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Abstract

The effect of shear stress on cell behaviors should be considered for designing the
suspension culture of mammalian cells. Computational flow dynamics (CFD) is a
promising tool for estimating shear stress on cells, but the accuracy is limited due to
resolution limitations. In this research, we applied physics-informed neural networks
(PINNs) for the high-resolution estimation of shear and drag stress on the cells in a
swirling suspension culture. PINNs could complement the flow in the mesh and esti-
mate the shear and drag stresses on the surface of cell particles smaller than the
mesh size. The estimated shear and drag stress was lower than that from CFD calcu-
lation, and the shear stress depended on the non-dimensional number such as the
Froude number. This approach could solve the limitation of the resolution of CFD for

estimation of shear stress on the cells and is helpful to develop the large-scale sus-

pension culture.

KEYWORDS

1 | INTRODUCTION

Suspension culture is expected for mass production of mammalian
cells. Mammalian cells are widely used for biopharmaceuticals such as
regenerative tissue, antibodies, and vaccines. Therefore, various types
of mammalian cells are applied to suspension culture. For example,
Chinese hamster ovary (CHO) cells are cultured in a suspension biore-
actor for producing antibiotic pharmaceuticals, and they are expanded
to more than 107 cells for industrial application.? In other instances,
induced pluripotent stem (iPS) cells were cultured in suspension cul-
ture with high expectations for the cell source of artificial tissue for
regenerative therapy and drug screening.? In the case of iPS cell sus-
pension culture, there are two different operations (expansion and dif-

ferentiation), which complicate suspension culture.

CFD, PINNSs, shear stress, suspension culture

To design suspension culture of some mammalian cells, such as
iPS cells, the effect of shear stress is one of the most important fac-
tors to be considered. The suspension culture of mammalian cells
requires agitation to keep cells floating and distributed and to supply
oxygen. The effect of stress from culture medium flow on cell behav-
jor is well-known, and there are many reports about it. Compared to
microorganisms, mammalian cells are more sensitive to shear stress
and exhibit a variety of responses, including morphological changes,®*
cell death,”"® and differentiation.>® Therefore, the design of floating
suspension culture of mammalian cells requires repeated trials, but
the high cost of suspension culture limits the repetition of suspension
culture for development. Therefore, estimating shear stress is impor-
tant for developing and optimizing bioreactors. Recently, various

attempts have been demonstrated to estimate shear stress during
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suspension culture. As an experimental approach, particle tracking has
been proposed as a method to estimate cellular load during suspen-
sion culture,© but these experimental approaches are still developing.

To estimate the shear stress on the cells in suspension culture,
computational fluid dynamics (CFD) is a powerful tool and studied for
developing bioreactors for suspension culture. As mentioned above,
the experimental strategy requires repeated experiments, which are
very time-consuming and costly. In contrast, the CFD approach can
save experimental costs and evaluate various conditions simulta-
neously as computational resources allow. Therefore, there is various
CFD research for evaluating bioreactors.**'? Most of them have cal-
culated only fluid dynamics, and few have calculated fluid dynamics
including actual cellular dynamics as well.X® This is because of the
complexity of coupling CFD, which calculates the behavior of
the fluid, and the discrete element method (DEM), which calculates
the behavior of the cell particles. In addition, the size of cellular parti-
cles (approximately 20 um diameter and 4 nL volume) is much smaller
than that of bioreactors (approximately 0.1-100 L). It means that pre-
cise DEM simulation in the bioreactor requires the CFD with high res-
olution, which requires a huge amount of calculation resources and
calculation time.

Machine learning could effectively overcome the resolution limi-
tations of the coupling of CFD/DEM. Machine-learning-supported

1'% since the develop-

CFD is being developed as a surrogate mode
ment of machine learning, including neural networks. The outputs of
these neural networks are continuous and do not require discretiza-
tion by mesh preparation. Especially, physics informed neural net-
works (PINNs) can output results that obey the laws of physics by
using physical governing equations (e.g., Navier-Stokes equation) for
training.?® Recently, as a demonstration of PINNs, Mahmoudabadboz-
chelou et al. applied PINNs to estimate the fluid dynamics of a non-
Newtonian fluid,*® and Qiu et al. demonstrated PINNs for two-phase
flow.Y” For process development, Takehara et al. applied PINNs for
fast prediction of transport phenomena during the crystal growth of
silicon.*® Thus, PINNs have been expected and studied as a surrogate
model in recent simulations.

