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Abstract— In this paper, we propose a novel low-complexity
Bayesian receiver design to jointly perform channel, carrier fre-
quency offset (CFO), and data estimation from observations sub-
ject to different CFOs among users in multi-user multiple-input
multiple-output orthogonal frequency-division multiplexing (MU-
MIMO-OFDM) systems. Inter-sub-carrier interference (ICI) due
to CFO significantly reduces channel estimation accuracy under
frequency-selective fading environments, making reliable commu-
nications difficult. To tackle this difficulty, a joint channel and
CFO estimation (JCCE) algorithm is designed based on belief
propagation (BP). Our method uses a Bernoulli-Gaussian (BG)
distribution as the prior distribution of the channel coefficient to
capture its delay-domain sparsity, and a Gaussian-mixture (GM)
distribution as the prior distribution of the phase shift due to
CFO to perform parallel search for the allowable range of CFO
defined in the 3GPP standard by the number of mixture compo-
nents. The proposed algorithm can further improve the accuracy
of channel, CFO, and data estimation by treating the tentatively
detected data symbols as extra pilots. The efficacy of the proposed
method is confirmed by numerical studies, which show that the
proposed method not only significantly outperforms the state-
of-the-art (SotA) methods with much lower computational cost
but also approaches the performance of an idealized Genie-aided
scheme.

Index Terms— MU-MIMO-OFDM systems, carrier frequency
offset, Bayesian inference, frequency-selective fading.
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I. INTRODUCTION

LARGE multi-user multiple-input multiple-output
orthogonal frequency-division multiplexing (MU-

MIMO-OFDM) is one of the essential technologies in
fifth generation (5G)-advanced and sixth generation (6G)
networks, which serves a massive amount of wireless links
simultaneously, enabling to accommodate a large number
of uplink user equipment (UE) devices [1], [2], [3], [4].
In order to maximize its potential system performance,
receiver design that takes full advantage of the spatial degrees
of freedom (DoF) provided has been considered, i.e., solving
inherent problems such as channel estimation (CE), multi-user
detection (MUD), and among others.

Most of these studies assume that frequency is perfectly
synchronized; however, in practice, it is difficult to precisely
synchronize the carrier frequencies among UEs equipped with
individual local oscillators, and the resulting carrier frequency
offsets (CFOs) among devices degrade system performance
[5], [6]. In OFDM transmissions, CFOs cause severe inter-
sub-carrier interference (ICI), making the frequency-domain
equalization using orthogonality between subcarriers infeasi-
ble [7], [8]. Therefore, in order to realize a highly accurate
joint channel and CFO estimation (JCCE) algorithm in
practical MU-MIMO-OFDM systems, it is necessary to esti-
mate CFO and channel impulse response (CIR) in the time
domain.

The classical CE method in the presence of CFO is a
two-stage scheme in which CFO is estimated with the assis-
tance of pilot symbols/tones followed by CE, for which several
semi-blind CFO estimation methods without channel state
information (CSI) have been proposed [9], [10], [11], [12],
[13], [14], [15]. In particular, the covariance-based approaches
using maximum likelihood (ML) and maximum a-posteriori
(MAP) criteria allow for highly accurate CFO estimation,
and the asymptotic performance analysis based on Cramér–
Rao bound (CRLB) has been investigated; however, most of
these approaches have been discussed for single-user scenarios
with no inter-user interference. Since the estimation accuracy
depends on pilot structure, i.e., its length and orthogonality,
a significant increase in pilot overhead is inevitable when
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semi-blind CFO estimation is directly applied to multi-user
scenarios [14], [15].1

To alleviate the pilot overhead problem in multi-user
scenarios, several JCCE algorithms have been studied that
allow CFO compensation while suppressing inter-user inter-
ference using the estimated channel [19], [20], [21], [22],
[23], [24], [25], [26], [27]. The most common algorithm
of this approach is space-alternating generalized expectation-
maximization (SAGE) [20], which efficiently performs ML
estimation with computational complexity of linear orders of
magnitude with respect to the system size. Specifically, a low-
complexity JCCE algorithm can be derived by approximating
the joint maximization based on the ML criterion for multiple
CFOs to individual maximization in the signal space after
interference cancellation by previous estimates and linearizing
the phase variation due to CFOs by Taylor expansion. How-
ever, the SAGE algorithm based on ML criterion is a method
that does not take into account estimation errors, i.e., it updates
the estimated solution based only on the given observations
and tentative estimates; hence, when the CE accuracy is
low in the initial iteration step, the iterative convergence
behavior becomes unstable due to error propagation, resulting
in severe performance degradation [12], [21], [28]. In other
words, it becomes difficult for the SAGE algorithm to perform
accurate JCCE when using short non-orthogonal pilots to
reduce pilot overhead, and/or when large phase fluctuations
that break the orthogonality of the pilots are expected.

The JCCE algorithms on the basis of belief propagation
(BP) solve this issue [26], [27]. In the BP-based schemes, the
estimation reliability can be gradually improved by iteratively
exchanging the beliefs (likelihood information reflecting esti-
mation reliability) on the factor graph (FG), which consists of
the factor nodes (FNs) and variable nodes (VNs) correspond-
ing to observations and unknown parameters, respectively.
In addition, designing the algorithm by integrating a prior
distribution that can reflect the statistical properties of the
unknown parameters allows iterative estimation based on the
MAP criterion, and it has been numerically shown in [26]
and [27] that the Bayesian JCCE algorithms achieve more
accurate estimation than the state-of-the-art (SotA) alterna-
tives. In these algorithms, various innovations are made to treat
CFOs, which are observed non-linearly as phase shifts at the
receiver, within the framework of Bayesian linear inference.

For instance, in [27], the CFO estimation problem is
converted into a tractable discrete search problem by set-
ting multiple CFO candidates within the limited (allowable)
range of CFO defined by the 3rd generation partner-
ship project (3GPP) standard. More precisely, by preparing
two-dimensional (2D) candidate grid with dimensions corre-
sponding to CFOs and timing offsets, and designing the JCCE
algorithm based on the received signal expanded according
to the number of grid points, the time and frequency offsets
can be compensated simultaneously. The resultant structured

1Blind CFO estimation schemes that estimate CFO directly from only the
knowledge of the received signal without even using pilot symbols/tones have
also been considered [16], [17], [18]; however, they cannot be directly applied
to MU-MIMO-OFDM systems, where different CFOs of every UEs must be
estimated separately.

generalized approximate message passing (S-GAMP), which
consists of GAMP-based CE [29] and 2D grid search via
primitive BP based on a graphical model, provides highly
accurate estimation with a limited pilot overhead. However,
its estimation accuracy depends on the resolution of the
candidate grid, and the computational complexity increases as
the signal dimension increases along with the number of CFO
candidates, making it not practical when estimating severe
phase variations.

Another approach without such grid-based signal space
expansion has also been considered. In [30], noting that the
estimation of the amount of phase shift caused by CFO can be
seen as a sparse signal reconstruction in the angular domain,
a JCCE algorithm based on parametric bilinear inference
using the Bernoulli-Gaussian (BG) distribution as a prior
distribution was proposed. However, this method highly relies
on the structure of single-user MIMO systems and cannot
be applied directly to MU-MIMO systems since multiple
independent CFOs corresponding to UEs must be estimated
in MU-MIMO, leading to the completely different problem
structure. In addition, sufficient angular resolution must be
obtained through long-term observation of phase shifts to
achieve high estimation accuracy, so the performance degrades
remarkably with shorter pilot length to limit the overhead.

Based on the above previous works in this area, the major
contribution of this study is that we design a novel algorithm
to achieve low-complexity and high-accuracy large-scale MU-
MIMO-OFDM signal demodulation with low pilot overhead in
a system without perfect frequency synchronization among the
base station (BS) receiver and the UEs, i.e., in the presence of
CFOs. In the most of previous studies on JCCE in MU-MIMO-
OFDM systems, frequency-flat fading is assumed [27], and
even when frequency-selective fading is assumed, the use of
pilots that are longer than the product of the number of UEs
and the number of delay taps is assumed [31], [32]. When
using short non-orthogonal pilots, these conventional JCCE
algorithms cannot perform accurate estimations. In order to
reduce pilot overhead in the presence of CFOs, it is necessary
to develop a JCCE algorithm that overcomes the instabil-
ity of the convergence characteristics caused by the pilot
non-orthogonality and achieves stable convergence behavior
even under severe underdetermined conditions. To achieve
this, it is necessary to design appropriate prior distributions
that reflect the statistical properties of the phase shifts due
to CFOs and channel coefficients, respectively, while making
the most of the available prior knowledge, and to design an
algorithm that adjusts the model (distribution) parameters.

To this end, this paper proposes a novel Bayesian JCCE
algorithm that employs a BG distribution as a prior distri-
bution of channel coefficients and a Gaussian-mixture (GM)
distribution as a prior distribution of phase shifts due to CFOs.
There have been several studies that use a BG prior distribution
to capture the sparsity of the CIR in the delay domain, but
to the best of our knowledge, this is the first paper to use
the GM distribution as the prior distribution of the phase
shift. By using the mean value of each Gaussian distribution
comprising the GM distribution as a candidate value of CFO,
it is no longer necessary to introduce the extended equivalent
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signal model as in [27]; hence, the proposed method can
search for the CFOs of UEs in parallel without increasing
the computational complexity. The candidate CFO values are
initialized to divide the given range of CFO occurrences into
equally spaced segments and are then updated as needed
within the iterative process, thus avoiding performance degra-
dation due to insufficient angular resolution as in [30]. More
specifically, the CFO estimation mechanism is incorporated
into the Bayesian receiver by updating the candidate CFOs,
i.e., the distribution parameters of GM distribution, using
the expectation-maximization (EM) algorithm that operates
based on the feedback obtained at each iteration step. Only
a difference from the nearest CFO candidate needs to be esti-
mated when updating parameters, thus suppressing polynomial
approximation errors due to Taylor expansion and enabling
highly accurate CFO estimation. In addition, to compensate
for the lack of sufficient pilot length required for time-domain
CIR estimation, the proposed JCCE algorithm is extended to a
joint channel, CFO, and data estimation (JCCDE) algorithm,
in which the estimated data symbols are used as equivalent
soft pilot symbols to improve estimation accuracy.

