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1. Introduction

By a [N,m]-linear code over a finite field F, we mean an m-dimensional vector
subspace of an N-dimensional vector space V over F. Let C* be the orthogonal
complement of a [N,m]-linear code Cin ¥, that is C*={v e V|<v,¢) =0 for any ce C},
where ( , > denotes a fixed inner product of V. This is called the dual code of C
which is a [N,N—m]-linear code. C is called self-orthogonal (resp. self-dual) if
and only if C < C* (resp. C=C"). For any linear code, it may be known that
there exists a self-dual embedding, and so every linear code can be made from a
self-dual code. Therefore we are interested in self-dual codes. Since a linear code
C is a vector space, C can be thought as an element of the Grassmann manifold
GM(m,V). Similarly, C* can be thought as an element of GM(N —m,V). As a set,
GM(m,V) and GM(N—m,V) are isomorphic so that C and C* correspond each
other as elements of the Grassmann manifolds. In this paper, we shall study the
self-orthogonality and the self-duality of linear codes through the Grassmann
manifolds. In section 1, we shall give a constructive proof of self-dual embedding
of linear codes. In section 2, we shall summarize about the Grassmann manifolds
and give an elementary result about the self-duality using a projective embedding. In
section 3, we shall give our main theorem on self-orthogonality and self-duality
of linear codes. This theoerm shows that self-orthogonal codes and self-dual codes
are on a quadratic surface in the projective space. Combining our results, we
can see that every linear code can be obtained from a self-dual code, and every
self-dual code is a special case of a self-orthogonal code.

2. Self-dual embedding of linear codes

In this section, we assume N=n+m. Let C be a [Nm]-linear code over
a finite field F. We shall construct a self-dual code which contains C as an
embedding image. It may be known, but this is a motive for studying self-dual
codes and so we shall give the proof. Since C can be thought as a subspace of
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FY we can write

6(0) T

C= : m

gnn/
«N-

where &9 (i=0,---,m—1) are column vectors of F". First assume that ch(F)=2
and consider the equation

EOEOy + X2 =0. 2.1)

where { , > means the inner product of FV. Since the Frobenius map x — x? is
an automorphism of F, the equation (2.1) has solution, say X=a,, Further
consider the equations

OO 400X =0 (i=0,-wm—1).

Since these equations are linear, they has solutions, say X;=a,; (i=0,---,m—1).
Now the following matrix

0
{(0) o0 é(l) T
1
EV Aoy _ é(l) m
: . 1
S T S

« N -

satisfies (&,&9>=0 (j=0,---,m—1), where £ =(¢Y,a, ;) are column vectors in
FN. Next consider the equation

CED,E0Y 4 X2 =0,
We can obtain the solution as above, say X=a, ;. Further consider equations
<£“),£(i)>+al’1Xi=0 (i=l,"',m—1).

Clearly we have solutions, say X;=a,; (i=1,--,m—1). Hence the following
matrix
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&0 &N\
(1) (1)
a
3 TR R < O
é(m;l) é(m-—l) l
1 aym-1 2
« N >

satisfies
EPEPY=0  (j=0,1,---,;m—1)
<£(21)’£(2k)>=0 (k=152a'“,m_1)

where ¢ =(£,0) and ¢9=(¢Q,a, ) (i=1,--,m—1). We continue this process, so
that we have the following matrix

(0)
do.o 0 &
(1)
a a “ee
o B I
1
AQo,m~1 Am—1 " Om—1,m-1 f‘m )
« N+m -

We can express this matrix in the form

4:(0)
5(1)
C 4 =
f‘"‘ 1)
« N+m -

where A is the following m x m matrix

ao,o e e 0
ao'l al,l cee

(2.2
aO,m—l Ay m—1 """ Ay t,m—1
Clearly the matrix (2.2) satisfies

<£Sri|)—1’€(” 1> 0 (’J=051a»m—'1)

Thus this matrix gives a self-orthogonal code. On the other hand, consider
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the dual code C*. Then the same argument can be applied to the dual code
C*. Since N=m+n, we can express C* in the form

0
,’()

« N -
We can also obtain a self-orthogonal code from C* and express in the form
(C* B)

where B is an n x n matrix obtained from C' as well as 4. To make a self-dual
code, we take the following matrix

. C 40 f
C = N m+n
cC-0 B
!
«N+m+n >

This is a self-dual [2N,N]-code because C* is a dual vector space of F¥ / C.
Next we assume ch(F)=p>2 and consider an equation

X2+ X3+ X3+ &9,y =0.

Then a theorem of Chevalley-Warning (cf.[3]) shows that this equation have a
solution, say (a4'),afh,al’y). Further we consider following equations

<C(O),é(”>+ag‘,)oXi=0 (i=1’...,m__1)_
These equations have a solution since the equations are linear. We set a solution as
(X155 Xm-1)=(a0,1,0,2:***»A0,m~ 1)-

Then the following matrix

1 2 3 0
afh ) o) &
(1)

a e “ee
R N
-1
Aom-1 " 0 f(lm )

satisfies
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EPEPY=0  (i=0,1,---,m—1).
Next consider
X+ X3+ X3+ (EW,EMy =0,
Let (a{"),a?),at®)) and a, ; be a solution of

EDEDY 4 gD x;=0  (j=1,2,--,m—1).

