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 A B S T R A C T

We conducted a systematic analysis of the atomic structure and energy of (001), (110), and (111) twist 
grain boundaries (TWGBs) in 𝛼-iron using a recently developed neural network interatomic potential (NNIP). 
This study showcases typical dislocation networks within TWGBs that exhibit small twist angles. Notably, we 
observed a three-dimensional (3D) dislocation network in (111) twist grain boundaries, primarily composed of 
1
2
⟨111⟩ dislocations—structures unattainable using previously proposed empirical potentials, hence unreported 
in earlier studies. The novel 3D dislocation network was further validated through several approaches, 
including principal component analysis (PCA), an NNIP ensemble model, and cross-validation with other 
machine learning interatomic potentials designed for 𝛼-iron. This breakthrough offers a new perspective on 
the properties of twist grain boundaries, potentially impacting our understanding of their strength, toughness, 
and mobility.
1. Introduction

Grain boundaries (GBs) are prevalent two-dimensional defects in 
materials, exerting a profound impact on the mechanical properties of 
polycrystalline materials. For instance, the refinement of grains can 
markedly alter the strength and ductility of materials [1] through 
interactions between GBs and dislocations. Additionally, GBs can act 
as reservoirs for defects like impurities and vacancies [2–4]. This 
phenomenon can result in the stabilization of grain boundaries (GBs) 
structure or, conversely, trigger the initiation of crack embryos at GBs, 
ultimately leading to fractures. Given its extensive use as a struc-
tural material, iron has garnered considerable attention, prompting 
substantial research into the atomic structure, formation energy of 
GBs [5–10].

While significant efforts have been dedicated to understanding sym-
metric tilt GBs (STGBs) in 𝛼-iron [5,11,12], the same cannot be said for 
twist grain boundaries (TWGBs). The square dislocation network pat-
tern in (100) TWGBs [13] and hexagonal dislocation network pattern in 
(110) TWTBs [14] were experimentally observed decades ago and also 
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have been reproduced in atomistic simulations [15,16]. Nevertheless, 
the existence and specific morphology of the dislocation network in 
(111) TWGBs remain ambiguous in both experimental and theoretical 
contexts. As other body-centered cubic (BCC) metals such as Nb [17], 
W [18], and Mo [19], the most well-studied TWGBs in 𝛼-iron are those 
terminated with the (110) plane. Yang et al. [16] were pioneers in 
investigating the structure and energy of (110) TWGBs in 𝛼-iron using 
the molecular statics method in conjunction with an embedded-atom 
method (EAM) potential. They revealed the presence of a hexagonal 
dislocation network (HDN) in TWGBs featuring small twist angles 
and further explored the anisotropic mobility of HDNs in a series of 
(110) TWGBs subjected to external shear stress [20]. Sarochawikasit 
et al. [21] fitted Read–Shockley–Wolf and parabolic functions to predict 
the STGBs and TWGBs energies based on data obtained using empirical 
interatomic potentials (EIPs). However, they did not address the atomic 
configurations of TWGBs. Other researchers, such as Liu et al. [22], 
Wang et al. [12], and Wakeda et al. [23], have examined stability and 
grain boundary energy for specific TWGBs, respectively. However, a 
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Fig. 1. Creating twist grain boundary model.

systematic study of the structure and energy of (100), (110) and (111) 
TWGBs in 𝛼-iron at the accuracy of density functional theory (DFT) 
level remains conspicuously absent.

Due to the substantial number of atoms required, especially for low 
angle TWGBs, accurately modeling TWGB structures poses a challenge 
when relying on DFT-based methods. In contrast, while EIPs can handle 
a larger number of atoms, concerns persist regarding their accuracy 
and transferability [24]. Notably, Shiihara et al. [25] have recently 
demonstrated the capabilities of neural network interatomic potentials 
(NNIPs) and their superiority over EIPs in describing the structure and 
energy of STGBs in 𝛼-iron, using an NNIP designed for pure 𝛼-Fe [26]. 
As of now, machine learning interatomic potentials(MLIPs), including 
NNIPs, have not been applied to TWGBs.

