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 a b s t r a c t

We investigate the tractability of a simple fusion of two fundamental structures on
graphs, a spanning tree and a perfect matching. Specifically, we consider the following
problem: given an edge-weighted graph, find a minimum-weight spanning tree among
those containing a perfect matching. On the positive side, we design a simple greedy
algorithm for the case when the graph is complete (or complete bipartite) and the edge
weights take at most two values. On the negative side, the problem is NP-hard even
when the graph is complete (or complete bipartite) and the edge weights take at most
three values, or when the graph is cubic, planar, and bipartite and the edge weights take
at most two values.

We also consider an interesting variant. We call a tree strongly balanced if on one
side of the bipartition of the vertex set with respect to the tree, all but one of the
vertices have degree 2 and the remaining one is a leaf. This property is a sufficient
condition for a tree to have a perfect matching, which enjoys some structural property
in addition. When the underlying graph is bipartite, strongly balanced spanning trees can
be written as matroid intersection, and this fact was utilized to design approximation
algorithms for several NP-hard problems, e.g., the traveling salesman problem and a
kind of connectivity augmentation problem. The natural question is its tractability in
nonbipartite graphs. As a negative answer, it turns out NP-hard to test whether a given
graph has a strongly balanced spanning tree or not even when the graph is subcubic
and planar.
© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Spanning trees and perfect matchings are two of the most fundamental tractable structures in combinatorial optimiza-
tion on graphs. It is well-known that a minimum-weight spanning tree or perfect matching in an edge-weighted graph 
can be found in polynomial time [5,7,20,28]. These problems are foundational for the development of not only graph 
algorithms but also the theory of combinatorial optimization on more abstract targets such as matroids and discrete 
convex functions (cf. [10,12,26,29]).

∗ Corresponding author.
E-mail address: yutaro.yamaguchi@ist.osaka-u.ac.jp (Y. Yamaguchi).
https://doi.org/10.1016/j.dam.2025.04.001
0166-218X/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.dam.2025.04.001
https://www.elsevier.com/locate/dam
https://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2025.04.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:yutaro.yamaguchi@ist.osaka-u.ac.jp
https://doi.org/10.1016/j.dam.2025.04.001
http://creativecommons.org/licenses/by/4.0/


K. Bérczi, T. Király, Y. Kobayashi et al. Discrete Applied Mathematics 371 (2025) 137–147
In this paper, we investigate a kind of fusion of these two structures. The simplest setting is to determine whether a 
given graph has a spanning tree containing a perfect matching or not. This problem is easy, because a trivial necessary 
condition that the graph is connected and has a perfect matching is also sufficient (Observation  3.1).

The natural question is as follows: what about finding a minimum-weight such spanning tree in an edge-weighted 
graph? We give a solid answer to this question (Theorem  2.2). On the positive side, this optimization problem is tractable 
in the very restricted situation when the graph is a complete or complete bipartite graph and the edge weights are 
restricted to at most two values. On the negative side, the problem is NP-hard even if the graph is a complete or complete 
bipartite graph and the edge weights are restricted to at most three values (say, 0, 1, or 2), or if the graph is cubic, planar, 
and bipartite and the edge weights are restricted to at most two values (say, 0 or 1).

We also consider a variant of a spanning tree with a perfect matching. A trivial necessary condition for a tree to have 
a perfect matching is that the bipartition of the vertex set is balanced; that is, if we color the vertices with two colors so 
that any two adjacent vertices are colored differently, then the number of vertices colored with each of the two colors is 
the same. This is clearly not sufficient, but it can be strengthened to become sufficient as follows.

We say that a tree is strongly balanced if on one side of the bipartition, exactly one vertex is a leaf (that is of degree 1) 
and all the other vertices are of degree 2. Norose and Yamaguchi [27] gave a necessary and sufficient condition for a tree to 
be strongly balanced, which claims that it has a well-structured perfect matching (see Lemma  2.1). This characterization 
was utilized to design a nontrivial approximation algorithm for a kind of connectivity augmentation problem [27], and 
a similar structural property was also for the traveling salesman problem [11]. An important fact is that, for a bipartite 
graph, strongly balanced spanning trees can be represented as the common bases of two matroids (Observation  4.1), 
which enables us to find a minimum-weight strongly balanced spanning tree in polynomial time with the aid of weighted 
matroid intersection algorithms [2,9,19,21,22]. Also, as pointed out in [27], it is interesting that this problem in fact 
includes two fundamental special cases of the weighted matroid intersection problem: finding a minimum-weight perfect 
matching in bipartite graphs and finding a minimum-weight arborescence in directed graphs. Thus, this gives a refined 
common generalization of these two fundamental problems rather than matroid intersection.

The natural question, again, is as follows: what about the tractability of strongly balanced spanning trees in nonbipartite 
graphs? We give a negative answer to this question (Theorem  2.3): it is NP-hard to test whether a given graph has a 
strongly balanced spanning tree or not, even if the graph is subcubic and planar.

Problems of finding a spanning tree with additional constraints have been studied extensively, some of which were 
motivated by applications to communication networks. For example, there are several studies on spanning trees with 
degree bounds [4,13,14,30] and spanning trees with small diameter [16,17,31]. Our problems also align with this context. 
The additional condition of containing a perfect matching implies that each node can be paired with another to have 
mutual backup, expressing network robustness in a sense. It is worth noting that the constraints of having partners and 
backups were studied also in the dominating set problem [3,18,32]. Spanning trees with perfect matchings also appear in 
characterization of chemical structures [34,35], and counting them in special graphs has recently been paid attention [24].

