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ABSTRACT    Corrosion significantly impacts the integrity of steel structures, making them more prone to damage and
failure.  Coating  the  steel  surface  with  anti-corrosion  paint  is  a  prevalent  method.  Nevertheless,  these  coatings  are
susceptible  to  damage,  and  corrosion  tends  to  initiate  at  and  spread  from  the  damaged  points,  potentially  leading  to
severe  localized  deterioration.  Accurately  predicting  the  progression  of  corrosion  and  coating  deterioration  at  these
critical points is essential for effective maintenance of steel structures. This study focused on two different paint-coatings
applied  to  SM400  steel,  onto  which  defects  of  varied  sizes  and  shapes  were  artificially  induced  to  mimic  real-world
paint-coating damage. These specimens underwent the accelerated corrosion test (ISO 16539 Method B) to generate data
on corrosion depth at various time intervals. Subsequently, a modified generative adversarial network (GAN) model was
employed to develop a highly accurate prediction model for the deterioration of steel  surfaces,  where the inputs to the
model  are  four  sequential  corrosion  depth  measurements,  and  the  output  is  the  predicted  future  corrosion  depth
distribution.  The  performance  of  the  proposed  model  was  quantitatively  evaluated  using  the  root  mean  square  error
(RMSE).  The  model  demonstrated  outstanding  predictive  accuracy  across  all  defect  scenarios  presented  in  this  study.
Compared  with  both  traditional  GAN  variants  (Conditional  GAN  and  Information  Maximizing  GAN),  the  proposed
model demonstrated a lower RMSE in predictive accuracy. This finding underscores its capability for precise corrosion
prediction in steel structures, even with a relatively small data set. This predictive capability holds significant potential
for predictive maintenance and failure analysis in steel infrastructure.  This study not only validates the use of GAN in
predictive maintenance but also provides a novel approach for the early detection and management of corrosion, crucial
for extending the lifespan of critical infrastructure.

KEYWORDS    corrosion,  generative  adversarial  network,  paint-coated  steel,  coating  defects,  predictive  maintenance,
failure analysis

  
1    Introduction

Corrosion  significantly  affects  the  maintenance  of  steel
structures  across  various  industries  [1].  This  process
entails  the  chemical  reaction  of  metal  with  its
environment,  producing oxides,  hydroxides,  or  sulphides
[2].  Beyond  aesthetic  concerns,  corrosion  can  diminish
the  load-bearing  capacity  of  steel  components,
heightening  the  risk  of  structural  failure  [3,4].

Approximately 10% or more of total metal production is
converted  into  rust  each  year,  representing  a  substantial
proportion of maintenance costs [5]. Moreover, corrosion
is estimated to account for over 3% of the world’s gross
domestic  product  [6,7].  Consequently,  mitigating
corrosion  through  effective  measures,  such  as  protective
coatings  and  periodic  inspections,  is  critical  for
prolonging  service  life  and  reducing  overall  upkeep
expenses [8].

Among  corrosion  prevention  strategies,  paint  coatings
remain  the  most  commonly  employed  due  to  their  cost-
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effectiveness  and ease  of  application  [9].  These  coatings
act as physical barriers against corrosive species [10], but
they are susceptible to impact or abrasion damage, which
compromises  the  substrate’s  protection  [11].  When
defects  occur,  water  and  oxygen  can  penetrate  the
coating,  triggering  localized  corrosion  processes  like
pitting  [12],  which  rapidly  weakens  structural  elements
[13,14].  Even  minor  coating  flaws  may  accelerate
corrosion, as the damaged area can become an anodic site
in  a  galvanic  cell,  with  the  surrounding  intact  coating
acting  as  the  cathode  [15,16].  Furthermore,  undercutting
corrosion  may  propagate  laterally  beneath  seemingly
intact regions of the coating [17], making early detection
and accurate  prediction  of  coating  deterioration  essential
for  scheduling  maintenance  and  controlling  repair  costs
[18].