In this paper, we conducted a comprehensive study of (001), (110), 
and (111) TWGBs in 𝛼-iron using our recent developed NNIP designed 
for the 𝛼-iron–hydrogen binary system [27]. We elucidated the rela-
tionship between GB formation energy and the twist angle in TWGBs, as 
well as the atomic configurations of typical dislocation networks within 
TWGBs featuring small twist angles. Our results were benchmarked 
against those derived from EAM [28] and modified EAM (MEAM) 
potentials [29], and were partially validated through DFT calculations. 
Novel 3-Dimensional (3D) dislocation networks in low angle (111)
TWGBs were first uncovered and further validated using principal com-
ponent analysis, an NNIP ensemble model, and other machine learning 
interatomic potentials for 𝛼-iron.

2. Methods

To generate (001) TWGBs, one can initiate the process from a 
single crystal of 𝛼-iron with a crystal orientation represented as 𝑥[100], 
𝑦[010], and 𝑧[001]. Note that the 𝑥, 𝑦, and 𝑧 axes are anchored 
to the model supercell. Subsequently, the upper and lower halves 
of the crystal can be rotated around the 𝑧 axis by angles 𝜃/2 and 
-𝜃/2 (negative angles indicate clockwise rotation, and vice versa, as 
illustrated in Fig.  1). When the relative rotation angle 𝜃 results in the 
coincidence site lattice (CSL) relationship between the upper and lower 
grains, the crystal orientation of the upper and lower grains can be 
represented as 𝑥[𝑛𝑚0], 𝑦[𝑚̄𝑛0], 𝑧[001] and 𝑥[𝑛𝑚̄0], 𝑦[𝑚𝑛0], 𝑧[001] 
respectively. Here, 𝑛 and 𝑚 are positive integers. Employing periodic 
boundary conditions (PBC) in the 𝑥 and 𝑦 directions is possible in 
this scenario, as the periodic units along these directions correspond 
to multiples of the CSL unit. The values of the twist angle 𝜃 and 
the CSL parameter 𝛴 can be determined using 𝜃 = 2 tan−1(𝑚∕𝑛) and 
𝛴 = (𝑚2 + 𝑛2), respectively. Similarly, for (110) and (111) TWGBs, 
the grain orientations 𝜃, and 𝛴 can be determined, and these details 
2 
Table 1
Orientations of upper and lower grains for constructed TWGB models. 𝑚 and 𝑛 are 
positive integers (see main text).
 GB plane (001) (110) [16] (111)  
 (Upper grain) 𝑥 [𝑛 𝑚 0] [𝑚 𝑚 𝑛̄] [(𝑚 + 2𝑛) (2𝑚 + 𝑛) (𝑚 − 𝑛)] 
 (Upper grain) 𝑦 [𝑚̄ 𝑛 0] [𝑛 𝑛 2𝑚] [𝑚 𝑛 (𝑚 + 𝑛)]  
 (Lower grain) 𝑥 [𝑛 𝑚̄ 0] [𝑚 𝑚 𝑛] [(2𝑚 + 𝑛) (𝑚 + 2𝑛) (𝑛 − 𝑚)] 
 (Lower grain) 𝑦 [𝑚 𝑛 0] [𝑛̄ 𝑛̄ 2𝑚] [𝑛 𝑚 (𝑚 + 𝑛)]  
 𝑧 [0 0 1] [1 1̄ 0] [1 1 1]  
 𝜃 2 tan−1( 𝑚

𝑛
) 2 tan−1( 𝑛

√

2𝑚
) 2 tan−1( 𝑛−𝑚

√

3(𝑛+𝑚)
)  

 𝛴 𝑚2 + 𝑛2 2𝑚2 + 𝑛2 𝑚2 + 𝑛2 + 𝑚𝑛  

are summarized in Table  1. The relative positioning of these grains 
along the GB plane is not uniquely determined and must be established 
through energy minimization analysis in actual atomic simulations.

In our atomic model, to mitigate surface effects on the prediction 
of energy and atomic structure of TWGBs, we adopted PBC in all 
directions, resulting in two equivalent TWGBs in the model. Given the 
capability of NNIP to handle large atomic models, a fine mesh of 𝜃
values can be employed to describe smooth 𝜃-dependent GB energies. 
The GB energy (𝛾gb) is defined as follows: 

𝛾gb = (𝐸gb −𝑁𝜇Fe)∕𝐴. (1)

In this equation, 𝐸gb represents the energy of the relaxed TWGB model, 
and 𝜇Fe is the chemical potential of Fe atom in perfect 𝛼-iron. 𝑁 and 𝐴
indicate the number of Fe atoms in the TWGB model and the total area 
of the grain boundaries for the two GBs in the model, respectively. Prior 
to computing the grain boundary structure and energy, the 𝑧-dimension 
of the supercell shape and atomic configuration of GB model were 
fully relaxed. To expedite computations, we refrained from relaxing 
the 𝑥 and 𝑦 dimensions of the supercell shape, because the maximum 
absolute value of normal stresses in the 𝑥 and 𝑦 directions did not 
exceed 0.6 GPa, equivalent to approximately 0.2% strain.

