



|              |                                                                             |
|--------------|-----------------------------------------------------------------------------|
| Title        | Calibrated geometries in quaternionic Grassmannians                         |
| Author(s)    | Tasaki, Hiroyuki                                                            |
| Citation     | Osaka Journal of Mathematics. 1988, 25(3), p. 591-597                       |
| Version Type | VoR                                                                         |
| URL          | <a href="https://doi.org/10.18910/10137">https://doi.org/10.18910/10137</a> |
| rights       |                                                                             |
| Note         |                                                                             |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Tasaki, H.  
Osaka J. Math.  
25 (1988), 591-598

## CALIBRATED GEOMETRIES IN QUATERNIONIC GRASSMANNIANS

HIROYUKI TASAKI

(Received March 16, 1987)

### Introduction

Let  $\mathbf{H}$  denote the field of quaternions and  $\mathbf{H}^n$  the set of all  $n$ -column vectors over  $\mathbf{H}$ . We regard  $\mathbf{H}^n$  as a right  $\mathbf{H}$ -space. The object of this paper is the quaternionic Grassmannian  $G_p(\mathbf{H}^{p+q})$ , that is, the set of all right  $\mathbf{H}$ -subspaces of  $\mathbf{H}$ -dimension  $p$  in  $\mathbf{H}^{p+q}$ .

We apply the method of calibrated geometries to the invariant differential forms on the quaternionic Grassmannians and show that certain sub-Grassmannians in the quaternionic Grassmannians are uniquely volume minimizing in their homology classes. Strictly speaking, we prove the following theorem.

**Theorem 1.** *Take a right  $\mathbf{H}$ -subspace  $E$  of  $\mathbf{H}$ -dimension  $p+r$  in  $\mathbf{H}^{p+q}$ . Then the sub-Grassmannian  $G_p(E)$  in  $G_p(\mathbf{H}^{p+q})$  is a volume minimizing submanifold in its real homology class. Moreover any volume minimizing submanifold in the same homology class is congruent to it.*

Here we comment on earlier results concerning Theorem 1. Gluck-Morgan-Ziller [4] proved that in the real Grassmannian  $G_p(\mathbf{R}^{p+q})$  each sub-Grassmannian  $G_p(\mathbf{R}^{p+r})$  for  $1 \leq r \leq q-1$  is uniquely volume minimizing in its homology class if  $p$  is an even integer greater than or equal to 4. The present paper was inspired by their paper.

Berger [2] proved that the projective subplane  $P^r(\mathbf{H}) = G_1(\mathbf{H}^{1+r})$  in the quaternionic projective space  $P^q(\mathbf{H})$  is volume minimizing in its homology class for  $1 \leq r \leq q-1$ . His method is applicable to all quaternionic Kähler manifolds and as a result of the application it follows that a compact quaternionic submanifold in a quaternionic Kähler manifold is volume minimizing in its homology class. Moreover Fomenko [3] showed that  $G_1(\mathbf{H}^{1+r})$  in  $G_p(\mathbf{H}^{p+q})$  is volume minimizing in its homology class for  $1 \leq r \leq q-1$ .

There is a homologically volume minimizing sub-Grassmannian whose underlying field is different from that of the ambient Grassmannain.  $G_1(\mathbf{H}^k)$

---

Partially supported by the Yukawa Foundation.

naturally imbedded in  $G_2(\mathbf{C}^n)$  for  $2 \leq k \leq [n/2]$ ,  $G_1(\mathbf{H}^k)$  and  $G_2(\mathbf{C}^l)$  naturally imbedded in  $G_4(\mathbf{R}^n)$  for  $2 \leq k \leq [n/4]$  and  $3 \leq l \leq [n/2]$  respectively are such examples. These are all quaternionic submanifolds. See Tasaki [6].

The author would like to express his thanks to Professor Frank Morgan for a fruitful correspondence.