Our contributions, summarized below, are fundamentally
algorithmic, such that our results are presented in terms of
the normalized mean square errors (NMSEs) and root mean
squared errors (RMSEs) of estimated quantities and bit error
rates (BERs) computed from actual constellation points:
• A novel JCCE algorithm is presented, wherein time-

domain CIR and CFO estimation are iterated alternately
based on the time-domain received signal. The overall
message passing rule is constructed using the bilinear
Gaussian belief propagation (BiGaBP) framework [33],
[34], [35], [36], [37], featuring that the phase shift due
to CFO is searched in parallel with low-complexity and
high-accuracy via updating the distribution parameters of
the GM distribution using the EM algorithm and its vari-
ant. The proposed CFO estimation mechanism enables
robust estimation by adaptively switching between two
strategies: candidate CFO search and candidate CFO
update, depending on the reliability of the phase shift
estimated by BiGaBP. In addition, the time-domain CE
under frequency-selective fading environments is formu-
lated as multiple measurement vector (MMV) inference
[38], exploiting sparsity in the delay domain, and the
time-domain CIR estimation is achieved by designing
a message passing rule using a vector-wise BG distri-
bution [36] as a prior distribution. The proposed JCCE
algorithm possesses linear complexity with respect to the
dimensions of the receive antennas, number of UEs, and
pilot length, respectively.

• The proposed JCCE algorithm is extended to a novel
JCCDE algorithm, in which cross-domain estimation is
performed by alternately executing time-domain JCCE
and frequency-domain data detection. Consequently,
it becomes possible to use the estimated data symbols
as effective soft pilots, which further improves the esti-
mation accuracy by allowing additional computational
complexity even when non-orthogonal pilots are used.
This is possible because the proposed JCCE algorithm is

designed to make appropriate use of the estimated data
symbols and their mean square errors (MSEs), and there-
fore the contribution of this paper from an algorithmic
perspective is in the design of the JCCE algorithm.

• To confirm the efficacy of the proposed JCCE and
JCCDE algorithms in large MU-MIMO-OFDM systems,
the proposed methods are evaluated for various system
parameters. The simulation results show that the pro-
posed JCCE algorithm outperforms the SotA alternatives
such as SAGE and S-GAMP in both frequency-flat
and frequency-selective fading channels. Remarkably, the
JCCDE algorithm, which uses the estimated data sym-
bols as soft pilot symbols, approaches the performance
of an idealized Genie-aided scheme in which CSI is
perfectly known (without CFO) even when using short
non-orthogonal pilots, which verifies the correctness of
the proposed algorithm. In addition, it is shown to be
robust against increases in the amount of phase shift due
to an increase in CFOs, and the effectiveness of the CFO
estimation mechanism based on the GM prior distribution
as described above is demonstrated.

To the best of our knowledge, this paper is the first
one to tackle the challenging problem of designing a low-
complexity JCCE algorithm for MU-MIMO-OFDM systems
under frequency-selective fading channels, and to demonstrate
numerically that it is possible to achieve highly accurate JCCE
(or JCCDE) using short non-orthogonal pilots.

Notation: A set of complex numbers are denoted by C.
Vectors and matrices are denoted in lower- and upper-case
bold-face fonts, respectively. The conjugate, transpose, and
conjugate transpose operators are denoted by (·)∗, (·)T, and
(·)H, respectively. Random variables and their outcomes are
denoted in sans serif and italic fonts, respectively, as in a and
a, such that the conditional probability density function (PDF)
and the conditional expectation of the outcome a of a, given
the occurrence b of b and a set A are respectively denoted by
pa|b(a|b;A) and Ea{a|b;A}. The complex Gaussian distribu-
tion with mean a and variance b that a variable x follows is
denoted by CN (x; a, b), and in formula the probability density
at x = ẋ is denoted by CN (ẋ; a, b). The a×a square identity
matrix is denoted by Ia. The (i, j)-th element of a matrix A is
denoted by [A]i,j . The diagonal matrix constructed by placing
the elements of a vector a on its main diagonal is denoted by
diag[a]. The vector generated by cyclically shifting a vector a
to the down by p is denoted by (a)p. The Frobenius norm is
denoted by | · |F. The Dirac delta function is denoted by δ(·).
Finally, we use the simplified notation

∫
a
f(a) ≜

∫∞
−∞ f(a)da

and
∑I

i̸=j ai ≜
∑I

i=1 ai − aj , for brevity.

II. SYSTEM MODEL

Consider a large MU-MIMO-OFDM system composed of a
BS having N receive (RX) antennas and serving U (≤ N) UE
devices. Let m ∈ M denote a transmit (TX) antenna index
with M ≜ {1, 2, · · · ,M} denoting the set of TX antenna
indices. The set of indices of the TX antennas mounted on
the u-th UE is denoted by Mu, where M =

⋃U
u=1Mu. The

TX symbol matrix in the time–frequency domain from the
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Fig. 1. Schematic of the time–frequency resource grid, where the red and
blue squares represent the assigned pilot and data symbols, respectively.

m-th TX antenna is denoted by

Xm = [xm,1, . . . ,xm,t, . . . ,xm,T ] ∈ CKc×T , (1a)

xm,t = [xm,1t, . . . , xm,kct, . . . , xm,Kct]
T ∈ CKc×1, (1b)

where Kc and T are the numbers of subcarriers and OFDM
symbols, respectively. As shown in Fig. 1, each symbol
represents a (known) pilot symbol or data symbol. The data
symbol represents one out of J constellation points X =
{χ1, · · · , χj , · · · , χJ}, where the average power density of
X is denoted by Es. Denoting a Kc-point discrete Fourier
transform (DFT) matrix by F , the time-domain OFDM symbol
can be expressed as

sm,t = F Hxm,t ∈ CKc×1. (2)

A cyclic prefix (CP) is then inserted into the time-domain
OFDM symbols and the resultant signal is transmitted from
each UE via individual local oscillators.

At the receiver, the RX signal observed at each RX antenna
is converted to a baseband signal via a single local oscillator,
and then the CP is removed. Assuming frequency-selective
fading channels, the time-domain RX matrix for the t-th
OFDM symbol Y t ∈ CN×Kc can be expressed as2

Y t =
U∑

u=1

∑
m∈Mu

P∑
p=1

hp,m

[
(sm,t)p−1

]T
diag [du,t] + W t,

(3)

where p ∈ {1, 2, · · · , P} is a path delay index. hp,m ≜
[hp,1m, . . . , hp,nm, . . . , hp,Nm]T ∈ CN×1 is a CIR vector for
the m-th TX antenna at the p-th delay tap, each element
of which obeys CN (hp,nm; 0, ϕh

p,u) when p corresponds to a
delay tap where a path exists and, zero otherwise, i.e., ϕh

p,u =
0. The total path gain for each UE, i.e., ϕh

u =
∑P

p=1 ϕ
h
p,u,∀u,

is assumed to be known based on the long-term observations at
the BS side. W t ≜ [wt,1, . . . ,wt,kc . . . ,wt,Kc ] ∈ CN×Kc is
an additive white Gaussian noise (AWGN) matrix, where wt,kc

obeys CN (wt,kc ;0, N0IN ), with the noise spectral density
N0, i.e., Ewt,kc

{wt,kc(wt,kc)
H} = N0IN . du,t ∈ CKc×1 is a

phase shift caused by the normalized CFO, i.e.,

du,t ≜ [exp[jαt1εu], . . . ,exp[jαtkcεu], . . . ,exp[jαtKcεu]]T ,
(4)

2As various methods for suppressing phase noise (PN) have been proposed
for both software and hardware [6], this paper does not include PN in the
signal model, assuming that it will be used in conjunction with these.

with

αtkc =
2π
Kc

{(t− 1)(C +Kc) + C + (kc − 1)} , (5)

where C denotes the length of the CP. The 3GPP standard
requires that the synchronization error of the carrier frequency
be kept within ±0.1 [ppm] [39]; thus, defining the CFO when
the synchronization error of the carrier frequency matches 0.1
[ppm] as ∆fc and when a phase rotation of 2π per sampling
interval Ts occurs as fmax, respectively, the normalized CFO
is modeled as a random variable obeying a uniform distribu-
tion within [−εmax, εmax] for the maximum normalized CFO
εmax ≜ ∆fc/fmax [27].

From (3), the spatio-temporal RX matrices Y ≜
[Y 1, . . . ,Y T ] ∈ CN×K can be expressed as

Y =
U∑

u=1

∑
m∈Mu

P∑
p=1

hp,m [sp,m]T diag [du] + W , (6)

with

sp,m ≜ [sT
p,m,1, . . . , s

T
p,m,t, . . . , s

T
p,m,T ]T ∈ CK×1, (7a)

W ≜ [W 1, . . . ,W t, . . . ,W T ] ∈ CN×K , (7b)

du ≜
[
dT

u,1, . . . ,d
T
u,t, . . . ,d

T
u,T

]T
∈ CK×1, (7c)

where sp,m,t ≜ (sm,t)p−1 and K ≜ KcT . The (n, k) element
of the RX matrix Y can be expressed as

ynk =
U∑

u=1

∑
m∈Mu

P∑
p=1

hp,nmsp,mkduk + wnk, (8)

where sp,mk ≜ [sp,m]k,1, duk ≜ [du]k,1, and wnk ≜ [W ]n,k,
with the index k = ((t− 1) ·Kc + kc) ∈ K ≜ {1, · · · ,K}.
The phase shift is defined as duk ≜ exp [jαkεu], (αk = αtkc ).

For later convenience, let Tp denote the set of time indices
to which pilot symbols are assigned and Td denote the set of
time indices to which data symbols are assigned, and further
define the corresponding symbol index sets by Kp and Kd,
respectively. Denoting the set of symbol indices at the t-th
time index by Kt = {(t− 1) ·Kc + 1, · · · , t ·Kc}, then Kp =⋃

t∈Tp
Kt and Kd =

⋃
t∈Td

Kt, where we define Kp ≜ |Kp|
and Kd ≜ |Kd|, i.e., K = Kp +Kd.

