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Abstract—Achieving both low-power consumption and robust
security is essential in wearable measurement devices such as
electroencephalogram (EEG) headsets, which are highly antic-
ipated in the consumer electronics field. To address these dual
requirements, we focused on a compressed sensing-based security
technique for chain-generated noise-masking, as proposed in
prior research. In this paper, we explain the power consumption
in relation to the circuit input range and resolution, with a focus
on practical implementation. Based on simulations that assume
continuous EEG data over a period of more than one week, we
verify that when the compression ratio is four, the system is
reliable and resistant to attacks when the watermark magnitude
is set to 100 µVrms and the pseudo-noise magnitude is at least
250 µVrms. Furthermore, simulations confirm no additional
requirements for resolution or input range, which are closely
related to the power consumption of the device, are necessary
despite the insertion of watermarks and noise. Our research aims
to advancement the field of smart healthcare through innovative
contributions from the perspectives of low-power consumption
and security.

Index Terms—BSBL, compressed sensing, cryptosystem, EEG,
low-power dissipation, secure communication, watermark

I. INTRODUCTION

An electroencephalogram (EEG) is a crucial biosignal, and
obtaining EEG information helps early disease detection [1]
and has applications in brain–computer interface technolo-
gies [2]. Most existing EEG recording devices are wired.
However, a non-invasive, long-operating wireless measure-
ment system is required to expand the use of EEG in recording
devices. Therefore, increasing research is being conducted on
wearable wireless EEG devices for consumers that can utilize
EEG signals in everyday life [3]. To realize such a system,
it is necessary not only to acquire accurate data but also
to accomplish low-power consumption and robust security.
In this study, we focused on the compressed sensing (CS)
technology [4] [5] using random under-sampling [6]. This
technology is expected to achieve accurate data acquisition
with low-power consumption because it enables high-precision
reconstruction while reducing the amount of information han-
dled by the circuits. Several studies have applied CS to the
acquisition of biological signals [7], including ECG [8], EEG
[9]. Furthermore, research on achieving low-power sampling
using CS technology has advanced significantly. For example,
by employing random under-sampling to enable low-power
wireless EEG systems, studies demonstrated power-saving ef-

fects in analog-to-digital (A/D) converters [6], amplifiers [10]
[11], and overall systems [12]. Additionally, previous studies
have proposed the chained-generated noise-masking system
[13], which leverages CS as a lightweight encryption method
to enhance security. This study focused on a chained-generated
noise-masking system. The chained-generated noise-masking
system ensures security with minimal power consumption
by inserting random pseudo-noise and digital watermarks as
masks during the compression of acquired signals. However,
if the insertion of masks requires a higher resolution and
input range, it may challenge the balance between security and
low-power consumption. This paper presents a more detailed
design methodology for a chained-generated noise-masking
system compared to previous research, and we evaluate and
discuss its power consumption, recovery accuracy, and security
strength.

The remainder of this paper is organized as follows: In
Chapter II, we explain the foundational knowledge of CS
and the chained-generated noise-masking system. Chapter
III presents the design parameters of the proposed system.
Chapter IV describes the simulation conditions, results, and
corresponding discussion. Finally, Chapter V concludes the
study.

II. COMPRESSED SENSING AND
CHAIN-GENERATED NOISE-MASKING

CS is a technology that enables the accurate reconstruction
of the original signal even when sampled at a frequency lower
than the Nyquist frequency under the assumption that the
signal is sparse.

A. Sparsity

Sparsity refers to a situation where most of the representa-
tion coefficients of a signal decomposed using an appropriate
basis are either zero or can be considered zero, and only a
small number of non-zero components are sparsely distributed.
However, data from the real world, such as EEG, audio, and
images, rarely exhibit sparsity. Therefore, a technique called
sparse coding [14] is often employed in image and audio
processing. In sparse coding is a method where the input
signal is decomposed into the product of a basis matrix and a
sparse vector. Let the N -dimensional input signal be denoted
as x ∈ RN×1, the basis matrix as Ψ ∈ RN×P , and the sparse



vector as s ∈ RP×1. Applying sparse coding to the input
signal x can be represented as

x = Ψs (1)

This enables the application of CS. In this study, we used a
discrete cosine transform (DCT) matrix [15] and EEG basis
(EEGB) [11] [16] as basis matrices.

