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ABSTRACT
Cancer-associated fibroblasts (CAFs), a major component of the tumor microenvironment, play an important role in tumor pro-
gression. Colon cancer cells deficient in p53 activate fibroblasts and enhance fibroblast-mediated tumor growth. Meflin is a CAF 
marker capable of inhibiting tumor growth. In this study, we investigated the role of Meflin in fibroblasts using human cell lines 
(colon cancer HCT116 and fibroblasts CCD-18Co) and clinical specimens. TP53-suppressed HCT116 (HCT116sh p53) cells cocul-
tured with CCD-18Co cells showed significantly faster proliferation than HCT116sh control cells. In xenograft experiments, the 
volume of tumors induced by coinoculation with HCT116sh p53 and CCD-18Co cells was significantly larger than that induced by 
HCT116sh control cells co-inoculated with CCD-18Co cells. HCT116sh p53 cells increased the levels of CAF-like phenotypic markers 
in CCD-18Co cells. Moreover, Meflin expression was significantly reduced in CCD-18Co cells cocultured with HCT116sh p53 
cells compared to that in CCD-18Co cells cocultured with HCT116sh control cells. si-RNA-mediated inhibition of Meflin activated 
CCD-18Co cells into tumor-promoting CAF-like cells, which significantly promoted xenograft tumor growth. Overexpression 
of Meflin in CCD-18Co cells using lentivirus suppressed fibroblast-mediated growth of HCT116sh p53 tumor xenografts. The 
expression of Meflin in CCD-18Co cells was suppressed by TGF-β and enhanced by vitamin D. These results indicate that colon 
cancer cells deficient in p53 suppress Meflin expression in fibroblasts, which affects tumor growth by altering the properties of 
tumor growth-promoting CAFs. Our results suggest that targeting Meflin in fibroblasts may be a novel therapeutic strategy for 
colorectal cancer.

1   |   Introduction

Cancer-associated fibroblasts (CAFs), surrounding cancer cells, 
are major components of the tumor microenvironment (TME) 

and play important roles in tumor progression. CAFs secrete a 
variety of signaling molecules, including growth factors, cyto-
kines, and chemokines, which are involved in tumor progres-
sion, immune function, fibrosis, and regulation of angiogenesis 
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[1, 2]. CAFs are activated into cells with diverse functions by 
interacting with cancer cells via extensive signaling. Therefore, 
phenotypic or functional alterations in CAFs have been inves-
tigated as a strategy for improving cancer treatment [3–6]. The 
role of CAFs in the progression of various types of cancers has 
been extensively evaluated [7–9]. However, nonspecific target-
ing or deletion of stromal fibroblasts does not inhibit tumor 
growth [10–12], indicating that CAFs are functionally heteroge-
neous and possess both tumorigenic and antitumor properties.

p53 is an important tumor suppressor gene that is mutated in 
almost all human cancers. Its frequency of mutation is approx-
imately 60% in colorectal cancer [13]. As a transcription factor, 
p53 regulates the expression of genes associated with cell cycle 
arrest, apoptosis, and senescence [13–15]. The expression of the 
tp53 gene in colon cancer cells occurs in a non-cell autonomous 
manner and affects the cellular microenvironment [16, 17]. 
p53-deficient colorectal cancer cells secrete numerous proteins, 
produce reactive oxygen species, and alter the miRNA profile of 
exosomes, thereby affecting the TME, including CAFs, and pro-
moting tumor growth [18–22]. However, the mechanism under-
lying the phenotypic changes in normal fibroblasts induced by 
humoral factors secreted from p53-deficient colon cancer cells 
remains unclear.

Immunoglobulin superfamily containing leucine rich repeat 
(ISLR; also known as Meflin) is a CAF marker capable of inhibit-
ing tumor growth. It is a glycosylphosphatidylinositol-anchored 
membrane protein identified in mesenchymal stem/stromal cells 
and fibroblasts in various organs [23]. In pancreatic cancer, the 
invasion of Meflin-positive fibroblasts correlates with favorable 
patient outcomes [24]. Furthermore, the enhancement of BMP 
signaling by adeno-associated virus-mediated delivery of Meflin 
into hepatocytes inhibited hepatic metastasis of colorectal can-
cer [25]. Therefore, Meflin-positive fibroblasts in the TME may 
serve as novel therapeutic targets. However, their relationship 
with the genetic status of cancer cells in tumor progression has 
not been fully elucidated. To overcome this knowledge gap, in 
this study, we determined the relevance of p53 in colon cancer 
cells and Meflin in fibroblasts, especially with regard to cell–
cell interactions between p53 wild/suppressed cancer cells and 
fibroblasts.