Introducing an index q = ((m− 1) · P + p) ∈ {1, · · · , Q},
(Q ≜ MP ) consisting of the path index p and TX antenna
index m, (8) can be reformulated as a parametric bilinear
inference (PBI) [40], [41], [42] that includes two linear infer-
ence problems (LIPs) with respect to the channel coefficient
hnq(= hp,nm) and the phase shift duk, respectively, as

ynk =
Q∑

q=1

hnqρqk + wnk =
U∑

u=1

dukσn,uk + wnk, (9)

with

ρqk ≜ sqkdqk, dqk = duk,∀(q ∈ Qm,m ∈Mu), (10a)

σn,uk ≜
∑

m∈Mu

∑
q∈Qm

hnqsqk, sqk = sp,mk, (10b)

where Qm ≜ {q | (m− 1) · P + 1, · · · ,m · P}.
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Algorithm 1 - Proposed Bayesian Joint Channel, CFO, and
Data Estimation Algorithm

Input: Y , {xmk,∀(m, k ∈ Kp)}, P̂h,(1)
q , P̂d,(1)

l,u

/* ———— Initialization for Pilot Part ———— */
1: ∀(k ∈ Kp, n, q, τ) : ŝ(τ)

n,qk = sqk, ψ
s,(τ)
n,qk = 0

2: ∀(k ∈ Kp, n, q) : ĥ(1)
k,nq = 0, ψh,(1)

k,nq = ϕh
u/P

3: ∀(k ∈ Kp, n, u) : d̂(1)
n,uk = 1, ψd,(1)

n,uk = α2
kε

2
max/3

/* —– Phase I: Channel and CFO Estimation —– */
4: for τ = 1 to τ1,max do
5: ∀k ∈ Kp: Executing Algorithm 2
6: end for

/* ———— Initialization for Data Part ———– */
7: ∀(k ∈ Kd, n, q) : ŝ(1)n,qk = 0, ψs,(1)

n,qk = Es

8: ∀(k ∈ Kd, n, q) : ĥ(1)
k,nq = ȟnq, ψ

h,(1)
k,nq = ψh

nq

9: Compute initial replicas and their MSEs for data part,
d̂
(1)
n,uk and ψd,(1)

n,uk , as described in Subsection III-D.
/* - Phase II: Channel, CFO, and Data Estimation - */

10: for τ = 1 to τ2,max do
11: ∀k ∈ Kd: Executing Algorithm 3
12: ∀k ∈ K: Executing Algorithm 2
13: end for

// Termination and then Hard decision

III. JOINT CHANNEL, CFO, AND DATA ESTIMATION

In this section, a novel message passing algorithm via the
BiGaBP [33] to jointly estimate channel, CFO, and data based
on (9) is described. The BiGaBP framework relies on the scalar
Gaussian approximation (SGA) in conformity with central
limit theorem (CLT), whose underlying assumptions are much
softer than the large-system limit assumption on which the
SotA alternatives [41], [42], [43] rely, allowing for flexible
algorithm design depending on the given system model [34],
[35], [36].

The pseudo-code of the proposed algorithm is given in
Algorithms 1–3, and a work flowchart of describing the rela-
tionship between the modules is shown in Fig. 2. Algorithm 1
is the overall algorithm of the proposed method, where
Algorithms 2 and 3 show the JCCE mechanism and the
data detection mechanism, respectively. As can be seen in
Algorithm 1, the proposed algorithm has two phases. In Phase
I, the channel coefficients and CFOs are jointly estimated in
the time domain based on the BiGaBP approach [33], using the
knowledge of the RX signals ynk,∀(n, k ∈ Kp) and the pilot
symbols sqk,∀(q, k ∈ Kp). In Phase II, estimates of data sym-
bols are computed via frequency-domain equalization based
on the Gaussian belief propagation (GaBP) approach [44],
[45], using the knowledge of ynk,∀(n, k ∈ Kd) and the
estimates of channels and CFOs obtained in Phase I. Taking
advantage of the tentative estimates of data symbols obtained
from Algorithm 3 as the equivalent soft pilot symbols in the
JCCE step, the estimation accuracy can be further improved
via Algorithm 2. As shown in the work flowchart of Fig. 2,
soft replicas (i.e., tentative estimates) of hnq , duk, and xmk

and their MSEs are iteratively exchanged between the three
modules.

Algorithm 2 - JCCE Mechanism

Input: Y , {ĥ(τ)
k,nq, ψ

h,(τ)
k,nq }, {d̂(τ)

n,uk, ψ
d,(τ)
n,uk }, P̂h,(τ)

q , P̂d,(τ)
l,u ,

{ŝ(τ+1)
n,qk , ψ

s,(τ+1)
n,qk }

Output: {ĥ(τ+1)
k,nq , ψ

h,(τ+1)
k,nq }, {d̂(τ+1)

n,uk , ψ
d,(τ+1)
n,uk }, P̂h,(τ+1)

q ,
P̂d,(τ+1)

l,u , {ȟ(τ+1)
nq , ψ

h,(τ+1)
nq }

1: ∀(q ∈ Qm,m ∈Mu, n) : d̂(τ)
n,qk = d̂

(τ)
n,uk, ψ

d,(τ)
n,qk = ψ

d,(τ)
n,uk

/* ———– Channel Estimation: ∀(n, q) ———– */
2: Obtain ỹh,(τ)

q,nk and ξh,(τ)
q,nk via (20) and (21).

3: Obtain ĝh,(τ)
k,nq and γh,(τ)

k,nq via (24).
4: Obtain µ̂(τ)

nq and ψµ,(τ)
nq via (23).

5: Obtain ȟ(τ+1)
nq and ψ̌h,(τ+1)

nq via (28).
6: Obtain ĥ(τ+1)

k,nq and ψh,(τ+1)
k,nq via (30).

7: ∀q : Update λ̂(τ+1)
q and ϕ̂h,(τ+1)

q via (45).
/* ————- CFO Estimation: ∀(u, n) ————- */

8: Obtain ỹd,(τ)
u,nk and ξd,(τ)

u,nk via (31) and (33).
9: Obtain ĝd,(τ)

n,uk and γd,(τ)
n,uk via (35).

10: Obtain r̂(τ)
uk and ψr,(τ)

uk via (34).
11: Obtain ď(τ)

uk and ψd,(τ)
uk via (39).

12: Obtain d̂′(τ)
n,uk and ψ′d,(τ)

n,uk via (40).
13: Obtain d̂(τ+1)

n,uk and ψd,(τ+1)
n,uk via (41) and (43).

14: ∀(l, u) : Update ε̂(τ+1)
l,u via (48).

15: ∀(l, u) : ε̂(τ+1)
l,u = min(max(ε̂(τ+1)

l,u ,−εmax), εmax)
16: ∀(l, u) : Update ϕ̂d,(τ+1)

l,uk via (50).

Algorithm 3 - Data Detection Mechanism

Input: Y d, {ŝ(τ)
n,qk, ψ

s,(τ)
n,qk }, {ĥ(τ)

k,nq, ψ
h,(τ)
k,nq }, {ȟ(τ)

nq , ψ
h,(τ)
nq },

{d̂(τ)
n,mk, ψ

d,(τ)
n,mk}

Output: {ŝ(τ+1)
n,qk , ψ

s,(τ+1)
n,qk }

/* ———– Data Detection: ∀(m,n) ———– */
1: Obtain ỹx,(τ)

m,nk and ξx,(τ)
m,nk via (59) and (62).

2: γ
x,(τ)
n,mk = η ·

∣∣ǎ(τ)
k,nm

∣∣2
ξ

x,(τ)
m,nk

+ (1− η) · γx,(τ−1)
n,mk

3: ĝ
x,(τ)
n,mk = η ·

(
ǎ
(τ)
k,nm

)∗
ỹ

x,(τ)
m,nk

ξ
x,(τ)
m,nk

+ (1− η) · ĝx,(τ−1)
n,mk

4: ψ
z,(τ)
n,mk =

(∑N
i̸=n γ

x,(τ)
i,mk

)−1

5: ẑ
(τ)
n,mk = ψ

z,(τ)
n,mk ·

∑N
i̸=n ĝ

x,(τ)
i,mk

6: β(τ) = b · τ
τ2,max

7: ωn,mk (χj) = β(τ)
c2
x

(
2ℜ
{
ẑ
(τ)
n,mkχ

∗
j

}
− |χj |2

)
8: x̂

(τ+1)
n,mk =

∑
χj∈X

χj exp[ωn,mk(χj)]∑
χ′

j
∈X exp[ωn,mk(χ′j)]

9: ψ
x,(τ+1)
n,mk =

∑
χj∈X

|χj |2 exp[ωn,mk(χj)]∑
χ′

j
∈X exp[ωn,mk(χ′j)]

−
∣∣∣x̂(τ+1)

n,mk

∣∣∣2
10: ∀(n, (q, k) ∈ Is

mk) : ŝ(τ+1)
n,qk =

∑
i∈Kt

f∗κ(i),κ(k)x̂
(τ+1)
n,mi

11: ∀(n, (q, k) ∈ Is
mk) : ψs,(τ+1)

n,qk = 1
Kc

∑
i∈Kt

ψ
x,(τ+1)
n,mi

In what follows, we provide detailed descriptions of Algo-
rithms 2 and 3 mentioned above. To that end, let us define the
soft replicas of hnq and duk as ĥk,nq,∀k and d̂n,uk,∀n, respec-
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Fig. 2. Work flowchart of the proposed JCCDE receiver.

tively, such that their MSEs can be respectively expressed as

ψh
k,nq ≜ Eh̃k,nq

{∣∣∣h̃k,nq

∣∣∣2} , ψd
n,uk ≜ Ed̃n,uk

{∣∣∣d̃n,uk

∣∣∣2} ,
(11)

where h̃k,nq ≜ hnq − ĥk,nq and d̃n,uk ≜ duk − d̂n,uk denote
the estimation errors, respectively. Similarly, the soft replica
of the frequency-domain symbol xmk and its MSE are defined
as x̂n,mk,∀n and ψx

n,mk,∀n, respectively. Notice that the
time-domain symbol sqk contains P overlapping smk due to
the cyclic shift operation, we define the set of P 2D indices
(q, k) corresponding to smk as Is

mk (|Is
mk| = P ).

