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Introduction

Let H denote the field of quaternions and H" the set of all #-column vectors
over H. We regard H" as a right H-space. The object of this paper is the
quaternionic Grassmannian G,(H?*9), that is, the set of all right H-subspaces of
H-dimension p in H?*4.

We apply the method of calibrated geometries to the invariant differential
forms on the quaternionic Grassmannians and show that certain sub-Grass-
mannians in the quaetrnionic Grassmannians are uniquely volume minimizing
in their homology classes. Strictly speaking, we prove the following theorem.

Theorem 1. Take a right H-subspace E of H-dimension p-+r in H?*9.
Then the sub-Grassmannian G,(E) in G,(H?*?) is a volume minimizing submanifold
in its real homology class. Moreover any volume minimizing submanifold in the
same homology class is congruent to it.

Here we comment on earlier results concerning Theorem 1. Gluck-
Morgan-Ziller [4] proved that in the real Grassmannian G,(R?*?) each sub-
Grassmannian G,(R?*") for 1<r<g—1 is uniquely volume minimizing in its
homology class if p is an even integer greater than or equal to 4. The present
paper was inspired by their paper.

Berger [2] proved that the projective subplane P'(H)=G,(H""") in the
quaternionic projective space P?(H) is volume minimizing in its homology class
for 1<r<¢—1. His method is applicable to all quaternionic Kihler manifolds
and as a result of the application it follows that a compact quaternionic sub-
manifold in a quaternionic Kihler manifold is volume minimizing in its ho-
mology class. Moreover Fomenko [3] showed that G,(H'") in G,(H?*%) is
volume minimizing in its homology class for 1<r<<g—1.

There is a homologically volume minimizing sub-Grassmannian whose un-
derlying field is different from that of the ambient Grassmannain. G,(H¥)
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592 H. Tasak1

naturally imbedded in G,(C") for 2<k<[n/2], G,(H*) and G,(C") naturally
imbedded in G,(R") for 2<k<[n/4] and 3<<I<[n/2] respectively are such ex-
amples. These are all quaternionic submanifolds. See Tasaki [6].

The author would like to express his thanks to Professor Frank Morgan
for a fruitful correspondence.

1. Calibrated geometries in symmetric spaces

We first define calibrations after Harvey-Lawson [5]. Let V' be a real vector
space of finite dimension with an inner product and ¢ a d-form on V. If ¢
satisfies ¢p(£)<<1 for each oriented d-plane & in V, we call ¢ a calibration on V.
For a calibration ¢ on V" we say that ¢ calibrates an oriented d-plane £ if ¢ (§)=1.

Let X be a Riemannian manifold and ¢ a closed d-form on X. If ¢ is a
calibration on each tangent space to X, we call ¢ a calibration on X. For a
calibration ¢ on X we say that ¢ calibrates an oriented submanifold M if ¢
calibrates the tangent space to M at each point.

We consider a Riemannian manifold X with a calibration ¢ on it. Let
M be a compact oriented submanifold calibrated by ¢ and M’ a compact ori-
ented submanifold contained in the same real homology class as M. Then,
using Stokes’ theorem, we obtain

vol (M) = SM ¢ — SM, b<vol (M').

Hence M is volume minimizing in its real homology class. If M’ is also volume
minimizing, then M’ is calibrated by ¢.

Now we consider calibrated geometries in symmetric spaces. Let X be a
compact symmetric space and G the identity component of the group of all
isometries of X. Take and fix a point x in X. Let K be the isotropy sub-
group of G at x. Then K acts linearly on the tangent space T,(X). We can
extend any K-invariant form on 7, (X) to a parallel form on X. So it is im-
portant for us to construct K-invariant calibrations on 7,(X). We do so on
the tangent space to the quaternionic Grassmannian in Section 3.

2. Quaternionic linear algebra and quaternionic Grassmannians

In this section we review the quaternionic linear algebra and prepare for
studying the geometry of the quaternionic Grassmannians. We denote by Sp(1)
the group of quaternions with norm 1.

Let X be a right H-space of finite dimension with an Sp(1)-invariant inner
product -. Let Sp(X) denote the group of all right H-linear isometries of X.
For another right H-space Y of finite dimension with an Sp(1)-invariant inner
product -, we denote by Homy (X, Y) the real vector space of all right H-linear
maps from X to Y. We can consider the transposed map *S of S in Homy (X,
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Y): ((Sy)-x=y-(Sx) for xr&€ X and y€Y. Then'S is a right H-linear map from
Y to X, because the inner products are Sp (1)-invariant. Note that the trans-
posed map ‘4 of 4 in Sp(X) is equal to 47"

The canonical Sp(1)-invariant inner product « on H" is defined by

x-y = Re gxsys

for x=(x,) and y=(y,) in H". The action of Sp(H?*9) on H?*? induces that of
Sp(H?*?) on G,(H?*?%), which is transitive. Take an element V in G,(H?*).
The orthogonal complement V' of V in H?*?is a right H-subspace of H-dimen-
sion ¢ in H?*4, 'The isotropy subgroup of Sp(H?*?) at V is Sp(V)XSp(V™).
Hence G,(H?*?) is a homogeneous space of the form Sp(H?*9)/Sp(V)x Sp(V™).
We define an action of Sp(V) X Sp(V~*) on Homg (V, V*) by

(4,B) S = BSA™!

for A= Sp(V), B€Sp(V*) and S€Homygy(V, V™).