2   |   Material and Methods

2.1   |   Cell Culture

Human colon cancer cell lines HCT116 and RKO showing wild-
type p53 expression, HT-29 and SW480 showing mutant-type 
p53 expression, Caco-2 showing null-type p53 expression, and 
CCD-18Co human colon fibroblasts were obtained from ATCC 
(Manassas, VA, USA). All cell lines were authenticated and 
checked for contamination and were used within 6 months of 
purchase (National Institute of Biomedical Innovation, Osaka, 
Japan). HCT116, HT-29, and SW480 cells were cultured in 
DMEM (D5796; Sigma–Aldrich, St. Louis, MO, USA) supple-
mented with 10% FBS. RKO, Caco-2, and CCD-18Co cells were 
grown in Eagle's Minimum Essential Medium (30–2003; ATCC) 
supplemented with 10% or 20% FBS. The fibroblast line was 
used within nine passages.

2.2   |   RNA Interference

Lentiviral GFP-IRES-shRNA vectors against TP53 
(RHS4430-101161166, 101,162,286, 101,168,779, and 99,365,289) 
obtained from Thermo Fisher Scientific (Waltham, MA, USA) 
were used to generate HCT116sh control and HCT116sh p53 cells, as 
previously described [21]. After colony selection, the cells were 
cultured with 2 μg/mL puromycin to maintain stable shRNA ex-
pression. CCD-18Co and RKO cells were transfected for 48–72 h 
at 37°C with siRNA against ISLR or TP53 (Invitrogen, Carlsbad, 
CA, USA) using Lipofectamine RNAiMAX (Invitrogen, 
13,778,150), according to the manufacturer's instructions.

2.3   |   Expression of Meflin Using the Lentiviral 
Expression System

To produce lentivirus, psPAX2 (Addgene), vesicular stomati-
tis virus G protein (VSV-G) vector (Addgene), and pLV-Puro-
CMV>hISLR (VectorBuilder) in OptiMEM (Thermo Fisher 
Scientific) were mixed with Lipofectamine 2000 (Thermo Fisher 
Scientific). The mixture was added to HEK293 cells. Three days 
later, the supernatant was collected, filtered, and used to trans-
duce CCD-18Co cells. Positively transduced cells were selected 
on 2 μg/mL puromycin for 48 h after transduction.

2.4   |   Coculture Experiments

Coculture experiments were performed using Transwell in-
serts (pore size, 0.4 μm; Corning, NY, USA; 353,181 or 353,092). 
Fibroblasts were seeded in 6-well plates (2 × 105 cells/well) or 12-
well plates (5 × 104 cells/well), and cancer cells were seeded in 
Transwell inserts at the same concentration as the correspond-
ing fibroblasts. After 24 h, the medium in the companion plates 
and Transwell inserts was replaced with serum-free EMEM, 
and the Transwell inserts were combined with the companion 
plates. Further assays were conducted after coculturing for 
48–72 h.

2.5   |   Cell Growth and Viability

Cell growth and viability were analyzed by seeding cells in 12-
well plates (5 × 104 cells/well). The water-soluble tetrazolium 
(WST) assay was performed using SF cell counting reagent 
(Nacalai Tesque, Kyoto, Japan). In coculture, only cancer cells 
were assessed, without including CCD-18Co cells.

2.6   |   Quantitative RT-PCR

Total RNA was extracted from cell lines using the RNeasy kit 
(QIAGEN, Tokyo, Japan). Complementary DNA was synthesized 
from total RNA using a ReverTra Ace qPCR RT Kit (Toyobo, 
Osaka, Japan). qPCR was performed using THUNDERBIRD 
qPCR Master Mix (Toyobo) on a QuantStudio 6 Flex (Applied 
Biosystems; Thermo Fisher Scientific Inc.). Thermocycling con-
ditions were as follows: initial denaturation for 20 s at 95°C, fol-
lowed by 40–60 cycles of 1 s at 95°C for denaturation and 20 s at 
60°C for annealing and extension. The mRNA expression was 
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quantified using the TaqMan gene expression assay (Applied 
Biosystems, Foster City, CA, USA). Gene expression was nor-
malized to that of B2M (beta-2-microglobulin). The primers list 
is shown in Table S1.

