|

) <

The University of Osaka
Institutional Knowledge Archive

Tale Disaster Recognition Through Image Captioning
Features and Shifted Attention

Author(s) |Thanyawet, Narongthat

Citation |KFRKZ, 2024, HIHwX

Version Type|VoR

URL https://doi.org/10.18910/101462

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Disaster Recognition Through Image
Captioning Features and Shifted Attention

Submitted to
Graduate School of Information Science and Technology
Osaka University

September 2024

Narongthat THANYAWET



Thesis Committee:

Prof. Yuki Uranishi (Osaka University)

Prof. Tatsuhiro Tsuchiya (Osaka University)
Prof. Yoshinobu Kawahara (Osaka University)
Assoc. Prof. Shizuka Shirai (Osaka University)

(©) 2024 Narongthat Thanyawet. All rights reserved.



List of Publications

Journals

1. N. Thanyawet, P. Ratsamee, Y. Uranishi, M. Kobayashi and H. Take-
mura. Identifying Disaster Regions in Images Through Attention Shift-
ing with a Retarget Network. IEEE Acess, 2024.

International Conferences

Peer-reviewed Papers

1. N. Thanyawet, P. Ratsamee, Y. Uranishi, and H. Takemura. Abnormal
Scene Classification using Image Captioning Technique: A Landslide
Case Study, IEEE Conference on Pattern Recognition Systems (ICPRS),
1-7, Jul. 2023.

2. T. Boonchob, N. Tuaycharoen, S. Limpeeticharoenchot, and N. Thanyawet.

Job-Candidate Classifying and Ranking System-Based Machine Learn-
ing Method, IFEE International Computer Science and Engineering
Conference (ICSEC), 94-99, Dec. 2022.

National Conferences

1. N. Thanyawet, P. Ratsamee, Y. Uranishi, and K. Arai. Using Detec-
tive Network for Anomaly Detection in Images, The 22th International

Symposium on Automation and Robotics in Construction, October 8-10,
2024 Ibaraki, Japan.



vi

Abstract

In the wake of escalating natural disasters, timely and precise recognition
of affected areas has become imperative for efficient disaster management and
mitigation. Traditional image processing techniques often fall short in iden-
tifying subtle nuances within disaster-stricken regions due to their propensity
to highlight prominent features, thereby overlooking critical details. This dis-
sertation presents a method that utilized image captioning features along with
adaptive attention mechanisms to improve the recognition of disaster-affected
regions.

The author proposes a novel methodology that integrates image captioning
with a custom-developed attention-shifting algorithm designed to dynamically
refocus the model on less conspicuous yet essential elements within images.
By leveraging the inherent strengths of Vision Encoder-Decoder (VED) mod-
els, along with innovative optimal masking strategies, we enable the system
to discern and articulate the specifics of disaster impacts in diverse imaging
conditions, from satellite to ground-level perspectives.

The research methodology includes the rigorous training and evaluation
of the model using extensive datasets comprising side-view, aerial, and ship-
borne images of disaster scenes. The model’s performance is assessed against
standard metrics, demonstrating a significant leap in accuracy and contextual
relevance of the generated captions.

The empirical results underscore the superiority of our approach over con-
ventional image captioning models, exhibiting enhanced detection capabilities
with accuracies exceeding 91% for landslide detection from side-view image
captions and 87.5% for shipborne view detection. These figures not only re-
flect the technical prowess of the system but also its practical applicability in
real-world disaster assessment scenarios.

This work carries profound implications for the field of disaster manage-
ment. By augmenting the quality and reliability of disaster region identifica-
tion, our framework facilitates more informed decision-making in allocating
resources for relief efforts. Additionally, the adaptive nature of the model
paves the way for its application across a spectrum of environmental monitor-
ing and emergency response tasks, heralding a new era of Al-enabled disaster
management tools. Future research avenues include scaling the model to en-
compass a broader range of disaster types and integrating real-time data for
swift, actionable insights during crisis events.
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CHAPTER 1

Introduction

Computer vision is increasingly being applied to address various global chal-
lenges (Lis et al.}|[2019; Kamoi et al.;|2021}|Ohgushi et al.||2020; Di Biase et al.,
2021} |Chan et al.;|2021). A particularly critical application is the detection
of disaster-affected areas in images, which may be sourced from Unmanned
Aerial Vehicles (UAVs), helicopters, or ships.

Disasters often involve the displacement of natural elements, such as in
landslides, where soil or rocks shift from higher elevations, and floods, which
occur when water overflows onto impermeable surfaces or within urban envi-
ronments.

One major challenge is that the images used for detection typically cover
vast areas, making the disaster-affected regions relatively small or not imme-
diately apparent. Moreover, the visual similarity of landslides to regular soil
and flooded areas to typical bodies of water complicates the use of machine
learning methods for accurate detection.

1.1 Disaster Detection

Nowadays, object detection in image has become a common challenge in var-
ious fields (Meena et al. 2022; |Li et al.} 2022} |Can et al.| 2019). Computer
vision techniques are used in disaster investigations to evaluate the dam-
aged areas before rescuing victims or reconstructing the affected regions. For
these purposes, aerial investigations have become the most popular method to
gather information from an aerial view, using UAVs or helicopters to collect
images from a bird’s-eye view to obtain an overview of the disaster situation.
However, it is difficult for machine learning models to detect disaster regions
from images taken from an aerial perspective (Ofli et al.;|2021} 2022).