Now we construct a local parametrization of G,(H?*?) around V:

¢: Homg(V, V) — G,(H?*9)
S > the graph of S.

Note that the graph of S is the right H-subspace of the form {v+Sv;v&V} in
H?*1, Thus the tangent space Ty (G,(H?*9) is identified with Homz(V, V).

Lemma 2.1. The local parametrization c is Sp(V)X Sp(V~)-equivariant.
In particular, the linear isotropy action of Sp(V)XSp(V*) on Hompg(V, V*) is
the action defined above.
Proof. For (4, B)eSp(V)xXSp(V*) and SEHomg(V, V™),
(4, B) ¢(S) = {4v+BSv;veV}
= {v+BSA ' v;vel}
=c¢((4,B)S).
We define an inner product « on Homg(V, V) by
ST = trp(*ST),

for S and T in Homg(V, V). Then this inner product is Sp(V)x Sp(V*)-
invariant. So it induces an Sp (H?*%)-invariant metric on G,(H?*?), with respect
to which G,(H?*?) is a symmetric space.

3. Invariant calibrations on the tangent space

Take and fix an element V in G,(H?*?). We construct Sp(V)x Sp(V*)-
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invariant calibrations on Homg(V, V™).

We first consider the set
C={JesSp(V); = —1;}.

Sp(V) acts on C by g(J)=gJg ' forg&Sp(V)and J=C. Indeed C is invariant
under the action of Sp(V). Moreover we obtain the next lemma.

Lemma 3.1. The action of Sp(V') on C is transitive.

Proof. Take an orthonormal H-basis {e,, -+, e,} for V. For (0,, -+, 0,)€
R?, put

t(0y, -+, 0,) Z’} e h, = Ef} e,(cos@,+ isinf,)h,, h,eH.

Then the subgroup T={t(6,, -+, 8,); 6,€R} of Sp(V) is a maximal torus of
Sp(V). So for each J in C there is g in Sp(V) such that gJg~'eT. Since
(gJeY=—1y, gJg ' =t(+x/2, +, +7/2). We can retake g, in Sp(V’) such that
a1 Jer =t(x/2, -+, =|2), hence the action of Sp(V') on C is transitive.

Since C is a subset of Sp(V), each element J in C acts in natural way on
Hompg(V, V). The action of J on Homg(V, V) gives an orthogonal complex
structure on it. Let w; denote the corresponding fundamental 2-form on
Hompg(V, V).

Let S - be the invariant measure on Sp(V) with total volume 1. Take
Sp(v.

an element J, in C and consider the form

1
*mzpr

A = (2pr)! SgESp(V)g 7o

for 1<r<g—1. Then A, is an Sp(V)x Sp(V*)-invariant 4pr-form on Homy
(V, V*). Since g*w;=w,-1s,, the form A, is regarded as the average of &%’/
(2pr)! over all Jin C by Lemma 3.1 and independent of the choice of J;.

Let R be a right H-subspace of H-dimension 7 in V. Since Homg(V, R)
is a J-invariant 4pr-plane for each J in C, we can consider the canonical orienta-
tion of Homg(V, R) with respect to each orthogonal complex structure J. These
orientations are the same, because C is connected. We call this orientation the
canonical orientation of Homg(V, R).

Theorem 3.2. The form A, is a calibration on Hompg(V, V*). For each
oriented 4pr-plane & in Homg(V, V), N, calibrates & if and only if & is of the
form Homg(V, R) with the canonical orientation for some right H-subspace R of
H-dimension r in V.
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Proof. For Jin C and an oriented 4pr-plane £ in Homg(V, V=), by Wirt-
inger’s inequality we have »%"(§)/(2pr)!< 1, and the equality holds if and only if
£ is a canonically oriented J-invariant 4pr-plane in Homg(V, V*). So A (§)=1
if £ is of the form Homg(V, R) with the canonical orientation for some right H-
subspace R of H-dimension r in V.

Next we show that & is of the form Homg(V, R) with the canonical orienta-
tion if A, (£)=1. It is sufficient to show that a 4pr-plane P which is J-invariant
for each J in C is of the form Homg(V, R) for some right H-subspace R of
H-dimension 7 in V. :

Let 7y, -+, V, be right H-subspaces of H-dimension 1 in V" such that V=
V@DV, is an orthogonal direct sum decomposition. We can regard in
natural way Homg(V,, V) as a subspace of Homg(V, V) for 1<a<p. Then
Homg(V, V*)=Homg(V,, V*-)P---BHompg(V,, V*) is an orthogonal direct
sum decomposition. Take a nonzero element S in P. We have a decomposi-
tion of S:

S = 8§+-+S,, S,€Homgx(V,, V).

As S is nonzero, S,=#0 for some b. Take a unit vector ¢, in V, for each a.