2.7   |   Western Blot Analysis

Cultured cells were lysed in lysis buffer [1% NP-40, 0.5% sodium 
deoxycholate, 0.1% sodium dodecyl sulfate and 1X protein inhib-
itor cocktail (Nacalai Tesque, Kyoto, Japan), and PBS; pH 7.4]. 
The lysate was incubated on ice for 15 min and centrifuged at 
10,000 × g for 15 min at 4°C. The medium was collected by cen-
trifuging at 400 × g for 5 min. The medium was concentrated 10-
fold using Amicon Ultra 3-kDa centrifugal filters (UFC500396, 
Millipore). Protein content in the supernatant was determined 
using a bicinchoninic acid protein assay kit (Pierce, Rockford, 
IL, USA). Equal amounts of protein were separated using 
SDS-PAGE and transferred onto a PVDF membrane (Bio-Rad, 
Hercules, CA, USA). Antibodies used for western blotting are 
listed in Table S2.

2.8   |   Elisa

TGF-β levels in cell culture supernatants were measured 
using a human TGF-β and BMP7 Quantikine ELISA kit 
(R&D Systems, Minneapolis, MN, USA). HCT116sh control, 
HCT116sh p53, and CCD-18Co cells (2 × 105 cells/well) were 
seeded in six-well plates and cultured for 2 days. The medium 
was collected, centrifuged at 400 × g for 5 min, and the me-
dium was concentrated 10-fold using Amicon Ultra 3-kDa 
centrifugal filters (UFC500396, Millipore). ELISA was per-
formed using the supernatant, according to the manufactur-
er's instructions.

2.9   |   Vitamin D Analog

Calcitriol (Selleck, Houston, TX, USA), a vitamin D analog, 
was dissolved in DMSO, and 1 mM stock solutions were stored 
at −20°C.

2.10   |   Xenograft Model and Immunofluorescence 
Staining

Xenograft experiments were performed using male BALB/c 
nude mice (Charles River, Yokohama, Japan), aged 5–6 weeks. 
HCT116 cells (1 × 10 [6]) were suspended in 200 μL PBS and in-
jected subcutaneously into the left and right flanks of mice with 
or without CCD-18Co (1 × 10 [6]) cells. Tumor size was mea-
sured every 3 days to calculate the tumor volume using the fol-
lowing formula: [tumor volume = tumor length × (tumor width) 
[2]]/2. Xenograft tumor frozen sections were fixed in parafor-
maldehyde and stained with antibodies listed in Table S2. The 
secondary antibody reaction was performed using Alexa Fluor 
488 (1:500; cat. No. ab150077; abcam) and Alexa Fluor 594 
(1:500; cat. No. ab150077; abcam). The stained sections were 
imaged using a light microscope (VS200; Olympus Corporation, 
Tokyo, Japan).

2.11   |   Immunohistochemistry

Immunohistochemical staining for p53, Meflin, and α-SMA 
in colorectal cancers with submucosal invasion was per-
formed using endoscopically resected specimens at the Osaka 
University Hospital between April 2018 and August 2022. 
Tumor sections were deparaffinized, rehydrated, and labeled 
with the antibodies listed in Table  S2. The stained sections 
were imaged using a light microscope (VS200; Olympus 
Corporation). p53 expression in the invasive lesion was clas-
sified based on p53 staining in the nucleus as nonsense/
frameshift, wild-type, and missense-type pattern [26]. Three 
randomly selected fields of view (×100) for each lesion were 
independently evaluated by three observers in a blinded man-
ner. The evaluation agreed upon by two or more observers was 
adopted. In the same field of view, the area of positive Meflin 
and α-SMA staining in the interstitial region was used to cal-
culate the percentage of positive area using ImageJ (NIH), 
and two groups of p53 wild-type and p53 missense-type were 
compared.

2.12   |   Bioinformatics Analysis

RNA sequencing data was obtained from cBioPortal for Cancer 
Genomics (https://​www.​cbiop​ortal.​org/​), and the data was ex-
tracted from the Colon Adenocarcinoma cohort of The Cancer 
Genome Atlas (TCGA) project. Specific gene expression data 
were downloaded using the RNA Seq RPKM normalized data 
from cBioPortal [27, 28]. Data on Meflin expression in colon 
fibroblasts were retrieved from the NCBI Gene Expression 
Omnibus (GEO) database (accession no. GSE4682).