In this research, we utilized PINNs to estimate shear stress on the
surface of cells from CFD data. As mentioned above, there is a limita-
tion of the resolution in the CFD approach for cell suspension culture.
PINNs are expected to complement the flow in the mesh based on
the governing equations of the Navier-Stokes equation and the conti-
nuity equation. Estimated flow in the mesh can estimate the velocity
gradient on the cells and shear and drag stress. In addition, we also
obtained the time profile of shear stress and evaluated the relation-
ship between shear stress and process parameters like the Froude
number. Except for the suspension culture, cells are exposed to
medium flow during many parts of the culture, not only in suspension
culture. For example, nozzle-based suction and ejection operations
are widely used in cell culture and bioprinting, but the flow velocity at
the nozzle tip is higher, and effects such as cell damage due to shear
stress have been pointed out.?” Thus, the PINNs method is important
for designing not only suspension culture but also cell culture

operations.

2 | NUMERICAL METHODOLOGIES

21 | Model overview

The cylindrical tank with variable diameter (d;) and height (h) is pro-
posed as a swirling bioreactor (Figure 1A). The bioreactor has two
phases (air/water), and height of water (h,,) is variable. The bioreactor
swirls without spinning around a circular orbit of radius R for the agi-
tation, and its rotational speed () is a variable. In CFD, centrifugal
force was applied as an external force term to calculate the liquid flow
and particle behavior in the bioreactor as a stationary coordinate sys-
tem. The centrifugal acceleration (a.) is applied and defined by
Equations 1 and 2.

d?r
ae= 1)
X Rcoswt
r=|y|=| —Rsinwt (2)
z 0

In the calculations, the fluid was assumed to be a Newtonian fluid,
and no reactions or changes in temperature or physical properties
occurred inside the reactor. iPSC aggregates were assumed to be solid
particles without any changes in size, shape, and properties. Further-
more, the proportion of particles in the liquid was assumed to be suffi-
ciently small that collisions between particles and forces exerted by
particles on the fluid were negligible, and only forces exerted by the

fluid on the particles were considered.

2.2 | Computational flow dynamics for cells and
medium in swirling culture

OpenFOAM-2.4.x was used for developing and running the solver to
calculate the medium flow and particle behavior. The details of the
solver are mentioned, and the solver was validated in previous
research.?°

Briefly, we calculated the flow dynamics with liquid/gas interfaces
and particle behavior moving in a liquid flow. To calculate fluid veloc-
ity and pressure, the Reynolds-averaged continuity equation
(Equation 3) and the Navier-Stokes equation (Equation 4) were used

as the governing equations.

V-vi=0 ©)

J _ _ _
StPVi+ V- (prVive) = =P+ V- (e + 1) VVE) +peg —prac +7kVa (4)

Here, v is the flow velocity vector, p is pressure, U is viscosity, and
p is weight density. Overline on v indicates time-averaged value.
Thereafter, the variable's subscript f means fluid, p means particle.

The fourth term on the right side in Equation 4 represents the
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FIGURE 1

centrifugal force due to the swirling concussion. The fifth term on the
right side in Equation 4 represents the surface tension on the liquid-
gas interface, derived by the continuum surface model. k represents a
curvature. To represent the gas-liquid interface, volume of fluid (VOF)
method is utilized. To calculate the turbulent flow features, the reli-
able k-¢ turbulence model was employed.

The discrete element method (DEM) was employed to calculate
particle behavior. Newton's second equation of motion (Equation 5)
was used as the governing equation for solid particles.

d
E0 — Fy+ Fg+ Fi+ Fun — myac (5)

Mo Gt

Here, Fq4 represents the drag force from liquid, Fg represents
buoyancy, F; represents the lift force created by the pressure gradient
around the particles, and F,,, represents virtual mass force. The last
term on the right side in Equation 5 represents the centrifugal force
on the particles. Collision model of particle was not applied because
the cell density is low enough that cell-cell collisions can be consid-
ered negligible in actual iPSC suspension cultures and the number of
particles used in the numerical simulation was significantly lower than
in the actual culture systems due to the computational limitations.

The finite volume method (FVM) was employed to discretize the gov-
erning equations. The convection term in the transport equation for vol-
ume fraction « is determined by second-order precision total variation
diminishing (TVD), the convection terms in the transport equation for
k and ¢ are determined by first-order precision upwind differencing,
and the other terms are determined by second-order precision central
differencing. The first-order precision Euler implicit method was
employed for time discretization. The pressure implicit with splitting
operator (PISO) method is used to compute velocity and pressure.

