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Abstract

The effect of shear stress on cell behaviors should be considered for designing the

suspension culture of mammalian cells. Computational flow dynamics (CFD) is a

promising tool for estimating shear stress on cells, but the accuracy is limited due to

resolution limitations. In this research, we applied physics-informed neural networks

(PINNs) for the high-resolution estimation of shear and drag stress on the cells in a

swirling suspension culture. PINNs could complement the flow in the mesh and esti-

mate the shear and drag stresses on the surface of cell particles smaller than the

mesh size. The estimated shear and drag stress was lower than that from CFD calcu-

lation, and the shear stress depended on the non-dimensional number such as the

Froude number. This approach could solve the limitation of the resolution of CFD for

estimation of shear stress on the cells and is helpful to develop the large-scale sus-

pension culture.
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1 | INTRODUCTION

Suspension culture is expected for mass production of mammalian

cells. Mammalian cells are widely used for biopharmaceuticals such as

regenerative tissue, antibodies, and vaccines. Therefore, various types

of mammalian cells are applied to suspension culture. For example,

Chinese hamster ovary (CHO) cells are cultured in a suspension biore-

actor for producing antibiotic pharmaceuticals, and they are expanded

to more than 107 cells for industrial application.1 In other instances,

induced pluripotent stem (iPS) cells were cultured in suspension cul-

ture with high expectations for the cell source of artificial tissue for

regenerative therapy and drug screening.2 In the case of iPS cell sus-

pension culture, there are two different operations (expansion and dif-

ferentiation), which complicate suspension culture.

To design suspension culture of some mammalian cells, such as

iPS cells, the effect of shear stress is one of the most important fac-

tors to be considered. The suspension culture of mammalian cells

requires agitation to keep cells floating and distributed and to supply

oxygen. The effect of stress from culture medium flow on cell behav-

ior is well-known, and there are many reports about it. Compared to

microorganisms, mammalian cells are more sensitive to shear stress

and exhibit a variety of responses, including morphological changes,3,4

cell death,5–8 and differentiation.3,9 Therefore, the design of floating

suspension culture of mammalian cells requires repeated trials, but

the high cost of suspension culture limits the repetition of suspension

culture for development. Therefore, estimating shear stress is impor-

tant for developing and optimizing bioreactors. Recently, various

attempts have been demonstrated to estimate shear stress during
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suspension culture. As an experimental approach, particle tracking has

been proposed as a method to estimate cellular load during suspen-

sion culture,10 but these experimental approaches are still developing.

To estimate the shear stress on the cells in suspension culture,

computational fluid dynamics (CFD) is a powerful tool and studied for

developing bioreactors for suspension culture. As mentioned above,

the experimental strategy requires repeated experiments, which are

very time-consuming and costly. In contrast, the CFD approach can

save experimental costs and evaluate various conditions simulta-

neously as computational resources allow. Therefore, there is various

CFD research for evaluating bioreactors.11,12 Most of them have cal-

culated only fluid dynamics, and few have calculated fluid dynamics

including actual cellular dynamics as well.13 This is because of the

complexity of coupling CFD, which calculates the behavior of

the fluid, and the discrete element method (DEM), which calculates

the behavior of the cell particles. In addition, the size of cellular parti-

cles (approximately 20 μm diameter and 4 nL volume) is much smaller

than that of bioreactors (approximately 0.1–100 L). It means that pre-

cise DEM simulation in the bioreactor requires the CFD with high res-

olution, which requires a huge amount of calculation resources and

calculation time.

Machine learning could effectively overcome the resolution limi-

tations of the coupling of CFD/DEM. Machine-learning-supported

CFD is being developed as a surrogate model14 since the develop-

ment of machine learning, including neural networks. The outputs of

these neural networks are continuous and do not require discretiza-

tion by mesh preparation. Especially, physics informed neural net-

works (PINNs) can output results that obey the laws of physics by

using physical governing equations (e.g., Navier–Stokes equation) for

training.15 Recently, as a demonstration of PINNs, Mahmoudabadboz-

chelou et al. applied PINNs to estimate the fluid dynamics of a non-

Newtonian fluid,16 and Qiu et al. demonstrated PINNs for two-phase

flow.17 For process development, Takehara et al. applied PINNs for

fast prediction of transport phenomena during the crystal growth of

silicon.18 Thus, PINNs have been expected and studied as a surrogate

model in recent simulations.

In this research, we utilized PINNs to estimate shear stress on the

surface of cells from CFD data. As mentioned above, there is a limita-

tion of the resolution in the CFD approach for cell suspension culture.

