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a Neural Network Demodulator and SD-FEC
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Daisuke Hisano , Member, IEEE, and Akihiro Maruta , Member, IEEE

Abstract— Optical eigenvalue transmission based on inverse
scattering transform (IST) has been studied for one of
approaches to overcome the Kerr nonlinearity limit in fiber
optic communications. In the recent decade, several multilevel
modulation schemes that are based on IST, such as 16-ary
and 64-ary signals using on–off encoding and b-modulation
of multieigenvalues, have been proposed. To increase the
transmission capacity and extend the transmission distance,
applications of machine learning-based approaches to IST-based
transmission have been proposed and demonstrated. Another
prospective approach to increase the transmission capacity and
extend the transmission distance in fiber optic communication
involves the application of soft-decision forward error correction
(SD-FEC). However, the applicability of SD-FEC to eigenvalue-
modulated signals has not yet been investigated in detail because
the distribution of the received signal is complicated for IST-
based transmissions. In this paper, we describe in detail the
theory of optical eigenvalue transmission, including the design
of multilevel eigenvalue-modulated signals and the effects of
noise and scaring parameters (coefficients for normalization of
the nonlinear Schrödinger equation). We explain why neural
network (NN) demodulators are advantageous for eigenvalue
transmission systems. Consequently, we propose a combination
of NN-based demodulators and SD-FEC decoding. A multilabel
NN-based demodulator is employed to compute the L-value from
the received eigenvalue pattern at the receiver. For a 16-ary
eigenvalue-modulated signal, the proposed method outperformed
a combination of the Gaussian approximation and SD-FEC in the
simulation. Moreover, the experimental results show successful
operation with error-free transmission through a 3000-km optical
fiber line. In addition, we experimentally demonstrate the
applicability of SD-FEC to a 4096-ary eigenvalue-modulated
signal. The experimental results indicate that an achievable
transmission distance can be extended to 1200 km using the
NN demodulator and SD-FEC.

Index Terms— Optical fiber communication, fiber nonlinear
optics, neural networks, forward error correction.
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I. INTRODUCTION

DIGITAL transformation along with modern lifestyles
and the advent of cyber-physical systems have resulted

in a demand for high-capacity fiber optic communications.
In the future, more high-capacity transmission systems
will be required. In general, the transmission capacity can
be increased by increasing the signal-to-noise ratio, i.e.,
increasing the power of the signal launched into the optical
fiber line. However, under high-power signal conditions, Kerr
nonlinearity in the optical fiber induces signal distortion,
which is an important impairment that limits the transmission
capacity and distance [1]. Several nonlinear compensation
techniques have been proposed to reduce this limit, e.g., digital
backpropagation (DBP) [2]. However, several problems remain
in the implementation of these techniques in practical systems.
For example, DBP requires high computational complexity
because it computes signal backpropagation along the fiber
longitudinal direction step by step or span by span in the
digital domain. Furthermore, further computational resources
are required to compensate for the effect of the cross-phase
modulation and four-wave mixing with high accuracy in WDM
transmission systems.

As a novel approach for overcoming the Kerr nonlinearity
limit, optical eigenvalue communication [3], [4], [5], [6] based
on the inverse scattering transform (IST) [7] has recently
attracted considerable attention [8], [9]. IST is well-known
as nonlinear Fourier transform (NFT). Eigenvalues that are
associated with the lossless nonlinear Schrödinger equation
(NLSE) are invariant during transmission in dispersive and
nonlinear fibers despite changes in the waveform. In 1993,
Hasegawa and Nyu proposed the concept of eigenvalue
communication [3]. The development of digital coherent
technology enables the implementation of the concept of
eigenvalue communication [4], [5], [6], [10].

In the recent decade, various transmission schemes based on
the NFT have been proposed and demonstrated. To increase the
transmission capacity, the on–off encoding of multieigenvalues
has been proposed [11], [12]. We experimentally demonstrated
the 50-km transmission of a 4096-ary eigenvalue-modulated
signal using a triangular-lattice-shaped configuration with
12 eigenvalues [13]. In another approach, several modula-
tion schemes using the nonlinear spectrum and scattering
coefficient b associated with eigenvalues were proposed
[14], [15], [16], [17]. In [17], the transmission of 16QAM
of the coefficient b using eigenvalues over 1200 km was
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experimentally demonstrated. Joint modulation using both
continuous and discrete nonlinear spectra has also been
reported [18], [19], for example, 3200-km transmission of
dual-polarization QPSK signals on a continuous spectrum
and two discrete spectra was reported in [19]. As with the
DBP technique, problems of computational complexity for
scattering data detection and application to WDM system
persist; however, studies have focused on addressing these
problems [20], [21].

To further improve the receiver sensitivity for multilevel
modulation and long-haul transmission, machine learning-
based approaches are valid even for NFT-based transmission
systems, such as classification [22], [23] and equalization [26],
[27]. Deviations in the eigenvalue and coefficient b due to
amplified spontaneous emission noise are not independent
and identically distributed (i.i.d.) using the circular Gaussian
process, especially in cases involving multieigenvalue sys-
tems [28], [29]. In addition, the statistics of the eigenvalues
and scattering coefficients are not completely understood
when white Gaussian noise is added to time-domain signals
of multieigenvalue transmission systems. Therefore, machine
learning-based approaches are effective for demodulation,
particularly in NFT-based transmission systems. Time-domain
(TD) neural network (NN) [22] and eigenvalue-domain
(ED) NN receivers [23] outperformed the conventional
demodulation methods without NNs in terms of the bit error
rate (BER) characteristics. The TD-NN receiver has a simple
configuration; however, the TD-NN requires retraining of
the NN when the transmission distance or receiver state
changes, such as fluctuation of carrier frequency offset (CFO).
By contrast, the ED-NN receiver exhibits high generalization
performance in terms of transmission distance and receiver
state [23], [24], although it requires more computation for the
NFT compared to the TD-NN receiver. In [24], for a large
CFO, a demodulation technique combining an eigenvalue-
based CFO compensation and the ED-NN receiver has been
demonstrated.

Furthermore, soft-decision forward error correction (SD-
FEC) techniques have been applied to optical fiber commu-
nications to increase the transmission capacity and extend
the transmission distance [30], [31]. The logarithmic ratio
of a posteriori probabilities (L-value) is calculated from the
received signals and generally utilized in SD-FEC. However,
deriving the L-value from the received eigenvalue-modulated
signal is complicated because the statistics of the eigenvalues
and scattering coefficients are not completely understood.
Therefore, the applicability of SD-FEC to eigenvalue-
modulated signals has not yet been investigated in detail. Some
previous studies on NFT-based transmissions have evaluated
the BER characteristics before applying FEC with the FEC
limit, assuming the use of hard-decision (HD) FEC or SD-
FEC. Some studies have estimated achievable information
rates using mutual information [25].

