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ABSTRACT Corrosion significantly impacts the integrity of steel structures, making them more prone to damage and
failure. Coating the steel surface with anti-corrosion paint is a prevalent method. Nevertheless, these coatings are
susceptible to damage, and corrosion tends to initiate at and spread from the damaged points, potentially leading to
severe localized deterioration. Accurately predicting the progression of corrosion and coating deterioration at these
critical points is essential for effective maintenance of steel structures. This study focused on two different paint-coatings
applied to SM400 steel, onto which defects of varied sizes and shapes were artificially induced to mimic real-world
paint-coating damage. These specimens underwent the accelerated corrosion test (ISO 16539 Method B) to generate data
on corrosion depth at various time intervals. Subsequently, a modified generative adversarial network (GAN) model was
employed to develop a highly accurate prediction model for the deterioration of steel surfaces, where the inputs to the
model are four sequential corrosion depth measurements, and the output is the predicted future corrosion depth
distribution. The performance of the proposed model was quantitatively evaluated using the root mean square error
(RMSE). The model demonstrated outstanding predictive accuracy across all defect scenarios presented in this study.
Compared with both traditional GAN variants (Conditional GAN and Information Maximizing GAN), the proposed
model demonstrated a lower RMSE in predictive accuracy. This finding underscores its capability for precise corrosion
prediction in steel structures, even with a relatively small data set. This predictive capability holds significant potential
for predictive maintenance and failure analysis in steel infrastructure. This study not only validates the use of GAN in
predictive maintenance but also provides a novel approach for the early detection and management of corrosion, crucial
for extending the lifespan of critical infrastructure.

KEYWORDS corrosion, generative adversarial network, paint-coated steel, coating defects, predictive maintenance,
failure analysis

1 Introduction Approximately 10% or more of total metal production is

converted into rust each year, representing a substantial

Corrosion significantly affects the maintenance of steel
structures across various industries [1]. This process
entails the chemical reaction of metal with its
environment, producing oxides, hydroxides, or sulphides
[2]. Beyond aesthetic concerns, corrosion can diminish
the load-bearing capacity of steel components,
heightening the risk of structural failure [3,4].
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proportion of maintenance costs [5]. Moreover, corrosion
is estimated to account for over 3% of the world’s gross
domestic product [6,7]. Consequently, mitigating
corrosion through effective measures, such as protective
coatings and periodic inspections, is critical for
prolonging service life and reducing overall upkeep
expenses [8].

Among corrosion prevention strategies, paint coatings
remain the most commonly employed due to their cost-
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effectiveness and ease of application [9]. These coatings
act as physical barriers against corrosive species [10], but
they are susceptible to impact or abrasion damage, which
compromises the substrate’s protection [11]. When
defects occur, water and oxygen can penetrate the
coating, triggering localized corrosion processes like
pitting [12], which rapidly weakens structural elements
[13,14]. Even minor coating flaws may accelerate
corrosion, as the damaged area can become an anodic site
in a galvanic cell, with the surrounding intact coating
acting as the cathode [15,16]. Furthermore, undercutting
corrosion may propagate laterally beneath seemingly
intact regions of the coating [17], making early detection
and accurate prediction of coating deterioration essential
for scheduling maintenance and controlling repair costs
[18].

The progression of corrosion is inherently complex,
influenced by numerous factors. Historically, researchers
have employed diverse methodologies to quantitatively
evaluate and predict corrosion, acknowledging the
challenges in acquiring real-time data on corrosion
progression and its fluctuating elements. Consequently, it
has been a common assumption that changes on corroded
surfaces occur randomly, prompting a focus on
understanding the probability distributions of corrosion
rates tied to specific corrosion characteristics for effective
modeling and prediction [19,20]. Research incorporating
fractals and semi-variogram functions has been pivotal in
assessing the corrosion characteristics [21,22].
Additionally, Monte Carlo simulation techniques have
been utilized to envisage the corrosion trajectory, relying
on probability distributions for corrosion growth rates
[23]. While these methods are largely geared toward
assessing and predicting general corrosion, strategies for
addressing localized corrosion, such as three-dimensional
(3D) cellular automata and genetic algorithms also exist,
underscoring the stochastic and non-uniform nature of
atmospheric corrosion, including localized effects [24].
However, there are still many limitations to methods for
predicting and evaluating corrosion progression due to
the limited number of target materials as well as
corrosion environments for each method. Moreover, in
the case of coated steels, predicting corrosion underneath
steel surface coatings involves several complexities and
challenges, mainly due to the insidious nature of such
corrosion and the various factors that may influence its