All molecular statics simulations were carried out using LAMMPS
[30] code for empirical interatomic potentials. To bridge the neural net-
work interatomic potential and LAMMPS, an additional interface [31] 
was utilized. The convergence criteria during the geometric optimiza-
tion relied on the atomic force that each component on any atom 
was no larger than 10−2 eV/Å. For the spin-polarized density func-
tional theory (DFT) calculations based on the projector-augmented 
wave (PAW) method [32], the VASP code [33,34] was employed. The 
exchange–correlation functional used was the Perdew–Burke–Ernzerhof 
generalized gradient approximation [35]. A cutoff energy of 360 eV was 
chosen for the plane wave basis set, and the minimum allowed spacing 
between k-points was set at 0.03 Å−1 with a Gaussian smoothing factor 
of 0.1 eV. The stop condition for the electronic and ionic relaxation 
during the geometric optimization were set at 10−5 eV and 10−2 eV/Å, 
respectively.

3. Results and discussion

3.1. Comparison of fundamental properties of 𝛼-Fe from different MLIPs

To demonstrate that the NNIP employed in this study [27] is suit-
able for modeling the 𝛼-iron system, a systematic comparison of the 
fundamental properties predicted by ten previously reported machine 
learning interatomic potentials about 𝛼-iron, including the Gaussian 
Approximation Potential (GAP) [36], Artificial Neural Network poten-
tial (ANN) [26], Moment Tensor Potentials (MTPs) [37,38], Quadratic 
Noise Machine Learning potential (QNML) [39], Angular Depended 
Potential based on machine learning (ADP-ML) [40], and Deep Poten-
tials (DPs) [41–43], has been conducted. The results are summarized 
in Table S1 of the supplementary materials [44]. This analysis offers 
essential insights into the strengths and limitations of these potentials, 
thereby informing their applicability across different contexts. The 
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NNIP exhibits good performance across most fundamental properties, 
with the exception of the unseen C15 cluster. In contrast, the MTP [38] 
and QNML [39] demonstrate promising performance in this regard. 
This densely packed atomic configuration is predominantly observed 
in nucleation radiation scenarios [45] and is less frequently associated 
with interfacial defects, such as GBs. Therefore, it does not present a 
challenge for the NNIP, which could serve as a reliable tool for the 
investigation of GBs.

3.2. Grain boundary energy of TWGBs

For the (100) TWGBs (refer to Fig.  2(a)), a total of 53 TWGBs were 
investigated using NNIP, covering a twist angle range from 2.794◦ to 
43.603◦ with a fine twist angle mesh. The trend observed was that 
the GB energy increased as the twist angle increased. To assess the 
performance of the NNIP, the structures of four TWGBs with 𝛴17, 
𝛴13, 𝛴37, and 𝛴25, having twist angles of 28.072◦, 22.620◦, 18.924◦, 
and 16.260◦ respectively, were further relaxed using DFT calculations. 
The results predicted by NNIP agree well with those obtained from 
DFT calculations, although the NNIP slightly underestimated the GB 
energies. Additionally, the results obtained using the MEAM potential 
matched those obtained by NNIP for TWGBs with twist angles less than 
10◦, but then deviated from the NNIP results and approached those 
predicted by the EAM potential. It is noteworthy that the 𝛴5 GB with 
a twist angle of 36.870◦ was predicted to have the highest GB energy of 
2.17 J∕m2 by NNIP, very close to the DFT results of 2.21 [27] and 2.12 
J∕m2[12]. In contrast, the GB energy obtained by EAM and MEAM was 
1.69 and 1.91 J∕m2, respectively.

