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A B S T R A C T

Generative design techniques have become sophisticated methods for generating diverse alternatives by incor
porating topology optimization with artificial intelligence techniques. As their diversity increases, the cognitive 
burden on designers in selecting the most appropriate alternatives also increases. The concept identification 
approach, which finds various categories of entities, is expected to be effective for systematically interpreting 
their diversity. However, conventional concept identification approaches cannot provide meaningful categories 
when their geometric properties face high-dimensionality. To address this challenge, this study proposes a new 
concept identification framework for generative design using deep learning (DL) techniques. One of the key 
abilities of DL is the automatic learning of effective representations of a specific task. This study first outlines the 
key points of concept identification based on the general design theory, then proposes a basic framework that 
consists of generating diverse alternatives using a generative design technique, clustering the alternatives into 
several categories using a DL technique, and arranging these categories into design concepts using a classification 
model. This study demonstrates its fundamental capabilities by implementing variational deep embedding, a 
generative and clustering model based on the DL paradigm, and logistic regression as a classification model. Its 
implementation is applied to a simplified design problem of a two-dimensional bridge structure as a case study. 
The proposed deep concept identification framework can systematically identify meaningful categories of diverse 
alternatives, while it still requires designer cognition in several steps because of the gap between the data-driven 
approach and the nature of concept identification.

1. Introduction

Generative design is a computational design method that provides 
alternatives that satisfy the given design requirements [1,2]. These al
ternatives are represented as entities within a computational model and 
stimulate the designer’s creativity in the early design stage [3].

Because this method generates various alternatives by para
metrically varying the design geometry, the freedom of representation of 
the geometry is an important factor in the diversity of the generated 
alternatives. Several types of representations exist, such as representa
tive dimensions under the given form [2], control parameters of the 
given spline curve [4,5], and material distribution within the given 
design domain [6,7]. Among these, representation by material distri
bution is the most suitable for exploring diverse alternatives owing to its 
high design degree.

Design optimization techniques are effective means of exploring 
promising alternatives in a computational model, and these techniques 
are typically used in the later design phase. Topology optimization [8] is 

a structural optimization technique that determines the optimal material 
distribution within a given design domain. This technique has been 
expanded into various fields, including fluid-based problems [9] and 
heat transfer problems [10]. Topology optimization can be utilized as a 
generator for diverse alternatives, including multiple configurations in 
generative design [6,11]. To enhance the diversity of alternatives, 
generative design frameworks are proposed by incorporating topology 
optimization with artificial intelligence techniques such as reinforce
ment learning [12], deep neural networks [13,14], and deep generative 
models [7,15].

However, as the diversity of the generated alternatives increases, the 
cognitive burden on designers to select the most appropriate alternatives 
also increases. Generative design techniques provide alternatives on the 
basis of implicit mapping relationships between geometric properties 
and structural performance. Geometric properties correspond to the 
features for specifying an alternative, and structural performance cor
responds to the features for evaluating an alternative in generative 
design. While designers are required to unravel the implicit 
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relationships between them to interpret the generated alternatives, 
these relationships of diverse alternatives are complicated.

In contrast, the early design stage is commonly understood as the 
conceptual design stage, where a design concept is generated by 
combining physical principles expected to achieve the required function 
[16]. To this end, methods have been proposed to generate and evaluate 
alternatives systematically [17,18]. Physical principles provide de
signers with insights into the mapping relationships between the design 
parameters and performance criteria, representing various plans of en
tities. Whereas these principles enable designers to effectively consider a 
wide range of alternatives, what is the physical principle is often vague.

General design theory (GDT) [19] attempts to explain the mapping 
relationship between concepts and entities in a design process through 
axiomatic set theory. This theory describes entities by sets that can be 
constructed based on them. These sets act as design concepts when 
providing insights into the mapping relationships between design pa
rameters and performance criteria, representing various entities. This 
concept identification approach reveals fundamental principles by 
finding various categories of entities that share some essential features. 
Because generative design usually provides alternatives based on im
plicit principles, this approach is suitable for considering those alter
natives by effective evaluation and critique.

Some methods that identify categories of alternatives provided by 
generative design have been proposed to evaluate various alternatives 
efficiently [20,21]. These methods categorize alternatives based on the 
similarities calculated from qualitative and quantitative features using 
clustering algorithms. However, the identified categories should provide 
insights into the mapping relationships between geometric properties 
and structural performance to act as a design concept. The concept 
identification method proposed by Lanfermann and Schmitt [22] ex
tracts these relationships by introducing a criterion for consistency 
across multiple viewing aspects for categorization.

Because alternatives that have similar structural performances but 
different geometric properties exist, geometric properties are the focus 
of concept identification for diverse alternatives. However, in conven
tional clustering algorithms, traditional similarity measures, such as the 
Euclidean distance, usually cannot provide meaningful categories for 
high-dimensional data, such as diverse alternatives that are represented 
by material distributions [23]. Conversion into different low- 
dimensional representations is an effective approach to clustering 
high-dimensional data. Although some representations are considered 
for generative design [24,25], finding such representations is usually 
challenging for designers based on their experience.

In summary, although generative design can provide diverse alter
natives, interpreting them imposes a high cognitive burden. Concept 
identification is an effective approach for unraveling the complicated 
relationships between geometric properties and structural performance 
for systematic interpretation. However, conventional concept identifi
cation approaches cannot provide meaningful categories for diverse 
alternatives represented by material distributions because of the high- 
dimensionality of their geometric properties.

To address this challenge, this study proposes a concept identifica
tion framework for generative design using deep learning (DL) tech
niques. One of the key abilities of DL is to automatically learn different 
representations of a specific task [26]. This study defines deep concept 
identification as finding various categories that provide insights into the 
mapping relationships between geometric properties and structural 
performance through representation learning using DL. The proposed 
deep concept identification framework generates diverse alternatives by 
a generative design technique, clusters alternatives into several cate
gories using a DL technique, and arranges these categories for design 
practice using a classification model. The proposed framework enables a 
systematic approach to interpreting the generated diverse alternatives. 
This study demonstrates its fundamental capabilities by implementing 
variational deep embedding (VaDE) [27], a generative and clustering 
model based on the DL paradigm, along with logistic regression as a 

classification model. A simplified design problem of a two-dimensional 
bridge structure is applied as a case study to validate the proposed 
framework.

Overall, the main contributions of our study are as follows: 

(1) The key points of concept identification are outlined with refer
ence to general design theory (GDT). GDT attempts to explain the 
mapping relationship between concepts and entities in a design 
process through axiomatic set theory and can be used to formalize 
the concept identification approach.

(2) To address the current challenge in concept identification for 
diverse alternatives, this study proposes a deep concept identifi
cation framework that finds various categories of alternatives 
through representation learning using DL. The proposed basic 
framework consists of generating diverse alternatives using a 
generative design technique, clustering the alternatives into 
several categories using a DL technique, and arranging these 
categories into design concepts using a classification model.

(3) The fundamental capabilities of the proposed framework are 
demonstrated by implementing variational deep embedding, a 
generative and clustering model based on the DL paradigm, and 
logistic regression as a classification model. Its implementation is 
applied to a simplified design problem of a two-dimensional 
bridge structure as a case study.