occurrence and progression. In this context, the
significance of non-destructive testing and the
advancements in acoustic emission technology for

corrosion monitoring have been underscored, offering a
promising avenue for the efficient detection of corrosion
beneath coatings [25]. Nevertheless, these techniques
necessitate  specialized equipment and encounter
limitations in quantifying corrosion extent and predicting
coating degradation, highlighting the ongoing need for

innovation in corrosion detection
methodologies.

In recent years, the versatility of deep learning has been
demonstrated across a wide array of fields, finding
applicability in modeling complex phenomena such as
corrosion, which is influenced by a multitude of factors.
Within the domain of corrosion assessment, deep learning
has introduced groundbreaking methods for the detection,
classification, and segmentation of corrosion in critical
infrastructures, including bridges. For example, the use of
convolutional neural network (CNN)-based semantic seg-
mentation algorithms, mask region-based convolutional
neural network (Mask RCNN) and you only look once
version 8 (YOLOvVS), has facilitated more precise
quantification of corrosion areas and severity levels [26].
Nevertheless, the mere classification of corrosion falls
short of addressing the comprehensive needs of steel
structure maintenance. A predictive approach to corrosion
progression holds greater significance. A previous study
successfully leveraged a deep learning model to predict
corrosion progression on uncoated steel plates, yielding
promising outcomes. In this study, a new generative
adversarial network (GAN) was designed to predict the
surface degradation of paint coated steel [27]. This model
was informed by a data set derived from two distinct
types of paint coated steel, onto which various defects
were intentionally introduced. The specimens underwent
an accelerated corrosion test, specified by the ISO 16539
Method B, to collect the corrosion surface depth at
different period [28]. The objective is to utilize GAN for
predicting subsequent degradation based on the current
condition of the paint coated surfaces and accurately
determining the existing corrosion state. To enhance the
data set’s diversity and thereby refine the prediction
model’s accuracy, Gaussian noise and GAN techniques
were employed for data augmentation. The model
incorporates UNet + ViT for the generator and
MobileNetV2 for the discriminator, enabling predictions
of future coating degradation from current conditions
[29-31]. Furthermore, it facilitates the identification of
the paint coating type, defect type, and the current stage
of corrosion. Comparative analysis with alternative
models corroborates this model’s superior accuracy in
predicting the degradation of paint coated steel.

The principal contribution of this study is the
proposition of a GAN-based model for the prediction of
paint coating degradation, capable of predicting future
degradation, where the inputs to the model are
consecutive corroded surface data from four prior time
points, and the output is the subsequent corrosion depth
distribution. Traditional methods for corrosion prediction
often rely on stochastic or deterministic models. Monte
Carlo simulation, for instance, utilizes probability
distributions of corrosion rates to generate a range of
possible outcomes, but it may require extensive parameter

and prediction
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tuning and large amounts of empirical data, and it can
struggle to capture complex, localized corrosion patterns.
Semi-variogram and geostatistical techniques, while
effective in analyzing spatial properties of corroded
surfaces, are often limited by assumptions regarding
stationarity or isotropy, and do not inherently provide
temporal predictive capabilities. Unlike these classical
approaches, the GAN paradigm employed in this study
introduces a deep learning architecture that is inherently
adept at learning high-dimensional distributions from
relatively small or heterogeneous data sets. Earlier studies
have explored deep learning for corrosion forecasting, but
they typically address uncoated steel plates [22] or focus
on purely discriminative tasks (e.g., identifying corroded
vs. non-corroded regions). In contrast, the present work
leverages GAN-based generation to predict detailed
spatial progression of corrosion beneath paint coatings, an
area previously underexplored. The model can predict
future deterioration in the presence of various paint
coating types and defects, offering a promising tool for
efficient steel structure maintenance. This approach
surpasses traditional methods in predicting corrosion
progression, offering a faster and more precise alternative
that promises significant cost and time savings in the
corrosion assessment and maintenance of steel structures
utilizing paint coated steel.