Accordingly, the soft replica of sqk,∀(q, k) ∈ Is
mk and its

MSE ψs
n,qk,∀(q, k) ∈ Is

mk are respectively given by

ŝn,qk =
∑
i∈Kt

f∗κ(i),κ(k)x̂n,mi, ψ
s
n,qk =

1
Kc

∑
i∈Kt

ψx
n,mi, (12)

where κ(i) ≜ (i mod Kc), fi,j ≜ [F ]i,j , and |fi,j |2 = 1/Kc.
To describe the main blocks of Algorithm 1, in lines 1 to 3,

the soft replicas and their MSEs are initialized; lines 4 to
6 correspond to Phase I; in lines 7 to 9 to initialization for data
detection, and lines 10 to 13 to Phase II. The predetermined
number of iterations for Phase I and Phase II are denoted by
τ1,max and τ2,max, respectively.

In Subsections III-A through III-C, we derive the JCCE
algorithm (Algorithm 2), followed by the data detection
algorithm (Algorithm 3) in Subsections III-D and III-E.

A. Design of Prior Distributions in Algorithm 2

First, as a preliminary to derive the message passing
algorithm, in this subsection, we design prior distributions and
define their distribution parameters for time-domain channel
coefficients and phase shifts due to CFOs, respectively.

1) Prior Distribution for Channel Coefficients: In the RX
signal from a given UE, the delay tap where the path exists
does not change for each RX antenna; hence, from the
definition of ϕh

p,u explained after (3), the CIR has vector-wise
sparsity in the delay domain. To capture its stochastic proper-
ties, hq ≜ [h1q, . . . , hnq, . . . , hNq]

T ∈ CN×1 can be modeled
by the following vector-wise BG distribution as [35]

phq

(
hq; P̂h,(τ)

q

)
=

N∏
n=1

phnq

(
hnq; P̂h,(τ)

q

)
, (13a)

with

phnq

(
hnq; P̂h,(τ)

q

)
=
(
1− λ̂(τ)

q

)
δ (hnq) + λ̂(τ)

q CN
(
hnq; 0, ϕ̂h,(τ)

q

)
, (13b)

where P̂h,(τ)
q ≜

{
λ̂

(τ)
q , ϕ̂

h,(τ)
q

}
denotes a set of the distribution

parameters (i.e. sparsity rate and variance) at the τ -th iteration
step, and is assigned one for each channel vector hq . The
sparsity rate and variance are initialized as λ̂

(1)
q = 1/P

and ϕ̂
h,(1)
q = ϕh

u,∀(q ∈ Qm,m ∈ Mu), respectively. The
vector-wise BG prior given in (13) is designed to capture
the statistical properties of the CIR vector in (3) with the
necessary and sufficient distribution parameters while taking
into account the sparsity in the delay domain and the power
deviation between paths based on the delay profile.

2) Prior Distribution for Phase Shifts: By exploit-
ing the limited (allowable) range in which CFOs occur
as prior information, a prior distribution is designed
to efficiently search for the corresponding phase shifts
du ≜ [du1, . . . , duk, . . . , duK ]T. First, we define ε̂(τ)

u =[
ε̂
(τ)
1,u, . . . , ε̂

(τ)
l,u , . . . , ε̂

(τ)
L,u

]T ∈ RL×1 as the vector of L candi-
date CFOs to be used in the τ -th iteration step to search for the
CFO with respect to the u-th UE, and θ̂d,(τ)

l,uk ≜ exp
[
jαkε̂

(τ)
l,u

]
as

the candidate phase shift experienced by the k-th symbol cor-
responding to ε̂(τ)

l,u . Next, interpreting the candidate phase shift

vectors θ̂
d,(τ)

l,u ≜
[
θ̂

d,(τ)
l,u1 , . . . , θ̂

d,(τ)
l,uk , . . . , θ̂

d,(τ)
l,uK

]T
,∀l, as prior

knowledge about du, the prior distribution of du can be
expressed using Bayes’ theorem as follows:

pdu
(du) =

L∑
l=1

pdu|θ̂l,u

(
du

∣∣θ̂d,(τ)

l,u

)
pθ̂l,u

(
θ̂

d,(τ)

l,u

)
. (14)

Finally, assuming that the candidate phase shift vectors are
selected with equal probability, i.e., pθ̂l,u

(
θ̂

d,(τ)

l,u

)
= 1/L,∀l,

and approximating that the error between the candidate values
and the true phase shift amount is Gaussian distributed, the
prior distribution of du can be modeled by the following
vector-wise GM distribution as

pdu

(
du; P̂d,(τ)

u

)
=

1
L

L∑
l=1

pdu

(
du; P̂d,(τ)

l,u

)
, (15a)

with

pdu

(
du; P̂d,(τ)

l,u

)
=

K∏
k=1

CN
(
duk; θ̂d,(τ)

l,uk , ϕ̂
d,(τ)
l,uk

)
, (15b)

where P̂d,(τ)
l,u ≜

{
θ̂

d,(τ)
l,uk , ϕ̂

d,(τ)
l,uk

}K

k=1
denotes a set of the dis-

tribution parameters (i.e., means and variances) corresponding
to the l-th Gaussian components at the τ -th iteration step, and

P̂d,(τ)
u ≜

{
P̂d,(τ)

l,u

}L

l=1
.

Fig. 3 is an illustration of how the true phase shift is
searched (estimated) with this prior distribution. Using the
allowable range of CFOs defined in the 3GPP standard [39] as
prior information, the candidate CFOs are initialized to divide
their existence range equally, i.e., ε̂(1)l,u = {εmax · (2l − 1 −
L)/L | l = 1, . . . , L}, and the corresponding GM prior is
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Fig. 3. Illustration of how the true phase shift is searched (estimated) using
the GM distribution (L = 10).

set as in Fig. 3(a) for each phase shift. The means (candidate
phase shifts) and their variances of this GM distribution are
updated at each iteration by the EM algorithm described later
in Subsection III-C. The L component Gaussian distributions
are initially used to search the entire range of existence, but
gradually move near the true phase shift value over the iter-
ations, as shown in Fig. 3(b). Finally, the probability masses
are aggregated into a single component Gaussian distribution,
as shown in Fig. 3(c), and the true phase shift is estimated
with pinpoint accuracy. By bridging discrete value search
and continuous value estimation with the GM distribution,
it becomes possible to robustly and efficiently search for phase
shifts that occur over a wide range. This can be explained by
the first-order approximation accuracy of the phase shift using
the Taylor expansion of duk used in the parameter estimation,

duk = exp
[
jαk

(
ε̂
(τ)
l,u + ε̃

(τ)
l,u

)]
≈ θ̂

d,(τ)
l,uk

(
1 + jαkε̃

(τ)
l,u

)
,

(16)

where owing to the knowledge of the candidate CFOs, the
residual CFO ε̃

(τ)
l,u ≜ εu − ε̂

(τ)
l,u becomes much smaller than

εu, and the accuracy of the approximation in (16) is improved
because the update width of the phase shift becomes small.
This is the primary reason why the proposed JCCE algorithm
is robust to severe phase fluctuations. From (16), the variances
are initialized as

ϕ̂
d,(1)
l,uk ≈ α2

kEϵ̃l,u

{(
ε̃
(1)
l,u

)2} = α2
kε

2
max/(3L

2). (17)

If the purpose is to introduce a grid search using the
candidate CFOs, a discrete uniform distribution is also a
candidate for the prior distribution. However, in this case,
the error between the candidate values and the true phase
shift cannot be reflected; therefore, it does not exhibit the
slow iterative convergence behavior shown in Fig. 3, but
rather rapid convergence behavior. Consequently, the estima-
tion performance depends deeply on the CE accuracy in the
initial iteration step, and robust estimation, as in the case
of the GM prior, is impossible. Only the GM prior distribu-
tion, which allows for distribution estimation that takes into
account errors, enables adaptive grid-based search, as shown
in Fig. 3.

B. JCCE Mechanism in Algorithm 2

Next, we design the JCCE mechanism based on the BiGaBP
framework [33] using the distribution parameters defined in
Subsection III-A. The complete set of update rules is derived
here, but is omitted in detail due to limitation of space. For
further details, we refer the reader to, e.g., [33], [46], [47],
[48], and [49]. In this subsection, we omit the iteration index
·(τ) for each variable for notational simplicity.