The rest of the paper is organized as follows. In Section 2, we describe necessary definitions, and formally state the 
problems and our results. In Section 3, we give a simple, polynomial-time algorithm for finding a minimum-weight 
spanning tree containing a perfect matching in the aforementioned restricted situation, and show the NP-hardness of 
the problem by a reduction from the Hamiltonian cycle problem. In Section 4, we prove the NP-hardness of finding a 
strongly balanced spanning tree by a reduction from the planar 3-SAT problem. In Section 5, we conclude the paper with 
possible future work.

2. Preliminaries

2.1. Definitions

Let G = (V , E) be a graph, which we assume to be simple and undirected unless otherwise specified. We refer the 
readers to [29] for basic concepts and notation on graphs.

An edge set M ⊆ E is a matching in G if the edges in M do not share their end vertices. For a fixed matching, a vertex 
is said to be covered (or matched) if it is an end vertex of an edge in the matching, and exposed otherwise. A matching is 
perfect if all the vertices are covered. Let def(G) denote the deficiency of G, which is defined as the minimum number of 
vertices exposed by a matching in G; in other words, it is the number of vertices minus twice the maximum cardinality 
of a matching.

A graph is said to be bipartite if its vertex set admits a bipartition (V+, V−) such that every edge has one of its end 
vertices in V+ and the other in V−; possibly V+ = ∅ or V− = ∅. We say that a bipartite graph (with a fixed bipartition) 
is balanced if |V+| = |V−|. Note that if a bipartite graph has a perfect matching, then it is balanced (regardless of the 
bipartition).

Let T  be a spanning tree of G. As T  is bipartite, let (V+T , V−T ) denote a bipartition of V  with respect to T , i.e., V+T ∪V−T = V , 
V+T ∩V

−

T = ∅, and every edge in T  connects a vertex in V+T  and one in V−T . Such a bipartition is unique up to the symmetry 
of V+T  and V−T . Note that if T  has a perfect matching, then it is unique (otherwise, any two of them yield a cycle) and T
is balanced. We say that T  is strongly balanced if on one side of the bipartition, say V+T  by symmetry, exactly one vertex 
is a leaf (that is of degree 1) and all the other vertices are of degree 2. Observe that if T  is strongly balanced, then T  is 
balanced. As a relation with a perfect matching, the following characterization is known, which is not difficult to confirm.
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Lemma 2.1 (Norose and Yamaguchi [27]). For a tree T , the following two statements are equivalent.
• T  is strongly balanced; in particular, there exists a leaf r ∈ V+T  and the degree of every other vertex v ∈ V+T \ {r} on the 

same side is 2.
• T  has a perfect matching M, and there exists a leaf r ∈ V+T  such that a path in T  from r to any vertex alternates between 

the edges in M and not in M.

Suppose that G is associated with edge weight w : E → R. We define the weight of each edge set F ⊆ E as 
w(F ) :=

∑
e∈F w(e).

2.2. Problems and results

We state the problems considered in this paper. In the following sections, those problems are referred to as their 
abbreviated names.

Problem (Perfectly Matchable Spanning Tree (PMST)). 
Input: A graph G = (V , E).

Goal: Decide whether G has a spanning tree containing a perfect matching or not.

Problem (Minimum PMST (MinPMST)). 
Input: A graph G = (V , E) with edge weight w : E → R.

Goal: Minimize w(T ) subject to T  is a spanning tree of G containing a perfect matching.

Problem (Strongly Balanced Spanning Tree (SBST)). 
Input: A graph G = (V , E).

Goal: Decide whether G has a strongly balanced spanning tree T  or not.

Problem (Minimum SBST (MinSBST)). 
Input: A graph G = (V , E) with edge weight w : E → R.

Goal: Minimize w(T ) subject to T  is a strongly balanced spanning tree of G.
The main results shown in this paper are summarized as follows. Here, a graph is called cubic and subcubic if the 

degree of every vertex is exactly 3 and at most 3, respectively.

Theorem 2.2. 
1. MinPMST can be solved in polynomial time if G is a complete or complete bipartite graph and |cod(w)| ≤ 2, where 

cod(w) := {w(e) | e ∈ E } denotes the codomain of w.
2. MinPMST is NP-hard even if the input is restricted as follows:

(a) G is a cubic planar bipartite graph and |cod(w)| ≤ 2.
(b) G is a complete or complete bipartite graph and |cod(w)| ≤ 3.

Theorem 2.3. SBST is NP-hard even if G is restricted to a subcubic planar graph.

3. On perfectly matchable spanning trees (Proof of Theorem  2.2)

In this section, we prove Theorem  2.2. We start with an easy observation, which immediately leads to the tractability 
of PMST with the aid of polynomial-time algorithms for finding a maximum matching in graphs [8]; just find a perfect 
matching, and make it connected by adding edges between different connected components, one-by-one, to reduce the 
number of them.

Observation 3.1. A graph G has a spanning tree containing a perfect matching if and only if G is connected and has a perfect 
matching.