PINNs are expected to complement the flow in the mesh based on

the governing equations of the Navier–Stokes equation and the conti-

nuity equation. Estimated flow in the mesh can estimate the velocity

gradient on the cells and shear and drag stress. In addition, we also

obtained the time profile of shear stress and evaluated the relation-

ship between shear stress and process parameters like the Froude

number. Except for the suspension culture, cells are exposed to

medium flow during many parts of the culture, not only in suspension

culture. For example, nozzle-based suction and ejection operations

are widely used in cell culture and bioprinting, but the flow velocity at

the nozzle tip is higher, and effects such as cell damage due to shear

stress have been pointed out.19 Thus, the PINNs method is important

for designing not only suspension culture but also cell culture

operations.

2 | NUMERICAL METHODOLOGIES

2.1 | Model overview

The cylindrical tank with variable diameter (dt) and height (ht) is pro-

posed as a swirling bioreactor (Figure 1A). The bioreactor has two

phases (air/water), and height of water (hw) is variable. The bioreactor

swirls without spinning around a circular orbit of radius R for the agi-

tation, and its rotational speed (ω) is a variable. In CFD, centrifugal

force was applied as an external force term to calculate the liquid flow

and particle behavior in the bioreactor as a stationary coordinate sys-

tem. The centrifugal acceleration (ac) is applied and defined by

Equations 1 and 2.

ac ¼d2r

dt2
ð1Þ

r¼
x

y

z

0
BB@

1
CCA¼

Rcosωt

�Rsinωt

0

0
BB@

1
CCA ð2Þ

In the calculations, the fluid was assumed to be a Newtonian fluid,

and no reactions or changes in temperature or physical properties

occurred inside the reactor. iPSC aggregates were assumed to be solid

particles without any changes in size, shape, and properties. Further-

more, the proportion of particles in the liquid was assumed to be suffi-

ciently small that collisions between particles and forces exerted by

particles on the fluid were negligible, and only forces exerted by the

fluid on the particles were considered.

2.2 | Computational flow dynamics for cells and
medium in swirling culture

OpenFOAM-2.4.x was used for developing and running the solver to

calculate the medium flow and particle behavior. The details of the

solver are mentioned, and the solver was validated in previous

research.20

Briefly, we calculated the flow dynamics with liquid/gas interfaces

and particle behavior moving in a liquid flow. To calculate fluid veloc-

ity and pressure, the Reynolds-averaged continuity equation

(Equation 3) and the Navier–Stokes equation (Equation 4) were used

as the governing equations.

r�vf ¼0 ð3Þ

∂

∂t
ρfvfþr� ρfvfvfð Þ¼�rpþr� μfþμtð Þrvfð Þþρfg�ρfacþ γκrα ð4Þ

Here, v is the flow velocity vector, p is pressure, μ is viscosity, and

ρ is weight density. Overline on v indicates time-averaged value.

Thereafter, the variable's subscript f means fluid, p means particle.

The fourth term on the right side in Equation 4 represents the
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centrifugal force due to the swirling concussion. The fifth term on the

right side in Equation 4 represents the surface tension on the liquid–

gas interface, derived by the continuum surface model. κ represents a

curvature. To represent the gas–liquid interface, volume of fluid (VOF)

method is utilized. To calculate the turbulent flow features, the reli-

able k–ε turbulence model was employed.

The discrete element method (DEM) was employed to calculate

particle behavior. Newton's second equation of motion (Equation 5)

was used as the governing equation for solid particles.

mp
dvp
dt

¼ FdþFgþFlþFvm�mpac ð5Þ

Here, Fd represents the drag force from liquid, Fg represents

buoyancy, Fl represents the lift force created by the pressure gradient

around the particles, and Fvm represents virtual mass force. The last

term on the right side in Equation 5 represents the centrifugal force

on the particles. Collision model of particle was not applied because

the cell density is low enough that cell–cell collisions can be consid-

ered negligible in actual iPSC suspension cultures and the number of

particles used in the numerical simulation was significantly lower than

in the actual culture systems due to the computational limitations.

The finite volumemethod (FVM) was employed to discretize the gov-

erning equations. The convection term in the transport equation for vol-

ume fraction α is determined by second-order precision total variation

diminishing (TVD), the convection terms in the transport equation for

k and ε are determined by first-order precision upwind differencing,

and the other terms are determined by second-order precision central

differencing. The first-order precision Euler implicit method was

employed for time discretization. The pressure implicit with splitting

operator (PISO) method is used to compute velocity and pressure.