The pseudo-code of the proposed JCCE algorithm described
above is given in Algorithm 2. A well-known belief damp-
ing is introduced in lines 3 and 9, as described in [50]
and summarized as follows. Let a quantity z be calcu-
lated by a function fz . Then the τ -th damped value of
z, here denoted z(τ), is computed as the weighted average
of z(τ−1) and fz , with weights set by the damping factor
η ∈ [0, 1], i.e.,

z = fz
damping−−−−−→ z(τ) = ηfz + (1− η) z(τ−1). (18)

1) FN Process for CE: Focusing on ynk in (9), in the
estimation of hnq , the RX symbol after soft interference
cancellation (Soft IC) using soft replicas can be written as

ỹh
q,nk

= ynk −
Q∑

i̸=q

ĥk,niρ̂n,ik︸ ︷︷ ︸
Inter-UE interference cancellation

= hnqρ̂n,qk +
Q∑

i̸=q

(
hniρik − ĥk,niρ̂n,ik

)
+ hnqρ̃n,qk + wnk︸ ︷︷ ︸

≜νh
q,nk: Residual interference plus noise

,

(19)

where the soft replicas ρ̂n,qk = ŝn,qkd̂n,qk and ρ̃n,qk ≜ ρqk −
ρ̂n,qk are generated in VNs at the previous iteration. Assuming
that νh

q,nk can be approximated as a complex Gaussian random
variable in conformity to the CLT, the conditional PDF of
ỹh

q,nk, given hnq , can be expressed as

pỹh
q,nk|hnq

(
ỹh

q,nk|hnq

)
∝ exp

[
−
∣∣ỹh

q,nk − hnqρ̂n,qk

∣∣2
ξh
q,nk

]
,

(20)
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with

ξh
q,nk = E{hni,∀i̸=q},{sqk,∀q},{dqk,∀q},wnk

{∣∣νh
q,nk

∣∣2 |hnq

}
=

Q∑
i̸=q

{
ψh

k,ni |ŝn,ik|2

+
(∣∣∣ĥk,ni

∣∣∣2 + ψh
k,ni

)(
|ŝn,ik|2 ψd

n,ik + ψs
n,ik

)}
+ λ̂qϕ̂

h
q

(
|ŝn,qk|2 ψd

n,qk + ψs
n,qk

)
+N0. (21)

2) VN Process for CE: Assuming that the effective Gaus-
sian noise in ỹh

q,nk,∀k, is not correlated with each other, the
PDF of an extrinsic belief for hnq can be obtained from [44]

pµ̂nq|hnq
(µ̂nq|hnq) =

K∏
k=1

pỹh
q,nk|hnq

(
ỹh

q,nk|hnq

)
∝ exp

[
−|hnq − µ̂nq|2

ψµ
nq

]
, (22)

with

µ̂nq = ψµ
nq

K∑
k=1

ĝh
k,nq, ψ

µ
nq =

(
K∑

k=1

γh
k,nq

)−1

, (23)

where

ĝh
k,nq =

ρ̂∗n,qkỹ
h
q,nk

ξh
q,nk

, γh
k,nq =

|ρ̂n,qk|2

ξh
q,nk

. (24)

Similarly, assuming that the effective Gaussian noise in
µ̂nq,∀(n, q), is not correlated with each other, the conditional
PDF of hnq , given µ̂nq and P̂h

q in (13), can be expressed as

phnq|µ̂nq

(
hnq|µ̂nq; P̂h

q

)
≜

pµ̂nq|hnq
(µ̂nq|hnq) phnq

(
hnq; P̂h

q

)∫
h′nq

pµ̂nq|hnq

(
µ̂nq|h′nq

)
phnq

(
h′nq; P̂h

q

) . (25)

When hnq obeys the BG distribution, from the Gaussian-PDF
multiplication rule, (25) can be rewritten as [46]

phnq|µ̂nq

(
hnq|µ̂nq; P̂h

q

)
= (1− ζnq) · δ (hnq) + ζnq · CN

(
hnq;hnq, ψ

h

nq

)
, (26)

with

ζnq =


(
1− λ̂q

)
· CN

(
0; µ̂nq, ψ

µ
nq

)
λ̂q · CN

(
0; µ̂nq, ψ

µ
nq + ϕ̂h

q

) + 1

−1

, (27a)

hnq =
ϕ̂h

q µ̂nq

ψµ
nq + ϕ̂h

q

, ψ
h

nq =
ϕ̂h

qψ
µ
nq

ψµ
nq + ϕ̂h

q

. (27b)

From (25) and (26), the soft replica ȟnq and its MSE ψ̌h
nq can

be obtained from the conditional expectation as

ȟnq = ζnq · hnq, (28a)

ψ̌h
nq = (1− ζnq) · ζnq ·

∣∣hnq

∣∣2 + ζnq · ψ
h

nq. (28b)

Finally, following [47], [48], and [49], we approximate
the posterior distribution of hnq by a Gaussian distribution

with (28) based on moment matching, and then compute the
PDF of an extrinsic soft replica for hnq as

CN
(
hnq; ĥk,nq, ψ

h
k,nq

)
∝

CN
(
hnq; ȟnq, ψ̌

h
nq

)
pỹh

q,nk|hnq

(
ỹh

q,nk|hnq

) , (29)

where we can derive

ĥk,nq = ψh
k,nq

(
ȟnq

ψ̌h
nq

− ĝh
k,nq

)
, (30a)

1
ψh

k,nq

=
1
ψ̌h

nq

− γh
k,nq. (30b)

3) FN Process for CFO Estimation: The above discussion
can be applied to the estimation of an arbitrary duk. In a
similar manner to (19) and (21), the cancellation process for
duk and its variance can be expressed as

ỹd
u,nk = ynk −

U∑
i̸=u

d̂n,ikσ̂n,ik, (31)

ξd
u,nk =

U∑
i̸=u

ψd
n,ik |σ̂n,ik|2

+
Q∑

q=1

{∣∣∣ĥk,nq

∣∣∣2 ψs
n,qk+ψh

k,nq

(
|ŝn,qk|2+ψs

n,qk

)}
+N0,

(32)

where σ̂n,uk =
∑

m∈Mu

∑
q∈Qm

ĥk,nq ŝn,qk.

4) VN Process for CFO Estimation: The PDF of a posterior
belief for duk can be obtained from

pr̂uk|duk
(r̂uk|duk) =

N∏
n=1

pỹd
u,nk|duk

(
ỹd

u,nk|duk

)
∝ exp

[
−|duk − r̂uk|2

ψr
uk

]
, (33)

where

r̂uk = ψr
uk

N∑
n=1

ĝd
n,uk, ψ

r
uk =

(
N∑

n=1

γd
n,uk

)−1

, (34)

with

ĝd
n,uk =

σ̂∗n,ukỹ
d
u,nk

ξd
u,nk

, γd
n,uk =

|σ̂n,uk|2

ξd
u,nk

. (35)

Assuming that the effective Gaussian noise in r̂uk,∀(u, k),
is not correlated with each other, the conditional PDF of du,
given r̂u ≜ [r̂u1, . . . , r̂uK ]T, can be expressed as

pdu|r̂u

(
du|r̂u; P̂d

u

)
≜

∑L
l=1

∏K
k=1 pr̂uk|duk

(r̂uk|duk) pduk

(
duk; P̂d

l,u

)
∫

d′uk

∑L
l=1

∏K
k=1 pr̂uk|duk

(r̂uk|d′uk) pduk

(
d′uk; P̂d

l,u

) ,
(36)
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which can be rewritten as [46]

pdu|r̂u

(
du|r̂u; P̂d

u

)
=

L∑
l=1

πl,u

K∏
k=1

CN
(
duk; dl,uk, ψ

d

l,uk

)
, (37)

with

πl,u =

∏K
k=1 CN

(
0; r̂uk − θ̂d

l,uk, ψ
r
uk+ϕ̂d

l,uk

)
∑L

l=1

∏K
k=1 CN

(
0; r̂uk−θ̂d

l,uk, ψ
r
uk+ϕ̂d

l,uk

) , (38a)

dl,uk =
ϕ̂d

l,ukr̂uk + ψr
ukθ̂

d
l,uk

ψr
uk + ϕ̂d

l,uk

, ψ
d

l,uk =
ϕ̂d

l,ukψ
r
uk

ψr
uk + ϕ̂d

l,uk

, (38b)

where πl,u is the estimated mixture weight.
From (37), assuming that dl,uk,∀k is not correlated, the

posterior soft replica ďuk and its MSE ψ̌d
uk can be obtained

from the coefficient-wise conditional expectation as

ďuk =
L∑

l=1

πl,u · dl,uk, (39a)

ψ̌d
uk =

L∑
l=1

πl,u ·
(∣∣dl,uk

∣∣2 + ψ
d

l,uk

)
−
∣∣ďuk

∣∣2 . (39b)

In a similar manner to (29), where we can obtain

d̂′n,uk = ψ′dn,uk

(
ďuk

ψ̌d
uk

− ĝd
n,uk

)
, (40a)

1
ψ′dn,uk

=
1
ψ̌d

uk

− γd
n,uk. (40b)

Finally, since |duk| = 1, the soft replica d̂n,uk is given by
normalizing the gain of the soft replica to 1 as follows,

d̂n,uk =
d̂′n,uk∣∣d̂′n,uk

∣∣ . (41)

Besides, from (29), duk can be modeled as the output when
d̂n,uk is input to the AWGN channel, i.e.,

duk = d̂′n,uk + w′n,uk = d̂n,uk + (d̂′n,uk − d̂n,uk) + w′n,uk,

(42)

where w′n,uk obeys CN
(
w′n,uk; 0, ψ′dn,uk

)
. From (11)

and (42), the MSE for d̂n,uk can be expressed as

ψd
n,uk =

∣∣∣d̂n,uk − d̂′n,uk

∣∣∣2 + ψ′dn,uk. (43)

C. Update of Distribution Parameters in Algorithm 2

Finally, in this subsection, we explain how to update the
distribution parameters of the vector-wise BG prior and vector-
wise GM prior in lines 7 and 14–16 of Algorithm 2.

1) Update of Parameters for BG Distribution: The EM
algorithm allows updating P̂h,(τ)

q for every iteration step so
as to maximize likelihood function pY|P̂h

q

(
Y |P̂h,(τ)

q

)
, which

is achieved by alternating between an E-step, which updates
the posterior information for hnq to minimize the Kullback-
Leibler (KL) divergence between the likelihood function and

its lower bound, and an M-step, which estimates the distribu-
tion parameters that maximize the lower bound [51]. Since the
posterior estimates can be computed from the BiGaBP outputs,
only the M-step solving the following maximization problem
needs to be considered: [46]

P̂h,(τ+1)
q =argmax

Ph
q

N∑
n=1

Ehnq

{
ln phnq

(
hnq;Ph

q

)∣∣µ̂(τ)
nq ; P̂h,(τ)

q

}
,

(44)

where Ph
q is the set of true distribution parameters. Since it is

difficult to maximize the cost function of (44) simultaneously
for all parameters in Ph

q , it is solved for each parameter
separately and the update rules are derived as follows.

λ̂(τ+1)
q =

N∑
n=1

ζ
(τ)
nq

N
, ϕ̂(τ+1)

q =

∑N
n=1 ζ

(τ)
nq

(∣∣∣h(τ)

nq

∣∣∣2+ψ
h,(τ)

nq

)
∑N

n=1 ζ
(τ)
nq

,

(45)

where ζ(τ)
nq , h

(τ)

nq , and ψ
h,(τ)

nq are the posterior information and
can be obtained from (27).