In Section 3.1, we prove Statement 1 by giving a solution to MinPMST when the graph is a complete or complete 
bipartite graph and there are at most two weight values. In Section 3.2, we prove Statement 2 by giving a reduction from 
the Hamiltonian cycle problem with an input restriction to MinPMST with the stated input restrictions.
139



K. Bérczi, T. Király, Y. Kobayashi et al. Discrete Applied Mathematics 371 (2025) 137–147
3.1. Tractable case (Statement 1)

Since all the spanning trees of a fixed graph have the same number of edges, the case when |cod(w)| = 1 reduces 
to PMST. Suppose that |cod(w)| = 2. Then, the objective is rephrased as minimizing the number of heavier edges. Thus, 
without loss of generality, we assume that cod(w) = {0, 1}.

Let us focus on the complete graph case (the complete bipartite graph case is almost the same; see Remark  3.3 at 
the end of this section). Let G = (V , E) be a complete graph with edge weight w : E → {0, 1}, where we assume |V | is 
even (otherwise, G has no perfect matching). Let G0 = (V , E0) be the subgraph consisting of all the edges of weight 0, 
i.e., E0 = { e ∈ E | w(e) = 0 }. Then, by Observation  3.1, the following augmentation problem with input H = G0 is 
equivalent to MinPMST with the current restriction.

Problem (Augmentation on PMST (AugPMST)). 
Input: A graph H .

Goal: Minimize the number of additional edges to make H connected and perfectly matchable.

For AugPMST, we show a complete characterization as follows, which leads to a solution to the original problem
MinPMST when G is a complete graph and |cod(w)| = 2. For a graph H , we denote by opt(H) the optimal value for the 
input H of AugPMST. Also, let c(H) denote the number of connected components of H , and c0(H) and c+(H) denote the 
numbers of connected components K  of H with def(K ) = 0 and with def(K ) > 0, respectively.

Lemma 3.2. 
1. If def(H) = 0, then opt(H) = c(H)− 1.
2. Suppose that def(H) > 0.

(a) If 12def(H) < c+(H), then opt(H) = c(H)− 1.
(b) If 12def(H) ≥ c+(H), then opt(H) = 1

2def(H)+ c0(H).

Proof. We show this lemma by induction on the number of edges in H (in descending order). The proof is based on case 
analysis with respect to ϕ(H) :=

( 1
2def(H), c+(H), c0(H)

)
.

We first observe all the possible changes of ϕ(H) by adding an edge to H . Suppose that ϕ(H) = (i, j, k). Let H ′′ be any 
graph obtained from H by adding an edge. Then, there are four possible cases as follows.

• Suppose that we add an edge between two vertices in the same connected component of H such that every maximum 
matching covers at least one of the two vertices. Then, ϕ(H ′′) = (i, j, k).
• Suppose that we add an edge between two vertices in the same connected component K  of H such that some 

maximum matching exposes both of the two vertices. Then, ϕ(H ′′) = (i − 1, j, k) or (i − 1, j − 1, k + 1) (when 
def(K ) > 2 or def(K ) = 2, respectively).
• Suppose that we add an edge between two vertices in different connected components K1, K2 of H such that every 

maximum matching covers at least one of the two vertices. Then, ϕ(H ′′) = (i, j − 1, k) or (i, j, k − 1) (when 
min(def(K1), def(K2)) > 0 or min(def(K1), def(K2)) = 0, respectively).
• Suppose that we add an edge between two vertices in different connected components K1, K2 of H such that some 

maximum matching exposes both of the two vertices. Then, ϕ(H ′′) = (i − 1, j − 2, k + 1) or (i − 1, j − 1, k) (when 
def(K1) = def(K2) = 1 or max(def(K1), def(K2)) > 1, respectively).

We prove the statement by induction for each of the following five cases.
(i)  When ϕ(H) = (0, 0, k) (k ≥ 1) (including the base case that H is complete), we show opt(H) = k−1 (Statement 1). 

In this case, H has a perfect matching as def(H) = 0, so it is clearly optimal (necessary and sufficient) to make H connected 
by adding k− 1 edges.

(ii)  When ϕ(H) = (1, 1, k) (k ≥ 0), we show opt(H) = k + 1 (Statement 2b). In this case, H has a unique connected 
component K  with def(K ) > 0, which satisfies def(K ) = 2.

Let H ′ be the graph obtained from H by adding an edge between two vertices such that some maximum matching 
exposes both of them, which are in the same connected component K . Then, ϕ(H ′) = (0, 0, k+ 1), and opt(H ′) = k more 
edges are sufficient by induction hypothesis (Statement 1), and hence opt(H) ≤ opt(H ′)+ 1 = k+ 1.

Let H ′′ be any graph obtained from H by adding an edge. Following the observation at the beginning, we have 
ϕ(H ′′) = (1, 1, k), (0, 0, k + 1), or (1, 1, k − 1), for which we have opt(H ′′) = k + 1, k, or k, respectively, by induction 
hypothesis (Statement 1 or 2b), and hence opt(H) ≥ minH ′′ opt(H ′′)+ 1 = k+ 1.

(iii)  When ϕ(H) = (i, 1, k) (i ≥ 2, k ≥ 0), we show opt(H) = k + i (Statement 2b). In this case, H has a unique 
connected component K  with def(K ) > 0, which satisfies def(K ) = 2i. This case is almost the same as the previous one. 
We have ϕ(H ′) = (i − 1, 1, k) and ϕ(H ′′) = (i, 1, k), (i − 1, 1, k), or (i, 1, k − 1). By induction hypothesis (Statement 2b), 
we obtain opt(H) ≤ k+ i and opt(H) ≥ k+ i as with the previous case.
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(iv)  When ϕ(H) = (i, 2i, k) (i ≥ 1, k ≥ 0), we show opt(H) = k+2i−1 (Statement 2a). In this case, H has 2i connected 
components, each of which has deficiency exactly 1.