### 1. Calibrated geometries in symmetric spaces

We first define calibrations after Harvey-Lawson [5]. Let  $V$  be a real vector space of finite dimension with an inner product and  $\phi$  a  $d$ -form on  $V$ . If  $\phi$  satisfies  $\phi(\xi) \leq 1$  for each oriented  $d$ -plane  $\xi$  in  $V$ , we call  $\phi$  a *calibration* on  $V$ . For a calibration  $\phi$  on  $V$  we say that  $\phi$  *calibrates* an oriented  $d$ -plane  $\xi$  if  $\phi(\xi) = 1$ .

Let  $X$  be a Riemannian manifold and  $\phi$  a closed  $d$ -form on  $X$ . If  $\phi$  is a calibration on each tangent space to  $X$ , we call  $\phi$  a *calibration* on  $X$ . For a calibration  $\phi$  on  $X$  we say that  $\phi$  *calibrates* an oriented submanifold  $M$  if  $\phi$  calibrates the tangent space to  $M$  at each point.

We consider a Riemannian manifold  $X$  with a calibration  $\phi$  on it. Let  $M$  be a compact oriented submanifold calibrated by  $\phi$  and  $M'$  a compact oriented submanifold contained in the same real homology class as  $M$ . Then, using Stokes' theorem, we obtain

$$\text{vol}(M) = \int_M \phi = \int_{M'} \phi \leq \text{vol}(M').$$

Hence  $M$  is volume minimizing in its real homology class. If  $M'$  is also volume minimizing, then  $M'$  is calibrated by  $\phi$ .

Now we consider calibrated geometries in symmetric spaces. Let  $X$  be a compact symmetric space and  $G$  the identity component of the group of all isometries of  $X$ . Take and fix a point  $x$  in  $X$ . Let  $K$  be the isotropy subgroup of  $G$  at  $x$ . Then  $K$  acts linearly on the tangent space  $T_x(X)$ . We can extend any  $K$ -invariant form on  $T_x(X)$  to a parallel form on  $X$ . So it is important for us to construct  $K$ -invariant calibrations on  $T_x(X)$ . We do so on the tangent space to the quaternionic Grassmannian in Section 3.

### 2. Quaternionic linear algebra and quaternionic Grassmannians

In this section we review the quaternionic linear algebra and prepare for studying the geometry of the quaternionic Grassmannians. We denote by  $Sp(1)$  the group of quaternions with norm 1.

Let  $X$  be a right  $\mathbf{H}$ -space of finite dimension with an  $Sp(1)$ -invariant inner product  $\cdot$ . Let  $Sp(X)$  denote the group of all right  $\mathbf{H}$ -linear isometries of  $X$ . For another right  $\mathbf{H}$ -space  $Y$  of finite dimension with an  $Sp(1)$ -invariant inner product  $\cdot$ , we denote by  $\text{Hom}_{\mathbf{H}}(X, Y)$  the real vector space of all right  $\mathbf{H}$ -linear maps from  $X$  to  $Y$ . We can consider the transposed map  $'S$  of  $S$  in  $\text{Hom}_{\mathbf{H}}(X,$

$Y$ ):  $(^tSy) \cdot x = y \cdot (Sx)$  for  $x \in X$  and  $y \in Y$ . Then  ${}^tS$  is a right  $\mathbf{H}$ -linear map from  $Y$  to  $X$ , because the inner products are  $Sp(1)$ -invariant. Note that the transposed map  ${}^tA$  of  $A$  in  $Sp(X)$  is equal to  $A^{-1}$ .