Then the following matrix

1 1 2) (3 1
& [ d ) &
512) a, 0 0 — f(zz)
: as,n . ’
&Y Nagm-y - () &

satisfies
EPLP=0  (j=1,2,--,m—1).
We continue this process, so that we have the following matrix

(0)

m—1
(1)
€ A= [ m

é(m—l)

m—1

where A is the following m x 3m matrix

1) 2) (3
ag).o a{,,{, ag}, 0
a 0 0
A= 0 1 . bl
. (1) 2 A3
AQom-1 ° 0 Am=1,m-1 asn)—l,m—l am)—l,m—l

which satisfies:
CED_ LD D=0 (,j=0,1,--,;m—1).

Thus this matrix gives a self-orthogonal code. Further we can apply the
same method to the dual code C*t. By using the same notation as above, we have
a self-orthogonal code for C*
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7@
(1)
'I' B

,'(n- 1)
where B is an » x 3n matrix obtained from C* as well as 4. For k>S5, consider the
following equations

k
JiX g, X)) = z Xi2=0
i=1
k-1
Xy, X)) = ) XiXiv1=0

i=1

2
Since ) degf;=4<k, we can use a theorem of Chevalley-Warning again, so
i=1
that there exists a non-trivial solution

o0 =(01,005,**,00).

Since a is non-trivisl, we may assume that o, #0. We set

al e ak
a9\
M= (k+ 1N
! .

0 oy ®x

- 2kN -

Then the following matrix
C 40

ct 0 B
0 M

gives a self-dual [(2k +4)N,(k + 2)N]-linear code.
Therefore we obtain the following theorem.

Theorem 1. Let C be a [N,m]-linear code over a finite field F. Then there
exist a self-dual code C such that C is embedded in C. More precisely, we can
take C as follows:

(1) if ch(F)=2, C is self-dual [2N,N]-linear code.
(2) if ch(F)=p > 2, then for any integer k> 5, C is a self-dual [(2k +4)N (k + 2)N ]-linear
code.
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3. Grassmann Manifold

In this section, we summarize about Grassmanian manifolds. Let N=n+m
and V=V(N) be an N-dimensional vector space over a field F. Put
GM(m,V)={m-dimensional subspace of V}. Take a basis {eye,,--,ey_;} of
V. Then V=Fe,®Fe,DFe,---@®Fey_,. Let V* be the dual space of V and
{fo:S1,--fn-1} be a dual basis with {e;f;> =0, ;, where ;; denotes Kronecker'delta.
Let V*=Ff,@Ff,® - @®Ffy_,. For a subspace V, <V, define Vy={feV*
f(V5)=0}. Then there is a one to one correspondence between V, and Vg, so.
that GM(m,V’) is isomorphic to GM(n,V*) as a set. Let A"V be the space of m-th
exterior products of ¥. A™V is the ())-dimensional vector space over F with basis
{e, Ney N-Ney, 3 0<ig<i <. <i,_;<N}. We define the projective embed-
ding of GM(m,V) as follows:

GM(m,V)— P(\"V)

5(0)
i= | 0 PEOnAgmn,
é:(m—l)

For (e GM(m,V), we can write (0= ) ¢Pe. Then

0<i<N

é(o)/\.../\g("‘_l)z Z 6[0,‘..,["‘_1610/\.“/\e’m-l

0<lo<-<lm-1<N

where &, .., , is the determinant of the matrix obtained by picking out the
ly,*++,1,,—, columns of &.
The above projective embedding can be translated as follows:

GM(m,V) ~ P%~1(F)
6(0)

¢= : F (Slgy st JO<lo < <l g <N (3.1
é‘"‘" 1)

Further, this projective embedding satisfies the Plicker relation

Z (— l)ifko’.‘._km_2,;,610,..‘,114,‘..,1," =0
0<i<N

for

0<ko<- <ky_,<NO<Zly<--<l, <N
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where [, means removing /..
Let C be a [N,m]-linear code which is an element of GM(m,V) and write

EO
C= :
f("' -1)
Likewise, let
7o
Ci= :
p=1

which is an element of GM(n,V). According to (3.1), GM(m,V) has a projective
embedding into P™~!(F) and similarly GM(n,V) has a projective embedding into
PO-YF). Since P™~1(F)=P®~!(F), we have an easy criterion of self-duality of
C as follows:

Theorem 2. Let C be a [Nyn]-linear code over a finite field F and let C* be
the dual code of C. Assume that C and C* are as above. Then C is self-dual if

. . N)—
and only lf (élo,-u.lm—1)Oslo<“-<lm—15N=(’7so,-»~,s,._;)Osso<~-<s,.-1sN in P™-1 and
N=2m.

