
Title A Study on Differential Cryptanalysis of Salsa
20 and ChaCha Stream Ciphers

Author(s) Ghafoori, Nasratullah

Citation 大阪大学, 2024, 博士論文

Version Type VoR

URL https://doi.org/10.18910/101457

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Doctoral Dissertation

A Study on Differential Cryptanalysis of
Salsa 20 and ChaCha Stream Ciphers

Graduate School of Engineering
Osaka University

Nasratullah Ghafoori

September 2024

Supervisor: Professor Atsuko Miyaji

Abstract

We use digital platforms, in communications, financial transactions, education, enter-
tainment, healthcare, and transportation. The use of digital platforms have signif-
icantly simplified our daily lives. However, security has consistently emerged as the
primary concern when integrating digital platforms into our daily activities. To address
security concerns, cryptography has always been essential for ensuring data confiden-
tiality and integrity, both in transit and at rest. As cryptographic primitives become
more widely used, it is crucial to thoroughly understand their security properties to
ensure data integrity and confidentiality.

This thesis studies the symmetric cryptography. We focus on the security assess-
ment of stream ciphers. Stream ciphers are symmetric cryptographic functions that
operate on individual bits or bytes of data, unlike block ciphers, which process data in
fixed blocks. Their speed and bitwise encryption make them applicable for specific ap-
plications such as secure communications, stream media, disk encryption, voice-over
IP, instant messaging, and more. Salsa 20 and ChaCha are deployed in Operating
Systems, TLS 1.3, programming libraries, networks, and others. The existing research
domain mounted differential and differential-linear attacks on Salsa 8, ChaCha 7, and
ChaCha 7.25. The most effective key-recovery attack on Salsa 8 has been proposed
with time complexities of 2245.5, 2244.9, and 2243.6, respectively. Furthermore, the best
key-recovery attack on ChaCha 7.25 was presented with a complexity of 2255.62. The
distinguisher for ChaCha 6 has been proposed with complexities of 2116 and 251. How-
ever, the existing research studies have not proposed the boomerang attack on the
ChaCha permutation function.

This dissertation examines the robustness of Salsa 20 and ChaCha stream ciphers
and it makes three key contributions, each presented in a dedicated chapter. First,
it investigates the differential cryptanalysis of Salsa 20 and ChaCha, focusing on key-
recovery attacks on their reduced-round versions. Next, it explores the higher-order
differential-linear cryptanalysis of ChaCha. Finally, the dissertation examines the
boomerang attack on the ChaCha permutation function, providing a detailed analysis
of its security implications.

The first research aimed to evaluate the security of Salsa 20 and ChaCha through an
in-depth analysis of probabilistic neutral bits within a differential attack framework.

ii

This resulted in a key-recovery attack with a time complexity of 2241.62 and a data
complexity of 231.5 on Salsa 8. Additionally, it resulted in a key-recovery attack on
ChaCha 7.25 with a time complexity of 2254.011 and a data complexity of 251.81. As a
result, we reduced the attack complexity with a factor of 21.98 and 21.6 on Salsa 8 and
ChaCha 7.25, respectively.

The second research delves into higher-order differential-linear cryptanalysis and
studies the security of ChaCha stream cipher. Additionally, we propose a higher-order
differential-linear distinguishing attack on ChaCha 5, ChaCha 5.5, and ChaCha 6,
demonstrating time complexities of 233.21, 263.21, and 287.21, respectively. The existing
research domain has not introduced distinguishing attacks. Moreover, we presented a
distinguisher of Chacha 6 with a complexity of 247.21 and substantially enhanced the
ChaCha 6 distinguisher by 23.79.

The third study investigated the permutation function of the ChaCha stream cipher
using boomerang cryptanalysis, a variant of differential cryptanalysis. This attack
merges two distinct differential properties from separate sections of a cipher into a
new differential that applies to the entire cipher, occurring with a probability of p2q2.
This requires that both differential properties be satisfied twice. Additionally, we
demonstrated that the likelihood could increase to p2 for certain attack positions in
ChaCha, reducing the attack complexity. Moreover, for the first time, we proposed
an algorithm for executing boomerang attacks on the ChaCha stream cipher was also
introduced. To demonstrate the effectiveness of boomerang cryptanalysis, we targeted
the permutation functions of ChaCha 6 and ChaCha 7. Our findings indicate that a
boomerang attack requires 24.04 and 25.99 adaptively chosen plaintexts and ciphertexts
to distinguish the permutation functions of ChaCha 6 and ChaCha 7 from a random
permutation, respectively.

This dissertation evaluates the security of Salsa 20 and ChaCha stream ciphers
through three cryptanalytic approaches. The first research presents key-recovery at-
tacks on Salsa 8 and ChaCha 7.25 with complexities of 2241.62 and 2254.011, respectively.
The second research introduces higher-order differential-linear attacks on ChaCha 5,
ChaCha 5.5, and ChaCha 6, with complexities of 233.21, 263.21, and 287.21, respec-
tively. It proposed an improved distinguisher for ChaCha 6. The third study applies
boomerang cryptanalysis to the permutation functions of ChaCha 6 and 7, requiring
24.04and 25.99 adaptively chosen plaintexts and ciphertexts to distinguish them from
random permutations.

iii

Acknowledgments

In Japan, during my Ph.D. journey, many have offered incredible support. While
thanking everyone is impossible, I want to thank those who profoundly impacted
me. First, immense thanks to my supervisor, Professor Atsuko Miyaji. Her deep
knowledge, inspiring guidance, and enthusiasm powered my research and made her
an exceptional supervisor. This thesis wouldn’t exist without her. I sincerely thank
Dr Yosuke Todo for reviewing my dissertation and providing invaluable comments.
His unwavering enthusiasm and insightful ideas constantly motivated and enriched me
throughout this journey. I deeply appreciate his generous time and attention, ensuring
my concerns were heard. I am also profoundly grateful to Professor Tetsuya Takine
and Lecturer Yuya Tarutani for their advice and support. His comments on values have
been particularly beneficial to my work. Additionally, I sincerely thank the members
of my examination committee, Professor Yuichi Tanaka, Professor Kyo Inoue, and
Professor Akihiro Maruta, for their time, effort, and valuable feedback. Their collective
expertise and guidance have been instrumental in refining my research and bringing
this dissertation to fruition. Further, thanks go to the Japanese government MEXT
scholarship and Osaka University. Their unwavering support throughout my journey
was invaluable. Their financial assistance and Osaka University’s stimulating research
environment enabled me to pursue my academic goals and complete this thesis. I would
like to thank Professor Hisato Shima, who has always been inspiring and supportive. I
am grateful for his guidance during my application for the MEXT scholarship. He has
consistently been there for me whenever I needed his support. Ultimately, I extend my
heartfelt appreciation to my beloved family. Their constant encouragement and advice
have been invaluable during my life and educational journey. They walked beside me
every step, their love and encouragement sustaining me in even the toughest times.
This Ph.D. dissertation is dedicated to my great father and beloved mother who held
my hand and lit my path: My beloved mother, whose unwavering love and belief in
me were an endless source of strength and inspiration. Thank you for teaching me
resilience and the courage to chase my dreams. My father’s legacy of wisdom and
perseverance guided me through moments of doubt and challenge. You instilled in me
a thirst for knowledge and a commitment to excellence. May this work reflect the love
and support you have generously given me. I am always proud of having you beside

iv

me. I would like to thank my dearest brother, Ahmad Siar Ghafoori, and Enayatullah
Ghafoori, who always encouraged me and unconditionally supported me throughout
my education journey. I want to express my deepest gratitude to my beloved wife,
whose unwavering love and support have been my strength during this time. Her
patience, encouragement, and belief in me have made this accomplishment possible.
To my precious daughter, Yusra Ghafoori, who has been a source of healing and energy
during my Ph.D. journey and while drafting this thesis. I hope you will make your
father proud and one day complete your Ph.D.

v

Contents

Abstract ii

Acknowledgments iv

Contents vi

List of figures viii

List of tables ix

1 Introduction 1
1.1 Background . 1
1.2 Existing Studies . 3
1.3 Motivations . 5
1.4 Contributions . 6
1.5 Organization . 9

2 Preliminaries 10
2.1 Cryptography Primitives . 10
2.2 Specification of Salsa 20 . 11
2.3 ChaCha Stream Cipher . 14
2.4 Cryptanalysis Approaches . 16

2.4.1 Differential Cryptanalysis . 18
2.4.2 Linear Cryptanalysis . 24
2.4.3 Differential-linear Cryptanalysis 25
2.4.4 The Boomerang Attack . 26

3 Previous Works 30
3.1 Existing Attacks on Salsa 20 and ChaCha 30

3.1.1 Preliminary Computation Stage 30
3.1.2 Probabilistic Neutral Bits . 32
3.1.3 Probabilistic Inverse Analysis 32
3.1.4 Attack Phase . 33

vi

CONTENTS

3.1.5 Attack Complexity . 33
3.2 Differential Attack on Salsa 20 and ChaCha 33

3.2.1 Differential-Linear Attacks on Salsa 20 and ChaCha 38
3.2.2 Significant Linear Approximations 44
3.2.3 Higher Order Differential-Linear Attack 48
3.2.4 Attacks on ChaCha permutation 49

4 Differential Cryptanalysis of Salsa 20 and ChaCha 52
4.1 Examination of Probabilistic Neutral Bits 52

4.1.1 Analysis of PNBs . 53
4.1.2 The Impact on Salsa 20 . 54
4.1.3 The Impact on ChaCha . 56
4.1.4 Correlation Between Neutrality Measures and Inversed Rounds . 58

4.2 Differential Cryptanalysis with PNB Approach 61
4.2.1 The Attack on Salsa 8 . 62
4.2.2 The Cryptanalysis of ChaCha 7.25 65

5 Higher-Order Differential-Linear Cryptanalysis of ChaCha 69
5.1 Attack Points Selection . 69
5.2 Applying Linear Cryptanalysis . 73
5.3 The Attack Complexity of Higher-Order Differential-Linear Cryptanalysis 76

5.3.1 The Distinguisher of ChaCha 76
5.3.2 The Distinguishing Attack Complexity 77

5.4 The attack specification . 78

6 The Boomerang Attack on ChaCha Permutation 80
6.1 Boomerang Attack on ChaCha . 80
6.2 The Boomerang Distinguisher . 83

6.2.1 Attack on ChaCha 7 Permutation 83
6.2.2 Attack on 6-rounds ChaCha Permutation 85
6.2.3 The Boomerang Differential Trails of ChaCha 86
6.2.4 Factors Driving Significant Improvements in Attacks 87

7 Discussion 88

8 Conclusion and Future Works 91

List of publications 93

References 94

vii

List of Figures

1.1 Thesis Overview . 9

2.1 Schematic of Salsa 20 . 14
2.2 Schematic of ChaCha . 16
2.3 Schematic of Differential Linear Cryptanalysis 27
2.4 The Boomerang Attack . 29

3.1 Graphic Representation of PNB based cryptanalysis. 31

4.1 ID,OD Selection Procedure. 53
4.2 Neutral measures of internal rounds r 55
4.3 Neutral measures of internal rounds r. 56
4.4 Distribution of neutral measures for R = 7 57
4.5 Neutral measures for r = 3.5 internal rounds 57

6.1 Boomerang probability distribution . 85
6.2 The boomerang attack on ChaCha . 86

viii

List of Tables

1.1 The Existing Key-Recovery Attacks on Salsa 20 4
1.2 The Existing Key-Recovery Attacks on ChaCha 4
1.3 The Existing Distinguishers of ChaCha 5
1.4 The Distinguishing Attacks on ChaCha 5
1.5 The Salsa 8 attack comparison . 7
1.6 The ChaCha 7.25 attack comparison 7
1.7 The ChaCha 6 distinguisher comparison 8

2.1 Symbols and Notations . 12

3.1 The Aumasson [AFK+08] Attack Summary on Salsa 34
3.2 The Aumasson [AFK+08] Attack Summary on ChaCha 34

4.1 For R = 7, the OD bit with the optimal neutral measure using 230

samples. 56
4.2 Total modular additions in reverse rounds 3, 2.25, 2.5, 2.75 from R = 8 . 58
4.3 Total modular additions in reverse rounds 4, 3.25, 3.5, 3.75 from R = 8 . 58
4.4 TheOD position with the best average neutral measure across for R = 8

using 230 samples . 60
4.5 Neutral measures γκ at r = 4, where p and q represent the word and

bit positions of OD using 230 samples. 60
4.6 Neutral measures γκ at r = 5, where p and q represent the word and

bit positions of OD using 230 samples. 60
4.7 ID with the optimal median bias ε∗

d using 240 samples. 62
4.8 OD positions with consistent bias in various internal rounds. 62
4.9 ID positions with optimal median bias ε∗

d given OD positions using 240

samples. 63
4.10 The PNBs for R = 8 . 63
4.11 The attack complexity on Salsa 20/8 when r = 4. 64
4.12 The attack complexity Salsa 20/8 when r = 4.75 64
4.13 OD bit with best neutral measure using 230 samples. 66
4.14 The differential bias using 240 samples. 66

ix

LIST OF TABLES

4.15 The attack complexity on ChaCha7.25 for r = 3.5. 67
4.16 Subset of PNBs n for various thresholds γ in r = 3.5 rounds. 67

5.1 Optimal Average Neutral Measure for Second-Order Differentials using
230 samples. 71

5.2 Optimal Average Neutral Measure for Third-Order Differentials using
230 samples. 71

5.3 Second-order Bias of ChaCha using 240 samples 71
5.4 Third-order bias of ChaCha using 240 samples 71
5.5 Hamming weight of ChaCha matrix . 72
5.6 The distinguisher complexity. 77
5.7 The Distinguishing Attack Complexity 78

6.1 The Boomerang Attack Probability for ChaCha 7 85
6.2 The Boomerang Attack Probability for ChaCha 6 85

x

Chapter 1

Introduction

1.1 Background
Cryptography is the practice of securing information by transforming it into an un-
readable format. It allows only authorized parties to read and modify it. This trans-
formation involves mathematical algorithms that convert readable information called
plaintext into an unreadable form called ciphertext. Symmetric cryptography, also
known as secret-key cryptography. It employs the same key for both encryption and
decryption. A secret key ensures that only those with the key can decrypt the informa-
tion. Symmetric ciphers secure data across various applications such as mobile phones,
ATMs, online shopping, online payment systems, credit cards, social media platforms,
video games, etc. Symmetric ciphers ensure confidentiality in digital communications
across different platforms.

Symmetric ciphers are integral to Internet communications, where they secure data
transmission over insecure networks. For instance, protocols like SSL/TLS use a com-
bination of symmetric and asymmetric cryptography to protect information exchanged
between web browsers and servers. Web users, website administrators, and email ser-
vice providers rely on these cryptographic protocols to maintain secure and trustworthy
online interactions. Cryptosystems are pivotal in securing online banking and digital
payment systems in financial transactions.

Symmetric ciphers, known for their efficiency, are employed to encrypt large vol-
umes of data quickly. Asymmetric encryption is used for secure key exchange. This
combination of cryptographic methods helps prevent fraud and unauthorized access.
Thereby protecting the financial institution and the customer. Banks, e-commerce
platforms, and payment gateways are prime users of these cryptographic solutions,
ensuring secure and seamless financial transactions. Symmetric ciphers are often em-
ployed to encrypt large datasets due to their high efficiency, while asymmetric cryp-
tography secures communication channels. This dual approach ensures that even if
an encrypted message is intercepted, it cannot be deciphered without the appropriate

1

CHAPTER 1. INTRODUCTION

keys.
Symmetric ciphers use the same key for encryption and decryption and are widely

favored for their speed and efficiency. They excel at encrypting large volumes of
data, making them ideal for file encryption, database security, and network protection
applications. For example, tools like BitLocker and FileVault use symmetric ciphers
to secure entire drives. It ensures that the data stored on these drives is protected
from unauthorized access. Similarly, network security protocols such as VPNs utilize
stream cipher to safeguard data transmitted over potentially insecure networks. It
provides a secure communication channel for remote workers and corporate networks.

They are used in telecommunications to secure voice and video calls, ensuring that
conversations remain private. Stream ciphers are also employed in wireless networks to
encrypt data transmission. Moreover, stream ciphers’ lightweight and efficient nature
makes them ideal for securing data transmitted by Internet of Things (IoT) devices,
which often have limited computational resources. Telecommunication companies, IoT
manufacturers, and software developers rely on stream ciphers for real-time encryption.
This ensures secure and continuous data streams in video streaming, online gaming,
and smart device communication applications.

Stream ciphers are fundamental to modern cryptography, providing essential secu-
rity mechanisms for various applications. These cryptographic tools are indispensable
in today’s digital world, from securing internet communication and financial transac-
tions to protecting government and healthcare data. Ongoing development, analysis,
and implementation of these cryptographic methods will be vital. It will allow us
to tackle the evolving challenges of data security and privacy, ensuring that sensitive
information stays secure in our increasingly interconnected digital world.

Many ciphers are designed based on Addition, Rotation, and exclusive OR (ARX)
operations. The ARX consists of three basic operations: modular addition 2n, bit
rotations, and the Exclusive OR operations and ARX ciphers outperform in software
[Ber08].

The addition is the core component of the ARX design principle. It provides non-
linearity and diffusion. Due to the bitwise nature of ARX, the rotation is used to speed
up and balance the diffusion property. The basic operation in ARX runs constantly,
providing resistance against timing attacks. However, it is susceptible to differen-
tial and differential-linear attack. When encryption speed is the main requirement,
ARX ciphers can significantly boost performance. For example, VMWare View uses
PCoIP (PC-over-IP) to send computer displays across a network. ARX-based ciphers,
including Salsa 20 [Ber08], and ChaCha [B+08] were introduced in 2005 and 2008,
respectively. In versions 4.5 and later, VMWare View uses Salsa 12. The Salsa 12
reaches speeds of around 20 Mbit/s, compared to AES, which is typically limited to
around 7 Mbit/s [MP13]. While the ARX ciphers outperform in speed, their security

2

CHAPTER 1. INTRODUCTION

is poorly understood and needs further investigation. Salsa 20 and ChaCha are the
widely deployed stream ciphers, and we briefly present the deployments below: Salsa
20 is deployed in the following applications: Linux and Chromium OS. It is also ap-
plied in password managers such as KeepassX, Freepass, McPass, and CurveProtect.
It’s used in different programming libraries of Java, Go, JavaScript, Python3, Ruby,
Rust, SWIFT, and C. It is also used in VPN and tunneling software such as MLVPN,
FASTD, PipeSocks, and Salsapipe.

Likewise, Salsa 20, ChaCha is deployed in a wide range of hardware and software.
For instance, ChaCha is part of the TLS 1.3 cipher suit. In addition, it is part of
WireGuard, Netcode, Noise, and QUIC protocols. It’s applied in operating systems
like Linux, Andriod, and Redox. It’s used in Chrome, Firefox, and Safari. It’s also
part of many programming languages, such as PHP, NodeJS, JavaScript, and Java.
Given the wide deployment of Salsa 20 and ChaCha stream ciphers, it’s crucial to
understand their security.

1.2 Existing Studies
The existing research studies mainly focus on the security of Salsa 20 and ChaCha
stream ciphers using differential and differential-linear cryptanalysis methods. The at-
tacks primarily consist of key-recovery attacks and distinguishers. Differential crypt-
analysis examines how an input difference propagates through various rounds of a
cipher. The success of the attack is measured by a bias, which indicates the non-
random behavior of the cipher.

This method is one of the most widely used cryptanalysis approaches. Linear
cryptanalysis, on the other hand, studies the approximation of modular addition via
the XOR operation with a certain probability. Differential-linear cryptanalysis com-
bines both differential and linear cryptanalysis techniques. It is regarded as a powerful
approach for attacking the higher rounds of a cipher. Boomerang cryptanalysis com-
bines shorter differentials with higher-probability differentials, which are often difficult
to find in the higher rounds of a cipher.

3

CHAPTER 1. INTRODUCTION

Table 1.1: The Existing Key-Recovery Attacks on Salsa 20

Attack Target Time Data Reference
Differential 7 2151 226 [AFK+08]
Differential 7 2148 224 [SZFW12]

Differential-linear 7 2137 261 [CM16]
Differential 8 2251 231 [AFK+08]
Differential 8 2250 227 [SZFW12]
Differential 8 2245.5 222.4 [Mai16]

Differential-linear 8 2244.9 296 [CM16]
Differential 8 2243.6 230.4 [DS17]
Differential 8 2241.62 231.5 Chapter 4

Table 1.2: The Existing Key-Recovery Attacks on ChaCha

Attack Target Time Data Reference
Differential 6 2139 230 [AFK+08]

Differential-linear 6 2127.5 237.5 [CM16]
Differential-linear 6 277.4 258 [BBC+22]

Differential 6 2136 228 [SZFW12]
Differential-linear 6 2102.2 256 [CN20]

Differential 7 2248 227 [AFK+08]
Differential-linear 7 2237.7 296 [CM16]
Differential-linear 7 2230.86 248.8 [BBC+22]
Differential-linear 7 2221.95 248.83 [DGSS22]

Differential 7 2231.63 249.58 [MIM22]
Differential 7 2210.3 2103.3 [WLHL23]

Differential-linear 7 2206.8 2110.81 [BGG+23]
Differential 7.25 2255.62 248.36 [MIM22]
Differential 7.25 2254.011 251.81 Chapter 4

4

CHAPTER 1. INTRODUCTION

Table 1.3: The Existing Distinguishers of ChaCha

Attack Target Time Data Reference
Differential-linear 4 26 26 [CM16]
Differential-linear 5 216 216 [CM16]
Differential-linear 5 231.21 231.21 Chapter 5
Differential-linear 5.5 239.21 239.21 Chapter 5
Differential-linear 6 2116 2116 [CM16]
Differential-linear 6 251 251 [CSN21]
Differential-linear 6 247.21 247.21 Chapter 5
Differential-linear 7 2224 2224 [CSN21]
Differential-linear 7 2214 2214 [CPV+23a]

Differential 7 2207 2207 [DS23]
Differential-linear 7 2166.89 2166.89 [BGG+23]

All existing cryptanalysis methods applied to Salsa 20 and ChaCha stream ciphers
have used differential and differential-linear methodologies. The general idea behind
these attacks is to introduce differences in the initial state and then evaluate these
differences at a target round to determine whether the cipher behaves like a random
permutation. Any detected non-randomness can be exploited either to recover the key
or to distinguish the cipher from a truly random function. While the current research
domain covers both distinguishers and key-recovery attacks, it does not fully explore
distinguishing attacks, which aim to differentiate the keystream of a symmetric cipher
from that of a random source.

Table 1.4: The Distinguishing Attacks on ChaCha

Attack Round Time Data Reference
Differential-linear 5 233.21 233.21 Chapter 5
Differential-linear 5.5 263.21 263.21 Chapter 5
Differential-linear 6 287.21 287.21 Chapter 5

1.3 Motivations
To mount an effective attack, it is crucial to identify the attacking points which consist
of the initial and final positions. It primarily focuses on determining the initial position
first, followed by the exploration of the corresponding final position to identify potential
attack pairs. However, this approach may not always yield the optimal attack pair
due to the significant impact of the final position on the overall attack complexity.
Therefore, a comprehensive analysis and careful selection of the final position are
necessary.

5

CHAPTER 1. INTRODUCTION

This research evaluates whether identifying the final position first and subsequently
determining the optimal initial position enhances the attack complexity. We intend to
employ the differential attack methodology to assess the effectiveness of this approach.
Arka [CM16] introduced the differential-linear cryptanalysis on Salsa 20 and ChaCha
and later expanded by Coutinho [CPV+23a].

Building on this foundation, the differential-linear attacks reported in Tables 1.1,
1.2, and 1.3 predominantly utilize single-bit differences to construct and execute their
attacks. Although most of the attacks on the ChaCha stream cipher presented in
Tables 1.2 and 1.3 use the differential-linear attack, these studies mainly focused on
enhancing the attack on ChaCha by improving linear approximation. This dissertation
will evaluate the application of two main methods. First, we aim to enhance the
differential-linear attack by considering the differential part of the attack.

Furthermore, we will assess the efficacy of the higher-order differential-linear attack
on reduced rounds of ChaCha. We adopted Wagner’s boomerang attack methodology
as outlined in [Wag99]. The boomerang attack is a robust cryptanalytic technique that
offers a unique approach to evaluating cryptographic algorithms’ security, particularly
ChaCha’s permutation using the chosen plaintext and cipher text assumption. The
boomerang attack leverages differential cryptanalysis in an advanced manner, allowing
the examination of complex cryptographic structures that might not be susceptible to
traditional differential attacks.

Integrating the boomerang attack into our suite of analysis methods provides a
more comprehensive evaluation of the ChaCha security, employing the boomerang
attack in our analysis of the ChaCha permutation function is essential for achieving a
thorough and robust security evaluation. Salsa 20 and ChaCha stream ciphers have
undergone extensive analysis against differential and differential-linear cryptanalysis.
Researchers have demonstrated attacks on up to Salsa 8 and ChaCha 7.5.

1.4 Contributions
This dissertation studies the security of Salsa 20 and ChaCha stream ciphers. This
work has further improved the existing research and introduced new techniques to
attack Salsa 20 and ChaCha. The contribution of this dissertation is covered in three
independent chapters, and we summarize it as follows:

• Nasratullah Ghafoori, Atsuko Miyaji, Ryoma Ito and Shotaro Miyashita . PNB
based differential cryptanalysis of Salsa 20 and Chacha IEICE TRANSACTIONS
on Information and Systems 106, no,9 1407-1422 2023 (Chapter 4)

• Nasratullah Ghafoori, Atsuko Miyaji. Higher-Order Differential-Linear Crypt-
analysis of ChaCha Stream Cipher IEEE Access 2024.(Chapter 5)

6

CHAPTER 1. INTRODUCTION

• Nasratullah Ghafoori, Atsuko Miyaji. ”The Boomerang Attack on ChaCha
Stream Cipher Permutation. In 2024 6th International Conference on Computer
Communication and the Internet (ICCCI), pp, 18-23 2024.(Chapter 6)

Chapter 4: Differential Cryptanalysis of Salsa 20 and ChaCha Based on
PNB Analysis: This chapter explores the differential cryptanalysis of Salsa 20 and
ChaCha stream ciphers. Our approach involves utilizing differential cryptanalysis and
the analysis of PNBs on reduced rounds of Salsa 20. Initially, we thoroughly assess the
neutrality measure of all keybits concerning the output differentialsOD. Subsequently,
we identify the OD bit position with the highest neutrality measure and seek out the
corresponding input differential ID with the most favorable differential bias. Taking
into consideration the various factors, we propose an attack on Salsa 8, with a time
complexity of 2241.62 and a data complexity of 231.5.

Additionally, we introduce an attack targeting ChaCha7.25 rounds, with a time
complexity estimated at 2254.011 and a data complexity of approximately 251.81. Our
work improves upon this differential attack on Salsa 8. We compare the result of our
attack with the recent attack by [DS17] in Table 1.5.

Table 1.5: The Salsa 8 attack comparison

Time / Data Reference
2241.62/ 231.5 Chapter 4
2243.7/ 230.4 [DS17]

We have used Table 1.6 to present the comparison of our attack with the recent
attack introduced by Miyashita.

Table 1.6: The ChaCha 7.25 attack comparison

Time / Data Reference
2254.011/ 251.81 Chapter 4
2255.62/ 248.36 [MIM22]

Chapter 5: Higher-Order Differential-linear Cryptanalysis ChaCha: This
chapter examines the differential-linear and higher-order differential-linear cryptanal-
ysis of the ChaCha. We have enhanced the differential-linear attack on ChaCha and
conducted a study utilizing higher-order differential-linear cryptanalysis. Our research
investigates the higher-order differentials and their application to ChaCha. The study
further explores the effect of higher-order differential cryptanalysis on reduced rounds
of ChaCha and evaluates the cipher’s resistance to these attacks. Based on our re-
cent journal publication 1, we computed the distinguisher of ChaCha 5, ChaCha 5.5,

1The journal paper was published in IEEE Access and its foundation of this chapter 5.

7

CHAPTER 1. INTRODUCTION

and ChaCha 6 with the complexity of 231.21, 239.21, and 247.21, respectively. In ad-
dition to the journal results, chapter 5 introduces distinguishing attacks for ChaCha
5, ChaCha 5.5, and ChaCha 6 that incorporate the linear approximation of the final
modular addition used in key generation. In addition, we studied the higher-order
differential-linear attack on ChaCha 5, ChaCha 5.5, and ChaCha 6 and introduced a
distinguishing attack with 233.21, 263.21 and 287.21 complexities, respectively.

Moreover, we report larger biases that were previously undocumented for internal
rounds beyond 3.5 rounds. Additionally, our research reported new linear approxima-
tions of specific bits from the 4th to the 6th rounds.

Table 1.7: The ChaCha 6 distinguisher comparison

Time / Data Reference
247.21/ 247.21 Chapter 4

251/ 251 [CM16]

Chapter 6: Boomerang Cryptanalysis of ChaCha Permutation: The ChaCha
stream cipher has been extensively analyzed for its resistance against traditional forms
of differential and differential-linear attacks, but its susceptibility to different variants
of the cryptanalysis method has remained ambiguous over the past decade. In this
study, we conduct the first-ever boomerang cryptanalysis of ChaCha ’s permutation
function.

Our analysis demonstrates that in certain attack positions within ChaCha, the
probability may escalate to p2, thereby offering an additional enhancement to the
attack complexity of ChaCha. Additionally, we present an algorithm designed for exe-
cuting boomerang attacks on the ChaCha stream cipher. To demonstrate the potency
of boomerang cryptanalysis on the ChaCha permutation function, we apply it to target
ChaCha 6 and ChaCha 7. Our findings reveal that a boomerang attack requires a total
of approximately 24.04 and 25.99 adaptively chosen plaintext and ciphertext combina-
tions to effectively distinguish ChaCha 6 and ChaCha 7 from a random permutation,
respectively.

Figure 1.1 shows the dissertation structure. The diagram illustrates the structure
of this dissertation. It indicates the sequential progression of topics. The direction
of the arrows signifies the order in which each chapter is addressed, with each topic
building upon the previous one.