The  progression  of  corrosion  is  inherently  complex,
influenced by numerous factors.  Historically,  researchers
have  employed  diverse  methodologies  to  quantitatively
evaluate  and  predict  corrosion,  acknowledging  the
challenges  in  acquiring  real-time  data  on  corrosion
progression and its fluctuating elements. Consequently, it
has been a common assumption that changes on corroded
surfaces  occur  randomly,  prompting  a  focus  on
understanding  the  probability  distributions  of  corrosion
rates tied to specific corrosion characteristics for effective
modeling  and prediction  [19,20].  Research  incorporating
fractals and semi-variogram functions has been pivotal in
assessing  the  corrosion  characteristics  [21,22].
Additionally,  Monte  Carlo  simulation  techniques  have
been utilized to envisage the corrosion trajectory, relying
on  probability  distributions  for  corrosion  growth  rates
[23].  While  these  methods  are  largely  geared  toward
assessing  and  predicting  general  corrosion,  strategies  for
addressing localized corrosion, such as three-dimensional
(3D) cellular automata and genetic algorithms also exist,
underscoring  the  stochastic  and  non-uniform  nature  of
atmospheric  corrosion,  including  localized  effects  [24].
However,  there  are  still  many limitations  to  methods for
predicting  and  evaluating  corrosion  progression  due  to
the  limited  number  of  target  materials  as  well  as
corrosion  environments  for  each  method.  Moreover,  in
the case of coated steels, predicting corrosion underneath
steel  surface  coatings  involves  several  complexities  and
challenges,  mainly  due  to  the  insidious  nature  of  such
corrosion  and  the  various  factors  that  may  influence  its
occurrence  and  progression.  In  this  context,  the
significance  of  non-destructive  testing  and  the
advancements  in  acoustic  emission  technology  for
corrosion  monitoring  have  been  underscored,  offering  a
promising avenue for the efficient  detection of corrosion
beneath  coatings  [25].  Nevertheless,  these  techniques
necessitate  specialized  equipment  and  encounter
limitations in quantifying corrosion extent and predicting
coating  degradation,  highlighting  the  ongoing  need  for

innovation  in  corrosion  detection  and  prediction
methodologies.

In recent years, the versatility of deep learning has been
demonstrated  across  a  wide  array  of  fields,  finding
applicability  in  modeling  complex  phenomena  such  as
corrosion,  which is  influenced by a  multitude  of  factors.
Within the domain of corrosion assessment, deep learning
has introduced groundbreaking methods for the detection,
classification,  and  segmentation  of  corrosion  in  critical
infrastructures, including bridges. For example, the use of
convolutional neural network (CNN)-based semantic seg-
mentation  algorithms,  mask  region-based  convolutional
neural  network  (Mask  RCNN)  and  you  only  look  once
version  8  (YOLOv8),  has  facilitated  more  precise
quantification of corrosion areas and severity levels [26].
Nevertheless,  the  mere  classification  of  corrosion  falls
short  of  addressing  the  comprehensive  needs  of  steel
structure maintenance. A predictive approach to corrosion
progression  holds  greater  significance.  A  previous  study
successfully  leveraged  a  deep  learning  model  to  predict
corrosion  progression  on  uncoated  steel  plates,  yielding
promising  outcomes.  In  this  study,  a  new  generative
adversarial  network  (GAN)  was  designed  to  predict  the
surface degradation of paint coated steel [27]. This model
was  informed  by  a  data  set  derived  from  two  distinct
types  of  paint  coated  steel,  onto  which  various  defects
were  intentionally  introduced.  The  specimens  underwent
an accelerated corrosion test, specified by the ISO 16539
Method  B,  to  collect  the  corrosion  surface  depth  at
different period [28]. The objective is to utilize GAN for
predicting  subsequent  degradation  based  on  the  current
condition  of  the  paint  coated  surfaces  and  accurately
determining  the  existing  corrosion  state.  To  enhance  the
data  set’s  diversity  and  thereby  refine  the  prediction
model’s  accuracy,  Gaussian  noise  and  GAN  techniques
were  employed  for  data  augmentation.  The  model
incorporates  UNet  +  ViT  for  the  generator  and
MobileNetV2  for  the  discriminator,  enabling  predictions
of  future  coating  degradation  from  current  conditions
[29–31].  Furthermore,  it  facilitates  the  identification  of
the  paint  coating type,  defect  type,  and the  current  stage
of  corrosion.  Comparative  analysis  with  alternative
models  corroborates  this  model’s  superior  accuracy  in
predicting the degradation of paint coated steel.

The  principal  contribution  of  this  study  is  the
proposition  of  a  GAN-based  model  for  the  prediction  of
paint  coating  degradation,  capable  of  predicting  future
degradation,  where  the  inputs  to  the  model  are
consecutive  corroded  surface  data  from  four  prior  time
points,  and  the  output  is  the  subsequent  corrosion  depth
distribution. Traditional methods for corrosion prediction
often  rely  on  stochastic  or  deterministic  models.  Monte
Carlo  simulation,  for  instance,  utilizes  probability
distributions  of  corrosion  rates  to  generate  a  range  of
possible outcomes, but it may require extensive parameter
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tuning  and  large  amounts  of  empirical  data,  and  it  can
struggle to capture complex, localized corrosion patterns.
Semi-variogram  and  geostatistical  techniques,  while
effective  in  analyzing  spatial  properties  of  corroded
surfaces,  are  often  limited  by  assumptions  regarding
stationarity  or  isotropy,  and  do  not  inherently  provide
temporal  predictive  capabilities.  Unlike  these  classical
approaches,  the  GAN  paradigm  employed  in  this  study
introduces  a  deep  learning  architecture  that  is  inherently
adept  at  learning  high-dimensional  distributions  from
relatively small or heterogeneous data sets. Earlier studies
have explored deep learning for corrosion forecasting, but
they typically address uncoated steel plates [22] or focus
on purely discriminative tasks (e.g.,  identifying corroded
vs.  non-corroded  regions).  In  contrast,  the  present  work
leverages  GAN-based  generation  to  predict  detailed
spatial progression of corrosion beneath paint coatings, an
area  previously  underexplored.  The  model  can  predict
future  deterioration  in  the  presence  of  various  paint
coating  types  and  defects,  offering  a  promising  tool  for
efficient  steel  structure  maintenance.  This  approach
surpasses  traditional  methods  in  predicting  corrosion
progression, offering a faster and more precise alternative
that  promises  significant  cost  and  time  savings  in  the
corrosion assessment and maintenance of steel structures
utilizing paint coated steel. 