2 Experiment
2.1 Specimens

The specimens utilized in this study are depicted in Fig.
1, with their dimensions detailed in Fig. 2. Constructed

| -

(a)

from SM400 steel, which is carbon steel specified by JIS
G 3106. Each specimen measured 150 mm in length,
70 mm in width, and 9 mm in thickness, uniformly coated
with an anti-corrosion coating. Two different coating
systems were applied in this study: the A-5 (Figs. 1(a)
and 1(b)) and C-5 (Figs. 1(c) and 1(d)) coating systems.
The A-5 coating system, an established anti-corrosion
coating prevalent in current steel structures, is detailed in
Table 1, while the C-5 coating system, representing a
novel coating with potential for broader application, is
detailed in Table 2.

A total of 12 specimens were prepared, split evenly
between the A-5 and C-5 coating systems. In general,
when coating defects occurred, the degradation process of
paint coated steel initiates with substrate surface
corrosion at the site of coating defects, subsequently
propagating into the coating and manifesting as blistering
and other forms of degradation. These coating defects
vary in shape and size. The most common cases are linear
defects (formed by scratches from external sources) and
point-like circular defects (formed by impacts from
external forces). Therefore, to mimic real-world scenarios
where coatings on steel structures fail due to paint coating
breaches, artificial linear and circular defects were
introduced. Specifically, three specimens from each
coating system were introduced to include linear defects
of varying widths, while another three specimens from
each coating system were introduced to incorporate
circular defects of differing diameters, as indicated by the
brown areas in Fig. 2. Linear defects were introduced at
lengths of 50 mm and widths of 1, 2, and 3 mm,
respectively. Circular defects were introduced with
diameters of 3, 6, and 9 mm, respectively.

(b)

(©)

(d)

Fig.1 Appearance of specimen: (a) A-5 coating with linear defects; (b) A-5 coating with circular defects; (c) C-5 coating with linear

defects; (d) C-5 coating with circular defects.
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Fig. 2 Dimensions of specimen: (a) paint coating with linear defects; (b) paint coating with circular defects.

Table 1 A-5 coating system material specifications (artificial)

Layer Material Thickness (um)
Top layer pure/crosslinked polyimide 35
Middle layer electrolytic copper foil standard electrodeposition 30

Base layer electrolytic copper foil standard electrodeposition 25
Adhesive - 125
Table 2 C-5 coating system material specifications (artificial)

Layer Material Thickness (um)
Reinforced top layer semi-cured crosslinked polyimide 75
Sheet layer glass fabric base material -

Top layer glass fabric base material 120
Middle layer electrolytic copper foil standard electrodeposition 30
Base layer electrolytic copper foil standard electrodeposition 25
Adhesive - 250

2.2 Accelerated corrosion test ISO 16539 Method B

The accelerated corrosion test ISO 16539 Method B was
employed for the specimen corrosion. This method is
recognized for its effectiveness in replicating real
atmospheric corrosion environments, enabling the
specimens to develop corroded surfaces that closely
mimic those found in natural corrosive environments

[28]. Consequently, it is particularly advantageous for the
swift collection of corrosion data across various stages of
the corrosion process.