8

CHAPTER 1. INTRODUCTION

Chapter 2
Preliminaries

Chapter 3
Previous Works

Chapter 4
Differential Cryptanalysis
of Salsa 20 and ChaCha

Chapter 5
Higher-order Differential-linear

Cryptanalysis of ChaCha

Chapter 6
The Boomerang Attack on

ChaCha Permutation

Chapter 7
Discussion

Chapter 8
Conclusion and Future

Work

Figure 1.1: Thesis Overview

1.5 Organization
The main focus of this dissertation is to study and analyze the security of Salsa 20 and
ChaCha stream ciphers and to present their potential vulnerabilities. We organized the
dissertation as follows: Chapter 2 explains the structure of the Salsa 20 and ChaCha
and introduces the general framework for differential attacks, differential-linear attacks,
higher-order differential attacks, and boomerang attacks.

Chapter 3 comprehensively studies existing attacks on Salsa 20 and ChaCha, de-
tailing their methodologies and outcomes.

Chapter 4 presents our attacks on Salsa 20 and ChaCha, based on a detailed
analysis of Probabilistic Neutral Bits (PNBs).

Chapter 5 discusses our differential-linear and higher-order differential-linear dis-
tinguishers on ChaCha, and additionally, how we extended these to distinguishing
attacks.

Chapter 6 introduces the first application of the boomerang attack on the ChaCha
permutation function, demonstrating how we evaluated its security in both chosen
plaintext and ciphertext scenarios.

9

Chapter 2

Preliminaries

This chapter provides the foundational concepts for understanding the key terminolo-
gies and symbols used throughout this work. We introduce the principles of symmetric
key cryptography and define the Salsa 20 and ChaCha ciphers, which are central to
this study. We also outline the cryptographic approaches employed in the research
and present several important lemmas underpinning the analysis.

2.1 Cryptography Primitives
Cryptographic primitives include basic mathematical functions or algorithms essential
for constructing various cryptographic frameworks and structures that ensure con-
fidentiality, integrity, authentication, and non-repudiation. These are divided into
three main subclasses: public key cryptography, symmetric key cryptography, and
hash functions.

Symmetric Key Cryptography

Symmetric key cryptography functions depend on a shared secret key. It mainly en-
crypts data between the sender and receiver using the same shared key, providing data
confidentiality. The security of symmetric key cryptography relies on the confidential-
ity of the encryption key, which must be kept secret and available only to authorized
parties. Symmetric key cryptography is further classified into stream ciphers and block
ciphers.

Stream cipher

Stream ciphers are cryptographic functions that take keybits, initial vectors, and some-
times constants to produce random keystreams. The XOR operation encrypts and
decrypts data using the keystream generated by stream cipher functions.

10

CHAPTER 2. PRELIMINARIES

Definition 2.1 ([DK15]). Let L represent a set of keys and M denote a set of
plaintexts, where the elements of M are referred to as characters. A stream cipher
E:K×M∗ → C∗ can be defined in this context as follows:

E∗(k, m) := c := c1c2c3 · · ·

where E∗ is a function that accepts a key k and a plaintext m, resulting in the
generation of a ciphertext c.

Block Cipher

Block ciphers typically encrypt 64 or 128 bits under a key k of a certain size. Encryp-
tion keys are considered to be randomly chosen. The block cipher map and input of
n size to an output of n under a random key k. Encryption is reversible, and the key
can be decrypted using the same key k.

Definition 2.2 ([Alk16]). A block cipher is an invertible mapping that operates on
inputs and outputs of block size n bits, using a key of size k bits. This mapping is
defined as MK → C, where M ∈ En

2 represents the message space, C ∈ En
2 denotes

the ciphertext space, and K ∈ Ek
2 indicates the key space. The inverse mapping is

given by the decryption function E−1 : CK →M .

2.2 Specification of Salsa 20
The family of Salsa 20 stream cipher [Ber08] was proposed by Daniel J. Bernstein in
2005. The original version of Salsa 20 has 20 rounds with 256 keybit security against
key recovery attacks. Salsa 12 and Salsa 8 were proposed as reduced rounds of Salsa
20, where speed is more important than security. In addition, the Salsa 20 allows
the 128−keybits security as an option. However, it is not recommended. In [Ber08]
Bernstein reported that Salsa 20 encrypts 3.93 Core-2 cycles/byte, Salsa 12 encrypts
data in 2.80 Core-2 cycles/byte, and Salsa 8 encrypts data in 1.88 Core-2 cycles/byte
which makes it one of the fastest symmetric ciphers.

The Salsa 20 algorithm consists of a lengthy sequence of three basic operations:

• Modular addition of two 32-bit words denoted as a + b mod 232.

• The XOR of two 32-bit words denoted as a⊕ b.

• Constant distance 32-bit rotations denoted as a ≪ b, which rotates the word a

by b bits to the left. The b is always constant.

11

CHAPTER 2. PRELIMINARIES

Table 2.1: Symbols and Notations

Notation Description
X A 4× 4 matrix composed of 16 words.

X(0) The ChaCha initial state matrix.
X

′(0) The corresponding matrix with a single-bit difference at the
xi,j position.

X(R) The matrix after R rounds of ChaCha.
X(r) The matrix after r rounds of ChaCha, where R > r.
x

(R)
i The i-th word of state matrix X(R).

Θ(x, y) The carry function for the sum x + y.
ID,OD Input difference, output difference
∆X

(n)
i j The difference in the j-th bit of the i-th word after n rounds.

Pr(E) The likelihood of event E occurring.
x

(R)
i,j The j-th bit of i-th word of matrix X(R).

x + y The word wise modular addition of x and y.
x− y The word wise subtraction of x and y.
x⊕ y The bit-wise XOR operation between the words x and y.

x ≪ n The left rotation of the word x by n bits.
∆x The XOR difference between the words x and x′.
εd Differential bias.
εa Inverse bias.
εL Linear bias.

εd · ε2
L Differential-Linear bias.

γi The neutrality measure of the i-th key bit.
ChaCha n The n-th round of the ChaCha stream cipher.

In the first round, columns operate independently of each other. Similarly, in the
following round, rows operate independently. For instance, the words (i, j) remain
unaffected by an input difference until the third round. As a result, each word of
Salsa 20 affects each other from the 4-th round. The [Ber08] stated that the rotation
distances of 7, 11, 13, and 18 in Salsa 20 are selected to effectively propagate changes
across various bit positions within a few rounds.

The designer introduced the 20-round Salsa 20 stream cipher to the ECRYPT
Stream Cipher Project, eSTREAM1, as a contender for stream ciphers intended for
software applications demanding high throughput and hardware applications with lim-
ited resources. In September 2008, the eSTREAM portfolio was finalized, with the
12-round version of Salsa 20, known as Salsa 12, being chosen as one of the finalists
for the software category in the portfolio. The security of the ARX structure depends
on modular addition, which creates non-linearity.

The Salsa 20 stream cipher generates a keystream block comprising 16 words, each
32 bits in size, through the following three steps:

1https://www.ecrypt.eu.org/stream/

12

CHAPTER 2. PRELIMINARIES

Step 1. The first state matrix X(0), which is a 4 × 4 matrix, is established using a
256-bit confidential key k = (k0, k1, . . . , k7), a 64-bit nonce v = (v0, v1), a 64-bit
block counter t = (t0, t1), and four 32-bit constants c = (c0, c1, c2, c3), where the
constants are defined as c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32,
and c3 = 0x6b206574.

Following this setup, we derive the initial state matrix X(0) as follows:

X(0) =

∣∣∣∣∣∣∣∣∣∣∣

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k6 k7 c3

∣∣∣∣∣∣∣∣∣∣∣
.

Step 2. The Salsa 20 round function consists of four quarter-round functions. In this
process, a vector (x(r)

a , x
(r)
b , x(r)

c , x
(r)
d) from the internal state matrix X(r) is up-

dated through a series of sequential computations:

x
(r+1)
b = ((x(r)

a + x
(r)
d) ≪ 7)⊕ x

(r)
b ,

x(r+1)
c = ((x(r+1)

b + x(r)
a) ≪ 9)⊕ x(r)

c ,

x
(r+1)
d = ((x(r+1)

c + x
(r+1)
b) ≪ 13)⊕ x

(r)
d ,

x(r+1)
a = ((x(r+1)

d + x(r+1)
c) ≪ 18)⊕ x(r)

a .

(2.1)

The symbols ‘+’, ‘≪’, and ‘⊕’ denote word-wise modular addition, bit-wise left
rotation, and bit-wise XOR, respectively. In odd-numbered rounds, known as
column-rounds, the quarter-round function is applied to the following four col-
umn vectors: (x(r)

0 , x
(r)
4 , x

(r)
8 , x

(r)
12), (x(r)

5 , x
(r)
9 , x

(r)
13 , x

(r)
1), (x(r)

10 , x
(r)
14 , x

(r)
2 , x

(r)
6), and

(x(r)
15 , x

(r)
3 , x

(r)
7 , x

(r)
11). In even-numbered rounds, referred to as row-rounds, the

quarter-round function is applied to these four row vectors: (x(r)
0 , x

(r)
1 , x

(r)
2 , x

(r)
3),

(x(r)
5 , x

(r)
6 , x

(r)
7 , x

(r)
4), (x(r)

10 , x
(r)
11 , x

(r)
8 , x

(r)
9), and (x(r)

15 , x
(r)
12 , x

(r)
13 , x

(r)
14).

Step 3. A 512-bit keystream block is generated as Z = X(0) + X(R), where R denotes
the last round. The initial version of the Salsa 20 stream cipher, known simply
as Salsa 20, uses R = 20 rounds. However, the version recognized as one of the
finalists in the eSTREAM software portfolio [eP] is Salsa 12, where R = 12.

The round function in Salsa 20 is invertible, which implies that a vector (x(r+1)
a , x

(r+1)
b ,

x(r+1)
c , x

(r+1)
d) within the internal state matrix x(r+1) can be reversed through the fol-

lowing sequential operations:

x(r)
a = ((x(r+1)

d + x(r+1)
c) ≪ 18)⊕ x(r+1)

a ,

x
(r)
d = ((x(r+1)

c + x
(r+1)
b) ≪ 13)⊕ x

(r+1)
d ,

x(r)
c = ((x(r+1)

b + x(r)
a) ≪ 9)⊕ x(r+1)

c ,

x
(r)
b = ((x(r)

a + x
(r)
d) ≪ 7)⊕ x

(r+1)
b .

(2.2)

13

CHAPTER 2. PRELIMINARIES

𝑥!
(#) 𝑥%

(#) 𝑥&
(#) 𝑥'

(#)

<<<7

<<<9

𝑥!
(#()) 𝑥%

(#()) 𝑥&
(#()) 𝑥'

(#())

<<<13

<<<18

Figure 2.1: Schematic of Salsa 20

2.3 ChaCha Stream Cipher
ChaCha stream cipher [B+08] is a variant of Salsa 20. It is designed using ARX
based on the same principles as its predecessor, Salsa 20. ChaCha was designed to im-
prove the diffusion per round and increase resistance against cryptanalysis approaches.
The diffusion is not increased by adding additional operations to the structure of the
ChaCha stream cipher. It employs 16 additions, 16 XORs, and 16 constant-distance
rotations of 32-bit words.

ChaCha [B+08] involves three steps to produce a keystream block containing 16
words, with each word being 32 bits in size. Unlike Salsa 20, the structure of the
ChaCha stream cipher ensures that each input word will affect each output word,
which improves the diffusion property of Salsa 20. The order of words in the ChaCha
stream cipher differs from Salsa 20, as the attacker-controlled words are placed at the
bottom of the matrix. To generate the keystream, ChaCha stream ciphers run the
following steps.

Step 1. To produce a 512-bit keystream, the ChaCha algorithm initializes the state
matrix X(0) of size 4× 4 using a 256-bit key k = (k0, k1, . . . , k7), a 96-bit nonce
v = (v0, v1, v2), a 32-bit block counter t0, and four predefined 32-bit constants c =
(c0, c1, c2, c3), specifically c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32,
and c3 = 0x6b206574. After setting up, the resulting initial state matrix is as
follows:

14

CHAPTER 2. PRELIMINARIES

X(0) =

∣∣∣∣∣∣∣∣∣∣∣

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

c0 c1 c2 c3

k0 k1 k2 k3

k4 k5 k6 k7

t0 v0 v1 v2

∣∣∣∣∣∣∣∣∣∣∣
.

Step 2. The round function of ChaCha includes four concurrent executions of the
quarterround function. In this process, a vector (x(r)

a , x
(r)
b , x(r)

c , x
(r)
d) within the

intermediate matrix X(r) is altered by performing the following steps in sequence:

x
(r)
a′ = x(r)

a + x
(r)
b

x
(r)
d′ = x

(r)
d ⊕ x

(r)
a′

x
(r)
d′′ = x

(r)
d′ ≪ 16

x
(r)
c′ = x(r)

c + x
(r)
d′′

x
(r)
b′ = x

(r)
b ⊕ x

(r)
c′

x
(r)
b′′ = x

(r)
b′ ≪ 12

x(r+1)
a = x

(r)
a′ + x

(r)
b′′

x
(r)
d′′′ = x

(r)
d′′ ⊕ x(r+1)

a

x
(r+1)
d = x

(r)
d′′′ ≪ 8

x(r+1)
c = x

(r)
c′ + x

(r+1)
d

x
(r)
b′′′ = x

(r)
b′′ ⊕ x(r+1)

c

x
(r+1)
b = x

(r)
b′′′ ≪ 7.

(2.3)

The notations “+”, “⊕”, and “≪” stand for modular addition performed on
words, bitwise XOR operation, and bitwise left rotation, respectively. For odd-
numbered rounds, which are called columnrounds, the quarterround function is ap-
plied to the following four column vectors: (x(r)

0 , x
(r)
4 , x

(r)
8 , x

(r)
12), (x(r)

1 , x
(r)
5 , x

(r)
9 , x

(r)
13),

(x(r)
2 , x

(r)
6 , x

(r)
10 , x

(r)
14), and (x(r)

3 , x
(r)
7 , x

(r)
11 , x

(r)
15). For even-numbered rounds, which

are called diagonalrounds, the quarterround function is applied to the following
four diagonal vectors: (x(r)

0 , x
(r)
5 , x

(r)
10 , x

(r)
15), (x(r)

1 , x
(r)
6 , x

(r)
11 , x

(r)
12), (x(r)

2 , x
(r)
7 , x

(r)
8 , x

(r)
13),

and (x(r)
3 ,

x
(r)
4 , x

(r)
9 , x

(r)
14).

Step 3. A 512-bit keystream block is derived as Z = X(0)+X(R), with R indicating the
last round. The original ChaCha consists of R = 20 rounds, and ChaCha20/R

refers to the variant with fewer rounds.

The round function is invertible. This means that a vector (x(r+1)
a , x

(r+1)
b , x(r+1)

c , x
(r+1)
d)

in the internal state matrix X(r+1) can be reversed by executing the following steps in
sequence:

x
(r)
b′′′ = x

(r+1)
b ≪ 25, x

(r)
b′′ = x

(r)
b′′′ ⊕ x(r+1)

c , x
(r)
c′ = x(r+1)

c − x
(r+1)
d ,

x
(r)
d′′′ = x

(r+1)
d ≪ 24, x

(r)
d′′ = x

(r)
d′′′ ⊕ x(r+1)

a , x
(r)
a′ = x(r+1)

a − x
(r)
b′′ ,

x
(r)
b′ = x

(r)
b′′ ≪ 20, x

(r)
b = x

(r)
b′ ⊕ x

(r)
c′ , x(r)

c = x
(r)
c′ − x

(r)
d′′ ,

x
(r)
d′ = x

(r)
d′′ ≪ 16, x

(r)
d = x

(r)
d′ ⊕ x

(r)
a′ , x(r)

a = x
(r)
a′ − x

(r)
b .

(2.4)

15

CHAPTER 2. PRELIMINARIES

𝑥!
(#) 𝑥%

(#) 𝑥&
(#) 𝑥'

(#)

𝑥!
(#()) 𝑥%

(#()) 𝑥&
(#()) 𝑥'

(#())

<<<8

<<<12

<<<16

<<<7

Figure 2.2: Schematic of ChaCha

2.4 Cryptanalysis Approaches
As mentioned in the prior chapter, cryptanalysis is used to evaluate the security of
cryptographic primitives. The cryptanalysis will follow one or more attack models.
The role of the cryptanalysts’ community is to conduct different types of attacks and
push the attack to its limits. Some cryptanalysis methods treat the cipher as a black
box and attack the cipher. However, some methods target the specific weakness in a
cipher. All the existing cryptanalysis approaches aim to understand the security of
cryptographic primitives.

In this section, we describe the most prominent cryptanalysis attack. precisely,
cryptanalysis is the theoretical and practical study of techniques for analyzing the
security of cryptographic primitives. It is an important process for building trust in
cryptographic primitives. The cryptanalysis process involves mathematics, computer
science, and logic to identify vulnerabilities within a cryptographic scheme. Compre-
hensive cryptanalysis research helps cryptographers to understand the security of a
cipher better.

Cryptanalysis plays a critical role in evaluating the robustness of cryptographic
systems. It ensures the integrity and confidentiality of information. Cryptanalysts are
ideally looking to recover the secret key; however, there are many types of cryptanalysis
techniques, as follows:

• Complete Break: This scenario involves an attack that fully recovers the en-
cryption key.

16

CHAPTER 2. PRELIMINARIES

• Reduced Complexity: The attack can retrieve the secret key more efficiently
than a brute-force search.

• Distinguishing Attack: The attacker can tell the difference between the cipher
and a random permutation.

To conduct any of the attacks above, we assume that the cryptanalyst might have
access to a certain amount of information [KR11], called attack models. The choice
of attack model by the attacker depends on cipher structure, time complexity, data
complexity, and success probability. The attack models are classified as follows:

• Chosen Plaintext attack: The chosen plaintext attack is an attack scenario
where the adversary can select certain plaintext and analyze the corresponding
ciphertext. If a cipher is susceptible to a known plaintext attack, it is also
inherently vulnerable to a chosen plaintext attack. However, the reverse isn’t
always true [Bir11].

• Adaptively Chosen plaintext ciphertext attack: Adaptive chosen-ciphertext
scenario mount attack on cryptographic protocols enable an attacker to decrypt a
ciphertext and obtain the plaintext through the submission of a series of chosen-
ciphertexts to an oracle [MZ06].

To mount a successful attack, the cryptanalysts’ community looks for the following
three important factors [KR11].

• Time complexity: The first and foremost factor required to measure an at-
tack’s success is the attack’s time complexity. It is the time or number of en-
cryption to attack a cipher. In some cases, it is considered the only factor to
measure the success of an attack. For instance, an attack with a time complexity
of 240 is considered more effective than an attack with a time complexity of 250.

• Data Complexity: The amount of data is important to measure the effective-
ness of an attack. If the attack’s data complexity is excessively high, it becomes
impractical to execute. Thus, managing data complexity is essential for practical
attacks.

When evaluating the effectiveness of a cryptographic attack, the availability and
type of data are crucial factors in determining its success. Considering the type and
amount of data involved in the attack, cryptanalysts have introduced numerous types
of cryptanalysis approaches.

Some attacks achieve a total break, while others involve complexity deduction or
introduce distinguisher. The cipher’s security depends on the secret key k in symmetric
cryptography. The easiest way to access the secret key is by guessing it. If the key

17

CHAPTER 2. PRELIMINARIES

length is k, there are 2k possible combinations, and the probability of guessing the
correct key is 2−k.

Moreover, an exhaustive search is a systematic method to obtain the secret key.
Regardless of the security strength of a cipher, an exhaustive search can be used to find
the key. To defend against exhaustive searches, the key length is vital in maintaining
cipher security [KR11].

When ciphers withstand exhaustive searches, the cryptanalysis community employs
various approaches to reduce the complexity of brute-force attacks. For example, sup-
pose a cipher key requires 2128 key bits for an exhaustive search. In that case, crypt-
analysts introduce approaches to reduce the exhaustive search range to 2128−d, where
d represents the deduction resulting from a cryptanalysis approach. Drawing from
Shannon’s work [Sha48], [Sha49], a cipher must not be distinguishable from a random
permutation. If a cryptanalysis approach can efficiently distinguish a cipher from a
random permutation in terms of time and data complexity, this is also considered an
attack on ciphers.

2.4.1 Differential Cryptanalysis

In 1991, Biham and Shamir presented the differential cryptanalysis [BS91] as an ad-
versary model to attack the Data Encryption Standard (DES) [S+99]. Over the last
decades, differential cryptanalysis has been the main tool for analyzing the security of
different ciphers.

Differential cryptanalysis is a chosen plain text attack that studies the impact of a
difference in plaintext on the difference of ciphertext. The differences can be used to
recover the secret key with certain probabilities. We need many plaintext pairs with
an exact difference and the resultant ciphertext to mount a differential attack. The
exclusive OR operation is used as a difference operator. Over the years, the variation
of differential cryptanalysis was introduced.

These variations include truncated differential cryptanalysis [Knu95], higher-order
differential cryptanalysis [Knu95], boomerang attacks [Wag99], differential-linear at-
tacks [BS91], and impossible differential cryptanalysis [Knu98].

Differential Probability The differential probability of an encryption function f

is computed over the function f which is shown as a pair of (∆x, ∆y) or alternatively
(α, β) where ∆x, or α show the input difference ID and ∆y, or β show the output
difference OD.

Definition 2.3 ([BS91], [LWD04]). The differential probability (DP) of a differential
relation for the function f , represented as (α, β), is calculated as

18

CHAPTER 2. PRELIMINARIES

DP (α, β) = 2−n#{X ∈ Fn
2 |(f(x⊕ α) = f(x)⊕ β)}.

Where n shows the size of function f , x indicates the input of function f . The dif-
ferential probability suggests the number of possible input/output pairs that satisfy the
differential relation over the function f .

Definition 2.4 ([LWD04]). Limpa studied the XOR differential likelihood of addition,
indicated as xdp+, and the additive differential likelihood of XOR, expressed as adp⊕.
The differential probability (DP) of addition modulo 2n describes the probability that
a particular input difference leads to a defined output difference.

DP +(α, β) := Px,y[(x + y)⊕ ((x⊕ α) + (y ⊕ β))].

The most common operator for computing the differential probability of a function
f is the exclusive OR (XOR) operator ⊕. However, we could also consider the additive
differential probability of XOR denoted as adp⊕. The XOR operator can neutralize the
effect of key bits applied during the encryption process. For instance, given a pair of
plaintext and ciphertext (c, p), (ĉ, p̂) where c = f(m) = m⊕ k, and k is the encryption
key, we have c = m ⊕ k and ĉ = m̂ ⊕ k. By applying the XOR operator, we obtain
c ⊕ ĉ = m ⊕ m̂ ⊕ k ⊕ k = m ⊕ m̂. This operation effectively eliminates the influence
of the encryption key k [Alk16].

The differential probability of an encryption function f is determined solely by the
non-linear element of a cipher. For instance, in Substitution-Permutation Networks
(SPNs), the S-box reflects the differential probability. In contrast, in Add-Rotate-XOR
(ARX) ciphers, the modular addition reflects the differential with a certain probability.
The scenario differs in the linear element, where the differential probability always
occurs with a probability of 1.

Differential Probability of Iterated Ciphers The iterative ciphers encrypt a
plaintext by applying the same basic operations in multiple rounds. Each round con-
sists of specific cryptographic operations such as modular additions, exclusive OR, and
more. The output ciphertext from each round serves as the input for the subsequent
round, with this procedure continuing for a predetermined number of rounds.

Definition 2.5 ([LMM91], [Alk16]). An iterated cipher with the round function f =
fki

(X) is called a Markov cipher if there exists a difference operation ∆ such that
Pr(∆y = β | ∆x = α, x = y) remains unaffected by γ for all input and output
difference masks α and β, provided that the round key ki is selected uniformly at
random.

19

CHAPTER 2. PRELIMINARIES

The differential characteristics are initially searched over one round and then ex-
panded over the target round. This principle is known as differential characteristic
(DC).

Definition 2.6 ([LMM91], [Alk16]). A differential characteristic (DC) refers to a
series of intermediate differences passing through various encryption stages at each
analyzed round.

∆0 → R1∆1 → · · · → ∆r−1 → Rr → ∆r

An initial input difference and a set of output differences from each step determine the
sequence.

A Single element of the differential characteristic sequence is denoted as α
R−→ β

where α indicates the input difference or ID and β denotes the output difference or
OD over the number rounds R of a cipher E.

DP (DC) = Pr(∆0 → R1 → ∆1 → · · · → ∆r−1 → Rr → ∆r) =
r∏

i=1
Pr(∆i−1 → Ri → ∆i).

The differential probability of each round is assumed to be independent, and the overall
differential probability over multiple rounds is the product of each differential charac-
teristic at each round. When a single-round differential probability α = ∆0

r−round−−−−−→
β = ∆R is too small to be considered, cryptanalysts utilize the differential proba-
bility over multiple rounds α

R−rounds−−−−−−→ β which is the collection of several rounds of
differentials. This is also called differential trails.

In such a case, the attacker can define a single input differential ID at the initial
point and an output differential OD point after specific number rounds [KR11]. The
differential probability of such cases is defined as:

DP (α, β) = Pr(∆r = β|∆0 = α) =
∑

DC∈(α,β)
DP (DC).

In practice, the cryptanalysts search for the input and output differential position,
resulting in the highest possible differential probability, subsequently reducing the
attack complexity. This is called Maximum Differential Probability. The Difference
Distribution Table (DDT) helps cryptanalysts determine the maximum differential
probability. Since S-boxes usually operate with 8 or 4− bit word sizes, analyzing their
differential difference distribution table (DDT) is straightforward.

However, in the case of ARX algorithms, creating a DDT for this operation with
n − bit word sizes needs 23n × 4 bytes of memory [BV14]. This is impractical for the
usual 32-bit word size, such as ChaCha and Salsa 20, making it difficult to find a proper
differential position to mount an attack. As a result, the cryptanalyst community pro-
posed different differential search methodologies, including [HW19,BVLC16,SHY16].

20

CHAPTER 2. PRELIMINARIES

Cryptographic Importance of Derivatives

As discussed in Section 2.4.1, the basic idea of differential cryptanalysis relies on
differential probability. A differential pair (α, β) where α is the input difference ∆x of
input blocks x and x′, and β is the output difference ∆y of the output blocks y and y′

where ∆x = α and ∆y = β. If we define the difference by the operation +, then:

P (∆y = β|∆x = α) = P (f(x + α)− f(x) = β) = P (∆αf = β).

Proposition 1 ([Lai94]). The probability of a differential (α, β) is that the first deriva-
tive of function f(x) at point α takes on value β when x is uniformly random.

The success of differential cryptanalysis is based on the fact that an output differ-
ence β of an input difference at the initial round of cipher can be anticipated with a
higher probability. Higher-order derivatives can generalize the basic concept of differ-
ential cryptanalysis by having more than one input difference at the initial plaintext
to recover the secret key.

For instance, the differential analysis uses an input difference α; however, with
the application of higher-order differentials, we can use the α and λ to predict the
occurrence of the output difference β [Lai94]. In 2011, Ming [DL11] laid the foundation
for higher-order differentials, showing that higher-order differential cryptanalysis is
based on higher-order derivatives of Boolean functions and separated the cryptanalysis
framework into two phases: Offline Selection and Online Attack. In the offline selection
phase, the attacker selects the derivative points (e.g., IVs and inputs) conducive to
obtaining the attack functions in the subsequent online phase. In the online phase,
the attacker either tries to recover the secret key or distinguish the cipher from a
random permutation.

The higher-order differential cryptanalysis framework extends attacks to higher-
order derivatives and enhances the comprehension of these attacks. It motivates crypt-
analysts to explore higher-order differential cryptanalysis techniques further in the fu-
ture. Knudsen [Knu95] introduced higher-order differential cryptanalysis using higher
derivatives. This adversary model extends the concept of differential cryptanalysis to
attack ciphers. Knudsen demonstrated the use of truncated and higher-order differen-
tials, revealing that certain ciphers secure against traditional differential cryptanalysis
may be susceptible to higher-order differential attacks.

Numerous researchers have utilized higher-order differential cryptanalysis to as-
sess the security of various ciphers. Zhu [ZCL10] developed a cryptanalysis tool for
evaluating the security of block ciphers based on Boolean algebra and proposed an
algorithm to accelerate cryptanalysis. Shi [SZFW12] employed the second-order dif-
ferential cryptanalysis to the Salsa 20 and ChaCha. Shi described the second-order
differential as follows: Let X be the initial state matrix, and X1, X2, and X3 be related

21

CHAPTER 2. PRELIMINARIES

state matrices with a single-bit input difference [∆(0)
ij] = 1 in X1, a single-bit input

difference [∆(0)
mn] = 1 in X2, and a double-bit input difference [∆(0)

ij] = 1, [∆(0)
mn] = 1,

respectively. According to Shi [SZFW12], (i − m)2 + (j − m)2 = 0 should not hold.
The single-bit output difference [∆(r)

pq] = 1 after r internal rounds can be determined
as follows:

[∆(r)
p]q = [X(r)

p]q ⊕ [X(r)
1,p]q ⊕ [X(r)

2,p]q ⊕ [X(r)
p+1]q. (2.5)

The second-order ID is dented by:

([X(r)
p]q|X(0)

i]j, [X(0)
m]n).

The bias εd is calculated as

Pr
(
[∆(r)

p]q = 1|[∆(0)
i]j, [∆(0)

m]n
)

= 1
2

(1 + εd). (2.6)

Truncated Differential Cryptanalsis Knudsen [Knu95] introduced truncated dif-
ferential cryptanalysis as a variation of differential cryptanalysis. As discussed, tra-
ditional cryptanalysis looks for a differential α → β with a high probability. The
attacker aims to extract the secret key information with an input difference ID and
check whether the resultant ciphertext after a specific number of rounds has an output
difference OD β.

The truncated differential constructs differentials over a few bits of input/output
differences. It demonstrates that to construct a differential over r rounds, it is unnec-
essary to know the full n-bit differentials, and the attacker does not fully observe the
differences through the full n bits but rather focuses on a specific part of the cipher.
Sometimes, a single-bit differential suffices to mount a truncated differential attack on
a cipher. As a result, a differential that anticipates a part of an n-bit value is called
truncated differential cryptanalysis. red

A differential attack employing truncated differentials exhibits a complexity of 2L

chosen plaintexts and an execution time approximately L× 22n, where L denotes the
smallest integer satisfying (W)L ≤ 2−2n. Here, L does not exceed 2n + 1, and W rep-
resents the fraction of possible output differences. Truncated differential cryptanalysis
is employed to attack different ciphers, including SAFER [KB96], IDEA [KR97], and
Crypton [KHL+04], among others.