In this paper, we describe a comprehensive theory of
optical eigenvalue transmission including the design of a
multilevel eigenvalue-modulated signal and the effects of
noise and scaling parameters. Consequently, we propose
the combination of an NN-based demodulator and SD-FEC

decoding. A multilabel NN-based demodulator is employed
to compute the L-value from the eigenvalue input at the
receiver. We investigated the applicability of SD-FEC to
multilevel eigenvalue-modulated signals using both numerical
simulations and experiments. An eigenvalue transmission
using an on-off encoding is suitable for long-haul transmission
because of its high tolerance to timing jitter and phase
noise [5], [12]. Furthermore, because the noise distribution
of eigenvalues becomes more complex when the number of
eigenvalues is large, we studied the case that the proposed
method is applied to multieigenvalue transmission with the
on-off encoding, such as 4 and 12 eigenvalues. As an
extension to our previous study [32], [33], in this paper,
we describe in detail the demodulation method along with
theoretical, numerical, and experimental investigations of basic
characteristics and their applicability to 4096-ary eigenvalue-
modulated signals. First, we describe the theory of eigenvalue
modulation, eigenvalue-modulated signal design, and the
concepts of the proposed method. By performing simulations,
we demonstrate that the proposed method is valid for 16-
ary eigenvalue-modulated signals, and shows a clear waterfall
BER curve after SD-FEC. In addition, the combination of
the NN demodulator and SD-FEC outperforms other methods
using the Gaussian approximation without NN in terms of
the BER after SD-FEC. Subsequently, we experimentally
demonstrated error-free transmission through a 3000-km
optical fiber. Finally, the applicability of the proposed method
to another multilevel signal, i.e., a 4096-ary eigenvalue-
modulated signal, was determined experimentally using
12 eigenvalues. Thus, the transmission distance of the 4096-
ary eigenvalue-modulated signal can be extended to 1200 km
using the NN demodulator and SD-FEC.

The remainder of this paper is organized as follows:
Section II describes eigenvalue transmission with on-off
encoding. Section III describes the NN-based demodulator for
the SD-FEC proposed in this study. Section IV discusses the
applicability of the proposed method to a 16-ary eigenvalue-
modulated signal by performing numerical simulations and
experiments. Section V discusses the experimental results
obtained when the proposed method is applied to a 4096-
ary eigenvalue-modulated signal. Finally, Section VI lists the
major conclusions that were obtained from this study.

II. EIGENVALUE TRANSMISSION

Sections II-A and B introduce the fundamental backgrounds
of NLSE and IST, which were constructed by the related
works. Sections II-C and D describes the eigenvalue
transmission based on the on–off encoding and design of 4096-
ary signal used in this paper. Sections II-E and F discuss
the effects of noise and scaling parameter on the eigenvalue
transmission.

A. Nonlinear Schrödinger Equation

Lightwave propagation in dispersive and nonlinear fiber can
be described using NLSE [37]:

i
∂E

∂z
− β2

2
∂2E

∂t2
+ γ|E|2E = −iαE, (1)
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where z, t, E(z, t), β2, γ, and α denote the propagation
distance, time moving with average group velocity, complex
envelope amplitude of the electric field, group velocity
dispersion (GVD) parameter, nonlinear parameter, and loss
coefficient, respectively. In (1), we assumed that the third-
order dispersion and Raman scattering effects were negligible
for a pulse width > 1 ps. Furthermore, a scalar propagation
of single-polarization component is considered. We introduce
the normalized distance Z, time T , and complex envelope
amplitude q using base time t0 as defined below

T =
t

t0
, Z =

|β2|
t20

z, q = t0

√
γ

|β2|
E. (2)

Considering the case of anomalous dispersion (β2 < 0),
NLSE (1) can be normalized as

i
∂q

∂Z
+

1
2

∂2q

∂T 2
+ |q|2q = −iΓq, (3)

where Γ = αt20/|β2|.
For a lossless fiber (Γ = 0), the normalized NLSE (3) can

be analytically solved by IST. When Γ ̸= 0, we applied an
approximation of the guiding center soliton [38]. Considering
the loss effect and periodic amplification, we further introduce
the normalized amplitude u as

q = a(Z)u, a(Z) =

√
2ΓLa

1− exp (−2ΓLa)
exp (−ΓZ), (4)

where La is the normalized amplifier spacing. When La is
sufficiently small, i.e., La ≪ 1, the loss effect is negligible.
Therefore, the normalized NLSE for u(Z, T ) is obtained as:

i
∂u

∂Z
+

1
2

∂2u

∂T 2
+ |u|2u = 0. (5)

NLSE (5) can be solved by IST as well as the lossless
case in (3). Note that the above path-average model can be
applied to a single span between lumped optical amplifiers.
As an alternative way to arrive at a lossless NLSE, schemes
using distributed Raman amplification [34] and dispersion-
decreasing fibers [35] have been reported.

When noise is added by optical amplifiers, (5) is modified
by adding a noise term n(Z, T ) as follows

i
∂u

∂Z
+

1
2

∂2u

∂T 2
+ |u|2u = n(Z, T ). (6)

In this paper, we consider lumped periodic amplification
using erbium-doped fiber amplifiers (EDFA), which provides
random noise at Z = mLa(m = 1, 2, 3, . . . ,M) in M spans.

B. Inverse Scattering Transform

In 1972, Zakharov and Shabat found a Lax pair for the
NLSE [36], and the details of the method to solve the NLSE
were subsequently developed by Ablowitz and Segur [7].
Using the Ablowitz–Kaup–Newell–Segur (AKNS) formula,
the scattering problem of the NLSE (5) is expressed by

∂ϕ1

∂T
= −iζϕ1 + iuϕ2

∂ϕ2

∂T
= iu∗ϕ1 + iζϕ2

(7)

Fig. 1. Procedure to solve NLSE using IST.

where ζ and ϕl(Z, T ) (l = 1, 2) denote the complex
eigenvalues and eigenfunctions, respectively. (7) is called the
Zakharov-Shabat eigenvalue problem. If u satisfies (5), ζ
remains invariant with distance Z.

