $f_{ij} \in \text{Hom}_R(M_j, M_i)$. Let $M = \sum_{i=1}^t \sum_{j=1}^{p(i)} \oplus M_{ij}$, where $M_{ij} \approx M_{i1}$ and $M_{i1} \approx M_{i'1}$ if $i \neq i'$. Then (f_{ij}) is regarded as a block matrix $(f_{ij,ik})$. Let F be an epimorphism of M and $F = (f_{ij})$. We shall show one f_{ij} among f_{ik} , $k = 1, 2, \dots, n$, is isomorphic. Since F is epimorphic, $M_i = \sum_j f_{ij}(M_j)$. However, M_i is hollow and so $M_i = f_{ij}(M_j)$ for some j . Hence, f_{ij} is isomorphic by the assumption. Since $M_{ij} \approx M_{i1}$, we may assume $M_{ij} = M_{i1}$ for all j and matrix units $e_{ij,ik}$ are elements in $\text{End}_R(M)$. Using those remarks and fundamental transformations of matrices, we know there exist regular matrices P_1, Q_1 such that

$$P_1 F Q_1 = \begin{pmatrix} 1 & 0 \\ 0 & F_2 \end{pmatrix}, \quad F_2 \in \text{End}_R(\sum_{i \geq 2} \oplus M_i).$$

Noting that F_2 is epimorphic, and repeating those arguments, we get regular matrices P, Q such that $P F Q = I_M$. Hence, F is isomorphic.

Theorem 1. Let $\{M_\alpha\}_I$ be a set of completely indecomposable and cyclic hollow modules and $M = \sum_I \oplus M_\alpha$. Then the following conditions are equivalent.

- 1) Every direct sum modulo $J(M)$ of indecomposable direct summands of M is a direct sum (and a locally direct summand of M).
- 2) If there exists an epimorphism f of M_α to M_β for any pair α and β in I , then f is isomorphic.

Proof. 1) \rightarrow 2). We assume there exists an epimorphism f of M_α onto M_β and $\ker f \neq 0$. We put $M'_\alpha = \{x + f(x) \mid x \in M_\alpha\} \subset M_\alpha \oplus M_\beta \subset M$. Then $M_\alpha \oplus M_\beta = M'_\alpha \oplus M_\beta$ and $M'_\alpha + M_\alpha$ is a direct sum modulo $J(M)$ and hence, $M'_\alpha + M_\alpha = M'_\alpha \oplus M_\alpha$ by 1). However, $M'_\alpha \cap M_\alpha = \ker f \neq 0$.
2) \rightarrow 1). We note first that if $M_\alpha \approx M_\beta$ for $\alpha \neq \beta$, M_α satisfies (E-I) by the assumption. Let $\sum_j N_\alpha$ be a direct sum modulo $J(M)$ of indecomposable direct summands N_α of M . Let $K = \{1, 2, \dots, n\}$ be a finite subset of J and put $N(n) = \sum_{i=1}^n N_i$. We shall show by the induction on n that $N(n)$ is a direct summand

of M and $N(n) = \sum_{i=1}^n \bigoplus N_i$. If $n=1$, it is clear by the assumption. We assume $M = N(n-1) \oplus M'$ and $N(n-1) = \sum_{i=1}^{n-1} \bigoplus N_i$. Since N_n is a direct summand of M , N_n is isomorphic to some one M_{γ_1} in $\{M_\alpha\}_I$ and $M' = \sum_{I'} \bigoplus M'_\beta$ by [1], where $I' = I - K$ and M'_β is isomorphic to some $M_{\rho(\beta)}$ in $\{M_\alpha\}_I$. Furtheromre, since N_n has the exchange property in M by [1] and [4], either $M = N_n \oplus \sum_{j \neq k} \bigoplus N_j \oplus M'$ for some k or $M = N_n \oplus N(n-1) \oplus \sum_{I' - \gamma} \bigoplus M'_\beta$ for some γ . We have proved our assertion in the latter case. In the former case $N_n \approx N_k \approx M_{\eta(k)}$. Let π_β be the projection of $M = N(n-1) \oplus \sum_{I'} \bigoplus M'_\beta$ onto M'_β . Since $\varphi(N_n) \subset \varphi(N(n-1))$, $\pi_\gamma|N_n$ is epimorphic for some γ . If $\eta(k) \neq \rho(\gamma)$, $\pi_\gamma|N_n$ is isomorphic by 2). If $\eta(k) = \rho(\gamma)$, M contains a direct summand $N_k \oplus M'_\gamma$ such that $N_n \approx N_k \approx M'_\gamma$. Hence, N_n satisfies (E-I) by 2) and [1]. In either case $\pi_\gamma|N_n$ is isomorphic. Accordingly, $M = N_n \oplus \ker \pi_\gamma = N_n \oplus N(n-1) \oplus \sum_{I' - \gamma} \bigoplus M'_\beta = N(n) \oplus \sum_{I' - \gamma} \bigoplus M'_\beta$.