2.13   |   Statistical Analysis

Data from in vitro experiments were expressed as mean ± stan-
dard deviation, and data from in  vivo experiments were ex-
pressed as mean ± standard error. Comparisons between two 
groups were performed using Student's t-test. A one-way or 
two-way ANOVA with Tukey's post hoc test was performed to 
analyze the differences among multiple groups. p < 0.05 was 
considered to indicate a statistically significant difference. The 
statistical analyses were performed using the JMP Pro17 soft-
ware (SAS Institute Inc.).

3   |   Results

3.1   |   TP53 Inactivation in Cancer Cells Suppresses 
Meflin Expression in Fibroblasts and Promotes 
Fibroblast-Mediated Tumor Growth

To explore the role of p53 in colon cancer cells and of Meflin 
in fibroblasts in cell–cell interactions, we established the 
HCT116sh p53 cell line using shRNA against p53 and con-
firmed tp53 suppression using qRT-PCR and western blot 
analysis (Figure  1A,B). No difference in the viability of 
HCT116sh control and HCT116sh p53 cells was observed in vitro. 
However, HCT116sh p53 cells cocultured with CCD-18Co cells 
showed significantly greater viability than HCT116sh control 
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cells cocultured with CCD-18Co cells (Figure  1C). The vol-
umes of tumors induced by transplanted HCT116sh p53 and 
CCD-18Co cells were significantly greater than those induced 

by HCT116sh control and CCD-18Co cells (Figure 1D). In immu-
nofluorescence staining of frozen xenograft tumor sections, 
the fluorescence intensity of Meflin and α-SMA staining was 

FIGURE 1    |     Legend on next page.
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higher in tumors induced by HCT116sh p53 and CCD-18Co cells 
than in those induced by HCT116sh control and CCD-18Co cells 
(Figure  S1). To investigate the effect of different p53 status 
of cancer cells on the surrounding fibroblasts and the phe-
notypic changes in fibroblasts, we performed a non-contact 
coculture of cancer cells and fibroblasts. The relative mRNA 
expression of TGF-β1 and VEGFA was significantly increased, 
and the relative mRNA and protein expression of Meflin was 
significantly decreased in CCD-18Co cells cocultured with 
HCT116sh p53 cells compared with that in CCD-18Co cells co-
cultured with HCT116sh control cells. No significant difference 
in BMP7 expression in fibroblasts was noted, regardless of the 
p53 status of cancer cells or whether they were cocultured or 
not (Figure 1E,F). To further explore the effect of p53 status 
on Meflin expression in fibroblasts, we cocultured other colon 
cancer cells with CCD-18Co cells. RKO cells were transfected 
with siRNA to suppress TP53, and inhibition of TP53 was con-
firmed using qRT-PCR and western blotting (Figure S2). The 
relative mRNA and protein expression of Meflin was decreased 
in CCD-18Co cells cocultured with RKOsi TP53 cells compared 
with that in CCD-18Co cells cocultured with RKOsi control cells 
(Figure S3). When HT-29, SW480, and Caco-2 cells were co-
cultured with fibroblasts, the Meflin mRNA expression in fi-
broblasts was reduced compared with that in cells cultured 
alone (Figure S4).

3.2   |   Suppression of Meflin Expression in 
Fibroblasts Promotes Tumor Growth

To elucidate the significance of Meflin in fibroblasts, we knocked 
down its expression in CCD-18Co cells using siRNA and con-
firmed the knockdown using qRT-PCR and western blotting 
(Figure 2A,B). Next, we evaluated the effect of Meflin inhibition 
on fibroblast tumor growth. Meflin siRNA-transfected CCD-
18Co cells showed decreased cell viability compared to the con-
trol (Figure 2C). However, HCT116 cells cocultured with Meflin 
siRNA-transfected CCD-18Co cells showed greater proliferation 
than those cocultured with control siRNA-transfected CCD-
18Co cells (Figure 2D).