Moving on to the (110) TWGBs (refer to Fig.  2(b)), a total of 69 
TWGBs were investigated using NNIP, covering a twist angle range 
from 1.800◦ to 89.421◦. The observed trend was that the GB energies 
increased as the twist angle increased at low twist angles, reached 
a plateau at twist angles of 30◦ to 50◦ with a GB energy around 
0.92 J∕m2, and then a local minimum was predicted at a twist angle 
of 70.528◦ with a GB energy of 0.548 J∕m2, corresponding to the 
𝛴3 GB. To assess the accuracy of NNIP, three TWGBs (𝛴9, 𝛴11, and 
𝛴17) with twist angles of 38.942◦, 50.478◦, and 86.628◦ respectively, 
were further relaxed using DFT calculations. The results predicted by 
NNIP aligned well with those obtained from our DFT calculations, as 
well as with previously reported DFT and tight-binding (TB) model 
results [12]. In the case of EIPs, there was minimal difference between 
results produced by EAM and MEAM, and these energy profiles were 
similar to the energy profile produced by NNIP, but on average had 
a reduction of around 30%. Interestingly, another set of reported DFT 
and TB model results [46] were lower than our DFT results, even lower 
than the EIPs results. The reason for such a disagreement among DFT 
calculations is unclear and certainly deserves further investigation.

Lastly, for the (111) TWGBs (refer to Fig.  2(c)), a total of 47 TWGBs 
were investigated using NNIP, spanning a twist angle range from 3.150◦
to 60.000◦. To verify the performance of NNIP, three TWGBs (𝛴7, 
𝛴21, and 𝛴3) with twist angles of 21.787◦, 38.213◦, and 60.000◦ were 
further relaxed using DFT calculations, showing excellent agreement. 
The curve exhibits several cusps, labeled as i–iv in Fig.  2(c), and low-
energy structures were identified for these points through heating the 
model to 600 K and then quenching it to 0 K, as indicated by the open 
blue squares in Fig.  2(c). The GB model represented by an open square 
at point iii was additionally relaxed using DFT calculations, and the GB 
energy was essentially not changed, as shown by the filled blue square 
in Fig.  2(c). Results produced by the MEAM potential were slightly 
lower than those obtained by the EAM potential, and both were around 
20% lower than the NNIP results.
3 
Fig. 2. GB energy (𝛾gb) as a function of twist angle (𝜃) calculated using NNIP, EAM, 
MEAM and DFT(including the reported DFT and TB model) [12,46]. (a) for (100) 
TWGBs, (b) for (110) TWGBs, and (c) for (111) TWGBs. The structures are the same 
for the data points in the same circle in (c).

3.3. Atomic structure of TWGBs

Fig.  3(a) illustrates the characteristic dislocation network of (100) 
TWGBs. A distinct grid pattern dislocation network, comprised of two 
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Fig. 3. Typical dislocation network for (a) (100) TWGBs, (b) (110) TWGBs, and (c) (111) TWGBs. The pink, green and blue lines in figure stands for the 𝑎 <100>, 𝑎∕2 <111>
and 𝑎 <110> dislocations, which are obtained via the tool of DXA [47] implemented in OVITO [48]. Fe atoms with bcc lattice are set invisible.
Fig. 4. Magnified view of the 3D dislocation structure of 𝛴217 (111) TWGB. The green and blue lines in figure stand for the 1
2
⟨111⟩ and ⟨110⟩ dislocations, which are obtained 

via the tool of DXA [47] implemented in OVITO [48]. Fe atoms with bcc lattice are set invisible and the remaining Fe atoms are colored by their 𝑧 coordinates.
perpendicular ⟨100⟩ screw dislocations, is prominently visible, aligning 
precisely with experimental findings [13]. This square network pattern 
persists across a broad range of twist angles. The size of the dislocation 
network unit, denoted as 𝐿NWU in Fig.  3(a), decreases as the twist 
angle increases. The smallest average value of 𝐿NWU we obtained is 
approximately 5 Å at a twist angle of 33◦, marking the absence of a 
regular dislocation network in TWGBs beyond this angle.

In Fig.  3(b), we observe the typical dislocation network in small 
twist angle (110) TWGBs. It exhibits a high-density network featuring 
three sets of screw dislocation segments: two with 12 ⟨111⟩ and one with 
⟨100⟩. This network adheres to the reaction 1∕2[111] + 1∕2[1̄1̄1] = [001]
(𝑖.𝑒. , ⃖ ⃖⃖⃗𝑏1 + ⃖⃖⃖⃗𝑏2 = ⃖⃖⃖⃗𝑏3 in Fig.  3(b)) at the junction. This dislocation network 
pattern aligns well with experimental observations [14].