Fig. 1 depicts a block diagram of the procedure to solve
the NLSE (5) using the IST [7]. The procedure is as
follows: 1⃝ Direct scattering problem: Scattering data, that
is, eigenvalue ζn, the norming constant γn(ζn, 0), and the
reflection coefficient r(ξ, 0) (for ζ = ξ ∈ R), are derived from
the initial pulse u(0, T ). 2⃝ Distance evolution of scattering
data: the evolution of the scattering data with distance Z
is calculated. 3⃝ Inverse scattering problem: Evolved pulse
u(Z, T ) is constructed from the scattering data ζn, γn(ζn, Z),
and r(ξ, Z) at distance Z. In the field of optical fiber
communications, processes 3⃝ and 1⃝ are typically called NFT
and inverse NFT (INFT), respectively.

In 1⃝, the direct-scattering problem in (7) is considered
treating u(0, T ) as a potential. In the case of vanishing
boundary conditions, the reflected and transmitted waves were
derived for incident waves from T = ∞. Assuming the
solutions to satisfy the boundary conditions, the scattering
coefficients a and b are obtained. The coefficients a and b
respectively correspond to the amplitudes of the incident and
reflected waves for T →∞. The norming constant γn and the
reflection coefficient r are defined as follows:

γn =
b(ζn)
a′(ζn)

, r(ξ) =
b(ξ)
a(ξ)

, (8)

where

a′(ζn) =
∂a(ζ)
∂ζ

∣∣∣∣
ζ=ζn

, a(ζn) = 0. (9)

In the NFT, γn and r are called the discrete and continuous
nonlinear spectra, respectively. γn consists of the discrete
eigenvalues ζn ∈ C+, which corresponds to the soliton
components. r consists of the continuous eigenvalues on the
real axis ξ ∈ R, which corresponds to the dispersive (radiation)
wave components. A modulation scheme that uses both γn

and r is known as a joint modulation scheme. The discrete
eigenvalue ζn corresponds to the soliton components.

Next, we briefly describe the 2⃝ distance evolution of the
scattering data. The evolution of the scattering coefficients is
described by:{

a(ζn, Z) = a(ζn, Z = 0)
b(ζn, Z) = b(ζn, Z = 0)e2iζ2

nZ .
(10)
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Fig. 2. Overview of eigenvalue modulation–demodulation scheme based on on–off encoding of four eigenvalues (N = 4).

From (8), the evolution of the spectral amplitude can be
described as follows:{

γn(ζn, Z) = γn(ζn, Z = 0)e2iζ2
nZ

r(ξ, Z) = r(ξ, Z = 0)e2iξ2Z .
(11)

As described in (10) and (11), the scattering coefficient b
and nonlinear spectral amplitudes evolve linearly with Z.
Therefore, b-modulation and the nonlinear spectral amplitude
modulation prevent nonlinear distortion owing to the Kerr
nonlinearity in a lossless ideal fiber.

In the 3⃝ inverse scattering problem, the evolved pulse
u(Z, T ) is constructed using ζn, γn(ζn, Z), r(ξ, Z), and
evolved eigen function. When no components exist in the
nonlinear continuous spectrum, u(Z, T ) denotes an N -soliton
solution. When N = 1, the solution corresponds to a
fundamental soliton.

u(Z, T ) = η sech[(ηT − Ts(Z)]e−iκT−iθ(Z), (12)

where ζ = (κ + iη)/2. The imaginary η and real κ parts
of the eigenvalue correspond to the soliton amplitude (pulse
width) and frequency, respectively. Ts and θ are related to the
nonlinear spectral amplitude γn or scattering coefficient b.

In the recent decade, various transmission schemes that use
scattering data, such as ζ, b, γn, and r, were proposed and
demonstrated [5], [11], [12], [13], [16], [17], [18], [19]. These
transmission schemes are known as NFT-based transmissions.
It should be emphasized that the parameters evolve with
distance Z linearly. In particular, the eigenvalue ζ is invariant
during the transmission. Therefore, NFT-based transmission
has the potential to overcome the Kerr nonlinearity limit by
completely canceling the effects of nonlinear distortions under
an ideal condition.

In the eigenvalue transmission, the information bits are
encoded into the discrete eigenvalues ζn and the discrete
nonlinear spectrum γn(ζn) (or b(ζn)). In this method,
the eigenvalue-modulated signal consists of only soliton
components, not including dispersive wave. Because the
soliton components are bounded in the time domain, especially
when using the eigenvalues on the imaginary axis, it is
less susceptible to inter-symbol interference effect from the
neighbor symbols. Although the center position and phase
of the soliton component respectively correspond to the
amplitude and argument of the discrete nonlinear spectrum

γn(ζn) (and b(ζn)), the timing jitter and phase variation do
not influence the position of the eigenvalue [5]. Therefore,
transmission schemes that use only discrete eigenvalues for
encoding are suitable for long-distance transmission because
eigenvalue detection has a high tolerance to timing jitter
and phase noise. By contrast, the spectral efficiency of the
eigenvalue transmission is lower than that of joint modulation,
which includes the continuous spectrum.

C. Eigenvalue Modulation Based on On–Off Encoding

In this study, we employed multieigenvalue transmission,
which is based on the on–off encoding of multieigen-
values [12], [39]. Fig. 2 illustrates an overview of the
multieigenvalue transmission system using on–off encoding.
On–off encoding is based on a one-to-one mapping between
an N -bit input and the subsets of N eigenvalues. If the value
of the bit in the jth position is 1 (or 0), the jth eigenvalue
is included (or excluded). An example of N = 4 is shown in
Fig. 2. A sequence of four bits is mapped at the transmitter for
the eigenvalue patterns. Note that on–off encoding is based on
a one-to-one mapping between a four-bit input and the subsets
of the four eigenvalues. In this scheme, γn (or b) is set to a
constant value, not modulated. Consequently, the eigenvalue
pattern was converted into a pulse using the inverse NFT
(INFT) ( 3⃝ inverse scattering problem). In this study, we used
an INFT algorithm described in [39]. In [39], a pulse u(Z, T )
is generated by dividing the cases by T ≥ 0 and T < 0 to
avoid ill-conditioning problems. For the pulse generation, one
eigenfunction is used for T ≥ 0, whilst another eigenfunction
is used for T < 0. By using this method, a stable pulse
is obtained even for N -soliton with a large N such as 12.
As another approach for the INFT, Darboux transformation-
based algorithms are typically used, such as the proposed
method in [6]. In the on–off encoding of N eigenvalues,
the converted pulse corresponds to a symbol that carries N
information bits. After the INFT, an eigenvalue-modulated
signal is generated by connecting the converted pulses in series
in the time domain. The optical eigenvalue-modulated signal
is generated by an IQ modulator and transmitted into the fiber
transmission line. As described in (7), the eigenvalue pattern
is conserved during transmission in the absence of loss and
noise.
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Fig. 3. Eigenvalue configurations: (a) Previous work without noise, (b) this
work without noise, (c) previous work with noise, and (a) this work with
noise.