Higher Order Differential Cryptanalysis Lai [Lai94] presented the notion of
higher-order derivatives for functions with multiple variables. He examined the possi-
bility of extending first-order differential cryptanalysis by incorporating higher-order
derivatives. Motivated by boomerang and differential-linear cryptanalysis, Biham
[BDK05] explored various combined attack strategies. These approaches include differential-

22

CHAPTER 2. PRELIMINARIES

bilinear, higher-order differential-linear (HDL), and boomerang attacks. Now, let’s
revisit the basic definitions.

Definition 2.7 ([Lai94]). Let (S, +) and (T, +) be two Abelian groups. For a function
f : S → T , the derivative of f at a point a ∈ S is defined as:

∆af(x) = f(x + a)− f(x).

The i-th derivative of the function f at the point (a1, a2, . . . , ai) is defined as:

∆(i)
a1,...,ai

f(x) = ∆ai
(∆(i−1)

a1,...,ai−1
f(x)),

where ∆(i−1)
a1,...,ai−1

f(x) denotes the (i − 1)-th derivative of f at (a1, . . . , ai−1). The 0-th
derivative of f(x) is simply f(x).
For i = 2, this becomes:

∆(2)
a1,a2f(x) = ∆a2(∆a1f(x))

= ∆a2(f(x + a1)− f(x))
= (f(x + a1 + a2)− f(x + a2)− (f(x + a1)− f(x))
= f(x + a1 + a2)− f(x + a1)− f(x + a2) + f(x).

It then follows that.

f(x + a1 + a2) = ∆(2)
a1,a2f(x) + ∆a1f(x) + ∆a2f(x) + f(x).

Proposition 2 ([Lai94]).

f(x + a1 + a2 + ... + an) =
n∑

i=0

∑
1≤j1···<ji≤n

∆(i)
aj1 ,...,aji

f(x).

In [Lai94], Lai added some basic properties of the derivatives as follows.

∆a(f + g) = ∆af + ∆ag

∆a(f(x)g(x)) = f(x + a)∆ag(x) + (∆af(x))f(x).

Proposition 3 ([Lai94]). Let deg(f) denote the nonlinearity degree of a multivariable
polynomial function f(x). Therefore, it follows that deg(∆af(x)) ≤ deg(f(x))− 1.

Furthermore, Lai discussed the deviates of binary functions and proposed the fol-
lowing propositions.

Proposition 4 ([Lai94]). Let L[a1, a2, · · · , ai] be the list of all 2i possible linear com-

23

CHAPTER 2. PRELIMINARIES

binations of a1, a2, ·ai then,

∆(i)
a1,··· ,ai

f(x) =
∑

c∈L[a1,a2,···ai]
f(x⊕ c).

Proposition 5 ([Lai94]). For any function f : F n
2 → F m

2 , the n-th derivative of f

is constant. If f : F n
2 7→ F m

2 is invertible, then the (n − 1)-th derivative of f is also
constant.

Proposition 6 ([Lai94]). The derivatives of a Boolean function are independent of
the order of differentiation. For any permutation p(j) of the index j, the derivatives
stay the same.

∆(i)
a1,...,ai

f(x) = ∆(i)
ap(1),...,ap(i)

f(x).

The complexity of higher order differential could be computed as 2r+1 × 22n+r

where r is the nonlinear order of the function.

2.4.2 Linear Cryptanalysis

Matsui introduced Linear Cryptanalysis [Mat93] as an attack model aimed at evaluat-
ing the security of the DES cipher. Similar to differential cryptanalysis, it is a chosen
plaintext attack where the attacker can choose a set of plaintexts, either predefined or
random, along with their corresponding ciphertexts.

This method leverages the statistical properties of linear approximations between
the plaintext and ciphertext. By detecting these linear relationships, attackers can
extract vital key information. The core idea involves approximating part of the cipher’s
operations through bitwise manipulation using mod-2, specifically utilizing the XOR
operation, symbolized by ⊕. This can be represented in the following form:

Xt1 ⊕Xt2 · · · ⊕Xtu ⊕ Yv1 ⊕ Yv2 · · · ⊕ Yvz = 0. (2.7)

Here, Xt denotes the t-th bit of the input vector X = [X1, X2, ...], and Yv represents the
v-th bit of the output vector Y = [Y1, Y2, ...]. Equation 2.7 expresses the exclusive-OR
of t input bits and v output bits.

In linear cryptanalysis, the technique identifies expressions similar to those in equa-
tion 2.7 that exhibit either a high or low probability. If a cipher shows a pattern
where this equation holds or fails with high probability, it indicates a lack of sufficient
randomness in the cipher. If we can derive a linear approximation of a cipher with
[Pr = 1], it reveals a significant vulnerability. Interestingly, some specific bit positions
in the ChaCha stream cipher can be approximated with a probability of 1. This is
elaborated on in Lemma 3.1. To aggregate the linear biases across different rounds of

24

CHAPTER 2. PRELIMINARIES

a cipher, we use Lemma 3 from [Mat93], known as the (Piling-up Lemma), which is
detailed in Lemma 2.1.

Lemma 2.1 ([Mat93]). Let Xi (1 ≤ i ≤ n) represent independent random variables,
where each Xi takes the value 0 with probability pi and 1 with probability 1− pi. The
probability that X1 ⊕X2 · · · ⊕Xn = 0 can be expressed as

1
2

+ 2n−1
n∏

i=1

(
pi −

1
2

)
.

According to Lemma 2.1, adding more rounds to a cipher increases its security when
compared to using fewer rounds.

2.4.3 Differential-linear Cryptanalysis

The differential-linear attack [LH94] resembles standard differential and linear attacks.
The key distinction between these methods lies in the specific implementation used to
uncover vulnerabilities in the cipher. The fundamental concept of the differential-linear
adversary model is to merge the differential bias with linear correlations.

The initial tactic of avoiding long differentials and linear approximations offered a
robust defense for the cipher against specific attacks. However, it soon became evident
that exploiting shorter characteristics and approximations could still pose a security
risk. In 1994, Langford [LH94] introduced the differential-linear cryptanalysis (DL
technique), marking a significant advancement. He demonstrated that when a cipher
E can be broken down into a sequence E = E2 · E1, the combination of a differential
probability for E1 and a biased linear approximation for E2 can effectively distinguish
the entire cipher E.

This technique has proven effective against various ciphers. The procedure for
implementing the DL attack is as follows: Consider E as a cipher composed of two
sub-ciphers, E1 and E2, where E1 consists of m rounds and E2 consists of l rounds
of the main cipher. We can express this as E = E2 · E1. To attack cipher E using
differential cryptanalysis, we employ differential-linear cryptanalysis on E1 and linear
cryptanalysis on E2, covering the cipher’s m and l rounds, respectively. For E1, we
introduce an input difference ID, ∆X(0), into the initial states of the sub-cipher E1

and obtain the output difference OD, ∆X(m), after m rounds.
Next, linear cryptanalysis is utilized on E2 with masks Γm and Γout to find linear

approximations for the remaining l rounds of the cipher E. This method enables the
creation of a differential-linear distinguisher that covers the entire m + l rounds of the
cipher E.

Let ∆(r)
i [j] denote the difference between the bits at the j-th position of the i-th

word after r internal rounds, computed as x
(r)
i [j] ⊕ x

′(r)
i [j]. Let L be the set of bits,

25

CHAPTER 2. PRELIMINARIES

and define σ and σ′ as linear combinations of bits in J , where σ =
(⊕

(i,[j])∈J x
(r)
i,[j]

)
and σ′ =

(⊕
(i,[j])∈J x

′(r)
i,[j]

)
. The linear combination ∆X is represented as ∆X =(⊕

(i,[j])∈J ∆x
(r)
i,[j]

)
.

Pr[∆ρ = 0] = Pr[ρ⊕ ρ′ = 0] = 1
2

(+γ).

P r[∆σ = ∆ρ] = Pr[σ = ρ] · Pr[σ′ = ρ′]

+ Pr[σ = ρ̄] · Pr[σ′ = ρ̄′] = 1
2

(1 + εL) · 1
2

(1 + εL)

+ 1
2

(1− εL) · 1
2

(1− εL) = 1
2

(1 + ε2
L).

Afterwards,

Pr[∆ρ = 0] = Pr[∆σ = 0] · Pr[∆σ = ∆ρ]
+ Pr[∆σ = 1] · Pr[∆σ = ∆ρ]

= 1
2

(1 + εd) · 1
2

(1 + ε2
L) + 1

2
(1− εd) · 1

2
(1− ε2

L)

= 1
2

(1 + εd · ε2
L). [CM16]

The differential-linear correlation is expressed as Pr
[
∆ρ = 0|∆X(0)

]
= 1

2(1+εd·ε2
L),

where εd ·ε2
L denotes the differential-linear bias. The complexity of the distinguisher is

given byO
(

1
ε2

d
·ε4

L

)
. Generally, to distinguish between two events where one occurs with

probability p and the other with a much smaller probability q, a minimum of O
(

1
pq2

)
samples are needed. In the Differential-Linear adversary model, the assumption of
randomness involves the independence between the sub-ciphers E1 and E2.

2.4.4 The Boomerang Attack

Wagner [Wag99] introduced the boomerang attack. It is an innovative method to
demonstrate that the absence of long high-probability differentials does not assure
the security of a cipher against differential cryptanalysis. The boomerang attack is
a strategic method to connect two unrelated high-probability differences in a cipher’s
upper and lower sections. The motivation for the boomerang attack is obvious, as in
many ciphers, it is easier to look for short differentials with a high probability than to
search for a long differential with a low probability.

The concept involves encrypting two plaintexts with a single bit difference through
the cipher, adding a single bit difference in the resulting ciphertext, and studying their
return path. A second-order differential within the cipher bridges the gaps between
the upper and lower sections and allows the boomerang attack. The classical analysis

26

CHAPTER 2. PRELIMINARIES

E_0

E_1

E_0

E_1

Figure 2.3: Schematic of Differential Linear Cryptanalysis

of the boomerang probability assumes the differentials independently.

Theoritical Analysis of Boomerang Attack

Consider a cipher E broken down as E = E1 · E0, where E0 has a differential charac-
teristic α

p−→ β and E1 has a differential characteristic γ
q−→ δ, as shown in Fig. 2.4,

where pq ≤ 2−n/2. By applying Algorithm 1, one can distinguish the cipher E from a
random permutation. The algorithm is described as follows:

Y
(r)

1 ⊕ Y
(r)

2 = β. (2.8)

Equation 2.8 occurs with probability p. Meanwhile, as illustrated in Fig. 2.4, we
obtain two new ciphertext states: Z1⊕ δ = Z3 and Z2⊕ δ = Z4. Using the differential
characteristics of E1, we calculate

(Y (r)
1 ⊕ Y

(r)
3 = γ) ∧ (Y (r)

2 ⊕ Y
(r)

3 = γ). (2.9)

Equation 2.9 occurs2 with a probability of q2. If both Equations 2.8 and 2.9 hold, then
this results in Y3 ⊕ Y4 = β. We have

2The differential characteristic γ
q−→ δ for E1 is equivalent to δ

q−→ γ for E−1
1 , as they both consider

the same set of input/output pairs for E1.

27

CHAPTER 2. PRELIMINARIES

Algorithm 1 The Boomerang Cryptanalysis Algorithm [DKRS20]
Input: The initial states (X1, X2) with an input difference α.
Output: Identification of the cipher E or a random oracle.

1. Initialize a counter ctr← 0.

2. Generate (pq)−2 random plaintext pairs (X1, X2, X3, X4) with input difference α.

3. For each pair (X1, X2, X3, X4):

4. Encrypt (X1, X2, X3, X4) to obtain (Z1, Z2, Z3, Z4).

5. Calculate Z1 ⊕ Z3 and Z2 ⊕ Z4.

6. If (Z1 ⊕ Z3 = δ and Z2 ⊕ Z4 = δ):

7. Increment ctr.

8. End If

9. If ctr ≥ 1:

10. Return: This is an encryption algorithm.

11. Else, Return: This is a random permutation.

Y
(r)

3 ⊕ Y
(r)

4 = (Y (r)
2 ⊕ Y

(r)
4)⊕ (Y (r)

1 ⊕ Y
(r)

3)⊕ (Y (r)
2 ⊕ Y

(r)
1)

= γ ⊕ γ ⊕ β = β.
(2.10)

Consequently, using the differential characteristic of E0, we deduce that X3 ⊕X4 = α

with a probability of p. Assuming these events are independent, we obtain:

Pr[X(0)
3 ⊕X

(0)
4 = α | X(0)

1 ⊕X
′(0)
2 = α] = p2q2. (2.11)

As per Dunkelman [DKRS20], when considering 1/(pq)2 pairs (X1, X2), there’s a
high likelihood (around 63%) that for at least one pair of X

(0)
3 ⊕X

(0)
4 = α, leading the

algorithm to output the cipher E. Conversely, for a random permutation, Pr[X(0)
3 ⊕

X
(0)
4 = α] = 2−n, thus expecting the count of pairs (X(0)

1 , X
(0)
2) satisfying X

(0)
3 ⊕X

(0)
4 =

α to be 2−n · (pq)−2 ≥ 1 (given pq ≥ 2−n/2). Consequently, the algorithm outputs
random permutation. Therefore, this approach effectively identifies E from a random
permutation.

To differentiate the cipher E from a random oracle, it needs a total of 4(pq)−2

adaptively chosen plaintexts and ciphertexts denoted as ACPC. In this paper, we
apply Wagner’s boomerang attack on ChaCha.

28

CHAPTER 2. PRELIMINARIES

𝐸!

𝑋!

𝐸"

𝑌!

𝑍!

𝐸!

𝑋"

𝐸"

𝑌"

𝑍"

𝛼

𝐸!

𝑋#

𝐸"

𝑌#

𝑍#

𝐸!

𝑋$

𝐸"

𝑌$

𝑍$

𝛼

𝛽

𝛿 𝛿

𝛽𝛾
𝛾

Figure 2.4: The Boomerang Attack

29

Chapter 3

Previous Works

This chapter introduces the significant studies on Salsa 20 and ChaCha stream ci-
phers. To understand the existing studies better, we divide the existing attacks into
the following categories: differential attacks, differential-linear attacks, higher-order
differential attacks, and attacks on ChaCha permutation.

3.1 Existing Attacks on Salsa 20 and ChaCha
In this section, we review the existing studies on Salsa 20 and ChaCha. The sig-
nificant differential attack against Salsa 20 and ChaCha stream ciphers started with
Aumasson’s work [AFK+08].

Aumasson introduced a technique to analyze the security of Salsa 20 and ChaCha
based on the analysis of probabilistic neutral bits (PNBs) and introduced a framework
for probabilistic backward computation (PBC). The PNBs study the effect of each
keybit on the output of the cipher. It divides the keybits into two subsets of signif-
icant keybits and non-significant keybits. Based on the PNBs framework, Aumasson
attacked Salsa 7, Salsa 8, ChaCha 6, and ChaCha 7. Aumasson used the truncated
differential to find a pair of input difference ID and output difference OD and then
looked for differential bias.

Given the pair of ID,OD and the probabilistic backward computation framework,
the set of PNBs was identified. With the decrease in the complexity of the attack, the
selection of OD position plays a crucial role. The Aumasson’s cryptanalysis method
encompasses two main stages: Preliminary Computation Stage and real-time execution
phases. The overall structure of the attack is represented in the figure 3.1.

3.1.1 Preliminary Computation Stage

Initially, we create two-state matrices X and X ′. Both matrices contain the same
keywords (k1, k2, . . . , k8) and constants. However, the matrix X ′ differs from X by

30

CHAPTER 3. PREVIOUS WORKS

C
ipher Function

𝑋("), 𝑋′(")

𝑋($), 𝑋′($) Internal round

𝑋(%), 𝑋′(%) Target round

∆&,(
($)γ&,(

($)

𝑋	& 𝑋	′

If γ!,#
(%) = ∆!,#

(%)

NM=+1

1

2

3

4

5

Inverse Round(s)

Forward Round(s)

Figure 3.1: Graphic Representation of PNB based cryptanalysis.

a single bit in the nonce v or the counter t. To elaborate further, let x
(0)
i [j] denote

the j-th bit of the i-th word in the initial state matrix X(0), where 0 ≤ i ≤ 15 and
0 ≤ j ≤ 31.

Likewise, let x
′(0)
i [j] denote the corresponding word with a solitary bit distinction at

the j-th position, indicated as ∆(0)
i [j] = x

(0)
i [j]⊕ x

′(0)
i [j]. If there exists a dissimilarity

∆(0)
i [j] = 1 at the j-th bit of the i-th word in the initial state matrix X(0), identified as

the input difference or ID, we obtain the respective initial state matrix X ′ by adjusting
either the nonce v as v′ = v ⊕ ∆v or the counter t as t′ = t ⊕ ∆t, where v′ and t′

denote the single-bit difference in nonce or counter.
Afterward, we apply the Salsa 20 round function to the initial state matrices X(0)

and X ′(0), resulting in a single-bit difference output ∆(r)
p [q] = x(r)

p [q]⊕ x′(r)
p [q] from the

r-round internal state matrices X(r) and X ′(r).
This difference is termed the output difference (OD), where 1 ≤ r < R, and q

represents the q-th bit of the p-th word in the internal state matrix X(r) for 0 ≤ p ≤ 15
and 0 ≤ q ≤ 31 after r rounds of Salsa 20. Given a fixed key, with random nonces and
block counters, the bias εd is defined as:

Pr
(
∆(r)

p [q] = 1 | ∆(0)
i [j] = 1

)
= 1

2
(1 + εd). (3.1)

When the key is random, ε∗
d is determined as the median of εd [AFK+08].

Theorem 3.1 ([MS01, Theorem 2]). If we have two distributions, denoted as X and
Y, where the event of interest happens with a probability p in X and with a probability
p · (1 + q) in Y. In cases where p and q are small, you can use approximately O(1

p·q2)
samples to effectively differentiate between X and Y with a consistent probability of

31

CHAPTER 3. PREVIOUS WORKS

success.

Suppose we have two distributions, denoted as X and Y . In X , the event E occurs
with a probability of 1

2 , representing the outcome of a true random number generator.
In Y , the event E ′ occurs with a probability of 1

2 · (1+εd), representing the probability
of the difference in output (OD) derived from the round internal matrices r of the
Salsa 20 stream cipher. As stated in Theorem 3.1, the required number of samples to
discern between X and Y is O(2

ε2
d
).

3.1.2 Probabilistic Neutral Bits

The idea of probabilistic neutral bits (PNB) enables us to divide the key bits into two
separate categories.

We will represent them as m, the set of significant key bits, and n, the nonsignificant
key bits, with m = 256 − n. To distinguish between these sets, the PNB concept
analyzes the impact of each key bit on the output of the Salsa 20 function, denoted
here as OD. These impacts are called neutral measures of key bits or γk.

Definition 3.1 ([AFK+08, Definition 1]). The neutral evaluation of the key bit po-
sition γi concerning the OD is denoted as γκ, where 1

2(1 + γκ) signifies the likelihood
that altering the key bit κ at position γi doesn’t impact the OD.

According to [AFK+08], the following singular cases of the neutral measure exist:

• When γk = 1, the OD is unaffected by the i-th key bit, indicating its insignifi-
cance.

• When γk = 0, the OD is statistically independent of the i-th key bit, signifying
its significance.

• When γk = −1, OD shows a linear dependence on the i th key bit.

3.1.3 Probabilistic Inverse Analysis

We determine the forward differential bias and subsequently calculate the internal
round differential bias in reverse through probabilistic backward computation. By
reversing the Salsa 20 keystream equations, Z = X + Round R(X) and Z ′ = X ′ +
Round R(X ′), using the matrices Z−X and Z ′−X ′ as inputs, the single bit differential
bias for the r rounds can be obtained from a backward perspective. The probabilistic
backward computation (PBC) computation is based on these matrices for the reverse
round of Salsa 20. The bias ε is approximated as ε ≈ εe · εa under the independence
assumption.

32

CHAPTER 3. PREVIOUS WORKS

3.1.4 Attack Phase

As outlined in [AFK+08], during the online phase, the Algorithm in section 3.4 of
[AFK+08] requires specific parameters as input, including the position of OD, the
position of ID, the subset of significant key bits m, and N keystream block elements
to recover the secret key potentially.

Algorithm 2 [AFK+08] PNB bits verification
Input: Random(X, X ′,Z,Z ′)
Output: The absolute value of ε̃

1. Calculate (X(R), X ′(R)) where ∆(0)
i [j] = 1; and determine Z = X(0) + X(R) and

Z ′ = X ′(0) + X ′(R).

3. Prepare (X̃(0), X̃ ′(0)) with all key bits initialized to a random binary value from
(X(0), X ′(0)).

4. Evaluate (Ỹ (r), Ỹ ′(r)) using Z − X̃(0) and Z ′ − X̃ ′(0) as inputs to the inverted
round function of Salsa 20.

5. Determine Γ̃(r)
p [q] = ỹ(r)

p [q]⊕ ỹ′(r)
p [q]

6. Calculate ε̃ as Pr(Γ̃(r)
p [q] | ∆(0)

i [j] = 1) = 1
2(1 + ε̃).

3.1.5 Attack Complexity

After identifying an optimal pair (∆(r)
p [q] = 1 | ∆(0)

i [j] = 1
)

for both ID and OD, and
segregating the key bits into significant (m) and non-significant (n) categories, and
determining the median bias as |ε∗| ≈ |ε∗

e| · |ε∗
a|, we can then calculate the final attack

complexity using the following equation.

2m(N + 2nPfa) = 2mN + 2256−α, where N ≈
(√

α log 4 + 3
√

1− ε2

ε

)2

. (3.2)

where alpha α is used as a parameter that helps determine the probability of a
false alarm (pfa) in hypothesis testing during the attack.

3.2 Differential Attack on Salsa 20 and ChaCha
Differential cryptanalysis is the main and most important attack methodology on Salsa
20 and ChaCha. Aumasson [AFK+08] introduced the most important attack on Salsa
20 and ChaCha.

33

CHAPTER 3. PREVIOUS WORKS

Table 3.1: The Aumasson [AFK+08] Attack Summary on Salsa

Rounds ID,OD Bias PNBs Time/Data
Salsa 7 ∆X

(0)
1 [14], ∆X

(4)
7 [31] |ε⋆

d| = 0.131 131 2151 / 226

Salsa 8 ∆X
(0)
1 [14], ∆X

(4)
7 [31] |ε⋆

d| = 0.131 36 2251 / 231

Table 3.2: The Aumasson [AFK+08] Attack Summary on ChaCha

Rounds ID,OD Bias PNBs Time/Data
ChaCha 6 ∆X

(0)
13 [13], ∆X

(3)
11 [0] |ε⋆

d| = 0.026 147 2139 / 230

ChaCha 7 ∆X
(0)
13 [13], ∆X

(3)
11 [0] |ε⋆

d| = 0.026 35 2248 / 227

For Salsa 7 and Salsa 8, the attack utilized the ID,OD ∆X
(0)
1 [14], ∆X

(4)
7 [31]. The

bias for Salsa 7 had a median value of |ε⋆
d| = 0.131, consistent with the bias for Salsa

8.
The probabilistic neutral bits (PNBs) threshold varied, with an optimal γ = 0.4

for Salsa 20 and γ = 0.12 for Salsa 8. The number of PNBs differed based on the
threshold value, with Salsa 7 having n = 131 for γ = 0.50, and Salsa 8 exhibiting
n = 36. The key bits declared as PNBs for Salsa 8 include {26, 27, 28, 29, 30, 31, 71,
72, 120, 121, 122, 148, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177,
210, 211, 212, 224, 225, 242, 243, 244, 245, 246, 247}.

The attack complexities were notably high, with Salsa 7 requiring a time complexity
of 2151 and a data complexity of 226, while Salsa 8 required a time complexity of
2251 and a data complexity of 231. For ChaCha 6 and ChaCha 7, the differential
∆X

(0)
13 [13], ∆X

(3)
11 [0] was employed, with both versions exhibiting a bias of |ε⋆

d| = 0.026.
The threshold for PNBs was set at γ = 0.6 for ChaCha 6 and γ = 0.5 for ChaCha 7.

The number of PNBs found was n = 147 for ChaCha 6 and n = 35 for ChaCha
7. The key bits identified as PNBs for ChaCha 7 are {3, 6, 15, 16, 31, 35, 67, 68, 71,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 103, 104, 127, 136, 191, 223, 224, 225, 248, 249,
250, 251, 252, 253, 254, 255}. The attack complexities were calculated to be 2139 in
time and 230 in data for ChaCha6, whereas ChaCha 7 exhibited a time complexity of
2248 and a data complexity of 227.

Following the [AFK+08], Shi [SZFW12] introduced the idea of chaining distin-
guishes. Column Chaining Distinguishers (CCD) is constructed using a series of dis-
tinguishers, each relying on an increasing subset of key bits. The key idea is to chain
these distinguishers together so that the output from one step feeds into the next, pro-
gressively narrowing down the key space. This process involves using differentials with
increasing complexity to filter out incorrect key guesses gradually. Let S(K ′

i) denote
the keybits in the subkey K ′

i. For a collection of subkeys {K ′
i}i∈A with S(K ′

i) ⊆ S(K ′
j)

for all i, j ∈ A and i < j, if there exists a collection of distinguishers {Di}i∈A, where
each distinguisher Di effectively depends on the subkey K ′

i, then {Di}i∈A is called the

34

CHAPTER 3. PREVIOUS WORKS

Column Chaining Distinguishers (CCD) for {K ′
i}i∈A. Row Chaining Distinguishers

(RCD) are similar to CCD but focus on chaining distinguishers that rely on the same
key bits while applying differentials.

The advantage of RCD is that it reduces the chance of false positives in key guesses
by requiring a key candidate to pass multiple independent tests. RCD can also be used
in conjunction with CCD for more complex attacks. For a fixed subkey K ′, if there
exists a collection of distinguishers {Di}i∈A that effectively depend on the subkey K ′,
then {Di}i∈A is called the Row Chaining Distinguishers (RCD) for K ′. Shi mounted an
attack on Salsa 7, for the differential ∆X

(0)
1 [14], ∆X

(4)
7 [31] with |εd| = 0.131 construct

a 2-step CCD using γ(1) = 0.5 and γ(2) = 0.6, with corresponding biases ε(1) = 0.0022
and ε(2) = 0.0050. For the first threshold γ(1) = 0.5, the author found ns1 = 125 non-
significant key bits. For the second threshold γ(2) = 0.6, the author found ns2 = 120
non-significant key bits.

The total time complexity is approximately 2148, the data complexity is 224, and
the success probability of the attack is 50% × 90% ≈ 45%. Shi attacked on 256-bit
Salsa 8. For the differential ∆X

(0)
1 [14], ∆X

(4)
7 [31] with |εd| = 0.131, Shi construct a

2-step CCD. Using γ(1) = 0.15 and γ(2) = 0.20 with ε(1) = 0.00047 and ε(2) = 0.00102
respectively. For the threshold γ(1) = 0.15, Shi found ns1 = 33 non-significant key
bits, and for the threshold γ(2) = 0.20, the author reported ns2 = 30 non-significant
key bits. The value ε(2) = 0.00102 is chosen with a step success probability of 90%.
The time complexity is 2223 · N1 + 2226−α1 · N2 + 2256−α1−α2 . Shi selected α1 = 2 and
α2 = 7, then get N1 = 226.5 and N2 = 225 respectively. So the time complexity is
2250, the data complexity is 227, and the success probability is 50%× 90% = 45%. Shi
introduced an attack on Chacha 7.

For the differential ∆X
(0)
13 [13], ∆X

(3)
11 [0], Shi construct a 4-step CCD using γ(1) =

0.50, γ(2) = 0.53, γ(3) = 0.55, and γ(4) = 0.58 with corresponding biases ε(1) = 0.00059,
ε(2) = 0.00080, ε(3) = 0.00127, and ε(4) = 0.00280. For the first threshold γ(1) = 0.50,
Shi find ns1 = 35 non-significant key bits. As the thresholds increase, the number
of non-significant key bits decreases, with ns2 = 34, ns3 = 32, and ns4 = 28 for the
subsequent thresholds. The time complexity of this attack is given by 2221·N1+2222−α1 ·
N2 + 2224−α1−α2 · N3 + 2228−α1−α2−α3 · N4 + 2256−α1−α2−α3−α4 . Shi selected α1 = 3.8,
α2 = 3.5, α3 = 5, and α4 = 9, and then calculated N1 = 226.3, N2 = 225.3, N3 = 224.2,
and N4 = 222.4. Thus, the total time complexity is approximately 2246.5, with a data
complexity of 227.

Maitra [Mai16] introduced the chosen IV attack on Salsa 20 and Chacha. In the
cryptanalysis of Salsa, Maitra focuses on Salsa 8. The attack employs a chosen IV
strategy, where an ID,OD is introduced at ∆X

(0)
1 [14], ∆X

(4)
7 [31]. The bias observed

in the forward direction (εd) for this ID,OD pair is significantly higher when specific
IVs and keys are chosen. For example, setting x3 = k2 = 0, x11 = k4 = 0, and

35

CHAPTER 3. PREVIOUS WORKS

x15 = 0xaaaaaaaa (where k2 and k4 are specific key words and x15 is an IV) yields an
observed bias εd of approximately 0.2245.

This improvement in bias results in a reduction of the overall attack complexity.
In this attack, 33 PNBs are identified. The median bias ε∗ for these selected PNBs
is calculated to be approximately 0.00315. Considering these factors, the attack com-
plexity against Salsa 8 is estimated as follows. With α = 15 and ε∗ = 0.003154, the
overall time complexity of the attack is estimated to be around 2245.52.

Maitra [Mai16] introduced an attack on ChaCha 7, the attack is based on a chosen
IV strategy. The differential is selected as ∆X

(0)
13 [13], ∆X

(3)
11 [0]. For ChaCha 7, the

following 35 PNBs are identified: {3, 6, 15, 16, 31, 35, 67, 68, 71, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 103, 104, 127, 136, 191, 223, 224, 225, 248, 249, 250, 251, 252, 253,
255}.