Fig.  3(c) depicts the characteristic dislocation network of (111) 
TWGBs with a twist angle of 3.890◦. Unlike the 2-Dimensional(2D) 
structure of the dislocation network in (100) and (110) TWGBs, this 
network assumes a 3D arrangement. It comprises long 1

2 ⟨111⟩ and 
very short ⟨110⟩ dislocation segment. A magnified view of the 3D 
dislocation structure is presented in Fig.  4. As the twist angle increases, 
the prevalence of ⟨110⟩ dislocations correspondingly rises. At a twist 
angle of 30.158◦, the network is dominated by ⟨110⟩ dislocations, and 
it vanishes at a twist angle of 32.204◦, as shown in Fig.S1 in the 
Supplementary materials [44].

To compare the dislocation network patterns obtained using differ-
ent potentials, we selected 𝛴481(001), 𝛴1923(110), and 𝛴217(111) 
4 
TWGBs to represent small twist angle TWGBs with different termina-
tions. Each configuration was relaxed using NNIP, EAM, and MEAM 
potentials (see Fig.  5).

All three potentials yielded identical dislocation network patterns 
for the (001) TWGB. Concerning the (110) TWGB, while the patterns 
produced by all three potentials were similar and agreed with exper-
imental observations [14], slight differences in these patterns were 
discernible. Specifically, a longer ⟨100⟩ dislocation correlated with a 
slightly larger angle 𝛼 between two 12 ⟨111⟩ dislocation segments was 
demonstrated in NNIP compared to EIPs. Consequently, a lower number 
of kinks were present in the 12 ⟨111⟩ dislocation segments in the NNIP 
pattern. Notably, a significant disparity arose in the patterns for the 
(111) TWGB. NNIP predominantly exhibited a pattern characterized 
by 12 ⟨111⟩ dislocations in a 3D spatial arrangement, whereas EAM and 
MEAM potentials resulted in a 2D spatial distribution dominated by 
⟨110⟩ dislocations. The two segments of 12 ⟨111⟩ dislocations predicted 
by NNIP appeared to originate from the splitting of a single [110]
dislocation seen in EIPs. This splitting, denoted as [110] = 1∕2[111] +
1∕2[111̄], is represented as 𝑏⃗1 = 𝑏⃗11 + 𝑏⃗21 in Fig.  5. This division became 
evident during the further relaxation of the EIPs-derived model by 
NNIP, as shown in the supplementary materials (Figure S2) [44]. While 
the reverse reaction, where two 12 ⟨111⟩ dislocations combine to form 
one ⟨110⟩ dislocation (𝑏⃗11 + 𝑏⃗21 = 𝑏⃗11), may entail higher system energy, 
it could be observed in systems undergoing intense plastic deformation 
or energetic particle irradiation [49].
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Fig. 5. Comparison of the dislocation networks of TWGBs of (100), (110), and (111) obtained by NNIP, EAM, and MEAM respectively, only show the repeated units. The pink, 
green and blue lines in figure stand for the ⟨100⟩, 1

2
⟨111⟩ and ⟨110⟩ dislocations, which are obtained via the tool of DXA [47] implemented in OVITO [48]. Fe atoms with bcc 

lattice are set invisible. The length of each type of dislocation for each model is printed below the figure.
3.4. Estimation of the similarity and uncertainty of the NNIP for TWGBs
with 3D dislocation structure

Validating the results derived from NNIP still presents a challenge 
for systems beyond the computational capability of DFT calculations. 
As alternative solutions, one can estimate the transferability of the 
NNIP by similarity, i.e. compare the local atomic environments of the 
structures presented in simulations with those in the potential training 
dataset [50]. Another one is to evaluate the uncertainty of the NNIP 
using an ensemble model to estimate the predictive performance of the 
NNIP [51]. More methods for the machine-learned interatomic poten-
tials validation please refer to a comprehensive survey in Ref. [52]. In 
this work, we adopted the Principal Component Analysis (PCA) [53] 
for similarity qualitative estimation and the ensemble model for the 
uncertainty quantitative estimation.