Calculation was performed by the Intel(R) Xeon(R) Gold 6338

CPU @ 2.00GHz. The computation time was approximately 17 h.

2.3 | Physics informed neural networks

Physics informed neural networks called PINNs are machine learning

technique used to solve nonlinear partial differential equations such

as Navier–Stokes equations. The solver was developed and men-

tioned in previous research.18 The architecture of PINNs is shown in

Figure 2. PINNs are divided into two parts: calculates the error

between the predictions at NN and the teacher data, and calculates

the error in the governing equations that describe the physical phe-

nomenon. The input vector X of PINNs is shown as X¼ x,y,z,tð Þ.
Firstly, the prediction target is parameterized to various coordi-

nates and times, and the pressure and velocity distributions are com-

prehensively predicted. The error between the supervised CFD data

and PINNs predictions for each physical quantity is evaluated by the

mean squared error shown in Equation 6.

LCFD ¼ 1
NCFD

XNCFD

j¼1
Upred Xj

� ��UCFD Xj

� �� �2 ð6Þ

Upred and UCFD are the PINNs and CFD analysis results corre-

sponding to the input parameter X, and NCFD is the number of points

of learned CFD data. Here, the error with the CFD data and the error

with B.C. are collectively defined as the “NN error.” In general PINNs,

CFD data are not used, and only the governing equations and boundary

conditions are learned. However, the flow of the system is complex

and much time is required for learning. Therefore, the results from CFD

are used to perform highly accurate interpolation of this data.

Second, defined the loss of governing equations. The loss in the

continuity equation and Navier–Stokes equation is defined as Lg

and Lh.

Lg ¼ 1
N

XN

j¼1
g Xj

� ��� ��2 ð7Þ

Lh ¼ 1
N

XN

j¼1
h Xj

� ��� ��2 ð8Þ

where N is the number of teaching data, and the errors in each gov-

erning equation are collectively referred to as the PI error.

For the predicted values to be physically meaningful and accurate,

the loss of both the NN and PI errors must be minimized. The loss

function Lall that minimizes PINNs is defined as a linear combination

of each valuation index as follow:

F IGURE 1 Geometrical drawing of (A) iPSCs culture tank and (B) orbital shaking culture system.
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Lall ¼ LCFDþLgþLh ð9Þ

Although the loss function is defined by adding the NN and PI

errors equivalently, they have inherently different physical mean-

ings. In order to examine how much impact each error has on the

prediction, a weight parameter is used, and the loss function is as

follows:

Lall ¼wCFD �LCFDþwg �Lgþwh �Lh ð10Þ

where wCFD, wg , wh are the weight parameters in the error with CFD,

the error with continuity equation and the error with Navier–Stokes

equation.

Nvidia GeForce RTX 3090 was used for training the neural net-

work, with a training time of approximately 2 h and an execution time

of approximately 5 min.

3 | RESULTS AND DISCUSSION

3.1 | PINNs validation

First, we validate the PINNs created in this study by comparing the

results obtained by CFD with those predicted by PINNs for the flow

at the bottom of the culture medium (shown in Figure 3A). We

thinned out the original CFD data at an arbitrary rate and train PINNs

F IGURE 2 Schematic drawing of the
PINNs architecture utilized in the
manuscript.

F IGURE 3 (A) Location of calculation data for validation, (B) velocity distribution calculated by PINNs and CFD, and mean squared error
between the calculated velocities, and (C) data points of velocity in the small area calculated by PINNs and CFD.
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and compare these predicted results with the original data to check

for consistency.

Numerical results and PINNs predictions are shown in Figure 3B.

PINNs predictions were generally in agreement with the numerical

calculations, and the errors between CFD and PINNs were very small

except near the wall of the tank. The reason for the large prediction

error near the walls is that it is difficult to converge strictly to the no-

slip condition. The results in the smaller region of the prediction are

shown in Figure 3C. Numerical calculation had a limit to the size of

the computational grid, which also limits the resolution of the results

obtained. On the other hand, it was possible for PINNs to predict

results with higher accuracy even in a small region while performing

interpolation. When focusing on smaller regions, the change in the

velocity field for each point to be predicted is expected to be smaller,

and the change in the Reynolds number is expected to be milder.

Here, the predictions can be made at a computational grid ratio of

1/100, and it can be inferred that the predictions in the smaller, milder

region are also correct. Therefore, it can be said that the analysis pro-

gram developed in this study is sufficiently accurate for prediction.