Next, we performed xenograft experiments to confirm the ef-
fects of Meflin-suppressed fibroblasts on tumor growth using 
TP53-wild type cancer cells. To eliminate the effects of fibro-
blast activation by TP53-deficient colon cancer cells and observe 
the tumor growth effects of Meflin-suppressed fibroblasts, only 
TP53 wild-type colon cancer cells were used. CCD-18Co cells, 
with or without Meflin suppression, were subcutaneously in-
jected together with HCT116 cells into nude mice. Tumors de-
rived from Meflin-suppressed CCD-18Co and HCT116 cells 

grew faster than those derived from CCD-18Co cells without 
Meflin-suppression and HCT116 cells (Figure 2E). The relative 
mRNA expression of TGF-β1, VEGFA, CTGF, and IL-6, which 
are phenotypic markers of CAFs that promote tumor growth, 
was significantly higher in Meflin siRNA-transfected CCD-
18Co cells than in control siRNA-transfected CCD-18Co cells 
(Figure 2F). With regard to the long-term effects of siRNA, we 
found sustained inhibition of Meflin mRNA expression up to 
days 6, 9, and 12 of transfection (Figure S5). These results indi-
cate that suppression of Meflin expression in fibroblasts induces 
a CAF-like phenotype, resulting in tumor growth.

3.3   |   Overexpression of Meflin in Fibroblasts 
Inhibits Fibroblast-Mediated Tumor Growth of p53-
Deficient Colon Cancer Cells

To evaluate the effect of exogenous Meflin on tumor progres-
sion, we generated Meflin-overexpressing fibroblasts using a 
lentiviral expression system; qRT-PCR and western blotting con-
firmed a significant increase in Meflin expression in CCD-18Co 
cells (Figure 3A). Western blotting also detected Meflin in the 
culture supernatant of Meflin-overexpressing CCD-18Co cells 
(Figure 3B). We performed a cell growth and viability assay to 
examine the effect of exogenous Meflin on fibroblast-mediated 
cancer cell growth. The viability of Meflin-overexpressing 
CCD-18Co cells was higher than that of control CCD-18Co 
cells (Figure 3C). HCT116sh control cells cocultured with Meflin-
overexpressing CCD-18Co cells showed no significant growth 
inhibition compared with those cocultured with control CCD-
18Co cells. However, HCT116sh p53 cells cocultured with Meflin-
overexpressing CCD-18Co cells showed less proliferation than 
those cocultured with control CCD-18Co cells (Figure  3D). 
Furthermore, we inoculated HCT116sh control or HCT116sh p53 
cells and control CCD-18Co or Meflin-overexpressing CCD-
18Co cells into BALB/c nude mice. Tumor size was reduced 
when HCT116sh p53 cells were coinoculated with Meflin-
overexpressing CCD-18Co cells compared with that in mice 
coinoculated with HCT116sh p53 and control CCD-18Co cells 
(Figure 3E). These results indicate that Meflin overexpression in 
fibroblasts inhibited fibroblast-mediated tumor growth in p53-
deficient colon cancer cells.

3.4   |   TGF-β or Vitamin D Is Related to 
the Regulation of Meflin Expression in Fibroblasts

To explore factors that regulate Meflin expression in fibro-
blasts, we performed in vitro experiments using TGF-β1. The 
addition of recombinant TGF-β1 to CCD-18Co cells decreased 

FIGURE 1    |    TP53 inactivation in cancer cells suppresses Meflin expression in fibroblasts. (A and B) Relative mRNA (A) and protein (B) levels of 
TP53 in HCT116sh control and HCT116sh p53 cells; n = 3; Student's t-test, *p < 0.05. (C) Viability of HCT116sh control or HCT116sh p53 cells cocul-
tured with or without CCD-18Co cells for 72 h, as assessed using the WST assay. Only cancer cells were assessed, without including CCD-18Co cells; 
n = 3; two-way ANOVA, *p < 0.05. (D) Tumor volume in BALB/c nude mice subcutaneously injected with HCT116sh control or HCT116sh p53 cells, 
with or without CCD-18Co cells; n = 10, two-way repeated measures ANOVA; *p < 0.05, compared to the volume in mice injected with HCT116sh 
control cells together with CCD-18Co cells. (E) Relative mRNA levels of Meflin, TGF-β1, VEGFA, and BMP7 in CCD-18Co cells cocultured with or 
without HCT116sh control or HCT116sh p53 cells; n = 3; one-way ANOVA, *p < 0.05. (F) Western blot analysis of Meflin expression in CCD-18Co 
cells cocultured with or without HCT116sh control or HCT116sh p53 cells.
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the mRNA and protein levels of Meflin compared with those 
in the control and increased the mRNA levels of TGF-β1 
and VEGFA, which are markers of CAF that promote tumor 
growth, compared with those in controls (Figure  4A,B). To 
identify cell proliferation signals in the interaction between 
cancer cells and fibroblasts, we analyzed the levels of TGF-β 
and BMP7 secreted by p53-deficient or p53-wild-type cells 

using ELISA. No significant differences in TGF-β levels were 
observed between HCT116sh control and HCT116sh p53 cells. 
However, the supernatant from the coculture of CCD-18Co 
and HCT116sh p53 cells contained more TGF-β than that from 
the coculture of CCD-18Co and HCT116sh control. The BMP7 
protein concentration in HCT116sh p53 cell supernatant was 
lower than that in HCT116sh control cell supernatant, but there 