When more PNBs are considered, the list expands by an additional 10 PNBs: 7, 17,
36, 38, 72, 105, 137, 156, 159, 194. This increases the total number of PNBs to 45. The
median bias ε∗ for the ID,OD pair ∆X

(0)
13 [13], ∆X

(3)
11 [0] is 0.00059. It resulted in an

attack with a complexity N ≈ 227 and a total time complexity of approximately 2248.
When exploiting more PNBs (45 total), the results improve: Median bias ε∗ decreases
slightly to 0.000132, data complexity N ≈ 231.77, and total time complexity reduces to
2242.82. The attack can be further optimized by choosing specific IVs corresponding to
the key bits, particularly focusing on minimizing the number of differences after one
quarter-round in ChaCha.

In this scenario, the following improvements are observed: With key settings
x5 = k1 = 0, x9 = k5 = 0, and x13 = 0xaaaaaaaa, the forward bias εd increases to ap-
proximately 0.140344. This increases the overall bias ε∗ to 0.002012, data complexity
N ≈ 224.05, and total time complexity further reduces to 2239.14. Miyashita [MIM22]
attacked ChaCha 7 and ChaCha 7.25 based on analysis of PNBs.

The time complexity and data complexity of the attack were calculated to be
2231.63 and 249.58, respectively. The Probabilistic Neutral Bits were identified during
the precomputation phase of the attack as: {6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 27, 28,
29, 30, 31, 34, 35, 36, 37, 46, 71, 79, 80, 83, 98, 99, 100, 101, 102, 103, 104, 105,
106, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 127, 128, 129,
130, 148, 149, 150, 159, 187, 188, 189, 190, 191, 200, 223, 224, 225, 231, 232, 239,
240, 243, 244, 251, 252, 253, 254, 255}. The attack was optimized using the following
parameters: the ID,OD pair ∆X

(0)
14 [16], ∆X

(3.5)
3 [0], with a threshold γ of 0.35, the

number of non-significant key bits (n) of 74, a bias |εd| of 0.000478, a bias |εa| of
0.000674.

Additionally, Miyashita extended the differential cryptanalysis attack to ChaCha
7.25. The time complexity of this attack was estimated to be 2255.62, reflecting the
increased difficulty in attacking ChaCha 7.25 compared to ChaCha 7, with a data

36

CHAPTER 3. PREVIOUS WORKS

complexity of 248.36. The PNBs identified for the 7.25-round attack are slightly differ-
ent, reflecting the change in round number.

The identified PNBs are: {2, 3, 10, 13, 14, 19, 20, 26, 27, 31, 40, 44, 45, 46, 51,
59, 60, 61, 62, 63, 128, 129, 130, 135, 136, 143, 144, 147, 148, 155, 156, 157, 158, 159,
160, 161, 162, 180, 181, 182, 191, 219, 220, 221, 222, 223, 224, 232, 255}. The best
parameters for this attack were as follows: the ID,OD pair ∆X

(0)
15 [6], ∆X

(3.5)
0 [0], with

a threshold γ of 0.30, the number of non-significant key bits (n) of 49, a bias |εd| of
0.000469, a bias |εa| of 0.000564.

These findings demonstrate the first successful differential attack on the 7.25-round
variant of ChaCha. Although the attack remains less efficient than brute force due
to its higher time complexity, it establishes a baseline for future cryptanalytic efforts
on the ChaCha stream cipher and contributes valuable insights into the behavior of
PNBs across different rounds. Wang [WLHL23] introduced a syncopation technique
for enhancing the correlation in PNB-based approximations in the backward direc-
tion. This technique leverages the properties of the ARX structure to significantly
boost correlation. With this approach, the author proposed a new efficient method
to select an optimal set of PNBs. The attack starts by examining the inverse struc-
ture of ChaCha 7. For the inversion of the last quarter-round function, the following
relationships hold:

x
(7)
7 = z

(7)
7 	 k3,

x
(7)
11 = z

(7)
11 	 k7,

y
(6)
11 =

(
z

(7)
11 	 x

(7)
15 . . .

)
	 k7,

x
(6)
11 =

(
z

(7)
11 	 x

(7)
15 . . .	 y

(6)
15 . . .

)
	 k7,

x
(7)
3 = z

(7)
3 	 c3,

x
(7)
15 = z

(7)
15 	 v2,

y
(6)
15 =

(
x

(7)
15 � 8

)
⊕ x

(7)
3 ,

The syncopation technique can be applied to the variables x
(7)
7 , x

(7)
11 , y

(6)
11 , and x

(6)
11

by using the properties of modular subtraction. The underlined variables are already
known since they can be derived from constants, IV, and keystream blocks. The same
analysis applies to the other three quarterround functions. The set of CPNBs used in
this attack was identified by initially narrowing down 151 potential CPNBs using a
conditional neutrality measure threshold of 2−5.

Two sets, containing 74 and 89 CPNBs respectively, were chosen by optimizing for
minimal time complexity while ensuring that the data complexity remained within the
limits of the available IVs. The 74 CPNB set includes the following bits: {2, 3, 4, 5,
47, 48, 49, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 90, 91, 102, 103, 104, 105, 106, 107, 108, 109, 110, 123, 124, 125, 126, 127, 155,

37

CHAPTER 3. PREVIOUS WORKS

156, 157, 158, 159, 168, 169, 191, 192, 193, 194, 199, 200, 207, 208, 211, 212, 219, 220,
221, 222, 223, 224, 225, 226, 244, 245, 246, 247, 255}. The 89 CPNB set is composed
of the following bits: {2, 3, 4, 5, 6, 14, 15, 26, 47, 48, 49, 51, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 90, 91, 95, 102, 103, 104, 105, 106,
107, 108, 109, 110, 111, 115, 123, 124, 125, 126, 127, 135, 136, 147, 155, 156, 157, 158,
159, 168, 169, 170, 191, 192, 193, 194, 195, 199, 200, 204, 207, 208, 211, 212, 219, 220,
221, 222, 223, 224, 225, 226}.

Next, the author analyzes the complexity of the proposed attack. Through exper-
iments with 210 random keys and 220.3 IVs per key, the conditional correlation ε′

a was
theoretically estimated to be 2−4.14. Consequently, the conditional backward corre-
lation is εa = 2−8.28. With n = 89, θ1 = 27, and α = 54, the resulting attack has
a time complexity of 2210.3 and a data complexity of 2103.3. The attack on ChaCha
7.5 employs a syncopation technique within a PNB-based differential cryptanalysis
framework, targeting the ARX structure to enhance backward correlation.

This approach is adapted from the ChaCha 7 attack but modified to address the
additional complexity introduced by the extra half-round in ChaCha 7.5. The attack
achieves a time complexity of 2244.9 and a data complexity of 2104.9, with another
variant reaching a time complexity of 2242.9 and data complexity of 2125.8. The set of
CPNBs used in the attack on ChaCha 7.5 includes 54 bits: {74, 75, 83, 90, 91, 92,
95, 108, 109, 110, 111, 115, 123, 124, 125, 126, 127, 155, 156, 157, 158, 159, 168, 169,
170, 191, 192, 193, 194, 195, 199, 200, 204, 207, 208, 211, 212, 213, 216, 219, 220, 221,
222, 223, 224, 225, 226, 227, 232, 244, 245, 246, 247, 255}. These bits were selected
based on a conditional neutrality measure threshold and were further refined using
Algorithm 2 to optimize the attack’s efficiency.

3.2.1 Differential-Linear Attacks on Salsa 20 and ChaCha

In 2016, Choudhuri and Maitra [CM16] revolutionized the cryptanalysis of Salsa 20
and ChaCha by introducing innovative differential-linear techniques [LH94]. Their
groundbreaking method provided new linear approximations for these ciphers, leading
to an attack on ChaCha 7 with an impressive time complexity of 2237.65 and a data
complexity of 231.6.

Arka [CM16] for the 7-round Salsa cipher, an input difference of ∆x
(0)
7 [0] is used,

and the output difference ∆x
(5)
9 [0] ⊕ ∆x

(5)
13 [0] ⊕ ∆x

(5)
1 [13] is observed, resulting in a

bias of −0.1142. The linear approximation applied is ∆x
(5)
9 [0] ⊕∆x

(5)
13 [0] ⊕∆x

(5)
1 [13],

leading to a data complexity of 231.5 and a time complexity of 2138.5. The 8-round
attack on Salsa starts with an input difference of ∆x

(0)
7 [0] and examines the output

difference ∆x
(5)
9 [0] ⊕ ∆x

(5)
13 [0] ⊕ ∆x

(5)
1 [13]. In this scenario, 40 Probabilistic Neutral

Bits (PNBs) are identified when γ = 0.1, and through further experimentation, two
additional PNBs are added, resulting in a total of 42 PNBs.

38

CHAPTER 3. PREVIOUS WORKS

The observed biases are εa = 0.000752, εd = −0.233198, and ε = −0.000178.
The chosen IVs result in a doubling of the εd bias, improving the complexity metrics.
The attack achieves a data complexity of N = 230.78, a time complexity of 2244.85 for
α = 15.5, and a worst-case data complexity of 296, comparable to the results obtained
in previous research. For the 6-round ChaCha attack, when running 4 rounds forward
and 2 rounds backward, 159 Probabilistic Neutral Bits (PNBs) are identified, with
biases of εa = 0.000534 and εd = 0.212786. This results in a data complexity of 234.39

and a time complexity of 2131.40.
In the case of running 4.5 rounds forward and 1.5 rounds backward, 161 PNBs are

used, with biases of εa = 0.003958 and εd = 0.026652, leading to a data complexity
of 234.51 and a time complexity of 2129.53. The best result is achieved when running 5
rounds forward and 1 round backward, with 166 PNBs and biases of εa = 0.0028 and
εd = 0.0068, resulting in a data complexity of 237.5 and a time complexity of 2127.5.

In the case of the 7-round ChaCha, the attack builds upon the 6-round linear
approximation, extending it over the additional round. This extension results in a
data complexity of 2231.6 and a time complexity of 2237.65, with a 0.136828 and a lin-
ear approximation bias of 0.001162. The strategy optimizes the exploitation of the
differential and linear properties of the cipher to distinguish its output from random
permutation effectively. Building on this foundation, Coutinho [CN20] significantly
advanced the field in 2020, executing attacks on ChaCha 6 and ChaCha 7 with oper-
ational complexities of 2102.2 and 2231.9, respectively.

In 2021, Coutinho [CSN21] advanced his research by developing a novel linear
approximation, which enabled a significant attack on ChaCha 6 with a complexity of
251 and achieved key recovery on ChaCha 7 with a complexity of 2228.51. In addition, it
proposed important lemmas to approximate the linear approximation of the ChaCha
stream cipher which are summarized as follows: The following holds for i > 0:

x
(m−1)
a,i = L

(m)
a,i ⊕ x

(m)
b,i+6 ⊕ x

(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−1, w.p. 1

2

(
1 + 1

23

)
.

For two active input bits in round m− 1 and multiple active output bits in round m,
the following holds for i > 0:

x
(m−1)
λ,i ⊕ x

(m−1)
λ,i−1 = L

(m)
λ,i ⊕ L

(m)
λ,i−1, w.p. 1

2

(
1 + 1

2σ

)
.

where (λ, σ) ∈ {(a, 3), (b, 1), (c, 2), (d, 1). Suppose that (λ, σ) ∈ {(i, i−2), (i−1, i−1)},
i > 1. Then for three active input bits in round m− 1 and multiple active output bits
in round m, the following holds:

x
(m−1)
b,λ ⊕ x

(m−1)
c,i ⊕ x

(m−1)
c,i−1 = L

(m)
b,i−1 ⊕ L

(m)
c,i ⊕ L

(m)
c,i−1 ⊕ x

(m)
d,σ , w.p. 1

2

(
1 + 1

22

)
.

39

CHAPTER 3. PREVIOUS WORKS

Christof [BBC+22] proposed a framework for differential linear adversaries in ARX
ciphers, leading to an attack on ChaCha 7 with a time complexity of 2230.86 and a
data complexity of 248.83. Christof improved Differential-Linear Attacks with Appli-
cations to ARX Ciphers, the authors present several significant advancements in the
differential-linear cryptanalysis of the ChaCha cipher. The differential part of the at-
tack involves collecting many right pairs, (x, x⊕∆in), where E1(x)⊕E1(x⊕∆in) = ∆m.
The set X = {x ∈ F 2

n | E1(x) ⊕ E1(x ⊕ ∆in) = ∆m} defines these right pairs. The
linear part of the attack proceeds by defining several tuples (Tpi

, Φ(pi)
out , γ(pi)), which are

used to achieve high correlation.
The attack efficiently extracts linear relations in the key by partitioning the ci-

phertext space and using multiple linear masks. Several lemmas, including Lemma 1
of [Leu16] support the partitioning technique:

Lemma 1. [Leu16] Let a, b ∈ Fm
2 and z = a + b. For i ≥ 2, we have

z[i] =

a[i]⊕ b[i]⊕ a[i− 1] if a[i− 1] = b[i− 1],

a[i]⊕ b[i]⊕ a[i− 2] if a[i− 1] 6= b[i− 1] and a[i− 2] = b[i− 2].

In this scenario, c[i− 3] denotes the carry output from the majority function, and
there is a linear approximation c[i − 3] ≈ y0[i − 3] with a correlation of 2−1. Lemma
2 from [BBC+22] outlines the correlation of the differential-linear distinguisher across
various partitions as follows: Let s = y0 ⊕ y1 with i ≥ 3. Define Sb0b1 as the set
Sb0b1 := {(y1, y0) ∈ F2

2m | s[i− 1] = b0 and s[i− 2] = b1}}. Then, we have:

z0[i] ≈


y0[i]⊕ y1[i]⊕ y0[i− 1], with cor. − 1, if (y1, y0) ∈ S∗

0 ,

y0[i]⊕ y1[i]⊕ y0[i− 2], with cor. − 1, if (y1, y0) ∈ S10,

y0[i]⊕ y1[i]⊕ y0[i− 3], with cor. − 2−1, if (y1, y0) ∈ S11,

where S∗
0 = S00 ∪ S01.

Lemma 3 of [BBC+22]: Let s = y0⊕ y1 and let i ≥ 3. Let Sb0b1 := {(y1, y0) ∈ F2
2m |

s[i− 1] = b0 and s[i− 2] = b1}. We have

z0[i]⊕z0[i−1] ≈


y0[i]⊕ y1[i], with cor. 1, if (y1, y0) ∈ S∗

1 ,

y0[i]⊕ y1[i]⊕ y0[i− 1]⊕ y0[i− 2], with cor. − 1, if (y1, y0) ∈ S00,

y0[i]⊕ y1[i]⊕ y0[i− 1]⊕ y0[i− 3], with cor. − 2−1, if (y1, y0) ∈ S01,

where S∗
1 = S10 ∪ S11. The final attack complexity for the 6-round ChaCha attack

is 258 in data complexity and 277.4 in time complexity, while for the 7-round ChaCha
attack, it is 248.83 in data complexity and 2230.86 in time complexity. In 2022, Dey

40

CHAPTER 3. PREVIOUS WORKS

[DGSS22] propelled the field of differential-linear cryptanalysis forward by launching
an offensive on ChaCha 7 with a time complexity of 2221 and a data complexity of 290.
Additionally, Dey [DDSM22] revisited ChaCha cryptanalysis from Crypto 2020 and
Eurocrypt 2021.

Furthermore, Dey [DGSS23] unveiled an attack on ChaCha 7.25, yielding a com-
plexity of 2244.85. Subsequently, Niu et al. [NSLL22] presented an enhanced differential-
linear distinguisher tailored for four rounds of ChaCha. In 2023, Coutinho et al.
[CPV+23b] proposed a method to select the ID,OD. Traditionally, a PNB attack
considers a single ID,OD pair. The attacker first identifies significant key bits (non-
PNBs) based on the bias of the output difference, then exhaustively searches the
remaining PNBs, making this a two-step process.

Dey [DGSS22] proposed a technique that combines two input-output positions in
a PNB attack, using the same ID with two different output differences (OD1 and
OD2). The attacker first identifies non-PNBs using the bias of the first ID,OD1 pair,
then focuses on the non-PNBs corresponding to ID,OD2 that were not identified in
the first step. The remaining key bits are then exhaustively searched in a three-step
process. This technique was originally applied to a 6-round ChaCha cipher with a
128-bit key.

Coutinho [CPV+23b] generalize the [DGSS22] idea to an arbitrary number of differ-
entials. Instead of using a single ID and two OD, they consider multiple distinct input
differences IDi and corresponding output differences OD1 for 1 ≤ i ≤ r. This method,
which extends the traditional two-step key recovery approach to an r +1-step method,
is particularly advantageous when the PNB set size is large. The process involves iter-
atively identifying significant key bits at each step, and progressively narrowing down
the key space until the remaining unknown key bits are found via brute-force search.

The attack’s complexity is defined by the number of significant key bits and the
data samples needed at each step, with the total data complexity being the sum of the
complexities at each step. Importantly, since these attacks are applied independently
with different samples, statistical dependencies between differentials are unlikely to af-
fect the final complexity. Coutinho introduced a distinguisher requiring 2214 operations
on ChaCha 7 and introduced a novel linear approximation for the ChaCha sub-round.

Coutinho introduced a key-recovery attack on Salsa 8 and Salsa 7. Coutinho
mounted an attack on Salsa 8 involves a differential correlation for ∆x

(5)
4 [7] with a

bias of εa = 0.000305 and a threshold γ = 0.3. The attack uses 152 Probabilistic
Neutral Bits (PNBs) and has a data complexity of 2113.14 and a time complexity of
2217.14. The attack process includes 5 forward rounds and 3 backward rounds. On the
other hand, the attack on Salsa 7 uses a differential-linear distinguisher for ∆x

(5)
4 [7]

with a bias of εa = 0.019531 and the same threshold γ = 0.3.
This attack employs 237 PNBs, with a data complexity of 2104.47 and a time com-

41

CHAPTER 3. PREVIOUS WORKS

plexity of 2125.16. The cryptanalysis is performed over 5 forward rounds and 2 back-
ward rounds. Shortly after, Dey [DGM23] reported an attack with 299.48 operations on
ChaCha 6. [DGM23] introduces a novel cryptanalytic technique that leverages mul-
tiple input-output difference ID,OD pairs to reduce the attack complexity on the
ChaCha 6. This method involves partitioning the key bits into q + 1 subsets, de-
noted as S1, S2, . . . , Sq, Sq+1, where each subset Si corresponds to a specific ID,OD
pair. During the pre-processing stage, Dey identifies significant key bits by calculating
biases εd and εa.

These biases are used to assess the impact of key bits on the observed differences.
The key recovery process is conducted in q + 1 stages, with each stage focusing on
a subset of key bits. The overall complexity of the attack is reduced to below 2k/2,
where k is the key size in bits, by accumulating the effects of multiple biases across
the stages. Dey’s complexity analysis begins with the expression for the bias ε as the
product of forward and backward biases:

ε = εd · εa.

The complexity in each stage i is given by 2mi ·Ni, where mi is the number of significant
key bits in subset Si, and Ni is the required data complexity. The total complexity is
calculated as:

Total Complexity =
q∑

i=1
2mi ·Ni + 2mq+1 ,

with 2mq+1 representing the exhaustive search required for the remaining key bits in
Sq+1. To derive Ni, the data complexity for stage i, Dey employs hypothesis testing,
comparing two scenarios: - H0: The guessed significant key bits are incorrect, implying
no bias (ϵ ≈ 0). - H1: The guessed significant key bits are correct, with a bias ϵ.

Dey uses the Neyman-Pearson lemma to determine Ni:

Ni ≈

√αi ln 4 + Φ−1
(

P rnd

q

)√
1− ϵ2

ϵ

2

,

where αi is chosen to minimize false alarms, Φ−1 is the inverse cumulative distribution
function, and Prnd is the non-detection error probability. By setting αi to ensure a
negligible false alarm rate, the complexity for each stage is minimized.

In the application to ChaCha 6, Dey selects three ID,OD pairs, denoted as ID1

OD1, ID2 OD2, and ID3 OD3, to achieve an attack complexity of 299.48. The order of
these pairs is chosen to minimize the term 2m1 ·N1, as this term predominantly deter-
mines the overall complexity. For each ID,OD pair, Dey calculates the significant key
bits and the required Ni based on the biases ϵd and εa. The number of remaining key
bits after the first three stages is sufficiently small to allow for an efficient exhaustive

42

CHAPTER 3. PREVIOUS WORKS

search in the final stage. In the first stage, for (ID1, OD1), Dey sets the threshold at
0.565, identifies 58 significant bits, and calculates N1 = 241.47. For (ID2, OD2), the
threshold is 0.756, yielding 56 significant bits after removing overlaps with S1, and
N2 = 234.26.

The third stage, using ID3 OD3, with a threshold of 0.92, identifies 50 significant
bits, with N3 = 230.32. The remaining 92 key bits are recovered via exhaustive search
with a complexity of 292. The total complexity of the attack is:

258 · 241.47 + 256 · 234.26 + 250 · 230.32 + 292 ≈ 299.48.

Dey’s implementation involves recovering the significant key bits for each ID,OD
pair, followed by an exhaustive search for the remaining key bits. The theoretical
analysis is validated through experiments on a toy version of ChaCha, confirming
the effectiveness of the multiple ID,OD pair technique and its reduced complexity
compared to traditional methods.

In 2023, Bellini [BGG+23] scrutinized differential-linear cryptanalysis, launching a
key recovery attack on ChaCha 7, with a complexity of 2206.8, and a distinguisher on
ChaCha 7 and ChaCha 7.5 with complexities of 2166.89 and 2251.54, respectively. Bellini
et al. propose an enhanced differential-linear cryptanalysis approach for the ChaCha 7
cipher, utilizing Mixed Integer Linear Programming (MILP) to improve the efficiency
and effectiveness of existing cryptanalytic techniques. The authors introduce several
key enhancements that collectively reduce the complexity of differential-linear attacks
on ChaCha 7 and lead to the discovery of new distinguishers for both 7-round and
7.5-round versions of the cipher.

Firstly, Bellini et al. extend the traditional search space by considering 2-bit input
differences in the differential part of the attack, contrasting with the conventional
single-bit differences. This extension allows for the identification of new differential
paths, denoted as ∆in → ∆out, which connect more effectively with the linear part of
the attack.

For instance, the authors discovered differential paths such that the probability of
the differential trail is improved, allowing the linear trail to exhibit a higher correlation.
The new differential-linear distinguisher is mathematically represented as:

Corx∈Fn
2
[〈Γout, E(x)〉 ⊕ 〈Γout, E(x⊕∆in)〉] = p · q2,

where p represents the probability of the differential trail and q is the correlation of
the linear trail. The introduction of 2-bit differences enables the authors to find trails
where the product p·q2 is maximized, thus reducing the complexity of the distinguished.

To further enhance the attack, Bellini et al. optimize the mask selection between
the differential and linear parts at round 3.5. By carefully choosing masks, they reduce

43

CHAPTER 3. PREVIOUS WORKS

the number of active bits in the linear part, which directly impacts the correlation. This
strategic choice results in a new 7-round differential-linear distinguisher requiring only
2166.89 computations, significantly improving the previously known best distinguisher
for ChaCha 7, which had a complexity of 2214. The paper also presents a distinguisher
for ChaCha 7.5, with a complexity of 2251.4.

This distinguisher, the first of its kind for 7.5 rounds, is achieved by extending the
same methodology used for the 7th round case. The authors leverage their MILP tool
to identify linear trails with higher correlations, which is crucial in achieving such a
low complexity. For example, a linear trail starting at round 3.5 and ending at round
7 was found with a correlation of 2−37, an improvement over the previous best of 2−47:

Cor[Γout, E2(x)] = ϵ,

where ϵ = 2−37 represents the correlation of the improved linear trail. Bellini et al.
integrate the improved differential-linear distinguisher into the Probabilistic Neutral
Bits (PNB) framework to perform a key-recovery attack on ChaCha 7. The compu-
tational complexity of this attack is 2206.8. The key-recovery attack is based on the
following complexity formula:

Time Complexity = 2|k|−nN + 2|k|−m + 2m,

where |k| is the key size, n is the number of Probabilistic Neutral Bits, m is the number
of significant bits, and N is the data complexity.

3.2.2 Significant Linear Approximations

In this section, we present the main linear approximations. The findings in the sub-
sequent chapters are largely based on these Lemmas. We explore the existing linear
approximation of the ChaCha stream cipher. In [CM16], the author analyzed the
ChaCha quarter-round function at the bit level. In 2021, Coutinho [CSN21] updated
the notation and proposed a new linear approximation. For consistency, we will use
Coutinho’s notation. Below, we examine the bit-level representation of the ChaCha
quarter-round function.

x
′(m−1)
a,i = x

(m−1)
a,i ⊕ x

(m−1)
b,i ⊕Θi(x(m−1)

a , x
(m−1)
b). (3.3)

x
′(m−1)
d,i+16 = x

(m−1)
d,i ⊕ x

′(m−1)
a,i . (3.4)

x
′(m−1)
c,i = x

(m−1)
c,i ⊕ x

′(m−1)
d,i ⊕Θi(x(m−1)

c , x
′(m−1)
d). (3.5)

x
′(m−1)
b,i+12 = x

(m−1)
b,i ⊕ x

′(m−1)
c,i . (3.6)

x
(m−1)
a,i = x

′(m−1)
a,i ⊕ x

′(m−1)
b,i ⊕Θi(x′(m−1)

a , x
(m−1)
b). (3.7)

x
(m)
d,i+8 = x

′(m−1)
d,i ⊕ x

(m)
a,i . (3.8)

44

CHAPTER 3. PREVIOUS WORKS

x
(m)
c,i = x

′(m−1)
c,i ⊕ x

(m−1)
d,i ⊕Θi(x′(m−1)

c , x
(m)
d). (3.9)

x
(m)
b,i+7 = x

′(m−1)
b,i ⊕ x

(m)
c,i . (3.10)

Upon reversing these equations, we obtain:

x
′(m−1)
b,i = x

(m)
b+7 ⊕ x

(m)
c,i . (3.11)

x
′(m−1)
c,i = x

(m)
c,i ⊕ x

(m)
d,i ⊕Θi(x′(m−1)

c , x
(m)
d). (3.12)

x
′(m−1)
d,i = x

(m)
a,i ⊕ x

(m)
d,i+8. (3.13)

x
′(m−1)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x(m)

c ⊕Θi(x′(m−1)
a , x

′(m−1)
b). (3.14)

x
(m−1)
b,i = L(m)

b,i ⊕Θi(x′(m−1)
c , x

(m)
d). (3.15)

x
(m−1)
c,i = L(m)

c,i ⊕Θi(x′(m−1)
c , x

(m)
d)⊕Θi(x(m−1)

c , x
′(m−1)
d). (3.16)

x
(m−1)
d,i = L(m)

d,i ⊕Θi(x′(m−1)
a , x

′(m−1)
b). (3.17)

x
(m−1)
a,i = L(m)

a,i ⊕Θi(x′(m−1)
a , x

′(m−1)
b).

⊕Θi(x′(m−1)
c , x

(m)
d)⊕Θi(x(m−1)

a , x
(m−1)
b). (3.18)

Where

L(m)
a,i = xm

a,i ⊕ xm
b,i+7 ⊕ xm

b,i+19 ⊕ xm
c,i+12 ⊕ xm

d,i. (3.19)
L(m)

b,i = xm
b,i+19 ⊕ xm

c,i ⊕ xm
c,i+12 ⊕ xm

d,i. (3.20)
L(m)

c,i = xm
a,i ⊕ xm

c,i ⊕ xm
d,i ⊕ xm

d,i+8. (3.21)
L(m)

d,i = xm
a,i ⊕ xm

a,i+16 ⊕ xm
b,i+7 ⊕ xm

c,i ⊕ xm
d,i+24. (3.22)

Lemma 3.1 ([CM16]). In the least significant bit (LSB) positions, the quarter-round
function allows us to set i = 0 and precisely estimate the linear correlation between
the (m− 1)-th and m-th rounds with a probability of 1. Let

∆A(m) = ∆x
(m)
α,0 ⊕∆x

(m)
β,7 ⊕∆x

(m)
β,19 ⊕∆x

(m)
γ,12 ⊕∆x

(m)
δ,0 . (3.23)

∆B(m) = ∆x
(m)
β,19 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
γ,12 ⊕∆x

(m)
δ,0 . (3.24)

∆C(m) = ∆x
(m)
δ,0 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
δ,8 ⊕∆x

(m)
α,0 . (3.25)

∆D(m) = ∆x
(m)
δ,24 ⊕∆x

(m)
α,16 ⊕∆x

(m)
α,0 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
β,7 . (3.26)

45

CHAPTER 3. PREVIOUS WORKS

Then, the following equations for four biases hold:∣∣∣ε(A(m))
∣∣∣ =

∣∣∣ε(x(m−1)
α [0])

∣∣∣ .∣∣∣ε(B(m))
∣∣∣ =

∣∣∣ε(x(m−1)
β [0])

∣∣∣ .∣∣∣ε(C(m))
∣∣∣ =

∣∣∣ε(x(m−1)
γ [0])

∣∣∣ . and∣∣∣ε(D(m))
∣∣∣ =

∣∣∣ε(x(m−1)
δ [0])

∣∣∣ .
where these relations are divided into two cases depending on m,

1. If m is an odd number:

(α, β, γ, δ) ∈ {(0, 4, 8, 12), (1, 5, 9, 13),
(2, 6, 10, 14), (3, 7, 11, 15)}.

2. If m is an even number:

(α, β, γ, δ) ∈ {(0, 5, 10, 15), (1, 6, 11, 12),
(2, 7, 8, 13), (3, 4, 9, 14)}.

For the proof, please refer to [CM16]

Lemma 3.2 ([CM16]). To derive the linear approximation for a half-round of ChaCha,
[CM16] introduced the following lemma:

x
(m)
a,i = x

(m+0.5)
a,i ⊕ x

(m+0.5)
b,i+12 ⊕ x

(m+0.5)
c,i ⊕ C1

carry,i. (3.27)
x

(m)
b,i = x

(m+0.5)
b,i+12 ⊕ x

(m+0.5)
c,i . (3.28)

x
(m)
c,i = x

(m+0.5)
c,i ⊕ x

(m+0.5)
d,i ⊕ C2

carry,i. (3.29)
x

(m)
d,i = x

(m+0.5)
d,i+16 ⊕ x

(m+0.5)
a,i . (3.30)

Remarkably, we observe that the bias of variables such as x
(m)
b[i] and x

(m)
d[i] can be

derived from round m + 0.5 without any reduction in their value for all i. While
the word positions x

(m)
b[i] and x

(m)
d[i] can be extended to a half round with probability 1

for all bit positions. However, this is not true for x
(m)
a[i] and x

(m)
c[i] , which occur with a

probability less than 1. Therefore, we describe the following Lemma concerning the
half-round extension of x

(m)
a[i] and x

(m)
c[i] .