The canonical  $Sp(1)$ -invariant inner product  $\cdot$  on  $\mathbf{H}^n$  is defined by

$$x \cdot y = \operatorname{Re} \sum_{s=1}^n x_s y_s$$

for  $x = (x_s)$  and  $y = (y_s)$  in  $\mathbf{H}^n$ . The action of  $Sp(\mathbf{H}^{p+q})$  on  $\mathbf{H}^{p+q}$  induces that of  $Sp(\mathbf{H}^{p+q})$  on  $G_p(\mathbf{H}^{p+q})$ , which is transitive. Take an element  $V$  in  $G_p(\mathbf{H}^{p+q})$ . The orthogonal complement  $V^\perp$  of  $V$  in  $\mathbf{H}^{p+q}$  is a right  $\mathbf{H}$ -subspace of  $\mathbf{H}$ -dimension  $q$  in  $\mathbf{H}^{p+q}$ . The isotropy subgroup of  $Sp(\mathbf{H}^{p+q})$  at  $V$  is  $Sp(V) \times Sp(V^\perp)$ . Hence  $G_p(\mathbf{H}^{p+q})$  is a homogeneous space of the form  $Sp(\mathbf{H}^{p+q})/Sp(V) \times Sp(V^\perp)$ . We define an action of  $Sp(V) \times Sp(V^\perp)$  on  $\operatorname{Hom}_{\mathbf{H}}(V, V^\perp)$  by

$$(A, B) S = BSA^{-1}$$

for  $A \in Sp(V)$ ,  $B \in Sp(V^\perp)$  and  $S \in \operatorname{Hom}_{\mathbf{H}}(V, V^\perp)$ .

Now we construct a local parametrization of  $G_p(\mathbf{H}^{p+q})$  around  $V$ :

$$\begin{aligned} c: \operatorname{Hom}_{\mathbf{H}}(V, V^\perp) &\rightarrow G_p(\mathbf{H}^{p+q}) \\ S &\mapsto \text{the graph of } S. \end{aligned}$$

Note that the graph of  $S$  is the right  $\mathbf{H}$ -subspace of the form  $\{v + Sv; v \in V\}$  in  $\mathbf{H}^{p+q}$ . Thus the tangent space  $T_V(G_p(\mathbf{H}^{p+q}))$  is identified with  $\operatorname{Hom}_{\mathbf{H}}(V, V^\perp)$ .

**Lemma 2.1.** *The local parametrization  $c$  is  $Sp(V) \times Sp(V^\perp)$ -equivariant. In particular, the linear isotropy action of  $Sp(V) \times Sp(V^\perp)$  on  $\operatorname{Hom}_{\mathbf{H}}(V, V^\perp)$  is the action defined above.*

**Proof.** For  $(A, B) \in Sp(V) \times Sp(V^\perp)$  and  $S \in \operatorname{Hom}_{\mathbf{H}}(V, V^\perp)$ ,

$$\begin{aligned} (A, B) c(S) &= \{Av + BSv; v \in V\} \\ &= \{v + BSA^{-1}v; v \in V\} \\ &= c((A, B) S). \end{aligned}$$

We define an inner product  $\cdot$  on  $\operatorname{Hom}_{\mathbf{H}}(V, V^\perp)$  by

$$S \cdot T = \operatorname{tr}_{\mathbf{R}}({}^tST),$$

for  $S$  and  $T$  in  $\operatorname{Hom}_{\mathbf{H}}(V, V^\perp)$ . Then this inner product is  $Sp(V) \times Sp(V^\perp)$ -invariant. So it induces an  $Sp(\mathbf{H}^{p+q})$ -invariant metric on  $G_p(\mathbf{H}^{p+q})$ , with respect to which  $G_p(\mathbf{H}^{p+q})$  is a symmetric space.

### 3. Invariant calibrations on the tangent space

Take and fix an element  $V$  in  $G_p(\mathbf{H}^{p+q})$ . We construct  $Sp(V) \times Sp(V^\perp)$ -

invariant calibrations on  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$ .

We first consider the set

$$C = \{J \in \text{Sp}(V); J^2 = -1_V\}.$$

$\text{Sp}(V)$  acts on  $C$  by  $g(J) = gJg^{-1}$  for  $g \in \text{Sp}(V)$  and  $J \in C$ . Indeed  $C$  is invariant under the action of  $\text{Sp}(V)$ . Moreover we obtain the next lemma.