A disaster scene is defined as natural objects misplaced from their com-
mon situations. For instance, in Figure which represents a non-disaster
(left) and disaster (right) scene, the non-disaster image shows a mountain
covered by soil and rock, which is a regular situation since the soil and rocks
typically cover the mountain. However, in the right image, the soil within
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Landslide

Non-disaster scene Disaster scene (landslide)

Figure 1.1: Difficulty in classification of non-disaster and disaster scene due to visual simi-
larity.

the red boundary appears misplaced and has slid down from the hill, char-
acterizing this as a disaster scene. It involves the same materials-soil, rocks,
grass, etc.—but in an irregular place or situation. For this reason, objects in
irregular positions can lead to what are termed abnormal objects; however,
detecting such disaster or abnormal cases is quite challenging because the
disaster regions still comprise natural objects, just in different positions.

In a similar vein, flooding presents the same challenges as landslide disas-
ters, albeit with slight differences. Flooding occurs when water is misplaced
into household areas or other regions outside of waterways (e.g., rivers, canals,
ponds, reservoirs, etc.), which makes detecting floods easier than landslides
in some aspects. However, detecting water bodies can be difficult (Hernandez,
from certain viewpoints, such as when reflections from the water
surface mirror other objects.

On the other hand, wildfires are difficult to detect from certain perspec-
tives, such as scenes obscured by many objects among the smoke. However,
from an aerial view, wildfires are easier to identify due to the color differences
in the images and the surrounding objects.

Therefore, detecting natural disasters in computer vision presents a signif-
icant challenge, particularly when the scenes are similar. Many techniques in
computer vision and image processing, including pre-processing, neural net-
works, or deep learning, do not significantly enhance disaster detection
et al.| 2021} 2022} Hernandez et al., [2022). Moreover, in computer vision, in
Figure [L.2] machine learning techniques that use CNNs are based on localized

pixel features and tend to focus on centering or highlighting prominent objects
rather than other parts of the scene, which might contain significant but tiny
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GT: Non-disaster
§| Predict: Disaster

Pixel-based
techniques
(CNNs)

GT: Disaster
Predict: Non-Disaster

S = GT: Disaster
o Predict: Non-Disaster

Figure 1.2: The challenge for pixel-based techniques (CNNs) (Meena et al.||2022]|Soares|
let al.}|2020f Liu et al.|2020) to classify disaster scene.

regions.

Moreover, pixel-based techniques analyze the surrounding pixels to clas-
sify the scene into various categories. These methods typically use the color,
intensity, and texture information of neighboring pixels to determine the class
of each pixel in the image. However, conventional pixel-based methods have
certain limitations, particularly when it comes to complex or atypical scenar-
ios. In my case study, the objects that must be detected are natural objects
displaced from their usual locations due to a disaster.

Conventional techniques may struggle to accurately classify these objects
because they are designed to recognize and categorize typical scenes. This
leads to a critical challenge: these methods might incorrectly classify the dis-
placed natural objects. The potential consequences of such misclassification
are significant, as they could either mistake them for ordinary, non-disaster-
related natural objects or fail to recognize them as indicators of a disaster.
This misclassification occurs because traditional approaches often do not ac-
count for the contextual and situational anomalies present in disaster scenar-
ios.

1.2 Attention in Computer Vision

Computer vision techniques (]Meena et al.L |2022|; |Soares et al.l |2020t |Liu|
2020) tend to use the features from neighboring pixels’ color, intensity,
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The main object is human in foreground  The disaster object is small compared with
surrounding

Figure 1.3: Difficulty in detection the disaster region with the huge major objects in the
scene.

and texture information to detect or classify the scenes. However, detecting
disaster-related objects poses a significant challenge. This difficulty arises be-
cause natural objects not associated with disasters often have visual features
similar to those that are not.

Figure@ shows that the target object may not be the model’s primary
focus since it might be in the background, where other objects are more promi-
nent and attract more attention than the target region. Moreover, the correct
figure in[1.3| demonstrates that the disaster object is not the main focus and
appears small compared to the entire scene.

Conventional methods in the field of computer vision typically utilize sur-
rounding pixels to extract features in order to achieve their objectives. How-
ever, these computer vision models often prioritize attention or focus on the
scene’s center. The models often concentrate primarily on foreground ob-
jects or the main focal points. Recently, the attention mechanism from the

transformers architecture (Vaswani et al.|2017) has gained popularity for ad-

dressing challenges in natural language processing and computer vision. This
technique employs the attention method to better focus on target objects.
However, despite its advancements, the attention layer still tends to prioritize
foreground objects or the main objects, similar to conventional techniques, as
shown in Figure

In this research, the author utilizes information from pixel-based tech-
niques and image captioning, which provides more meaningful features than
conventional methods. Moreover, the challenge of model focus-where atten-
tion is given to primary objects or target regions-poses a significant problem,
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GT: Disaster
q Predict: Disaster
Shifted Image