PCA is a widely adopted algorithm for reducing data dimensional-
ity. Its primary objective is to transform 𝑘-dimensional features into 
𝑝-dimensions, where these 𝑝-dimensions correspond to orthogonal fea-
tures, termed principal components, providing a representation of the 
data in 𝑘-dimensions [54]. With the help of the structural descriptors 
(𝑖.𝑒., atom centered symmetry functions, ACSF), the local atomic en-
vironments (LAEs) of atoms in the dataset used in the NNIP training 
were transferred to a matrix 𝜒𝑚×𝑛, where 𝑚 and 𝑛 stand for the number 
of LAEs in the database and number of ACSFs of each atom. The type 
and hyper parameters of the structural descriptors were the same as 
in the NNIP training [27]. To simplify the analysis, all datasets with 
H atoms and structural descriptors including H atoms were excluded. 
The size of the obtained 𝜒𝑚×𝑛 is (1 424 768 × 24). The PCA results 
are shown in Fig.  6(a), where the data points are colored according 
to their respective structural types. The LAEs of atoms in 𝛴217(111) 
TWGB with 3D dislocation network (marked as 3D-twist in Fig.  6(a)) 
are entirely within the region of the LAEs derived from the training 
dataset, which means that the obtained 3D structure was from the 
interpolation rather than exploration of the NNIP.

Using the same neural network architecture and database, twelve 
NNIPs (labeled NNIP-𝑖, 𝑖 = 1–12) were newly trained. A unique random 
5 
number seed was assigned to each training task, which was used to the 
random separation of the database into training and testing datasets, 
while all other settings were kept. Each of the NNIP was trained with 
fixed 160 iterations. We took the root mean squared error (RMSE) 
of energy and force as the overall accuracy. RMSEs of energy across 
all 12 NNIPs are in a range of 3.47–5.43 and 3.46–10.33 meV/atom 
in the training and testing dataset, respectively. RSMEs of force are 
0.077–0.083 and 0.077–0.145 eV/Å in the training and testing dataset. 
The energy RMSE of NNIP-5 and force RMSE of NNIP-12 in the testing 
dataset are larger than others. This kind of exception is frequently 
engaged in the NNIPs training process [55]. Details of RMSEs for each 
NNIP are tabulated in Table.S2 in the supplementary materials [44].

A TWGB of 𝛴217(111) was used to estimate the uncertainty of 
the NNIP. The structure of the TWGB was examined using these 12 
NNIPs. All new NNIPs predicted the similar 3D dislocation network 
in the TWGB (See Fig.S3 in the supplementary materials [44]). The 
common presence of the typical atomic structure from the ensemble 
of NNIP may serve as evidence that the local atomic environments of 
the 3D dislocation network have been included in the database. With 
the help of Eq. (1), the 𝛾gb from each NNIP was computed based on 
their own produced lattice constant and chemical potential of perfect 
𝛼-Fe (see Table.S2 in supplementary materials [44]). The 𝛾gbs are in a 
small range of 0.8348–0.8635 J∕m2. The variance of 𝛾𝐾gb from NNIP-𝐾
can be determined by: 

𝜎𝐾𝛾gb =

√

√

√

√

1
𝑁

𝑛
∑

𝑖=0
(𝛾 𝑖gb − 𝛾𝐾gb)

2, 𝑛 = 12 (2)

where, 𝑁 is the number of NNIPs, i.e., 𝑁 = 13. 𝛾0gb is from the primary 
NNIP used in this work. The values of 𝜎𝛾gb  obtained are no more 
than 0.02 J∕m2. The GB energy from each NNIP together with the 
corresponding RMSE are plotted in Fig.  6(b). This result indicates the 
low uncertainty and high reliability of the NNIP.

The force uncertainty was also estimated for the model of
𝛴217(111) TWGB from NNIP-0. The averaged atomic force RMSE is 
about 10 meV/Å, which aligns closely with the typical DFT force con-
vergence criteria of 0.01 eV/Å during the NNIP database generation, 
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Fig. 6. (a) PCA for the dataset used in the NNIP training and the 𝛴217(111) TWGB obtained by NNIP-0. All data points are colored according to the structure type. Self-IA stands 
for the self interstitial atoms. The inset panel presents a magnified view of the area enclosed by the dotted rectangle. (b) GB energy and their RMSE for the model of 𝛴217(111) 
TWGB predicted by all NNIPs. NNIP-0 is the primary NNIP used in this work. The raw data can be found in the supplementary materials (Table. S2) [44]. Results from MTPs 
prediction [37,38] is also printed.
evidencing low uncertainty and high reliability of NNIP. Details please 
refer to the supplementary materials (Table. S3) [44].

