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1. Introduction

By a [7V,ra]-linear code over a finite field F, we mean an w-dimensional vector

subspace of an TV-dimensional vector space V over F. Let C1 be the orthogonal

complement of a [7V,w]-linear code C in F, that is C1 = [v e K|<y,c> = 0 for any c e C},

where < , > denotes a fixed inner product of V. This is called the dual code of C

which is a [N,N—m]-linear code. C is called self-orthogonal (resp. self-dual) if

and only if Cc: C1 (resp. C=Cλ). For any linear code, it may be known that

there exists a self-dual embedding, and so every linear code can be made from a

self-dual code. Therefore we are interested in self-dual codes. Since a linear code

C is a vector space, C can be thought as an element of the Grassmann manifold

GM(m, V). Similarly, C1 can be thought as an element of GM(N—m,V). As a set,

GM(m,V) and GM(N—m,V] are isomorphic so that C and C1 correspond each

other as elements of the Grassmann manifolds. In this paper, we shall study the

self-orthogonality and the self-duality of linear codes through the Grassmann

manifolds. In section 1, we shall give a constructive proof of self-dual embedding

of linear codes. In section 2, we shall summarize about the Grassmann manifolds

and give an elementary result about the self-duality using a projective embedding. In

section 3, we shall give our main theorem on self-orthogonality and self-duality

of linear codes. This theoerm shows that self-orthogonal codes and self-dual codes

are on a quadratic surface in the projective space. Combining our results, we

can see that every linear code can be obtained from a self-dual code, and every

self-dual code is a special case of a self-orthogonal code.

2. Self-dual embedding of linear codes

In this section, we assume N=n+m. Let C be a [7V,m]-linear code over

a finite field F. We shall construct a self-dual code which contains C as an

embedding image. It may be known, but this is a motive for studying self-dual

codes and so we shall give the proof. Since C can be thought as a subspace of
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F
N
, we can write

T
C= : m

where ξ(ί) (/ = 0, ,w— 1) are column vectors of FN. First assume that ch(F) = 2
and consider the equation

<ξ(0),£(0)>+;r2=o. (2.1)

where < , > means the inner product of FN. Since the Frobenius map x -> x2 is
an automorphism of F, the equation (2.1) has solution, say ^=^00. Further
consider the equations

Since these equations are linear, they has solutions, say Xi = a0fi (/=0, ,w— 1).
Now the following matrix

TV

satisfies <ίι0),^V'))=:0 0 = 05*")^— 1)> where ζ(f = (ζ(j)

9a0tj) are column vectors in
F .̂ Next consider the equation

We can obtain the solution as above, say X=aίΛ. Further consider equations

Clearly we have solutions, say Xt = alti (/=l, ,m — 1). Hence the following
matrix
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s»> \ ,
ft" j I

ε(m-l) / ^
Ί , m - l / \ C 2 /

satisfies

where <50) = (£ι0),0) and ̂ Mii'X.i) (ι= l. -.w- 1). We continue this process, so
that we have the following matrix

flo.t

We can express this matrix in the form

κ(m-l)
Sm-1

where A is the following mxm matrix

'o ° 0 \

' '1 "I'1 '•'.' : } W

> , m - l al,m-l '" am-l,m-l /

Clearly the matrix (2.2) satisfies

Thus this matrix gives a self-orthogonal code. On the other hand, consider
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the dual code C1. Then the same argument can be applied to the dual code

C1. Since N=m + n, we can express C1 in the form

<- N ->

We can also obtain a self-orthogonal code from C1 and express in the form

(C1 B)

where B is an n x n matrix obtained from C1 as well as A. To make a self-dual

code, we take the following matrix

/ C A 0
C = ,c1 o

• N-\-m + n ->

This is a self-dual [27V,7V]-code because C1 is a dual vector space of FN / C.

Next we assume ch(F)=p>2 and consider an equation

Then a theorem of Chevalley-Warning (cf.[3J) shows that this equation have a

solution, say (floVo^oίo^olo)- Further we consider following equations

These equations have a solution since the equations are linear. We set a solution as

Then the following matrix

4Vo «(o2ί> 43)o \ / ί(ι0)

\ / <?">- -r . . . J-h
«o..-ι - O / ^(Γ"U'

satisfies
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= 0 (ι = 0,l, ,/n-l).