Attention C:::;:r:;:g q ‘ GT: Non-disaster
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Chapter 4 Chapter 3
GT: Disaster
Predict: Disaster

Figure 1.4: The research goal to detect the disaster from the image.

especially when the disaster region is too small to detect. The proposed archi-

tecture incorporates re-targeted attention to address this issue, as represented

in Figure

1.3 Statement of the Problem

e Detecting disaster scenes using simple pixel-based information, such as
color, texture, or intensity, presents significant challenges. It is diffi-
cult to distinguish disaster-related objects from non-disaster objects in
a natural scene using these features alone. The visual similarities be-
tween natural objects that are part of a disaster and those that are not
can lead to misclassification, making it hard for conventional pixel-based
methods to identify disaster scenarios accurately.

e Disaster-related objects might be situated in the background, causing
the model to focus on other, more prominent objects instead of the
primary target, the disaster event. Prioritizing the focus of a machine
learning model on these disaster events is one of the most difficult chal-
lenges. Ensuring that the model accurately identifies and prioritizes the
relevant features associated with disaster scenarios, despite their often
subtle or background presence, requires advanced techniques and careful
tuning.

1.4 Research Questions

e The first question is: How can we extract more meaningful features from
images? Pixel-based techniques often fail to accurately classify scenes
due to a lack of sufficient information and features, which can lead to
misunderstandings between non-disaster objects and disaster objects.
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To improve the accuracy of scene classification, it is essential to develop
methods that can capture and utilize more meaningful and contextually
relevant features from the images.

e The second question is: How can we detect disaster-related objects that
differ from environmental objects, given that these disaster objects are
natural objects that have been misplaced in the environment? This
challenge arises because disaster-related objects often have similar visual
characteristics to non-disaster objects, making it difficult to distinguish
between them using conventional detection methods.

e The third question is: How can we prioritize the model’s attention?
Computer vision models that utilize the features extracted from CNN
layers tend to focus on the significant objects in a scene. However, a
scene can contain multiple objects, and ensuring that the model ap-
propriately prioritizes its attention is crucial. Developing techniques to
guide the model’s focus towards the most relevant objects, especially in
complex scenes with multiple elements, is a significant challenge.

e The fourth question is: How can we select the optimal mask to shift at-
tention? Utilizing masked regions to direct the attention of a machine-
learning model is a viable approach. However, the masked regions can
vary significantly in terms of aspects such as shape and location. De-
termining the optimal characteristics of these masks to effectively shift
the model’s attention to the most relevant areas is a complex task that
requires careful consideration and experimentation.

1.5 Philosophy

Considering the research questions from the previous section, the author has
established guiding philosophies to enhance the robustness of disaster detec-
tion. These philosophies encompass four main topics as follows in Figure

First, meaningful features from the images should not be limited to pixel-
based information but should include explainable features in human languages,
such as captions. Individuals may perceive and describe the same image dif-
ferently in each scene based on their unique experiences. For this reason,
captions generated from images become a valuable feature for detection, pro-
viding contextual and semantic information that pixel-based methods alone

may miss.
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Figure 1.5: Philosophies of research

Second, disaster objects in the environment often resemble non-disaster
objects. Captions can provide detailed explanations, offering more meaningful
Natural
objects in normal situations typically do not exhibit these action features,

features that capture the action-related aspects of these objects.

allowing for effective classification based on this information. By leveraging
the additional context provided by captions, it becomes possible to distinguish
disaster objects from their non-disaster counterparts.

Third, conventional computer vision techniques focus on the center of the
scene, major objects in the foreground, or large objects in the images. To
effectively detect the target object, such as a disaster region, it is necessary to
use masked images to re-target the detection towards the significant region.
By applying masks during the initial attention phase, the model’s focus can
be directed away from less relevant areas and towards the critical regions that
indicate the presence of a disaster.

Fourth, masking the image involves various parameters, such as the shape
and location of the masked regions. The model would be trained using atten-
tion captioning techniques to optimize these masked regions. This approach
allows the model to adjust the masks to the optimal size and position for the
relevant region. By fine-tuning the masked areas during training, the model
can better focus on the suitable regions, improving the overall accuracy and
effectiveness of disaster detection.
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Figure 1.6: Dissertation overview

1.6 Outline of the Dissertation

The overall content of this dissertation is represented in Figure The
dissertation consists of five chapters, which are briefly described as follows:

1. Chapter 1: Introduction. This part begins with the background of dis-

aster detection, traditionally in the computer vision field, and focuses
on computer vision studies. Moreover, this chapter contains the prob-
lem statement, research questions, philosophy, and contribution of the
proposed method.

. Chapter 2: Literature Review. This part reviews previous studies on
disaster detection, developments in computer vision such as Convolu-
tional Neural Networks (CNNs), Image Captioning, and the Attention
mechanism from Transformer architectures.

This part will
explain the approach to obtaining meaningful information and features

. Chapter 3: Image Captioning Features in Attention.

from the image; Image Caption Features could provide more detailed
actions from the scene situation than conventional methods.
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4. Chapter 4: Shifted Attention. This part will explain the novel approach
to retarget the model in order to detect target regions that are in the
background or quite small in the scene.