2    Experiment
 

2.1    Specimens

The specimens  utilized  in  this  study are  depicted  in Fig.
1,  with  their  dimensions  detailed  in  Fig. 2.  Constructed

from SM400 steel, which is carbon steel specified by JIS
G  3106.  Each  specimen  measured  150  mm  in  length,
70 mm in width, and 9 mm in thickness, uniformly coated
with  an  anti-corrosion  coating.  Two  different  coating
systems  were  applied  in  this  study:  the  A-5  (Figs. 1(a)
and 1(b))  and  C-5  (Figs. 1(c)  and 1(d))  coating  systems.
The  A-5  coating  system,  an  established  anti-corrosion
coating prevalent in current steel structures, is detailed in
Table 1,  while  the  C-5  coating  system,  representing  a
novel  coating  with  potential  for  broader  application,  is
detailed in Table 2.

A  total  of  12  specimens  were  prepared,  split  evenly
between  the  A-5  and  C-5  coating  systems.  In  general,
when coating defects occurred, the degradation process of
paint  coated  steel  initiates  with  substrate  surface
corrosion  at  the  site  of  coating  defects,  subsequently
propagating into the coating and manifesting as blistering
and  other  forms  of  degradation.  These  coating  defects
vary in shape and size. The most common cases are linear
defects  (formed  by  scratches  from external  sources)  and
point-like  circular  defects  (formed  by  impacts  from
external forces). Therefore, to mimic real-world scenarios
where coatings on steel structures fail due to paint coating
breaches,  artificial  linear  and  circular  defects  were
introduced.  Specifically,  three  specimens  from  each
coating  system were  introduced  to  include  linear  defects
of  varying  widths,  while  another  three  specimens  from
each  coating  system  were  introduced  to  incorporate
circular defects of differing diameters, as indicated by the
brown areas  in Fig. 2.  Linear  defects  were  introduced  at
lengths  of  50  mm  and  widths  of  1,  2,  and  3  mm,
respectively.  Circular  defects  were  introduced  with
diameters of 3, 6, and 9 mm, respectively. 

 

 
Fig. 1    Appearance  of  specimen:  (a)  A-5  coating  with  linear  defects;  (b)  A-5  coating  with  circular  defects;  (c)  C-5  coating  with  linear
defects; (d) C-5 coating with circular defects.
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2.2    Accelerated corrosion test ISO 16539 Method B

The accelerated corrosion test ISO 16539 Method B was
employed  for  the  specimen  corrosion.  This  method  is
recognized  for  its  effectiveness  in  replicating  real
atmospheric  corrosion  environments,  enabling  the
specimens  to  develop  corroded  surfaces  that  closely
mimic  those  found  in  natural  corrosive  environments

[28]. Consequently, it is particularly advantageous for the
swift collection of corrosion data across various stages of
the corrosion process.

Figure 3  illustrates  the  test  procedure  for  the
accelerated corrosion test ISO 16539 Method B [28]. The
test conditions mimic the corrosion behavior observed in
metal-coated  steels  across  diverse  real-world
environments,  particularly  those  influenced  by  electrical

 

 
Fig. 2    Dimensions of specimen: (a) paint coating with linear defects; (b) paint coating with circular defects.

 

Table 1    A-5 coating system material specifications (artificial)
Layer Material Thickness (µm)

Top layer pure/crosslinked polyimide 35

Middle layer electrolytic copper foil standard electrodeposition 30

Base layer electrolytic copper foil standard electrodeposition 25

Adhesive – 125

 

Table 2    C-5 coating system material specifications (artificial)
Layer Material Thickness (µm)