The remainder of this paper is structured as follows: Section 2 pre
sents the theoretical background by referring to related work and 
formalizing the deep concept identification framework. Section 3 im
plements the proposed framework using VaDE and logistic regression. 
Section 4 provides the experimental application to a simplified design 
problem of bridge structures. Section 5 discusses the capabilities of the 
proposed framework. Section 6 presents concluding remarks and sug
gestions for future work.

2. Theoretical background

This section first introduces the theoretical background and key 
points for concept identification, then discusses previous work based on 
these points to identify the challenge in this study, and finally formalizes 
the deep concept identification framework to address the challenge.

2.1. Concept identification in engineering design

The early stage of the engineering design process can be divided into 
divergence and convergence phases [28], as shown in Fig. 1. In the 
divergence phase, various alternatives that satisfy the given design re
quirements are generated. The generated alternatives are squeezed into 
promising alternatives in the convergence phase. Although considering 
a wide range of alternatives is necessary to avoid overlooking promising 
alternatives, the number of alternatives that can be meaningfully 
considered is inherently limited. Designers typically employ design 
knowledge to effectively evaluate various alternatives.

Generative design and concept identification correspond to the 
divergence and convergence phases, respectively, as shown in Fig. 1. A 
conventional generative design generally focuses only on the divergence 
phase. The gap between the divergence and convergence phases reduces 
the interpretability of generative design. To bridge this gap, this study 
extends its focus to include the convergence phase.

What we refer to as “concepts” plays an important role in considering 
a wide range of alternatives in the early design stage. However, there is 
no common understanding of what a concept is. The meaning of the 
concept is relatively straightforward from the perspective of linguistics. 
Recognizing a vast number of objects in the real world at any time is 
impossible, each with a unique index. For effective recognition, they are 
categorized into classes that share some representative features, and the 
members of each category are described; that is, they are labeled with a 
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unique index. Whereas the representatives of each category provide 
overviews of the objects, each object belonging to a certain category can 
be identified by adding secondary features to representative ones. Thus, 
those categories act as concepts to effectively recognize a vast number of 
objects.

Based on this understanding, key concept identification from a set of 
documents is performed through semantic categorization [29,30]. In 
these cases, documents correspond to objects, and categories of docu
ments correspond to concepts. The identified key concepts and their 
relationships facilitate effective information retrieval from a set of 
documents. In the engineering design process, entities correspond to 
objects, and categories of entities act as design concepts [31]. They and 
their relationships guide subsequent design processes as design knowl
edge [32].

Because the results of categorization depend on the features focused 
on, various concepts can be identified to provide different insights. In 
engineering design, two types of features are typically considered [33]. 
One is the attribute corresponding to the features for specifying an en
tity, such as its shape or geometry. The other is the behavior corre
sponding to the features for evaluating an entity, such as engineering or 
aesthetic performance. Because design requirements are described in 
terms of behaviors, whereas design solutions are described in terms of 
attributes, the mapping relationships between them act as design 
knowledge for selecting the most appropriate design solution [34]. 
Consequently, conceptual design can be defined as the activity of finding 
concepts related to attributes that are expected to enable the require
ment represented by concepts related to behavior. However, the rela
tionship between the concepts of both sides cannot be understood 
without linking them to corresponding entities, because they are 
conceptualized on independent viewing aspects. Therefore, concept 
identification in engineering design is an entity-level task that catego
rizes a set of entities while mapping their attributes and behaviors.

General design theory (GDT) [19] can be used to formalize the 
aforementioned understanding of concept identification. The GDT as
sumes that a concept categorizes a set of entities into two subsets that are 
true and false under a certain condition. Furthermore, each entity is 
identified as a set of concepts. Based on GDT, a design activity can be 
defined as finding any entity as a design solution in the product of 
classifications related to the behavior that represents a given design 
requirement. If multiple entities exist in the product of classifications 
related to behavior, a classification must be introduced to squeeze these 
entities into a unique one.

Here, categories of entities are focused on rather than unique entities 
in conceptual design. These categories should share some essential at
tributes to ensure consistency in subsequent design processes. While 
designers intuitively perform conversions between concepts and entities 
during this process, the mutual relationship between them is an 
important issue in concept identification. Designers structure the plans 
of entities to evaluate their similarities or differences and implicitly form 
concepts as products of classification. The existence of entities triggers 
the described process of concept identification. As the results of concept 

identification depend on the scope of the entities, collecting the entities 
comprehensively is essential.

Therefore, the concept identification framework for conceptual 
design should comprise the following points: (1) Collecting various en
tities related to a design problem, (2) Categorizing collected entities 
based on their attributes while structuring them to evaluate their simi
larities or differences, and (3) Arranging collected entities as the product 
of classifications related to their behavior.

2.2. Previous studies related to concept identification

Some approaches to interpreting alternatives provided by compu
tational exploration have been proposed. These approaches are orga
nized based on three points for concept identification in Section 2.1, as 
shown in Table 1.

Botyarov and Miller [21] mentioned the need for a systematic 
approach to reducing the cognitive burden in selecting appropriate 
design solutions in generative design. They proposed an approach that 
narrows the generated alternatives to representatives by a clustering 
method of partitioning around medoids via the Gower distance matrix. 
They applied the proposed approach to the entities collected by gener
ative design based on topology optimization. Their attributes are linked 
with their behavior through simultaneous categorization. However, 
they did not use parameters that represent their attributes, such as the 
material distribution, for categorization. Lanfermann and Schmitt [22] 
focused on the consistency of categories of entities across multiple 
viewing aspects and proposed a metric to find meaningful categories. 
This approach can unravel the mapping relationship between the attri
butes and behavior of entities by defining viewing aspects according to 
each.

Owing to conflicts between objective functions, multi-objective 
optimization problems usually provide a set of compromised solutions, 
called Pareto solutions. The mapping relationship between the attributes 
and behavior of entities plays an important role in selecting the most 
appropriate solutions from the Pareto solutions. Obayashi et al. [35] 
proposed an approach to visualize the mapping relationship between 
them by analysis of variance and a self-organizing map. The attributes of 
the collected entities are linked with their behavior through simulta
neous categorization. In the area of research on multi-objective topology 
optimization, Sato et al. [36] proposed an approach for extracting 
characteristic substructures depending on the objectives based on clus
tering and association rule analysis. Although the collected entities are 
categorized based on their behavior in this approach, the extracted 
characteristic substructures visually represent the mapping relationship 
between the attributes and behavior of entities. Ryu et al. [37] proposed 
a configuration-based clustering scheme to find representatives from 
Pareto solutions. They assumed that the mapping relationship between 
the attributes and behavior of entities can be expressed as a one-to-one 
correspondence and categorized collected entities based on their attri
butes, such as center of mass and number of holes.

However, these previous approaches cannot directly categorize the 

Fig. 1. Phases of the early stage of the engineering design process and their correspondence to generative design and concept identification.
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collected entities based on material distribution due to their high- 
dimensionality. Our study focuses on this challenge and proposes a 
concept identification framework for generative design using DL 
techniques.