Theorem 1'. *Let M and $\{M_\alpha\}_I$ be as above. Then the following conditions are equivalent.*

- 1) *Every direct sum modulo $J(M)$ of indecomposable direct summands is a direct sum and a direct summand of M .*
- 2) *$\{M_\alpha\}_I$ is a semi-T-nilpotent set [4] and if there exists an epimorphism f of M_α to M_β for any pair α and β in I , then f is isomorphic.*

Proof. 1) \rightarrow 2). Let $\{f_i : M_{\alpha_i} \rightarrow M_{\alpha_{i+1}}\}$ be a set of non-isomorphic homomorphisms. Then every f_i is not epimorphic by Theorem 1. Hence, $f_i(M_{\alpha_i}) \subset J(M_{\alpha_{i+1}})$. We put $M'_{\alpha_i} = \{x + f_i(x) \mid x \in M_{\alpha_i}\}$ and $M' = M'_{\alpha_1} \oplus M'_{\alpha_2} \oplus \cdots \oplus M'_{\alpha_n} \oplus \cdots$. Then $\varphi(M'_{\alpha_i}) = \varphi(M_{\alpha_i})$ and so M' is a direct sum modulo $J(M)$. Hence, M' is a direct summand of M by 1). Therefore, $\{M_\alpha\}_I$ is a semi-T-nilpotent set by [4]. The remaining parts are clear by Theorem 1.

2) \rightarrow 1). It is clear from Theorem 1 and [4], [9] and [10].

REMARK 4. If $J(M)$ is small in M , $\{M_\alpha\}_I$ is a semi-T-nilpotent set by [5] when 2) in Theorem 1 is satisfied.

Theorem 2. *Let M and $\{M_\alpha\}_I$ be as in Theorem 1. Then the following conditions are equivalent.*

- 1) *M has the lifting property of simple module.*
- 2) *For any pair α, β in I such that $\bar{M}_\alpha \approx \bar{M}_\beta$ and any isomorphism f of \bar{M}_α onto \bar{M}_β , there exists an epimorphism g of either M_α onto M_β or M_β onto M_α such that $g = f$ or $g = f^{-1}$.*

Proof. 1) \rightarrow 2). Let M_1, M_2 be two elements in $\{M_\alpha\}_I$. We assume $\bar{M}_1 \approx \bar{M}_2$. Let $f \in \text{Hom}_R(\bar{M}_1, \bar{M}_2)$ and we put $K = \{\bar{x} + f(\bar{x}) \mid \bar{x} \in M_1\} \subset \bar{M}_1 \oplus \bar{M}_2$.

Since M has the lifting property, there exists a decomposition $M=M'_1\oplus M'$ such that $\varphi(M'_1)=K$. Let x be in M'_1 and $x=\sum x_i; x_i\in M_i$. Then since $\bar{x}=\sum \bar{x}_i\in K$, $\bar{x}_2=f(\bar{x}_1)$ and $\bar{x}_i\neq 0$ for some x . Let $\pi'_i: M\rightarrow M_i$ be the projection. Then $\pi'_i|M'_1$ is epimorphic for $i=1, 2$. M'_1 is isomorphic to some in $\{M_\alpha\}$ and

$M=M'_1\oplus(M_1\oplus\cdots\oplus M_n\oplus\cdots)$ by the exchange property of M'_1 by [1], where \hat{i} means the i -th component is omitted. If i were neither 1 nor 2, $\varphi(M'_1)\cap(\bar{M}_1\oplus\bar{M}_2)=0$. Hence, $i=1$ or 2. Thus, we obtain $M=M'_1\oplus M_2\oplus M_3\oplus\cdots$ or $M=M'_1\oplus M_1\oplus M_3\oplus\cdots$. In the former case, let π_i be the projection of M onto M_i ($\pi_1: M\rightarrow M'_1$) and $m_1=\sum \pi_i(m_1)$ for $m_1\in M_1$. Then $\bar{m}_1=\sum \pi_i(\bar{m}_1)=\bar{m}'_1+(f(\bar{m}'_1)+\pi_1(\bar{m}_2))+\sum_{i\geq 3} \pi_i(\bar{m}_i); m'_1\in M_1$. Hence, $\bar{m}_1=\bar{m}'_1$, $f(\bar{m}'_1)=-\pi_2(\bar{m}_1)$ and $\sum_{i\geq 3} \pi_i(\bar{m}_i)=0$. Accordingly, $-(\pi_2|M_1)\in \text{Hom}_R(M_2, M_1)$ and f is induced from $-(\pi_2|M_1)$. In the latter case, $K=\{f^{-1}(\bar{y})+\bar{y}|\bar{y}\in M_2\}$ and we know that $-(\pi_1|M_2)$ induces f^{-1} as above.