Reinforced top layer semi-cured crosslinked polyimide 75

Sheet layer glass fabric base material –

Top layer glass fabric base material 120

Middle layer electrolytic copper foil standard electrodeposition 30

Base layer electrolytic copper foil standard electrodeposition 25

Adhesive – 250
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conductivity.  A  key  focus  of  the  analysis  was  the
regulation  of  large  salt  deposits  and  establishing  a
correlation between the quantity of salt deposited and the
corrosion rate. It was determined that the cycle of dry and
wet conditions could be controlled through adjustments in
temperature  and humidity,  maintaining constant  absolute
humidity [32]. The test apparatus comprised two primary
components: a synthetic seawater spray device and a test
chamber,  where  temperature  and  humidity  were  kept
constant.  The  procedure  initiated  with  spraying  the
specimens  with  a  3.5%  salinity  synthetic  seawater
solution,  aiming  for  a  salt  deposition  target  of  (28.0  ±
2.8)  g/m2  per  specimen.  This  was  followed  by  cycles  of
drying  at  60  °C  with  35%  relative  humidity  (RH)  and
wetting  at  40  °C  with  95%  RH,  repeating  every  three
hours, including a one-hour transition phase. Each cycle,
encompassing  drying,  transitioning,  and  wetting  phases,
spanned 8 h and was completed eight times before rinsing
the  specimen  surfaces  with  water.  Subsequently,  the
specimens  were  sprayed  with  synthetic  seawater  again,
and  the  drying  and  wetting  cycle  was  extended  for  an
additional 11 cycles, spanning a total of 7 d.

Throughout  the  accelerated  corrosion  test  ISO  16539
Method  B,  the  surface  condition  of  each  steel  plate
specimen was measured at various periods. 

2.3    Corroded surface measurement and data set

To  collect  time-series  depth  data  on  the  steel  plate
coatings,  a  laser  displacement meter  with a resolution of
0.1 μm was employed, providing high-precision 3D (x, y,
z)  corrosion  depth  measurements.  This  instrument  was
used  to  scan  each  specimen  both  before  the  accelerated

corrosion test and at 1, 3, 4, and 5 months thereafter. The
designated measurement area, highlighted in red in Fig. 2,
encompassed  a  20  mm ×  58  mm region  centered  on  the
initial  defects.  This  standardized  region  was  applied  to
both  linear  and  circular  defects  to  ensure  consistency
across  specimens,  thus  enhancing  the  subsequent  deep
learning model’s training efficiency. Within each 20 mm ×
58 mm zone, the laser displacement meter systematically
recorded  corrosion  depths  at  0.1  mm  intervals  in  both
longitudinal  and  transverse  directions.  This  dense
sampling  captured  fine-scale  variations  in  corrosion
morphology,  including  localized  pitting  or  undercutting
corrosion beneath the paint coating. By comparing depth
profiles at multiple time points, it became possible to link
increases  in  measured  surface  depth  to  visually
observable  coating  damage,  confirming  that  areas  with
greater  depth  variation  often  corresponded  to  regions  of
coating failure.

Given  the  study’s  scope  included  12  specimens,  each
presenting  three  types  of  defects  with  varying  widths  or
diameters, a systematic numbering from No. 1 to No. 36
was  assigned  to  each  defect  for  clear  identification  and
analysis.  The  corrosion  depth  data  collection  extended
over several time points, specifically, 0 (pre-test), 1, 3, 4,
and  5  months,  resulting  in  a  comprehensive  data  set
comprising  180  corrosion  depth  measurements.  The
organization of this data set is detailed in Table 3, which
categorizes the 12 specimens,  outlines the 36 time-series
of  corrosion  depth  data,  and  compiles  a  total  of  180
individual corrosion depth measurements. 

3    Generative adversarial network based
model
 

3.1    Generative adversarial network models

In  this  study,  a  series  of  models  based  on  GAN  were

 

 
Fig. 3    Procedure  for  accelerated  corrosion  test  ISO  16539
Method B.            

 

Table 3    Corrosion depth data collected from the experiment
Defect Coating Size

(mm)
0, 1, 3, 4, 5

months
(number)

Total

Linear
(width)

A-5 1 3 (Nos. 1–3) 12 specimens,
36 corrosion depth data sets,

180 corrosion depth data2 3 (Nos. 4–6)

3 3 (Nos. 7–9)

C-5 1 3 (Nos. 10–12)

2 3 (Nos. 13–15)

3 3 (Nos. 16–18)

Circular
(diameter)

A-5 3 3 (Nos. 19–21)

6 3 (Nos. 22–24)

9 3 (Nos. 25–27)

C-5 3 3 (Nos. 28–30)

6 3 (Nos. 31–33)

9 3 (Nos. 34–36)

Feng JIANG et al.   GAN-based coating deterioration prediction 5



deployed  to  predict  the  degradation  of  coatings  on  steel
surfaces. GAN, as a subset of deep learning architectures,
have the capability to analyze a data set and generate new
data that  share statistical  properties  with the original  set.
The  GAN  architecture  is  built  upon  two  main
components:  a  Generator  and  a  Discriminator.  The
Generator  aims  to  replicate  the  real  distributions  of
corroded surface depth data, starting from a random noise
vector  to  produce  data  that  closely  mimics  the  genuine
data set. Depending on the nature of the data and specific
requirements,  the  Generator’s  architecture  may
incorporate  multi-layer  neural  networks,  including  fully
connected  network,  CNN,  or  recurrent  neural  network
(RNN). Conversely, the Discriminator’s role is to discern
whether  its  input  data  originates  from  the  authentic
corrosion depth data set or is the output of the Generator.
This component also utilizes a multi-layer neural network
to  process  its  input  and  ultimately  determine  the
likelihood of the data being real.