Let H ′ be the graph obtained from H by adding an edge between two vertices such that some maximum matching 
exposes both of them, which are in different connected components K1, K2 with def(K1) = def(K2) = 1. Then, ϕ(H ′) =
(i− 1, 2(i− 1), k+ 1). By induction hypothesis (Statement 1 or 2a), opt(H ′) = k+ 2i− 2 more edges are sufficient, and 
hence opt(H) ≤ k+ 2i− 1.

Let H ′′ be any graph obtained from H by adding an edge. Following the observation at the beginning, we have 
ϕ(H ′′) = (i, 2i, k), (i, 2i − 1, k), (i, 2i, k − 1), or (i − 1, 2(i − 1), k + 1), for which we have opt(H ′′) = k + 2i − 1 or 
k+ 2i− 2 by induction hypothesis (Statement 1 or 2a), and hence opt(H) ≥ k+ 2i− 1.

(v)  The remaining case is when ϕ(H) = (i, j, k) (i ≥ 2, 1 < j < 2i, k ≥ 0). In this case, there exist two different 
connected components K1 and K2 of H such that def(K1) ≥ 1 and def(K2) ≥ 2. Note that there are two possible cases: 
i < j (Statement 2a) and i ≥ j (Statement 2b).

Let H ′ be the graph obtained from H by adding an edge between two vertices such that some maximum matching 
exposes both of them, one of them is in K1, and the other is in K2. Then, the resulting component of H ′ still has a positive 
deficiency, and hence ϕ(H ′) = (i − 1, j − 1, k). No matter in which case we are (i.e., i < j or i ≥ j), the relation between 
i and j is preserved and we have 1

2def(H
′) = 1

2def(H) − 1, c(H ′) = c(H) − 1, and c0(H ′) = c0(H). Thus, by induction 
hypothesis (Statement 2a or 2b, respectively), the stated number of additional edges in total is indeed sufficient.

Let H ′′ be any graph obtained from H by adding an edge. Following the observation at the beginning, we have 
ϕ(H ′′) = (i, j, k), (i − 1, j, k), (i − 1, j − 1, k + 1), (i, j − 1, k), (i, j, k − 1), (i − 1, j − 2, k + 1), or (i − 1, j − 1, k). In 
any case, by induction hypothesis, the stated number of additional edges is necessary as follows, which completes the 
proof.

• In any case, we have 12def(H ′′)+ c0(H ′′) ≥ 1
2def(H)+ c0(H)− 1 and c(H ′′) ≥ c(H)− 1. Thus, if H and H ′′ are in the 

same situation (i.e., the same one of Statements 2a and 2b is applied to H and H ′′), then the consequence is clear.
• Suppose that Statement 2a is applied to H and Statement 2b to H ′′. In this case, we have j = i + 1 and ϕ(H ′′) =

(i− 1, j− 2, k+ 1) or (i, j− 1, k). Then, opt(H ′′) = 1
2def(H

′′)+ c0(H ′′) = i+ k = j+ k− 1 = c(H)− 1, which means 
that c(H) (≥ c(H)− 1) additional edges in total are necessary in this case.
• Suppose that Statement 2b is applied to H and Statement 2a to H ′′. In this case, we have j = i and ϕ(H ′′) = (i−1, j, k). 

Then, opt(H ′′) = c(H ′′) − 1 = j + k − 1 = i + k − 1 = 1
2def(H) + c0(H) − 1, which means that 12def(H) + c0(H)

additional edges in total are necessary in this case. □

The proof (the definition of H ′ in each of the five cases) gives a simple greedy algorithm for AugPMST as follows.

Step 0. Set H̃ ← H , and find a maximum matching M̃ in H̃ .

Step 1. While there exist two different connected components K1, K2 of H̃ with def(K1) ≥ 1 and def(K2) ≥ 2 (in Case (v)), 
pick two vertices v1, v2 exposed by M̃ such that v1 is in K1 and v2 is in K2, and add an edge {v1, v2} to H̃ and M̃ .

Step 2. While there exist two different connected components K1, K2 of H̃ with def(K1) = def(K2) = 1 (in Case (iv)), pick 
two vertices v1, v2 exposed by M̃ such that v1 is in K1 and v2 is in K2, and add an edge {v1, v2} to H̃ and M̃ .

Step 3. While def(H̃) > 0 (in Case (ii) or (iii)), pick two vertices v1, v2 exposed by M̃ (which are in the same connected 
component of H̃ by Steps 1 and 2), and add an edge {v1, v2} to H̃ and M̃ .

Step 4. While H̃ is not connected (in Case (i)), pick two vertices v1, v2 in different connected components of H̃ , and add 
an edge {v1, v2} to H̃ .

The bottleneck of its computational time is usually finding a maximum matching in H , and the other parts are simply 
implemented in linear time. Thus, it runs in O(min(

√
nm + n, nω)) time [15,25,33], where n and m are the numbers of 

vertices and edges in H , respectively, and ω < 2.372 is the matrix multiplication exponent [6]. For the original problem
MinPMST when G is a complete graph and |cod(w)| = 2, if the input is given by specifying which edges have the smaller 
weight, it runs in O(min(

√
nm0 + n, nω)) time, where n is the number of vertices and m0 is the number of edges having 

the smaller weight.