An eigenvalue pattern is detected at the receiver using the
NFT ( 1⃝ direct scattering problem) from the complex envelope
amplitude obtained using a coherent receiver. When we use the
Fourier collocation method [5], [10] for eigenvalue detection,
the number of detected eigenvalues depends on the number
of sampling points. For example, 32 eigenvalues are obtained
when the sampling points per pulse is 32. Because the Fourier
collocation assumes periodic boundaries, extra eigenvalues
appear on the real axis, which correspond to the degenerate
bands in the periodic NFT. Finally, the detected eigenvalue
pattern is decoded into a bit sequence.

D. Design of 4096-Ary Eigenvalue-Modulated Signal

Fig. 3 shows eigenvalue configurations of 12 eigenvalues for
a 4096-ary eigenvalue-modulated signal in previous work [23]
((a) and (c)) and this work ((b) and (d)) with/without
noise. Figs. 3(c) and (d) shows the simulation results when
white Gaussian noise was added to the time-domain pulse.
In the previous work for a 16-ary eigenvalue-modulated
signal using four eigenvalues, eigenvalues are lattice-shaped,
such as the eigenvalue configuration depicted in Fig. 3(a).
When a higher-level multilevel eigenvalue-modulated signal
is generated, such as a 4096-ary signal using 12 eigenvalues,
the eigenvalues must be allocated more densely because the
available area on the complex eigenvalue plane is limited by
the sampling rate and the bandwidth of the transmitter. When
the sampling rate and bandwidth are limited, eigenvalues with
large values in the real and imaginary parts are not detected
accurately [40]. Because the real part of the eigenvalue
expresses the soliton frequency, a pulse with a large real part
of an eigenvalue requires a wideband transceiver. Similarly,
because the imaginary part expresses the soliton amplitude,
a pulse with a large imaginary part of an eigenvalue has a
narrow pulse width and a wide spectral width and requires
a wideband transceiver. It has been reported that insufficient
sampling rates degraded the eigenvalue detection and the
demodulation performance of the NN receivers [23]. By
contrast, the dense eigenvalue allocation decreases the distance
from the next signal points, which results in a decrease
in noise tolerance. To improve noise tolerance, a triangular
lattice configuration has been proposed for PSK modulation

TABLE I
EIGENVALUES USED FOR 4096-ARY EIGENVALUE-MODULATED SIGNAL

Fig. 4. Parameter Zp dependence.

on the nonlinear spectral amplitudes of seven eigenvalues [15].
We applied the triangular lattice configuration, as depicted
in Fig. 3(b), to the on-off encoding of multieigenvalue to
emphasize noise tolerance [13]. Fig. 3(c) and (d) present the
detected eigenvalue patterns after the Gaussian noise loading
in the time domain for a signal-to-noise ratio (SNR) of
20 dB. The conventional lattice configuration exhibited evident
eigenvalue errors because the deviation in the eigenvalue of the
imaginary part exceeds that of the real part. In contrast, all
12 eigenvalues of the proposed configuration can be classified
using a threshold on the complex eigenvalue plane. In this
study, a triangular lattice-shaped eigenvalue pattern is used,
as shown in Fig. 3(b) for a 4096-ary eigenvalue-modulated
signal. The 12 eigenvalues are summarized as shown in
Table I.

In addition, the initial pulse u(Z, T ) at the transmitter
depends on the norming constants γn(ζn, Z) (or b(ζn, Z)).
It has been reported that a combination of γn(ζn, Z)
was optimized to achieve better spectral efficiency [41]
in multieigenvalue soliton transmission systems. However,
considering a simple combination to evaluate the NN
demodulator and the application of SD-FEC in this study, we
used a combination of b(ζ1) = b(ζ2) = · · · = b(ζ12) = 1i at
Z = 0 for all the eigenvalues.

Under the above condition, we introduced a pre-propagation
parameter Zp. The parameter Zp expresses the distance of
the pre-propagation at the transmitter. That is, we chose a
soliton pulse of u(T, Zp) as a transmitting pulse. In other
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words, pre-propagated coefficients b(ζn, Z = 0)e2iζ2
nZp are

used for a transmitting pulse. Fig. 4 shows the pulse shapes,
spectra, and detected eigenvalue patterns obtained by varying
parameter Zp when all 12 eigenvalues are in the “on” state.
The eigenvalue patterns were detected under a sampling rate
of 128 samples per pulse and a normalized time window
width of 128 (−64 ≤ T ≤ 64). When Zp = 0, the pulse
has a high peak power and wide spectrum because 12 soliton
components are multiplexed around T = 0. Consequently, the
detected eigenvalue is degraded because of limited sampling
points per pulse. We compressed the spectrum and peak-to-
average power ratio by decreasing the value of Zp. For Zp =
−12, although the eigenvalue pattern can be reconstructed, the
necessary width of the time window increases. In this paper,
we used Zp = −8 with the balance of the temporal pulse
width and spectral width [13]. In the experiments described in
Section V, we set the window size to 64. Because the main
pulse components were within the normalized time range of
±30, the guard time was estimated to be approximately 4 (67
ps for t0 = 16.7 ps) at the transmitter.

E. Effect of Noise

Amplified spontaneous emission (ASE) noise that is
caused by optical amplifiers is one of the main factors
that limit transmission capacity and distance in eigenvalue
transmissions. Even if we assume that the deviation of each
time-domain pulse sampling point caused by ASE noise
is i.i.d. with the Gaussian process, deviations of detected
eigenvalues are not i.i.d. with the Gaussian process. This is
because soliton pulses consist of multiple sampling points in
the time domain, which induces the interaction of ASE noise
when the time-domain pulses are converted to eigenvalues
via NFT. In other words, the Gaussian distribution of the
noise in the time domain is converted into a non-Gaussian
distribution using the nonlinear process. This is particularly
complicated in multieigenvalue systems, where eigenvalue
deviations are correlated with the other eigenvalues [42].
Fig. 5 presents the eigenvalue deviations for representative
eigenvalue patterns. In the figure, white Gaussian noise was
added to the time-domain pulse such that the optical signal-
to-noise ratio (OSNR) is 3.6 dB. To evaluate the difference
in the probability distribution, the Kullback–Leibler (KL)
divergence DKL between the actual distribution and Gaussian
fitting is also shown in the figure. As shown in Fig. 5, the
eigenvalue deviation depends on the position of the eigenvalue.
Moreover, there may be changes in the deviation depending
on the pattern, whereas the eigenvalues remained at the same
position. In addition, the histogram of the eigenvalue deviation
does not match the Gaussian distribution. For one eigenvalue
such as ζ1 = 0.4i and ζ2 = 0.2i, a steeper peak in the
histogram is observed compared with the Gaussian fitting. For
two eigenvalues of {ζ1, ζ2} = {0.4i, 0.2i}, the distributions
are asymmetric and the values of DKL are larger than those
of one eigenvalue. This indicates that it is difficult to derive the
L-value for SD-FEC from the detected eigenvalue pattern on
the complex eigenvalue plane. To address this issue, this study
presents an NN-based demodulator to compute the L-value.