5. Chapter 5: Conclusion. This chapter summarizes the major findings,
contributions, and suggestions for future work.






CHAPTER 2

Related Work

This chapter presents related works on three main aspects crucial for this
dissertation’s core development: disaster detection, image captioning, and
attention mechanisms in transformers. Each area plays a significant role in
advancing the methodologies and approaches discussed in this research.

2.1 Disaster Detection

Nowadays, computer vision is employed in various challenges to automate de-
tection (Lis et al.l |2019] (Ofli et al., 2021} |Krizhevsky et al.| 2012} Johnson
et al.}|2016)). In disaster events, monocular investigation from aerial imagery
is used to detect disaster regions for planning and recovery efforts (Tantanee
et al.|[2018). Images captured from aerial investigations by Unmanned Aerial
Vehicles (UAVs) or helicopters are processed to identify disaster regions us-
ing various computer vision methods, such as classification, detection, and
segmentation.

The challenge in disaster detection arises because the characteristics of
disaster-related objects are often similar to those of natural objects. For
instance, a landslide involves soil and rocks sliding down from high ground
and causing damage to constructions. It is difficult to distinguish between
ordinary soil and rocks and a landslide disaster, especially if the event occurs
in a countryside area. This similarity makes it challenging for conventional
detection methods to identify and classify such events accurately.

(Offi et al.; |2021) and (Ofli et al.| 2022 use conventional techniques to
detect disaster regions from side-view images. The result using ResNet50,
illustrated in Figure[2.1] is one of the most popular methods for classification
challenges. However, there are limitations when detecting landslide disasters
in scenes using the architecture of CNNs that rely solely on pixel features. In
the case of landslides, disaster-related objects often resemble natural objects,
making it quite challenging for these methods to detect and differentiate them
accurately.

Since pixel-based techniques receive limited features from images’ color,
texture, and intensity, more is needed for classifying disaster regions. There-
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Figure 2.1: Confusion metric from landslide classification using ResNet50 (Ofli et al.| 2021).

fore, using a model incorporating more features can improve the accuracy of
disaster detection. In this case, captions from the images can provide more
meaningful information, enriching the feature set used for disaster classifi-
cation. The model can better differentiate between disaster-related objects
and similar natural objects by leveraging the descriptive context provided by
image captions.

2.2 Image Captioning

Recently, (]Johnson et al.[, |2016[) established an image captioning method to

explain the situation within a scene. This method consists of two parts: the
image encoder, which uses Convolutional Neural Networks (CNNs), and the
caption generator, which employs Recurrent Neural Networks (RNNs).
Image captioning provides more detailed information about the content
of images by generating sequential labels rather than the single labels used

in classification methods. (Johnson et al.,2016) demonstrates state-of-the-art

performance in extracting detailed information from images through dense im-
age captioning, as represented in Figure[2.2] This approach yields meaningful
features from the image by generating descriptive captions.

Image captioning utilizes an encoder part from CNNs to extract features
and generates related captions from these encoded features using RNNs. This
method provides more detailed features within the image than the single-word
labels generated by image classification or detection methods. Therefore, com-
bining image captioning with pixel-based conventional techniques presents a
promising approach to addressing the disaster detection challenge. Integrating
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Figure 2.2: Dense image captioning (Johnson et al.||2016).

the rich, descriptive information from image captions with traditional pixel-
based methods makes it possible to achieve more accurate and robust disaster
detection.

2.3 Attention in Transformers

Computer vision techniques tend to detect objects located in the middle, fore-
ground, or those that are large within a scene. This detection characteristic
can lead to misdetection if the primary target objects are in the background
or are very small within the scene. As a result, critical disaster-related objects
might be overlooked, which can compromise the effectiveness of the detection
process.

More recently, (Vaswani et al.| 2017) established the state-of-the-art trans-
formers architecture to address natural language processing challenges using

the sequence-to-sequence method. Moreover, in the field of computer vision,

transformer techniques have been applied as well. (Dosovitskiy et al.l [2020)

used the encoder block of transformers to extract valuable features through
attention mechanisms. These features are then passed through a Multi-Layer
Perceptron (MLP) to classify the image. This approach leverages the power
of attention in transformers to enhance feature extraction and improve clas-
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Figure 2.3: The object detection using R-CNN and Fast-RCNN.

sification performance.

Nevertheless, transformers still exhibit similar characteristics to conven-
tional methods in that they detect objects located in the middle, foreground,
or large within a scene. This limitation can lead to difficulty identifying
smaller or background objects, which is often crucial in disaster detection
scenarios.

Object detection methods (Girshick et al.l 2014 |Girshick| 2015) use the
state-of-the-art techniques to generate anchor boxes, as illustrated in Fig-
ure before selecting the ones with the highest Intersection over Union
(IoU) scores. After this selection, the final anchor boxes are refined using the

Non-Maximum Suppression technique to fit the objects, resulting in precise
detection boundaries optimally.

Therefore, the state-of-the-art method for generating anchor boxes has
inspired the author to use masked regions in the image to shift attention in
this research. By applying the concept of anchor boxes to masked regions,
the aim is to direct the model’s attention more effectively towards areas of
interest, improving the accuracy of disaster detection.