Figure 3 illustrates the test procedure for the
accelerated corrosion test ISO 16539 Method B [28]. The
test conditions mimic the corrosion behavior observed in
metal-coated  steels across  diverse  real-world
environments, particularly those influenced by electrical
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Fig.3 Procedure for accelerated corrosion test ISO 16539
Method B.

conductivity. A key focus of the analysis was the
regulation of large salt deposits and establishing a
correlation between the quantity of salt deposited and the
corrosion rate. It was determined that the cycle of dry and
wet conditions could be controlled through adjustments in
temperature and humidity, maintaining constant absolute
humidity [32]. The test apparatus comprised two primary
components: a synthetic seawater spray device and a test
chamber, where temperature and humidity were kept
constant. The procedure initiated with spraying the
specimens with a 3.5% salinity synthetic seawater
solution, aiming for a salt deposition target of (28.0 +
2.8) g/m” per specimen. This was followed by cycles of
drying at 60 °C with 35% relative humidity (RH) and
wetting at 40 °C with 95% RH, repeating every three
hours, including a one-hour transition phase. Each cycle,
encompassing drying, transitioning, and wetting phases,
spanned 8 h and was completed eight times before rinsing
the specimen surfaces with water. Subsequently, the
specimens were sprayed with synthetic seawater again,
and the drying and wetting cycle was extended for an
additional 11 cycles, spanning a total of 7 d.

Throughout the accelerated corrosion test ISO 16539
Method B, the surface condition of each steel plate
specimen was measured at various periods.

2.3 Corroded surface measurement and data set

To collect time-series depth data on the steel plate
coatings, a laser displacement meter with a resolution of
0.1 um was employed, providing high-precision 3D (x, y,
z) corrosion depth measurements. This instrument was
used to scan each specimen both before the accelerated

corrosion test and at 1, 3, 4, and 5 months thereafter. The
designated measurement area, highlighted in red in Fig. 2,
encompassed a 20 mm x 58 mm region centered on the
initial defects. This standardized region was applied to
both linear and circular defects to ensure consistency
across specimens, thus enhancing the subsequent deep
learning model’s training efficiency. Within each 20 mm X
58 mm zone, the laser displacement meter systematically
recorded corrosion depths at 0.1 mm intervals in both
longitudinal and transverse directions. This dense
sampling captured fine-scale variations in corrosion
morphology, including localized pitting or undercutting
corrosion beneath the paint coating. By comparing depth
profiles at multiple time points, it became possible to link
increases in measured surface depth to visually
observable coating damage, confirming that areas with
greater depth variation often corresponded to regions of
coating failure.

Given the study’s scope included 12 specimens, each
presenting three types of defects with varying widths or
diameters, a systematic numbering from No. 1 to No. 36
was assigned to each defect for clear identification and
analysis. The corrosion depth data collection extended
over several time points, specifically, 0 (pre-test), 1, 3, 4,
and 5 months, resulting in a comprehensive data set
comprising 180 corrosion depth measurements. The
organization of this data set is detailed in Table 3, which
categorizes the 12 specimens, outlines the 36 time-series
of corrosion depth data, and compiles a total of 180
individual corrosion depth measurements.

3 Generative adversarial network based
model
3.1 Generative adversarial network models

In this study, a series of models based on GAN were

Table 3 Corrosion depth data collected from the experiment

Defect 0,1,3,4,5 Total
months
(number)

3 (Nos. 1-3)

2 3 (Nos. 4-6)

3 3 (Nos. 7-9)

3 (Nos. 10-12)
3 (Nos. 13-15)
3 (Nos. 16-18)
3 (Nos. 19-21)
3 (Nos. 22-24)
3 (Nos. 25-27)
3 (Nos. 28-30)
3 (Nos. 31-33)
3 (Nos. 34-36)

Size
(mm)

Coating

Linear A-5 1

(width)

12 specimens,
36 corrosion depth data sets,
180 corrosion depth data

C-5

—_

Circular A-5

(diameter)

O O W O O W W N
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deployed to predict the degradation of coatings on steel
surfaces. GAN, as a subset of deep learning architectures,
have the capability to analyze a data set and generate new
data that share statistical properties with the original set.
The GAN architecture is built upon two main
components: a Generator and a Discriminator. The
Generator aims to replicate the real distributions of
corroded surface depth data, starting from a random noise
vector to produce data that closely mimics the genuine
data set. Depending on the nature of the data and specific
requirements, the Generator’s architecture may
incorporate multi-layer neural networks, including fully
connected network, CNN, or recurrent neural network
(RNN). Conversely, the Discriminator’s role is to discern
whether its input data originates from the authentic
corrosion depth data set or is the output of the Generator.
This component also utilizes a multi-layer neural network
to process its input and ultimately determine the
likelihood of the data being real.