Fig. 5. Eigenvalue deviations of representative eigenvalue patterns with noise
for OSNR = 3.6 dB.

The details of the proposed NN demodulator are described in
Section III.

F. Effect of Scaling Parameter

The scaling parameter in the normalization (2) is another
major factor that limits the transmission capacity and distance
in the eigenvalue transmission. Although the eigenvalue is
conserved during the transmission, the waveform and linear
Fourier spectrum evolve with distance z. Here, z is the real
distance, which is related to the normalized distance Z

z =
t20
|β2|

Z = z0Z (13)

where t0 is the basic time (time-scaling parameter) when
used for normalization defined in (2) at the transmitter, and
corresponds to the temporal pulse width for a fundamental
soliton that has an eigenvalue of ζ = 0.5i. Given the specified
eigenvalues and initial parameters, the waveform and spectrum
of the eigenvalue-modulated signal are determined by the
normalized distance Z. Then, the real distance z is scaled by
t0 and β2, as described in (13). The distance scaling parameter
z0 corresponds to t20/|β2|. To increase transmission capacity,
the symbol rate can be increased by decreasing t0. In this
paper, we chose t0 = 16.7 ps for the 4096-ary eigenvalue-
modulated signal, which is a minimum value to achieve a
stable modulation and demodulation for the back-to-back (B-
to-B) configuration under the experimental environment in
Sec. V. However, this approach decreases z0 and induces a
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Fig. 6. Simulation results: Linear fourier spectra and detected eigenvalue patterns after the transmission for (a) D = 4.4 and (b) 0.7 ps/nm/km.

phenomenon in which the waveforms and spectrum change
rapidly with real distance z.

Fig. 6 shows the linear Fourier spectra and detected
eigenvalue patterns of the designed 4096-ary eigenvalue-
modulated signal that was presented in the previous section
for t0 = 16.7 ps. The simulation results after transmission in
non-zero dispersion-shifted fiber (NZ-DSF) with a dispersion
parameter D = 4.4 ps/nm/km are shown in Fig. 6(a). In
the simulation, the transmission loop consisted of a 50-
km NZ-DSF and an EDFA with a noise figure of 5 dB.
White Gaussian noise was added to the eigenvalue-modulated
signal in the time domain at the end of each 50-km span.
The lightwave propagation was calculated using the split-step
Fourier method [37]. The distance scaling parameter z0 was
50 km at a wavelength of 1550 nm. In this simulation, the pre-
propagation parameter Zp was set to −8 for the initial pulse
at the time of transmission. Therefore, the pulse propagated
in the reverse direction over a normalized distance of 8 was
used as the initial pulse. At a transmission distance of 400 km,
which corresponded to a normalized distance of 8, the soliton
components of each eigenvalue were concentrated at t = 0,
which resulted in a steep pulse and broadened spectrum. When
sampling was limited to 60 GSa/s, the detected eigenvalue
patterns were significantly degraded (as shown in Fig. 6(a))
because of the spectral broadening of the signal. Fig. 6(b)
shows the simulation results after the transmission in an NZ-
DSF with a dispersion parameter of D = 0.7 ps/nm/km.
In this case, the distance scaling parameter z0 was 311 km
at a wavelength of 1550 nm. The spectrum changes slowly
with the real distance z, and clear eigenvalue patterns were
observed even after a transmission of 1200 km.

When the eigenvalues with different real parts are used for
eigenvalue transmission, N -soliton solution is split to each
soliton component in the time domain because of the different
group velocities. In this case, inter-symbol interference from
the neighbor symbols degrades the signal without enough
guard time. By using an NZ-DSF with a small dispersion
parameter that achieves a large z0, the effect of the inter-
symbol interference can also be relaxed because the waveform
changes slowly with the real distance z.

Next, we discuss the relation between the loss and scaling
parameter. In the simulation, the amplifier spacing la(= z0La)
and the fiber loss were set to 50 km and 0.2 dB/km,

respectively. As described in Section II-A, the condition
la/z0 ≪ 1 for the guiding center soliton [38] needs
to be satisfied. However, for D = 4.4 ps/nm/km, the
amplifier spacing la was comparable with the distance scaling
parameter z0. Therefore, the effect of the fiber loss is non-
negligible, and eigenvalue deviations and spectral degradation
occur after 400–1200 km, as shown in Fig. 6(a). On the
other hand, for D = 0.7 ps/nm/km, the distance scaling
parameter z0 is 311 km and the normalized distance Z =
8 corresponds to the real distance z = 2491 km. The
eigenvalue patterns show less degradation compared to the
case with D = 4.4 ps/nm/km. The above simulation results
indicate that the NZ-DSF with a small positive dispersion
parameter is suitable, especially for the long-haul transmission
of 4096-ary eigenvalue-modulated signals. Note that fibers
(wavelength range) with zero dispersion and normal dispersion
are inapplicable to the eigenvalue transmission in this study
because bright solitons can not propagate such fibers.

III. APPLICATION OF NN DEMODULATOR AND SD-FEC

In a previous study [13], [43], the eigenvalue pattern is
decoded into a bit sequence using an NN-based classifier,
assuming the use of an HD-FEC. In [13], an NN demodulator
with multiclass classification was proposed, whereas in [43],
an NN demodulator with multilabel classification was
proposed. Fig. 7(a) provides an overview of the multilabel
NN demodulator in [43]. The real and imaginary parts of
all of the detected eigenvalues ζr were provided as inputs
to the NN. Note that extra eigenvalues on the real axis are
obtained depending on the number of the sampling points per
pulse when we use the Fourier collocation method. When the
number of the sampling points is 32, we use the information
of 32 eigenvalues including those on the real axis as the
input to the NN. For a 16-ary eigenvalue-modulated signal,
the number of output units is four, which corresponds to the
number of eigenvalues for on–off encoding. The multilabel
NN used a logistic sigmoid function for the output layer,
which outputs a posteriori probability of the on-state of each
bit corresponding to each eigenvalue. Assuming the use of
an HD-FEC, the on–off state of the eigenvalues is identified
using an appropriate threshold for the NN output. The input
data were linked to the multilabel, namely the multi-on-state
of the eigenvalues when more than one output exceeded
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Fig. 7. Overview of NN demodulator for an eigenvalue-modulated signal using an on–off encoding of multieigenvalue: Multilabel NN demodulator for
(a) HD-FEC (previous work) and (b) SD-FEC (proposed).

the threshold. The multilabel NN demodulator has a lower
computational complexity and requires fewer training data
when compared with multiclass classification NN [43]. Note
that a typical feed-forward NN is sensitive to the order of its
inputs. In other words, the order of the eigenvalues sent to the
NN affects the demodulation performance. Therefore, in this
study, the eigenvalues were sorted in an ascending order for
the real part of eigenvalue before inputting to the NN.