Remark 3.3. Lemma  3.2 holds as it is if the underlying graph (i.e., H together with all possible additional edges) is a 
balanced complete bipartite graph, where the balancedness is necessary to admit a perfect matching. Also, the above 
greedy algorithm (with appropriate choices of v1 and v2 as well as K1 and K2 in Steps 1–4) works for MinPMST when G
is a balanced complete bipartite graph and |cod(w)| = 2.
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Fig. 1. Construction of G̃ from G. The middle graph is the intermediate graph just after replacing each edge with two disjoint paths. Dashed lines 
represent edges of weight 0, and solid lines represent edges of weight 1. In this example, ẽ and ẽ′ are derived from e = fu,1 = fv,3 .

3.2. NP-hardness (Statement 2)

We refer to a cycle C in a graph as a sequence of vertices (v1, v2, . . . , vℓ, v1), where the vertices v1, v2, . . . , vℓ (ℓ ≥ 3)
are all distinct and in the graph there exists an edge {vi, vi+1} for each i = 1, 2, . . . , ℓ−1 as well as an edge {vℓ, v1}. A cycle 
is called Hamiltonian if it contains all the vertices in the graph. The following problem is one of the most fundamental 
NP-complete problems, which is NP-complete even for cubic planar bipartite graphs.

Problem (Hamiltonian Cycle (HC)). 
Input: A graph G = (V , E).

Goal: Test whether G has a Hamiltonian cycle or not.

Theorem 3.4 (Akiyama, Nishizeki, and Saito [1]). HC is NP-complete even if G is restricted to a cubic planar bipartite graph.
We prove Statement 2 of Theorem  2.2 by reducing this restricted HC to MinPMST with stated restrictions. Let G = (V , E)

be a cubic planar bipartite graph, and fix its planar embedding. We construct from G a cubic planar bipartite graph 
G̃ = (Ṽ , Ẽ) with edge weight w̃ : Ẽ → {0, 1} as follows (see Fig.  1).

For each edge e = {u, v} ∈ E, replace e with two disjoint paths of length 3 between u and v; in each path, the only 
middle edge is of weight 1 and the other two edges are of weight 0. For each vertex u ∈ V , let fu,1, fu,2, fu,3 ∈ E denote the 
three edges incident to u in this order in the clockwise direction, and then let u′1, u′2, . . . , u′6 be the new vertices adjacent 
to u in this order, where u′2i−1 and u′2i are created instead of the edge fu,i for each i = 1, 2, 3. Rename u as ũ0, merge 
u′4 and u′5 into a single vertex ũ1, u′6 and u′1 into ũ2, and u′2 and u′3 into ũ3, and remove one of the two parallel edges of 
weight 0 between ũ0 and ũi for each i = 1, 2, 3.

The resulting graph G̃ = (Ṽ , Ẽ) is indeed a cubic planar bipartite graph. The following claim completes the proof of 
Statement 2a.

Claim 3.5. G has a Hamiltonian cycle if and only if G̃ has a spanning tree T̃  containing a perfect matching with w̃(T̃ ) ≤ |V |.

Proof. Suppose that G has a Hamiltonian cycle X . By Observation  3.1, it suffices to construct a connected subgraph 
G̃′ = (Ṽ , Ẽ ′) such that G̃′ admits a perfect matching and w̃(Ẽ ′) ≤ |V |. For this purpose, we can assume that all the edges 
of weight 0 are included in Ẽ ′.

Let Ẽ0 be the set of edges of weight 0, and X̃ be the set of edges of weight 1 each of which is derived from an edge in 
the Hamiltonian cycle X . We then observe that the subgraph (Ṽ , Ẽ0 ∪ X̃) is connected since X is a Hamiltonian cycle in 
G. We also see w̃(Ẽ0 ∪ X̃) = |X̃ | = 2|V | as exactly two edges in Ẽ are derived from each edge in E. Since the two edges 
derived from the same edge connect the same pair of connected components of Ẽ0, even if we remove one of them for 
each edge in X , the resulting subgraph is still connected. Thus, in order to construct a desired subgraph G̃′, it suffices to 
choose one of the two edges for each pair so that the chosen edges form a matching in G̃, which can be extended to 
a perfect matching in G̃ by using edges in Ẽ0 (since exactly two edges in X are incident to each u ∈ V , exactly one of 
ũ1, ũ2, ũ3 is exposed by the matching formed by the chosen edges, which can be matched with ũ0).

Let X = (x1, x2, . . . , xn, x1) and s = x1. Without loss of generality, we assume that fs,1 = {xn, x1} and fs,2 = {x1, x2}
are the two edges around s traversed in this order in X (by shifting the indices of fs,i and by reversing the indices of 
X if necessary). Then, the two edges in G̃ corresponding to fs,1 are incident to s̃2 and s̃3, and those corresponding to 
fs,2 are incident to s̃3 and s̃1. First, let us choose the latter edge ẽ1 incident to s̃1, which is disjoint from both edges 
corresponding to fs,1. For the remaining vertices xk (k = 2, 3, . . . , n), in the ascending order of k, we can choose one edge 
ẽ  corresponding to {x , x } so that ẽ  and ẽ  are disjoint (as we always have two disjoint choices of ẽ ). Recall that 
k k−1 k k−1 k k
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both edges corresponding to fs,1 are disjoint from ẽ1, which implies that ẽn and ẽ1 are also disjoint (regardless of the 
choice of ẽn). Thus, the chosen edges are pairwise disjoint, i.e., they form a matching in G̃, and we are done.