Lemma 3.3 ([CPV+23b]). For i = 0, the subsequent linear approximations are valid
with a certainty of 1, assuming a single active input bit in half-round m−1 and several
output bits in half-round m + 0.5.

46

CHAPTER 3. PREVIOUS WORKS

x
(m)
c,i = x

(m+0.5)
c,i ⊕ x

(m+0.5)
d,i . (3.31)

x
(m)
a,i = x

(m+0.5)
a,i ⊕ x

(m+0.5)
b,i+7 ⊕ x

(m+0.5)
c,i . (3.32)

For i > 0, the following linear approximations hold with a probability of 1
2(1 + 1

2),
given a single active input bit in half-round m−1 and several output bits in half-round
m.

x
(m)
c,i = x

(m+0.5)
c,i ⊕ x

(m+0.5)
d,i ⊕ x

(m+0.5)
d,i−1 . (3.33)

x
(m)
a,i = x

(m+0.5)
a,i ⊕ x

(m+0.5)
b,i+7 ⊕ x

(m+0.5)
c,i ⊕ x

(m+0.5)
b,i+6 ⊕ x

(m+0.5)
c,i−1 . (3.34)

Lemma 3.4 ([CM16]). When there is a single active input bit in round m − 1 and
multiple active output bits in round m the following statement holds for i > 0:

x
(m−1)
b,i = x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i ⊕ x

(m)
c,i

⊕ x
(m)
d,i−1, W.P.1

2

(
1 + 1

2

)
. (3.35)

x
(m−1)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i

⊕ x
(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−2 ⊕ x

(m)
d,i+6,

W.P.1
2

(
1 + 1

24

)
. (3.36)

x
(m−1)
c,i = x

(m)
d,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i+8 ⊕ x

(m)
a,i ⊕ x

(m)
a,i−1

⊕ x
(m)
d,i+7 ⊕ x

(m)
d,i−1, W.P.1

2

(
1 + 1

22

)
. (3.37)

x
(m−1)
d,i = x

(m)
d,i+24 ⊕ x

(m)
a,i+16 ⊕ x

(m)
a,i ⊕ x

(m)
c,i ⊕ x

(m)
b,i+7

⊕ x
(m)
c,i−1 ⊕ x

(m)
b,i+6, W.P.1

2

(
1 + 1

2

)
. (3.38)

Using Lemma 3.1, we can obtain a linear approximation for one round of ChaCha
with (probability 1). Conversely, Lemma 3.4 offers a linear approximation with a
probability less than one. Specifically, equations 3.36 and 3.37, which relate to the
words ’A’ and ’C’, have lower probabilities of occurrence. The selection of these words
can notably impact the overall complexity of an attack. Therefore, it is recommended
to avoid using these words.

Lemma 3.5. ([CSN21]). Linear approximation between two input bits in m−1 rounds
and multiple output bits in m rounds x

(m−1)
λ,i ⊕ x

(m−1)
λ,i−1 = L(m)

λ,i ⊕ L
(m)
λ,i−1 is satisfied with

probability 1
2

(
1 + 1

2σ

)
, where (λ, σ) ∈ {(a, 3), (b, 1), (c, 2), (d, 1)} for i > 0.

47

CHAPTER 3. PREVIOUS WORKS

Lemma 3.6. ([CSN21]). For i > 0,

x
(m−1)
a,i = L(m)

a,i ⊕ x
(m)
b,i+6 ⊕ x

(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−1.

is satisfied with probability 1
2

(
1 + 1

23

)
.

Lemma 3.7. (Equation 19 and 25 in Lemma 9 of [CSN21] respectively). The sub-
sequent linear approximations between multiple input bits in the m − 1 rounds and
multiple output bits in the m rounds are valid with the following probability.

x
(m−1)
b,i ⊕ x

(m−1)
c,i = L(m)

b,i ⊕ L
(m)
c,i ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7 w.p. 1

2

(
1 + 1

2

)
for i > 0.

(3.39)

x
(m−1)
a,i−1 ⊕ x

(m−1)
a,i ⊕ x

(m−1)
c,i = L(m)

a,i−1 ⊕ L
(m)
a,i ⊕ L

(m)
c,i ⊕ x

(m)
d,i−2 ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7

w.p. 1
2

(
1 + 1

24

)
for i > 1. (3.40)

Lemma 3.8. ([BBC+22]) Let s = y0⊕ y1 and let i ≥ 3. Let Sb0b1 := {(y1, y0) ∈ F2m
2 |

s[i− 1] = b0 and s[i− 2] = b1}. We have

z0[i] ≈


y0[i]⊕ y1[i]⊕ y0[i− 1], with cor. − 1, if (y1, y0) ∈ S∗

0

y0[i]⊕ y1[i]⊕ y0[i− 2], with cor. − 1, if (y1, y0) ∈ S10

y0[i]⊕ y1[i]⊕ y0[i− 3], with cor. − 2−1, if (y1, y0) ∈ S11

where S∗
0 = S00 ∪ S01.

3.2.3 Higher Order Differential-Linear Attack

Kai [HPTY23] applied higher-differential-linear attacks to ChaCha 3.5, ChaCha 4,
and ChaCha 4.5, achieving biases of 1/2, 2−1.19, and 2−4.81, respectively. In the area
of ChaCha security analysis, it is clear that all current attacks have focused solely on
single-bit differential or single-bit differential-linear techniques. Consequently, there
is a notable gap in the literature concerning higher-order differential and higher-order
differential-linear attacks on ChaCha.

This dissertation aims to address this gap by investigating higher-order differential-
linear cryptanalysis, thereby assessing the resilience of the ChaCha stream cipher
against a more advanced adversary model. To provide a clearer understanding of
higher-order differential cryptanalysis, we review Kai’s work on higher-order differential-
linear cryptanalysis [HPTY23].

Kai explored higher-order differential-linear attacks from an algebraic viewpoint
and introduced a higher-order differential-linear distinguisher for several internal rounds

48

CHAPTER 3. PREVIOUS WORKS

of ChaCha. The research involved finding high-bias second-order differential-linear
(DL) with a single bit OD and then appending a 1.5-round deterministic linear ap-
proximation. The 3.5-round 2nd order higher-order differential-linear was shown to
have a bias close to 1

2 .
In this work, Kai used ∆X

(0)
12[0]⊕∆X

(0)
14[0] as the ID position, with the OD selected

as ∆X
(2)
8,[0].

X
(2)
8,[0] = X3.5

0,[0] ⊕X3.5
0,[8] ⊕X3.5

3,[0] ⊕X3.5
4,[12] ⊕X3.5

9,[0] ⊕X3.5
11,[0]

⊕X3.5
12,[0] ⊕X3.5

15,[16] ⊕X3.5
15,[24]. (3.41)

Kai discovered a 4-round second-order higher-order differential-linear (HDL) with
a 2−1.19 bias. The input difference ID was positioned as ∆X

(0)
13[16] ⊕∆X

(0)
14[0], and the

output difference OD was chosen as ∆X
(2.5)
8,[0] .

X
(2.5)
8,[0] = X4

1,[0] ⊕X4
1,[16] ⊕X4

2,[0] ⊕X4
6,[7] ⊕X4

8,[0] ⊕X4
11,[0]

⊕X4
12,[24] ⊕X4

13,[0] ⊕X4
13,[8]. (3.42)

For ChaCha 4.5, Kai identified a second-order differential-linear bias of roughly 2−4.81.
The input difference ID was placed at ∆X

(0)
14[12] ⊕∆X

(0)
15[15], and the output difference

OD was selected as ∆X
(3)
8,[0]. The 1.5-round linear approximation occurred with a

probability of 1/2.

X
(3)
8,[0] = X4.5

0,[0] ⊕X4.5
0,[8] ⊕X4.5

1,[0] ⊕X4.5
5,[12] ⊕X4.5

9,[0] ⊕X4.5
11,[0]

⊕X4.5
12,[16] ⊕X4.5

12,[24] ⊕X4.5
15,[0]. (3.43)

Kai combined the initial 3-round second-order HDL approximation with an addi-
tional 1.5-round linear approximation, creating a 4-round second-order HDL distin-
guisher with a bias of approximately 2−4.81. The biases found in the second-order DL
distinguishers for these three versions exceeded those of all previous DL distinguishers.
Due to these significantly higher biases, it is possible to strengthen the distinguishing
attacks on ChaCha 3.5, ChaCha 4, and ChaCha 4.5.

3.2.4 Attacks on ChaCha permutation

The research domain surrounding Salsa 20 and ChaCha primarily focuses on key re-
covery and distinguishing attacks. However, studies on permutation are less prevalent
compared to those on key recovery and distinguishing attacks. In this section, we will
review the most significant studies on ChaCha permutation. Stefano [BBM20] studied

49

CHAPTER 3. PREVIOUS WORKS

the rotational cryptanalysis of the ChaCha stream cipher, specifically focusing on its
underlying permutation. The paper examines whether ChaCha’s permutation behaves
like a random permutation for up to 17 rounds.

The Stefano derives lower and upper bounds for the probability of rotational colli-
sions occurring within a single ChaCha quarter round. Let p denote the likelihood of
rotational collision propagation through the quarter round. The derived bounds are
as follows:

D3P (r, w) ≤ p ≤
(

D(2r + 2)(2w − r + 2)
9 · 2w

)2

where D represents the probability of rotational pairs propagating through modular
addition, r is the rotational amount, and w is the bit size (in ChaCha’s case, w = 32).
Stefano [BBM20] extends these bounds to the full round and the entire permutation,
showing that the probability of a parallel rotational collision after 17 rounds is sig-
nificantly higher in ChaCha compared to a random permutation. Specifically, for 17
rounds, the probability of a rotational collision is less than 2−488 for ChaCha, whereas
for a random permutation of the same input size, it is 2−511. The paper also introduces
a distinguisher that uses these bounds to differentiate between ChaCha and random
permutations.

The distinguisher checks if a rotational collision occurs after making multiple or-
acle calls. If such a collision is found, it suggests the oracle is running the ChaCha
permutation. The complexity of this distinguisher is dominated by the number of calls
to the oracle, which increases with the number of rounds. Experimental results on toy
versions of ChaCha, using reduced word sizes of 4, 5, and 6 bits, confirmed the the-
oretical bounds. The authors in [BBM20] conducted exhaustive searches through all
possible values of (x0, x1, x2, x3), and observed the frequency of rotational collisions,
aligning well with their predicted probabilities.

In conclusion, the study demonstrates that ChaCha’s permutation is distinguish-
able from a random permutation for up to 17 rounds due to the higher occurrence
of rotational collisions. While this does not imply an attack on the ChaCha stream
cipher, it highlights interesting non-random properties of the ChaCha permutation.

The [DS23] presents improvements in differential-linear distinguishing attacks on
the ChaCha permutation. The authors introduce a new single-bit differential distin-
guisher for ChaCha 3.5, which helps construct a more efficient differential-linear distin-
guisher. The paper presents that a 7-round ChaCha permutation can be distinguished
with a time complexity of 2207. Furthermore, the paper extends the differential-linear
distinguisher to 7.25 rounds. The differential-linear attack divides the cipher into three
parts: E1, Em, and E2, where E1 and Em correspond to differential cryptanalysis, and
E2 corresponds to linear cryptanalysis. The authors in [DS23] analyze the propagation

50

CHAPTER 3. PREVIOUS WORKS

of differential and linear correlations through these parts.
For the 3.5-round differential distinguisher, they identify the input difference at po-

sition (p, 6), with p ∈ {12, 13, 14, 15}, which results in an output difference with a dif-
ferential correlation of approximately 2−28.65. This is computed based on the quarter-
round function (QRF) and the symmetry in ChaCha’s round updates. The [DS23]
introduces a differential-linear distinguisher for the ChaCha 7.25 rounds permutation.
This extension is achieved by utilizing a new linear approximation path that connects
active bits from the 6th to the 7th round with high probability.

Specifically, they derive a differential-linear correlation of approximately 2−113 for
the 7.25 rounds, leading to a time complexity of 2231 for the distinguisher. This
marks the first distinguishing attack that extends beyond 7 rounds of the ChaCha
permutation. Key linear approximations are introduced, expressed through several
lemmas, and validated theoretically and experimentally. For example, Lemma 4 in
[DS23] presents that for two consecutive active bits in one round, multiple active bits in
the next round can be approximated with a probability of 1

2

(
1 + 1

2n

)
, where n depends

on the specific bits and rounds. These approximations are crucial for extending the
distinguisher to 7.25 rounds, leading to a differential-linear correlation of 2−113 for the
7.25-round distinguisher, with a corresponding time complexity of 2231.

51

Chapter 4

Differential Cryptanalysis of Salsa
20 and ChaCha

This chapter studies the differential cryptanalysis of Salsa 20 and ChaCha. First, we
study the differential cryptanalysis of Salsa 20 based on the analysis of PNBs and
attack the reduced round of Salsa 20 and ChaCha. We presented the distribution
of neutral measures across different intermediate rounds of Salsa and ChaCha. We
present that the neutral measure of keybits is mainly affected by the OD position. In
addition, we mounted a key-recovery attack on Salsa 8 and ChaCha 7.25 with time
complexity of 2241.62, 2254.01 and data complexity of 231.5, 251.81 respectively.

4.1 Examination of Probabilistic Neutral Bits
This section explores the neutrality measure of 256 key bits across all 512 output
differential positions. We examine the experimental findings and identify the output
differential position with the highest neutrality measure, which serves as the attack
target for both Salsa 20 and ChaCha. We show that the neutrality measure signifi-
cantly depends on the output differential bit position rather than the input differential
bit position.

We introduce a differential attack on Salsa 20/8 with a time complexity of 2241.62

and a data complexity of 231.5. We evaluated all feasible internal rounds and identified
the optimal one for attacking Salsa 20/8. Specifically, we examined 4r, 4.25r, 4.5r,
4.75r, 5r, 5.25r, 5.5r, and 5.75r internal rounds, concluding that the 4.75r internal
round is optimal for attacking Salsa 20/8. Furthermore, we achieved a key-recovery
attack on ChaCha 7.25 with a time complexity of 2254.01 and a data complexity of
251.81.

52

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

𝑋("), 𝑋′(")

𝑋($), 𝑋′($)
Internal
round

𝑋(%), 𝑋′(%)Target
round

∆&,(
($)

γ&,(
($)

𝑋	& 𝑋	′

If γ!,#
(%)

= ∆!,#
(%)

NM=+1

Forward
Rounds

Reverse
Rounds

Compare

1

2

3

4

5

𝑋("), 𝑋′(")

Forward
Rounds

Se
le

ct
 t

he
 O

D
 P

os
iti

on
 w

ith
 b

es
t N

M

6

∆&,(
($)

For 128
IDs

Single bit OD

7

 Bias 𝜀)

Figure 4.1: ID,OD Selection Procedure.

4.1.1 Analysis of PNBs

The cryptanalysis of Salsa 20 and ChaCha involves studying the ID-OD with the
highest bias εd among all possible pairs. The ID is determined and followed by
selecting the corresponding OD with the highest forward bias. Essentially, previous
studies have focused on analyzing the differential bias at specific ID,OD pairs and
then attempted to identify the subset of PNBs to target the desired round of Salsa 20.
However, based on our experimental results and previous research findings [AFK+08],
the neutrality measures of all 256 key bits primarily rely on OD bits.

Consequently, when executing a key-recovery attack within this framework, it be-
comes challenging to determine whether the combination of ID,OD and the subset of
PNBs is truly optimal. This section delves into a comprehensive analysis of the neu-
trality measures of 256 key bits across all possible OD bits. Additionally, we examine
the conditions and factors that may contribute to high neutral measures, considering
that the size of PNBs influences the time complexity of the attack. Presumably, no
detailed study on analyzing PNBs has been reported thus far. If we can elucidate the
conditions that lead to high neutral measures γκ, it may suggest that existing attacks
still have the potential for improvement. We employed Algorithm 3 to compute the
neutrality measures of 256 key bits across 512 OD bits. To determine an optimal ID
position, we explored all 128 possible ID positions.

Surprisingly, we did not observe a significant impact of the ID on the neutrality
measure of key bits. Consequently, we decided to select a random ID at this experi-
mental stage1 In this section, we study the neutrality measure of all possible rounds
of Salsa 20 and ChaCha (i.e., quarter round, half round, and three quarters). Further-

1In our experiment, we utilized the ID (7,31) as reported in [AFK+08].

53

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

Algorithm 3 Optimal OD Bit Determination
Input: Random values (X, X ′, Z, Z ′)
Output: The OD bit with the highest neutrality measure

1: Trigger random keywords k = (k0, . . . , k7)
2: Choose a random ID ∆(0)

i [j]
3: Compute v = (v0, v1) and t = (t0, t1)
4: Initialize X(0)

5: Set X ′(0) = X(0) ⊕∆(0)
i [j]

6: Derive (X(r), X ′(r)) and (X(R), X ′(R)) from (X(0), X ′(0))
7: Calculate OD bits ∆(r)

p [q] = X(r)
p [q]⊕X ′(r)

p [q] for all indices p and q

8: Obtain keybits Z = X(0) + X(R) and Z ′ = X ′(0) + X ′(R) from (X(R), X ′(R))
9: Flip a keybit κ (κ ∈ {0, . . . , 255})

10: Calculate X
(0) and X ′(0) from initial states (X(0), X ′(0))

11: Calculate (Y (r), Y ′(r)) using Z−X
(0) and Z ′−X ′(0) as inputs to the inverse function.

12: Determine Γ(r)
p [q] = Y (r)

p [q]⊕ Y ′(r)
p [q] for every combination of p and q

13: Increment the tally for each p, q, and κ if ∆(r)
p [q] = Γ(r)

p [q]
14: Determine the probability by dividing the sum of occurrences where ∆(r)

p [q] =
Γ(r)

p [q] by the number of key trials and ID samples

more, we study the attack impact on ChaCha stream cipher and consider the median
bias |ε∗

d| for the attack complexity estimation.

4.1.2 The Impact on Salsa 20

This subsection presents the experimental results for the neutrality measure of all
possible internal rounds of the Salsa 20 stream cipher. We studied the neutrality
measure of 256 keybits for all possible OD positions given the 4, 4.25, 4.5, 4.75, and
5, 5.25, 5.5, 5.75 rounds. We investigated the neutrality measure of key bits across all
possible ODs by performing experiments with a complexity of 230 (i.e., 26 key trials
and 224 IV samples).

The probability was determined over the key trials, nonce, and counter. Let X
represent the distribution of ∆(r)

p [q] = Γ(r)
p [q] from r-round internal state matrices in a

true random number generator, and let Y denote the distribution of ∆(r)
p [q] = Γ(r)

p [q]
from the r-round internal state matrices of Salsa 20. The target event occurs in X
with a probability of 1

2 and in Y with a probability of γκ; hence, the number of samples
required to distinguish between X and Y is O(2

γ2
κ
).

Our experimental results are considered reliable when the derived neutral measures
γκ exceed 2−14.5, given that we used a total of 230 IV samples and key trials.

Figures. 4.2 and 4.3 illustrate the experimental results from a thorough analysis of
key bit neutrality measures across all possible OD bit positions in Salsa 20. In these

54

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

51
0

Av
er

ag
e

N
eu

tr
al

 M
ea

su
re

 (0
-1

)

OD Bit Positions (0-511)

Distribution of Neutral Measures for Internal Rounds r=4,4.25,4.5,4.75 For the Target Round 8

r=4 r=4.25 r=4.5 r=4.75

Figure 4.2: Neutral measures of internal rounds r

graphs, the vertical axis depicts the average neutrality measures for key bits at each
OD position, while the horizontal axis represents the OD bit positions.

The blue, orange, gray, and yellow lines represent the distribution of neutral-
ity measures in the full internal round, quarter internal round, half internal round,
and three-quarters internal rounds, respectively. We analyzed all potential inter-
nal rounds within the 4th and 5th rounds. Figures 4.2 and 4.3 display results for
r = 4, r = 4.25, r = 4.5, r = 4.75, and r = 5, r = 5.25, r = 5.5, r = 5.75, respectively.
Circles and squares at the top of the graphs denote input word positions, such as
vectors (A, B, C, D), for the inverse quarter-round function in odd and even rounds,
respectively.

If these symbols share the same color, the word position for the inverse quarter-
round function is the same, regardless of whether the Salsa 20 round is odd or even.
From Figures. 4.2 and 4.3, we observe the following:

• The neutrality measure distribution of key bits varies with each OD bit position,
as evidenced by Figures 4.2 and 4.1.

• Internal rounds 4.25r, 4.5r, and 4.75r produce identical neutrality measures for
someOD positions. Specifically, theOD words at positions 3rd, 4th, 5th, 9th, 10th, 14th, 15th

exhibit the same neutrality measure. However, these OD positions differ for in-
ternal rounds r = 5, r = 5.25, r = 5.5, r = 5.75. This will be further examined
in Subsection 4.1.4.

• The inverse-quarter round function of Salsa 20 influences the neutrality measure
of key bits. As the number of reverse rounds increases, the neutrality measure
of key bits decreases. Further discussion on this will be in Subsection 4.1.4.

55

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

20
7

21
6

22
5

23
4

24
3

25
2

26
1

27
0

27
9

28
8

29
7

30
6

31
5

32
4

33
3

34
2

35
1

36
0

36
9

37
8

38
7

39
6

40
5

41
4

42
3

43
2

44
1

45
0

45
9

46
8

47
7

48
6

49
5

50
4

Av
er

ag
e

N
eu

tr
al

 M
ea

su
re

 (0
-1

)

OD Bits Positions (0-511)

Distribution of Neutral Measures for Internal Rounds r=5,5.25,5.5,5.75 For the Target Round 8

r=5 r=5.25 r=5.5 r=5.75

Figure 4.3: Neutral measures of internal rounds r.

• OD bit positions with high neutrality measures vary across different word posi-
tions.

• The distributions of neutrality measures with respect to OD bit positions are
similar, regardless of the internal round r.

Table 4.1: For R = 7, the OD bit with the optimal neutral measure using 230 samples.

Internal Round OD Position Average Neutral Measure
3r ∆(3)

11 [0] 2−2.63846

3.5r ∆(3.5)
9 [0] 2−1.38836

4r ∆(4)
4 [0] 2−0.62482

4.1.3 The Impact on ChaCha

We utilized Algorithm 3 to assess the average neutrality measure of all key bits concern-
ing every possible OD bit position for r = 3, r = 3.5, and r = 4 internal rounds. Table
4.1 summarizes our experiment’s results. According to Table 4.1, regardless of the
internal rounds, the OD bit 0 exhibits the best neutral measure. This is influenced
by factors such as the cumulative number of modular subtractions, the input word
position to the inverse quarter-round of ChaCha, and the structure of the ChaCha
quarter-round function.

Fig. 4.4 illustrates the distribution of the neutrality measure of ChaCha20/7 con-
sidering the r = 3, r = 3.5, and r = 4 internal rounds. The X-axis represents the
neutrality measure of 256 key bits, while the Y-axis denotes the OD bit position.

56

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

Table 4.1 and Fig. 4.5 indicate that a higher number of internal rounds affects the
neutrality measure. Specifically, the neutrality measure for the internal round r = 3 is
lower than for r = 3.5. This disparity is directly influenced by the cumulative number
of modular subtractions executed for different internal rounds. We opted to target
more ChaCha rounds with the internal round r = 3.5.

Although we could have selected the r = 4 internal round to attack R = 7,
R = 7.25, or R = 7.75, the forward bias εd would notably decrease for the r = 4
internal round. Since researchers have not concentrated on evaluating the security of
ChaCha7.25 rounds, we chose to use r = 3.5 to attack ChaCha7.25.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 11 22 33 44 55 66 77 88 99 11
0

12
1

13
2

14
3

15
4

16
5

17
6

18
7

19
8

20
9

22
0

23
1

24
2

25
3

26
4

27
5

28
6

29
7

30
8

31
9

33
0

34
1

35
2

36
3

37
4

38
5

39
6

40
7

41
8

42
9

44
0

45
1

46
2

47
3

48
4

49
5

50
6

N
eu

tr
al

 M
ea

su
re

 (0
-1

)

OD Bit position (0-511)

Distribution of Neutral Measure for Target Round R=7 and r=3, 3.5, 4 Internal Rounds

r=3 r=3.5 r=4

Figure 4.4: Distribution of neutral measures for R = 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

51
0

N
eu

tr
al

 M
ea

su
re

 (0
-1

)

OD Bit Position (0-511)

Distribution of Neutral Measure for Different Target Round considering internal round r=3.5

R=7.25 R=7.5 R=7.75

Figure 4.5: Neutral measures for r = 3.5 internal rounds

57

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

4.1.4 Correlation Between Neutrality Measures and Inversed
Rounds

This section studies the correlation between neutrality measures and inversed rounds
of Salsa 20 for quarter rounds, half rounds, and three-quarters rounds. To explore the
association between the neutrality measure of key bits and the inverse quarter-round
function of Salsa 20, we examine how the input word position to the inverse quarter-
round function and the total number of modular additions vary for each input vector
(A, B, C, D) across specific reverse rounds.

Tables 4.2 and 4.3 detail the cumulative number of modular additions for various
input word positions to the inverse quarter-round function across different internal
rounds, as mentioned in the respective tables above.

Table 4.2: Total modular additions in reverse rounds 3, 2.25, 2.5, 2.75 from R = 8

R
Word position Summative modular additions

Even round Odd round 2.25 rounds 2.5 rounds 2.75 rounds 3 rounds

Even

A→ A 24 24 24 24
B → D 7 7 7 76
C → C 11 11 52 52
D → B 16 35 35 35

Table 4.3: Total modular additions in reverse rounds 4, 3.25, 3.5, 3.75 from R = 8

R
Input word position Summative modular additions

Even round Odd round 3.25 rounds 3.5 rounds 3.75 rounds 4 rounds

Even

A→ A 112 112 112 112
B → D 76 164 164 164
C → C 52 52 241 241
D → B 35 35 35 277

The column R indicates the number of target rounds in our attack (i.e., 8 rounds
in this investigation). The combination of input word positions for the inverse quarter-
round function differs depending on whether the target round R is odd or even. Specif-
ically, the input word positions, represented as a vector (A, B, C, D), for the inverse
quarter-round function vary between odd and even rounds. The reverse round is exe-
cuted in even rounds (row rounds) when the target round R is even.

Conversely, the reverse round is executed in odd rounds (column rounds) when the
target round R is odd. To illustrate, let’s consider the scenario where the number of
target rounds R is even and the input word position for the quarter-round function is
B. When the number of inverse rounds is 3, the word position shifts from B (even-
numbered round) to D (odd-numbered round) through the execution of the inverse
quarter-round function.

58

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

The inverse quarter-round function rearranges the same element within the Salsa
20 matrix differently depending on whether the reverse round is odd or even. For
instance, element X3 is denoted as D in the vector (A, B, C, D) when the target round
is even, while it is represented as B in odd rounds. Similarly, in scenarios with three
inverse rounds, the transition of word positions goes from B (even round) to D (odd
round) back to B (even round). The cumulative modular addition columns in Tables
4.2 and 4.3 showcase the total number of modular additions executed by the inverse
quarter-round function for each transition of word positions across different inverse
rounds.

At this juncture, our focus lies solely on the cumulative modular addition execution
due to its critical role in upholding the security of ARX ciphers. As evidenced by Tables
4.2 and 4.3, the execution of modular addition varies based on the input word position
to the inverse round function and the number of reverse rounds. For instance, consider
the scenario where the target round R is even, the word position transition is A (even
round) to A (odd round), and the inverse round numbers are 2.25r, 2.5r, 2.75r, and3r,
respectively. Here, the cumulative modular additions remain at 24 for each round.
Similarly, with three inverse round functions, the maximum and minimum values of
cumulative modular addition are 76 and 24, respectively.

Consequently, as the number of inverse rounds increases, the disparity between the
maximum and minimum values of cumulative modular addition also widens. Equally
significant, the cumulative modular additions executed for 2.25 reverse rounds are
equivalent to those for 3 reverse rounds for the input word position A. Likewise, the
cumulative modular additions for word positions, such as the transition from word
position B to D and the transition from word position D to B, remain unchanged
for specific internal rounds like 2.25, 2.5, and 2.75. This analysis extends to the for-
ward quarter-round function of Salsa 20 as well. Given these observations, it becomes
apparent that targeting higher rounds of Salsa 20, such as R = 8.75, would essen-
tially be equivalent to targeting R = 8.25 for certain specific words. This highlights a
vulnerability in the design of the Salsa 20 quarter-round function.

Table 4.4 displays the results obtained from Algorithm 3. Notably, the OD word
with the best neutrality measure in internal rounds r 4.25r, 4.5r, 4.75r, with cor-
responding reverse rounds 3.25, 3.5, 3.75, appears in X3, which corresponds to the
input word position D → B in Table 4.3. This transition exhibits the same cu-
mulative number of modular additions (i.e., 35) and generates an identical average
neutrality measure γk = 0.598177289. Similar observations apply to internal rounds
4r, 5r, 5.25r, 5.5r, 5.75r. Experimental results are depicted in Figures 4.2 and 4.1, which
graphically represent our findings from Tables 4.2, 4.3, and 4.4. The input word po-
sition inducing lower neutrality measures in the 4r internal round, D, corresponds to
X3 in the Salsa 20 matrix, corresponding to the input word position D → B when

59

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

R − r = 4, with 277 cumulative modular additions. The transitions from D → B

traverse high cumulative modular additions for the internal 4r round. Additionally,
X4, X9, and X14 produce the lowest average neutrality measure when r = 4, cor-
responding to word transitions from D → B. Similar observations apply across all
potential internal rounds. In summary, the neutrality measure is contingent upon the
input word position to the inverse round function, with the cumulative number of
modular additions exerting significant influence. The circumstances leading to high
neutrality measures depend on the OD bit position relative to the inverse quarter-round
function, as previously discussed in section 3.5 of [AFK+08].

Table 4.4: The OD position with the best average neutral measure across for R = 8
using 230 samples

Internal Round OD Word OD Bit Average Neutral Measure
4r 1 13 2−3.58

4.25r 3 13 2−0.74

4.5r 3 13 2−0.74

4.75r 3 13 2−0.74

5r 0 18 2−0.73

5.25r 11 13 2−0.91

5.5r 11 13 2−0.91

5.75r 11 13 2−0.91

Table 4.5: Neutral measures γκ at r = 4, where p and q represent the word and bit
positions of OD using 230 samples.