CHAPTER 3
Image Captioning Features in
Attention

3.1 Introduction

Conventional computer vision techniques detect objects in images by analyz-
ing surrounding pixels to extract information such as texture, intensity, and
color (Ofli et al.| [2021; |Li et al.}|2022{|Di Biase et al., [2021). However, relying
solely on these simple image features can be quite challenging when the object
in question is related to a disaster. Disasters involve misplaced natural objects,
making them difficult to distinguish using traditional pixel-based methods. In
contrast, text tokens generated from image captioning (Johnson et al.| |2016)
can provide more detailed information about the actions and context of the
related objects in the scene, enhancing the detection capabilities.

Computer vision has undergone significant advancements over the years,
with Convolutional Neural Networks (CNN) emerging as the most widely
used architecture for addressing various challenges in the field (Vaswani et al.|
2017). Numerous techniques have been developed for different purposes, such
as semantic segmentation, object detection, image classification, and anomaly
detection. These include U-Net (Meena et al., |2022} |Soares et al., 2020} |Liu
et al.} 2020), ResNet50 (Ofli et al.l|2021,12022), VGG16 (Li et al.l|2022), and
others (Can et al.; [2019). Anomaly detection has found applications in var-
ious domains, including the automotive industry and inspection tasks. For
example, rescue robots employ sensors or monocular cameras to detect ob-
stacles (Akamine et al.||2022)), enabling them to calculate efficient and safe
paths for navigation. The majority of anomaly detection research focuses on
identifying unseen or abnormal objects using Generative Adversarial Networks
(GAN) for image re-synthesis. These synthesized images are then compared
with semantic maps, which are typically generated using CNN-based segmen-
tation techniques (Lis et al.||2019] Kamoi et al., |2021} |Ohgushi et al.||2020;
Di Biase et al.;[2021;Chan et al.,|2021).

In recent years, the computer vision field has increasingly adopted Natu-
ral Language Processing (NLP) techniques, particularly the attention mask
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(Vaswani et al.||2017), to address various challenges. The performance of these
NLP-inspired approaches has surpassed that of traditional neural networks.
Since 2021, the attention mask or transformer models have gained significant
popularity in computer vision challenges. However, existing literature on pre-
dicting disaster images has primarily focused on pixel-based features for image
classification, as represented in Figure (Ofli et al.}|2022, 2021} Pennington
et al.} 2022 [Tanatipuknon et al.| 2021).

Abnormal scenes are unusual situations that deviate from our daily experi-
ences. These atypical occurrences can have detrimental effects on our regular
activities. One such example is landslides, which commonly take place in
areas with steep slopes. Landslides can cause significant disruptions to trans-
portation and infrastructure, such as buildings, highways, and roads. In the
context of abnormal detection, particularly in the case of landslides, identi-
fying the affected regions is crucial for decision-makers. By analyzing image
data captured by unmanned aerial vehicles (UAVs), they can assess the extent
of the damage and develop appropriate plans for recovery and reconstruction
in the impacted areas.

In addition to the development of anomaly detection techniques, researchers
have also focused on comparing the generated images from various methods
with re-synthesized, semantic, and original RGB images to identify anomalous
objects appearing in the scene (Lis et al.l|2019; |Kamoi et al.|2021; Ohgushi
et al.|[2020; Di Biase et al.;[2021;/Chan et al.}|2021). However, anomaly detec-
tion in disaster scenarios, particularly in the case of landslides or mudslides,
presents significant challenges and complexities. Landslides occur when soil
loses its stability on steep slopes (Nefeslioglu et al.l |2008) and subsequently
falls down the mountainous area. This phenomenon poses difficulties for mod-
els attempting to segment or classify the image accurately. In such cases, the
model may incorrectly identify the scene as ordinary or misclassify the soil
and forest as non-anomalous regions instead of recognizing the presence of a
landslide or mudslide. For instance, when analyzing an anomalous image of a
landslide where soil and trees have slid onto a road, the segmentation process
may classify the landslide region as trees or forest. Conversely, in a normal
image, the model might correctly define the objects as soil or water. This dis-
crepancy highlights the challenges associated with accurately detecting and
classifying anomalies in complex disaster scenarios.

Classifying images is a traditional problem that the author has faced
and solved quite well. For instance, the author have successfully classi-
fied various types of leaves (Sardogan et al.| |2018) and animal classification
(Trnovszky et al.l |2017), the classification of natural disaster-related prob-
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Figure 3.1: The different between Conventional CNNs, Transformers in ViT, and Image
Captioning Features Transformers.

lems, such as flooding, landslides, and mudslides, remains a significant chal-
lenge. Researchers often utilize Unmanned Aerial Vehicles (UAVs) to investi-
gate these images for evaluating and responding to rescue victims or to recover
damaged areas. However, the precision and accuracy of these methods are not
yet satisfactory (Ofli et al.| 2022 2021; Pennington et al., [2022), due to the
images being derived from natural objects that consist of familiar elements

encountered daily, such as soil, rocks, trees, water, or rivers. Researchers
attempt to classify these situations by training models on ordinary and irreg-
ular datasets (Ofli et al.||2022|2021} Pennington et al.,2022) using computer
vision techniques, but they still struggle to achieve effective classification.