2.3. Formalizing deep concept identification for generative design

Following the three points for concept identification in Section 2.1, 
this study proposes deep concept identification as a framework for 
mapping concepts and entities in generative design. A description of the 
key terms used to outline the proposed framework is provided in 
Table 2. An overview of deep concept identification is shown in Fig. 2.

A certain number of entities are present as various types of small 
gray-colored marks in the circle on the left of Fig. 2, and concepts related 
to these entities are represented by the product of the four classifica
tions, each of which is represented as the corresponding internal circle, 
in the circle on the right of Fig. 2. Although the mapping relationship 
between concepts and entities is acquired as design knowledge through 
human cognition, as shown in the upper half of Fig. 2, the proposed 
framework identifies this relationship using the procedure that enables a 
systematic approach, as shown in the lower half of Fig. 2. First, the 
various entities collected by generative design are embedded into the 
latent space by representation learning and clustering for categorization 
based on their attributes. The learned latent space effectively represents 
the attributes of entities and enhances the interpretability of the rela
tionship between their attributes and their behavior. The lower-side 
circle of Fig. 2 illustrates this operation by grouping marks and chang
ing their colors from gray to five colors. Then, these categories of entities 
are interpreted as concepts with the support of a classification model. 
The internal circles on the right of Fig. 2 represent the identified con
cepts structured by ordered classifications related to their behavior 
respectively. Those classifications must effectively squeeze a significant 
subset of the entities into a unique concept. Therefore, this approach can 
identify the mapping relationships between concepts and entities while 
linking the attributes of diverse alternatives with their behavior.

Generative design techniques provide various alternatives as entities 
that can trigger deep concept identification, as shown on the left side of 
Fig. 2. Methods based on topology optimization that explore the mate
rial distribution within a given design domain are effective for collecting 
a wide range of entities. Each collected entity is a specified material 
distribution that is usually represented in pixel or voxel format.

To arrange as the products of classifications, which is the goal of deep 
concept identification, the collected entities are categorized while being 
evaluated for their similarities or differences, as shown on the lower-side 
of Fig. 2. First, two types of common computational approaches for 
categorization exist. One is clustering, which is an unsupervised 
approach for grouping data such that data in the same cluster are similar 
and data in different clusters are different to the maximum extent. This 
approach is generally used to structure given data [38]. The second is 
classification, which is a supervised approach for training a classifier 
corresponding to predefined groups. This approach is generally used to 
analyze the features of predefined groups and predict a group of new 
data [39]. Because no prior knowledge to guide categorization exists, 
clustering is a suitable means of categorizing the collected entities. 
Second, the data representation is an important factor in the perfor
mance of computational approaches. Because the attributes of the 
collected entities are represented by a high-dimensional representation 
such as a pixel or voxel format, similarities or differences cannot be 
effectively evaluated due to sparsity [40]. In such cases, data are typi
cally converted into different low-dimensional representations. Repre
sentation learning is an approach used to discover a latent 
representation for a task using machine learning (ML) [41]. This 
approach is a fundamental concept of DL techniques that converts data 
into various representations through multilayer neural networks [26]. 
Thus, the collected entities are categorized based on their attributes and 
embedded into the latent space using representation learning and clus
tering in the proposed framework.

After categorizing the collected entities based on their attributes, 
they are arranged as products of behavior-related classifications, as 
shown on the right side of Fig. 2. The categorization results guide the 
computational classification of entities for supervision. A critical issue in 
behavior-based classification is whether a unique category can be 
squeezed. However, defining a sufficient set of criteria without prior 
knowledge is challenging. The latent representations discovered by 
representation learning are features that effectively represent the attri
butes of collected entities. These latent representations are expected to 
derive a latent factor that links specific attributes to specific behavior. A 
new criterion related to behavior can be identified by interpreting the 

Table 1 
Previous studies related to concept identification.

Authors and reference 
number

Does this study focus on (1) Collecting various entities 
related to a design problem?
Does this study focus on (2) Categorizing collected entities 
based on their attributes while structuring to evaluate 
their similarities or differences?
Does this study focus on (3) Arranging collected entities as 
the product of classifications related to their behavior?

Botyarov & Miller [21] (1) Yes: Collecting diverse entities by generative design 
based on topology optimization.
(2) No: Not directly categorizing based on the parameters 
representing their attributes.
(3) Yes: Narrowing down to representative entities based 
on their behavior.

Lanfermann & Schmitt 
[22]

(1) No: Collecting entities using the deformation 
parameters of the outline contour.
(2) Yes: Categorizing based on the parameters 
representing their attributes.
(3) Yes: Linking their attributes with their behavior 
through simultaneous categorization ensures consistency 
across multiple viewing aspects.

Obayashi et al. [35] (1) No: Collecting entities using the deformation 
parameters of the outline contour.
(2) Yes: Categorizing based on the parameters 
representing their attributes.
(3) Yes: Linking their attributes with their behavior 
through simultaneous categorization.

Sato et al. [36] (1) Yes: Collecting diverse entities by a multi-objective 
topology optimization.
(2) No: Not categorizing based on their attributes.
(3) Yes: Categorizing based on their behavior and linking 
their attributes with their behavior through visualization 
of characteristic substructures.

Ryu et al. [37] (1) Yes: Collecting diverse entities by a multi-objective 
topology optimization.
(2) No: Categorizing based on their attributes without 
directly using the parameters.
(3) No: Not categorizing based on their behaviors because 
of the assumption of one-to-one mapping relationships 
between their attributes and behavior.

Our study (1) Yes: Collecting diverse entities by generative design 
based on topology optimization.
(2) Yes: Categorizing based on the parameter representing 
their attributes using DL.
(3) Yes: Linking their attributes with their behavior by 
training a classification model.

Table 2 
Description of key terms of deep concept identification.

Term Description

Entity An alternative to a given design problem.
Concept A category of entities that share some representative features.
Design knowledge The mutual relationship between concepts and entities ensures 

consistency in subsequent design processes.
Attribute The features for specifying an entity.
Behavior The features for evaluating an entity.
Concept 

identification
Finding concepts by categorizing entities based on their 
attributes and arranging them as the product of classification 
related to their behavior.
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latent factor.

3. Fundamental implementation of deep concept identification

This section implements the deep concept identification framework 
formalized in Section 2 to verify the fundamental capabilities, as shown 
in Fig. 3.

The proposed framework comprises the following four steps: (1) 
Generate diverse alternatives using a generative design technique, (2) 
Embed them into the latent space following a mixture of Gaussians by 
VaDE, (3) Identify representative types and features by interpreting 
decoded results, and (4) Arrange representative types and features as 
design concepts using the classification model.

A mathematical representation is introduced following the design 
optimization paradigm to explain the details of the implementation. An 
optimal design problem is defined as finding design variables x that 
minimize a set of objective functions fi(x) subject to a set of constraints 
gj(x). Both the objective functions and constraints are related to struc
tural performance. Thus, this study calls the functions used collectively 

as objective functions and constraints evaluation criteria 
fi(x)(i = 1,⋯, I). In this form, the attribute of the n-th alternative is 
represented by design variables xn, and the behavior of the n-th alter
native is represented by evaluation criteria fi(xn).