2) \rightarrow 1). Let A be a simple submodule of \bar{M} . Let n be the minimal integer among m such that $A\subseteq \sum_{i=1}^m \bar{M}_{\alpha_i}$. Put $M_{\alpha_i}=M_i$ and let $\bar{\pi}_i$ be the projection of $\sum_{i=1}^m \bar{M}_i$ onto \bar{M}_i . Then $\bar{\pi}_i|A$ is isomorphic and $A=\{\bar{m}_1+f_2(\bar{m}_1)+\cdots+f_n(\bar{m}_1)|m_1\in M_1, f_i=(\bar{\pi}_i|A)(\bar{\pi}_1|A)^{-1}\}$. We consider a set $\{(\bar{M}_i, \bar{M}_j), g_{ij}=f_jf_i^{-1}\}_{i\neq j}$. Then from 2) there exists either $h_{ji}\in \text{Hom}_R(M_i, M_j)$ or $h_{ij}\in \text{Hom}_R(M_j, M_i)$ such that $\bar{h}_{ji}=g_{ji}$ or $\bar{h}_{ij}=g_{ij}$. In the former case (resp. the latter case) we denote $M_i\geq M_j$ (resp. $M_i\leq M_j$). We can easily see by the induction and the fact $g_{ij}g_{jk}=g_{ik}$ that there exists a maximal one among M_i 's with respect to the relation \geq , say M_t . Then $A=\{g_{1t}(\bar{m}_1)+\cdots+g_{t-1t}(\bar{m}_1)+\bar{m}_t+\cdots+g_{nt}(\bar{m}_t)|m_i\in M_i\}$. Hence, we may assume $t=1$. Now from the construction above, there exist $g_j\in \text{Hom}_R(M_1, M_j)$ such that $g_j=f_j$ for all j . Put $M'_1=\{m_1+g_2(m_1)+\cdots+g_n(m_1)|m_1\in M_1\}\subset M_1\oplus M_2\oplus\cdots\oplus M_n$. Then $M'_1\oplus M_2\oplus\cdots\oplus M_n=M_1\oplus\cdots\oplus M_n$ and $\bar{M}'_1=\{\bar{m}_1+g_2(\bar{m}_1)+\cdots+g_n(\bar{m}_1)\}=A$.

Corollary. Let $\{M_\alpha\}_I$ and M be as above. We assume each M_α satisfies (E-I). Then the following conditions are equivalent.

- 1) M has the lifting property of simple module.
- 2) In the subset $\{M_i\}$ of $\{M_\alpha\}_I$ such that $\bar{M}_i\approx\bar{M}_1$, the relation \geq is linear and $\text{Hom}_R(\bar{M}_\alpha, \bar{M}_\beta)$ is induced from $\text{Hom}_R(M_\alpha, M_\beta)$ for any pair $M_\alpha\geq M_\beta$.

The following theorem is a generalization on the lifting property of perfect modules.

Theorem 3.¹⁾ Let M and $\{M_\alpha\}_I$ be as in Theorem 1. Then the following

1) If each M_α satisfies (E-I), then 1) and 2) are equivalent to the fact that M has the lifting property of decomposition and $\{M_\alpha\}_I$ is semi- T -nilpotent (see [8], corollacy 20).

conditions are equivalent.

- 1) M has the lifting property of simple module and for any direct sum modulo $J(M)$ of indecomposable direct summands is a direct sum and a direct summand of M .
- 2) For any pair α and β in I $\text{Hom}_R(\bar{M}_\alpha, \bar{M}_\beta)$ is induced from $\text{Hom}_R(M_\alpha, M_\beta)$ and any epimorphism of M_α onto M_β is isomorphic and $\{M_\alpha\}_I$ is a semi- T -nilpotent set.

In this case M has the lifting property of decomposition.

Proof. It is clear from Theorems 1, 1' and 2.

Finally, we shall give some characterizations of artinian rings with lifting property.