**Lemma 3.1.** *The action of  $\text{Sp}(V)$  on  $C$  is transitive.*

Proof. Take an orthonormal  $\mathbf{H}$ -basis  $\{e_1, \dots, e_p\}$  for  $V$ . For  $(\theta_1, \dots, \theta_p) \in \mathbf{R}^p$ , put

$$t(\theta_1, \dots, \theta_p) \sum_{a=1}^p e_a h_a = \sum_{a=1}^p e_a (\cos \theta_a + i \sin \theta_a) h_a, \quad h_a \in \mathbf{H}.$$

Then the subgroup  $T = \{t(\theta_1, \dots, \theta_p); \theta_a \in \mathbf{R}\}$  of  $\text{Sp}(V)$  is a maximal torus of  $\text{Sp}(V)$ . So for each  $J$  in  $C$  there is  $g$  in  $\text{Sp}(V)$  such that  $gJg^{-1} \in T$ . Since  $(gJg^{-1})^2 = -1_V$ ,  $gJg^{-1} = t(\pm\pi/2, \dots, \pm\pi/2)$ . We can retake  $g_1$  in  $\text{Sp}(V)$  such that  $g_1 J g_1^{-1} = t(\pi/2, \dots, \pi/2)$ , hence the action of  $\text{Sp}(V)$  on  $C$  is transitive.

Since  $C$  is a subset of  $\text{Sp}(V)$ , each element  $J$  in  $C$  acts in natural way on  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$ . The action of  $J$  on  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$  gives an orthogonal complex structure on it. Let  $\omega_J$  denote the corresponding fundamental 2-form on  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$ .

Let  $\int_{\text{Sp}(V)}$  be the invariant measure on  $\text{Sp}(V)$  with total volume 1. Take an element  $J_0$  in  $C$  and consider the form

$$\lambda_r = \frac{1}{(2pr)!} \int_{g \in \text{Sp}(V)} g^* \omega_{J_0}^{2pr}$$

for  $1 \leq r \leq q-1$ . Then  $\lambda_r$  is an  $\text{Sp}(V) \times \text{Sp}(V^\perp)$ -invariant  $4pr$ -form on  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$ . Since  $g^* \omega_J = \omega_{g^{-1} J g}$ , the form  $\lambda_r$  is regarded as the average of  $\omega_J^{2pr} / (2pr)!$  over all  $J$  in  $C$  by Lemma 3.1 and independent of the choice of  $J_0$ .

Let  $R$  be a right  $\mathbf{H}$ -subspace of  $\mathbf{H}$ -dimension  $r$  in  $V^\perp$ . Since  $\text{Hom}_{\mathbf{H}}(V, R)$  is a  $J$ -invariant  $4pr$ -plane for each  $J$  in  $C$ , we can consider the canonical orientation of  $\text{Hom}_{\mathbf{H}}(V, R)$  with respect to each orthogonal complex structure  $J$ . These orientations are the same, because  $C$  is connected. We call this orientation the *canonical orientation* of  $\text{Hom}_{\mathbf{H}}(V, R)$ .

**Theorem 3.2.** *The form  $\lambda_r$  is a calibration on  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$ . For each oriented  $4pr$ -plane  $\xi$  in  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$ ,  $\lambda_r$  calibrates  $\xi$  if and only if  $\xi$  is of the form  $\text{Hom}_{\mathbf{H}}(V, R)$  with the canonical orientation for some right  $\mathbf{H}$ -subspace  $R$  of  $\mathbf{H}$ -dimension  $r$  in  $V^\perp$ .*

Proof. For  $J$  in  $C$  and an oriented  $4pr$ -plane  $\xi$  in  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$ , by Wirtinger's inequality we have  $\omega_J^{2pr}(\xi)/(2pr)! \leq 1$ , and the equality holds if and only if  $\xi$  is a canonically oriented  $J$ -invariant  $4pr$ -plane in  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$ . So  $\lambda_r(\xi) = 1$  if  $\xi$  is of the form  $\text{Hom}_{\mathbf{H}}(V, R)$  with the canonical orientation for some right  $\mathbf{H}$ -subspace  $R$  of  $\mathbf{H}$ -dimension  $r$  in  $V^\perp$ .