As shown in Eq. (1). The training methodology for
GAN embodies a minimax game, where the Generator
strives to minimize a designated objective function, while
the Discriminator strives to maximize it [33].

mGin max V(D,G) =E,.,,.[logD(x)]
D

+E..,ollog(1-D(GE))]. (1)

In this study, x is the data from the real corroded
surface data distribution py,,, z iS a noise vector from
Gaussian distribution p., G(z) is the fake corroded
surface data generated by the generator using the noise
vector. D(x) is the output of the discriminator for real
data x, and D(G(z)) is the output of the discriminator for
generated data.

Training proceeds in a cyclical manner: first stabilizing
the Generator to refine the Discriminator’s accuracy in
differentiating real from generated data, followed by
fixing the Discriminator to enhance the Generator’s
capacity to produce increasingly realistic data. This
iterative process continues until reaching a state of
equilibrium, where the Discriminator can no longer
reliably distinguish between real and generated data sets.

This study also examined the application of two GAN
variants, Conditional GAN (CGAN) and Information
Maximizing GAN (InfoGAN), in predicting paint coating
degradation [34,35]. CGAN introduces a conditional
variable ‘¢’ to both the Generator and Discriminator,
necessitating that generated data not only appear realistic
but also adhere to the constraints imposed by ‘c’. In the
present study, the condition vector encodes the coating
type (A-5 or C-5) and defect shape (linear or circular).
The condition vector is concatenated with the noise input
for the Generator and is also appended to the
Discriminator input through an embedding layer,
ensuring that the generated samples adhere to the

specified coating and defect. The learning rate and
optimizer configurations match those in the GAN model
proposed in this research, and the conditional variables
are trained under a cross-entropy objective to preserve
alignment between the model output and the imposed
condition. InfoGAN extends the original GAN
framework by incorporating a mutual information term to
encourage the discovery of interpretable latent
representations. In the present study, the latent code is
designed to capture factors such as coating type and
defect shape, along with a continuous variable to account
for stochastic corrosion variations. The mutual
information term is maximized through an auxiliary
network that predicts the latent code from the generated
samples. The training procedure, including learning rate
and batch size, follows the hyperparameters employed by
the GAN model proposed in this research. During each
training epoch, the latent variables and the mutual
information head are jointly optimized to enhance the
interpretability and diversity of the generated corrosion
patterns.

Furthermore, this study developed a specialized GAN
model tailored for characterizing paint coating degrada-
tion, utilizing UNet + VIT for the Generator and
MobileNetV2 for the Discriminator. Detailed construc-
tion of this model is elaborated in the subsequent section,
with its predictive efficiency evaluated through training
and comparison against other models.

3.2 Model architecture and data set settings

The architecture of the GAN model developed for
predicting paint coating degradation is illustrated in
Fig. 4, employing UNet + ViT as the generator and
MobileNetV2 as the discriminator. UNet, initially
designed for biomedical image segmentation, excels in
tasks necessitating precise edge detection, making it apt
for analyzing coated surface corrosion [29]. Its symmetric
architecture, featuring both contraction and expansion
paths, enables the efficient learning of correlations from
corroded surface depth data and precise pixel localization.
When paired with the Vision Transformer (ViT), which
applies the Transformer architecture to image classifica-
tion by processing image patches with positional
encoding, the generator benefits from enhanced detail
capture and global context understanding, courtesy of the
Transformer’s proficiency in recognizing long-range
dependencies [30]. This combination allows the generator
to generate corroded surfaces that are more accurate in
detail and more consistent in their overall distribution.
MobileNetV2 serves as a highly efficient discriminator,
utilizing an inverted residual structure and depth-
separable convolutions for effective feature extraction,
object detection, and segmentation. Its lightweight design
ensures computational and memory efficiency, with an
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Corrosion data from
ISO 16539 Method B
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Fig. 4 Model architecture.

additional sigmoid activation function implemented to
differentiate between real and fake inputs effectively [31].