As  shown  in  Eq.  (1).  The  training  methodology  for
GAN  embodies  a  minimax  game,  where  the  Generator
strives to minimize a designated objective function, while
the Discriminator strives to maximize it [33].
 

min
G

max
D

V(D,G) = Ex∼pdata(x)[logD(x )]

+Ez∼pz(z)[log(1−D(G(z)))]. (1)

x

pdata z
pz G (z)

D (x)

x D (G(z ))

In  this  study,    is  the  data  from  the  real  corroded
surface  data  distribution  ,    is  a  noise  vector  from
Gaussian  distribution  ,    is  the  fake  corroded
surface  data  generated  by  the  generator  using  the  noise
vector.    is  the  output  of  the  discriminator  for  real
data  , and   is the output of the discriminator for
generated data.

Training proceeds in a cyclical manner: first stabilizing
the  Generator  to  refine  the  Discriminator’s  accuracy  in
differentiating  real  from  generated  data,  followed  by
fixing  the  Discriminator  to  enhance  the  Generator’s
capacity  to  produce  increasingly  realistic  data.  This
iterative  process  continues  until  reaching  a  state  of
equilibrium,  where  the  Discriminator  can  no  longer
reliably distinguish between real and generated data sets.

This  study also  examined the  application of  two GAN
variants,  Conditional  GAN  (CGAN)  and  Information
Maximizing GAN (InfoGAN), in predicting paint coating
degradation  [34,35].  CGAN  introduces  a  conditional
variable  ‘c’  to  both  the  Generator  and  Discriminator,
necessitating that generated data not only appear realistic
but  also  adhere  to  the  constraints  imposed  by  ‘c’.  In  the
present  study,  the  condition  vector  encodes  the  coating
type  (A-5  or  C-5)  and  defect  shape  (linear  or  circular).
The condition vector is concatenated with the noise input
for  the  Generator  and  is  also  appended  to  the
Discriminator  input  through  an  embedding  layer,
ensuring  that  the  generated  samples  adhere  to  the

specified  coating  and  defect.  The  learning  rate  and
optimizer  configurations  match those in  the GAN model
proposed  in  this  research,  and  the  conditional  variables
are  trained  under  a  cross-entropy  objective  to  preserve
alignment  between  the  model  output  and  the  imposed
condition.  InfoGAN  extends  the  original  GAN
framework by incorporating a mutual information term to
encourage  the  discovery  of  interpretable  latent
representations.  In  the  present  study,  the  latent  code  is
designed  to  capture  factors  such  as  coating  type  and
defect shape, along with a continuous variable to account
for  stochastic  corrosion  variations.  The  mutual
information  term  is  maximized  through  an  auxiliary
network  that  predicts  the  latent  code  from the  generated
samples.  The  training  procedure,  including  learning  rate
and batch size, follows the hyperparameters employed by
the  GAN  model  proposed  in  this  research.  During  each
training  epoch,  the  latent  variables  and  the  mutual
information  head  are  jointly  optimized  to  enhance  the
interpretability  and  diversity  of  the  generated  corrosion
patterns.

Furthermore,  this  study  developed  a  specialized  GAN
model  tailored  for  characterizing  paint  coating  degrada-
tion,  utilizing  UNet  +  ViT  for  the  Generator  and
MobileNetV2  for  the  Discriminator.  Detailed  construc-
tion of this model is elaborated in the subsequent section,
with  its  predictive  efficiency  evaluated  through  training
and comparison against other models. 

3.2    Model architecture and data set settings

The  architecture  of  the  GAN  model  developed  for
predicting  paint  coating  degradation  is  illustrated  in
Fig. 4,  employing  UNet  +  ViT  as  the  generator  and
MobileNetV2  as  the  discriminator.  UNet,  initially
designed  for  biomedical  image  segmentation,  excels  in
tasks  necessitating  precise  edge  detection,  making  it  apt
for analyzing coated surface corrosion [29]. Its symmetric
architecture,  featuring  both  contraction  and  expansion
paths,  enables  the  efficient  learning  of  correlations  from
corroded surface depth data and precise pixel localization.
When  paired  with  the  Vision  Transformer  (ViT),  which
applies  the  Transformer  architecture  to  image  classifica-
tion  by  processing  image  patches  with  positional
encoding,  the  generator  benefits  from  enhanced  detail
capture and global context understanding, courtesy of the
Transformer’s  proficiency  in  recognizing  long-range
dependencies [30]. This combination allows the generator
to  generate  corroded  surfaces  that  are  more  accurate  in
detail  and  more  consistent  in  their  overall  distribution.
MobileNetV2  serves  as  a  highly  efficient  discriminator,
utilizing  an  inverted  residual  structure  and  depth-
separable  convolutions  for  effective  feature  extraction,
object detection, and segmentation. Its lightweight design
ensures  computational  and  memory  efficiency,  with  an
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additional  sigmoid  activation  function  implemented  to
differentiate between real and fake inputs effectively [31].