Next consider

Let (0ιVι>βϊ!ι>flίuι) and βιj be a solution of

Then the following matrix

satisfies

We continue this process, so that we have the following matrix

where A is the following m x 3m matrix

*o.ι 0 0

, f l O,m-l "' ^ am-l,m-l am-l,m-l am-l,m-

which satisfies:

Thus this matrix gives a self-orthogonal code. Further we can apply the

same method to the dual code C1. By using the same notation as above, we have

a self-orthogonal code for C1
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where B is an n x 3« matrix obtained from C1 as well as A. For k> 5, consider the
following equations

2

Since £deg/ = 4</:, we can use a theorem of Chevalley- Warning again, so
i= 1

that there exists a non-trivial solution

α = (α1,α2, ,αk).

Since α is non-trivisl, we may assume that α^O. We set

Then the following matrix

C Λ 0

C1 0 B V

0 M

gives a self-dual [(2fc + 4)#,(fc + 2)#]-linear code.
Therefore we obtain the following theorem.

Theorem 1. Let C be a [Njri]-linear code over a finite field F. Then there
exist a self-dual code C such that C is embedded in C. More precisely, we can
take C as follows:
(1) ifch(F) = 2, C is self-dual [_2N,N]-linear code.

(2) ifch(F) =p > 2, then for any integer k>5,Cisa self-dual \_(2k 4- 4)N,(k + 2)N]-linear
code.
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3. Grassmann Manifold

In this section, we summarize about Grassmanian manifolds. Let N=
and V= V(N) be an TV-dimensional vector space over a field F. Put
GM(w,F) = {ra-dimensional subspace of V}. Take a basis {^o?eι>" 5^-ι} °f
V. Then V=Fe0®Feί®Fe2 -®FeN_ί. Let V* be the dual space of V and

{/o>/ι» 5/Λr-ι} be a dual basis with ^ei,fjy = δij9 where <50 denotes Kronecker'delta.
Let V*=Ffo®Ffι® — ®FfN_l. For a subspace F0 £ F, define F -̂ = {/eF*|
/{F0) = 0}. Then there is a one to one correspondence between F0 and FQ, so
that GM(m,F) is isomorphic to GM(«,F*) as a set. Let ΛmF be the space of w-th
exterior products of F. Λ m Fis the (^-dimensional vector space over F with basis
{eio Λ etί Λ Λ eim _ t; 0 < ι'0 < i j < < im _ ί < N}. We define the projective embed-
ding of GM(ra,F) as follows:

For ξeGM(m,V), we can write ξw= ^ ^ef. Then

0<lo< <lm-ι<N

where ί/o,...,^.! is the determinant of the matrix obtained by picking out the

'o> •••,/„,-! columns of ξ.
The above projective embedding can be translated as follows:

£<0>

ξ=
\ ξ ( m - l ) /

Further, this projective embedding satisfies the Plύcker relation

Σ (-
0 < ϊ < J V

for
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where l{ means removing /,.
Let C be a [7V,w]-linear code which is an element of GM(m,V) and write

Likewise, let

which is an element of GM(n,V). According to (3.1), GM(m,V) has a projective
embedding into P^}~V(F} and similarly GM(n,V) has a projective embedding into
F®}-\F). Since P^~i(F) = P(^~i(F)9 we have an easy criterion of self-duality of
C as follows:

Theorem 2. Let C be a [Njri]-linear code over a finite field F and let C1 be
the dual code of C. Assume that C and C1 are as above. Then C is self-dual if

and only if (^0,.,ίm_1)o</o<-<^-ι<N = feo,.,sπ-1)o<5o<-<Sn-ι<N in P^'1 and
N=2m.