This model’s innovative combination of UNet + ViT
for generation and MobileNetV2 for discrimination
facilitates the creation of high-quality, accurate corroded
surfaces, optimizing both the quality of image generation
and the efficiency of the discrimination process.

For optimization, the Adam optimizer was chosen. The
discrepancy between generated and real corroded surface
data was quantified using mean squared error (MSE) loss,
as depicted in Eq. (2).

1 © o
MSEzﬁg(yz'—y,-), @)

where y; is predicted value, and ¥, is labeled value.

Given the multi-classification nature of this task, cross
entropy loss (CEL) was employed to evaluate the
difference between the model’s predicted probability
distribution and the actual label distribution, as depicted
in Eq. (3).

CEL= —Z(ylog(y)+(1 -y log(1-7)),

i=1

3)

where 7n is the number of categories, y is labeled value,
and y is predicted value.

The data set was divided into training and test sets as
delineated in Table 4. The time-series corroded surface
depth was measured of each specimen at 0, 1, 3, 4, and 5
months. Training sets included specimens numbered 1, 2,
4,5,7,8,10,11, 13,14, 16, 17, 19, 20, 22, 23, 25, 26, 28,
29, 31, 32, 34, and 35, while the test set comprised
specimens numbered 3, 6, 9, 12, 15, 18, 21, 24, 27, 30,
33, and 36. This study’s coating deterioration prediction
model used data from the initial four time periods to

Table 4 Training set and testing set settings

Defect Coating  Size (mm) No.
Training set  Testing set
Linear (width) A-5 1 1,2 3
2 4,5 6
3 7,8 9
C-5 1 10, 11 12
2 13,14 15
3 16, 17 18
Circular (diameter) A-5 3 19,20 21
6 22,23 24
9 25,26 27
C-5 3 28,29 30
6 31,32 33
9 34,35 36

predict the coating deterioration at the final period. The
prediction results were compared with the actual
experimental data to obtain the accuracy of the model.

3.3 Model training

The training of the prediction model for coating
degradation prediction involved a series of methodical
steps. Initially, the raw corrosion depth data from each
specimen, with an original size of 201 x 581, was
rescaled to 256 x 1024 pixels to fit the input specifica-
tions. The generator and discriminator were both assigned
a batch size of four during the training process. The
variance squared (o) was employed as the activation
function in the model, referred to as sigma (o) activation,
with a leakage rate set at 0.2 to manage the flow of
information during the learning process. The Adam
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optimization algorithm was configured with beta values
of [0.5,0.99], enhancing the convergence stability during
the training. All experiments were conducted in Python
3.9 on Google Colab with a single A100 GPU, and each
complete training run took approximately 50 min.

Gaussian noise was introduced to the coating surface
degradation data from the preceding four time periods,
serving as input to the UNet + ViT generator, while the
target for the model was defined as the coating surface
degradation data from the subsequent time period. The
aim was to enhance the model’s predictive capacity by
incorporating the inherent randomness and variability in
corrosion progression through the input noise.
MobileNetV2, as the discriminator, played a pivotal role
in discerning whether the incoming images were
synthetic, produced by the UNet + ViT generator, or
authentic corrosion images. Training ensued following
the standard adversarial framework, where the GAN
model underwent alternate steps of discriminator
optimization and generator updates.

At the conclusion of each training epoch, a fine-tuning
phase was implemented where only the UNet + ViT
generator was trained. This step was crucial in refining
the generated data’s resemblance to the real corrosion
depth data, thereby minimizing the MSE loss and aligning
the generated output closely with the actual corrosion
patterns. Furthermore, the training incorporated CEL, a
pivotal factor in classifying the state of the inputs in terms
of their authenticity, the month of corrosion progression,
the type of coating defect, and the type of coating, as
outlined by the one-hot encoding scheme for sequence
information. This loss function facilitated the model’s
classification capabilities.