This  model’s  innovative  combination  of  UNet  +  ViT
for  generation  and  MobileNetV2  for  discrimination
facilitates  the creation of  high-quality,  accurate  corroded
surfaces, optimizing both the quality of image generation
and the efficiency of the discrimination process.

For optimization, the Adam optimizer was chosen. The
discrepancy between generated and real corroded surface
data was quantified using mean squared error (MSE) loss,
as depicted in Eq. (2).
 

MSE =
1

n

n
∑

i=1

(yi− ȳi)
2
, (2)

yi ȳiwhere   is predicted value, and   is labeled value.
Given the multi-classification nature of this task, cross

entropy  loss  (CEL)  was  employed  to  evaluate  the
difference  between  the  model’s  predicted  probability
distribution  and  the  actual  label  distribution,  as  depicted
in Eq. (3).
 

CEL = −

n
∑

i=1

(ylog(ỹ)+ (1− y) log(1− ỹ )) , (3)

n y

ỹ

where    is  the  number  of  categories,    is  labeled  value,
and   is predicted value.

The  data  set  was  divided  into  training  and  test  sets  as
delineated  in  Table 4.  The  time-series  corroded  surface
depth was measured of each specimen at 0, 1, 3, 4, and 5
months. Training sets included specimens numbered 1, 2,
4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28,
29,  31,  32,  34,  and  35,  while  the  test  set  comprised
specimens  numbered  3,  6,  9,  12,  15,  18,  21,  24,  27,  30,
33,  and  36.  This  study’s  coating  deterioration  prediction
model  used  data  from  the  initial  four  time  periods  to

predict  the  coating  deterioration  at  the  final  period.  The
prediction  results  were  compared  with  the  actual
experimental data to obtain the accuracy of the model. 

3.3    Model training

The  training  of  the  prediction  model  for  coating
degradation  prediction  involved  a  series  of  methodical
steps.  Initially,  the  raw  corrosion  depth  data  from  each
specimen,  with  an  original  size  of  201  ×  581,  was
rescaled  to  256  ×  1024  pixels  to  fit  the  input  specifica-
tions. The generator and discriminator were both assigned
a  batch  size  of  four  during  the  training  process.  The
variance  squared  (σ2)  was  employed  as  the  activation
function in the model, referred to as sigma (σ) activation,
with  a  leakage  rate  set  at  0.2  to  manage  the  flow  of
information  during  the  learning  process.  The  Adam

 

 
Fig. 4    Model architecture.

 

Table 4    Training set and testing set settings
Defect Coating Size (mm) No.

Training set Testing set

Linear (width) A-5 1 1, 2 3

2 4, 5 6

3 7, 8 9

C-5 1 10, 11 12

2 13, 14 15

3 16, 17 18

Circular (diameter) A-5 3 19, 20 21

6 22, 23 24

9 25, 26 27

C-5 3 28, 29 30

6 31, 32 33

9 34, 35 36

Feng JIANG et al.   GAN-based coating deterioration prediction 7



optimization  algorithm  was  configured  with  beta  values
of [0.5,0.99],  enhancing the convergence stability during
the  training.  All  experiments  were  conducted  in  Python
3.9 on Google Colab with a single A100 GPU, and each
complete training run took approximately 50 min.

Gaussian  noise  was  introduced  to  the  coating  surface
degradation  data  from  the  preceding  four  time  periods,
serving  as  input  to  the  UNet  +  ViT generator,  while  the
target  for  the  model  was  defined  as  the  coating  surface
degradation  data  from  the  subsequent  time  period.  The
aim  was  to  enhance  the  model’s  predictive  capacity  by
incorporating  the  inherent  randomness  and  variability  in
corrosion  progression  through  the  input  noise.
MobileNetV2, as the discriminator,  played a pivotal  role
in  discerning  whether  the  incoming  images  were
synthetic,  produced  by  the  UNet  +  ViT  generator,  or
authentic  corrosion  images.  Training  ensued  following
the  standard  adversarial  framework,  where  the  GAN
model  underwent  alternate  steps  of  discriminator
optimization and generator updates.

At the conclusion of each training epoch, a fine-tuning
phase  was  implemented  where  only  the  UNet  +  ViT
generator  was  trained.  This  step  was  crucial  in  refining
the  generated  data’s  resemblance  to  the  real  corrosion
depth data, thereby minimizing the MSE loss and aligning
the  generated  output  closely  with  the  actual  corrosion
patterns.  Furthermore,  the  training  incorporated  CEL,  a
pivotal factor in classifying the state of the inputs in terms
of their authenticity, the month of corrosion progression,
the  type  of  coating  defect,  and  the  type  of  coating,  as
outlined  by  the  one-hot  encoding  scheme  for  sequence
information.  This  loss  function  facilitated  the  model’s
classification capabilities.