Step (1) corresponds to the circle on the left in Fig. 2. In this step, 
generative design techniques based on topology optimization provide a 
set of alternatives xn. A design problem is formulated under a topology 
optimization paradigm. First, the design domain, which is the area 
where materials can be distributed, is defined. Here, the design variable 
x is the material distribution in the defined design domain. One of the 
approaches to generating diverse alternatives is to solve a multi- 
objective design problem under various conditions. When a design 
problem is formulated as a multi-objective problem, a set of compro
mised solutions is provided under conflicts between objectives. The 
complicated cause-and-effect relationships between the material distri
bution and structural performance guide diverse alternatives that 
include multiple configurations in this approach.

Step (2) corresponds to the transition from the left-hand side circle to 
the lower-side circle in Fig. 2. In this step, VaDE models are trained to 

Fig. 2. Overview of deep concept identification. The upper half shows that the mapping relationship between concepts and entities is implicitly acquired as design 
knowledge through human cognition. The lower half shows the proposed approach that systematically identifies this relationship using DL techniques.

Fig. 3. Overview of the implementation of deep concept identification.
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structure the generated alternatives through representation learning and 
clustering. For clustering based on attributes, design variables xn are 
used as the data representation of each alternative n. An autoencoder is a 
typical representation learning model. An autoencoder model comprises 
two types of neural networks, encoder and decoder. An encoder converts 
the data into a different representation, whereas a decoder converts the 
data into an original representation. The autoencoder model is trained to 
reconstruct the original data by the decoder from the new representation 
transformed by the encoder. An autoencoder can learn a specific latent 
representation by introducing a probabilistic model of data distribution 
in the latent space into the generative process by the decoder. These 
models are known as variational autoencoders (VAEs). The original VAE 
learns statistically independent latent representations that follow an 
isotropic unit Gaussian distribution as a prior [42]. VaDE is a general
ized model of VAE for clustering tasks [27]. Unlike VAE, VaDE learns 
statistically independent latent representations that follow a mixture-of- 
Gaussian distribution instead of a single Gaussian distribution. This 
probabilistic model encourages similar data to form clusters in the latent 
space. The trained VaDE model clusters samples based on the posterior 
of each Gaussian. Therefore, VaDE can categorize generated data by 
simultaneously performing representation learning and clustering.

Step (3) corresponds to the preparation of the transition from the 
lower-side circle to the right-hand side circle in Fig. 2. To arrange the 
categories of alternatives as the product of classifications related to their 
behavior, the representative types and features of these categories are 
identified. A key advantage of VAEs is their ability to generate new data 
using a trained decoder while parametrically manipulating the latent 
representation. Because VaDE models the generative process in the same 
way as VAEs, the representative data of each cluster can be generated by 
decoding from the means of each Gaussian. These representatives show 
the attributes of each category of alternatives. Furthermore, VAEs can 
discover interpretable latent factors by learning a disentangled latent 
representation, depending on the nature of the assumed prior distribu
tion of the latent representation [43,44]. VaDE is expected to discover 
interpretable latent factors owing to the nature of the independent prior 
distribution of the latent representations. These latent factors can be 
used to effectively distinguish between categories of alternatives. New 
criteria related to the behavior of alternatives are defined based on these 
latent factors and added a set of evaluation criteria 

{
fi(x)

}
.

Step (4) corresponds to the transition from the lower-side circle to 
the right-hand side circle shown in Fig. 2. To identify concepts as 
products of classification, the generated alternatives are arranged based 
on the results of categorization in the previous step by the classification 
model. The evaluation criteria 

{
fi(xn)

}
are used as data representations, 

and clustering results by VaDE are used as a label for each alternative n. 
The interpretability of the classification model is a crucial factor in ar
ranging the identified concepts as design knowledge. However, conflicts 
exist between the performance and interpretability of the classification 
model [45]. For instance, although a classification model constructed 
with neural networks can achieve high classification performance owing 
to the numerous trainable parameters and non-linear transformations 
within each network, interpreting these trained parameters and trans
formations is impossible. In contrast, a linear classification model has 
limited classification performance but high interpretability owing to its 
simplicity.

4. Experimental application

This section demonstrates the capabilities of deep concept identifi
cation by applying the implementation in Section 3 to a simplified 
conceptual design problem of bridge structures. It first introduces the 
problem and then explains the details of each step in this demonstration.

4.1. Definition of a simplified conceptual design problem of bridge 
structures

To demonstrate the capabilities of deep concept identification, the 
proposed framework is applied to a simplified design problem of bridge 
structures. A bridge is a structure that supports a roadway over obstacles 
using piers [46]. Bridge structures are categorized into some types such 
as beams, trusses, arches, and suspensions based on how they support 
the roadway. These types are considered design concepts because they 
are a consequence of the categorization of various existing bridge de
signs. Therefore, this study considers that the conceptual design of a 
bridge structure corresponds to the selection of the most appropriate 
type as the design concept. The most appropriate type is selected based 
on the structural performance and aesthetic criteria under specific 
conditions such as load and location. Because these types are mostly 
characterized by a material distribution over the cross-sectional area 
between the two piers, the evaluation criteria can be considered based 
on the material distribution over this area in the conceptual design.

This application focuses on two-dimensional design problems of 
material distribution over the cross-sectional area between two piers as a 
conceptual design problem of bridge structures. The roadway is sup
ported by the left and right sides of the design domain corresponding to 
the piers. For simplicity, while the loads on the roadway are generally 
variable or multi-modal, they are assumed to be uniformly distributed. 
Furthermore, although design domains with various aspect ratios are 
possible, only the square design domain is considered. The material 
distribution is assumed to be symmetrical to the vertical line through the 
center of the design domain.

The design domain of the simplified conceptual design problem of a 
bridge structure is shown in Fig. 4. The bridge structure is represented 
by a material distribution within the square design domain, the height 
and width of which are 80 elements (pixels) for implementation of to
pology optimization, which is explained in the next section. A horizontal 
roadway passed through the center of the design domain as a non-design 
domain. The height is 1 element (pixel). The roadway can be supported 
by highlighted boundaries in the upper halves of the left and right sides 
of the design domain. The selected boundaries for support are provided 
as conditions. An alternative is to optimize the stiffness and material 
volume under a support condition while manipulating the material 
distribution.

4.2. Generating diverse alternatives of bridge structures by generative 
design

This application uses density-based topology optimization to find 
optimal material distributions. The basic idea is to introduce continuous 
design variables for optimization using a gradient-based method. Each 

Fig. 4. Design domain for the conceptual design problem of bridge structures.
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i-th design variable xi represents the density of the i-th finite element 
assigned to the design domain, and takes a value from 0 to 1. A value of 1 
corresponds to the material, whereas a value of 0 corresponds to a void, 
and an intermediate value does not indicate manufacturability. To 
calculate the stiffness of the material distribution in the design domain 
using such design variables, the Young’s modulus of each finite element 
is interpolated as shown in the following Eq. (1): 

Ei(xi) = Emin + xp
i (E0 − Emin) (1) 

where E0 denotes the material stiffness and Emin denotes a very small 
stiffness introduced to prevent the stiffness matrix from becoming sin
gular when the design variable becomes zero. p denotes a penalization 
factor that avoids intermediate density values.