Figure 5 illustrates the mean absolute error (MAE)
curves recorded over 20 epochs for A-5 specimens,
highlighting how the model steadily converges as the
epochs progress. These curves reflect a consistent
downward trend in the MAE values, indicating that the
model effectively learns representative features of
corrosion behavior. By the final epochs, the losses
stabilize at relatively low levels, suggesting that the

0.6

0.5

MAE loss
o o
w

=
to

0.1

0.0

0 5 10 15 20 25
Epoch loss

Fig. 5 Training MAE loss curve.

trained model is well-positioned to predict corrosion
depth for subsequent time periods with high accuracy.

4 Results

The efficacy of wvarious models in predicting the
progression of paint coating surface degradation was
meticulously evaluated in this section. The root mean
square error (RMSE), as delineated in Eq. (4), served as
the metric for model performance, with a lower RMSE
indicating higher predictive accuracy.

N

1 :
RMSE = |~ > (Y= f(x))’

i=1

“)

where Y; is the experimental value, and f(x,) is the
predicted value.

The RMSE results, as detailed in Table 5, compare each
model’s performance regarding linear defects, while
Table 6 showcases the RMSE for circular defects. Across
all scenarios, the UNet + ViT model introduced in this
study demonstrated superior performance over its counter-
parts, demonstrating outstanding predictive accuracy.

Table 5 RMSE results of the models with linear defects

No. GAN CGAN InfoGAN UNet + ViT
3 15.232 1.236 2.133 0.417
6 8.099 1.688 3.523 0.895
9 14.652 1.104 2.098 0.538
12 6.448 1.712 1.872 0.244
15 12.719 2.331 1.900 0.885
18 5.606 1.016 1.113 0.498

Table 6 RMSE results of the models with circular defects

No. GAN CGAN InfoGAN UNet + ViT
3 18.104 0.956 2.010 0.080
6 7.851 1.343 2.291 0.162
9 9.633 1.120 1.985 0.222
12 8.405 1.355 1.343 0.085
15 12.093 1.908 1.192 0.152
18 10.885 0.566 1.235 0.255

Regarding the predictive performance of three GAN-
based models applied in this study: CGAN, InfoGAN,
and the proposed GAN model incorporating UNet + ViT
for the Generator and MobileNetV2 for the
Discriminator. While CGAN utilizes an explicit
conditional vector (coating type and defect shape) to
guide the generation process, it relies on relatively
simpler generator and discriminator architectures. This
design constrains CGAN’s capacity to capture fine-
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grained spatial features in paint coating deterioration.
InfoGAN, on the other hand, introduces a mutual
information component to encourage interpretable latent
representations, yet it employs a basic convolutional
structure that may struggle with the highly localized
corrosion patterns observed in certain specimens. In
contrast, the GAN model proposed in this research
integrates UNet + ViT in the Generator to effectively
preserve spatial details and capture long-range
dependencies, while MobileNetV2 in the Discriminator
ensures efficient feature extraction and robust adversarial
training. The synergy between UNet’s encoder-decoder
architecture and ViT’s global attention mechanism
contributes to more accurate predictions of corrosion
depth, as evidenced by lower RMSE and MAE values in
Tables 5 and 6. Moreover, the lean yet powerful
MobileNetV2 Discriminator maintains computational
efficiency without sacrificing discrimination quality.
These architectural advantages allow the proposed model
to adapt better to complex corrosion morphology, thereby
outperforming both CGAN and InfoGAN in terms of
predictive accuracy.

Furthermore, a comparative analysis of the prediction
accuracy for linear versus circular defects revealed a
notable trend: the models exhibited enhanced accuracy

Unit: mm
1.0
0.8
0.6
04
—— 02
0.0

-0.2
o

No. 3-5 month l
Prediction

(@)

1.0
0.8
0.6

ROy L P e o —— 8;

0.0
-0.2
-0.4

No. 3-5 month '
Real simulation

(b)

No. 3-5 month
Real

©)

Fig. 6 Predicted result for specimen No.3 with linear defects:
(a) predicted coating surface degradation; (b) real coating
surface degradation; (c) photograph of real coating surface
degradation.

for circular defects. This observation is attributed to the
more uniform corrosion patterns exhibited by circular
defect samples as compared to linear ones, likely due to
the relatively smaller circumference of the corrosion area
in circular defects, resulting in simpler corrosion patterns
and thus, more predictable coating degradation progres-
sion.