R
Maximum Minimum Average Median

γκ p q γκ p q
6 2−0.00144 2 1 2−0.5451 9 7 2−0.1907 2−0.1473

7 2−0.8143 0 18 2−2.4426 14 7 2−1.2708 2−1.1496

8 2−3.5850 1 13 2−10.4926 2 9 2−4.9755 2−5.3066

Table 4.6: Neutral measures γκ at r = 5, where p and q represent the word and bit
positions of OD using 230 samples.

R
Maximum Minimum Average Median

γκ p q γκ p q
7 2−0.1076 0 18 2−0.4300 12 7 2−0.2206 2−0.1808

8 2−0.7301 0 18 2−2.7284 11 7 2−1.2703 2−1.2019

9 2−3.6889 4 13 2−10.39 12 28 2−5.37 2−5.9

To examine the upper limits of the inversed round function within our attack
strategy, we conduct a detailed analysis of the neutral measures for each inversed
round function. Tables 4.5 and 4.6 present the maximum, minimum, average, and

60

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

median values of neutral measures γκ corresponding to each target round R for r = 4
and 5 respectively.

These findings result from an extensive analysis of experimental data outlined in
Section 4.1 Algorithm 3. As depicted in the tables, the maximum neutral measures
for a specific inversed round function (e.g., R − r = 3 in this context) never surpass
the minimum neutral measure observed in a smaller reverse round (e.g., R − r = 2)
within the same internal round r. For example, when R = 7 and R − r = 3 (refer to
Table 4.5), the maximum neutral measure is γκ = 2−0.8143, while the minimum neutral
measure is γκ = 2−0.5451 for R = 6 and R − r = 2. It is evident that the minimum
neutral measure for R − r = 2 exceeds the maximum neutral measure for R − r = 3,
and vice versa. As discussed, this observation is influenced by the cumulative number
of modular additions. Our experimental results are deemed reliable when the derived
neutral measures γκ exceed 2−14.5, given our utilization of 230 ID samples.

Table 4.5 shows that all neutral measure values are reliable when R = 6, 7, 8 and
R − r = 2, 3, respectively. Additionally, the complexity of the attack for R − r = 4 is
computed in Table 4.11. This complexity is lower than Salsa 20’s security threshold,
leading us to conclude that the maximum number of reverse rounds in our proposed
attack is 4r. Similarly, from Table 4.6, all neutral measure values for R = 7, 8, and
R− r = 2, 3, and 4 are reliable.

4.2 Differential Cryptanalysis with PNB Approach
This section introduces a probabilistic neutral bit (PNB) based approach for conduct-
ing differential cryptanalysis on the reduced round of the Salsa 20 and ChaCha stream
ciphers. Initially, we investigate the neutrality measures of all key bit positions across
all possible OD bit positions using Algorithm 3. This algorithm aids in identifying
the OD bit exhibiting the most favorable average neutral measure.

Once identified, we proceed to explore all potential ID positions seeking the best
differential bias εd at the predetermined OD bit position with the optimal average
neutral measure2. Subsequently, we employ the identified ID and OD pair to delineate
the subset of PNBs. Following this, we compute the reverse bias εa for each threshold
γ. Consequently, we estimate the complexity of our attack on the reduced round of
Salsa 20 and ChaCha.

We present a differential attack based on the comprehensive analysis of PNBs
on Salsa 8 and ChaCha 7.25 with a time complexity of 2241.62, 2254.011 and a data
complexity of 231.5, 251.81, respectively. It’s essential to note that the obtained neutral
measure in Section 4.1 is solely used to select theOD bit with the best neutral measure;

2A search is conducted among 128 possible ID bit positions for the given OD position with the
best average neutral measure

61

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

we do not factor it into the attack complexity estimation. The subsequent subsections
provide a detailed description of the proposed cryptanalysis methodology.

4.2.1 The Attack on Salsa 8

In Section 4.1, we conducted a thorough analysis of the neutrality of 256 key bit
positions across all possible 512 OD bit positions, selecting the OD bit position with
the most favorable average neutral measure3. As evident from the data presented in
Table 4.4, the OD position located at (11, 13) within the 5.75 internal round yielded
the best average neutral measure.

These OD bit positions, as listed in Table 4.4, were chosen as target OD positions
for the Salsa 8 attack. To determine the corresponding ID bit positions exhibiting
the best differential bias at the predefined OD positions outlined in Table 4.4, we
scrutinized all possible 128 ID bit positions for each OD position listed in Table 4.4,
selecting the ID,OD position with the most favorable differential bias. This subsection
presents the outcome of our quest for the ID position with the most favorable median
bias ε∗

d across all specified OD positions in Table 4.4.

Table 4.7: ID with the optimal median bias ε∗
d using 240 samples.

Intermediate round ID OD ε∗
d

4r 7,0 1,13 2−2.69

4.25r 8,11 3,13 2−14.97

4.5r 8,11 3,13 2−14.97

4.75r 8,11 3,13 2−14.97

5r 7,22 0,18 2−15.34

5.25r 6,3 0,18 2−15.23

5.5r 9,28 11,13 2−14.88

5.75r 9,28 11,13 2−14.88

Table 4.8: OD positions with consistent bias in various internal rounds.

Intermediate round OD Word OD bit

4.5r, 5.25r, 5.75r

10 13
11 13
12 13
13 13
14 13
15 13

As depicted in Table 4.7, the differential bias εd notably decreases after the 4th

round, directly impacted by the substantial increase in the cumulative number of
3We opted for the average neutral value as we computed the neutrality measure of all 256 key bits

for each OD bit position.

62

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

modular additions. Additionally, the cumulative number of modular additions for
specific words in the Salsa 20 state matrix remains consistent across the listed internal
rounds, resulting in identical differential biases. Except for the 4r differential bias
ε∗

d = 0.154433, none of the obtained biases in Table 4.7 could be consistently verified.
The biases can be trusted when they exceed 2−14, considering using 230 IV samples.

However, the obtained biases fall short of this threshold, rendering them unreliable for
further attack stages. To identify ID,OD pairs with reliable median bias ε∗

d, we
proceeded to search for differential biases across various OD positions for different
internal rounds, as outlined in Table 4.8.

To determine the ID position with the best median bias ε∗
d, we conducted tests with

230 IVs for each of 25 key trials. The findings are presented in Table 4.9. This marks
the first instance of reporting new ID,OD pairs for single-bit differential cryptanalysis
of the Salsa 20 stream cipher.

To determine the number of Probabilistic Neutral Bits (PNBs), we then applied a
threshold 0.1 ≤ γ ≤ 0.3 to partition the set of key bits into two subsets: significant
bits m and non-significant bits n. Given that the ID position (8, 27) and OD position
(11, 13) exhibit the highest median bias, we focused our analysis on this pair to identify
PNBs. The results are summarized in Table 4.10. Our emphasis was on the 4.75r

internal rounds of Salsa 20/8, driven by the following considerations:

Table 4.9: ID positions with optimal median bias ε∗
d given OD positions using 240

samples.

Internal Rounds ID OD ε∗
d

4.75r 8,27 11,13 2−3.94

4.75r 8,20 11,13 2−6.73

4.75r 8,8 11,13 2−7.28

4.75r 9,9 11,13 2−7.73

4.75r 9,18 12,13 2−5.24

4.75r 8,5 12,13 2−9.98

4.75r 6,2 12,13 2−11.084

4.75r 8, 24 12,13 2−11.27

Table 4.10: The PNBs for R = 8

Threshold γ 4.75r
γ = 0.1 67
γ = 0.2 46
γ = 0.25 43
γ = 0.27 40
γ = 0.3 37

63

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

• Since the cumulative number of modular additions and average neutral measure
remain consistent across quarter, half, and three-quarter internal rounds, we
opted to compute the complexity of one internal round based on these metrics4.

• Efficiently executing our attack on Salsa 20/9 poses challenges due to the absence
of high average neutral measures for any OD bit. This issue arises from the sub-
stantial number of modular additions performed in both forward and backward
rounds, resulting in a drastic drop in forward and backward bias.

• A comparison with the results from Table 4.4 reveals that OD bits yield superior
neutral measures when using Algorithm 3 with r = 5.75 and R − r = 2.25.
However, as valid biases could not be found in this internal round, we opted to
attack Salsa 20/8 using the OD position (11, 13) with r = 4.75 and R−r = 3.25,
as indicated in Table 4.9.

• Furthermore, due to the lack of reliable median bias for 5r, 5.25r, 5.5r, and 5.75r,
we chose to focus on the 4.75r internal round to attack Salsa 8. This decision
was based on the observation that a higher number of internal rounds increases
the number of PNBs, resulting in better neutral measures for key bit positions
due to a lower number of inverse cumulative modular additions.

Next, we will estimate the complexity of the attack on Salsa 20/8 considering the
4.75r internal rounds. To accurately estimate the time and data complexities of our
proposed attack on Salsa 20/8, the following steps need to be performed:

Table 4.11: The attack complexity on Salsa 20/8 when r = 4.

γ n |ε∗
d| |ε∗

a| α Time Data
0.1 40 0.154433 0.0004109 11 2248.9 232.8

0.2 32 0.154433 0.00744507 12 2248.6 224.54

0.3 26 0.154433 0.04336255 11 2249.46 219.4

Table 4.12: The attack complexity Salsa 20/8 when r = 4.75

γ n |ε∗
d| |ε∗

a| α Data Time
0.3 37 0.0651375 0.01462765 16 225.9 2244.36

0.2 46 0.0651375 0.00173888 19 231.5 2241.62

Step 1. We recalculate neutral measures corresponding to the determined ID-OD
pair (∆0

i [j], ∆r
p[q]), and divide the secret key bits into two subsets: the m-bit

subset of significant key bits and the n-bit subset of non-significant key bits.
4Specifically, we chose to compute the complexity based on the 4.75r internal round out of the

quarter, half, and three-quarter internal rounds.

64

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

Step 2. In the second phase, we run the probabilistic backward computation algo-
rithm to derive the r-round differential biases εa in reverse for each threshold
0.1 < γ ≤ 0.3 from the extracted keystream, estimating the overall median bias
as |ε∗| ≈ |ε∗

d| · |ε∗
a|. 3 This step is vital for our attack on Salsa 8.

Step 3. We execute the online phase algorithm and assess the time and data com-
plexities needed to retrieve the unknown key.

To execute the above steps, for each of 28 key trials, we perform 225 ID samples
to compute the neutrality measure of key bits and obtain the subset of significant and
non-significant key bits. The attack on Salsa 20/8 with r = 4.75 is summarized in Table
4.12. The identified PNBs are listed as follows: 0, 13, 14, 15, 16, 17, 31, 43, 44, 45, 70, 71, 76,

96, 97, 101, 113, 114, 115, 116, 117, 123, 124, 125, 126, 127, 135, 153, 154, 155, 156, 157, 158,

159, 170, 171, 172, 190, 229, 230, 231, 232, 233, 234, 247, 248.
After selecting the subset of PNBs, it is necessary to validate the correctness of the

PNB bits. We use Algorithm 2 to achieve this. As stated in [Mai16], if ε̂ exhibits
a low bias (close to a random occurrence), it confirms that the PNBs have been
appropriately chosen. We can attack Salsa 20/8 with a time complexity of 2241.62

and a data complexity of 231.5, given a threshold of γ = 0.2. Next, we focus on
ε∗

a = 0.00173888 (= 2−9.16) when γ = 0.2.
A total of 2

ε2
a

= 219.33 ID samples is sufficient to distinguish the differential bias
with a constant probability of success. Therefore, our experimental results are valid
for γ = 0.2 as we have used 225 ID samples for each of the 28 key trials. For γ = 0.1,
we identified 67 PNBs with ε∗

a = 0.00001713635 = (2−15.832), but our experiment was
unable to consistently validate this.

Thus, the results are not reliable for γ = 0.1. In conclusion, we have demonstrated
that a differential attack on Salsa 20/8 is feasible, based on the thorough analysis of
probabilistic neutral bits, with a time complexity of 2241.62 and a data complexity of
231.5. The current best key-recovery attack on Salsa 20 is the differential attack on
Salsa 20/8, with time complexity of 2243.7, as proposed by Dey and Sarkar [DS17].

4.2.2 The Cryptanalysis of ChaCha 7.25

This section outlines the outcomes of our investigation into the ChaCha stream ci-
pher. Specifically, we scrutinized the neutrality measure of key bits for ChaCha20/7,
ChaCha20/7.25, and ChaCha20/7.5. However, regarding the attack’s complexity, our
attention was solely directed towards ChaCha20/7.25. We assessed the average neu-
trality measure of all key bits to all potential OD bit positions for internal rounds
r = 3, r = 3.5, and r = 4.

3Based on [AFK+08], assuming reasonable independence, the equation ε = εd · εa applies.

65

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

The findings of our experiment are summarized in Table 4.1. Considering Table
4.1, OD bit 0 consistently exhibits the best neutral measure across all internal rounds.
This measure is influenced by factors such as the cumulative number of modular sub-
tractions, the input word position in the inverse quarter round of ChaCha, and the
structure of the ChaCha quarter round function. We visualized the distribution of
neutrality measures for ChaCha20/7 across internal rounds r = 3, r = 3.5, and r = 4
in Figure 4.4, where the X-axis represents the neutrality measure of 256 key bits and
the Y-axis represents the OD bit position. The results from Table 4.1 and Figure 4.5
indicate that the higher number of internal rounds influences the neutrality measure.

Specifically, the neutrality measure for internal round r = 3 is lower than r = 3.5,
which is directly affected by the cumulative number of modular subtractions executed
for different internal rounds. We targeted the higher number of ChaCha rounds with
internal round r = 3.5. While we could have selected internal round r = 4 to target
R = 7, 7.25, or 7.75, the forward bias εd would have significantly decreased for r = 4.
As there has been little focus on evaluating the security of ChaCha7.25 rounds, we
chose r = 3.5 to attack ChaCha7.25.

We analyze the neutrality measures of ChaCha7.25, ChaCha7.5, and ChaCha7.75,
considering the internal round r = 3.5. We employed Algorithm 3 to assess the
neutrality measures of different target rounds. We have decided to target ChaCha7.25
with an internal round of r = 3.5.

Table 4.13: OD bit with best neutral measure using 230 samples.

Target Round OD Word OD Bit Average Neutral Measure
R = 7.25 7 0 2−1.82

R = 7.5 4 0 2−2.72

R = 7.75 11 0 2−3.74

Table 4.14: The differential bias using 240 samples.

ID Position OD Position Bias εd

∆(0)
15[6] ∆(3.5)

0[0] 2−11.07

∆(0)
12[6] ∆(3.5)

1[0] 2−11.23

∆(0)
13[6] ∆(3.5)

2[0] 2−11.04

∆(0)
14[6] ∆(3.5)

3[0] 2−11.04

In our attack on the 7.25-round ChaCha, we selected the OD position ∆(3.5)
7,0 from

Table 4.13 and examined all possible 128-bit ID positions to find the one with the
optimal differential bias εd. To determine the ID position with the best εd at the
chosen OD position, we conducted trials with a total complexity of 234, which involved
26 key trials and 228 IV samples. A bias εd greater than 2−15.5 is considered reliable.

66

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

Table 4.15: The attack complexity on ChaCha7.25 for r = 3.5.

γ ID,OD n εd εa α Time Data
0.25 ∆(0)

15[6]|∆
(3.5)
0[0] 54 0.000463 0.000151 5 2254.19 252.026

0.25 ∆(0)
12[6]|∆

(3.5)
1[0] 54 0.000414 0.000156 5 2254.38 252.24

0.25 ∆(0)
13[6]|∆

(3.5)
2[0] 54 0.000474 0.000158 5 2254.011 251.81

0.27 ∆(0)
14[6]|∆

(3.5)
3[0] 50 0.000472 0.000413 4 2255.12 248.95

Table 4.16: Subset of PNBs n for various thresholds γ in r = 3.5 rounds.

Threshold γ ID, OD Pair Number of PNBs
γ = 0.25 ∆(0)

15[6]|∆
(3.5)
0[0] 54

γ = 0.25 ∆(0)
12[6]|∆

(3.5)
1[0] 54

γ = 0.25 ∆(0)
13[6]|∆

(3.5)
2[0] 54

γ = 0.27 ∆(0)
14[6]|∆

(3.5)
3[0] 50

From our analysis, we identified the maximum forward bias εd at ∆(0)
12[18]|∆

(3.5)
7[0] =

0.000019. Since this value, 0.000019 = 2−15.68, could not be confirmed with our sample
size, we explored the differential bias εd at ∆(3.5)

0[0] , ∆(3.5)
1[0] , ∆(3.5)

2[0] , and ∆(3.5)
3[0] OD positions.

The findings are summarized in Table 4.14.
All the biases presented in Table 4.14 are valid, as they were confirmed by the

number of samples used in the experiment. Consequently, we used the pairs with the
strongest differential bias εd from Table 4.14 to determine the sets of significant key
bits m and non-significant key bits n.

Complexity Estimation of Attack on ChaCha7.25 To estimate the attack com-
plexity on ChaCha7.25 rounds, we repeat the procedures outlined in Section 4.2.2 using
the ID,OD positions detailed in Table 4.14, taking into account the structure of the
ChaCha stream cipher. To identify the subsets m and n, we conducted experiments
with a total complexity of 236.

Based on the threshold value γ, the elements’ numbers differ in subsets m and n,
as summarized in Table 4.16. Notably, key bits corresponding to γ = 0.25 and ID,OD
position ∆(0)

13[6]|∆
(3.5)
2[0] are identified as probabilistic neutral bits, including [66, 67, 74, 77, 78

, 83, 84, 90, 91, 95, 104, 108, 109, 110, 111, 115, 123, 124, 125, 126, 127, 135, 155, 156, 157,

158, 159, 160, 168, 169, 191, 192, 193, 194, 199, 200, 207, 208, 211, 212, 219, 220, 221, 222
, 223, 224, 225, 226, 227, 244, 245, 246, 247, 255]. Table 4.15 summarizes our attack on
ChaCha7.25/20 for the internal round r = 3.5, with the optimal ID,OD pair ∆(0)

13[6]|∆3.5
3[0],

threshold γ = 0.27, and n = 54. The attack’s estimated time and data complexity
were 2254.01 and 251.81, respectively. Miyashita [MIM22] employed a similar attack
methodology on ChaCha 7.25, utilizing the following parameters.

The input difference (ID) and output difference (OD) were chosen as ∆(0)
15[6]|∆

(3.5)
0[0] .

67

CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS OF SALSA 20 AND CHACHA

The forward bias was 0.000469, and the backward bias was 0.000564. To obtain the
PNBs, the threshold was set to γ = 0.3, resulting in a total of 49 PNBs: {2, 3, 10,
13, 14, 19, 20, 26, 27, 31, 40, 44, 45, 46, 51, 59, 60, 61, 62, 63, 128, 129, 130, 135,
136, 143, 144, 147, 148, 155, 156, 157, 158, 159, 160, 161, 162, 180, 181, 182, 191, 219,
220, 221, 222, 223, 224, 232, 255}. With these parameters, the attack exhibits a time
complexity of 2255.62 and a data complexity of 248.36.

68

Chapter 5

Higher-Order Differential-Linear
Cryptanalysis of ChaCha

This chapter explores the application of higher-order differential-linear cryptanalysis
to the ChaCha. The research extends the linear approximation from the 4th round
to the 6th round using higher-order differential analysis. We investigate higher-order
differential-linear cryptanalysis on a reduced number of rounds of the ChaCha stream
cipher employing second-order differentials for the differential component.

This study reveals new higher-order differential biases for ChaCha 3, ChaCha 3.5,
and ChaCha 4. Moreover, novel ID,OD positions for performing higher-order differ-
ential cryptanalysis on ChaCha are identified. Based on our recent journal publication
1, we computed the distinguisher of ChaCha 5, ChaCha 5.5, and ChaCha 6. In ad-
dition, this chapter introduces distinguishing attacks for ChaCha 5, ChaCha 5.5, and
ChaCha 6 that incorporate the linear approximation of the final modular addition
used in key generation.

5.1 Attack Points Selection
This section presents new ID,OD positions associated with higher-order differentials.
Our methodology for selecting the OD positions involves two interconnected steps.
Firstly, we aimed to narrow down the potential OD positions from an initial set of 512
to just two choices (specifically, word B and D). This was achieved by identifying OD
positions based on the ChaCha quarter-round function structure and linear approxi-
mation properties. We concentrated on OD positions that generate a greater number
of least significant bits when the bit position is set to zero (i = 0).

Next, we validated the chosen positions using Algorithm 4 to perform an extensive
search for OD positions that produce the highest count of probabilistic neutral bits

1The journal paper was published in IEEE Access and it foundation of this chapter.

69

CHAPTER 5. HIGHER-ORDER DIFFERENTIAL-LINEAR CRYPTANALYSIS OF CHACHA

(PNBs) concerning the lth-order differential. For more details on PNBs, please see
[AFK+08]. This algorithm was applied to the 2nd and 3rd-order differentials, targeting
the 7th, 7.25th, and 7.5th rounds, including both internal and reverse rounds. The
outcomes of these experiments are summarized in Tables 5.1 and 5.2.

Additionally, this higher-order differential-linear cryptanalysis allows the attacker
to focus on more forward rounds, thereby addressing the challenge of having fewer
reverse rounds with this technique.

Algorithm 4 Computing Neutrality Measure of Key bits concerning the OD position
Input: Random(X) and associate states (X1, X2, X3) and counter T = 0
Output: The OD position where the key bits generate the best average neutral mea-

sure given higher-order differentials.

1. Randomly select key values k = (k4, · · · , k11).

2. Define ID ∆(0)
12 [15], ∆(0)

13 [20] and find a new initial states X
(0)
1 = X(0) ⊕∆(0)

12 [15],
X

(0)
2 = X(0) ⊕∆(0)

13 [20] and X
(0)
3 = X(0) ⊕∆(0)

12 [15]⊕∆(0)
13 [20].

3. From the first states (X(0), X
(0)
1 , X

(0)
2 , X

(0)
3), calculate the states after r = 4

rounds (X(4), X
(4)
1 , X

(4)
2 , X

(4)
3) and the last states (X(7), X

(7)
1 , X

(7)
2 , X

(7)
3).

4. From (X(4), X
(4)
1 , X

(4)
2 , X

(4)
3) obtain output differentials OD ∆(4)4[0] = X(4)4[0]⊕

X
(4)
1 4[0]⊕X

(4)
2 4[0]⊕X

(4)
3 4[0]).

5. From the final states (X(7), X
(7)
1 , X

(7)
2 , X

(7)
3) obtain the key-stream Z = X(0) +

X(7), Z1 = X
(0)
1 + X

(7)
1 , Z2 = X

(0)
2 + X

(7)
2 , and Z3 = X

(0)
3 + X

(R)
3 .

6. Flip a key bit κ (κ ∈ {0, . . . , 255}) and obtain new initial states X
(0), X

(0)
1 , X

(0)
2 ,

X
(0)
3 from initial states (X(0), X

(0)
1 , X

(0)
2 , X

(0)
3).

7. Compute the states (Y (4), Y
(4)

1 , Y
(4)

2 , Y
(4)

3) with Z−X
(0)

, Z1−X
(0)
1 , Z2−X

(0)
2 , Z3−

X
(0)
3 as inputs to the reverse function.

8. Obtain the output differentials Γ(4)4[0] = Y (4)4[0]⊕Y
(4)

1 4[0]⊕Y
(4)

2 4[0]⊕Y
(4)

3 4[0]
for all possible choices of 4 and 0.

9. If ∆(4)
4 [0] = Γ(4)

4 [0] increment the T .

10. To determine the probability of each key bit relative to ∆(4)
4 [0], divide the total

T by the number of key trials and ID samples.

70

CHAPTER 5. HIGHER-ORDER DIFFERENTIAL-LINEAR CRYPTANALYSIS OF CHACHA

Table 5.1: Optimal Average Neutral Measure for Second-Order Differentials using 230

samples.

Rounds Internal Rounds ID OD Highest Average NM
7 3 ∆X

(0)
12,[15], ∆X

(0)
13,[20] ∆X

(3)
4,[0] 2−7.477

7 3.5 ∆X
(0)
12,[15], ∆X

(0)
13,[20] ∆X

(3.5)
8,[0] 2−7.049

7 4 ∆X
(0)
12,[15], ∆X

(0)
13,[20] ∆X

(4)
4,[0] 2−6.108

7.25 3.5 ∆X
(0)
12,[15], ∆X

(0)
13,[20] ∆X

(3.5)
6,[19] 2−7.099

7.5 3.5 ∆X
(0)
12,[15], ∆X

(0)
13,[20] ∆X

(3.5)
6,[6] 2−7.99

7.75 3.5 ∆X
(0)
12,[15], ∆X

(0)
13,[20] ∆X

(3.5)
8,[0] 2−9.07

Table 5.2: Optimal Average Neutral Measure for Third-Order Differentials using 230

samples.

Rounds Internal Rounds ID OD Highest Average NM
7 3 ∆X

(0)
12,[15], ∆X

(0)
13,[20], X

(0)
14,[21] ∆X

(3)
4,[0] 2−7.57

7 3.5 ∆X
(0)
12,[15], ∆X

(0)
13,[20], X

(0)
14,[21] ∆X

(3.5)
6,[18] 2−7.22

7 4 ∆X
(0)
12,[15], ∆X

(0)
13,[20], X

(0)
14,[21] ∆X

(4)
0,[0] 2−6.38

7.25 3.5 ∆X
(0)
12,[15], ∆X

(0)
13,[20], X

(0)
14,[21] ∆X

(3.5)
6,[18] 2−7.23

7.5 3.5 ∆X
(0)
12,[15], ∆X

(0)
13,[20], X

(0)
14,[21] ∆X

(3.5)
6,[6] 2−7.99

7.75 3.5 ∆X
(0)
12,[15], ∆X

(0)
13,[20], X

(0)
14,[21] ∆X

(3.5)
4,[7] 2−13.28

Table 5.3: Second-order Bias of ChaCha using 240 samples

ID OD εd |εd ∗ |
∆X

(0)
12,[0], ∆X

(0)
13,[0] ∆X

(4)
4,[0] 0.000096 2−15.53

∆X
(0)
12,[0], ∆X

(0)
13,[0] ∆X

(3.5)
8,[0] 0.000103 2−15.53

∆X
(0)
12,[0], ∆X

(0)
13,[0] ∆X

(3)
4,[0] 0.00021 2−15.53

Table 5.4: Third-order bias of ChaCha using 240 samples

ID OD |ε∗
d|

∆X
(0)
12,[0], ∆X

(0)
13,[0], ∆X

(0)
13,[31] ∆X

(4)
0,[0] 2−15.53

∆X
(0)
12,[0], ∆X

(0)
13,[0], ∆X

(0)
13,[31] ∆X

(3.5)
6,[18] 2−15.53

∆X
(0)
12,[0], ∆X

(0)
13,[0], ∆X

(0)
13,[31] ∆X

(3)
4,[0] 2−15.53

Given the nature of differential-linear attacks on ChaCha, our primary focus is
on OD positions at the 0th bit, and we, therefore, exclude all other positions where
i > 0. From the data in Tables 5.1 and 5.2, we chose the OD position ∆X

(4)
4,[0] to target

ChaCha 6 due to its superior neutrality measure compared to other positions.
Identifying ID positions for higher-order differentials is a challenging task, and an

exhaustive search is not an efficient solution. For the 2nd-order differential, selecting

71

CHAPTER 5. HIGHER-ORDER DIFFERENTIAL-LINEAR CRYPTANALYSIS OF CHACHA

two IDs at a time from a set of 128 possible IDs yields 8128 possible positions. Given
that a brute-force search over these 8128 bit combinations is impractical, we employed
the Hamming Weight method to choose pairs of two bits in the context of 2nd-order
differentials, which allowed us to examine the forward differential εd.

Table 5.5: Hamming weight of ChaCha matrix

Rounds HM Percentage of Changes
1 10 2.14 %
2 63 12.5%
3 204 40.03%

We sought to determine the Hamming weight of the ChaCha matrix with the ID
in the initial state after the first, second, and third rounds. Notably, the ChaCha
quarter-round function (Equation 2.3) distributes the difference evenly, regardless of
the ID position.

This behavior differs from that of the Salsa 20 stream cipher, where the Hamming
weight of the Salsa 20 matrix after certain rounds was influenced by the ID position.
On average, the change in the Hamming Weight of the ChaCha matrix after each
round was found to be 18.21%.

As indicated in Table 5.5, the ID position does not have a significant impact on the
Hamming Weight, which might not notably affect the forward differential. Therefore,
we selected ∆X

(0)
12,[0] ⊕ ∆X

(0)
13,[0] as the input differential positions for calculating the

second-order differential, and ∆X
(0)
12,[0] ⊕ ∆X

(0)
13,[0] ⊕ ∆X

(0)
13,[31] for exploring the third-

order differential bias in ChaCha. We conducted an experiment2 with a complexity
of 240 to look for the 2nd and third-order differentials. The findings are outlined
as follows. A maximum of 232 random values were required to distinguish the biases
presented in Tables 5.3 and 5.4. These results show that while the highest bias, denoted
by εd, differs for every location, the absolute median bias, |ε∗

d|, remains consistent for
both second- and third-order biases. We also analyzed the biases at ∆X

(3.5)
6[0] , ∆X

(3.5)
8[0] ,

and ∆X
(3.5)
11[0] for the second-order differential, and at ∆X

(3.5)
15[0] , ∆X

(3.5)
6[0] , ∆X

(3.5)
11[0] , and

∆X
(3.5)
9[0] for the third-order differentials. The findings align with those reported in

Tables 5.3 and 5.4. The complexity of the attack, given the second-order and third-
order differential cryptanalysis, is 231.07 for a 3.5 round of ChaCha. Therefore, linear
cryptanalysis is necessary to strengthen the attack on the higher rounds of ChaCha.

2For our experiment, we employed the Maximum Length (M-Sequence) random number generator.
The experiment was executed on an Intel(R) Xeon(R) CPU E7-4830 v4 @ 2.00GHz.