Whereas the defined design problem is a multi-objective problem 
that optimizes the stiffness and material volume, the material volume is 
considered a constraint to be satisfied in a gradient-based method. A set 
of compromised solutions is obtained by optimizing the stiffness while 
varying the volume fraction of the volume constraint. The topology 
optimization problem of the bridge structure is formulated as follows: 

Find x =
(
x1,⋯, xnd

)T
, (2) 

that minimizes f(x) = UTKU =
∑nd

i=1
Ei(xi)uT

i k0ui, (3) 

subject to g(x) =
∑nd

i=1
xisi ≤ g, (4) 

KU = F, (5) 

0 ≤ xi ≤ 1 for i = 1,⋯, nd, (6) 

where xi denotes the i-th component of the design variable vector x and 
represents the density of the i-th finite element, si denotes the volume of 
the i-th finite element, and nd denotes the number of finite elements and 

dimensions of the design variables. U and F denote the global 
displacement and force vectors, respectively, K denotes the global 
stiffness matrix, ui denotes the displacement vector of the i-th finite 
element, and k0 denotes the element stiffness matrix. f(x) denotes the 
mean compliance, which is a criterion corresponding to the stiffness and 
g(x) denotes the material volume. g denotes the allowable volume 
fraction, and Eq. (4) corresponds to the volume constraints. A support 
condition is imposed as the Dirichlet boundary condition in Eq. (5).

The code for the density-based topology optimization is imple
mented based on the 88 lines of the MATLAB code [47]. A finite element 
method with 80 × 80 square elements is used for the evaluation. The 
initial design variables are uniformly set to satisfy the volume con
straints. The design variables are updated using the optimality criteria 
method with a move limit of 0.2. The penalization factor is set to 3, and 
sensitivity filtering with a filter radius of 1.5 is used.

This application generates various alternatives by varying the vol
ume fraction and the support conditions as design parameters. The re
sults of the generation of alternatives are shown in Fig. 5. The leftmost 
column of Fig. 5 shows the support conditions, the number of which is 
11. The design domain for support condition A0 is exceptionally limited 
to the upper half because of its vertically symmetric property. The 
topmost row of Fig. 5 shows the volume fractions of the volume con
straints, the number of which ranges from 0.02 to 0.2, increasing by 
0.01. The cells in Fig. 5 show the 209 alternatives. The colored circles in 
each cell represent the clustering results obtained using VaDE in the case 
of five clusters, as explained in Section 4.3. To consider manufactur
ability in the succeeding processes, each alternative is binarized to 
eliminate intermediate values using the Otsu method [48], and the mean 
compliance under support condition B5 and the volume are 
recalculated.

Fig. 5. Generated alternatives by topology optimization under various support conditions and volume fractions. The colored circles in each cell represent the 
clustering results obtained using VaDE in the case of five clusters, as explained in Section 4.3.
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4.3. Embedding alternatives into latent space and identifying 
representative types and features by training VaDE model

A VaDE model is trained to categorize the generated 209 alternatives 
based on the design variables. The architecture of the VaDE model is 
illustrated in Fig. 6. Because each alternative is represented as an 80 ×
80 Gy-scale bitmap image by mapping each square element to a pixel, 
the input and output of VaDE are set to 80 × 80 × 1. An encoder with 
three convolutional layers and two fully connected layers compresses 
the images into low-dimensional latent variables. The decoder has a 
symmetrical structure to the encoder by replacing the convolutional 
layers with transposed convolutional layers.

Following the original study on VaDE, this application first trains the 
VAE model with the same architecture as that shown in Fig. 6 to improve 
the reconstruction ability. The VAE model is trained using the following 
loss function: 

LVAE = − DKL
(
qϕ(z|x)‖pθ(z)

)
+ logpθ(x|z) = LKL + Lrec (7) 

where x denotes the design variable, z denotes the latent variable, and θ 
and ϕ denote the parameters of the encoder and decoder, respectively. 
The first term LKL denotes the Kullback–Leibler(KL) divergence, which 
corresponds to the criterion used to evaluate the similarity between the 
distribution of data converted by the encoder in the latent space and a 
prior distribution, that is, an isotropic unit Gaussian distribution. The 
second term Lrec corresponds to the reconstruction loss of the encoder 
and decoder. To select the dimensions of the latent variables, this 
application compares the reconstruction loss of VAE models with 2-, 3-, 
4-, 5-, 6-, 7-, 10-, 15-, and 20-dimensional latent variables. An Adam 
optimizer with a mini-batch size of 32 is used to update the parameters 
of the encoder and decoder. The number of epochs for VAE training is set 
to 150. The results of the VAE training are shown in Fig. 7. Although the 
reconstruction loss is improved by increasing the number of dimensions 

of the latent variables to five, no significant improvement is observed 
beyond five. To avoid the duplication of each discovered factor related 
to the latent variables, this application sets the latent dimension to five.

This application trains the VaDE model using the architecture shown 
in Fig. 6. The loss function of VaDE is similar to that of VA; however, the 
first term LKL in Eq. (7) is replaced with the KL divergence to evaluate 
the similarity between the distribution of data converted by the encoder 
in the latent space and a mixture of Gaussian distributions. The number 
of clusters is set to 3, 5, and 7. An Adam optimizer with a mini-batch size 
of 32 is used to update the parameters of the encoder and decoder. The 
number of epochs for VaDE training is set to 300. Statically represen
tative data are generated from the center of each cluster in the latent 
space using the trained VaDE model, as shown in Fig. 8. For the 
experimental discussion, this application sets the number of clusters to 
five in the subsequent processes. The clustering results of the alterna
tives with five clusters are indicated by a colored circle in Fig. 6.

To interpret the latent factors discovered from the latent variables 
toward the definition of the evaluation criteria, changes in the design 
variables are visualized by decoding while manipulating each latent 
variable independently. The result of visualization by decoding while 
manipulating each latent variable from − 10 to 10 independently for five 
representative configurations is shown in Fig. 9. For the latent variable 
z1, the highest position of the supporting points gradually decreased as 
z1 increased. For the latent variable z2, the volume fraction gradually 
decreased as z2 increased. For the latent variable z3, the centroid of the 
material distribution gradually decreased as z3 increased. However, for 
the latent variables z4 and z5, no tendency related to specific structural 
features was observed. Consequently, the highest positions of the sup
porting points and the centroid of the material distribution were 
discovered as latent factors.