Figure 5  illustrates  the  mean  absolute  error  (MAE)
curves  recorded  over  20  epochs  for  A-5  specimens,
highlighting  how  the  model  steadily  converges  as  the
epochs  progress.  These  curves  reflect  a  consistent
downward  trend  in  the  MAE  values,  indicating  that  the
model  effectively  learns  representative  features  of
corrosion  behavior.  By  the  final  epochs,  the  losses
stabilize  at  relatively  low  levels,  suggesting  that  the

trained  model  is  well-positioned  to  predict  corrosion
depth for subsequent time periods with high accuracy. 

4    Results

The  efficacy  of  various  models  in  predicting  the
progression  of  paint  coating  surface  degradation  was
meticulously  evaluated  in  this  section.  The  root  mean
square  error  (RMSE),  as  delineated  in  Eq.  (4),  served  as
the  metric  for  model  performance,  with  a  lower  RMSE
indicating higher predictive accuracy.
 

RMSE =

√

√

1

N

N
∑

i=1

(

Yi− f (xi

)

)
2
, (4)

Yi f (xi)where    is  the  experimental  value,  and    is  the
predicted value.

The RMSE results, as detailed in Table 5, compare each
model’s  performance  regarding  linear  defects,  while
Table 6 showcases the RMSE for circular defects. Across
all  scenarios,  the  UNet  +  ViT  model  introduced  in  this
study demonstrated superior performance over its counter-
parts, demonstrating outstanding predictive accuracy.
  
Table 5    RMSE results of the models with linear defects
No. GAN CGAN InfoGAN UNet + ViT

3 15.232 1.236 2.133 0.417

6 8.099 1.688 3.523 0.895

9 14.652 1.104 2.098 0.538

12 6.448 1.712 1.872 0.244

15 12.719 2.331 1.900 0.885

18 5.606 1.016 1.113 0.498
 
  

Table 6    RMSE results of the models with circular defects
No. GAN CGAN InfoGAN UNet + ViT

3 18.104 0.956 2.010 0.080

6 7.851 1.343 2.291 0.162

9 9.633 1.120 1.985 0.222

12 8.405 1.355 1.343 0.085

15 12.093 1.908 1.192 0.152

18 10.885 0.566 1.235 0.255
 

Regarding  the  predictive  performance  of  three  GAN-
based  models  applied  in  this  study:  CGAN,  InfoGAN,
and the proposed GAN model incorporating UNet + ViT
for  the  Generator  and  MobileNetV2  for  the
Discriminator.  While  CGAN  utilizes  an  explicit
conditional  vector  (coating  type  and  defect  shape)  to
guide  the  generation  process,  it  relies  on  relatively
simpler  generator  and  discriminator  architectures.  This
design  constrains  CGAN’s  capacity  to  capture  fine-

 

 
Fig. 5    Training MAE loss curve.
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grained  spatial  features  in  paint  coating  deterioration.
InfoGAN,  on  the  other  hand,  introduces  a  mutual
information  component  to  encourage  interpretable  latent
representations,  yet  it  employs  a  basic  convolutional
structure  that  may  struggle  with  the  highly  localized
corrosion  patterns  observed  in  certain  specimens.  In
contrast,  the  GAN  model  proposed  in  this  research
integrates  UNet  +  ViT  in  the  Generator  to  effectively
preserve  spatial  details  and  capture  long-range
dependencies,  while  MobileNetV2  in  the  Discriminator
ensures efficient feature extraction and robust adversarial
training.  The  synergy  between  UNet’s  encoder-decoder
architecture  and  ViT’s  global  attention  mechanism
contributes  to  more  accurate  predictions  of  corrosion
depth,  as  evidenced  by  lower RMSE  and MAE  values  in
Tables 5  and  6.  Moreover,  the  lean  yet  powerful
MobileNetV2  Discriminator  maintains  computational
efficiency  without  sacrificing  discrimination  quality.
These architectural advantages allow the proposed model
to adapt better to complex corrosion morphology, thereby
outperforming  both  CGAN  and  InfoGAN  in  terms  of
predictive accuracy.

Furthermore,  a  comparative  analysis  of  the  prediction
accuracy  for  linear  versus  circular  defects  revealed  a
notable  trend:  the  models  exhibited  enhanced  accuracy

for  circular  defects.  This  observation  is  attributed  to  the
more  uniform  corrosion  patterns  exhibited  by  circular
defect  samples  as  compared to  linear  ones,  likely  due  to
the relatively smaller circumference of the corrosion area
in circular defects, resulting in simpler corrosion patterns
and  thus,  more  predictable  coating  degradation  progres-
sion.