3.2 | Estimation of shear and drag stress on cell
particle surface

The PINNs validated in the previous section are used to predict the

shear stress and vertical stress on the cell surface. When learning all

regions within a container, a huge amount of data is required, making

it difficult to make accurate predictions. Therefore, in this study, we

focus on a single particle in the container and use the vicinity data of

the particle as the learning target. The particle to be selected is the

one with the maximum relative velocity between the particle and

the fluid at each time step.

The predicted shear and vertical stresses on the surface are

shown in Figure 4A,B respectively. This result is a snapshot taken 30 s

after the start of stirring, under the stirring condition of ω,Rð Þ =

(90 rpm, 1.5 cm). In this prediction, the distribution over the cell sur-

face was obtained, which was difficult to predict by CFD due to the

cell particles were smaller than the mesh. The points on the surface

with the highest shear and vertical stresses are indicated by star

points. The predictions can account for large localized forces acting

on the cell surface. The following discussion will use the maximum

values on each surface.

Next, we compare the prediction results of the two methods,

CFD and PINNs. The time evolution of the shear stress for each

method is shown in Figure 4C under the stirring conditions of

ω,Rð Þ¼ 90 rpm,1:5cmð Þ from 20 to 30 s after the start of stirring. This

shows that the calculated shear stress values for CFD and PINNs are

significantly different from each other. This can be attributed to two

factors. First, the differentiation methods are different. CFD uses a

finite volume discretization method, whereas PINNs uses automatic

differentiation with backpropagation. In numerical differentiation, it is

difficult to account for higher-order differential coefficients because

F IGURE 4 Predicted distribution of
(A) shear stress and (B) vertical stress, and
(C) time profile of shear stress from CFD
and PINNs.
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of accuracy loss due to rounding error and cancellation. On the other

hand, automatic differentiation can calculate partial derivatives without

any approximation based on the chain rate of composite functions. Sec-

ond, particles are smaller than the computational grid. In contrast, PINNs

can calculate velocity gradients at arbitrary locations based on training

data. The obtained shear stresses can be calculated accurately with defi-

nition without approximation. The same applies to vertical stress.

3.3 | Dependence of shear stress on dimensionless
numbers

In addition, we evaluated the correlation between the estimated shear

stress tau and dimensionless numbers consisting of the dimensionless

Navier–Stokes equation (Equation 11). Variables marked with an asterisk

mean that they are non-dimensionalised. For conversion into dimension-

less equation, the internal diameter of the culture vessel (dt) was adopted

as a characteristic length and velocity of the center of the culture ves-

sel (Rω) was adopted as a characteristic velocity. Definitions of dimen-

sionless numbers were represented in Equations 12–15.

∂

∂t�
vf

� þr� � vf
�vf�ð Þ¼�r�p� þ 1

Re
r�2vf� þ 1

Fr2
ez� 1

Dr
a�cþ

1
We

r�α

ð11Þ

Re¼Rωdt
vf

ð12Þ

Fr¼ Rωffiffiffiffiffiffiffi
vfg

p ð13Þ

Dr¼2R
dt

ð14Þ

We¼ ρfR
2ω2dt
γ

ð15Þ

Here, Re represents the ratio of inertial force and viscous force of

the fluid as a Reynolds' number, Fr represents the ratio of inertial

force and gravity force of the fluid as a Frude's number, Dr represents

the ratio of swirling radius and vessel radius, and We represents the

ratio of inertial force and surface tension of the fluid.

The correlation between τj j and these dimensionless numbers (Fr,

Re, and We) under fixed Dr (=0.273) was evaluated (Figure 5). The

shear stress was stable in low dimensionless numbers (Fr<0.12,

Re<1.25�104, and We<25), and increased linearly over the thresh-

old. This is because cells sedimented into the bottom in the condition

of under the threshold, where shear stress was low. On the other

hand, in the condition of over the threshold, the number of floating

particles increased, and floating particles suffered high shear stress.

4 | CONCLUSION

In this study, PINNs from CFD data were applied to predict the medium

flow surrounding cells, which causes shear stress and drag force on the

cell surface. The precise estimation of shear stress on cells requires

high-resolution data, but obtaining a high-resolution one from CFD

requires a fine mesh, which requires high calculation costs and time. In

addition, PINNs are expected to apply the shear stress on non-spherical

surfaces such as cell aggregates because PINNs do not require mesh

preparation. Cells suffer from stress from medium flow during culture

operations; therefore, this technique is expected to be used to develop

and optimize all culture operations, not only suspension culture.
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