Proof. First assume that C is a self-dual code. Then since C=C1, the

theorem is clear. Conversely, assume that (ξι0,...,ιm-l)o<ι0<...<ιm-ί<N=(11So,. ,Sn-l)
o<So<".<sn-ι<* in P^'1 and N=2m. Then clearly (ξ^Λ Λ^"1'1^^0^-
Λ^""1^ and £(0)Λ ••• /\ξ(m-i} = aη(0) /\ •• Λ//"- 1 ) for some non zero element a of
F. Hence £(0)Λ ••• ξ(m-v f\η(* = aη(^ Γ\ • V 0Λf/ ( ' |- 1 )Λ>7 ( ί ) = 0 (/ = 0, ,m-l), that is

ηd) e pξW® . ®Fξ(m- 1}. Similarly, we have ξ(i) e Fη(0}® - - ®Fη(n~ υ. This implies

that Fξ(0)®' ®Fξ(m-l) = Fη(0)® ' ®η(n-v and we have C=C1.

4. Self-duality of linear codes

In this section, we shall study self-orthogonal (resp. self-dual) codes in the
Grasmann manifolds.

Theorem 3. Let C=Fξ(0)φ'"®Fξ(m~ί) be a \Njn\-linear code over a finite
field F. Then C is a self-orthogonal (resp. self-dual) code if and only if C is a
point of the Grassmann manifolds which satisfies the Plύcker's relations and is on
the quadratic surface defined by

Σ ίL-^-i =0 (resP further N=
0<lθ< '<lm-l<N
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where ζι0t...,ιm_ί is the determinant of the matrix obtained by picking out the m columns

/o, ,/m-Ί ofC.

Proof. As explained in the previous section, C can be thought as a point of
the Garassmann manifolds which satisfies the Plύcker's relations. So we must
prove that C is self-orthogonal if and only if C is on the quadratic surface defined

as above. First assume that C is a self-orthogonal code. Let

£(0)

C =

ΐ
m

•N

Since C is contained in C1, we have

I
tξ(0) ... tξ(m-l) jy _Q

I
<- m -*

where fξ(ί) is the transpose of ξ(i\ Then we have

/ ξ(0)

det ( :
\ ξ(n

In this case, Binet-Cauchy formula (cf.[l]) implies

£(0)

det

Σdet(Π)
α

ί ί£(0) ... tξ(m-ί) \

-0.

where Q is an m x m matrix obtained by picking out m columns of C and summation

is taken over all mxm matrices.

Conversely, we assume that
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Then Binet-Cauchy formula implies

£(0)

I

det t ( 0 ) t κ ( m - l ) = 0

since

det

= det

£(0)

<ξ(0\ξ(0)y,

tζ(0) ... tε(m-l )

= 0

where < , > means carnonical inner product in FN.
This shows that for any ί (i=0, ,m — 1),

has a non-trivial solution (/to> >Λm-ι) In particular,

so that

is contained in CnC1. We set

which satisfies

By renumbering λθ9' ',λm-ί9 we may assume that λm_ί^Q. We claim that

are linearly independent over F. Assume that

for . Then
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Since ζ(0),...)ξ
(m~1) are linearly independent, we have

0, + 0m-i^ = 0 (/=0, ,m-l), Λa.-An.

Since λm_l^=Q9 we have that α m _ 1 =0. Thus we obtain

Since ξ(°))...)ξ(m-2) are linearly independent, we have

This shows that ^0)j...)ξ(m-2)?^
m-1) are linearly infependent.

Now {^(0), ,ξ(m~2),^(m"1)} becomes a basis of C. Since

we know

det

£(0)

which implies

det

£(0)

ξ(m-2)

^(m-1)

= det

tξ(m-2)^ t (m-ί) \ = 0

tζ(0) = 0.

By the same argument, we see that there exists a non-trivial solution

such that

We set
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-̂2)
 = μoξ
(0>

+
...

+μm
_
2
£,

m
-2,

which satisfies

(ξa\η<» -vy=0 (, =θ, ,m-2), (η(m-l\η(m-vy=0.

Similarly,

{ξm,-,ξ<m-3\η<m-2\η<m-»}

becomes a basis of C. We proceed this process. Then we obtain a basis

{,«»,...,,<--»}

which satisfies

<W'>> = 0 (ιj=0, ,m-l).

Now C becomes a self-orthogonal code. Since the case of a self-dual code is
clear, the proof is complete.
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