Theorem 4. *Let R be a right artinian ring. Then the following conditions*

1), 2) and 3), 4) are equivalent, respectively.

- 1) R is right generalized uniserial [13].
- 2) Every direct sum of hollow modules has the lifting property of simple module.
- 3) R is semi-simple.
- 4) Every direct sum of hollow modules has the lifting property of decomposition.

Proof. 1) \rightarrow 2). Every hollow module is of forms eR/eJ^t , where e is a primitive idempotent. Hence, M has the lifting property of simple module by Theorem 2.

2) \rightarrow 1). Let e be a primitive idempotent. We take two right ideals eA_i , $i=1, 2$ such that $eJ^t \supset eA_i \not\supset eJ^{t+1}$ and eA_i/eJ^{t+1} is simple. Since the length of composition series of eR/eA_1 is equal to one of eR/eA_2 , $eR/eA_1 \approx eR/eA_2$ by Theorem 2. Let θ be any element in $\text{End}_R(eR/eJ)$. Then θ is given by the left multiplication of a regular element x in eRe . θ is also extended to an element in $\text{Hom}_R(eR/eA_1, eR/eA_2)$ by Theorem 2. This homomorphism is given by the left multiplication of $x+j$, where $j \in eJe$. Hence, $(x+j)eA_1 = eA_2$. Since $jeA_1 \subset eJeJ^t \subset eA_2$, $xeA_1 \subset eA_2$ and so $xeA_1 = eA_2$. e is a regular element in eRe . Hence $eA_1 = eeA_1 = eA_2$. Thus, we have shown eJ^t/eJ^{t+1} is simple and so R is right generalized uniserial.

3) \rightarrow 4). It is clear.

4) \rightarrow 3). Let e be a primitive idempotent. We consider $M = eR/eJ \oplus eR$. Then $M/J(M) = eR/eJ \oplus eR/eJ$ and we put $A_1 = \{x + \bar{x} \mid x \in eR/eJ\}$ and $A_2 = \{o + \bar{x} \mid x \in eR/eJ\}$. Then $\bar{M} = A_1 \oplus A_2$. Since M has the lifting property of decomposition, there exists a decomposition $M = M_1 \oplus M_2$ such that $\bar{M}_i = A_i$. It is clear $M_2 = 0 \oplus eR$ and so $M_1 \approx eR/eJ$ is simple. Hence, $\bar{M}_1 = A_1$ implies that eR is simple. Therefore, R is semi-simple.

REMARK 5. If $M = J(M)$, we may understand M has the lifting property

of simple module. Then the above theorems are valid for a direct sum of completely indecomposable hollow modules if we put some restrictions on the conditions in the theorems. Let R be a commutative Dedekind domain. Then every hollow module is isomorphic to one of R/p^n , R (if R is local) and $E(R/p^n)$ and Q (if R is local) by [6], where p is prime and Q is the quotient field of R . Since $J(E(R/p^n))=E(R/p^n)$ and $J(Q)=Q$, R satisfies Theorem 4, 2), however R is not generalized uni-serial.

Let M be as in Theorem 1. Then every direct summand N of M with $N/J(N)$ simple is a completely indecomposable (and cyclic hollow) module. Hence, every lifted direct summand from simple module is as above. Let T be an R -module and $T/J(T)$ semi-simple. We assume that for any simple submodule A of $T/J(T)$ there exists a direct summand T_1 of T such that $\bar{T}_1=A$ and T_1 is a completely indecomposable.

Proposition 2. *Let T be the R -module as above. Then every direct summand of T has the same property.*

Proof. Let $T = T_1 \oplus T_2$ and $A \subset \bar{T} = T_1/J(T_1)$. Then there exists a completely indecomposable direct summand N_1 of T such that $\bar{N}_1=A$. Since N_1 has the exchange property by [14], $T=N_1 \oplus T'_1 \oplus T_2$ and $T_1=T'_1 \oplus T''_1$ (see the proof of Theorem 2). Now $N_1 \approx T''_1 = T_1 \subset (N_1 \oplus T_2)$ and $T''_1/J(T''_1)$ is simple. Let \bar{t}'' be a generator of \bar{T}'' and $t''=n_1+t_2$; $n_1 \in N_1$ and $t_2 \in T_2$. Since $\bar{n}_1 \in A \subset \bar{T}_1$, $\bar{t}_2=0$. Hence, $A=\bar{n}_1R=\bar{t}''R=\bar{T}'_1$.