In this study, we applied SD-FEC to the eigenvalue
transmission system. The problem is that it is difficult to
derive the L-value because the distributions of the eigenvalues
obtained using NFT did not follow a Gaussian distribution
[29]. Therefore, we propose the use of a multilabel NN-
based demodulator to compute the L-value from the received
eigenvalue pattern. Fig. 7(b) shows an overview of the
proposed method. The NN configuration is identical to that
of the multilabel NN demodulator described above. The input
data are linked with the multilabel, in other words, a posteriori
probability of the on-state of jth eigenvalue corresponding to
p(bj = 1|ζr). represents the output [44]. The bitwise L-value
Lj can be calculated as follows:

Lj = log
p(bj = 1|ζr)
p(bj = 0|ζr)

= log
p(bj = 1|ζr)

1− p(bj = 1|ζr)
. (14)

The calculated L-value is input into the SD-FEC decoder.
The SD-FEC decoder requires L-value in the rigorous
definition [45], while it is sometimes called log-likelihood
ratio (LLR) because those two are equivalent for uniformly
distributed signals. Several studies that applied NN-based
demodulators to the computation of the L-value or LLR for
SD-FEC have been reported for other optical communication
systems, such as coherent fiber-optic transmissions using
QAM [46] and visible-light communication (VLC) [47].

IV. APPLICATION OF NN DEMODULATOR AND SD-FEC
TO 16-ARY EIGENVALUE-MODULATED SIGNAL

To demonstrate the feasibility of the proposed method,
we performed numerical simulations and transmission exper-
iments using a 16-ary eigenvalue-modulated signal with four
eigenvalues.

A. Simulations

First, we investigate the validity of the multilabel NN
demodulator for SD-FEC using numerical simulations. Fig. 8
shows the simulation model. We used the on–off states
of the four eigenvalues, {ζ(1), ζ(2), ζ(3), ζ(4)} = {0.25 +
i0.5,−0.25 + i0.5, 0.25 + i0.25,−0.25 + i0.25} ∈ C for
the eigenvalue modulation. The scattering coefficients b(ζ(n))
were set to 1i at Z = 0 for all the eigenvalues. The initial
soliton pulses at the transmitter were generated with a pre-
propagation parameter of Zp = 8. The basic time t0 and
the normalized time window size Tw were set to 50 ps and
32, respectively. The modulation was performed at 10 GSa/s,
the pulse duration was 1.6 ns, and the bit rate was 2.5 Gb/s.
The sampling rate of 10 GSa/s was sufficient to obtain clear
eigenvalue patterns in this study [23] because 98% of the total
power of the eigenvalue-modulated signal was within 5 GHz
in the frequency spectrum at the transmitter. We confirmed
the B-to-B operation to demonstrate the feasibility of the
proposed method. Then, white Gaussian noise was added to
the eigenvalue-modulated signal in the time domain.

At the receiver end, the eigenvalue patterns were detected
from the received signal at 20 GSa/s. The number of
sampling points per pulse was 32, which was sufficient to
detect the eigenvalues accurately [23]. The bitwise L-value
was computed using the multilabel NN-based demodulator,
as discussed in the previous section. Further, a four-layer
perceptron configuration was employed while using the
rectified linear unit (ReLU) activation function; the number
of hidden units was set to 256. For the loss function, we used
a binary cross entropy function for each output of the NN-
based demodulator and adopted the total loss of them. A
total of 62,250 received pulses were divided into separate
sequences of 10,000 and 52,250 pulses for training and BER
test, respectively. Subsequently, the NN was trained using
the Adam optimizer [48], and the following training patterns
were examined: The NN was trained (i) for each OSNR
using each OSNR dataset, (ii) using the OSNR data near
the SD-FEC limit (OSNR=3.4 dB), and (iii) using training
data with an approximately 3-dB lower OSNR value than the
test data. Condition (i) means that a different NN receiver
trained with a different condition was used for each OSNR



1506 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 43, NO. 5, MAY 2025

Fig. 8. Simulation model.

signal. For condition (ii), the same NN receiver was used
for all OSNR signals, however, the target OSNR of 3.4 dB
could be found through the analysis of condition (i). As
well as condition (i), for condition (iii), we used a different
NN receiver trained with a different condition was used for
each OSNR signal. For example, a NN trained with data of
OSNR = 3.4 dB was used for a test of OSNR = 6.4 dB,
while a NN trained with data of OSNR = 13.4 dB was used
for a test of OSNR = 16.4 dB. For comparison, condition
(iv) without the NN demodulator was prepared as follows:
The L-value was calculated assuming that the distribution of
the eigenvalue pattern can be approximated as a Gaussian
distribution following the 1-dimensional (1D) projection of the
eigenvalue pattern using Fisher’s linear discriminant analysis
[49]. In this case, the optimum weights of the 1-D projection
were determined using the training data. Consequently, the
parameters of the Gaussian distribution following the 1-D
projection for each bit, such as the mean and variance, were
estimated using the training data. The L-value for the BER test
was calculated using the optimized weights and the estimated
1-D distribution parameters. The BER before SD-FEC can be
directly estimated from the L-value.

For SD-FEC, a simulation was performed using a random
bit sequence, assuming the use of scramblers and descramblers
at the transmitter and receiver, respectively [50]. We used the
DVB-S2 low-density parity check code (LDPC) [51] with an
overhead (OH) of 20%. The number of decoding iterations
for SD-FEC was optimized in the range from 1 to 10. In this
simulation, we used the L-values of the 210,000 bits data for
the test, however, the decoding was performed changing the
combination and the position of the bits (i.e., the L-values)
randomly [50]. By using this method, we can say that we
have evaluated many hypothetical cases of bit interleaving. The
estimated spectral efficiencies were 0.125 and 0.104 b/s/Hz
with and without the FEC OH, respectively, assuming the use
of a 20-GHz bandwidth at the receiver.