FIGURE 2    |    Suppression of Meflin expression in fibroblasts causes phenotypic changes in fibroblasts. (A and B) Relative mRNA (A) and protein 
(B) levels of Meflin in CCD-18Cosi control and CCD-18Cosi Meflin cells; n = 3; Student's t-test, *p < 0.05. (C) Viability of CCD-18Co cells transfected with 
si-control or si-Meflin and cultured for 72 h, as assessed using the WST assay; n = 3; Student's t-test, *p < 0.05. (D) Viability of HCT116 cells cocul-
tured for 48 h with or without CCD-18Cosi control or CCD-18Cosi Meflin cells. Only cancer cells were assessed, without including CCD-18Co cells; n = 3; 
one-way ANOVA, *p < 0.05. (E) Tumor volume in BALB/c nude mice subcutaneously injected with HCT116 cells together with CCD-18Cosi control or 
CCD-18Cosi Meflin cells; n = 7; two-way repeated measures ANOVA *p < 0.05, compared to the volume in mice injected with HCT116 cells together 
with CCD-18Cosi control cells. (F) Relative mRNA levels of TGF-β1, VEGFA, CTGF, and IL-6 in CCD-18Co cells transfected with si-Meflin or control 
siRNA; n = 3; Student's t-test, *p < 0.05.
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FIGURE 3    |    Overexpression of exogenous Meflin in fibroblasts inhibits growth of p53-deficient colon cancer cells. (A and B) Relative mRNA (A) 
and protein (B) levels of Meflin in control CCD-18Co and Meflin-overexpressing CCD-18Co cells; n = 3; Student's t-test, *p < 0.05. (C) Viability of 
control CCD-18 and Meflin-overexpressing CCD-18Co cells cultured for 72 h as assessed using the WST assay; n = 3; Student's t-test, *p < 0.05. (D) 
Viability of HCT116sh control (left) and HCT116sh p53 (right) cells cocultured for 48 h with or without control CCD-18Co or Meflin-overexpressing CCD-
18Co cells, as assessed using the WST assay. Only cancer cells were assessed, without including CCD-18Co cells; n = 3; one-way ANOVA, *p < 0.05. 
(E) Tumor volume in BALB/c nude mice subcutaneously injected with HCT116sh control or HCT116sh p53 cells together with control CCD-18Co or 
Meflin-overexpressing CCD-18Co cells; n = 8–11; two-way repeated measures ANOVA, *p < 0.05, compared to the volume in mice injected with 
HCT116sh p53 cells together with control CCD-18Co cells.
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was no difference when these cells were cocultured with fi-
broblasts (Figure  4C,D). These results indicated that fibro-
blasts cocultured with HCT116sh p53 secreted higher amounts 
of TGF-β than those cocultured with the HCT116sh control.

Next, calcitriol, an active vitamin D preparation that increases 
Meflin expression in human pancreatic stellate cells [24], was 
applied to CCD-18Co cells. CCD-18Co cells treated with cal-
citriol showed increased Meflin mRNA and protein levels com-
pared to the control (Figure 4E,F).

3.5   |   Meflin Expression in Fibroblasts Correlates 
With p53 Staining in Human Colon Cancer

Finally, we assessed the correlation between Meflin and α-
SMA expression in fibroblasts and the p53 status of colorectal 
cancer cells using human clinical specimens. The association 
between the clinicopathological characteristics of the patients 
and lesions with p53 status was evaluated (Tables S3 and S4). 
The Meflin-stained area in cancer stromal fibroblasts was sig-
nificantly smaller in p53-missense type than in p53-wild type 

