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A B S T R A C T

Objectives: Mechanical and inflammatory stimuli are key factors in the pathophysiology of osteoarthritis (OA). 
However, the effects of mechanical stimulation on joint tissues and cells at the molecular level and the mech-
anisms of interaction after stimulation with inflammatory cytokines remains uninvestigated.
Methods: Three-dimensional cyclic compression loading (CCL) was applied to human articular chondrocytes, and 
the expression of OA-related genes was analyzed using reverse transcription quantitative real-time polymerase 
chain reaction. Additionally, the effects of CCL after the chondrocytes were stimulated with interleukin (IL)-1β 
were evaluated. A DNA microarray assay was used to compare changes in gene expression after chondrocytes 
were stimulated with IL-1β and CCL was applied, and to search for pathways that are affected by CCL.
Results: CCL of 40 kPa significantly upregulated the expression of IL-8, cyclooxygenase (COX)-2, nerve growth 
factor, matrix metalloproteinase (MMP)-1, and MMP-3. Transcription of IL-8, COX-2, and MMP-3 was syner-
gistically promoted by CCL and IL-1β. The top 10 pathways enriched in the Kyoto Encyclopedia of Genes and 
Genomes enrichment analysis of differentially expressed genes were not common in either group, except for the 
“cytokine-cytokine receptor interaction”. The “tumor necrosis factor signaling pathway” and the “nuclear factor- 
kappa B signaling pathway” in the IL-1β group and “cell cycle” and the “Hippo signaling pathway” in the CCL 
group were included.
Conclusions: Comprehensive gene expression analysis revealed that CCL-induced changes in gene expression were 
different to those induced by stimulation with IL-1β. Our results provide new insights into the involvement of 
mechanical stimulation in the pathogenesis of OA.

1. Introduction

Synovial joints, including the temporomandibular and knee joints, 
can develop osteoarthritis (OA), often accompanied by inflammation 
[1]. Synovial fluid exhibits elevated concentrations of inflammatory 
cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor 
(TNF)-α [2–4], which promote the expression of OA-related factors 
[5–7]. Moreover, treatments for OA such as nonsteroidal 
anti-inflammatory drugs and arthrocentesis relieve pain and inhibit 
disease progression [8].

Similar to inflammatory cytokine stimulation, mechanical stimula-
tion is considered a part of the pathophysiology of OA. In healthy joints, 
physiological mechanical stimulation caused by mastication and loco-
motion contributes to tissue homeostasis [9]. However, under patho-
logical conditions—wherein the anabolic and catabolic balance is 
disrupted—mechanical stimulation may lead to the progression of OA 
[10,11]. Understanding the contribution of mechanical stimulation to 
the development of OA is important, and studies on the effects of me-
chanical stimuli on joint tissues and cells have accumulated in recent 
years [12–14]. However, several questions remain unanswered. The 
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relationship between mechanical stimulation and inflammatory cyto-
kine stimulation, as well as the signaling pathways involved in me-
chanical stimulation remain elusive.

Monolayer-cultured chondrocytes and organ cultures of cartilage 
tissue are often used to study the mechanical stimulation of articular 
cartilage [15]. However, the characteristics and behavior of 
monolayer-cultured cells differ significantly from those observed in 
vivo; therefore, three-dimensional (3D) experimental culture systems 

are increasingly garnering attention. Although organ culture experi-
mental systems for cartilage tissues offer the advantage of resembling in 
vivo environments, caution is necessary in terms of experimental 
reproducibility. Therefore, an experimental system was developed 
wherein cyclic compressive loading (CCL) was applied to 3D-cultured 
cells in atelocollagen scaffolds. This experimental system allows for 
the application of a variety of forces and can reproduce excessive 
stimulation that can be identified using cytotoxic markers. Several 
studies have investigated mechanical stimulation using this system 
[16–19].

In this study, we aimed to validate the gene expression changes 
induced by CCL in 3D-cultured human articular chondrocytes, including 
comparison with those induced by IL-1β, one of major inflammatory 
cytokines [20,21], and explore the signaling pathways involved in me-
chanical stimulation. We hypothesized that mechanical stimulation 
would induce gene expression changes in human articular chondrocytes 
that are qualitatively different from those induced by IL-1β stimulation; 
moreover, identifying relevant pathways would provide important in-
sights into the pathogenesis of OA.