Calculation was performed by the Intel(R) Xeon(R) Gold 6338
CPU @ 2.00GHz. The computation time was approximately 17 h.

2.3 | Physics informed neural networks

Physics informed neural networks called PINNs are machine learning

technique used to solve nonlinear partial differential equations such
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(B)  The circular orbit of shaking tank.

Geometrical drawing of (A) iPSCs culture tank and (B) orbital shaking culture system.

as Navier-Stokes equations. The solver was developed and men-
tioned in previous research.'® The architecture of PINNs is shown in
Figure 2. PINNs are divided into two parts: calculates the error
between the predictions at NN and the teacher data, and calculates
the error in the governing equations that describe the physical phe-
nomenon. The input vector X of PINNs is shown as X = (x,y,z,t).
Firstly, the prediction target is parameterized to various coordi-
nates and times, and the pressure and velocity distributions are com-
prehensively predicted. The error between the supervised CFD data
and PINNs predictions for each physical quantity is evaluated by the

mean squared error shown in Equation 6.

1 N 2
Lero = @Z,-:;D [Upred (Xj) — Ucrp (X;)] (6)

Upred and Ucrp are the PINNs and CFD analysis results corre-
sponding to the input parameter X, and N¢fp is the number of points
of learned CFD data. Here, the error with the CFD data and the error
with B.C. are collectively defined as the “NN error.” In general PINNs,
CFD data are not used, and only the governing equations and boundary
conditions are learned. However, the flow of the system is complex
and much time is required for learning. Therefore, the results from CFD
are used to perform highly accurate interpolation of this data.

Second, defined the loss of governing equations. The loss in the
continuity equation and Navier-Stokes equation is defined as Lg

and L.
1
L=y > s (%) 7)

L= 1 %) P ®

where N is the number of teaching data, and the errors in each gov-
erning equation are collectively referred to as the Pl error.

For the predicted values to be physically meaningful and accurate,
the loss of both the NN and Pl errors must be minimized. The loss
function Ly that minimizes PINNs is defined as a linear combination

of each valuation index as follow:
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"""""""" . FIGURE 2 Schematic drawing of the

PINNss architecture utilized in the
manuscript.
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FIGURE 3 (A) Location of calculation data for validation, (B) velocity distribution calculated by PINNs and CFD, and mean squared error
between the calculated velocities, and (C) data points of velocity in the small area calculated by PINNs and CFD.

Lan=Lerp +Lg +Ln (9)

Although the loss function is defined by adding the NN and PI
errors equivalently, they have inherently different physical mean-
ings. In order to examine how much impact each error has on the
prediction, a weight parameter is used, and the loss function is as
follows:

Lan=wcrp - Lerp +Wg - Lg +Wp - Ly (10)

where wcep, Wy, W), are the weight parameters in the error with CFD,
the error with continuity equation and the error with Navier-Stokes

equation.

Nvidia GeForce RTX 3090 was used for training the neural net-
work, with a training time of approximately 2 h and an execution time
of approximately 5 min.

3 | RESULTS AND DISCUSSION
3.1 | PINNs validation

First, we validate the PINNs created in this study by comparing the
results obtained by CFD with those predicted by PINNs for the flow
at the bottom of the culture medium (shown in Figure 3A). We

thinned out the original CFD data at an arbitrary rate and train PINNs
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and compare these predicted results with the original data to check
for consistency.

Numerical results and PINNs predictions are shown in Figure 3B.
PINNs predictions were generally in agreement with the numerical
calculations, and the errors between CFD and PINNs were very small
except near the wall of the tank. The reason for the large prediction
error near the walls is that it is difficult to converge strictly to the no-
slip condition. The results in the smaller region of the prediction are
shown in Figure 3C. Numerical calculation had a limit to the size of
the computational grid, which also limits the resolution of the results
obtained. On the other hand, it was possible for PINNs to predict
results with higher accuracy even in a small region while performing
interpolation. When focusing on smaller regions, the change in the
velocity field for each point to be predicted is expected to be smaller,
and the change in the Reynolds number is expected to be milder.
Here, the predictions can be made at a computational grid ratio of
1/100, and it can be inferred that the predictions in the smaller, milder
region are also correct. Therefore, it can be said that the analysis pro-
gram developed in this study is sufficiently accurate for prediction.