Suppose that G̃ has a spanning tree T̃  containing a perfect matching with w̃(T̃ ) ≤ |V |. Since |T̃ | = |Ṽ | − 1 = 4|V | − 1, 
it consists of at most |V | edges of weight 1 and at least 3|V | − 1 edges of weight 0. Let T̃1 := { e ∈ T̃ | w(e) = 1 } and T1
be the set of edges in E corresponding to the edges in T̃1. Observe that T1 must be connected (since T1 is obtained from 
T̃1 by contracting all the edges of weight 0 in G̃, which does not violate the connectivity).

Let M̃ ⊆ T̃  be a perfect matching. Then, for each vertex u ∈ V , the corresponding center vertex ũ0 ∈ Ṽ  is matched 
with an edge {ũ0, ũi} (i ∈ {1, 2, 3}) of weight 0, and the other two neighbors ũj and ũk (j ̸= i ̸= k) are matched with 
edges of weight 1. Since there are 2|V | such vertices in total and |T̃1| ≤ |V |, we must have T̃1 ⊆ M̃ and |T̃1| = |V |. That is, 
T1 is a connected spanning subgraph of G such that each vertex has its degree exactly 2, which is indeed a Hamiltonian 
cycle. □

For Statement 2b, we add the absent edges of G̃ by setting their weight as 2. Then, Claim  3.5 holds as it is (by replacing 
G̃ with the augmented graph), because any perfect matching uses at least |V | edges of weight at least 1.

4. On strongly balanced spanning trees (Proof of Theorem  2.3)

In this section, we prove Theorem  2.3. We remark that Lemma  2.1 implies the following observation, which leads 
to the tractability of MinSBST for the bipartite graphs with the aid of polynomial-time algorithms [2,9,19,21,22] for the 
weighted matroid intersection problem.

Observation 4.1 (cf. [11, Lemma 5] and [27, Lemma 3.6]). For a balanced bipartite graph G, the set of strongly balanced 
spanning trees of G can be represented as the set of common bases of two matroids, one of which is graphic and the other is 
(a truncation of) a partition matroid.

In what follows, we prove the NP-hardness of SBST. The incidence graph of a 3-CNF ψ(x) = C1 ∧ C2 ∧ · · · ∧ Cm on n
boolean variables x = (x1, x2, . . . , xn) is a bipartite graph defined as follows: the vertex set is the set of variables and 
clauses, and an edge exists between a variable xi and a clause Cj if and only if Cj contains a positive or negative literal of 
xi. The 3-SAT problem is known to be NP-complete even when the incidence graph of the input 3-CNF is very restricted.

Problem (Satisfiability of 3-CNF (3-SAT)). 
Input: A 3-CNF ψ(x) on n boolean variables x = (x1, x2, . . . , xn).

Goal: Test whether there exists an assignment a ∈ {0, 1}n such that ψ(a) = 1 or not.

Theorem 4.2 (Lichtenstein [23]). 3-SAT is NP-complete even if ψ(x) is restricted so that the incidence graph of ψ(x) attached 
with a Hamiltonian cycle on the variables is planar.

We prove Theorem  2.3 by reducing this restricted 3-SAT to SBST with the stated restriction. Let ψ(x) be a 3-CNF 
ψ(x) = C1 ∧ C2 ∧ · · · ∧ Cm on n boolean variables x = (x1, x2, . . . , xn) whose incidence graph attached with a Hamiltonian 
cycle X on the variables is planar, and fix its planar embedding. Without loss of generality, X intersects x1, x2, . . . , xn in 
this order. We construct from ψ a subcubic planar graph G = (V , E) as follows (see Figs.  2–4).

For each variable xi (i = 1, 2, . . . , n), which appears in kini  clauses lying inside of X and in kouti  clauses lying outside 
of X (under the planar embedding of the incidence graph fixed above), create the following variable gadget (see Fig.  2). 
Create a cycle

(ui, uin
i,0, u

in
i,1, ū

in
i,1, . . . , u

in
i,kini
, ūin

i,kini
, uT

i , u
F
i , u

out
i,kouti

, ūout
i,kouti

, . . . , uout
i,1 , ū

out
i,1 , u

out
i,0 , ui).

Then, add two vertices ui,0 and uend
i  with four incident edges {ui,0, uin

i,0}, {ui,0, uout
i,0 }, {uend

i , uT
i }, and {uend

i , uF
i }, and two 

vertices u′i,0 and u′′i,0 with two incident edges {ui,0, u′i,0} and {u′i,0, u′′i,0}.
We connect those variable gadgets as Fig.  3. Specifically, for each i = 1, 2, . . . , n− 1, we introduce a joint vertex ui,i+1

with two incident edges {uend
i , ui,i+1} and {ui,i+1, ui+1}, and put a vertex un,n+1 with an incident edge {uend

n , un,n+1} at the 
end. Furthermore, at the beginning (before u1), we put a tree consisting of eight vertices as illustrated, whose three leaves 
are named as s1, s2, s3.