2. Material and methods

2.1. Cell culture of primary human chondrocytes

Human knee articular cartilage was aseptically obtained from five 
women aged 66–79 years who underwent total knee arthroplasty for OA. 
Cartilage specimens were harvested from the lateral femoral condyle, 
rinsed with phosphate-buffered saline, minced meticulously, and 
digested with 0.1 % collagenase in growth medium (Dulbecco’s modi-
fied Eagle medium [DMEM], 10 % fetal bovine serum [FBS], and 1 % 
penicillin/streptomycin solution) at 37 ◦C for 6 h. The cells were then 
cultured in a growth medium and used at passages 4–6.

Fig. 1. Three-dimensional (3D)-cultured system and cyclic compressive loading (CCL) model. 
(A) Three-dimensional cell scaffold constructs made using collagen scaffolds (Mighty® Koken Corp) (B) Cyclic load stimulator (CLS-5J-Z, Technoview, Osaka, Japan) 
in the incubator. Schematic representation of the cyclic load stimulator, cyclic-loaded samples.

Table 1 
Primer sequences for real-time reverse transcriptase (RT)-polymerase chain re-
action (PCR).

Genes Primer sequences (5′-3′)

GAPDH (Forward) TCTCTGCTCCTCCTGTTCGAC
(Reverse) GTTGACTCCGACCTTCACCTTC

IL-8 (Forward) TGG CAG CCT TCC TGA TTT C
(Reverse) GGG TGG AAA GGT TTG GAG TAT G

IL-1β (Forward) CTTCGAGGCACAAGGCACAA
(Reverse) TTCACTGGCGAGCTCAGGTA

TNF-α (Forward) TGGGATCATTGCCCTGTGAG
(Reverse) GGTGTCTGAAGGAGGGGGTA

COX-2 (Forward) AGGGTTGCTGGTGGTAGGAA
(Reverse) GGTCAATGGAAGCCTGTGATACT

NGF (Forward) CCAGTGGTCGTGCAGTCCAAG
(Reverse) TGTCCTGCAGGGACATTGCTCT

MMP-1 (Forward) CCCAAAAGCGTGTGACAGTAAG
(Reverse) CTTCCGGGTAGAAGGGATTTG

MMP-3 (Forward) CGTGAGGAAAATCGATGCAG
(Reverse) CTTCAGCTATTTGCTTGGGAAAG

MMP-9 (Forward) AGTCCACCCTTGTGCTCTTC
(Reverse) TTTCGACTCTCCACGCATC

MMP-13 (Forward) CTTCCCAACCGTATTGATGC
(Reverse) ACTTCTTTTGGAAGACCCAGTTC

IL, interleukin; TNF, tumor necrosis factor; COX, cyclooxygenase 2; NGF, nerve 
growth factor; MMP, matrix metalloproteinase.
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2.2. Three-dimensional-culture of human articular chondrocytes

Cultured cells (5 × 105/scaffold) were suspended in growth medium 
(DMEM, 10 % FBS, 1 % penicillin/streptomycin solution) and mixed 
with an equal volume of 1 % atelocollagen gel (AteloCell®; KOKEN CO., 
LTD., Tokyo, Japan) in an ice bath to produce a cell suspension in 0.5 % 
collagen solution. The cell suspension was incorporated into 5-mm-wide 
and 3-mm-thick collagen scaffolds (Atelocollagen Sponge, MIGHTY; 
KOKEN CO. LTD., Tokyo, Japan) by centrifuging at 500×g for 5 min. The 
cell-scaffold constructs were incubated at 37 ◦C for gelation to form 3D 
cell-scaffold constructs (Fig. 1A).

2.3. CCL experiments

The 3D-cultured chondrocytes were maintained in high glucose 
DMEM with 10 % FBS under free-swelling conditions at 37 ◦C and 5 % 
CO2 for three days. CCL was applied using a custom-designed CLS-5J-Z 
cyclic load bioreactor (Technoview, Osaka, Japan) (Fig. 1B). Loading 

experiments were conducted using metal plates and plastic culture 
dishes in HG-DMEM with 10 % FBS under a humidified incubator at 
37 ◦C and 5 % CO2. CCL at 10, 20, and 40 kPa was applied to the 
constructs for 1 h at 0.5 Hz, and cultures were evaluated 12 h post-CCL. 
For IL-1β stimulation, 10 ng/mL IL-1β (Recombinant Human IL-1β/IL- 
1F2, R&D Systems, Minneapolis, MN) was added to the constructs and 
evaluated 12 h later. For combined stimulation, IL-1β was added 
immediately before applying 40 kPa CCL at 0.5 Hz for 1 h. For inhibition 
experiments, 5 μM verteporfin (SML0534, Sigma-Aldrich, St. Louis, MO) 
was added 6 h before applying 40 kPa CCL at 0.5 Hz for 1 h. Static 
cultures for 12 h served as controls.