3.2 | Estimation of shear and drag stress on cell
particle surface

The PINNs validated in the previous section are used to predict the
shear stress and vertical stress on the cell surface. When learning all

(A)

AI?BII:'J R NALJL”

regions within a container, a huge amount of data is required, making
it difficult to make accurate predictions. Therefore, in this study, we
focus on a single particle in the container and use the vicinity data of
the particle as the learning target. The particle to be selected is the
one with the maximum relative velocity between the particle and
the fluid at each time step.

The predicted shear and vertical stresses on the surface are
shown in Figure 4A,B respectively. This result is a snapshot taken 30 s
after the start of stirring, under the stirring condition of (w,R) =
(90rpm, 1.5cm). In this prediction, the distribution over the cell sur-
face was obtained, which was difficult to predict by CFD due to the
cell particles were smaller than the mesh. The points on the surface
with the highest shear and vertical stresses are indicated by star
points. The predictions can account for large localized forces acting
on the cell surface. The following discussion will use the maximum
values on each surface.

Next, we compare the prediction results of the two methods,
CFD and PINNs. The time evolution of the shear stress for each
method is shown in Figure 4C under the stirring conditions of
(@,R) =(90rpm,1.5cm) from 20 to 305 after the start of stirring. This
shows that the calculated shear stress values for CFD and PINNs are
significantly different from each other. This can be attributed to two
factors. First, the differentiation methods are different. CFD uses a
finite volume discretization method, whereas PINNs uses automatic
differentiation with backpropagation. In numerical differentiation, it is
difficult to account for higher-order differential coefficients because

7.70
8.24 = 7
s 7.60 <
820 o o
= 750 —
X X
816 T 740 ©
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©)
~
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ad
FIGURE 4 Predicted distribution of 0
(A) shear stress and (B) vertical stress, and 20
(C) time profile of shear stress from CFD
and PINNs.
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FIGURE 5 Dependency of shear stress on dimensionless numbers, (A) Fr, (B) Re, and (C) We.

of accuracy loss due to rounding error and cancellation. On the other
hand, automatic differentiation can calculate partial derivatives without
any approximation based on the chain rate of composite functions. Sec-
ond, particles are smaller than the computational grid. In contrast, PINNs
can calculate velocity gradients at arbitrary locations based on training
data. The obtained shear stresses can be calculated accurately with defi-
nition without approximation. The same applies to vertical stress.

33 |
numbers

Dependence of shear stress on dimensionless

In addition, we evaluated the correlation between the estimated shear
stress tau and dimensionless numbers consisting of the dimensionless
Navier-Stokes equation (Equation 11). Variables marked with an asterisk
mean that they are non-dimensionalised. For conversion into dimension-
less equation, the internal diameter of the culture vessel (d;) was adopted
as a characteristic length and velocity of the center of the culture ves-
sel (Rw) was adopted as a characteristic velocity. Definitions of dimen-

sionless numbers were represented in Equations 12-15.

d 1 1 1 1

ot* Re Fr? Dr We
(11)
Re — Rdt (12)
Vs
Raw
r=— 13
N (13
2R
-t 14
Dr o (14)
piR2w?d;
We = (15)
14

Here, Re represents the ratio of inertial force and viscous force of
the fluid as a Reynolds' number, Fr represents the ratio of inertial
force and gravity force of the fluid as a Frude's number, Dr represents
the ratio of swirling radius and vessel radius, and We represents the

ratio of inertial force and surface tension of the fluid.

The correlation between |7| and these dimensionless numbers (Fr,
Re, and We) under fixed Dr (=0.273) was evaluated (Figure 5). The
shear stress was stable in low dimensionless numbers (Fr<0.12,
Re<1.25 x 10% and We < 25), and increased linearly over the thresh-
old. This is because cells sedimented into the bottom in the condition
of under the threshold, where shear stress was low. On the other
hand, in the condition of over the threshold, the number of floating

particles increased, and floating particles suffered high shear stress.

4 | CONCLUSION

In this study, PINNs from CFD data were applied to predict the medium
flow surrounding cells, which causes shear stress and drag force on the
cell surface. The precise estimation of shear stress on cells requires
high-resolution data, but obtaining a high-resolution one from CFD
requires a fine mesh, which requires high calculation costs and time. In
addition, PINNs are expected to apply the shear stress on non-spherical
surfaces such as cell aggregates because PINNs do not require mesh
preparation. Cells suffer from stress from medium flow during culture
operations; therefore, this technique is expected to be used to develop

and optimize all culture operations, not only suspension culture.
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