72

CHAPTER 5. HIGHER-ORDER DIFFERENTIAL-LINEAR CRYPTANALYSIS OF CHACHA

5.2 Applying Linear Cryptanalysis
Enhancing higher-order differential cryptanalysis with linear cryptanalysis depends on
the complementary strengths of these two methods. The following explains how this
combination works:

• Linear cryptanalysis helps to detect linear patterns in a cipher, which can be
leveraged to simplify the process of breaking the cipher [Mat93], [LH94].

• Higher-order differential cryptanalysis includes complex calculations due to the
numerous input differences that must be analyzed (based on the differential
order L). Attacking a larger number of rounds with higher-order differential
cryptanalysis alone can be computationally prohibitive. Incorporating linear
approximations can enhance the number of attack rounds and significantly reduce
the complexity of these calculations. For practical insight, see Algorithm 4.

• The effectiveness of higher-order differential cryptanalysis relies on the likelihood
of specific differential patterns. Linear cryptanalysis can boost these probabil-
ities by pinpointing and exploiting linear relationships between the plaintext,
ciphertext, and key bits [LH94].

• While higher-order differential cryptanalysis might be less effective against ci-
phers with high algebraic degrees, linear cryptanalysis can examine the linear
aspects of these ciphers. This allows for a more in-depth cipher analysis, poten-
tially resulting in a more efficient attack.

• Some ciphers, such as the ChaCha stream cipher, are resistant to differential
cryptanalysis and its variants. However, they can be vulnerable when a combi-
nation of techniques is employed. By merging linear cryptanalysis with higher-
order differentials, cryptanalysts can explore a broader spectrum of weaknesses
in the cipher.

Given these considerations, our approach involved executing a higher-order differential-
linear attack on the ChaCha cipher. Subsection 5.2 provides a detailed explanation of
how the linear component is integrated into our proposed attack strategy.

Linear Approximations

Our attack was developed based on the following analysis: Given the current state of
research and the absence of higher-order differential cryptanalysis studies on ChaCha,
we sought to utilize the advantages of higher-order differentials in conjunction with
linear cryptanalysis to attack reduced rounds of the ChaCha stream cipher.

73

CHAPTER 5. HIGHER-ORDER DIFFERENTIAL-LINEAR CRYPTANALYSIS OF CHACHA

As indicated in Tables 5.3 and 5.4, the higher-order differential bias in ChaCha
consistently resulted in the same bias across different internal rounds (namely, r =
3, 3.5, and 4). This vulnerability is inherent to the structure of ChaCha itself. Prior
studies have focused on differential analysis for 3.5 internal rounds of ChaCha and
have reported linear approximations for only 2.5 rounds. However, no research has
identified a differential-linear bias for 4 rounds. In differential attacks, increasing the
number of internal rounds enables us to target a larger number of rounds, thereby
reducing the overall complexity of the attack. Furthermore, as stated in Lemma 2.1,
increasing the number of linear approximations reduces the linear correlation.

Building on this understanding, we used the 4th round differential bias in ChaCha
alongside 2 rounds of linear approximation. For this analysis, we chose theOD position
∆x

(4)
4,0, which corresponds to the word B in the ChaCha matrix, and validated it using

Algorithm 4. To extend ∆x
(4)
4,0 to the 5th round and obtain a linear approximation

with a probability of 1, we applied Lemma 3.1.

Lemma 5.1. The following linear approximation from 4th to 6th rounds of ChaCha
holds with probability 1

2(1 + 1
22)

∆x
(4)
4[0] = ∆x

(6)
1[0] ⊕∆x

(6)
2[0,11,12] ⊕∆x

(6)
4[6] ⊕∆x

(6)
6[7] ⊕∆x

(6)
8[0,12] ⊕∆x

(6)
9[19,31] ⊕∆x

(6)
11[0] ⊕∆x

(6)
12[8]

⊕ ∆x
(6)
13[0,8,11,12,19,20] ⊕∆x

(6)
14[18,19] W.P. 1

2

(
1 + 1

22

)
. (5.1)

Proof: First, we extend from 4th round to 5th round with probability 1. For this
purpose, we use the Lemma 3.1 and the approximation for the word B given the position
of OD ∆x

(4)
4[0]:

∆x
(m−1)
b[i] = ∆x

(m)
b[19] ⊕∆x

(m)
c[12] ⊕∆x

(m)
d[0] ⊕∆x

(m)
c[0] W. P. 1, and

∆x
(4)
4[0] = ∆x

(5)
4[19] ⊕∆x

(5)
8[0,12] ⊕∆x

(5)
12[0] W. P. 1.

Since the linear extension has a probability of 1 in this scenario, ε∗
d · ε2

l = ε∗
d and

ε∗
d · ε2

l = 2−15.5. Next, we aim to extend the linear approximation from the 5th round to
the 5.5th round. To achieve this, we employ Lemma 3.2. With the linear extension of
the 5th round, all expressions can be extended with a probability of 1, except for ∆x

(5)
8[12],

which is located in position C of the input vector to the ChaCha quarter-round function.
Consequently, applying Lemma 3.3 to extend ∆x

(5)
8[12] to ∆x

(5.5)
8[12] with a probability of 1/2

and use Lemma 3.2 to extend the other expressions to half a round with a probability
of 1.

∆x
(5)
4[19] = ∆x

(5.5)
4[31] ⊕∆x

(5.5)
9[19] W.P 1 (5.2)

74

CHAPTER 5. HIGHER-ORDER DIFFERENTIAL-LINEAR CRYPTANALYSIS OF CHACHA

∆x
(5)
8[12] = ∆x

(5.5)
8[12] ⊕∆x

(5.5)
13[12] ⊕∆x

(5.5)
13[11] W.P 1

2
.

∆x
(5)
12[0] = ∆x

(5.5)
12[0] ⊕∆x

(5.5)
1[0] W.P 1, and (5.3)

∆x
(5)
8[0] = ∆x

(5.5)
8[0] ⊕∆x

(5.5)
13[0] W.P 1. (5.4)

Consequently,

∆x
(4)
4[0] = ∆x

(5.5)
1[0] ⊕∆x

(5.5)
4[31]∆x

(5.5)
8[0,12] ⊕∆x

(5.5)
9[19] ⊕∆x

(5.5)
12[0] ⊕∆x

(5.5)
13[11,12,0] W.P. 1

2
.

Consequently, we can calculate the distinguisher and differential-linear bias for ChaCha
5.5 as ε∗

d · ε2
l = 2−18.53. The attack complexity for ChaCha 5.5 is outlined in Table 5.7.

The higher-order differential biases for ChaCha 5 are presented in Table 5.3. Our next
objective is to extend the linear approximation from ChaCha 5.5 to ChaCha 6 rounds.
To accomplish this, we apply Lemma 3.2 to word positions in B and D, which can be
extended with a probability of 1. For word positions in A and C, we use Lemma 3.3
with a probability of 1

2(1 + 1
2).

∆x
(5.5)
4[31] = ∆x

(6)
4[6] ⊕∆x

(6)
9[31] W.P 1. (5.5)

∆x
(5.5)
9[19] = ∆x

(6)
9[19] ⊕∆x

(6)
14[19] ⊕∆x

(6)
14[18]W.P. 1

2

(
1 + 1

2

)
. (5.6)

∆x
(5.5)
8[12] = ∆x

(6)
8[12] ⊕∆x

(6)
13[12] ⊕∆x

(6)
13[11]W.P. 1

2

(
1 + 1

2

)
.

∆x
(5.5)
13[12] = ∆x

(6)
2[12] ⊕∆x

(6)
13[20] W.P 1. (5.7)

∆x
(5.5)
12[0] = ∆x

(6)
1[0] ⊕∆x

(6)
12[8]W.P 1. (5.8)

∆x
(5.5)
1[0] = ∆x

(6)
1[0] ⊕∆x

(6)
6[7] ⊕∆x

(6)
11[0] W.P 1. (5.9)

∆x
(5.5)
8[0] = ∆x

(6)
8[0] ⊕∆x

(6)
13[0]W.P 1. (5.10)

∆x
(5.5)
13[0] = ∆x

(6)
2[0] ⊕∆x

(6)
13[8]W.P 1. (5.11)

∆x
(5.5)
13[11] = ∆x

(6)
2[11] ⊕∆x

(6)
13[19]W.P 1. (5.12)

As a consequence, the term ∆x
(6)
1[0] is eliminated, resulting in the following linear

approximation with a probability of 1/2(1+1/22) from ChaCha 4 to ChaCha 6. To the
best of our knowledge, this is the first and most optimal linear approximation reported
for two rounds to date. The attack complexity is outlined in Table 5.7.

∆x
(4)
4[0] = ∆x

(6)
2[0,11,12] ⊕∆x

(6)
4[6] ⊕∆x

(6)
6[7]∆x

(6)
8[0,12] ⊕∆x

(6)
9[19,31] ⊕∆x

(6)
11[0] ⊕⊕∆x

(6)
12[8]⊕

∆x
(6)
13[0,8,11,12,19,20] ⊕∆x

(6)
14[18,19] W.P. 1

2

(
1 + 1

22

)
. (5.13)

75

CHAPTER 5. HIGHER-ORDER DIFFERENTIAL-LINEAR CRYPTANALYSIS OF CHACHA

5.3 The Attack Complexity of Higher-Order Differential-
Linear Cryptanalysis

To address the complexity of higher-order differential-linear attack, we will break
down the problem and analyze the effect of changing the complexity from first-order
differential-linear cryptanalysis O

(
1

pq2

)
to second-order differential-linear cryptanaly-

sis O
(

1
pq4

)
on the given distinguisher complexity O

(
1

ϵ2
d
·ϵ4

L

)
.

The original complexity of the differential-linear distinguisher is given by O
(

1
ϵ2

d
·ϵ4

L

)
.

Generally, for the first-order differential-linear cryptanalysis we require O
(

1
pq2

)
sam-

ples when distinguishing between two events with probabilities p and p(1 + q). If we
change the requirement from the first-order differential-linear O

(
1

pq2

)
to second-order

differential-linear O
(

1
pq4

)
, we need to analyze how this affects the O

(
1

pq2

)
.

The second-order differential-linear samples requirement is O
(

1
pq4

)
. In first-order

differential-linear cryptanalysis, the complexity of the distinguisher is proportional to
the inverse of the product of the squares of ϵd and the fourth power of ϵL O

(
1

ϵ2
d
·ϵ4

L

)
.

To match the second-order differential-linear sample requirement O
(

1
pq4

)
, we infer the

following:

• The term 1
pq4 implies a higher order dependence on q, which translates to ϵL in

our distinguisher complexity.

• The relationship should adapt to a higher degree polynomial in ϵL.

Thus, the new complexity should be adjusted to reflect a stronger dependence on ϵL.
If the first-order differential-linear complexity is O

(
1

ϵ2
d
·ϵ4

L

)
, increasing the power of ϵL

from 4 to 8 would match the new requirement O
(

1
ϵ2

d
·ϵ8

L

)
. Changing the requirement

from O
(

1
pq2

)
to O

(
1

pq4

)
affects the original complexity O

(
1

ϵ2
d
·ϵ4

L

)
by increasing the

exponent of ϵL from 4 to 8. Thus, the new complexity would be O
(

1
ϵ2

d
·ϵ8

L

)
. This

adjustment accounts for the higher degree of dependence on the parameter associated
with the bias in the distinguisher.

5.3.1 The Distinguisher of ChaCha

Given the obtained linear probability and the second-order differential bias, the differential-
linear distinguisher of ChaCha 5, ChaCha 5.5, and ChaCha 6 are reported in Table 5.6.
The linear approximation from ChaCha 4 to ChaCha 6 is discussed earlier. Expanding
the linear approximation to the 7th round challenges handling significant bits.

When i is assigned a value of 0 for ChaCha, the least significant bits can be linearly
approximated with a probability of 1. As a result, the major impact on computational

76

CHAPTER 5. HIGHER-ORDER DIFFERENTIAL-LINEAR CRYPTANALYSIS OF CHACHA

effort stems from the variables related to the significant bits. The attack complexity
is determined by tracking how often significant bit variables appear and noting their
frequency (Variable Type, Count of Significant Bit Occurrences).

For the linear approximation between the 4th and 6th rounds, the number of sig-
nificant variables is 2, 2, 3, 8 for words A, B, C, D respectively. These are represented
as (xa, 2), (xb, 2), (xc, 3), (xd, 8). The Lemma 3.4 which defines the probability of each
word linear approximation when i > 1 and Lemma 5.1, the linear correlation can
be computed as εL = 1

22+2·4+2·1+3·2+8·1 . This leads to a 7 rounds distinguisher with a
complexity of 2239.21.

Table 5.6: The distinguisher complexity.

Target OD |ε∗
d| ε2

d × ε8
l Distinguisher Complexity

5 ∆X
(4)
4,[0] 2−15.53 2−31.21 231.21

5.5 ∆X
(4)
4,[0] 2−15.53 2−39.21 239.21

6 ∆X
(4)
4,[0] 2−15.53 2−47.21 247.21

5.3.2 The Distinguishing Attack Complexity

To determine the final distinguishing attack on ChaCha 5, ChaCha 5.5, and ChaCha
6, it is necessary to calculate the probability of the final modular addition used to
generate the ChaCha keystream Z = X0 + XR. This probability is combined with the
likelihood of the linear approximation of the ChaCha QR function to obtain the final
complexity. The approach utilizes Lemma 3.8, as introduced in, [BBC+22]. Based on
the ChaCha structure, we approximate the final modular addition for keywords in the
ChaCha matrix (i.e., X4 · · ·X11), where i > 1, with a probability of 2−1.

To estimate the complexity of ChaCha 5, the linear approximation from ChaCha
4 to ChaCha 5 occurs with probability 1, as per Lemma 5.1. The following bits are
active in the OD position: ∆x

(5)
4[19]⊕∆x

(5)
8[0,12]⊕∆x

(5)
12[0]. Given the active OD positions,

we consider the non-LSB positions of keywords. For ChaCha 5, we compute the linear
approximation of ∆x

(5)
4[19] ⊕ ∆x

(5)
8[12]. In this case, the linear approximation for the

final modular addition occurs with correlation 1
2(1 + 2−2), and the final complexity

is presented in Table 5.7. To compute the attack complexity for ChaCha 5.5, we
determine the linear approximation of the final modular addition for the following
active bits at ∆x

(5.5)
4[31]⊕∆x

(5.5)
8[12]⊕∆x

(5.5)
9[19], where the final modular addition occurs with

probability 2−3. The final complexity of the distinguishing attack for ChaCha 5.5 is
263.21, as presented in Table 5.7.

For ChaCha 6, we compute the linear approximation of the final modular addition
for the following active bits in the OD position: ∆x

(6)
4[6] ⊕∆x

(6)
6[7] ⊕∆x

(6)
8[12] ⊕∆x

(6)
9[19,31].

The linear approximation of the final modular addition occurs with probability 2−5,

77

CHAPTER 5. HIGHER-ORDER DIFFERENTIAL-LINEAR CRYPTANALYSIS OF CHACHA

and the final complexity occurs with probability 287.21.

Table 5.7: The Distinguishing Attack Complexity

Target OD |ε∗
d| |ε∗

d| · ε4
L Complexity

5 ∆X
(4)
4,[0] 2−15.53 2−15.60964 233.21

5.5 ∆X
(4)
4,[0] 2−15.53 2−19.60964 263.21

6 ∆X
(4)
4,[0] 2−15.53 2−23.60964 287.21

5.4 The attack specification
This part outlines the characteristics of our proposed attack, highlighting the main
tactics that enhance its efficiency.

• Our approach is based on higher-order differential cryptanalysis, distinguishing
it from earlier ChaCha attacks that primarily relied on first-order differential
bias. This method allowed us to leverage ChaCha’s 4th internal round bias.

• To achieve an accurate attack, we used the median bias ε∗
d. Our focus was pri-

marily on the 4th round forward bias produced through higher-order differential
cryptanalysis. When analyzed using higher-order differential cryptanalysis, the
ChaCha stream cipher exhibits a consistent median bias at the 3rd, 3.5th, and
4th internal rounds. By taking advantage of this weakness in the ChaCha QR
function, we targeted the 4th round, which notably reduced the attack’s com-
plexity. See Table 5.3 and 5.4 for details.

• We developed specific strategies for selecting multiple ID and OD positions. By
applying the Hamming Weight method to the ID positions, we reduced the num-
ber of potential ID. In contrast to the techniques mentioned in chapter 3, which
rely on either random selection or exhaustive searches of ID positions, our ap-
proach does not involve these methods. Instead, it benefits from the higher bias
generated through the Hamming Weight technique during the selection process,
thereby strengthening the attack. For more details, see Subsection 5.1.

• The selection of the OD position is guided by a neutrality measure calculated
across 256 key bit positions for each OD. We employed Algorithm 4 to facilitate
this selection, allowing us to pinpoint an optimal OD position with a higher
bias. Positions with a greater neutrality measure lead to a more advantageous
bias, simplifying the attack. Our experiments supported this analysis. Please
see Tables 5.1, 5.2, 5.3, 5.4, as well as Figures 2 and 3.

78

CHAPTER 5. HIGHER-ORDER DIFFERENTIAL-LINEAR CRYPTANALYSIS OF CHACHA

• Many existing attacks primarily rely on linear approximation to simplify the
attack, often focusing on the 3rd or 3.5th round of differentials. Our approach
aimed to strengthen the attack by concentrating on the differential component
rather than the linear one. Consequently, we focused on the confirmed bias in the
4th round. Although the core of the attack is based on differential analysis using
4th rounds, we also utilized 2 and 3 rounds of linear approximation, which further
enhanced the attack’s overall effectiveness. For more details, see Subsection 5.2.

• We consider the differential and linear elements of the attack as two distinct
ciphers.

79

Chapter 6

The Boomerang Attack on ChaCha
Permutation

This chapter presents the boomerang attack on reduced rounds of the ChaCha permu-
tation function. We have conducted the inaugural study on boomerang cryptanalysis
of the ChaCha permutation. Our research includes the introduction of a distinguisher
of ChaCha 6 and ChaCha 7 permutations. We introduced the boomerang bias for
ChaCha 6 and ChaCha 7 and proposed an algorithm that can be used to mount a
boomerang distinguisher of ChaCha permutation. The complexity of the boomerang
attack is calculated as p2q2.

We found that with proper selection of the output difference (OD) position, the
probability of differentials can rise to p2. We introduced the boomerang attack po-
sitions on ChaCha 6 and ChaCha 7. We proposed the boomerang distinguisher for
ChaCha 6 and ChaCha 7 as 24.87 and 25.99, respectively. The boomerang attack and
its variation can potentially attack the higher rounds of ChaCha stream cipher.

6.1 Boomerang Attack on ChaCha
Given the structure of the ChaCha stream cipher and the framework of differential
cryptanalysis, it is nearly impossible to identify a valid differential bias εd beyond 3.5
rounds of ChaCha. Consequently, researchers employ the differential-linear adversary
model to target ChaCha 6, ChaCha 7, and ChaCha 7.25. This model combines 3
or 3.5 differential rounds with 3 or 3.5 linear rounds, producing a differential-linear
bias denoted as εd · εl for ChaCha 6 and ChaCha 7. ChaCha’s resistance to standard
differential attacks significantly increases after 3.5 rounds, making it an optimal target
for a boomerang attack.

In this approach, we exploit the differential properties of ChaCha’s sub-ciphers,
merging the differential characteristics found in either 3 or 3.5 rounds. For ChaCha
6, we divide the cipher into two sub-ciphers, each containing 3 rounds, and combine

80

CHAPTER 6. THE BOOMERANG ATTACK ON CHACHA PERMUTATION

the differentials of each sub-round. Similarly, for ChaCha 7, we partition it into two
groups of 3.5 rounds, merging the differentials of each sub-cipher to determine the
differential bias for ChaCha 7. This method enables the creation of a comprehensive
differential bias, εd, representing both ChaCha 6 and ChaCha 7. The differential
probability in ChaCha’s reverse round is higher than in the forward round, facilitating
the execution of a boomerang attack (see Section 6.2.3). Consequently, the boomerang
attack generates a differential bias εd for up to 6 and 7 rounds of ChaCha.

We applied the boomerang cryptanalysis method to the ChaCha stream cipher to
assess the resistance of ChaCha 6 and ChaCha 7. This is the first purely differential
attack reaching these rounds of ChaCha. Previous research discussed in Section 3 has
relied on the differential basis of ChaCha 3 or ChaCha 3.5 rounds. In this paper, we
utilize the boomerang differential bias of ChaCha 6 and ChaCha 7 by dividing ChaCha
6 into 3 sub-rounds and ChaCha 7 into 3.5 sub-rounds. The decision on the number
of sub-cipher rounds is based on the following considerations:

• Since we used a single-bit difference for the boomerang attack, exceeding 3.5
rounds in ChaCha introduces an unreliable bias, affecting the overall accuracy
of the attack. Therefore, we limit our attack to 3 and 3.5 sub-rounds.

• Splitting the cipher into more than two sub-ciphers for ChaCha 6 and ChaCha
7 significantly decreases the probability of differentials. However, this method
could be adapted for different scenarios.

• The arrangement of rounds for sub-ciphers can be altered. Nonetheless, the
choice of sub-cipher rounds must consider ChaCha’s bias in each sub-round. For
example, dividing ChaCha 7 into two sub-ciphers with 5 and 2 rounds each
would be ineffective due to the difficulty in obtaining a verified bias for 5 rounds
of ChaCha.

• The fundamental concept of the boomerang attack involves dividing the cipher
into two sub-ciphers with high differential probabilities. Thus, we focus our
study on two sub-ciphers.

We assume each sub-round operates independently. Algorithm 5 is proposed for
attacking ChaCha.

We provide a comprehensive explanation of Algorithm 5. To construct the distin-
guisher for the reduced rounds of ChaCha (specifically ChaCha 6 and ChaCha 7), we
utilized Algorithm 5. Initially, two ChaCha matrices were initialized with a single-bit
difference at the ∆X

(0)
12 [0] position. For attacking ChaCha 7, we divided the cipher

into two segments, each comprising 3.5 rounds. In the case of ChaCha 6, the cipher
was divided into two sub-ciphers, each containing 3 rounds.

81

CHAPTER 6. THE BOOMERANG ATTACK ON CHACHA PERMUTATION

Algorithm 5 The Boomerang Attack Algorithm on ChaCha
Input: : The initial states (X1, X2) with input difference α.

Output: The Differential Bias of ChaCha reduced rounds.

1. Initialize a counter ctr← 0

2. For allrandom pairs key and IV trials

3. Initialize X
(0)
1 ⊕X

(0)
2 = ∆X

(0)
12,[0].

4. Encrypt the X
(0)
1 and X

(0)
2 with ChaCha E0 to get Y

(r)
1 and Y

(r)
2 .

5. If Y
(r)

1 ⊕ Y
(r)

2 = β after r rounds

6. Increment ctr

7. Encrypt the Y
(r)

1 and Y
(r)

2 with ChaCha E1 to get Z
(R)
1 and Z

(R)
2 .

8. Compute Z
(R)
3 = Z

(R)
1 ⊕∆X

(R)
12,[0] and Z

(R)
4 = Z

(R)
2 ⊕∆X

(R)
12,[0].

9. Ask for the decryption of (Z(R)
3 , Z

(R)
4) to (Y (r)

3 , Y
(r)

4) with ChaCha E−1
1 .

10. If Y
(r)

1 ⊕ Y
(r)

3 = α, Y
(r)

2 ⊕ Y
(r)

4 = α, and Y
(r)

3 ⊕ Y
(r)

4 = β.

11. Increment ctr for each.

12. Compute the probability of Y
(r)

1 ⊕, Y
(r)

2 = β as p, Y
(r)

1 ⊕ Y
(r)

3 = γ as q, Y
(r)

2 ⊕
Y

(r)
4 = γ as q and Y

(r)
3 ⊕ Y

(r)
4 = β as p.

13. Get the quartet probability as p2q2

14. Calculate the bias as 2 · p2q2 − 1

We encrypted the initial state matrices using E0, a sub-cipher of the encryption
function E, to obtain Y

(r)
1 and Y

(r)
2 . The difference after r rounds (r = 3, r = 3.5)

is computed as Y
(r)

1 ⊕ Y
(r)

2 = β. It is essential to retain the two resulting ciphers
Y1 and Y2 generated by E0 to analyze the difference produced by E−1

1 . Following
the E0 operation, we applied the E1 sub-cipher to obtain Z

(R)
1 = E1(Y (r)

1) and Z
(R)
2 =

E1(Y (r)
2). A single-bit difference was introduced at the ∆X

(R)
12,[0] position in the Z

(R)
1 and

Z
(R)
2 matrices generated by E1 to produce Z

(R)
3 = Z

(R)
1 ⊕∆X

(R)
12,[0] and Z

(R)
4 = Z

(R)
2 ⊕

∆X
(R)
12,[0]. Since each sub-cipher is assumed to operate independently, the difference in

Z
(R)
1 and Z

(R)
2 matrices can differ from the difference in the initial state matrices.

Next, we decrypted Z
(R)
3 and Z

(R)
4 using the inverse round E−1

1 (as depicted in
Fig 6.2) to get Y

(r)
3 = E−1

1 (Z(R)
3) and Y

(r)
4 = E−1

1 (Z(R)
4). The E−1

1 process produced
intermediate states, allowing us to identify and evaluate three potential probabilistic

82

CHAPTER 6. THE BOOMERANG ATTACK ON CHACHA PERMUTATION

differences: Y
(r)

1 ⊕ Y
(r)

3 = α, Y
(r)

2 ⊕ Y
(r)

4 = α. According to Equation 2.10, if Y
(r)

1 ⊕
Y

(r)
3 = α and Y

(r)
2 ⊕ Y

(r)
4 = α, this would imply Y

(r)
3 ⊕ Y

(r)
4 = β. This is further

elaborated in step 11 of Algorithm 5.
We utilized the Maximum Length random number generator to create random

keys and IVs, conducting our experiment on an Intel(R) Xeon(R) CPU E7-4830 v4
@ 2.00GHz machine with a total complexity of 240. To ensure the reproducibility of
our results, we used the hexadecimal value 0xAFFFFFFF as the seed for generating
random initialization vectors (IVs) and 0xAEEEEEEE as the seed for generating ran-
dom keys. We performed the same attack on different positions using various seeds;
however, the results did not show significant variations.

6.2 The Boomerang Distinguisher
When selecting a single ID in ChaCha, there can be up to 512 possible OD positions.
Chapter 4 emphasized that the influence of OD on bias is more significant than that
of ID. Therefore, careful selection of OD is essential. In this study, we chose the non-
significant bits of the OD words (i.e., the zero positions). These non-significant bits
are less influenced by the ChaCha quarter-round function (refer to Equation 2.3). Our
experimental results also supported this observation. Further details will be provided
in Section 6.2.3.

6.2.1 Attack on ChaCha 7 Permutation

To target ChaCha 7, we initialized X
(0)
1 and X

(0)
2 as the starting values with X

(0)
1 ⊕

X
(0)
2 = ∆X

(0)
12 [0]. Next, we applied the encryption function E0 to these initial values

to obtain the intermediate states Y
(3.5)

1 = E0(X(0)
1) and Y

(3.5)
2 = E0(X(0)

2). The OD for
Y

(3.5)
1 and Y

(3.5)
2 was calculated as Y

(3.5)
1 ⊕ Y

(3.5)
2 = ∆(3.5)

0,1,2,12,13,14,15[0] across 7 possible
positions. We represent the probability of Y

(3.5)
1 ⊕ Y

(3.5)
2 as p1. According to the

technical details of Algorithm 5, the outcome of the E0 encryption function is retained
before passing it to E1. These results from E0 will be used to calculate the differences
with the output of E−1 to determine new probabilities.

Subsequently, we encrypt the states Y
(3.5)

1 and Y
(3.5)

2 using E1 (i.e., 3.5 rounds) to
obtain Z

(7)
1 = E1(Y (3.5)

1) and Z
(7)
2 = E1(Y (3.5)

2). We then perform the following steps
to derive the new matrices for the E−1

1 cipher.

Z
(7)
3 = Z

(7)
1 ⊕∆X

(R)
12,[0]. (6.1)

Z
(7)
4 = Z

(7)
2 ⊕∆X

(R)
12,[0]. (6.2)

83

CHAPTER 6. THE BOOMERANG ATTACK ON CHACHA PERMUTATION

The ID position for Equations 6.1 and 6.2 was chosen as ∆X
(7)
12 [0], although a

different position could also be selected. Next, we input the newly generated states
Z

(7)
3 and Z

(7)
4 into the reverse round E−1

1 .

Y
(3.5)

3 = E−1
1 (Z(7)

3). (6.3)
Y

(3.5)
4 = E−1

1 (Z(7)
4). (6.4)

At this stage, to construct the distinguisher, we compute the following differences
based on Equation 2.9:

Y
(3.5)

1 ⊕ Y
(3.5)

3 = γ. (6.5)
Y

(3.5)
2 ⊕ Y

(3.5)
4 = γ. (6.6)

We denote the probability of Y
(3.5)

1 ⊕ Y
(3.5)

3 and Y
(3.5)

2 ⊕ Y
(3.5)

4 with q1 and q2,
respectively. Given the Equation 2.10, the Equations 6.5 and 6.6 will force the Y

(3.5)
3

and Y
(3.5)

4 to have the have the following difference.

Y
(3.5)

3 ⊕ Y
(3.5)

4 = β.

The differences are computed over 3.5 rounds for the OD positions ∆(3.5)
0,1,2,12,13,14,15[0]

with the same ID positions at both ∆X
(0)
12 [0] and ∆X

(7)
12 [0]. Analyzing the results of

ChaCha 7 produced by the boomerang attack, we observed that the probability and
bias for all OD positions yielded identical values, differing from those noted at R = 6.
The individual probability distribution in our experiment for boomerang attacks is
quite similar to the probabilities in standard differential attacks. To confirm this, we
calculated the bias for the individual probabilities. For example, the bias for p2 and
q2 is 0.000002, which can be verified with approximately 238.86 queries. We ran the
experiment with a total complexity of 240. This indicates that individual bias can
also be verified. The probability distribution of boomerang probability (i.e., p2q2) is
illustrated in Fig 6.1.

Among the OD positions we targeted, we only presented the results for ∆X
(3.5)
0 [0].

Table 6.1 provides a summary of the median probability values and the details of the
bias. The bias is computed based on the probability of boomerangs, p2q2. For the bias
calculation, see Step 17 of Algorithm 5.