Fig. 6. Architecture of VaDE model.
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4.4. Arranging representatives as design concepts by a classification 
model

To arrange alternatives as the product of classifications related to 
behavior, the evaluation criteria for their behaviors are defined as fol
lows, based on the formulation of topology optimization and discovered 
latent factors.

f1: Mean compliance, which is the objective function of the topology 
optimization defined by Eq. (3), and corresponds to the criterion for 
stiffness.

f2: Material volume, which is the constraint of topology optimization 
defined by Eq. (4), and corresponds to a criterion for cost efficiency.

f3: Height of the centroid of material distribution, which is calculated 
from design variables, and may correspond to aesthetics.

f4: Heights of the supporting points, which are calculated from the 
design variables correspond to the left-most elements of the design 
domain. This may correspond to ease of construction.

For statistical analyses, the values of each evaluation criterion are 
normalized such that the average becomes 0 and the standard deviation 
becomes 1.

This application arranges representative types and features using 
binary linear classifiers for interpretability. For this purpose, a set of 
alternatives labeled based on the clustering results are classified based 
on their evaluation criteria. A set of alternatives is divided into two 

subsets, such that alternatives included in the same cluster are included 
in the same subset. Class label y of the n-th alternative is defined as 
follows: 

yn =

{
1 if n-th alternative is included in the first subset
0 if n-th alternative is included in the second subset (8) 

Under this class label, a binary linear classifier with four evaluation 
criteria is introduced as in the following Eq. (9): 

s = wTf = w0 + w1f1 + w2f2 + w3f3 + w4f4 =

{
≥ 0 if y = 1
< 0 if y = 0 (9) 

where wi(i = 0,⋯, 4) are the i-th components of coefficient w for iden
tifying it. fi(i = 0,⋯, 4) is the i-th component of the evaluation criterion 
f , with f0 set to 1. The best possible binary classification case is somehow 
selected. Subsequently, if one subset corresponds to multiple categories, 
the alternatives of such subsets are classified similarly. By repeating the 
binary linear classification until one subset corresponds to one category, 
all the concepts are identified as the products of the classifications.

Logistic regression [49] is used to systematically identify the most 
appropriate coefficients. The logistic regression model introduces the 
following function known as the logistic sigmoid function to represent 
the posterior for y = 1: 

Fig. 7. Results of the loss function in VAE training.

Fig. 8. Representative types when the numbers of clusters are set to (a) 3, (b) 5, and (c) 7.
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p(y = 1|f) = σ
(
wTf

)
=

1
1 + exp( − wTf)

(10) 

This model determines the coefficients in Eq. (9) by maximizing the 
log-likelihood lnp(y|w). Although accuracy, calculated as the rate of 
correctly predicted data, is a well-known metric for evaluating classifi
cation models, this log-likelihood is suitable for evaluation because of 
the inherent learning process of logistic regression. The best case in 
possible binary classifications is selected systematically using the 
following steps: (1) Training logistic regression models for all possible 
cases by dividing the considered alternatives into two subsets according 
to Eq. (8). (2) Selecting the best case based on the log-likelihood of the 
trained logistic regression models. (3) Classifying the considered alter
natives into two subsets using the selected logistic regression model.

The binary linear classification models are interpreted based on their 
coefficients. For instance, whereas the absolute value of the coefficient 
|wi| indicates the contribution of a related evaluation criterion fi to a 
classification, its sign indicates the direction of the contribution.

The result of the best case classification based on the evaluation 
criteria is shown in Fig. 10. Each concept corresponds to a cluster pro
vided by VaDE. The four rectangles represent the classification models. 
Each classification model and concept are connected according to the 
classification paths. The first line in each rectangle shows the concepts of 
the considered alternatives, the second line shows the binary linear 
classifier trained using logistic regression, and the third line shows the 
accuracy of the classification model. Additionally, the interpretation 

results are shown next to each classification model for speech bubbles.
First, when applying this method to Concepts 1, 2, 3, 4, and 5, the 

following classifier that divides them into Concept 4 and the others is 
identified to be the most reasonable: 

− 8.36 − 0.87f1 +1.54f2 +6.58f3 − 6.48f4 = 0 (11) 

Second, when applying this method to Concepts 1, 2, 3, and 5, the 
following classifier that divides them into Concept 1 and the others is 
identified as the most reasonable: 

− 8.81 − 0.70f1 +0.86f2 − 15.49f3 +9.20f4 = 0 (12) 

Third, when applying this method to Concepts 2, 3, and 5, the 
following classifier that divides them into Concepts 2 and 5 and Concept 
3 is identified as the most reasonable: 

2.15 − 6.71f1 +6.37f2 +15.14f3 − 8.84f4 = 0 (13) 

Finally, when applying this method to Concepts 2 and 5, the 
following classifier that divides them into Concept 2 and Concept 3 is 
identified as the most reasonable: 

− 7.59+1.61f1 − 2.72f2 − 5.82f3 +13.53f4 = 0 (14) 

The classification models are interpreted based on the signs and 
absolute values of their coefficients. The classifier defined in Eq. (11)
identifies Concept 4 as characterized by a material distribution in the 
upper domain with lower supporting points compared to Concepts 1, 2, 
3, and 5. The classifier defined in Eq. (12) identifies Concept 1 as 

Fig. 9. Results of visualization by decoding while manipulating each latent variable for five representative configurations.
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characterized by material distribution in the lower domain with higher 
supporting points compared to Concepts 2, 3, and 5. The classifier 
defined in Eq. (13) identifies Concepts 2 and 5 as characterized by a 
material distribution that is distributed in the upper domain compared 
with Concept 3. The classifier defined in Eq. (14) identifies Concept 2 as 
characterized by a material distribution supported by higher supporting 
points than in Concept 5. The interpreted decision tree shown in Fig. 10
is expected to provide valuable knowledge for the conceptual design 
[34]. For instance, in cases where the design problem focuses on visual 
stability, the material distribution in the lower domain is appropriate. 
Designers can systematically identify Concept 1 as the most appropriate 
concept by selecting ‘False’ for the first question and ‘True’ for the 
second question.

4.5. Comparative experiments

To compare the proposed approach, which utilizes the VaDE model, 
with previous approaches for categorizing entities, the generated alter
natives are clustered under different conditions using the Gaussian 
mixture model (GMM). The GMM is trained by fitting the distribution of 
given samples while setting their means and covariance. Although the 
trained GMM can cluster samples based on the posterior, unlike the 
VaDE model, it cannot learn a different representation.

First, the generated alternatives are clustered based on mean 
compliance and material volume, which are the objective and constraint 
of topology optimization in Section 4.2. This corresponds to the 
approach that categorizes them based on their behavior, excluding the 
latent factors discovered in Section 4.3. As clusters 1, 3, 4, and 5 in 

Fig. 11 include multiple configurations, this approach cannot disen
tangle the mapping relationships between their attributes and behavior 
because of their complexity.

Second, the generated alternatives are clustered based on design 
variables representing material distribution to conform the capability of 
representation learning for categorization based on attributes. The 
clustering result for this case is shown in Fig. 12. As cluster 5 in Fig. 12
includes multiple configurations, this approach cannot effectively 
evaluate the similarity of their attributes due to the high-dimensionality 
of the design variables.

Therefore, the proposed approach is suitable for the concept identi
fication of diverse alternatives including multiple configurations guided 
by the complex relationships between attributes and behavior.