B. Signal Compression and Random Under-sampling

In CS, signal compression is performed simultaneously
with sampling, enabling low-power signal compression. Signal
compression is achieved by multiplying the input signal by
the measurement matrix. Let the measurement matrix be
Φ ∈ RM×N (M < N ), then the compressed matrix y is
represented as

y = Φx (2)

Substituting (1) into the above equation yields

y = Φx = ΦΨs. (3)

In conventional CS, Gaussian-distributed measurement ma-
trices, which require significant computational resources, are
typically used. However, in this study, we achieved random
under-sampling with a measurement matrix that is easier to
implement in hardware and is computationally efficient. The
matrix was created by setting a randomly determined element
in each column of an M ×N zero matrix to one.

C. Reconstruction Algorithm

Let the product of the basis matrix Ψ and measurement
matrix Φ be the sensing matrix Θ, then:

y = ΦΨs = Θs. (4)

As the measurement matrix is known, we can obtain s by
solving (4) during reconstruction, and from (1), we can retrieve
the input signal. However, the length of signal y is shorter
than that of signal s, which makes it an underdetermined
system, and (4) typically cannot be solved directly. Therefore,
we leverage the sparsity of s and use a method known as
a reconstruction algorithm to derive s from the compressed
signal, measurement matrix, and basis matrix. Various recon-
struction algorithms have been studied. However, in this study,
we employed the block-sparse Bayesian learning (BSBL) algo-
rithm [17], which provides excellent reconstruction accuracy.

D. Chain-generated noise-masking

A CS can be viewed as a form of shared-key encryp-
tion if the measurement matrix Φ is considered a key. The
sender compresses and encrypts the input signal x using
the measurement matrix Φ, thereby generating a compressed
signal y. However, owing to the linear transformation, this
method is vulnerable to known-plaintext attacks (KPA) [18].
In response, prior research has proposed a system called chain-
generated noise-masking to enhance security. The system adds
the pseudo-noise generated using watermarking and chain
generation adapted to the CS to the input signal, thereby
creating a secure compressed signal.
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Fig. 1. In the proposed method, a watermark is created in advance, which is
shared by the sensing and data processing units. The sensing side generates
pseudo-noise using a seed value based on the watermark. The processing side
receives a compressed EEG signal that is a combination of the EEG, water-
mark, and pseudo-noise. The pseudo-noise and watermark can be eliminated
by using the pre-shared watermark information.

The specific operation of the chain-generated noise-masking
is as follows: First, as shown in the upper part of Fig. 1,
several watermark patterns were pre-generated and shared
between the transmitter and receiver. Following that, for the
transmitter illustrated on the left side of Fig. 1, one of the
predefined watermark patterns was selected. Subsequently, a
seed value was derived from the selected pattern, which is used
to generate a pseudo-noise. As the input signal was sampled
and compressed using the measurement matrix, the watermark
and generated pseudo-noise were compressed using the same
matrix. These signals were then added to the compressed
input signal to generate an encrypted compressed signal. On
the receiver side, as shown on the right side of Fig. 1,
all watermark patterns, the measurement matrix, and seed
values are pre-shared. Based on this information, a pseudo-
noise was generated and compressed, enabling the receiver to
remove the pseudo-noise from the received compressed signal.
Upon removing the pseudo-noise, the correlation between the
noise-free received signal and stored watermark patterns was
examined to identify the watermark selected by the sender.
This process also extracts the seed value necessary to generate
the pseudo-noise for use in the next step. Finally, the input
signal was reconstructed from the received signal after both
the pseudo-noise and watermark were removed. By repeating
this process continuously, a pseudo-noise is generated in a
chain-like manner, thereby ensuring signal security.

E. KPA Scenario

In the KPA scenario, the eavesdropper can reconstruct the
measurement matrix Φ by accessing pairs of the input signals
x and compressed signal y, denoted as pairs (x,y) [19].