The integration of CNN architectures and GAN-based approaches has
revolutionized anomaly detection, allowing for more accurate and efficient
identification of irregular or unexpected elements in various scenarios. By
leveraging the power of deep learning and generative models, researchers and
practitioners can develop robust systems capable of detecting anomalies in
real-time, thereby enhancing safety, quality control, and decision-making pro-
cesses across a wide range of applications.

To address the challenges of accurately classifying complex or ambigu-
ous images, the author proposes a novel method that combines image-to-text
techniques with classification algorithms. By generating text descriptions of
images, this approach aims to achieve more precise and reliable image classi-
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fication results. The generated text descriptions can provide valuable insights
into the underlying image features that contribute to the classification de-
cision, making the process more intuitive and interpretable. The proposed
method offers several advantages over traditional pixel-based classification
techniques. By utilizing image-to-text methods, more meaningful features
can be extracted from the images, leading to more robust and accurate classi-
fication results. Additionally, the generated human-readable text descriptions
enhance the interpretability of the classification process, providing researchers
with a better understanding of the factors influencing the classification deci-
sion.

Furthermore, our proposed method has several advantages over traditional
pixel-based classification techniques. The author can extract more meaningful
features from the images using image-to-text methods, leading to more robust
and accurate classification results. Moreover, our method is more intuitive, as
it generates human-readable text descriptions that can provide insights into
the underlying image features that contribute to the classification decision.

Furthermore, our proposed method has several advantages over traditional
pixel-based classification techniques. The author can extract more meaningful
features from the images using image-to-text methods, leading to more robust
and accurate classification results. Moreover, our method is more intuitive, as
it generates human-readable text descriptions that can provide insights into
the underlying image features that contribute to the classification decision.

The author first constructed a dataset from the British Geological Survey
(Ofli et al.l 2022} 2021} [Pennington et al., |2022), which provided us with
the landslide images dataset. The author then labels the dataset with text
caption in each image as input for the image captioning model. After that,
I will use the text caption for the text classification model. Moreover, this
technique is state-of-the-art that use language which could explain more detail
than pixel-based to make machines understand the surrounding situation and
classification anomaly images. Our main contribution is threefold:

e The author creates the image captioning dataset. The dataset includes
image captions for the image captioning model and the images from
YouTube and Google combined with the British Geological Survey dataset.

e The author proposes to use the image captioning model to generate the
text caption to explain the detail of the images instead of using the
traditional models to classify the landslide images.

e The author presents the performance of our framework over this new
dataset. Furthermore, I then compare it with the traditional method
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such as ResNet50 (Ofli et al.}|2021) and Vision Transformer (ViT) (Doso-
vitskiy et al.; [2020). This will evaluate our framework, Convolutional
Neural Networks (ResNet50), and Transformers model, which are dif-
ferent frameworks.

3.2 Related work

The anomaly prediction challenge is a challenge in the computer vision field.
Recently, most research in anomaly prediction mainly focuses on anomaly
object detection, which uses for inspection. Anomaly detection uses gener-
ated images to compare with the original images to find strange things. In
this research, I first focus on anomaly classification of landslide disaster im-
ages. Therefore, I aim to study anomaly prediction, image-to-text, and image
classification.

3.2.1 Anomaly Prediction

Most research in anomaly detection aims to find irregular objects or defects
on the target stuff. In many related works, they tried to establish the original
images without strange objects or defects and compared the generated images
with the original images (Lis et al.;|2019)). In the preliminary proposal shows
the anomaly detection using the RGB images into the CNN for semantics
images. Moreover, the result from CNN would be an input for the Generative
Adversarial Networks (GAN) to generate the RGB images in which there
are no anomaly objects or flaws on the target objects. They assumed that
the semantic maps could not detect abnormal objects well in this situation.
Lastly, discrepancy networks would compare the original, semantic, and re-
synthesized images to find the different areas that will be defined as anomaly
objects. For this reason, the anomaly objects should be smaller than the
circumstance objects in the images, which could make the semantic maps
quite clear and without the strange objects. Otherwise, the re-synthesized
images would generate the RGB images with the irregular objects, and I then
could not discriminate between generated images and original images.

After the anomaly detection using generated images to compare the dis-
crimination (Kamoi et al., 2021; |(Ohgushi et al.; |2020; Di Biase et al.| |[2021;
Chan et al.| |2021), they used the various layers to extract features in the
images to discriminate with the original image. There are many feature ex-
traction techniques, such as softmax entropy, softmax distance, and perceptual
difference; they are then compared with the re-synthesized or original images
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to specify the irregular objects. Anomaly detection is also a robust challenge
in the medical field, tried to find the abnormal tissues from grayscale images.
This research uses GAN to train only standard image dataset mapping with
a Z-uniformly vector (Schlegl et al., |2017). This mentioned study aims to
generate the image to be the typical image. Using the discriminating func-
tion, they then use the generated images to compare with the original images,
which are defined as the anomaly area for irregular tissues. Most anomaly
research still aims to generate the usual situation of images before comparing
the generated images with the original images to specify anomaly regions.