Put

J(SDe )= — Sevihotenihy

a=1

Jo and J; are contained in C. By the assumption of P
1
Sy = > (§—=SJJ)EP.

Since S, is nonzero, the image R, of S; is a right H-subspace of H-dimension 1
in V*. The set Ce, spans V as a real vector space, so CiS, spans Homg(V, R;).
Hence Homg(V, R)) is contained in P. The orthogonal complement of Homg
(V, R)) in P is also J-invariant for all J in C. Iterating the above argument, we
can show that P is of the form Homg(V, R) for some right H-subspace R of H-
dimension 7 in V.

Remark 3.3. The set of all oriented 4pr-planes & in Homg(V, V) which
satisfy A, (€)=1 is homeomorphic to G,(V™*), hence it is compact and connected.

Corollary 3.4. Regard \, as a constant coefficient differential 4pr-form on
Hompg(V, V*). Then the submanifolds in Homg(V, V™) calibrated by A\, are
locally the canonically oriented 4pr-planes Homg(V, R) for some right H-subspaces
R of H-dimension r in V- and their parallel translates in Homg(V, V™).
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Proof. By Theorem 3.2 the canonically oriented 4pr-planes Homy(V, R)
for right H-subspaces R of H-dimension 7 in V* and their parallel translates in
Homg(V, V™) are calibrated by A,.

Conversely let M be a submanifold calibrated by A, in Homg(V, V). Take
and fix an element g in Sp(H?*9) such that gH?=V. For each he H and vEV
we define hv=ghg~'v. Then we can regard V' and hence Homg(V, V™) as left
H-spaces. By Theorem 3.2 the tangent spaces to M are all left H-subspaces in
Homg(V, V). By Assertion 2 in Alekseevskii [1], M is totally geodesic, hence
it is locally of the form Homg(V, R) for some right H-subspace R of H-dimension
r in Homg(V, V™) or its parallel translate.

4. Proof of Theorem 1

Take an element ¥, in G,(H**?. The form A, on Homg(V,, V7) is
Sp (Vo) X Sp (Vi )-invariant, so we can extend \, to a parallel form on G,(H?*9).
The extended form is also denoted by A,, which is independent of the choice
of V,.

Lemma 4.1. The form \, is a calibration on G,(H?*).
Proof. This lemma follows from Theorem 3.2.

Proof of Theorem 1. Take an element V' in G,(E). Let R be the or-
thogonal complement of 7 in E. Then R is a right H-subspace of H-dimension
r in V*. By the definition of the local parametrization ¢ around ¥V, Homg(V, R)
in Homg(V, V™) is tangent to G,(E) at V. So G,(E) is calibrated by A, by
Theorem 3.2, hence it is volume minimizing in its real homology class.

Here we give another representation of the local parametrization ¢ in order
to characterize submanifolds calibrated by A,. For VeG,(H?" ), SeHompg
V, V), u,veV and xe V™,

(v+Sv)-(u+x) = v-(u+*'Sx) .
Hence we obtain
c(S)" = {v+Sv;velV}" = {—!Sx+x; x€V "} .

Take a right H-subspace R of H-dimension 7 in V. Let O be the orthogonal
complement of Rin V* and Q'={—'Sx+x; x&Q}. Let E be the orthogonal
complement of Q' in H?*?, Now we assert that ¢(S+Homg(V, R)) is contained
in G,(E). For T€Homg(V, R), vEV and x€ 0,

(Tx)v=x-(Tv) =0,

hence we obtain *Tx=0.
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(S+T)*" = {o+(S+T) v; vEV}*
= {—(S+!T) x+x; xV~}
D{—!Sx+x;x€Q} = 0Q'.

Therefore we have ¢(S+T)CE, that is, ¢(S+Homg(V, R))CG,(E). Since
dim (S+Homg(V, R))=dim(G,(E))=4pr, c(S+Homg(V, R)) is open in G,(E)
and the images of the tangent spaces to S-++Hompg(V, R) under the differential
of ¢ are the tangent spaces to G,(E).

Now at each point of G,(H?*9) the set of oriented tangent planes calibrated
by A, is compact and connected by Remark 3.3, hence for each S in Hompg
(V, V) the differential of ¢ gives a one to one correspondence between the set of
oriented tangent planes calibrated by A, in Ts(Homg(V, V™)) and that in T
(G,(H?*9)). Therefore the inverse image of a submanifold calibrated by A, in
G,(H?*?) under ¢ is a submanifold calibrated by A, in Homg(V, V"), which is
locally of the form S+Homg(V, R) for some .S in Homg(V, V) and some right
H-subspace R of H-dimension 7 in V- by Corollary 3.4. Hence by the above
argument a submanifold calibrated by A, in G,(H?*?) is locally a sub-Grassman-
nian in G,(H?*9).

Now let M be a compact oriented submanifold of G,(H?*?) which minimizes
volume in the homology class [G,(E)]. Then it is also calibrated by a,. By
the above result A is a sub-Grassmannian in G,(H?*?), hence it is congruent

to G, (E).
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