Fig. 9 shows the BER curves before and after SD-FEC. It is
clear that the BER was improved by SD-FEC under training
conditions (i)–(iii). However, residual errors were observed
when OSNR was within the range of 8–12 dB for condition
(i). In contrast, clear waterfall curves were obtained without
any residual errors for conditions (ii) and (iii). An error-free
operation was achieved for OSNR values greater than 3.7 dB.
In addition, the OSNR gain that was required to achieve

Fig. 9. BER curves before and after SD-FEC with/without NN-based
demodulator in the simulation (B-to-B).

an error-free operation was determined to be 0.9 dB when
compared with the case without the NN (condition (iv)). Note
that in this paper we considered an error-free operation when
the BER after SD-FEC was below 3.8×10−3, assuming the
use of HD-FEC with an OH of 7% after performing SD-
FEC. Moreover, we assumed that the errors at an input of
the HD-FEC decoder were spread by using an interleaver.
In the case without SD-FEC (before SD-FEC, with NN (ii)),
a BER below the FEC limit for HD-FEC was achieved when
the OSNR was greater than 10.8 dB. An OSNR gain for an
error-free operation owing to SD-FEC was estimated at 7.1 dB
for condition (ii).

Fig. 10 shows the histogram of the eigenvalue pattern
distribution after the 1D projection of the eigenvalue pattern
under condition (iv) (OSNR= 3.4 dB). It is observed that
the distribution does not match Gaussian fitting curves. The
distributions for b1 = 0, b2 = 0, b3 = 1, and b4 =
1 were asymmetric. Moreover, the distributions of b3 =
0 and b4 = 0 exhibited steeper peaks than the Gaussian
distribution. Therefore, large KL divergences DKL between
the actual distribution and Gaussian fitting were observed.
These distribution mismatches resulted in an OSNR penalty
under condition (iv), as shown in Fig. 9.

The system performance is better evaluated by BER,
however, as long as we are dealing with SD-FEC, it is also
essential to evaluate it by the decoder input information,
which is the soft information that corresponds well to SD-
FEC decoder output performance, not pre-FEC BER [52].
Therefore, we evaluated the Q-factor (Qsoft) that was
calculated from the soft information (asymmetric information
(ASI)) [53]. Fig. 11 shows Qsoft and the number of decoding
iterations for SD-FEC. Qsoft and the number of iterations were
unstable when residual errors were prevalent for condition (i).
This implies an unsuccessful L-value computation because
the NN model was not properly trained. Fig. 12 shows the
histogram of the NN output for b1(ζ(1)) and condition (i).
When the NN was trained using the OSNR data of (a) 3.4 dB,
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Fig. 10. Histogram of the detected eigenvalue pattern after the 1D projection
(condition (iv)). The lines are the Gaussian fitting curves.

the frequency of the NN output smoothly changed between
0 and 1 because the data far from the ideal signal points were
sufficiently included. However, when training the NN using
data with a high OSNR such as (b) 11.4 dB, where the data
far from the ideal signal points were not sufficiently included,
processing noisy data and outliers was difficult, as shown in
Fig. 12(b). By contrast, under conditions (ii) and (iii), the
stable characteristics of Qsoft and iterations were obtained,
as shown in Fig. 11. Condition (iii) exhibited a better Qsoft

characteristic than condition (ii). However, condition (ii) has
an advantage in terms of the general performance in practical
systems because the NN does not require retraining for various
types of OSNR test data under condition (ii). Therefore,
condition (ii) was employed in subsequent experiments.

B. Transmission Experiments

To investigate the applicability of an NN-based demodulator
and SD-FEC to the eigenvalue transmission, we performed
a transmission experiment. Fig. 13 depicts the experimental
setup with an offline NN-based receiver. For eigenvalue
modulation, the same eigenvalue subsets and initial parameters
used in the simulations were considered. An eigenvalue-
modulated signal was generated using an offline digital signal
processor (DSP) employing the same process as what was
used in the simulation. An arbitrary waveform generator
(AWG) and an IQ modulator were used to generate the optical
signals. Subsequently, the optical signals were launched into
a transmission loop comprising a 50-km NZ-DSF, EDFA,
optical bandpass filter (OBPF), variable optical attenuator,
and acoustic optical modulator (AOM) switch, after signal
amplification and trimming were performed using an EDFA
and an AOM switch. The NZ-DSF parameters were a
dispersion parameter of D = 4.4 ps/nm/km, a dispersion
slope of S = 0.046 ps/nm2/km, a nonlinear coefficient of

Fig. 11. (a) Qsoft calculated from the soft information and (b) number of
iterations for SD-FEC in the simulation (B-to-B).

Fig. 12. Histogram of the NN output for b1(ζ(1)). The NN was trained with
data of (a) 3.4 dB and (b) 11.4 dB.

γ = 2.1 W−1/km, and a fiber loss of 0.2 dB/km. The
input power was set to −3.0 dBm, which was the adjusted
average power of 62,250 pulses considering the loop loss,
connection loss, and ASE noise from EDFA. Specifically, the
input power was optimized so that the eigenvalue constellation
after 2000 km transmission was the clearest by monitoring the
detected eigenvalue. The ASE noise source before the receiver
was used when measuring the BER curves. The OSNR was
estimated by using an optical spectrum analyzer (OSA) after
noise loading.
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Fig. 13. Experimental setup.

Fig. 14. BER curves after the transmission in the experiment.

At the receiver end, the signals underwent analog-digital
conversion using a digital storage oscilloscope (DSO). Digital
signal processing for demodulation was performed offline at
a rate of 20 GSa/s. The NN configuration, demodulation
parameters, and SD-FEC parameters were kept identical to
those used in the simulations. We employed condition (ii) for
the NN training. The NN was trained with data obtained in the
experiments. A total of 62,250 received pulses were divided
into separate sequences of 10,000 and 52,250 pulses for
training and BER test, respectively, as well as the simulation.
For training condition (ii) in the experiment, we adopted the
training data with the nearest OSNR to 3.4 dB, i.e., 3.2 dB for
B-to-B, 3.4 dB for 2000 km, 3.2 dB for 3000 km, 3.2 dB for
4000 km, respectively. If training condition (ii) is applied to
a practical system, it is considered that pseudo-random noise
generated in the digital domain is added to the received signal
to generate training data up to the threshold predicted in the
simulation.