3.2.2 Image to Text

Image captioning, also known as image-to-text or visual captioning, is the task
of generating a textual description for a given image. This area of research has
gained significant attention in recent years due to its potential applications
in various fields, including computer vision, natural language processing, and
robotics. One of the seminal works in image captioning is the "neural image
caption" (Xu et al.| |2015), which employed a convolutional neural network
(CNN) to extract visual features from images and a long short-term memory
(LSTM) network to generate textual descriptions. The model was trained
on the Microsoft Common Objects in Context (COCO) dataset and achieved
impressive results in terms of BLEU-4 scores, which measure the similarity
between the generated captions and the ground truth captions.

Since the introduction of the neural image caption, numerous studies have
been conducted to further improve the performance of image captioning mod-
els. For instance, Zhu et al. (Zhu et al.| |2018) proposed a self-attention
mechanism for image captioning, which allowed the model to selectively focus
on different image regions while generating captions. This approach enhanced
the model’s ability to capture and describe the most relevant aspects of the
image.

Furthermore, researchers have explored the use of pre-trained language
models in image captioning. Torrey and Shavlik (Torrey and Shavlik} |2010)
utilized a transformer-based language model that was pre-trained on large-
scale text and image data to generate captions. The results demonstrated that
the model outperformed previous state-of-the-art models on various image
captioning benchmarks, highlighting the effectiveness of leveraging pre-trained
language models in this task.

In conclusion, image captioning is a rapidly evolving field of research, and
deep learning techniques have revolutionized the way textual descriptions are
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generated for images. While significant progress has been made, generating
detailed and specific captions remains a challenging task. However, by lever-
aging advanced techniques such as transformer-based models, researchers are
working towards developing more sophisticated and accurate image caption-
ing systems. The better the generated caption texts are, the better the results
of image classification will be, as the captions provide valuable semantic in-
formation that can aid in the classification process.

3.2.3 Image Classification

Image classification, a fundamental problem in computer vision, involves as-
signing predefined labels to images. This task has numerous applications in
various fields, including medicine, surveillance, and autonomous driving. The
most advanced models currently employ deep convolutional neural networks
(CNNs) (Krizhevsky et al.,|2012{ |Simonyan and Zisserman) 2014 Dhruv and
Naskar|2020) with multiple layers to extract hierarchical features from images,
as illustrated in Figure in the above part. These models have achieved
significant improvements in image classification performance. Recently, re-
searchers have investigated the use of attention mechanisms (Vaswani et al.,
2017; |Dosovitskiy et al.; [2020) to further enhance image classification results.
Additionally, transfer learning techniques have been explored to improve the
performance of image classification models when the amount of labeled train-
ing data is limited. A common approach is to use pre-trained models, such as
those trained on the ImageNet dataset, and fine-tune them for specific tasks
(Simonyan and Zisserman, |2014)).

While deep learning techniques have revolutionized the approach to solv-
ing image classification problems, classifying features in natural environment
images, particularly in disaster cases such as landslides and flooding, remains
a challenging task. This is especially true for bird’s-eye-view images captured
by drones, as shown in the proposed framework in Figure in the below
part. These images often contain similar objects within the scene, making it
difficult to accurately distinguish and classify them.

3.3 Methodology

In this section, the author would like to explain this in three parts. First, the
dataset I used in this study came from the British Geological Survey (BGS),
and the image data was extracted from the frame in a YouTube video. Next, I
explain the image-to-text or image captioning model; The author used Vision
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Table 3.1: The statistics of our dataset.

Data source | Training | Validation | Testing | Total Type
YouTube 44 12 13 69 Anomaly
BGS 1,690 200 211 2,101 | Anomaly
Sum 1,761 205 215 2,170 | Anomaly
Kaggle 3,514 400 405 4,319 | Normal
Sum 3,514 400 405 4,319 | Normal
Total 5,280 605 620 6,489 Both

Encoder Decoder (VED) model-based transformer model. Then, I classified
the image using text explanation instead of image features classification which
part two and three are represented in Figure

3.3.1 Dataset

In this study, I will utilize an image dataset and label each image with a
text caption. The image dataset is sourced from three different origins, as
shown in Table Firstly, I collected images from YouTube videos related
to landslides and extracted frames from the video data. As a result, the
YouTube dataset consists solely of anomaly images before labeling them with
text captions in the subsequent stage. The second data source is the British
Geological Survey (BGS) (bgs| 2023), which provided landslide images that I
then labeled with text captions. Lastly, the common scene image dataset was
obtained from Kaggle, which provided a dataset of 4,319 images, as mentioned
in Table. It is important to note that the datasets from YouTube and the
British Geological Survey (BGS) contain landslide or abnormal images, while
the Kaggle dataset consists of regular scene images.

These three data sources were employed to train, validate, and test the
models in our framework. As shown in Table the anomaly images from
YouTube and BGS comprise 2,170 images, while the typical images from Kag-
gle amount to 4,319 images. The author labeled each image in this dataset
with a text caption, using common words such as trees, soil, rocks, water,
river, or lake. Furthermore, I utilized these object words to describe the sur-
rounding objects and their positions, as this approach would facilitate the
model’s understanding of the scene’s context.
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Figure 3.2: Our network architecture.