3.5. Discussion

The 3D dislocation network uncovered in this work might have 
significant effects on the mechanical property of metals. Firstly, in 
contrast to the movable 2D hexagonal dislocation network in (110) 
TWGBs in bcc metals [14,20], the mobility of the entire 3D dislocation 
network in (111) TWGBs is expected to be constrained due to the 
involvement of multiple slip systems and complex dislocation interac-
tions. This restriction might have impact on the toughness of the metals. 
Secondly, these 3D dislocation networks can be regarded as pre-existing 
dislocations within materials. The activation stress of a single pre-
existing dislocation is expected to be lower than that of newly formed 
dislocations, and their motion may help to relieve deformation-induced 
stress, thereby improving the material’s plasticity. Thirdly, the length 
of the dislocation line in the 3D case is roughly double that in the 2D 
case. This suggests that the 3D dislocation network may trap a greater 
number of interstitial atoms (H, C, N, O, . . . ) leading to change of 
GB mechanical property [4,56]. Finally, the micro-defects might have 
effects on GB mechanical property, and the NNIP could handle such 
kind of interactions due to its good performance in the description of 
various defects [27].

Partial 3D dislocation networks from EIPs were presented in (111) 
TWGBs with very small twist angles (see Fig. S4 in the supplementary 
materials [44]). We believe that the fundamental reason for the differ-
ence in the dislocation network of (111) TWGBs between 3D from NNIP 
and 2D from EIPs lies in the performance of interatomic potentials for 
different types of dislocations, i.e. the dislocation stability competition 
in the dislocation reaction of [110] = 1∕2[111] + 1∕2[111̄]. A cross-
verification of the 3D dislocation network in 𝛴217(111) TWGB was 
conducted using two machine-learning-based MTPs with DFT accuracy 
deigned for general GBs [37] and radiation damage effects [38] in 𝛼-
iron. The GB energies obtained are 0.829 and 0.818 J/m2 respectively, 
and the similar 3D dislocation network was obtained, the results are 
provided in Fig. S5 of the supplementary materials [44]. Given the high 
accuracy of the NNIP in describing the energetics of dislocations [27], 
it is expected to provide a more precise depiction of the reaction 
compared to EIPs. This reaction might change its direction due to 
external effects, such as temperatures, deformation, 𝑒𝑡𝑐.. Since the 
accurate description of interfacial dislocations is vital for understanding 
the physical and mechanical properties of interfaces [57], we anticipate 
that our theoretical predictions will inspire experimental researchers, 
whose future observations may provide validation for our findings.
6 
4. Conclusion

In summary, our investigation delved into the energy and atomic 
structure of (100), (110), and (111) twist grain boundaries (TWGBs) in 
𝛼-iron employing Fe–H NNIP and, for certain cases were supplemented 
with DFT calculations. The key findings can be summarized as follows:

We meticulously charted the grain boundary energy of TWGBs 
across a wide spectrum of twist angles for (100), (110), and (111) 
terminations, remarkably achieving concordance between NNIP predic-
tions and DFT calculations. Notably, the results obtained by EIPs stood 
approximately 20% to 30% lower than those by NNIP.

Exploring dislocation networks in TWGBs with small twist angles 
unraveled distinct network patterns. For (100) TWGBs, the network 
adopted a grid pattern, constituted by perpendicular ⟨100⟩ screw dis-
locations. In the case of (110) TWGBs, a hexagonal network pattern 
emerged, mirroring experimental observations in BCC metals. This 
pattern encompassed two segments of 1∕2⟨111⟩ and one of ⟨110⟩
dislocations. Significantly, (111) TWGBs with small twist angles exhib-
ited a novel 3D dislocation pattern primarily composed of 1∕2⟨111⟩
dislocations, a phenomenon uncovered for the first time. The novel 
3D dislocation pattern was validated through principal component 
analysis, NNIP ensemble model, and further crossing verification using 
two independent machine learning based MTPs respectively designed 
for general GBs and radiation damage effects in 𝛼-iron. The varying 
performance of various interatomic potentials in evaluating the stabil-
ity of various types of dislocations influences the type of dislocation 
networks in (111) small-angle TWGBs.

In essence, our study has illuminated the nuanced energetics and 
structural intricacies characterizing various TWGB orientations in 𝛼-
iron, highlighting the remarkable predictive power of NNIP and shed-
ding light on the uncharted territories of dislocation networks in certain 
configurations.
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