2.4. Quantitative mRNA expression analysis

Total RNA was extracted from 3D constructs using PureLink™ RNA 
Mini Kit (Invitrogen, Waltham, MA). 200 ng of total RNA was reverse 
transcribed to cDNA using High-Capacity RNA-to-cDNA Kit™ (Applied 
Biosystems, Foster City, CA, USA). PCR was performed using Power 

Fig. 2. Effect of cyclic compressive loading (CCL) stimulation on osteoarthritis (OA)-related factors gene expression by changing the loading weight. 
CCL of 10, 20, and 40 kPa were applied to the constructs for 1 h at a rate of 0.5 Hz. RT-qPCR results for samples harvested 12 h after CCL. Data were obtained from 
three donors. *P < 0.05, **P < 0.01 RT-qPCR results. Means with 95 % confidence intervals (CI) from one independent experiment.
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SYBR™ Green Master Mix™ (Applied Biosystems) on a QuantStudio™ 7 
Flex Real-Time PCR System™ (Applied Biosystems). Primer sequences 
are provided in the supplemental data (Table 1). Data were analyzed 
using the ΔΔCT method, normalized to GAPDH, and expressed relative 
to the control group.

2.5. Quantitative PGE2, IL-8 and MMP-3 protein analysis

Enzyme immunoassays measured prostaglandin E2 (PGE2), IL-8, and 
matrix metalloproteinase-3 (MMP-3) concentrations in the culture su-
pernatant using homogeneous time-resolved fluorescence human PGE2 
and IL-8 assay kits (CIS Bio International, Saclay, France) and MMP-3 
assay kit (PerkinElmer Co., CA). Supernatant from control, 40 kPa 
CCL, and 40 kPa CCL + IL-1β groups were compared, and protein con-
centration ratios were calculated.

2.6. Microarray analysis

DNA microarray was performed using three samples for each group 
(control, IL-1β, and CCL groups). The G3 Human Gene Expression 
Microarray 8 × 60 K v3 was used for the DNA microarray analysis. All 
hybridized microarray slides were scanned using a DNA microarray 
scanner (Agilent scanner, Agilent Technologies, Santa Clara, CA). 
Relative hybridization intensities and background hybridization values 
were calculated using Agilent Feature Extraction Software (9.5.1.1). 
Analysis using the Linear Models for Microarray Analysis package in 
Bioconductor identified 28,524 genes. Differentially expressed genes 
(DEGs) were selected with a p-value <0.05 and an absolute log fold- 
change >2. Heatmaps of the differentially expressed genes were 
generated using heatmap.2 in R. Principal component analysis (PCA) 
was also conducted In R. Enrichment analysis using the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database was performed using 

DAVID (https://david.ncifcrf.gov/), utilizing Fisher’s exact test and 
applying a false discovery rate (FDR) < 0.05. Gene Set Enrichment 
Analysis (GSEA) was performed using both the KEGG database and the 
hallmark gene sets from the Molecular Signatures Database (MSigDB, htt 
p://software.broadinstitute.org/gsea/msigdb/index.jsp). The micro-
array data have been deposited in the Gene Expression Omnibus (GEO) 
repository (http://www.ncbi.nlm.nih.gov/geo/) under general acces-
sion number GSE 193185.

2.7. Statistical analysis

To analyze the results of RT-qPCR and enzyme immunoassays, the 
statistical significance of differences between two groups was deter-
mined using Student’s t-test, and the statistical significance of differ-
ences among multiple groups was determined by one-way analysis of 
variance (ANOVA), followed by Tukey’s post hoc test. A significance 
level of 95 % with a p-value of 0.05 was set for all statistical tests. R. 
software was used for all statistical analyses.

3. Results

3.1. Effect of CCL on the expression of OA-related genes

CCL at 40 kPa significantly upregulated IL-8, COX-2, NGF, MMP-1, 
and MMP-3 expression (Fig. 2). COX-2 and NGF expression was load- 
dependent. No significant differences were observed in IL-1β, TNF-α, 
MMP-9, or MMP-13 gene expression between groups. In the presence of 
IL-1β, 40 kPa CCL significantly increased IL-8, COX-2, and MMP-3 
expression compared to IL-1β stimulation alone (Fig. 3). NGF and 
MMP-1 expression did not significantly change under these conditions.