Proof. First assume that C is a self-dual code. Then since C=C", the
theorem is clear. Conversely, assume that (£, .., _ Jo<io<. <t 1 <N=so, o 50-1)
0<so<..<s, i<y in P~ and N=2m. Then clearly (EQA---AE™D)=(HOA -
An®= D) and EOA- AEM D =gn@A... Ay~ for some non zero element a of
F. Hence EON-.. EMDApD = gy@OA .. y@ A= DAyD =0 (i=0,---,m—1), that is
e FEO@ ... @FE™=Y,  Similarly, we have éPe Fy @@ --- @ Fy™ Y. This implies
that FEOQ@ ... @FEm V=FyO@-.-®yn”~ Y and we have C=C" .

4. Self-duality of linear codes

In this section, we shall study self-orthogonal (resp. self-dual) codes in the
Grasmann manifolds.

Theorem 3. Let C=FEO@ - @FE™ ™Y be a [N;m]-linear code over a finite
field F. Then C is a self-orthogonal (resp. self-dual) code if and only if C is a
point of the Grassmann manifolds which satisfies the Pliicker’s relations and is on
the quadratic surface defined by

& ot =0 (resp. further N=2m),

0<lo<-<lm-1<N
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where £, .., | is the determinant of the matrix obtained by picking out the m columns
Iy, +*slm—1 of C.

Proof. As explained in the previous section, C can be thought as a point of
the Garassmann manifolds which satisfies the Plicker’s relations. So we must
prove that C is self-orthogonal if and only if C is on the quadratic surface defined
as above. First assume that C is a self-orthogonal code. Let

&\ 1
C = : m
grv/ |
«N->
Since C is contained in C*, we have
R 1
m N ( té(()) e lé(m—l) ) N =0
Lo \emow Lo
« N> — m —

where '¢® is the transpose of ¢®, Then we have

&
det : ( 1O L tEm=1) ) =0.
gom=1) '
In this case, Binet-Cauchy formula (cf.[1]) implies
5(0)
det 3 (1| (E@ g
f(m—l)

=50 0)
=§det|j|:l
=Y& .,.,=0

where [_] is an m x m matrix obtained by picking out m columns of C and summation
is taken over all m x m matrices.
Conversely, we assume that
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Zélzou-lmq:()-
Then Binet-Cauchy formula implies
&
det : (tgw) co tEm=1) ) -0
gm=1)

since
{ 6(50) <'¢(°’ 1£(m—1)> IS
é(m—l)

<é(0)’é(0)>, R <€(0)’§(m— 1)>

det

=det : :
(En=D,E0, ..., (gim=b gm0

where ( , ) means carnonical inner product in FV.
This shows that for any i (i=0,---,m—1),

Xo{EDED) + o + X, (€™ D,E05=0
has a non-trivial solution (4,,---,4,,_,). In particular,
</10§(O)+ +’1m— 1f(m_ 1),'5(i)> =0
so that
ApEO+ oo+ Ay &7
is contained in CnC*t. We set
AmD =2 EO 4y EmD
which satisfies
(EDym=Dy=0  (i=0,---,m—1).
By renumbering Agy,+-,4,,_;, We may assume that 1, _,#0. We claim that
EO),... Em=2) y(m=1)
are linearly independent over F. Assume that
gl O+ 4 a,_ ™ D4a, ™ V=0

for ay,-++,a,,_,€F. Then
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@l @+ - + 8yl 8 (8O + e+ Ay £ ) =0,
Since &©),...,¢™=1 are linearly independent, we have
a;+a,_4;=0 (i=0,---.m—1), a,,_,4,,_,=0.
Since 4,_,#0, we have that a,,_,=0. Thus we obtain
agt O+ - +a,_ M D=0.
Since &©@),... ™~ are linearly independent, we have
ay="-+=d,_,=0.

This shows that &©),... Em=2) »m=1) are linearly infependent.
Now {£©@,...,Em=2) »m=D} becomes a basis of C. Since

<”(m—1),€(i)>=0 @#=0,---;m—1),

we know
6(0)
det é(mz— 2) ( ti(O)’ B tf(m-2)9 "1("'- D ) =0
pm=1
which implies
5(0) ]
det é(ml— Y ( 15(0)’ cny tE(m—z), tn(m—l) )
l pm=1
6(0)
—det : (g0 . emv ) L <o,
ﬁ("' -2)

By the same argument, we see that there exists a non-trivial solution
(o> sHm-2) EF™ !
such that
ol @+ - A+ 28" DL =0 (i=0,+-,m=2).

We set
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N D= pel @+ o+ ™7
which satisfies
Oy =0 (i=0,m=2), g™ VymDy =0,
Similarly,
{EO@,... gm=3) pm=2) p(m=1)}
becomes a basis of C. We proceed this process. Then we obtain a basis
n®,-.,nm= 1}
which satisfies
<,’(i),,,(j)>=0 (i,j=0,---,m—1).

Now C becomes a self-orthogonal code. Since the case of a self-dual code is
clear, the proof is complete.
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