Figure 6 provides a visual representation of the predic-
tive  capability  of  the  model  for  linear  defects.  Here,
corroded surface data from specimen No. 3 at 0, 1, 3, and
4  months  were  utilized  to  predict  the  5-month  corroded
surface. Figure 6(a) displays the predicted coating surface
degradation,  Fig. 6(b)  shows  the  actual  degradation,  and
Fig. 6(c)  presents  a  photograph  of  the  real  paint  coated
surface  after  degradation.  Similarly,  Fig. 7  depicts  the
application  of  the  model  for  circular  defects.  Here,
corroded  surface  data  from  specimen  No.  21  at  0,  1,  3,
and  4  months  were  utilized  to  predict  the  5-month
corroded  surface.  Figure 7(a)  displays  the  predicted
coating  surface  degradation,  Fig. 7(b)  shows  the  actual
degradation,  and  Fig. 7(c)  presents  a  photograph  of  the
real  paint  coated  surface  after  degradation.  Figure 8
shows  the  comparison  between  the  actual  and  predicted
corroded surfaces at  the 5-month mark for all  specimens
in the test set.

 

 
Fig. 6    Predicted  result  for  specimen  No.3  with  linear  defects:
(a)  predicted  coating  surface  degradation;  (b)  real  coating
surface  degradation;  (c)  photograph  of  real  coating  surface
degradation.

 

 
Fig. 7    Predicted  result  for  specimen  No.21  with  circular
defects:  (a)  predicted  coating  surface  degradation;  (b)  real
coating  surface  degradation;  (c)  photograph  of  real  coating
surface degradation.
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In  these  figures,  the  congruence  between  predicted
outcomes and experimental data underscores the model’s
validity.  The  close  resemblance  attests  to  the  predictive
prowess  of  the  developed  model,  confirming  its
applicability for accurate simulation of the progression of
paint coating surface degradation. 

5    Conclusions

Paint  coated  steel  plays  a  pivotal  role  in  structural
engineering, and the development of a reliable method for
predicting  corrosion  on  paint  coated  steel  is  critical  for
the maintenance of infrastructure. This study explored the
deterioration progression on paint coated steel with linear
and  circular  defects,  representing  the  common  forms  of
coating  damage  encountered  in  real-world  scenarios.
Accelerated corrosion tests in accordance with ISO 16539
Method  B  were  performed  on  two  types  of  paint  coated
steels. The gathered corrosion depth data at different time
periods  formed  the  foundation  of  a  data  set  for  model
training.  Utilizing  this  data  set,  various  GAN-based
models  were applied and their  predictive  outcomes were
compared.  The  comparative  analysis  revealed  that  the
accuracy  of  the  proposed  model  surpasses  that  of  other
models.  This  approach  is  capable  of  predicting
subsequent stages of coating degradation from preceding
data, as well as classifying the coating types, defect types,
defect sizes, and the current condition of the steel plate.

The  approach  introduced  by  this  study  offers  a
straightforward and practical method for predicting future
degradation  from  earlier  states.  It  contributes  to
simplifying  the  assessment  of  deterioration  in  paint
coated  steel  structures  and  reduces  the  time  and  costs
associated with maintenance. The proposed method could
be  integrated  into  predictive  maintenance  frameworks.
This  holds  substantial  value  for  the  precision-oriented
maintenance of steel structures.

The  findings  of  this  study  underscore  the  potential  of
the proposed GAN-based model for accurately predicting
paint coating degradation in steel structures. In real-world
structural  engineering  contexts,  such  predictive  insights
could  facilitate  proactive  maintenance  scheduling,
minimizing  costly  downtime  and  reducing  the  risk  of
catastrophic  failures.  By  providing  reliable  forecasts  of
coating  deterioration,  engineers  and  asset  managers  can
optimize  inspection  intervals,  focus  remediation  efforts
on  vulnerable  locations,  and  extend  the  service  life  of
steel infrastructure.

In  the  future,  the  intention  is  to  broaden  the  scope  of
the  research  by  incorporating  a  wider  array  of  corrosion
scenarios.  This  expansion  will  involve  refining  the
differentiation  between  the  shapes  and  sizes  of  coating
defects  and  extending  the  model  to  predict  corrosion
progression underneath the coating, thereby enhancing its
capacity  to  capture  both  surface  and  substrate  steel
corrosion.  Furthermore,  additional  corrosion  environ-
ments,  such  as  high  salinity  or  industrial  pollutant
conditions,  will  be  considered  to  reflect  real-world
variability.  A  multi-scale  modeling  approach  may  be
employed to integrate macro-level atmospheric data with
micro-level  surface  topography,  thereby  improving
predictive resolution. Finally, techniques such as transfer
learning  or  advanced  data  augmentation  (e.g.,  using
generative  models)  could  help  mitigate  data  scarcity,
allowing  the  model  to  adapt  more  effectively  to  novel
corrosion  environments  and  coatings.  By  refining  the
scope  of  corrosion  scenarios  and  incorporating  these
methodological  improvements,  future  iterations  of  the
model  are  expected  to  achieve  greater  robustness  and
accuracy,  further  bridging  the  gap  between  laboratory-
scale experiments and full-scale engineering applications. 
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Fig. 8    Comparative results of all specimens in the test set.
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