According to Dunkelman [DKRS20], a total of 4(pq)−2 adaptively chosen plain-
texts and ciphertexts are required to distinguish ChaCha from a random permutation.
Therefore, given the value of p2q2, approximately 25.9999971 adaptively chosen plaintexts
and ciphertexts are necessary to distinguish ChaCha 7 from a random permutation.

84

CHAPTER 6. THE BOOMERANG ATTACK ON CHACHA PERMUTATION

Figure 6.1: Boomerang probability distribution

While the concepts of adaptively chosen plaintexts and ciphertexts are different
for block ciphers, block ciphers process fixed-size data blocks, and analyzing multiple
plaintext-ciphertext pairs can reveal patterns in the encryption. However, in the con-
text of our proposed attack, we assume that the adversary can manipulate the resulting
matrix produced by the ChaCha stream cipher to introduce a difference, thereby con-
verting the attack into an adaptively chosen plaintext and ciphertext attack.

Table 6.1: The Boomerang Attack Probability for ChaCha 7

Intermediate OD p∗
1 p∗

2 q∗
1 q∗

2 p2q2 |ε∗
d| Complexity

∆X0[0](3.5) 0.5 0.5 0.4999 0.5 0.0625 0.875 25.9999

6.2.2 Attack on 6-rounds ChaCha Permutation

To analyze the ChaCha 6 cipher, we applied the same method as the one used for
attacking ChaCha 7. We divided the ChaCha 6 encryption into two sub-rounds,
separately for E0 and E1. ChaCha 6 was examined for all possible OD positions
∆(3)

0,1,2,4,5,6,7,8,9,10,11,12,13,14,15[0] to assess the impact of OD positions in a boomerang
attack. The overall complexity of the distinguisher varies for each OD position.

In our experiment, we observed that the probability of Y
(r)

1 ⊕Y3 = γ and Y2⊕Y4 = γ

at ∆X
(3)
1 [0] and ∆X

(3)
5 [0] occurs with a probability of 1, which increases the boomerang

probability to p2. The reduction from p2q2 to p2q was discussed in [KT22].

Table 6.2: The Boomerang Attack Probability for ChaCha 6

Intermediate OD p∗
1 p∗

2 q∗
1 q∗

2 p2q2 |ε∗
d| Complexity

∆X0[0](3) 0.4999 0.4999 0.9841 0.9841 0.2411 0.5177 24.587

85

CHAPTER 6. THE BOOMERANG ATTACK ON CHACHA PERMUTATION

𝐸!

𝑋!

𝐸"

𝑌!

𝑍!

𝐸!

𝑋"

𝐸"

𝑌"

𝑍"

𝛼

𝐸!

𝑋#

𝐸"

𝑌#

𝑍#

𝐸!

𝑋$

𝐸"

𝑌$

𝑍$

𝛼

𝛽

𝛿 𝛿

𝛽𝛾
𝛾

Figure 6.2: The boomerang attack on ChaCha

Table 6.2 provides a summary of the probabilities and bias details. For the ∆X0[0](3)

position, up to 24.578 adaptively chosen plaintexts and ciphertexts are required to dis-
tinguish ChaCha 6 from a random permutation.

6.2.3 The Boomerang Differential Trails of ChaCha

This section examines the propagation of an input difference ID in the context of a
boomerang attack. We focus on the target attack points X0[0](3) and X0[0](3.5) for
ChaCha 6 and ChaCha 7, respectively. For both ChaCha 6 and ChaCha 7, an input
difference ID is introduced at ∆X

(0)
12 [0]. After the first round, this difference propa-

gates to the first column of the ChaCha matrix, affecting X
(1)
0 [28], X

(1)
4 [31, 28, 23, 12, 3],

X
(1)
8 [31, 28, 24, 23, 16, 12, 4, 3], and X

(1)
12 [16]. By the end of the second round, the differ-

ence spreads to all words. Since we are concentrating on the X
(3)
0 [0] and X

(3.5)
0 [0] posi-

tions, we trace changes in these specific locations. In the second round, X
(2)
0 [24] is af-

fected. During the third round, the position X
(3)
0 [29, 28, 27, 26, 25, 23, 22, 21, 19, 17, 15

, 14, 12, 11, 8, 7, 5, 4, 3, 2] is altered, with X0[0](3) remaining unchanged.
Moving to the X0[0](3.5) rounds, the difference propagates to X

(3.5)
0 [29, 28, 27, 26, 24,

21, 19, 18, 14, 13, 9, 8, 7, 2], while the attack position X0[0](3.5) remains predictable and
unaffected. The reverse round of ChaCha operates differently than the forward round.
After the first reverse round, the difference affects the first column of the ChaCha
matrix, altering only one bit at X

(1)
0 [0], all bits of X

(1)
4 , a single bit of X

(1)
8 [24], and

all bits of X
(1)
12 except X

(1)
12 [16]. After the second reverse round, unlike in the forward

86

CHAPTER 6. THE BOOMERANG ATTACK ON CHACHA PERMUTATION

round, not all words are updated. For example, X
(2)
5 and X

(2)
9 remain unchanged.

Additionally, a single bit in X1[8](2), X3[1](2), X12[16](2), and X14[0](2) is updated. X
(2)
4

and X
(2)
10 are updated at all positions.

The difference propagation in the ChaCha reverse round is predictable and oc-
curs with high probability (refer to Table 6.2). The third reverse round propagates
changes to all positions. Our attack points X

(3)
0 are altered at X

(3)
0 [16, 12, 1] and

X
(3.5)
0 [24, 17, 16, 13] after three and three and a half rounds, respectively. The weak

and predictable propagation of the ChaCha reverse round makes it vulnerable to a
boomerang attack. The median probability of a forward round for ChaCha 3 is 0.499,
whereas it is 0.9841 for the reverse rounds.

6.2.4 Factors Driving Significant Improvements in Attacks

The improvement exclusively comes from the way we calculate the boomerang dis-
tinguisher compared to the differential cryptanalysis or differential-linear attacks. In
differential attacks, the distinguisher is calculated as O(1/p) where p is the differ-
ential probability. In a differential-linear attack, we calculate the distinguisher as
O(1/pq2) where the p is differential probability and q is linearity. However, for the
boomerang attack, we consider four probabilities from two independent sub-ciphers,
and the boomerang distinguisher can be calculated as 4(pq)−2. In addition, the differ-
ential probability in the reverse round of ChaCha is higher than the forward round,
especially for ChaCha 3, increasing the attack efficiency.

87

Chapter 7

Discussion

The analysis of the Salsa 20 and ChaCha stream ciphers is a hot topic in the current
domain of cryptanalysis. Given their structure, differential cryptanalysis is the primary
adversary model for studying the security of ChaCha and Salsa 20. Even though the
structure of differential cryptanalysis is already defined, the refinement and strategy to
mount an attack are crucial parts of an attack on Salsa 20 and ChaCha stream ciphers.
This dissertation studied the security of Salsa 20 and ChaCha stream ciphers based
on differential, differential-linear, and boomerang cryptanalysis methodologies. We
analyze and interpret the research findings, and discuss future possible improvements.
In addition, it briefly discusses the limitations of the existing studies and our proposed
methods for increasing attack efficiency.

The selection of ID andOD is crucial in mounting the attack. The studies reported
in Chapter 3 used the select input difference first and then looked for the output
differential position to mount the attack. This method could be refined and applied
differently to improve the attack efficiency of Salsa 20 and ChaCha. To get an optimal
pair of ID,OD, we look for the OD position first and then search for the ID position
with the best differential bias εd.

To achieve this, we first looked for the OD position with the highest average neu-
trality measure concerning all 256 keybit positions. We executed the Algorithm 3 and
analyzed the generated result to find the OD position with the highest average neu-
tral measure. To attack Salsa 8, we selected the OD position ∆(4)

1 [13] which generates
the average neutral measure γk = 0.083327. We searched for the possible ID posi-
tions and selected the ∆(0)

8 [27], ∆(4.75)
11 [13] as an attacking point with the median basis

ε∗
d = 0.0651375.

We achieved an attack on Salsa 8 with time complexity of 2241.62 and data com-
plexity of 231.4. We applied the same approach on ChaCha 7.25 and selected the
∆(0)

13 [6], ∆(3.5)
2 [0] as an attacking point with the median basis ε∗

d = 0.000474. As a
result, we mounted a key-recovery attack on ChaCha 7.25 with a time complexity
of 2254.022 and data complexity of 251.81. The application of PNB-based differential

88

CHAPTER 7. DISCUSSION

cryptanalysis discussed in Chapter 4 presented several outcomes.
The experimental result revealed the relationship between the = OD and the neu-

trality measure of 256 keybit positions. Moreover, the method helped to find a new
attack pair of ID,OD with the best differential bias, and as a result, we could decrease
the attack complexity on Salsa 20 and ChaCha stream ciphers. While we introduced a
new attacking point and refined the attack introduced by [AFK+08], we believe apply-
ing differential cryptanalysis methods such as differential-linear attacks could improve
the attack.

Chapter 4 introduced the 4.75 internal round to attack the ChaCha 8. We tried to
use the 5th internal round to attack ChaCha 8 but, we were not able to find reliable
bias. We attempted to increase the number of PNBs but we could not get reliable
backward bias with the 4.75 internal rounds. The Salsa 20 quarter round could be
further scrutinized to increase the number of PNBs and select a better attacking point.
In addition, the relationship between the PNBs and the ChaCha quarter round is not
unexplored yet, this can potentially add to the number of PNBs and reduce the final
attack complexity. We believe the attack can be further improved by new refinement
and attack methodologies.

Chapter 5 presented the higher-order differential-linear attack on the ChaCha.
The existing studies focused on extending linear approximation after 3.5 rounds and
improving attack mainly by concentrating on linear approximation for higher rounds.
This methodology could be improved in two proposed ways. The research focused on
two strategies to decrease the attack complexity.

The primary aim was to improve the differential bias in the forward rounds. We
used second-order differentials to target ChaCha’s 4 internal rounds. We limited our
attack to ChaCha 6. As a result, we extended the 4− th round differential attack to
the 5 − th round with probability 1, and from the 5 − th round to the 6 − th round
with a probability less than one. This approach helped us obtain a higher linear bias,
which we combined with the differential bias to attack ChaCha 6. Consequently, we
introduced a distinguishing attack on ChaCha 6 with a complexity of 287.21.

We tried to extend the linear approximations from ChaCha 4 to ChaCha 7, however
with the ID,OD in chapter 5 we could not improve beyond ChaCha 6 due to the final
modular addition used to generate the key stream. probability. The attack could
be extended using new linear approximations from the 4 − th round to the 6 − th

rounds of ChaCha with new the ID,OD. Moreover, the attack in Chapter 5 is a
distinguishing attack, this attack can turn into a key-recovery attack. Additionally,
we used the second-order differential and introduced the ID positions, however, the
attack could turn into third-order or fourth-order and the selection of ID position
would be a challenging part and it should be addressed in future studies.

Chapter 6 introduced a distinguisher on the ChaCha permutation function. The

89

CHAPTER 7. DISCUSSION

research applied boomerang cryptanalysis to attack the reduced rounds of the ChaCha
stream cipher using the chosen plaintext and ciphertext attack methodology. As a re-
sult, we introduced a distinguisher on ChaCha 6 and ChaCha 7 permutation functions
with complexities of 24.587 and 25.99, respectively.

90

Chapter 8

Conclusion and Future Works

This chapter concludes the dissertation, summarizing the research findings and out-
lining possible future work. The dissertation explores the cryptanalysis of the Salsa
20 and ChaCha stream ciphers.

This dissertation assesses the security of the Salsa 20 and ChaCha stream ciphers,
extensively utilized across various digital platforms. Our study explores possible vul-
nerabilities in these ciphers using differential, differential-linear, and boomerang at-
tacks. We seek to evaluate the resilience of Salsa 20 and ChaCha against these attacks
and propose techniques to exploit their weaknesses. The results offer valuable insights
into the security characteristics of these stream ciphers and may inform the design of
more secure cryptographic algorithms in the future.

Chapter 4 presented an attack on Salsa 20 and ChaCha stream ciphers. The attack
is based on [AFK+08] idea with refinements. The research introduced new attack
points called ID,OD to mount a key-recovery attack on reduced rounds of Salsa 20
and ChaCha stream ciphers. The chapter analyzed the relationship between the Salsa
20 quart1er-round function and probabilistic neutral bits to justify the experimental
results. We identified ∆(0)

8 [27], ∆(4.75)
11 [13] as an = ID,OD with the bias εd = 0.065137.

As a result, we introduced a key-recovery attack on Salsa 20 with a time complexity
of 2241.62. We applied the same attack scenario on ChaCha. We mount the attack
with the ∆(0)

13 [6], ∆(3.5)
2 [0] and the bias εd = 0.000474. As a result, we presented a

key-recovery attack on ChaCha 7.25 with a complexity of 2254.011.
Chapter 5 investigates the security of ChaCha against higher-order differential-

linear cryptanalysis. In this research, we explored higher-order and higher-order
differential-linear cryptanalysis and applied these methods to the ChaCha stream ci-
pher. We present the higher-order and higher-order differential-linear biases across
different rounds of ChaCha. We propose attacks targeting ChaCha 5, ChaCha 5.5,
and ChaCha 6. Our proposed attacks have complexities of 233.21, 263.21, and 287.21 on
ChaCha 5, ChaCha 5.5, and ChaCha 6, respectively. This attack framework has the
potential to become an essential method for assessing the security of various ciphers.

91

CHAPTER 8. CONCLUSION AND FUTURE WORKS

Chapter 6 analyzed the ChaCha cipher in the context of the boomerang attack.
We developed an algorithm to target ChaCha rounds 6 and 7 permutation functions.
This attack model utilizes adaptively chosen plaintext and ciphertext to compromise
ChaCha. According to our analysis, 24.587 and 25.9999 adaptively chosen plaintext and
ciphertext can distinguish ChaCha 6 and ChaCha 7 from a random permutation,
respectively. This represents the first boomerang attack and the most effective attack
on reduced rounds of the ChaCha cipher. Differential cryptanalysis in Chapter 4
introduced a key-recovery attack on Salsa 8 and ChaCha 7.25. The attack complexity
can be reduced on Salsa 8 by further scrutinizing the Salsa 20 and ChaCha quarter-
round functions.

Additionally, the proposed attack could be changed to a differential-linear attack
to improve the attack on Salsa 8 and ChaCha 7.25. Furthermore, the proposed at-
tack in Chapter 5 introduced the higher-order differential-linear distinguishing attack
on ChaCha 6. However, the attack could be further improved by focusing on linear
approximation and applying the key recovery attack based on PNBs. While the intro-
duced boomerang attack on ChaCha in Chapter 6 targeted ChaCha 7 based on the
chosen plaintext-ciphertext assumption, the attack could be turned into an amplified
boomerang attack to introduce a chosen plaintext attack and make it more practical.

92

List of Publications

Journals
1. Nasratullah Ghafoori, Atsuko Miyaji, Ryoma Ito and Shotaro Miyashita, PNB

based differential cryptanalysis of Salsa 20 and Chacha, IEICE TRANSAC-
TIONS on Information and Systems, vol.E106-D, no.9, pp.1407-1422, 2023.

2. Nasratullah Ghafoori and Atsuko Miyaji, Higher-Order Differential-Linear Crypt-
analysis of ChaCha Stream Cipher, IEEE Access, 2024.

International Conferences
1. Nasratullah Ghafoori and Atsuko Miyaji, Differential cryptanalysis of Salsa20

based on comprehensive analysis of PNBs, International Conference on Infor-
mation Security Practice and Experience (ISPEC), LNCS, vol.13620, Springer,
pp.520-536, 2022.

2. Ryo Watanabe, Nasratullah Ghafoori and Atsuko Miyaji, Improved Differential-
Linear Cryptanalysis of Reduced Rounds of ChaCha, International Conference
on Information Security Applications (WISA), LNCS, vol.14402, Springer, pp.269-
281, 2023.

3. Nasratullah Ghafoori and Atsuko Miyaji, The Boomerang Attack on ChaCha
Stream Cipher Permutation, International Conference on Computer Communi-
cation and the Internet (ICCCI), IEEE, pp.18-23, 2024.

93

References

[AFK+08] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier,
and Christian Rechberger. New features of latin dances: analysis of Salsa,
ChaCha, and rumba. In Fast Software Encryption: 15th International
Workshop, FSE 2008, February 10-13, 2008, Revised Selected Papers 15,
pages 470–488. Springer, 2008.

[Alk16] Hoda A Alkhzaimi. Cryptanalysis of selected block ciphers. 2016.

[B+08] Daniel J Bernstein et al. ChaCha, a variant of Salsa20. In Workshop
record of SASC, volume 8, pages 3–5. Citeseer, 2008.

[BBC+22] Christof Beierle, Marek Broll, Federico Canale, Nicolas David, Anto-
nio Flórez-Gutiérrez, Gregor Leander, Maŕıa Naya-Plasencia, and Yosuke
Todo. Improved differential-linear attacks with applications to arx ciphers.
Journal of Cryptology, 35(4):29, 2022.

[BBM20] Stefano Barbero, Emanuele Bellini, and Rusydi Makarim. Rotational anal-
ysis of ChaCha permutation. arXiv preprint arXiv:2008.13406, 2020.

[BDK05] Eli Biham, Orr Dunkelman, and Nathan Keller. New combined attacks on
block ciphers. In Fast Software Encryption: 12th International Workshop,
FSE 2005, February 21-23, 2005, Revised Selected Papers 12, pages 126–
144. Springer, 2005.

[Ber08] Daniel J Bernstein. The Salsa20 family of stream ciphers. In New stream
cipher designs: the eSTREAM finalists, pages 84–97. Springer, 2008.

[BGG+23] Emanuele Bellini, David Gerault, Juan Grados, Rusydi H Makarim, and
Thomas Peyrin. Boosting differential-linear cryptanalysis of ChaCha7
with milp. IACR Transactions on Symmetric Cryptology, 2023.

[Bir11] Alex Biryukov. Chosen Plaintext Attack, pages 205–206. Springer US,
Boston, MA, 2011.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryp-
tosystems. Journal of CRYPTOLOGY, 4:3–72, 1991.

94

[BV14] Alex Biryukov and Vesselin Velichkov. Automatic search for differential
trails in arx ciphers. In Topics in Cryptology–CT-RSA 2014: The Cryp-
tographer ’s Track at the RSA Conference 2014, February 25-28, 2014.
Proceedings, pages 227–250. Springer, 2014.

[BVLC16] Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. Automatic search
for the best trails in arx: application to block cipher speck. In Fast
Software Encryption: 23rd International Conference, FSE 2016, March
20-23, 2016, Revised Selected Papers 23, pages 289–310. Springer, 2016.

[CM16] Arka Rai Choudhuri and Subhamoy Maitra. Significantly improved multi-
bit differentials for reduced round Salsa and ChaCha. IACR Transactions
on Symmetric Cryptology, pages 261–287, 2016.

[CN20] Murilo Coutinho and TC Souza Neto. New multi-bit differentials to im-
prove attacks against ChaCha. Cryptology ePrint Archive, 2020.

[CPV+23a] Murilo Coutinho, Iago Passos, Juan C Grados Vásquez, Santanu Sarkar,
Fábio LL de Mendoncomca, Rafael T de Sousa Jr, and Fábio Borges. Latin
dances reloaded: improved cryptanalysis against Salsa and ChaCha, and
the proposal of forró. Journal of Cryptology, 36(3):18, 2023.

[CPV+23b] Murilo Coutinho, Iago Passos, Juan C Grados Vásquez, Santanu Sarkar,
Fábio LL de Mendoncomca, Rafael T de Sousa Jr, and Fábio Borges. Latin
dances reloaded: Improved cryptanalysis against Salsa and ChaCha, and
the proposal of forró. Journal of Cryptology, 36(3):18, 2023.

[CSN21] Murilo Coutinho and Tertuliano C Souza Neto. Improved linear approx-
imations to arx ciphers and attacks against ChaCha. In Advances in
Cryptology–EUROCRYPT 2021: 40th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, October 17–
21, 2021, Proceedings, Part I 40, pages 711–740. Springer, 2021.

[DDSM22] Sabyasachi Dey, Chandan Dey, Santanu Sarkar, and Willi Meier. Revisit-
ing cryptanalysis on ChaCha from crypto 2020 and eurocrypt 2021. IEEE
Transactions on Information Theory, 68(9):6114–6133, 2022.

[DGM23] Sabyasachi Dey, Hirendra Kumar Garai, and Subhamoy Maitra. Crypt-
analysis of reduced round ChaCha-new attack and deeper analysis. Cryp-
tology ePrint Archive, 2023.

[DGSS22] Sabyasachi Dey, Hirendra Kumar Garai, Santanu Sarkar, and Nitin Ku-
mar Sharma. Revamped differential-linear cryptanalysis on reduced round

95

ChaCha. In Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 86–114. Springer, 2022.

[DGSS23] Sabyasachi Dey, Hirendra Kumar Garai, Santanu Sarkar, and Nitin Ku-
mar Sharma. Enhanced differential-linear attacks on reduced round
ChaCha. IEEE Transactions on Information Theory, 2023.

[DK15] Hans Delfs and Helmut Knebl. Symmetric-Key Cryptography, pages 11–
48. Springer Berlin Heidelberg, 2015.

[DKRS20] Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. The retrac-
ing boomerang attack. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 280–309. Springer,
2020.

[DL11] Ming Duan and Xuejia Lai. Higher order differential cryptanalysis frame-
work and its applications. In International Conference on Information
Science and Technology, pages 291–297. IEEE, 2011.

[DS17] Sabyasachi Dey and Santanu Sarkar. Improved analysis for reduced round
Salsa and Chacha. Discrete Applied Mathematics, 227:58–69, 2017.

[DS23] Chandan Dey and Santanu Sarkar. A new distinguishing attack on re-
duced round ChaCha permutation. Scientific Reports, 13(1):13958, 2023.

[eP] The eSTREAM Project. http://www.ecrypt.eu.org/stream.

[HPTY23] Kai Hu, Thomas Peyrin, Quan Quan Tan, and Trevor Yap. Revisiting
higher-order differential-linear attacks from an algebraic perspective. In
International Conference on the Theory and Application of Cryptology and
Information Security, pages 405–435. Springer, 2023.

[HW19] Mingjiang Huang and Liming Wang. Automatic tool for searching for
differential characteristics in arx ciphers and applications. In International
Conference on Cryptology in India, pages 115–138. Springer, 2019.

[KB96] Lars R Knudsen and Thomas A Berson. Truncated differentials of safer. In
Fast Software Encryption: Third International Workshop, February 21–23
1996 Proceedings 3, pages 15–26. Springer, 1996.

[KHL+04] Jongsung Kim, Seokhie Hong, Sangjin Lee, Junghwan Song, and Hyungjin
Yang. Truncated differential attacks on 8-round crypton. In Informa-
tion Security and Cryptology-ICISC 2003: 6th International Conference,
November 27-28, 2003. Revised Papers 6, pages 446–456. Springer, 2004.

96

http://www.ecrypt.eu.org/stream

[Knu95] Lars R Knudsen. Truncated and higher order differentials. In Fast Software
Encryption: Second International Workshop Leuven, Belgium, December
14–16, 1994 Proceedings 2, pages 196–211. Springer, 1995.

[Knu98] Lars Knudsen. Deal-a 128-bit block cipher. complexity, 258(2):216, 1998.

[KR97] Lars R Knudsen and Vincent Rijmen. Truncated differentials of idea.
Department of Electrical Engineering, ESAT–COSIC Technical Report 97,
1, 1997.

[KR11] Lars R Knudsen and Matthew Robshaw. The block cipher companion.
Springer Science & Business Media, 2011.

[KT22] Andreas B Kidmose and Tyge Tiessen. Formal analysis of boomerang
probabilities. IACR Transactions on Symmetric Cryptology, 2022(1):88–
109, 2022.

[Lai94] Xuejia Lai. Higher order derivatives and differential cryptanalysis. Com-
munications and Cryptography: Two Sides of One Tapestry, pages 227–
233, 1994.

[Leu16] Gaëtan Leurent. Improved differential-linear cryptanalysis of 7-round
chaskey with partitioning. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 344–371.
Springer, 2016.

[LH94] Susan K Langford and Martin E Hellman. Differential-linear cryptanaly-
sis. In Advances in Cryptology―CRYPTO’94: 14th Annual International
Cryptology Conference, August 21–25, 1994 Proceedings 14, pages 17–25.
Springer, 1994.

[LMM91] Xuejia Lai, James L Massey, and Sean Murphy. Markov ciphers and
differential cryptanalysis. In Advances in Cryptology―EUROCRYPT ’
91: Workshop on the Theory and Application of Cryptographic Techniques,
April 8–11, 1991 Proceedings 10, pages 17–38. Springer, 1991.

[LWD04] Helger Lipmaa, Johan Wallén, and Philippe Dumas. On the additive dif-
ferential probability of exclusive-or. In Fast Software Encryption: 11th
International Workshop, FSE 2004, Delhi, India, February 5-7, 2004. Re-
vised Papers 11, pages 317–331. Springer, 2004.

[Mai16] Subhamoy Maitra. Chosen iv cryptanalysis on reduced round ChaCha
and Salsa. Discrete Applied Mathematics, 208:88–97, 2016.

97

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for des cipher. In Workshop
on the Theory and Application of Cryptographic Techniques, pages 386–
397. Springer, 1993.

[MIM22] Shotaro Miyashita, Ryoma Ito, and Atsuko Miyaji. Pnb-focused differen-
tial cryptanalysis of ChaCha stream cipher. In Australasian Conference
on Information Security and Privacy, pages 46–66. Springer, 2022.

[MP13] Nicky Mouha and Bart Preneel. A proof that the arx cipher Salsa20
is secure against differential cryptanalysis. IACR Cryptol. ePrint Arch.,
2013:328, 2013.

[MS01] Itsik Mantin and Adi Shamir. A practical attack on broadcast rc4. In In-
ternational workshop on fast software encryption, pages 152–164. Springer,
2001.

[MZ06] Serge Mister and Robert Zuccherato. An attack on cfb mode encryption as
used by openpgp. In Selected Areas in Cryptography: 12th International
Workshop, SAC 2005, August 11-12, 2005, Revised Selected Papers 12,
pages 82–94. Springer, 2006.

[NSLL22] Zhongfeng Niu, Siwei Sun, Yunwen Liu, and Chao Li. Rotational
differential-linear distinguishers of arx ciphers with arbitrary output lin-
ear masks. In Annual International Cryptology Conference, pages 3–32.
Springer, 2022.

[S+99] Data Encryption Standard et al. Data encryption standard. Federal In-
formation Processing Standards Publication, 112, 1999.

[Sha48] Claude Elwood Shannon. A mathematical theory of communication. The
Bell system technical journal, 27(3):379–423, 1948.

[Sha49] Claude E Shannon. Communication theory of secrecy systems. The Bell
system technical journal, 28(4):656–715, 1949.

[SHY16] Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic differential
analysis of arx block ciphers with application to speck and lea. In Aus-
tralasian Conference on Information Security and Privacy, pages 379–394.
Springer, 2016.

[SZFW12] Zhenqing Shi, Bin Zhang, Dengguo Feng, and Wenling Wu. Improved
key recovery attacks on reduced-round Salsa20 and ChaCha. In Interna-
tional Conference on Information Security and Cryptology, pages 337–351.
Springer, 2012.

98

[Wag99] David Wagner. The boomerang attack. In International Workshop on
Fast Software Encryption, pages 156–170. Springer, 1999.

[WLHL23] Shichang Wang, Meicheng Liu, Shiqi Hou, and Dongdai Lin. Moving a
step of ChaCha in syncopated rhythm. In Annual International Cryptology
Conference, pages 273–304. Springer, 2023.

[ZCL10] Bo Zhu, Kefei Chen, and Xuejia Lai. Bitwise higher order differential
cryptanalysis. In Trusted Systems: First International Conference, IN-
TRUST 2009, Beijing, China, December 17-19, 2009. Revised Selected
Papers 1, pages 250–262. Springer, 2010.

99

	Abstract
	Acknowledgments
	Contents
	List of figures
	List of tables
	1 Introduction
	1.1 Background
	1.2 Existing Studies
	1.3 Motivations
	1.4 Contributions
	1.5 Organization

	2 Preliminaries
	2.1 Cryptography Primitives
	2.2 Specification of Salsa 20
	2.3 ChaCha Stream Cipher
	2.4 Cryptanalysis Approaches
	2.4.1 Differential Cryptanalysis
	2.4.2 Linear Cryptanalysis
	2.4.3 Differential-linear Cryptanalysis
	2.4.4 The Boomerang Attack

	3 Previous Works
	3.1 Existing Attacks on Salsa 20 and ChaCha
	3.1.1 Preliminary Computation Stage
	3.1.2 Probabilistic Neutral Bits
	3.1.3 Probabilistic Inverse Analysis
	3.1.4 Attack Phase
	3.1.5 Attack Complexity

	3.2 Differential Attack on Salsa 20 and ChaCha
	3.2.1 Differential-Linear Attacks on Salsa 20 and ChaCha
	3.2.2 Significant Linear Approximations
	3.2.3 Higher Order Differential-Linear Attack
	3.2.4 Attacks on ChaCha permutation

	4 Differential Cryptanalysis of Salsa 20 and ChaCha
	4.1 Examination of Probabilistic Neutral Bits
	4.1.1 Analysis of PNBs
	4.1.2 The Impact on Salsa 20
	4.1.3 The Impact on ChaCha
	4.1.4 Correlation Between Neutrality Measures and Inversed Rounds

	4.2 Differential Cryptanalysis with PNB Approach
	4.2.1 The Attack on Salsa 8
	4.2.2 The Cryptanalysis of ChaCha 7.25

	5 Higher-Order Differential-Linear Cryptanalysis of ChaCha
	5.1 Attack Points Selection
	5.2 Applying Linear Cryptanalysis
	5.3 The Attack Complexity of Higher-Order Differential-Linear Cryptanalysis
	5.3.1 The Distinguisher of ChaCha
	5.3.2 The Distinguishing Attack Complexity

	5.4 The attack specification

	6 The Boomerang Attack on ChaCha Permutation
	6.1 Boomerang Attack on ChaCha
	6.2 The Boomerang Distinguisher
	6.2.1 Attack on ChaCha 7 Permutation
	6.2.2 Attack on 6-rounds ChaCha Permutation
	6.2.3 The Boomerang Differential Trails of ChaCha
	6.2.4 Factors Driving Significant Improvements in Attacks

	7 Discussion
	8 Conclusion and Future Works
	List of publications
	References