Fig. 3. Changes in gene expressions changes by simultaneous stimulation of IL-1β and cyclic compression loading (CCL). 
CCL is applied at 40 kPa, 0.5 Hz for 1 h. In the group, simultaneous stimulation with IL-1β and CCL, IL-1β is added immediately before the application of CCL. RT- 
qPCR results using samples harvested 12 h after CCL or IL-1β stimulation. Data were obtained from three individual donors. *P < 0.05, **P < 0.01 RT-qPCR results. 
Means with 95 % confidence intervals (CI) from one independent experiment.
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3.2. Effect of CCL on IL-8, PGE2, and MMP-3 secretion

IL-8, PGE2, and MMP-3 levels in the culture supernatant significantly 
increased 12 h after 40 kPa CCL stimulation (Fig. 4). In the presence of 
IL-1β, 40 kPa CCL significantly increased COX-2 and MMP-3 protein 
secretion compared to IL-1β alone. IL-8 secretion did not significantly 
differ between the combined stimulation and IL-1β-only groups.

3.3. Comprehensive analysis of IL-1β and CCL-induced gene expression 
changes

Analysis of the GSE193185 dataset identified 1,965 DEGs out of 
28,524 genes. Heatmaps and principal component analysis (PCA) of the 
top 1,000 variable genes clearly distinguished CCL from IL-1β groups 
(Fig. 5A). Venn diagrams showed limited overlap between groups, with 
94 upregulated and 152 downregulated shared DEGs (Fig. 5B).

KEGG pathway enrichment analysis revealed non-overlapping top 10 
pathways between groups, except for the “cytokine-cytokine receptor 
interaction” pathway (Fig. 6A). The IL-1β group showed enrichment in 
the “TNF signaling pathway” and “NF-κB signaling pathway,” while the 
CCL group showed enrichment in the “cell cycle,” “TGF-β signaling 
pathway,” and “signaling pathways regulating pluripotency of stem 
cells.” GSEA indicated a stronger enrichment of the “inflammatory 
response” hallmark gene set in the IL-1β group compared to the CCL 
group. The IL-1β group’s top genes included chemokines and in-
terleukins, whereas the CCL group’s top genes were related to TGF-β and 
EGF (Fig. 6B).

3.4. Effect of verteporfin, an inhibitor of YAP/TAZ, on the promotion of 
gene expression by CCL

CCL-induced expression of COX-2, NGF and MMP-3 was significantly 
reduced 5 μM verteporfin (Fig. 7). Verteporfin did not significantly 

affect IL-8 or MMP-1 expression.

4. Discussion

This study provides novel insights into the effects of CCL on human 
articular chondrocytes. CCL significantly potentiated OA-related gene 
expression, particularly in the presence of IL-1β, and corresponding in-
creases in protein secretion were confirmed. Comprehensive gene 
expression analysis demonstrated distinct profiles between CCL and IL- 
1β stimulation. The Hippo signaling pathway is implicated in CCL- 
induced gene expression of OA-related factors.

In 3D-cultured human articular chondrocytes, CCL led to the upre-
gulation of multiple OA-related genes. The application of CCL to human 
synovial cells upregulates the gene expression and protein production of 
COX-2 and MMP-3 [17,18]. Evidence indicates that mechanical stimu-
lation increases NGF expression. Specifically, monolayer-cultured 
bovine articular chondrocytes exhibited increased NGF expression 
under tensile loading and mouse cartilage explants exhibited enhanced 
NGF protein production in response to compressive loading [22,23]. 
NGF expression has been confirmed in the articular cartilage, synovium, 
and subchondral bone of OA model mice and human OA joints. Its 
pivotal role in pain and the link between NGF and mechanical stimuli 
have become topics of significant interest [24–27].

Some studies have highlighted the effects of simultaneous stimula-
tion of inflammatory cytokines and mechanical stimulation on the 
expression of OA-related genes. Centrifugal pressure on mouse osteo-
blasts under IL-1β significantly promoted the transcription of CXCL2 and 
CCL2 [28]. Cyclic compressive load on bovine articular cartilage 
cultured with IL-6 and TNF-α promoted the gene expression of COX-2 
and ADAMTS5 in a load-dependent manner [29]. We found that in the 
presence of IL-1β, CCL notably enhanced the expression of IL-8, COX-2, 
and MMP-3 compared with IL-1β stimulation alone, a finding that may 
indicate part of the pathophysiology of OA. In contrast, no significant 

Fig. 4. Changes in protein expression by cyclic compressive load (CCL) and simultaneous stimulation with interleukin (IL)-1β and CCL. 
Results using supernatants from samples collected 12 h after CCL or IL-1β stimulation. Data were obtained from three donors. (#) indicates comparisons between the 
CCL and control groups (#P < 0.05, ##P < 0.01) by t-test. (*) indicates comparisons between IL-1β group, CCL + IL-1βgroup and control group (*P < 0.05, **P <
0.01) by ANOVA followed by Tukey’s post hoc test. Bars represent the mean (SD).