Let the number of such pairs be p, and define Xset and
Yset as follows: Xset,Yset

Xset = [x1 − xp]

Yset = [y1 − yp].
(5)

Additionally, let ϕi,j denote the elements in the i-th row and
j-th column of the measurement matrix Φ. The CS equation



EEG A/D

Pseudo-Noise
compression
&addition

Watermark
compression
&addition

Tx

Sensing Unit

α

β γ
resolution:α,β,γ

Fig. 2. Schematic of the transmitter. Dtop and Dbottom represent the upper
and lower limits of the signal range for the A/D converter, respectively.
Similarly, Etop and Ebottom represent the upper and lower limits of the
signal range for the transmitter. α is the resolution of the A/D converter, β is
the resolution of the pseudo-noise, and γ is the resolution of the watermark.

can then be written as:

Yset = ΦXset

=

 ϕ1,1 · · · ϕ1,N

...
. . .

...
ϕM,1 · · · ϕM,N

Xset.
(6)

Therefore, it can be deduced that to determine all the elements
ϕi,j of the measurement matrix Φ, a total of M×N equations
are required. Each pair (X and Y sets ) provides M equations.
If eavesdropper obtains N pairs of (Xset,Yset), then the
measurement matrix Φ can be completely reconstructed.

III. TRANSMITTER CIRCUIT SYSTEM UTILIZING
CHAIN-GENERATED NOISE-MASKING TECHNOLOGY

In circuit design, input range and resolution are critical
factors when considering power consumption. As shown in the
diagram, a transmission circuit that applies the chain-generated
noise-masking technique adds watermarking and pseudo-noise
to EEG signals. Although this enhances security, increasing the
required input range and resolution at the transmitter owing to
noise-masking may negate the power-saving advantages of CS.
Therefore, in this study, we investigated the design parameters
of a transmission circuit system to evaluate their impact on
power consumption.

A. Input range

input range refers to the range between the maximum
and minimum values of a signal in a measuring device.
This range defines the measurable scope; the wider the input
range, the more accurately the device measures a broader
spectrum of signals. However, a larger input range requires
a higher resolution for precise signal reconstruction, which
in turn increases the power consumption. This study adopted
random under-sampling, a technique that compresses signals
by randomly omitting sampling points. Consequently, the input
range of the signal remains unchanged even after the A/D
conversion. As shown in Fig. 2, the upper and lower limits
of the signal range of the A/D converter in the transmission
circuit system are denoted by Dtop and Dbottom, respectively.
Similarly, the upper limit of the signal range for the transmitter
is denoted by Etop, where the lower limit is Ebottom. When

applying masking to a compressed signal, the signal size may
increase, potentially requiring a larger input range. However,
if there are no problems in the compression and reconstruction
processes when Etop − Ebottom = Dtop −Dbottom, the input
range does not have to be increased, thus maintaining low-
power consumption in the proposed method.

B. Resolution

As shown in Fig. 2, let α represent the resolution of the
A/D converter, β the resolution of pseudo-noise, and γ the
resolution of the watermark. For example, considering that the
resolution of devices such as the Emotiv EPOC X by Emotiv
and the B-Alert X series by Advanced Brain Monitoring
is 16 bits, if we assume α = 16, then if β and γ are
at or below the resolution of 16 bits, the overall required
resolution of the transmitter can be assumed to be 16 bits.
In this case, the insertion of the watermark and noise mask
did not increase the required resolution, thereby maintaining
low-power consumption.

IV. EVALUATION

This study used the CHB-MIT EEG data [20] as the test
data to evaluate the stability of transmission and reception,
security strength, and reconstruction accuracy based on the
aforementioned design methodology. Specifically, we resam-
pled the EEG data from the FP1-FP7 channels of the dataset
chb05 from the CHB-MIT database at 200 Hz, excluding the
periods of epileptic seizures to focus on using steady-state
brain activity, and defined one frame as 6 s. Consequently,
40601 frames of EEG data were obtained. The maximum and
minimum data values were measured, and by referencing the
larger absolute value of the minimum of −1379.1 µV, we set
the upper limit of the input range to Etop = 1379.1 µV and
the lower limit to Ebottom = −1379.1 µV. A quantization
program was used to handle data at arbitrary resolutions. The
quantization program takes the data to be quantized as full-
scale and quantifies both the bit resolution and output data
at the given resolution. In addition, as an indicator of the
reconstruction accuracy, we used the normalized mean square
error (NMSE), defined by the following equation, where x
represents the input signal and x̂ represents the reconstructed
signal.