2) Update of Parameters for GM Distribution: Next,
we describe the update of the GM distribution parameter set
P̂d,(τ)

u . The problem arising here is that if the update rule
for θ̂d,(τ)

l,uk is simply derived using the EM algorithm, it is not
possible to achieve maximal ratio combining (MRC) that takes
into account the inhomogeneity of the amount of phase shift
that varies for each index k according to αk. To solve this
problem, we consider instead the following update rule based
on the minimum mean square error (MMSE) criterion using
the posterior information of the l-th GM component as follows.

ε̂
(τ+1)
l,u = argmin

εu

K∑
k=1

Eduk

{∣∣duk − θd
uk

∣∣2 ∣∣r̂(τ)
uk ; P̂d,(τ)

l,u

}
= argmax

εu

K∑
k=1

ℜ
{(

d
(τ)

l,uk

)∗
θd

uk

}
︸ ︷︷ ︸

≜J1(εu)

, (46)

where θd
uk ≜ exp [jαkεu], the second-order Taylor approxima-

tion of which at the candidate CFO estimated in the previous
iteration, i.e., ε̂(τ)

l,u , can be expressed as [19] and [20]

θd
uk ≈ θ̂

d,(τ)
l,uk + jαk

(
εu − ε̂

(τ)
l,u

)
θ̂

d,(τ)
l,uk

− 1
2
α2

k

(
εu − ε̂

(τ)
l,u

)2

θ̂
d,(τ)
l,uk . (47)

Solving for ∂
∂εu

J1(εu) = 0 using (47), the MRC-based update
formula can be obtained by

ε̂
(τ+1)
l,u = ε̂

(τ)
l,u −

∑K
k=1 αkℑ

{(
d
(τ)

l,uk

)∗
θ̂

d,(τ)
l,uk

}
∑K

k=1 α
2
kℜ
{(

d
(τ)

l,uk

)∗
θ̂

d,(τ)
l,uk

} , (48)

where the estimation accuracy of (48) depends on the
approximation accuracy of (47), i.e., the magnitude of the
residual CFO ε̃

(τ)
l,u ≜ εu − ε̂

(τ)
l,u as described at the end of
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Subsection III-A. Therefore, the proposed method, which can
search for phase shifts in parallel while updating candidate
CFOs, can keep ε̃

(τ)
l,u small and maintain high estimation

accuracy even in scenarios with large phase variations.
On the other hand, ϕ̂d,(τ)

l,uk can be updated based on simple
sampling average derived via the EM algorithm, in similarity
to (45). To stabilize the convergence behavior, one averaged
variance is estimated per OFDM symbol index t. In a similar
manner to (44), the update rule for ϕ̂d,(τ)

l,uk is obtained by
solving the following maximization problem as [46]

ϕ̂
d,(τ+1)
l,uk

=argmax
ϕl,u

∑
k∈Kt

Eduk

{
ln pduk

(
duk; θ̂d,(τ+1)

l,uk , ϕl,u

)∣∣∣r̂(τ)
uk ; P̂d,(τ)

l,u

}
︸ ︷︷ ︸

≜J2(ϕl,u)

,

(49)

and the update rule can be obtained by solving for
∂

∂ϕl,u
J2(ϕl,u) = 0, as

ϕ̂
d,(τ+1)
l,uk =

1
|Kt|

∑
k∈Kt

Eduk

{∣∣∣duk − θ̂
d,(τ+1)
l,uk

∣∣∣2 ∣∣∣r̂(τ)
uk ; P̂d,(τ)

l,u

}
=

1
|Kt|

∑
k∈Kt

(∣∣∣d(τ)

l,uk − θ̂
d,(τ+1)
l,uk

∣∣∣2+ψ
d,(τ)

l,uk

)
, k∈Kt.

(50)

D. Initialization for Data Part in Algorithm 1

As a preliminary to describe the JCCDE algorithm, in this
subsection, we describe how to initialize the soft replicas of
the phase shifts and their MSEs corresponding to the data part,
i.e., d̂(1)

n,uk, ψ
d,(1)
n,uk ,∀k ∈ Kd, in line 9 of Algorithm 1, needed

for data detection in the first iteration of Phase II. In this
subsection, we omit the iteration index ·(τ) for each variable
derived in Phase I.

First, focusing on the computation of d̂
(1)
n,uk,∀k ∈ Kd,

it shall be assume dl,uk = θ̂d
l,uk in (38b) because, of course,

no message updates are made for the data part. Substituting
this into (39a) and applying the first-order Taylor approxima-
tion, we obtain the soft replicas, given Pd

u , as

ďuk =
L∑

l=1

πl,uθ̂
d
l,uk ≈ 1 + jαk

L∑
l=1

πl,uε̂l,u, ∀k ∈ Kd. (51)

Comparing (51) with duk ≜ exp [jαkεu] ≈ 1+jαkεu, we find
the estimated CFO for the u-th UE can be expressed as

ε̂u =
L∑

l=1

πl,uε̂l,u, (52)

and therefore we have

d̂
(1)
n,uk = exp

[
jαkε̂u

]
, ∀k ∈ Kd. (53)

Next, focusing on the computation of ψd,(1)
n,uk ,∀k ∈ Kd,

from (38b), it shall be assume ψ
d

l,uk = ϕ̂d
l,uk. Substituting

ψ
d

l,uk = ϕ̂d
l,uk,

∣∣dl,uk|2 =
∣∣θ̂d

l,uk

∣∣2 = 1, and
∣∣ďuk

∣∣2 = 1

into (39b), we obtain the MSEs for d̂(1)
n,uk,∀k ∈ Kd, as

ψ
d,(1)
n,uk =

L∑
l=1

πl,uϕ̂
d
l,uk, ∀k ∈ Kd, (54)

where in a similar manner to (17), we approximately have

ϕ̂d
l,uk ≈ α2

kEε̃l,u

{(
ε̃l,u

)2} = α2
kϕ̂

ϵ
l,u. (55)

Finally, the pilot part is used to calculate the residual variance
ϕ̂ϵ

l,u ≜ Eε̃l,u

{(
ε̃l,u

)2}
. Summing both sides of (55) over all

pilot symbols yields the following approximate relationship,∑
k∈Kp

ϕ̂d
l,uk ≈ ϕ̂ϵ

l,u

∑
k∈Kp

α2
k, (56)

and therefore using (50) we have

ϕ̂ϵ
l,u ≈

∑
k∈Kp

ϕ̂d
l,uk∑

k∈Kp
α2

k

. (57)

E. Data Detection in Algorithm 3

In this subsection, we describe the data detection algorithm
based on the channel coefficients and phase shifts estimated
in Subsections III-A through III-D. The proposed method
is a cross-domain estimation scheme that iteratively per-
forms time-domain inter-UE interference suppression based
on the estimates obtained by the JCCE algorithm and
frequency-domain equalization based on the periodicity of the
time-domain channel provided by the CP as in the typical
OFDM demodulation.

In the detection of an arbitrary TX symbol xmk, the Soft
IC is expressed as

ỹs
m,nk

= ynk −
M∑

i̸=m

d̂n,ikσ̂n,ik = d̂n,mk

∑
q∈Qm

ȟnqsqk

+
∑

q∈Qm

c̃k,nqsqk +
M∑

i̸=m

(
dikσik − d̂n,ikσ̂n,ik

)
+ wnk︸ ︷︷ ︸

≜νs
m,nk: Time-domain residual interference plus noise

,

(58)

where σ̂n,mk =
∑

q∈Qm
ĥk,nq ŝn,qk, c̃k,nq ≜ hnqdqk −

ȟnqd̂n,qk, and d̂n,mk = d̂n,uk,∀m ∈ Mu. Approximating
νs

m,nk to a complex Gaussian random as in (20), (58) can be
interpreted as the AWGN channel output of the time-domain
TX symbol for the m-th TX antenna. Hence, by convert-
ing (58) here to the frequency domain using the cyclic nature
of the time-domain channel, the frequency-domain represen-
tation can be expressed as

ỹx
m,nk =

∑
i∈Kt

fκ(k),κ(i)d̂
∗
n,miỹ

s
m,ni

= ǎk,nmxmk +
∑
i∈Kt

fκ(k),κ(i)d̂
∗
n,miν

s
m,ni︸ ︷︷ ︸

≜νx
m,nk: Frequency-domain residual interference plus noise

, (59)



1908 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 24, NO. 3, MARCH 2025

where ǎk,nm is the frequency-domain channel coefficient
estimated from ȟnq,∀q ∈ Qm, as

ǎk,nm =
√
Kc

∑
q∈Qm

fκ(k),υ(q)ȟnq, (60)

with υ(i) ≜ (i mod P ). In a manner similar to (20), the
conditional PDF of ỹx

m,nk, given xmk, can be expressed as

pỹx
m,nk|xmk

(
ỹx

m,nk|xmk

)
∝ exp

[
−
∣∣ỹx

m,nk − ǎk,nmxmk

∣∣2
ξx
m,nk

]
,

(61)

with

ξx
m,nk =

1
Kc

∑
i∈Kt

ξs
m,ni, (62a)

ξs
m,nk =

M∑
i̸=m

∑
q∈Qi

{
ψs

n,qk

∣∣∣ĥk,qk

∣∣∣2
+
(
|ŝn,qk|2 + ψs

n,qk

)(∣∣∣ĥk,qk

∣∣∣2 ψd
n,qk + ψh

k,qk

)}
+ Es

∑
q∈Qm

(∣∣ȟqk

∣∣2 ψd
n,qk + ψ̌h

qk

)
+N0. (62b)

Based on (61), the subsequent estimation processes of xmk

can be performed in a manner similar to the JCDE described
in [33], such that further details are omitted and offered only in
a summarized form in the pseudo-code given in Algorithm 3.
For further details, please see, e.g., [33], [45], and [52].