Next we show that  $\xi$  is of the form  $\text{Hom}_{\mathbf{H}}(V, R)$  with the canonical orientation if  $\lambda_r(\xi) = 1$ . It is sufficient to show that a  $4pr$ -plane  $P$  which is  $J$ -invariant for each  $J$  in  $C$  is of the form  $\text{Hom}_{\mathbf{H}}(V, R)$  for some right  $\mathbf{H}$ -subspace  $R$  of  $\mathbf{H}$ -dimension  $r$  in  $V^\perp$ .

Let  $V_1, \dots, V_p$  be right  $\mathbf{H}$ -subspaces of  $\mathbf{H}$ -dimension 1 in  $V$  such that  $V = V_1 \oplus \dots \oplus V_p$  is an orthogonal direct sum decomposition. We can regard in a natural way  $\text{Hom}_{\mathbf{H}}(V_a, V^\perp)$  as a subspace of  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$  for  $1 \leq a \leq p$ . Then  $\text{Hom}_{\mathbf{H}}(V, V^\perp) = \text{Hom}_{\mathbf{H}}(V_1, V^\perp) \oplus \dots \oplus \text{Hom}_{\mathbf{H}}(V_p, V^\perp)$  is an orthogonal direct sum decomposition. Take a nonzero element  $S$  in  $P$ . We have a decomposition of  $S$ :

$$S = S_1 + \dots + S_p, \quad S_a \in \text{Hom}_{\mathbf{H}}(V_a, V^\perp).$$

As  $S$  is nonzero,  $S_b \neq 0$  for some  $b$ . Take a unit vector  $e_a$  in  $V_a$  for each  $a$ . Put

$$\begin{aligned} J_0\left(\sum_{a=1}^p e_a h_a\right) &= \sum_{a=1}^p e_a i h_a, \quad h_a \in \mathbf{H}, \\ J_b\left(\sum_{a=1}^p e_a h_a\right) &= - \sum_{a \neq b} e_a i h_a + e_b i h_b. \end{aligned}$$

$J_0$  and  $J_b$  are contained in  $C$ . By the assumption of  $P$

$$S_b = \frac{1}{2} (S - S J_0 J_b) \in P.$$

Since  $S_b$  is nonzero, the image  $R_1$  of  $S_b$  is a right  $\mathbf{H}$ -subspace of  $\mathbf{H}$ -dimension 1 in  $V^\perp$ . The set  $C e_b$  spans  $V$  as a real vector space, so  $C S_b$  spans  $\text{Hom}_{\mathbf{H}}(V, R_1)$ . Hence  $\text{Hom}_{\mathbf{H}}(V, R_1)$  is contained in  $P$ . The orthogonal complement of  $\text{Hom}_{\mathbf{H}}(V, R_1)$  in  $P$  is also  $J$ -invariant for all  $J$  in  $C$ . Iterating the above argument, we can show that  $P$  is of the form  $\text{Hom}_{\mathbf{H}}(V, R)$  for some right  $\mathbf{H}$ -subspace  $R$  of  $\mathbf{H}$ -dimension  $r$  in  $V^\perp$ .

**REMARK 3.3.** The set of all oriented  $4pr$ -planes  $\xi$  in  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$  which satisfy  $\lambda_r(\xi) = 1$  is homeomorphic to  $G_r(V^\perp)$ , hence it is compact and connected.