NMSE =

(
||x̂− x||2
||x||2

)2

. (7)

A. Verification of stability of transmission and reception

In the proposed method, the pseudo-noise is generated in
a chained manner based on the estimation of the watermark,
making it essential for the receiver to reliably estimate the
watermark for stable transmission and reception. Therefore,
this study specifies the size of the required watermark based
on the expected design requirements. In the simulation, eight
different watermarks were prepared, and each watermark was
added to the EEG data used as the input signal to generate the
compressed signal. That is, the watermark was changed eight
times for each frame of the input signal. Subsequently, the



Fig. 3. Shmoo plot showing the magnitude of watermark and estimation
accuracy for each resolution. The estimation accuracy is represented by
different colors: the red area indicates less than 99.8 %; the yellow area
indicates between 99.8 % and less than 100 %; and the green area indicates
100 %.

Fig. 4. This figure illustrates the magnitude of the watermark necessary for
reliable watermark estimation for each CR.

receiver analyzes the correlation between the eight prepared
watermarks and the compressed signal to estimate the water-
mark selected on the transmitter side. The simulations were
conducted under the conditions of a compression ratio (CR)
of 4 and a resolution ranging from 2 to 16 and watermark
strengths ranging from 20 to 160 µVrms in 20000× 8 sets.
The estimation accuracy for each condition was evaluated.
The results are presented as a Shmoo plot in Fig. 3, where
the horizontal axis represents the watermark strength and the
vertical axis represents the resolution. From Fig. 3, it was
found that with a resolution of 2 to 4 bits, a reliable estimation
could be achieved regardless of the watermark strength. In
addition, at a watermark magnitude of 30 to 75 µVrms, the
estimation accuracy reaches approximately 99 %, and reliable
estimation is ensured at 80 µVrms or higher. Additionally,
simulations were conducted with CR ranging from 2-10, and
Fig. 4 summarizes the required watermark strength for reliable
estimation, independent of resolution. As shown in Fig. 4,
while the necessary strength increased within the CR range
of 2-4, it remained between 90 µVrms and 100 µVrms for
ratios greater than five. Therefore, a watermark magnitude of
100 µVrms or higher guarantees reliable estimation, regard-
less of the resolution.

B. Verification of security strength

The proposed method was validated by evaluating the
pseudo-noise strength required for sufficient security through
the reconstruction accuracy of both the proposed method
and eavesdropper, utilizing KPA. The implementation of the
KPA employs regularized least squares. The least-squares
method minimizes the squared error between predicted and
actual values. Regularized least-squares addresses overfitting
by adding a regularization parameter λ as follows: Let Φ̂
represent the observation matrix to be estimated, X represent
the input signal, and Y represent the compressed signal. The
matrix Φ̂ can be expressed using the regularization parameter
λ in the following equation:

Φ̂ =
YXT

XXT + λI
(8)

In this study, λ = 0.1.
Given that the input range of the test data was defined

by Etop = 1379.1 µV and Ebottom = −1379.1 µV, we
hypothesized that as long as the standard deviation σ of
the pseudo-noise, representing its strength, does not exceed
1379.1/3 ≈ 460 µV, the noise could be inserted within the
allowable input range. In other words, if the inserted noise
strength is 460 µV or less, an increase in resolution is not
necessary, and there is no additional power consumption
owing to the pseudo-noise insertion. In this simulation, the
resolutions α, β, and γ are all set to 16 bits. First, we added
a watermark with a magnitude of 100 µVrms to the test data,
along with the pseudo-noise of arbitrary strengths ranging
from 0 to 400 µVrms, and compressed the data at a CR
of four, following previous studies. Subsequently, both the
proposed method and the attacker reconstructed the data, and