FIGURE 4    |    Meflin expression in fibroblasts is regulated by TGF-β and vitamin D. (A) Relative mRNA levels of TGF-β1, VEGFA, and Meflin in 
CCD-18Co cells treated with or without recombinant TGF-β (10 ng/mL); n = 3; Student's t-test, *p < 0.05. (B) Western blotting for Meflin in CCD-18Co 
cells treated with recombinant TGF-β. (C and D) TGF-β and BMP7 levels in the supernatant of HCT116sh control and HCT116sh p53 cells cultured alone 
(C) or together with CCD-18Co cells (D) were analyzed using ELISA. Equal amounts of HCT116 and CCD-18Co cells were cultured for 48 h in six-
well plates; n = 4; Student's t-test; *p < 0.05. (E and F) Relative mRNA (E) and protein (F) levels of Meflin in CCD-18Co cells treated with or without 
recombinant calcitriol (100 nM); n = 3; Student's t-test, *p < 0.05.
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colorectal cancers. The α-SMA staining was higher in p53-
missense type colorectal cancer than in p53 wild-type colorec-
tal cancer, but the difference was not significant (Figure  5). 
Furthermore, we analyzed the publicly available databases 
to validate the relationship between p53 status and stromal 
Meflin expression in human clinical specimens. In the Colon 
Adenocarcinoma cohort of the TCGA (TCGA-COAD) proj-
ect obtained via cBioPortal for Cancer Genomics, the mRNA 
expression of Meflin was significantly lower in samples with 
missense-type p53 than in those with wild-type p53 (Figure 6). 
In addition, mRNA expression datasets of fibroblasts ex-
tracted from fresh surgical specimens of colorectal carcinoma 
(CAF group) and normal colonic mucosa (normal colonic fi-
broblasts, NCF group) were retrieved from the NCBI GEO da-
tabase (accession no. GSE46824). The datasets revealed that 
Meflin expression was significantly lower in the CAF group 
than in the NCF group (Figure S6), and this was the same as in 

the coculture experiment (Figure S4). These results indicate 
a relationship between p53-deficient colon cancer cells and 
Meflin in fibroblasts in invasive colon cancer tissue.

4   |   Discussion

Herein, we show that TP53 deficiency in colon cancer cells 
can suppress Meflin expression in fibroblasts and promote 
fibroblast-mediated tumor growth. Suppression of Meflin 
expression activated normal fibroblasts into those exhibit-
ing a CAF-like phenotype that promoted the growth of colon 
cancer cells. In contrast, Meflin overexpression suppressed 
fibroblast-mediated effects in p53-deficient colon cancer cells. 
Meflin expression in fibroblasts was regulated by secreted 
TGF-β. Vitamin D treatment of normal fibroblasts increased 
the expression of Meflin. In resected specimens from patients 

FIGURE 5    |    Expression levels of p53 and Meflin in patients with early-stage colorectal cancer were inversely correlated. (A) Representative im-
ages of immunostained serial sections from the tumors of two colon cancer patients after labeling for p53, Meflin and α-SMA (scale bar = 200 μm); 
n = 24; Student's t-test, *p < 0.05.
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with early-stage colorectal cancer, tumors with a p53 missense 
mutation in epithelial cells showed lower expression of stro-
mal Meflin.

Meflin inhibits tumor growth in xenograft models generated 
using pancreatic cancer and stellate cells [23, 24]. Inhibition 
of tumor growth by Meflin-positive fibroblasts in the TME in-
volves the regulation of BMP signaling or inhibition of collagen 
cross-linking activity through interaction with lysyl oxidase 
[25, 29]. In the heart and lungs, Meflin inhibits fibroblast-to-
myofibroblast transition by antagonizing TGF-β signaling 
[30, 31]. Meflin expressed on muscle satellite cells promotes 
skeletal muscle regeneration by stabilizing Wnt signaling [32]. 
Meflin secreted by stromal cells promotes intestinal regener-
ation by suppressing Hippo signaling in epithelial cells [33]. 
Thus, Meflin-positive fibroblasts affect the surrounding epithe-
lial cells and fibroblasts via multiple mechanisms, creating an 
environment unfavorable for cancer cell growth. Tumors in the 
Meflin-knockout pancreatic cancer mouse model were signifi-
cantly larger and more proliferative than those developed in the 
wild-type pancreatic cancer mouse model [24]. These findings 
are consistent with Meflin suppression in fibroblasts promoting 
cancer cell growth observed in our study.