Finally, for each clause Cj = (yj,1 ∨ yj,2 ∨ yj,3), create a clause gadget as follows (see Fig.  4). Create a cycle 
(cj,1, cj,12, cj,2, cj,23, cj,3, cj,31, cj,1), and add two vertices cj and c ′j  with two incident edges {cj, c ′j } and {c ′j , cj,31}. For each 
ℓ = 1, 2, 3, add an edge between cj,ℓ and bj,ℓ, where bj,ℓ is a vertex in a variable gadget that is determined depending on 
whether Cj lies inside or outside of X and what literal yj,ℓ is as follows. Suppose that Cj lies inside of X , and that yj,ℓ is a 
positive literal of a variable xi. Then, bj,ℓ = uin

i,k, where 1 ≤ k ≤ kini  is such that yj,ℓ is the kth appearance of xi in clauses 
lying inside of X along the cycle X = (x1, x2, . . . , xn, x1). The other three cases are analogous; if Cj lies outside of X , then 
replace the superscripts •in with •out, and if yj,ℓ is a negative literal of xi, then replace ui with ūi.

The resulting graph G = (V , E) is clearly subcubic and planar. The following claim completes the proof of Theorem  2.3.
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Fig. 2. The variable gadget for a variable xi . In any strongly balanced spanning tree T (if exists), the black vertices will be in V+T  (with degree 
constraint 2), the white vertices will be in V−T  (without degree constraint), and the checkered vertices can be in either side, alternately from ui; the 
lower figure illustrates a subtree corresponding to an assignment with xi = 1.

Fig. 3. The whole structure of the variable gadgets. In any strongly balanced spanning tree T (if exists), the black vertices will be in V+T  (with degree 
constraint 2 except for s1 , which will be the unique leaf in V+T ) and the white vertices will be in V−T  (without degree constraint).

Fig. 4. The clause gadget for a clause Cj = (yj,1 ∨ yj,2 ∨ yj,3). In any strongly balanced spanning tree T (if exists), the black vertices will be in V+T
(with degree constraint 2), the white vertices will be in V−T  (without degree constraint), and the checkered vertices can be in either side depending 
on the situation in the corresponding variable gadgets; the right figure illustrates an example of a subtree corresponding to the situation when Cj
is satisfied by yj,2 = 1.

Claim 4.3. ψ is satisfiable if and only if G has a strongly balanced spanning tree.

Proof. Suppose that a = (a1, a2, . . . , an) ∈ {0, 1}n satisfies ψ . Then, we can construct a strongly balanced spanning tree 
T  of G as follows (see also Figs.  2–4).

For each variable xi (= ai), we construct a spanning tree in the corresponding variable gadget by deleting three edges; 
we delete {ui, uin

i,0}, {ui,0, uout
i,0 }, and {uF

i , u
end
i } if ai = 1 (cf. Fig.  2), and we delete {ui, uout

i,0 }, {ui,0, uin
i,0}, and {uT

i , u
end
i } if 

a = 0. Under the assumption that u ∈ V+, in the former case (when a = 1), all the vertices u• (k ≥ 1, • ∈ {in, out})
i i T i i,k
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and uT
i  are in V−T  (i.e., without degree constraint), and all the vertices in the form ū•i,k (k ≥ 1, • ∈ {in, out}) and uF

i  are in 
V+T  with exactly two incident edges in this gadget; in the latter case (when ai = 0), V+T  and V−T  are interchanged. Also, 
in either case, we have uend

i ∈ V+T  (under the assumption that ui ∈ V+T ).
We connect those spanning trees of the variable gadgets by taking all the edges connecting them including the tree 

at the beginning and the leaf at the end (illustrated in Fig.  3). Here, note that s1, s2, s3 must be leaves in T , and s2 and s3
are on the same side of the bipartition (V+T , V−T ), which is different from s1. This forces s1 to be a unique leaf in V+T . As a 
result, inductively, ui and uend

i (i = 1, 2, . . . , n) are all in V+T .
Finally, for each clause Cj = (yj,1∨yj,2∨yj,3), pick one of the literals yj,ℓ whose value is 1 in the assignment x = a. Then, 

take an edge {bj,ℓ, cj,ℓ} and all but one edge incident to cj,ℓ in the corresponding clause gadget (cf. Fig.  4). This results in a 
spanning tree of the clause gadget connected to the variable gadgets with the bridge {bj,ℓ, cj,ℓ}. By the above observation 
and assumption, we have bj,ℓ ∈ V−T . We then have cj,1, cj,2, cj,3, c ′j ∈ V+T , and these vertices indeed have degree 2 in the 
resulting tree.

Overall, we have indeed constructed a desired, strongly balanced spanning tree of G.
Suppose that G has a strongly balanced spanning tree T . We show that T  should be in the form constructed above, 

which implies that we can reconstruct an assignment a = (a1, a2, . . . , an) satisfying ψ .
The main task is to confirm that for any clause gadget plus its three neighbors bj,1, bj,2, bj,3, the restriction of T  there 

does not contain a path between two of the neighbors; that is, any clause gadget does not play the role of connecting 
variable gadgets. Observe that T  must contain the two edges incident to c ′j , and cj ∈ V−T , c ′j ∈ V+T , and cj,31 ∈ V−T . By 
connectivity, at least one of {cj,1, cj,31} and {cj,3, cj,31} is in T .