Fig. 5. This graph represents the average NMSE over 1000 frames when the
proposed method and eavesdropper attempt to reconstruct brainwave signals
with arbitrary pseudo-noise inserted. Here, ϵ indicates the number of pairs of
input signals and compressed signals obtained by the attacker.

the NMSE between the reconstructed and original test data
was calculated. This compression and reconstruction process
was repeated 1000 times for each pseudo-noise strength level,
and the results were averaged and plotted in Fig. 5. Here, ϵ
represents the number of signal pairs available to the eaves-
dropper, comprising the input and compressed signals. In Fig.
5, the horizontal axis represents the pseudo-noise strength, and
the vertical axis represents the NMSE. The results show that
the reconstruction of the receiver accuracy remains constant
and accurate, regardless of the noise strength. By contrast,
the reconstruction of the eavesdropper accuracy decreased
significantly as the pseudo-noise strength increased, with the
NMSE gradually converging to one when the noise strength
reached 200 µVrms. From these results, we can conclude that
a pseudo-noise magnitude of 200 µVrms, which is within
the permissible input range, is sufficient to provide adequate
security.

C. Verification of resolution dependence of reconstruction
accuracy

The resolution required to achieve accurate reconstruction
using the proposed method was evaluated. In the simulation,
a 100 µVrms watermark and 250 µVrms pseudo-noise were
used. These were combined with the test data after quantiza-
tion at arbitrary resolutions ranging from 4 to 16 bits. Com-
pression and reconstruction processes were then performed,
and the NMSE was calculated from the reconstructed data.
CR values of 4, 6, 8, and 10 were used in this simulation.
Additionally, for a CR of 10, a simulation was conducted using
the EEGB basis matrix, which provides a higher reconstruction
accuracy under high compression. Fig.6 shows the results of
10,000 simulations with the average NMSE on the vertical axis

Fig. 6. This graph illustrates the resolution dependence of reconstruction ac-
curacy for various compression ratios when adding a 100 µVrms watermark
and 250 µVrms pseudo-noise to the EEG data. The solid line represents data
using DCT, while the dashed line represents data using EEGB.

and the resolution on the horizontal axis. From these results, it
is evident that as the resolution increased from 4 to 6 bits, the
reconstruction accuracy improved significantly, followed by a
gradual change, and NMSE almost converged at resolutions
greater than 10 bits. Moreover, we found that the same results
were obtained when the basis matrix was changed.

The verification results indicate that when the signal range
is set to Etop = 1379.1 µV and Ebottom = −1379.1 µV, a
watermark with a strength greater than 100 µVrms is required
for reliable watermark estimation. Furthermore, a magnitude
of 250 µVrms is required to ensure robust security. Even
when a noise of this strength is added to the input signal, the
resolution does not have to be increased from the perspective
of the input range. In addition, a resolution of at least 10 bits
is necessary for high-precision recovery. It is also important
to consider the potential increase in power consumption due
to the noise generation circuit. However, the pseudo-noise
generation is performed in a diagnosis domain. Thus, with the
future evolution of semiconductor processing technologies, it
is expected that the power consumption will continue to scale
down compared to the analog circuitry of the transmission
system. Therefore, based on the validation results, it can be
concluded that the increase in power consumption associated
with the proposed system utilizing chain-generated noise-
masking techniques is mitigated.

V. CONCLUSION

In this study, we clarified the design guidelines from
the perspective of power consumption, focusing on imple-



mentation based on security methods proposed in previous
studies. Specifically, we examined the security strength with
a focus on resolution and input range. The results confirm
that when the signal range was set to Etop = 1379.1 µV
and Ebottom = −1379.1 µV, a watermark magnitude of
100 µVrms or higher was required for the proposed method
to function properly. Additionally, it was found that a noise
magnitude of 250 µVrms is sufficient to ensure security with-
out modifying its input range. Furthermore, it was revealed
that a resolution of 10 bits was necessary for a high-precision
reconstruction. Based on these findings, we can conclude that
the proposed method does not require changes in resolution
or input range. Next studies will be conducted using data
from multiple subjects, including patients, obtained through
wearable devices to evaluate the generalizability and assess
inter-subject variability of the proposed method.
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