Fig. 14 shows the BER curves before and after SD-FEC.
The BER was improved by SD-FEC and no residual errors
were observed for OSNR values greater than 8 dB, even for
transmission distances of 2000 and 3000 km. Fig. 15 depicts
received signal pulses and eigenvalue patterns detected by NFT
for representative patterns. The pulse and eigenvalue patterns
were plotted using 100 representative samples with OSNR
values of approximately 16 dB. After a 4000-km transmission,
the eigenvalue patterns were significantly degraded owing to
the inter-symbol interference and accumulated noise, which
resulted in demodulation failure. Fig. 16 shows the Qsoft

Fig. 15. Received pulses and eigenvalue patterns for representative patterns
obtained in the experiment.

Fig. 16. Qsoft after the transmission in the experiment.

characteristics. The trend of the BER characteristics after SD-
FEC corresponds well with that of Qsoft. From the above
results, we demonstrate that SD-FEC is applicable to the
eigenvalue-modulated signal with the multilabel NN-based
demodulator, even in transmission experiments.

V. TRANSMISSION OF 4096-ARY
EIGENVALUE-MODULATED SIGNAL

To extend the transmission distance, we experimentally
investigated the applicability of the multilabel NN receivers
and SD-FEC to a 4096-ary eigenvalue-modulated signal with
12 eigenvalues. The configuration of the experimental setup
was identical to that shown in Fig. 13. However, several
conditions for the eigenvalue-modulated signal, transmitter,
and NZ-DSF were different from those described in the



MISHINA et al.: LONG-HAUL OPTICAL-EIGENVALUE TRANSMISSION USING A NN DEMODULATOR AND SD-FEC 1509

Fig. 17. BER before and after SD-FEC with varying transmission distances
of the 4096-ary eigenvalue-modulated signal.

previous section. The on–off encoding of the 12 triangular
lattice-shaped eigenvalues described in Sec. II was employed.
For the eigenvalue-modulated signal, we prepared a pulse
sequence by shuffling the 4096 pulses randomly. The base
time t0 and normalized window size were set to 16.7 ps and
64, respectively. The pulse duration was set to 1.07 ns, and
the bit rate with an OH of the SD-FEC was 11.25 Gb/s. The
eigenvalue-modulated optical signal was generated using an
AWG operated at 120 GSa/s and an IQ modulator.

For the transmission loop, we employed a 40-km NZ-DSF
with a low dispersion parameter of D = 0.7 ps/nm/km. The
other NZ-DSF parameters were as follows: a dispersion slope
of S = 0.063 ps/nm2/km, a nonlinear coefficient of γ = 2.4
W−1/km, and a fiber loss of 0.21 dB/km.

At the receiver end, the digital IQ signals were obtained
using a coherent receiver and a DSO. The DSP for
demodulation was performed offline at 60 GSa/s, which
corresponds to 64 samples per pulse. The bit-wise L-value
was computed using the multilabel NN-based demodulator,
as described in Sec. III. The number of input and output
units of the NN was 128 and 12, respectively. Two hidden
layers with 512 hidden units and a rectified linear unit (ReLU)
activation function were employed in the NN. The number of
training and test samples was 16,384 and 65,536, respectively.
The NN was trained using the Adam optimizer [48] and
condition (ii). For SD-FEC, we used the DVB-S2 LDPC [51]
with an OH of 20% or 25%. The estimated spectral efficiencies
were 0.188 and 0.153 b/s/Hz with and without the FEC OH
(20%), respectively, assuming the use of a 60-GHz bandwidth
at the receiver.

Fig. 17 shows the BER values that were experimentally
obtained before and after SD-FEC with varying transmission
distances. Fig. 18 shows the detected eigenvalue patterns,
which include all 4096 patterns after transmission. The
BER and eigenvalue patterns gradually degraded owing to
the effects of dispersion, noise, and bandwidth limitations
of the transmitter as the transmission distance increased.
In particular, the eigenvalues around the edges (Re[ζ] =
±1.1) were distorted because these eigenvalue components

Fig. 18. Eigenvalue patterns detected from the 4096-ary eigenvalue-modu-
lated signal after the transmission.

correspond to high-frequency components in the frequency
domain and the edges of the pulse in the time domain in
the case of the combination of the coefficients b provided
above. Assuming that HD-FEC with an OH of 7% was
used for decoding, the achievable transmission distance was
approximately 600 km. However, owing to the multilabel NN
and SD-FEC, error-free operation was achieved even after
transmission for 1200 km. Moreover, using SD-FEC with
an OH of 25%, the BER after SD-FEC was improved even
after the 1200 km transmission. We expect that a transmission
distance greater than 1200 km can be achieved by suppressing
the eigenvalue distortions around the edges. e.g., using a highly
dense eigenvalue pattern in the real-axis direction.

VI. CONCLUSION

In this study, we describe the theory of optical eigenvalue
transmission including the design of a multilevel eigenvalue-
modulated signal and the effects of impairments such as
noise and chromatic dispersion. Consequently, we propose
a multilabel NN-based demodulator to compute the L-value
from the eigenvalue input at the receiver for SD-FEC
decoding. This study investigates the applicability of SD-
FEC for multilevel eigenvalue-modulated signals using both
numerical simulations and experiments.

First, we described the theory of eigenvalue modulation,
the design of the eigenvalue-modulated signal, and the
concept of the proposed method. We explained that NN-based
demodulators have an advantage in eigenvalue-transmission
systems because the deviations in the eigenvalues are not i.i.d.
with the circular Gaussian process even when white Gaussian
noise is added to time-domain eigenvalue-modulated signals.
By performing simulations, we demonstrated the validity
of the proposed method for 16-ary eigenvalue-modulated
signals, and showed a clear waterfall BER curve after SD-
FEC. In addition, the combination of the NN demodulator
and SD-FEC outperformed the case involving the use of
a Gaussian approximation without NN in terms of BER
after SD-FEC. Subsequently, we experimentally demonstrated
an error-free transmission over a 3000-km optical fiber.
Finally, we experimentally demonstrated the applicability of
the proposed method to other multilevel signals, i.e., a 4096-
ary eigenvalue-modulated signal using 12 eigenvalues. The
transmission distance of the 4096-ary eigenvalue-modulated
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signal could be extended from 600 km to 1200 km using the
NN demodulator and SD-FEC.

When multieigenvalue is used in the nonlinear spectrum
modulation and b-modulation, these distributions are different
from Gaussian distribution. Therefore, we believe that the
combination of the NN and SD-FEC is effective for these
modulation schemes as well. The proposed scheme is expected
to be applied to more advanced NFT-based transmission such
as further multilevel eigenvalue modulation, b-modulation, and
joint modulation.
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