Figure 6 provides a visual representation of the predic-
tive capability of the model for linear defects. Here,
corroded surface data from specimen No. 3 at 0, 1, 3, and
4 months were utilized to predict the 5-month corroded
surface. Figure 6(a) displays the predicted coating surface
degradation, Fig. 6(b) shows the actual degradation, and
Fig. 6(c) presents a photograph of the real paint coated
surface after degradation. Similarly, Fig. 7 depicts the
application of the model for circular defects. Here,
corroded surface data from specimen No. 21 at 0, 1, 3,
and 4 months were utilized to predict the 5-month
corroded surface. Figure 7(a) displays the predicted
coating surface degradation, Fig. 7(b) shows the actual
degradation, and Fig. 7(c) presents a photograph of the
real paint coated surface after degradation. Figure 8
shows the comparison between the actual and predicted
corroded surfaces at the 5-month mark for all specimens
in the test set.
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Fig. 7 Predicted result for specimen No.21 with circular
defects: (a) predicted coating surface degradation; (b) real
coating surface degradation; (c) photograph of real coating
surface degradation.
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Fig. 8 Comparative results of all specimens in the test set.

In these figures, the congruence between predicted
outcomes and experimental data underscores the model’s
validity. The close resemblance attests to the predictive
prowess of the developed model, confirming its
applicability for accurate simulation of the progression of
paint coating surface degradation.

5 Conclusions

Paint coated steel plays a pivotal role in structural
engineering, and the development of a reliable method for
predicting corrosion on paint coated steel is critical for
the maintenance of infrastructure. This study explored the
deterioration progression on paint coated steel with linear
and circular defects, representing the common forms of
coating damage encountered in real-world scenarios.
Accelerated corrosion tests in accordance with ISO 16539
Method B were performed on two types of paint coated
steels. The gathered corrosion depth data at different time
periods formed the foundation of a data set for model
training. Utilizing this data set, various GAN-based
models were applied and their predictive outcomes were
compared. The comparative analysis revealed that the
accuracy of the proposed model surpasses that of other
models. This approach is capable of predicting
subsequent stages of coating degradation from preceding
data, as well as classifying the coating types, defect types,
defect sizes, and the current condition of the steel plate.

The approach introduced by this study offers a
straightforward and practical method for predicting future
degradation from earlier states. It contributes to
simplifying the assessment of deterioration in paint
coated steel structures and reduces the time and costs
associated with maintenance. The proposed method could
be integrated into predictive maintenance frameworks.
This holds substantial value for the precision-oriented
maintenance of steel structures.

The findings of this study underscore the potential of
the proposed GAN-based model for accurately predicting
paint coating degradation in steel structures. In real-world
structural engineering contexts, such predictive insights
could facilitate proactive maintenance scheduling,
minimizing costly downtime and reducing the risk of
catastrophic failures. By providing reliable forecasts of
coating deterioration, engineers and asset managers can
optimize inspection intervals, focus remediation efforts
on vulnerable locations, and extend the service life of
steel infrastructure.

In the future, the intention is to broaden the scope of
the research by incorporating a wider array of corrosion
scenarios. This expansion will involve refining the
differentiation between the shapes and sizes of coating
defects and extending the model to predict corrosion
progression underneath the coating, thereby enhancing its
capacity to capture both surface and substrate steel
corrosion. Furthermore, additional corrosion environ-
ments, such as high salinity or industrial pollutant
conditions, will be considered to reflect real-world
variability. A multi-scale modeling approach may be
employed to integrate macro-level atmospheric data with
micro-level surface topography, thereby improving
predictive resolution. Finally, techniques such as transfer
learning or advanced data augmentation (e.g., using
generative models) could help mitigate data scarcity,
allowing the model to adapt more effectively to novel
corrosion environments and coatings. By refining the
scope of corrosion scenarios and incorporating these
methodological improvements, future iterations of the
model are expected to achieve greater robustness and
accuracy, further bridging the gap between laboratory-
scale experiments and full-scale engineering applications.
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