5. Discussion

This section discusses the capabilities of a deep concept identifica
tion framework based on the results of the application in Section 4.

Although only 209 alternatives are generated in the experimental 
application, as shown in Fig. 5, deep concept identification is natively 
intended to be applied to a large number of alternatives. The experi
mental application was intended to focus on investigating whether 
concepts could be identified from diverse alternatives, including mul
tiple configurations. In the case of simplified bridge structures, because 
the number of alternatives is not very large, representative configura
tions and their features can be identified based on visual analysis. This 
situation allows for the evaluation of the proposed framework. In 
contrast, VaDE and logistic regression, which are utilized for 

Fig. 10. Concepts of generated alternatives as the product of classifications. This decision tree provides classifications related to behavior to structure categories of 
alternatives based on their attributes.
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implementing the proposed framework, are based on the ML paradigm, 
which is superior in recognizing patterns from large amounts of data. 
Thus, although the computational cost increases, the proposed frame
work can be applied to a large number of alternatives.

The generated alternatives should be categorized based on their at
tributes while structuring them to evaluate their similarities or differ
ences in concept identification. Deep concept identification embeds 
alternatives into a latent space through representation learning and 
clustering for categorization. As shown by the experiments on the 
reconstruction ability in Fig. 7, the appropriate number of dimensions of 
the latent space can generally be four or more. Thus, although the 
structure of alternatives in a latent space is an important factor in 
interpreting the results of categorization, it cannot be directly visual
ized. However, evaluating the clustering result based on whether the 
attributes of the alternatives in the same cluster are similar is relatively 
straightforward, as shown in Fig. 5. Therefore, performing representa
tion learning and clustering simultaneously to evaluate the structuri
zation of alternatives is essential. The VaDE is suitable for this purpose.

Another challenge in categorizing the generated alternatives is 
determining the appropriate number of identified concepts. Because the 
classification result depends on the viewing aspect level, design concepts 
introduce hierarchical structures into alternatives. The appropriate level 

is determined by following the design process phase. The viewing level 
corresponds to the number of clusters in the VaDE models. Whereas 
VaDE cannot learn hierarchical structures into alternatives during 
training, designers can explore the appropriate level iteratively by 
training VaDE while varying the number of clusters, as shown in Fig. 8. 
Detailed categories are obtained by increasing the number of clusters. 
For instance, when the number of clusters is increased from three to five, 
Cluster 1 with three clusters corresponds to Cluster 1 with five clusters, 
Cluster 2 with three clusters corresponds to Cluster 4 with five clusters, 
and Cluster 3 with three clusters is subdivided into Clusters 2, 3, and 5 
with five clusters.

The latent factors discovered by DL lead to the definition of evalu
ation criteria for arranging the categories of entities as concepts in deep 
concept identification. In this experimental application, the latent fac
tors discovered by VaDE are interpreted by visualizing the changes in 
the attributes while manipulating each latent variable independently, as 
shown in Fig. 9. The overall trends of the alternatives are effectively 
displayed by visualizing the representative types. However, whether 
latent factors can be interpreted from changes in attributes and linked to 
behavior to define evaluation criteria depends on the interpretability of 
the latent representation and the designer’s knowledge. Conversely, 
whereas the VaDE model learns five-dimensional latent variables, and 

Fig. 11. Clustering result based on mean compliance and material volume by GMM.
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only three of them can be interpreted, five categories can be classified by 
utilizing them, as shown in Fig. 10. As these latent variables are learned 
for the reconstruction of alternatives instead of for categorization, not 
all latent factors need to be interpreted for classification.

The interpretability of a classification model is an important factor in 
arranging the representative types and features as the products of clas
sification. Owing to their visualization capabilities, classification trees 
[50] have high interpretability. The method using the Gini index [51] is 
commonly used for learning classification trees. However, this method 
does not always divide alternatives into the same category under the 
same conditions as other alternatives. Because the relationship between 
the attributes and behavior within a category is not consistent in clas
sification, designers cannot select a single category that consistently 
satisfies the design requirements. To address this issue, the generated 
alternatives are classified by binary linear classifiers while following the 
clustering results in this experimental application, as shown in Fig. 10. 
Alternatively, because a binary classifier is trained in all combinations of 
alternatives divided into two subsets, the computational cost increases 
when the number of clusters increases. The early phase of the classifi
cation shown in Fig. 10 corresponds to the classification of clusters in the 
3-cluster case shown in Fig. 8. This result indicates that the hierarchical 
structure of alternatives in categorization corresponds to that of classi
fication. The computational cost can be reduced by detailing the level of 
the viewing aspect in the deep concept identification step by step.

The extension to three-dimensional alternatives is another advanced 

challenge in deep concept identification. The attributes of such alter
natives are represented in higher dimensions than two-dimensional al
ternatives. To embed such alternatives into a latent space by encoder 
and decoder effectively, a specific architecture is introduced according 
to the shape format, such as voxels [52], triangular meshes [53], and 
point clouds [54]. These architectures are expected to be utilized to 
effectively categorize three-dimensional alternatives for deep concept 
identification.

Therefore, the proposed framework is expected to demonstrate suf
ficient capability for the concept identification of diverse alternatives. 
Although it can systematically identify meaningful categories of diverse 
alternatives, it still requires designer cognition in several steps, such as 
determining the viewing aspect level by setting the number of concepts, 
defining evaluation criteria based on the discovered latent factors, and 
evaluating the extracted design knowledge. Design concepts are origi
nally identified based on the designer’s knowledge, which extends 
beyond the scope of the current design problem. However, the proposed 
framework is a data-driven approach that relies on the information 
derived from the given alternatives in the current design problem. The 
lack of integration of extensive design knowledge represents a limitation 
of the proposed framework. Consequently, it cannot be expected to 
identify concepts automatically. Additionally, since the proposed 
approach relies on visual evaluation by designers, it is not suitable for 
design problems characterized by high geometric complexity.

Design exploration is the primary objective of generative design as a 

Fig. 12. Clustering result based on design variables by GMM.
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whole. Although design exploration is expected to find entities such as 
extrapolation beyond the ordinary scope, generative design mostly 
corresponds to entities such as interpolation owing to the nature of to
pology optimization. The identified concepts under the proposed 
framework can be utilized for further exploration when employing the 
idea of void mechanism [55]. In cases where entities are categorized as a 
product of classification for concept identification, a case in which a 
given category has no entity must exist. This category corresponds to 
void and can trigger the exploration of novel alternatives by leveraging 
concepts. In this implementation, the identified concepts and their re
lationships are arranged as decision trees. Although designers can find a 
void by rearranging concepts based on a decision tree, it does not show 
the void directly. For further exploration, another arrangement for 
finding a void should be developed. This challenge is potentially 
important for future work.

6. Conclusion

This study proposed a concept identification framework for genera
tive design using DL techniques. In the proposed framework, the 
generated alternatives are first embedded in a latent space and there
after categorized through representation learning and clustering. Design 
concepts are identified as the product of classifications by interpreting 
the categorization results. The proposed framework was implemented 
by VaDE and logistic regression and applied to a simplified conceptual 
design problem of a bridge structure. The experimental application 
demonstrated that the proposed deep concept identification framework 
systematically identifies meaningful categories of diverse alternatives in 
contrast to conventional approaches without representation learning. 
Conversely, designer cognition in several steps is still needed because of 
the gap between the data-driven approach and the nature of concept 
identification.