Suppose that there exists a path between bj,1 and bj,3. Since {cj,1, cj,31} or {cj,3, cj,31} is in T  and then cj,1 or cj,3, 
respectively, is in V+T , the path must be (bj,1, cj,1, cj,31, cj,3, bj,3) and cj,1, cj,3 ∈ V+T . Then, neither {cj,1, cj,12} nor {cj,3, cj,23}
is in T , and hence {cj,2, cj,12} and {cj,2, cj,23} must be in T . Also, as T  is connected, {cj,2, bj,2} must be in T . This, however, 
cannot satisfy the degree constraint no matter which cj,12 (degree 1) or cj,2 (degree 3) is in V+T , a contradiction.

Suppose that there exists a path between bj,1 and bj,2. If the path is via cj,13, then cj,1, cj,2 ∈ V+T  and hence neither of 
{cj,1, cj,12} and {cj,2, cj,12} is in T ; then cj,12 is isolated, a contradiction. Otherwise, the path is (bj,1, cj,1, cj,12, cj,2, bj,2). In 
this case, T  must contain {cj,3, cj,31} and hence cj,3 ∈ V+T . If {cj,3, cj,23} is in T , then {cj,3, bj,3} cannot be in T  by the degree 
constraint, and hence {cj,2, cj,23} is also in T  as T  is connected. This, however, violates the degree constraint of cj,2 ∈ V+T , a 
contradiction. Otherwise, {cj,3, cj,23} is not in T , and then {cj,2, cj,23} is in T  again as T  is connected. This, however, cannot 
satisfy the degree constraint no matter which cj,2 (degree 3) or cj,23 (degree 1) is in V+T , a contradiction.

Thus, we have confirmed that any clause gadget does not connect variable gadgets. Note that T  may contain two or 
three of {cj,1, bj,1}, {cj,2, bj,2}, and {cj,3, bj,3}, and then the end vertex bj,ℓ with {cj,ℓ, bj,ℓ} contained in T  must be in V−T  due 
to the degree constraint. Also, no matter how many such edges are contained in T , exactly one of them is extended to cj.

Next, let us consider variable gadgets. By the above observation, they must be connected with the edges illustrated in 
Fig.  3, which inductively forces that ui and uend

i (i = 1, 2, . . . , n) are both in V+T  as follows.
For each variable gadget, due to the form of the eight-vertex tree at the beginning (i = 1) or by the induction 

hypothesis (i ≥ 2), we have ui ∈ V+T  and T  contains exactly one edge incident to ui not in the variable gadget. Then, 
exactly one of {ui, uin

i,0} and {ui, uout
i,0 } must be contained in T , and then uin

i,0 or uout
i,0 , respectively, is in V−T . As with the 

clause gadgets, observe that T  must contain the two edges incident to u′i,0, and u′′i,0 ∈ V−T , u′i,0 ∈ V+T , and ui,0 ∈ V−T . By 
connectivity, {ui,0, uin

i,0} or {ui,0, uout
i,0 } is in T , and then uin

i,0 or uout
i,0 , respectively, is in V+T . Thus, we have exactly two possible 

choices here such that exactly one of uin
i,0 and uout

i,0  is in V+T  and the other is in V−T . By connectivity again, the two paths 
(uin

i,0, u
in
i,1, ū

in
i,1, . . . , u

in
i,kini
, ūin

i,kini
, uT

i ) and (uout
i,0 , ū

out
i,1 , u

out
i,1 , . . . , ū

out
i,kouti

, uout
i,kouti

, uF
i ) are completely included in T . Due to the parity, 

T  cannot contain both edges {uT
i , u

end
i } and {uF

i , u
end
i }, and hence exactly one of them in addition to {uT

i , u
F
i } is contained 

in T . Then, due to the degree constraint, we obtain uend
i ∈ V+T , which forces ui,i+1 ∈ V−T  and ui+1 ∈ V+T  (when i < n).

Overall, in the variable gadget, there are exactly two possible spanning trees, from which an assignment a with 
ψ(a) = 1 can be reconstructed. This completes the proof. □

5. Concluding remarks

We have investigated two problems on a fusion of two fundamental combinatorial structures, a spanning tree and a 
perfect matching.

The first problem, finding a minimum-weight spanning tree containing a perfect matching, has been shown as tractable 
in the very restricted situation when the graph is complete (or complete bipartite) and the edge weights take at most 
two values. It, however, becomes NP-hard if we relax one of the two conditions. For this problem, it seems reasonable to 
consider nontrivial approximation or fixed-parameter algorithms.

The second problem, testing the existence of a strongly balanced spanning tree, has turned out NP-hard even if the 
input graph is subcubic and planar. In the reduction, we have introduced many artificial leaves, which have played the 
important role to force which vertices should be on which side of the resulting bipartition. This can be somewhat relaxed 
by replacing each leaf with a five-vertex gadget as in Fig.  5 so that the resulting graph is still subcubic and planar and 
has no leaf. An interesting open question is the following: is it possible to strengthen ‘‘subcubic’’ to ‘‘cubic’’? Or, possibly, 
is this problem for the cubic graphs in fact tractable? It seems also interesting to consider the tractability for relatively 
dense graphs, which tend to have a solution.
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Fig. 5. An alternative five-vertex gadget for each leaf. The lower vertex ℓ corresponds to an original leaf. In any strongly balanced spanning tree T
(if exists), the black vertices will be in V+T  (with degree constraint 2), and the white vertices will be in V−T  (without degree constraint), except for 
exactly one of these gadgets (that corresponds to s1 in Fig.  3).
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