Fig. 5. Comprehensive analysis of gene expression changes associated with cyclic compression loading (CCL) and interleukin (IL)-1β stimulations. 
(A) Heatmap representation of differentially expressed genes (DEGs) within the CCL, IL-1β, and control groups. Principal component analysis (PCA) plot of all 
detected probes of each group. (B) Venn diagrams show genes upregulated or downregulated in comparison with the control group.
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changes in NGF or MMP-1 expression were observed upon CCL stimu-
lation. These results indicate that each gene is differentially regulated by 
multiple stimuli, and this fact complicates the pathophysiology of OA.

Comprehensive gene expression analysis revealed distinct differ-
ences in the changes in gene expression between the CCL and IL-1β 
stimulation groups. These differences were particularly pronounced for 
the expression of inflammation-related genes. Interleukin-1β stimulates 
the expression of these factors in cell cultures, organ models, and various 
animal models [30–33]. In our model, IL-1β stimulation led to a sig-
nificant upregulation of most inflammation-related factors. Conversely, 
although the expression of some inflammation-related factors increased 
in response to CCL, we also observed a decrease in the expression of 
other genes within this category. Additionally, CCL significantly 
enriched pathways related to the “cell cycle,” “TGF-beta signaling 
pathway,” “Signaling pathways regulating pluripotency of stem cells,” 
and “Hippo signaling pathway.” Studies have suggested the involvement 
of mechanical stimulation in cell and tissue anabolic processes [34–36]. 
Our study revealed that CCL not only promoted the expression of 
OA-related genes, but was also involved in anabolic processes, sug-
gesting the complexity of the effects of mechanical stimulation on 
chondrocytes. The Hippo signaling pathway is a representative pathway 
that responds to mechanical stimulation. This is reportedly involved in 
inflammation and substrate decomposition by controlling NF-κB 
signaling in chondrocytes [37]. Our comprehensive gene expression 
analysis also suggested that the Hippo signaling pathway responds to 
CCL and is involved in inflammation and substrate decomposition by 
controlling NF-κB signaling in chondrocytes. Notably, the inhibition 
experiments revealed that the expression of COX-2, NGF, and MMP-3 
was partly controlled by the Hippo signaling pathway. In addition, the 
Hippo signaling pathway is regulated by inflammatory cytokines, 
including IL-1 [38,39]. Therefore, it is desirable to accumulate 

knowledge about this pathway from the perspective of OA treatment.
This study has some limitations. First, articular cartilage exists as 

part of the complex joint environment within the human body, and the 
results observed in an artificial in vitro setting may not perfectly reflect 
the in vivo responses. The cell viability results and other studies suggest 
that excessive mechanical stimulation can be applied to articular 
cartilage-derived cells in patients with OA [16–19]. However, further 
verification using ex vivo and in vivo animal models is required. Second, 
this study focused exclusively on CCL as a mechanical stimulation. 
Articular cartilage experiences various types of mechanical forces, 
including tensile and shear stresses, which should be investigated in 
future studies. Third, this study only used chondrocytes collected from 
patients with OA. Healthy chondrocytes exhibit characteristics that 
differ from OA chondrocytes, such as increased gene expression of MMPs 
and COL I in primary culture [41]. Single-cell RNA sequencing analysis 
also revealed differences in gene expression profiles between normal 
patellofemoral articular cartilage and patellofemoral articular cartilage 
in patients with OA [42]. The results of this study provide new insights 
into the pathogenesis of OA in terms of the response of degenerative 
articular chondrocytes; however, further research on normal articular 
cartilage is warranted.

5. Conclusions

To summarize, CCL promoted the transcription of OA-related genes 
such as IL-8, COX-2, NGF, MMP-1, and MMP-3 in 3D cultured human 
articular chondrocytes, and the expression of some of these genes was 
further increased by simultaneous stimulation with IL-1β and CCL. 
Comprehensive gene expression analysis revealed that CCL-induced 
changes in gene expression were not similar to those induced by IL-1β 
stimulation. Furthermore, the Hippo signaling pathway is involved in 

Fig. 6. Enrichment pathway analysis and gene set enrichment analysis (GSEA) delineate the expression differences between the CCL and IL-1β groups. 
(A) Enrichment pathway analysis comparing the CCL and IL-1β groups using the Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. (B) GSEA delineating the 
expression differences between the CCL and IL-1β groups, focusing on the inflammation-associated HALLMARK gene set. NES stands for normalized enrich-
ment score.
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the promotion of the gene expression of several OA-related factors by 
CCL. These findings provide a valuable foundation for understanding OA 
pathology.
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