The belief damping with η is introduced in lines 2 and 3 of
Algorithm 3, and belief scaling [33], [45], [52], which controls
convergence speed and stabilizes iterative behavior, is intro-
duced in line 7, where β(τ) is the scaling parameter designed
to be a monotonic increase linear function of the number of
iterations as shown in line 6. All the computations of the
proposed algorithm are scalar-by-scalar, the number of multi-
plication, division, subtraction, and addition operations; hence,
the computational complexity of our JCCDE algorithm is of
order O

((
P +log2(Kc)+

√
J
)
NMKd +PNMK+LMK

)
per iteration. Note that the proposed JCCDE algorithm requires
additional computational complexity for domain switching to
perform frequency-domain data detection.

IV. PERFORMANCE ASSESSMENT

Numerical studies were conducted to demonstrate the per-
formance of the proposed JCCDE receiver for uplink MUD in
large MU-MIMO-OFDM systems.

Simulation parameters are summarized in Tab. I, where
the maximum normalized CFO is εmax = 0.0133 [27]. The
average RX power from each TX antenna was assumed to be
identical on the basis of slow TX power control (ϕh

u = 1,∀u).
The maximum number of delay taps was set to P = 8, and all
delay paths shall fall within the CP length. The Gray-coded
4- and 16-quadrature amplitude modulation (QAM) were
employed for symbol mapping, and the channel code was not
used. The random pilots, i.e., xmk =

√
Es exp [jπυmk] , υmk∼

U(−1, 1),∀k∈Kp, were used.

TABLE I
SIMULATION PARAMETERS

The number of GM components L was set to 10, the
damping factor η was set to 1.0 at τ = 1 and 0.5 otherwise,
the scaling parameter b was set to 3 and 2.4 for 4QAM and
16QAM, respectively, and the maximum number of iterations
was set constant to (τ1,max, τ2,max) = (16, 16).

A. BER Performance in Frequency-Flat Channels

Our first set of results is given in Fig. 4, where the
BER performances as a function of the signal-to-noise ratio
(SNR), of the following MU-MIMO-OFDM systems with
single antenna UEs, U = 16, |Mu| = 1, under frequency-flat
fading environments, i.e., TDS = 0 [s], are compared:
• SAGE: SotA Bayesian receiver based on the SAGE

algorithm [20], where the channel coefficients and CFOs
are iteratively estimated via the EM algorithm. This
method cannot exploit the channel sparsity in the delay
domain.

• GaBP w/ SAGE: SotA Bayesian receiver consisting of the
GaBP-based CE part in Algorithm 2 and the SAGE-based
CFO estimation, in order to verify the gain achieved by
the proposed CFO estimation using the GM prior.

• S-GAMP: SotA Bayesian receiver based on the S-GAMP
algorithm [27], where L = 10 and the belief damping is
introduced as in [53]. Note that S-GAMP is only available
in flat-fading channels due to its algorithmic structure.

• Proposal I: Proposed JCCE and data detection receiver
that only performs the data detection by Algorithm 3,
instead of Phase II, after Phase I, in order to verify
the gain achieved by the JCCDE mechanism exploiting
detected data symbols as equivalent soft pilots.

• Proposal II: Proposed JCCDE receiver presented in Algo-
rithms 1–3.

• Genie-aided scheme: Idealized scheme in which the per-
fect CSI is known at the receiver, i.e., without CFOs.
Provides a reference lower bound which the proposed
method can achieve.

Note that the channel coefficients and CFOs are estimated
using only the pilot part in “SAGE,” “GaBP w/ SAGE,” “S-
GAMP,” and “Proposal I,” and then the data detection is
conducted by Algorithm 3.

In “SAGE,” JCCE is performed based on the EM algorithm
derived based on ML criterion, so it is impossible to take into
account the sparsity in the delay domain when estimating the
channel [54]. Therefore, “SAGE” cannot achieve highly accu-
rate CE under severe rank-deficient conditions of Kp/Q =
0.5, and as can be seen from Fig. 4, it fails to detect MIMO
signals reliably (BER > 10−1). In contrast, “GaBP w/ SAGE,”
which can exploit the sparsity of the delay-domain channel,
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Fig. 4. BER performances of MU-MIMO-OFDM systems, where (N, M, P, Kp, Kd) = (32, 16, 8, 64, 384) in frequency-flat fading channels.

Fig. 5. BER performances of MU-MIMO-OFDM systems, where (N, M, P, Kp, Kd) = (32, 16, 8, 64, 384) in frequency-selective fading channels.

has significantly improved performance. However, it still suf-
fers from high-level error floors even when using 4QAM,
which is due to the fact that channel estimation error in the
early iterations caused by non-orthogonal pilots degrades the
Taylor approximation accuracy. Although “S-GAMP” using
the grid-based CFO search performs well for 4QAM, serious
performance degradation is inevitable for 16QAM due to lack
of resolution of candidate CFO. In contrast, “Proposal I”
and “Proposal II” can achieve stable detection performance
without suffering from error floors even for 16QAM, and
the latter “Proposal II” is asymptotically approaching the
Genie-aided performance for both configurations. Remarkably,
the degradation at BER = 10−4 is less than 2.0 dB and 1.0 dB
in “Proposal I” and “Proposal II,” respectively.

B. BER Performance in Frequency-Selective Channels

Next, we evaluate the BER performance under
frequency-selective fading environments in Fig. 5, where the
other system parameters are the same as in Fig. 4.

As expected from the results in Fig. 5, “SAGE” cannot
detect MIMO signals. In frequency-selective channels where
the channel coefficients to be estimated increase, the perfor-
mances of the JCCE algorithms which use only the pilot part,
“GaBP w/ SAGE” and “Proposal I,” are also significantly
degraded due to poor channel estimation accuracy. In contrast,
“Proposal II” significantly outperforms the SotA using only
the pilot part and approaches the Genie-aided scheme without

suffering from error floors, thanks to the additional pilots
brought in by detected symbols. Specifically, the degradation
at BER = 10−4 is less than 2.0 dB even when using 16QAM.

C. RMSE Performance of Normalized CFO Estimates

Let us shift our focus to the CFO estimation perfor-
mance, in terms of the RMSE of the estimated normalized
CFOs, defined as

√
Eεu

[
|εu − ε̂u|2

]
. In addition to “GaBP

w/ SAGE,” “S-GAMP,” “Proposal I,” and “Proposal II,” the
following performances are compared:
• Genie-aided grid-based search: Idealized scheme in

which the candidate CFO closest to the true CFO is
selected. It provides a reference lower bound which the
grid-based search scheme such as S-GAMP can achieve.

• Genie-aided scheme: Genie-aided scheme in which the
perfect knowledge of the channel coefficients and data
symbols are provided as prior information for every
iteration in “Proposal II.” This performance can only be
achieved by the proposed method (Proposal II) when
using the perfect knowledge of instantaneous channel
realizations and data symbols, and therefore serves as an
absolute lower bound for Bayesian JCCDE methods in
terms of the RMSE performance [34], [55].

Fig. 6 shows the RMSE performance of normalized CFO,
where the system parameters are the same as in Figs. 4 and 5.
The iterative convergence behavior of “GaBP w/ SAGE” is
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Fig. 6. RMSE performances of MU-MIMO-OFDM systems, where (N, M, P, Kp, Kd) = (32, 16, 8, 64, 384).

Fig. 7. NMSE performances of MU-MIMO systems as a function of SNR, where (N, M, P, Kp, Kd) = (32, 16, 8, 64, 384).

unstable due to the mismatch in the Taylor approximation,
and we can confirm that the CFO estimates have diverged.
This mismatch is caused by a decrease in the accuracy of
the interference cancellation that is the operating principle
of SAGE, and is unavoidable when using non-orthogonal
pilots. The RMSE performance of “GaBP w/ SAGE” changes
drastically and irregularly because the Gram matrix of the
non-orthogonal pilot matrix is not a unit matrix; therefore, the
strength of the inter-UE interference changes probabilistically
depending on the instantaneous channel realization. When
considered together with the fact that the floor levels of “GaBP
w/ SAGE” do not change regardless of the modulation order
in Fig. 4, it can be inferred that the cause of the error floors
is a burst error caused by this divergence behavior of the
CFO estimates. In addition, the grid-based search allows ‘S-
GAMP” to provide stable CFO estimation; however, when
using higher-order modulation such as 16QAM, the degraded
CFO estimation accuracy in the high operating SNR region
causes an error floor in the BER performance.

In contrast, the proposed method updates the CFO candi-
dates based on the posterior probability of duk and achieves
accurate CFO estimation at any operating SNR by adaptively
switching between Taylor approximation-based scheme and
candidate search-based scheme according to the estimation
reliability provided by the BiGaBP algorithm. Consequently,
in the low SNR region, where estimation accuracy of duk

is poor, the proposed method approaches “Genie-aided grid-

based search.” It is not surprising that the convergence speed
is different between the “Proposal II,” in which the three
variables are jointly estimated, and the “Genie-aided scheme,”
in which only CFO is estimated, and it has been mentioned
in [56] and [57] that the difference in the number of estimated
variables affects the convergence speed. However, as can be
seen from Fig. 4, the effect on the BER performance is small.

D. NMSE Performance of Channel Estimates

Next, we evaluate the CE performance, in terms
of the NMSE of the channel coefficients, defined as
EH

[∣∣H − Ȟ
∣∣2
F
/ |H|2F

]
, where [H]n,q ≜ hnq and

[
Ȟ
]
n,q

≜

ȟnq . In addition to “GaBP w/ SAGE,” “S-GAMP,” “Proposal
I,” and “Proposal II,”, the following performance is compared:
• Genie-aided MMSE: Idealized scheme in which the chan-

nel coefficients estimated by linear MMSE filtering with
the perfect knowledge of delay profile, CFO, and data
symbols are provided. Provides an absolute lower bound
in terms of the NMSE performance [34], [55].

Fig. 7 shows the NMSE performance, where the system
parameters are the same as in Figs. 4 and 5. The performance
of “S-GAMP” is deteriorated in the high SNR region due to
the adverse effects of residual CFOs caused by insufficient
grid resolution. In contrast, “Proposal I” achieves highly
accurate channel estimation by updating and selecting the CFO
candidates according to the variances of the GM distribution.
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Fig. 8. BER performances of MU-MIMO-OFDM systems, where (N, M, P, Kp, Kd) = (32, 16, 8, 64, 384) in frequency-selective fading channels.