Normal tissue fibroblasts acquire a CAF-like phenotype in 
response to the secretion of soluble factors from cancer cells 
[32]. Phenotypic changes in fibroblasts that support tumor 
progression are caused by genetic changes in cancer cells 
[34, 35]. miRNAs in exosomes secreted by cancer cells are key 

players in fibroblast differentiation [20, 36]. Autocrine TGF-β 
from CAFs may also be involved in the phenotypic changes 
involved in their interaction with cancer cells. The conversion 
of fibroblasts into myofibroblasts with tumor growth charac-
teristics is regulated by cancer cell-derived cytokines such as 
TGF-β that cause cancer progression via paracrine or auto-
crine actions [37]. The TGF-β signaling pathway is strongly 
activated in CAFs but is reduced in epithelial tumor cells [38]. 
Although the effect of cancer cell-derived humoral factors 
cannot be completely ruled out, the results of our coculture 
experiments indicate that fibroblast-derived TGF-β may be in-
volved in CAF activation via Meflin suppression. According to 
the classification by consensus molecular subtypes, colorec-
tal cancers with a strong stroma-responsive form and TGF-β 
activity have a poor prognosis. The prognostic potential is 
derived from genes expressed by stromal cells rather than by 
epithelial tumor cells [39, 40]. These findings are in agreement 
with previous reports that Meflin expression in stromal cells 
in colorectal cancer is regulated by TGF-β and correlates with 
a favorable prognosis [25].

We also found that overexpression of Meflin in fibroblasts 
inhibited tumor growth in p53-deficient cancer cells. Thus, 
drugs targeting Meflin in fibroblasts may benefit patients 
with p53-mutated colorectal tumors. In other cancers, Meflin-
positive fibroblasts in the TME are potential therapeutic tar-
gets. Meflin-positive fibroblasts were induced by Am80, a 
synthetic retinoid, which improved the chemosensitivity of 
pancreatic cancer by increasing the tumor vascular area and 
intratumoral drug delivery [29]. Treatment of human pancre-
atic stellate cells with calcipotriol increased the expression 
of the Meflin gene [24]. Vitamin D analogs potentiate Meflin 
expression in human colon fibroblasts. As vitamin D defi-
ciency is associated with a high incidence of colorectal cancer 
and mortality, vitamin D might protect against this disease. 
Expression of the vitamin D receptor in stromal fibroblasts 
predicts a favorable clinical outcome in colorectal cancer 
[41, 42]. Therefore, Meflin expression in fibroblasts in the 
colon cancer microenvironment may be modulated by vitamin 
D and may correlate with a favorable prognosis.

This study had some limitations. Despite these results show-
ing the antitumor effects of Meflin in fibroblasts, it is not 
clear how Meflin directly acts on cancer cell growth signals. 
Although the tumor suppressive function of mesenchymal 
BMP signaling has been reported [43, 44], it was not reduced 
in fibroblasts activated by p53-deficient colon cancer cells. 
Despite a slight reduction in BMP7 expression in the superna-
tant of p53-deficient colon cancer cells, the protein concentra-
tion was much lower than that of TGF-β, and its effect appears 
to be limited. In previous studies, we found that p53-deficient 
colon cancer cells increase TGF-β expression in fibroblasts 
[20, 21]. This might involve reactive oxygen species and al-
terations in the miRNA profile of exosomes, but the mecha-
nism has not been fully elucidated [18–22]. The finding that 
Meflin-overexpressing fibroblasts only suppress the growth 
of p53-deficient cancer cells remains mechanistically unclear. 
Meflin overexpression might antagonize TGF-β secreted by 
p53-deficient cancer cells or activated fibroblasts, thereby 
suppressing their differentiation into a CAF-like phenotype 
[30, 31]. Further research is needed to better understand the 

FIGURE 6    |    TCGA database analysis of p53 mutations and Meflin 
expression in human colorectal cancer. (A) Data on mRNA expression 
of Meflin from p53 wild-type or p53-missense type colon cancer tis-
sues retrieved from the TCGA-COAD database. n = 167; Student's t-test, 
*p < 0.05.
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role of fibroblasts in tumor progression and to improve the 
prognosis and efficacy of chemotherapy in clinical practice by 
altering the fibroblast phenotype.

This study highlights a novel phenotype of fibroblasts associ-
ated with crosstalk between cancer cells in the TME. We pro-
pose that Meflin expression is important in fibroblast-mediated 
tumor suppression, and its targeting may be a novel therapeutic 
strategy.
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