Corollary. *Let T be as above. We assume $T/J(T)=\sum_{i=1}^n \oplus A_i$; the A_i is simple. Then $T=\sum_{i=1}^n \oplus T_i \oplus S$ with \bar{T}_i simple and $\bar{S}=\bar{0}$.*

Proof. We can prove it by the proposition and the induction on n .

3. Corollaries

We shall study some special cases.

Corollary 1. *Let M and $\{M_\alpha\}$ be as in Theorem 1. If M satisfies the equivalent conditions in Theorems 1, 2 or 3, then every direct summand of M satisfies the same condition.*

Proof. Since each M_α is cyclic, every direct summand of M is a direct sum of indecomposable modules which are isomorphic to some in $\{M_\alpha\}_I$, by [14]. Hence, we have the corollary.

Corollary 2. *Let M and $\{M_\alpha\}_I$ be as above. We assume $J(M)$ is small. Then the following conditions are equivalent.*

- 1) Every irredundant sum of indecomposable direct summands of M is a direct sum.
- 2) If there exists an epimorphism f of M_α onto M_β , f is isomorphic for any pair α and β in I .

Proof. It is clear from Lemma 1, Remark 4 and Theorem 1' and the proof of Theorem 1.

Corollary 3.²⁾ Let R be a right perfect ring. Then every quasi-projective module Q [11] is isomorphic to $\sum_{i=1}^n \sum_j \oplus e_i R / e_i A_{ij}$. Then Q has the lifting property of simple module if and only if $\{e_i A_{ij}\}$ is linear with respect to the inclusion for each i . Q has the lifting property of decomposition if and only if $e_i A_{ij} = e_i A_{ii}$ for each i , where the e_i is primitive, $e_i R \not\approx e_j R$ if $i \neq j$ and the $e_i A_{ij}$ is the right ideal such that $e_i R e_i A_{ij} \subset e_i A_{ij}$.

Proof. Every quasi-projective module Q is of a form P/K , where P is projective and K a character submodule in P which is contained in PJ by [11]. Since $P \approx \sum_{i=1}^n \oplus (e_i R)^{I_i}$, Q is a direct sum of $e_i R / e_i A_{ij}$ with $e_i R e_i A_{ij} \subset e_i A_{ij}$. Hence, noting $\text{Hom}_R(e_i R / e_i A_{ij}, e_i R / e_i A_{ij'})$ is given by some elements in $e_i R e_i$ and $\text{Hom}_R(e_i R / e_i J, e_i R / e_i J) \approx e_i R e_i / e_i J e_i$, we have the corollary from Theorems 2 and 3 and Remark 4.

References

- [1] G. Azumaya: *Correction and supplementaries to my paper Krull-Remak-Schmidt's theorem*, Nagoya Math. J. **1** (1950), 117–124.
- [2] H. Bass: *Finitistic dimension and a homological generalization of semi-primary rings*, Trans. Amer. Math. Soc. **95** (1960), 466–486.
- [3] P. Fleury: *Hollow modules and local endomorphism rings*, Pacific J. Math. **53** (1974), 379–385.
- [4] M. Harada and Y. Sai: *On categories of indecomposable modules I*, Osaka J. Math. **7** (1970), 323–344.
- [5] M. Harada: *Small submodules in a projective module and semi-T-nilpotent sets*, ibid. **14** (1977), 355–364.
- [6] ———: *A note on hollow modules*, Rev. Union Mat. Argentina **28** (1978), 186–194.
- [7] ———: *On one-sided QF-2 rings, I*, Osaka J. Math. **17** (1980), 421–431.
- [8] M. Harada and K. Oshiro: *On extending property on direct sums of uniform modules*, to appear.
- [9] T. Ishii: *Locally direct summands of modules*, Osaka J. Math. **12** (1975), 473–482.

2) Added in proof. Dr. K. Oshiro informed to the author that Q has always the lifting property of decomposition.

- [10] H. Kambara: *Note on Krull-Remak-Schmidt-Azumaya's theorem*, ibid. **9** (1972), 409–413.
- [11] J.P. Jans and L.E. Wu: *On quasi-projectives*, Illinois J. Math. **11** (1967), 439–448.
- [12] E. Mares: *Semi-perfect modules*, Math. Z. **83** (1963), 347–360.
- [13] T. Nakayama: *On Frobenius algebra II*, Ann of Math. **42** (1941), 1–21.
- [14] R.B. Warfield Jr.: *A Krull-Schmidt theorem for infinite sums of indecomposable modules*, Proc. Amer. Math. Soc. **22** (1969), 460–461.

Department of Mathematics
Osaka City University
Osaka 558, Japan