**Corollary 3.4.** *Regard  $\lambda_r$  as a constant coefficient differential  $4pr$ -form on  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$ . Then the submanifolds in  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$  calibrated by  $\lambda_r$  are locally the canonically oriented  $4pr$ -planes  $\text{Hom}_{\mathbf{H}}(V, R)$  for some right  $\mathbf{H}$ -subspaces  $R$  of  $\mathbf{H}$ -dimension  $r$  in  $V^\perp$  and their parallel translates in  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$ .*

Proof. By Theorem 3.2 the canonically oriented  $4pr$ -planes  $\text{Hom}_{\mathbf{H}}(V, R)$  for right  $\mathbf{H}$ -subspaces  $R$  of  $\mathbf{H}$ -dimension  $r$  in  $V^\perp$  and their parallel translates in  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$  are calibrated by  $\lambda_r$ .

Conversely let  $M$  be a submanifold calibrated by  $\lambda_r$  in  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$ . Take and fix an element  $g$  in  $Sp(\mathbf{H}^{p+q})$  such that  $g\mathbf{H}^p = V$ . For each  $h \in \mathbf{H}$  and  $v \in V$  we define  $hv = ghg^{-1}v$ . Then we can regard  $V$  and hence  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$  as left  $\mathbf{H}$ -spaces. By Theorem 3.2 the tangent spaces to  $M$  are all left  $\mathbf{H}$ -subspaces in  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$ . By Assertion 2 in Alekseevskii [1],  $M$  is totally geodesic, hence it is locally of the form  $\text{Hom}_{\mathbf{H}}(V, R)$  for some right  $\mathbf{H}$ -subspace  $R$  of  $\mathbf{H}$ -dimension  $r$  in  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$  or its parallel translate.

#### 4. Proof of Theorem 1

Take an element  $V_0$  in  $G_p(\mathbf{H}^{p+q})$ . The form  $\lambda_r$  on  $\text{Hom}_{\mathbf{H}}(V_0, V_0^\perp)$  is  $Sp(V_0) \times Sp(V_0^\perp)$ -invariant, so we can extend  $\lambda_r$  to a parallel form on  $G_p(\mathbf{H}^{p+q})$ . The extended form is also denoted by  $\lambda_r$ , which is independent of the choice of  $V_0$ .

**Lemma 4.1.** *The form  $\lambda_r$  is a calibration on  $G_p(\mathbf{H}^{p+q})$ .*

Proof. This lemma follows from Theorem 3.2.

Proof of Theorem 1. Take an element  $V$  in  $G_p(E)$ . Let  $R$  be the orthogonal complement of  $V$  in  $E$ . Then  $R$  is a right  $\mathbf{H}$ -subspace of  $\mathbf{H}$ -dimension  $r$  in  $V^\perp$ . By the definition of the local parametrization  $c$  around  $V$ ,  $\text{Hom}_{\mathbf{H}}(V, R)$  in  $\text{Hom}_{\mathbf{H}}(V, V^\perp)$  is tangent to  $G_p(E)$  at  $V$ . So  $G_p(E)$  is calibrated by  $\lambda_r$  by Theorem 3.2, hence it is volume minimizing in its real homology class.

Here we give another representation of the local parametrization  $c$  in order to characterize submanifolds calibrated by  $\lambda_r$ . For  $V \in G_p(\mathbf{H}^{p+q})$ ,  $S \in \text{Hom}_{\mathbf{H}}(V, V^\perp)$ ,  $u, v \in V$  and  $x \in V^\perp$ ,

$$(v + Sv) \cdot (u + x) = v \cdot (u + {}^t Sx).$$

Hence we obtain

$$c(S)^\perp = \{v + Sv; v \in V\}^\perp = \{-{}^t Sx + x; x \in V^\perp\}.$$

Take a right  $\mathbf{H}$ -subspace  $R$  of  $\mathbf{H}$ -dimension  $r$  in  $V^\perp$ . Let  $Q$  be the orthogonal complement of  $R$  in  $V^\perp$  and  $Q' = \{-{}^t Sx + x; x \in Q\}$ . Let  $E$  be the orthogonal complement of  $Q'$  in  $\mathbf{H}^{p+q}$ . Now we assert that  $c(S + \text{Hom}_{\mathbf{H}}(V, R))$  is contained in  $G_p(E)$ . For  $T \in \text{Hom}_{\mathbf{H}}(V, R)$ ,  $v \in V$  and  $x \in Q$ ,

$$({}^t Tx) \cdot v = x \cdot (Tv) = 0,$$

hence we obtain  ${}^t Tx = 0$ .