Fig. 9. RMSE and NMSE performances of MU-MIMO-OFDM systems, where (N, M, P, Kp, Kd) = (32, 16, 8, 64, 384) in frequency-selective fading
channels.

Note that the performance degradation in “GaBP w/ SAGE” is
due to the divergence of CFO estimates at a certain realization
value, so no difference can be seen in terms of the average
evaluation metric such as NMSE. In both fading environ-
ments, we see that “Proposal II” asymptotically approaches
the Genie-aided performance in the high SNR region where
the estimated data symbols serve as effective pilot symbols.

E. Assessment of Changes in the Number of CFO Candidates

Next, we focus on the BER performance of the proposed
method to changes in the number of CFO candidates L.
To confirm the efficacy of the candidate CFO update in
“Proposal II,” the following performance is compared:
• Proposal II w/o CFO update: Proposed JCCDE receiver

without updating candidate CFOs in (48).
Fig. 8 shows the BER performance as a function of L,

where the center frequency fc was set to 2 [GHz] and
4 [GHz], respectively, and the other system parameters are
the same as in Fig. 5. The SNR is fixed at 10 dB and
18 dB in Fig. 8(a) and (b), respectively. As expected from
the BER performance of “S-GAMP” in Fig. 4, “Proposal II
w/o CFO update,” which estimates CFO based on grid search,
provides robust estimation performance, but its estimation
accuracy depends deeply on the number of CFO candidates
L. In contrast, “Proposal II” can significantly reduce the
required value of L while maintaining the detection accuracy,

by switching between the candidate CFO search and candidate
CFO update strategies adaptively. This is supported by the
fact that, when L = 1, the detection accuracy is significantly
degraded at fc = 4 [GHz], while the accuracy improves
rapidly for L ≥ 2, since the candidate CFOs stabilizes the
convergence performance in the early iteration steps.

F. Convergence Behavior of Proposed JCCE Algorithm

Next, we focus on the convergence behavior of the proposed
JCCE algorithm in terms of the RMSE performance of the
estimated CFOs and the NMSE performance of the estimated
channel coefficients with different numbers of CFO candidates
L. Since the convergence behavior of “Proposal II” is almost
determined by the performance of “Proposal I,” we will focus
on the convergence behavior of “Proposal I.”

Fig. 9(a) shows the RMSE performance as a function
of the number of iterations τ1,max, where the other system
parameters are the same as in Fig. 5. First, focusing on the
first iteration step (τ1,max = 1), we can see that increasing
L from 1 to 2 significantly improves the RMSE performance.
This is because the difference between the candidate CFOs
and the true CFO decreases. However, even if the number of
candidate CFOs L is set to a larger value (i.e., L = 10 and
20), the candidate CFOs are evenly distributed within their
range of existence, so the estimation accuracy of dmk does
not change significantly, and the RMSE at τ1,max = 1 do not
improve significantly. Next, focusing on the iterative behavior
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Fig. 10. BER, RMSE, and NMSE performances of MU-MIMO-OFDM systems with Gray-coded 16QAM, where (N, M, P, Kp, Kd) = (32, 16, 8, 64, 384)
in frequency-selective fading channels.

in the early iteration steps, we can see that the convergence
rate (speed) is slower for L = 2 than for L = 1. This
is because in the candidate CFO update mechanism of the
proposed method, the update step size is adjusted according
to the balance between the reliability of the estimated phase
shift and that of the candidate CFOs. Specifically, when L = 1,
the reliability of the candidate CFOs is low, so the update
step size based on the estimated phase shift becomes large,
while when L = 2, the reliability of the estimated phase shift
is lower than that of the candidate CFOs, so the update step
size becomes small, resulting in the different convergence rate.
Finally, focusing on the iterative behavior in the later iteration
steps, we can see that the RMSE performance converges after
approximately the same number of iterations, regardless of
the value of L. The final convergence value varies depending
on L, but let us see how much this difference affects the
actual estimation performance in the following evaluation of
CE accuracy.

Fig. 9(b) shows the NMSE performance as a function of
τ1,max, where the other system parameters are the same as in
Fig. 9(a). When L = 1, the RMSE performance in the early
iteration steps is poor, so we can see that the CE accuracy
deteriorates compared to when multiple candidate CFOs are
used (i.e., L > 2). As L increases, the RMSE performance
in the early iteration steps gradually improves, and at L =
10 the improvement is almost saturated. In addition, since the
final convergence performance is also approximately saturated,
it can be seen that improvements in the region where RMSE
is less than 10−3 do not significantly contribute to actual
estimation accuracy. The above results suggest that sufficient
estimation accuracy can be achieved by setting L = 2, and
sufficient convergence rate can be achieved by setting L = 10.

G. Multi-Antenna UEs

Next, we study the effect of increasing the number of
TX antennas mounted on each UE. The total number of TX
antennas is fixed at 16, and the performance of single-antenna
UEs (U = 16, |Mu| = 1,∀u) is compared with that of multi-
antenna UEs (U = 8, |Mu| = 2,∀u).

Figs. 10(a)–(c) show the BER, RMSE of the estimated
CFOs, and NMSE of the estimated channel coefficients as a

function of the SNR, where the other system parameters are
the same as in Fig. 5(b). The BER performance in Fig. 10(a)
and the NMSE performance of the estimated channel coef-
ficients in Fig. 10(c) show that the performances of the
multi-antenna UEs are slightly better than those of the single-
antenna UEs. This slight (but definite) improvement is due to
the improvement in the RMSE performance of the estimated
CFOs in Fig. 10(b). Since each UE is equipped with a single
local oscillator, in the case of multi-antenna UEs, the local
oscillator is shared by |Mu| TX antennas mounted on the u-
th UE. Consequently, the number of CFOs estimated at the
receiver is reduced from the total number of TX antennas M
to the number of UEs U , improving the accuracy of CFO
estimation compared to the case of single-antenna UEs.

H. Complexity Analysis

First, the computational complexity of each JCCE algorithm
was evaluated in terms of the number of real multiplication
operations required to estimate channel coefficients and CFOs.
To evaluate the approximate number of real multiplication
operations, we adopt the basic assumptions presented in [58].

The computational complexity per iteration of the proposed
JCCE algorithm is O (PNMKp + LMKp), whereas that of
the S-GAMP algorithm, which performs JCCE based on an
the extended equivalent signal model [27], is O (LPNMKp).
Therefore, the proposed method can operate at a low compu-
tational cost, particularly when the phase shift is large and L
must be set to a large value. In CFO estimation based on SAGE
[20], since the CFO for every UE is estimated individually
using interference cancellation, the computational complexity
per iteration of “GaBP w/ SAGE” is approximately the same
as the proposed method, O (PNMKp).

Fig. 11(a) shows the number of real multiplication opera-
tions as a function of the number of TX antennas M . Similar
to the results of the complexity analysis described above,
it can be seen that the computational cost of “S-GAMP” is
the largest, and that the proposed method and “GaBP w/
SAGE” have similar computational costs. More specifically,
for M = 16, “Proposal I” can operate at about 0.3 times the
computational cost of “S-GAMP” and about 1.2 times that of
“GaBP w/ SAGE.”
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Fig. 11. Complexity analysis of JCCE algorithm as a function of M with N = 32, U = M , Kp = 64, P = 8, τ1,max = 16, and L = 10.

For a more practical evaluation, Fig. 11(b) shows the
average execution time3 for each JCCE algorithm to estimate
channel coefficients and CFOs. When the programs were
actually executed and their execution times were compared,
as shown in Fig. 11(b), the results show that the relative
relationship between the proposed and the SotA alternatives
is a similar trend to that shown in Fig. 11(a) in terms
of the number of multiplication operations. However, when
comparing with Fig. 11(a), the difference between “Proposal I”
and “GaBP w/ SAGE” has slightly increased. This is thought
to be due to the delay caused by the increased number of
processing steps as a result of the proposed method taking into
account the phase shift and the variance of the candidate CFOs.
Looking at the Fig. 11(a) more specifically, in the case of
M = 16, the execution time of “Proposal I” is approximately
0.6 times the execution time of “S-GAMP”, and approximately
1.5 times the execution time of “GaBP w/ SAGE.”

As can be seen from the results of the performance compar-
ison shown above, considering that the proposed method can
significantly improve performance and achieve performance
close to the lower-bound reference in many cases, it can be
said that the proposed method achieves an excellent trade-off
between estimation capability and computational cost.

V. CONCLUSION

In this paper, we designed a novel algorithm to achieve
low-complexity and high-accuracy large-scale MU-MIMO-
OFDM signal demodulation with low pilot overhead in
the presence of CFOs. The proposed Bayesian JCCE
algorithm can significantly reduce the pilot overhead in
frequency-selective fading channels, by employing the BG
distribution and the GM distribution as the prior distributions
of the channel coefficients and phase shifts, respectively. The
CE using the BG prior can capture the statistical properties
of frequency selective-fading channels, i.e., the sparsity in the
delay domain and the power deviation between paths. The
CFO estimation using the GM prior enables robust estimation

3To measure the execution time of the algorithms, we used the profiler of
MATLAB R2023a. The measurements were performed on Windows 10 with
Intel (R) Core (TM) i7-4770 CPU at 3.40 GHz and 32.0 GB RAM. The non-
linear function table is assumed to be read in memories in advance; hence,
the processing time for computing exp [·] can be ignored.

by adaptively switching between two strategies, candidate
CFO search and candidate CFO update, depending on the
reliability of the phase shift estimated by BiGaBP. In addition,
using the estimated data symbols as effective soft pilots can
further improve estimation accuracy. The numerical results
show that our proposed method outperforms the SotA schemes
and approaches the performance of the idealized scheme for
a variety of system parameters. Furthermore, a comparative
study with the SotA alternatives provided insight into the
design of robust JCCE mechanisms in MU-MIMO-OFDM
systems with short non-orthogonal pilots.
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