Generative design is expected to be expanded to various design 
problems, including fluid-based problems and heat transfer problems 
following the expansion of topology optimization. Although the current 
implementation depends on a simplified design problem of bridge 
structure, the proposed framework can also be applied to other design 
problems because of the use of ML and DL techniques. In a related study, 
we proposed a multi-stage optimal design framework that explores 
promising configurations by topology optimization and exploits their 
configurations by shape optimization by utilizing parts of the deep 
concept identification [56]. On the other hand, the capabilities of 
concept identification are determined by the approach to categorization. 
Because the proposed framework categorizes alternatives based on their 
overall attributes without relying on prior design knowledge, it is inef
fective in some design problems. For example, design problems, where 
the design domain contains multiple areas of interest to evaluate the 
attributes of alternatives, require components that divide these areas 
with or without prior design knowledge in concept identification. Such 
extensions for other design problems with different characteristics are 
expected to be explored in the future.

CRediT authorship contribution statement

Ryo Tsumoto: Writing – original draft, Visualization, Validation, 
Software, Project administration, Methodology, Funding acquisition, 
Data curation, Conceptualization. Kentaro Yaji: Writing – review & 
editing, Methodology, Conceptualization. Yutaka Nomaguchi: Writing 
– review & editing, Methodology, Conceptualization. Kikuo Fujita: 
Writing – review & editing, Supervision, Project administration, Meth
odology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 

the work reported in this paper.

Acknowledgements

This work was supported by JST SPRING (Grant Number 
JPMJSP2138) and JSPS KAKENHI (Grant Number 23K28370). We 
would like to thank Editage (www.editage.jp) for English language 
editing.

Data availability

Data will be made available on request.

References

[1] K. Shea, R. Aish, M. Gourtovaia, Towards integrated performance-driven 
generative design tools, Autom Constr 14 (2005) 253–264, https://doi.org/ 
10.1016/j.autcon.2004.07.002.

[2] S. Krish, A practical generative design method, Comput. Aided Des. 43 (2011) 
88–100, https://doi.org/10.1016/j.cad.2010.09.009.

[3] J.I. Saadi, M.C. Yang, Generative design: Reframing the role of the designer in 
early-stage design process, J. Mech. Des. 145 (2023) 041411, https://doi.org/ 
10.1115/1.4056799.

[4] S. Khan, M.J. Awan, A generative design technique for exploring shape variations, 
Adv. Eng. Inf. 38 (2018) 712–724, https://doi.org/10.1016/j.aei.2018.10.005.

[5] L. Zhang, Z. Li, Y. Zheng, An interactive generative design technology for 
appearance diversity – Taking mouse design as an example, Adv. Eng. Inf. 59 
(2024) 102263, https://doi.org/10.1016/j.aei.2023.102263.

[6] J. Matejka, M. Glueck, E. Bradner, A. Hashemi, T. Grossman, G. Fitzmaurice, 
Dream lens: Exploration and visualization of large-scale generative design datasets, 
in: Proceedings of the 2018 CHI Conference on Human Factors in Computing 
Systems, 2018, https://doi.org/10.1145/3173574.3173943.

[7] S. Oh, Y. Jung, S. Kim, I. Lee, N. Kang, Deep generative design: Integration of 
topology optimization and generative models, J. Mech. Des. 141 (2019) 111405, 
https://doi.org/10.1115/1.4044229.

[8] M.P. Bendsøe, O. Sigmund, Topology Optimization, Springer, Berlin Heidelberg, 
2004, https://doi.org/10.1007/978-3-662-05086-6.

[9] J. Alexandersen, C.S. Andreasen, A review of topology optimisation for fluid-based 
problems, Fluids 5 (2020) 29, https://doi.org/10.3390/fluids5010029.

[10] A. Fawaz, Y. Hua, S. Le Corre, Y. Fan, L. Luo, Topology optimization of heat 
exchangers: A review, Energy 252 (2022) 124053, https://doi.org/10.1016/j. 
energy.2022.124053.

[11] S. Yoo, S. Lee, S. Kim, K.H. Hwang, J.H. Park, N. Kang, Integrating deep learning 
into CAD/CAE system: generative design and evaluation of 3D conceptual wheel, 
Struct. Multidiscip. Optim. 64 (2021) 2725–2747, https://doi.org/10.1007/ 
s00158-021-02953-9.

[12] H. Sun, L. Ma, Generative design by using exploration approaches of reinforcement 
learning in density-based structural topology optimization, Designs (basel) 4 
(2020) 10, https://doi.org/10.3390/designs4020010.

[13] N.A. Kallioras, N.D. Lagaros, MLGen: generative design framework based on 
machine learning and topology optimization, Applied Sciences 11 (24) (2021) 
12044, https://doi.org/10.3390/app112412044.

[14] S. Jang, S. Yoo, N. Kang, Generative design by reinforcement learning: Enhancing 
the diversity of topology optimization designs, Comput. Aided Des. 146 (2022) 
103225, https://doi.org/10.1016/j.cad.2022.103225.

[15] Z. Wang, S. Melkote, D.W. Rosen, Generative design by embedding topology 
optimization into conditional generative adversarial network, J. Mech. Des. 145 
(2023) 111702, https://doi.org/10.1115/1.4062980.

[16] G. Pahl, W. Beitz, J. Feldhusen, K.-H. Grote, Engineering Design, Springer, London, 
2007, https://doi.org/10.1007/978-1-84628-319-2.

[17] H. Ma, X. Chu, D. Xue, D. Chen, A systematic decision making approach for product 
conceptual design based on fuzzy morphological matrix, Expert Syst Appl 81 
(2017) 444–456, https://doi.org/10.1016/j.eswa.2017.03.074.

[18] H.R. Fazeli, Q. Peng, Generation and evaluation of product concepts by integrating 
extended axiomatic design, quality function deployment and design structure 
matrix, Adv. Eng. Inf. 54 (2022) 101716, https://doi.org/10.1016/j. 
aei.2022.101716.

[19] H. Yoshikawa, General design theory and a CAD system, Man-Machine 
Communication in CAD/CAM (1981) 166–185.

[20] H. Erhan, I.Y. Wang, N. Shireen, Harnessing design space: A similarity-based 
exploration method for generative design, Int. J. Archit. Comput. 13 (2015) 
217–236, https://doi.org/10.1260/1478-0771.13.2.217.

[21] M. Botyarov, E.E. Miller, Partitioning around medoids as a systematic approach to 
generative design solution space reduction, Results Eng. 15 (2022) 100544, 
https://doi.org/10.1016/j.rineng.2022.100544.

[22] F. Lanfermann, S. Schmitt, Concept identification for complex engineering 
datasets, Adv. Eng. Inf. 53 (2022) 101704, https://doi.org/10.1016/j. 
aei.2022.101704.
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