$$\begin{aligned}
c(S+T)^\perp &= \{v+(S+T)v; v \in V\}^\perp \\
&= \{-(^tS+^tT)x+x; x \in V^\perp\} \\
&\supset \{-^tSx+x; x \in Q\} = Q'.
\end{aligned}$$

Therefore we have  $c(S+T) \subset E$ , that is,  $c(S+\text{Hom}_H(V, R)) \subset G_p(E)$ . Since  $\dim(S+\text{Hom}_H(V, R)) = \dim(G_p(E)) = 4pr$ ,  $c(S+\text{Hom}_H(V, R))$  is open in  $G_p(E)$  and the images of the tangent spaces to  $S+\text{Hom}_H(V, R)$  under the differential of  $c$  are the tangent spaces to  $G_p(E)$ .

Now at each point of  $G_p(\mathbf{H}^{p+q})$  the set of oriented tangent planes calibrated by  $\lambda_r$  is compact and connected by Remark 3.3, hence for each  $S$  in  $\text{Hom}_H(V, V^\perp)$  the differential of  $c$  gives a one to one correspondence between the set of oriented tangent planes calibrated by  $\lambda_r$  in  $T_S(\text{Hom}_H(V, V^\perp))$  and that in  $T_{c(S)}(G_p(\mathbf{H}^{p+q}))$ . Therefore the inverse image of a submanifold calibrated by  $\lambda_r$  in  $G_p(\mathbf{H}^{p+q})$  under  $c$  is a submanifold calibrated by  $\lambda_r$  in  $\text{Hom}_H(V, V^\perp)$ , which is locally of the form  $S+\text{Hom}_H(V, R)$  for some  $S$  in  $\text{Hom}_H(V, V^\perp)$  and some right  $H$ -subspace  $R$  of  $H$ -dimension  $r$  in  $V^\perp$  by Corollary 3.4. Hence by the above argument a submanifold calibrated by  $\lambda_r$  in  $G_p(\mathbf{H}^{p+q})$  is locally a sub-Grassmannian in  $G_p(\mathbf{H}^{p+q})$ .

Now let  $M$  be a compact oriented submanifold of  $G_p(\mathbf{H}^{p+q})$  which minimizes volume in the homology class  $[G_p(E)]$ . Then it is also calibrated by  $\lambda_r$ . By the above result  $M$  is a sub-Grassmannian in  $G_p(\mathbf{H}^{p+q})$ , hence it is congruent to  $G_p(E)$ .

---

### References

- [1] D.V. Alekseevskii: *Compact quaternion spaces*, *Funct. Anal. Appl.* **2** (1968), 106–114.
- [2] M. Berger: *Du côté de chez Pu*, *Ann. Sci. École Norm. Sup.* **5** (1972), 1–44.
- [3] A.T. Fomenko: *Minimal compacta in Riemannian manifolds and Reifenberg's conjecture*, *Math. USSR Izv.* **6** (1972), 1037–1066.
- [4] H. Gluck, F. Morgan and W. Ziller: *Calibrated geometries in Grassmann manifolds*, preprint.
- [5] R. Harvey and H.B. Lawson, Jr.: *Calibrated geometry*, *Acta Math.* **148** (1982), 47–157.
- [6] H. Tasaki: *Quaternionic submanifolds in quaternionic symmetric spaces*, *Tôhoku Math. J.* **38** (1986), 513–538.

Department of Mathematics  
Tokyo Gakugei University  
Koganei, Tokyo 184  
Japan