3.3.2 Image Captioning

Image captioning is achieved by using a Transformer model within a Vision
Encoder-Decoder (VED) (Dosovitskiy et al.|[2020; Rothe et al.||2020;|Li et al.|
2021)) framework, which integrates computer vision and natural language pro-

cessing methodologies. Vision Encoder-Decoder (VED) uses image features
to generate explainable features, such as text captions, before the classifica-
tion stage. This approach leads to more meaningful features for classifying
natural objects. This approach generates a textual depiction of an image.
The framework consists of two primary components: a visual encoder and a
textual decoder. The encoder receives an image as input and transforms it
into a collection of feature vectors, which are subsequently transmitted to the
decoder. The decoder utilizes these vectors to produce a sequence of words
by employing a word embedding that includes the word’s position, resulting
in a sentence that describes the image as a whole. The transformer model is
employed in the decoder to produce the textual depiction. The process entails
instructing the model using a substantial dataset consisting of pairs of images
and their accompanying textual descriptions, with the aim of comprehend-
ing the connections between the visual characteristics of the images and the
related written descriptions. (Zhou et al.|2020).

During the training process, The datasets for Disaster and Non-disaster
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were balanced because the number of images in each dataset was quite differ-
ent. then the model acquires the ability to generate a written caption that
is closely related to the image. This model utilizes an attention mechanism,
enabling it to concentrate on particular portions of a picture when creating
each word. The author applied transfer learning by utilizing a pre-trained
Vision Transformer (ViT) model (Dosovitskiy et al.| |2020) to fine-tune the
encoder part, while the decoder part of the data set was enhanced using Bidi-
rectional Encoder Representations from Transformers (BERT) (Devlin et al.|
2018). The two components are depicted in the upper section of Figure

3.3.3 Text Classification

In the lower section of Figure the process of text classification using
a Transformer model in Bidirectional Encoder Representations from Trans-
formers (BERT) consists of using a pre-trained Transformer model to encode
the text input, followed by fine-tuning the model for a particular classification
task. Initially, the BERT model performs pre-training on a large dataset of
text using an unsupervised learning methodology. During the pre-training
phase, the model learns the ability to anticipate the missing words in a sen-
tence and determine the relationship between two sentences. Pre-training
allows the model to convert text input into a comprehensive contextualized
representation that captures the meaning and connections between words in
the text (Zhou et al.;|2020)).

The BERT model, which was previously trained, is adjusted to perform a
particular classification task by using a small dataset with labeled examples
for text categorization. In this case, I classify the caption text into two distinct
types: normal and abnormal. The final layer of the model is substituted with
an output layer. Subsequently, the complete model is trained using the labeled
data. During the training process, the model’s parameters are adjusted in
order to minimize the loss. The author employed text captioning to refine
the BERT pre-trained model specifically for common scene caption text and
landslide caption text.

The fine-tuned BERT model encodes incoming text caption inputs into a
sequence of contextualized representations. It then uses a task-specific output
layer to make predictions and classify the input. The use of a Transformer
model in BERT for text classification has achieved exceptional performance on
diverse benchmark datasets by leveraging on the pre-trained model’s capacity
to encode contextualized text representations. Thus, I determine the text
caption from the VED model discussed before in order to classify scenes or
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images as either standard or abnormal.

3.4 Experiments

3.4.1 Settings

The author divided the dataset into 80%, 10%, and 10% for training, val-
idation, and test splits, respectively. The author utilized the Transformers
library from Huggingface to construct our model. The VED model utilized a
pre-trained ViT model as an encoder and BERT as a decoder component. In
addition, I utilized the ViT pre-trained model as the feature extractor. The
loss function used was binary cross-entropy, which was applied to the score.
The vocabulary size was 50, 256 and the batch size was 4. The author utilized
a pre-trained BERT model with an Adam optimizer for text categorization.
The learning rate and batch size were configured to 10 e-5 and 16, respectively.
Ultimately, I labeled the VED section using visual representations and textual
explanations that detail the locations of the nearby objects. Subsequently, 1
classified the text captioning in the concluding section.

In addition, I set up the image classification model (ResNet50) with a
learning rate of 10e-4 and a weight decay of 10e-3, as stated in the source
(Ofli et al}2021). The ResNet50 model previously served as the standard for
evaluating landslide classification issues. The author calculated the F1-score,
as well as the accuracy, precision, and recall. The comparatively high recall
rates suggest that the performance for detecting a landslide or massive object
in the image could be exceptional.

3.5 Result and Discussion

3.5.1 Image Captioning Prediction

The image captioning model the author trained by fine-tuning a BERT model
for decoding and a ViT model for encoding was able to accurately predict the
text caption. In this research, a limited number of tokens were used to predict
215 images from the BGS and YouTube datasets, out of a total of 405 images
in the regular scene testing set from Kaggle and the landslide scene. During
the training of the model, I set the token prediction limit to be the same as
the maximum token. As a result, this text caption is able to accurately depict
the position of objects in the given environment.
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Figure 3.3: AUC between ResNet50 (Ofli et al.||2021) and our proposed framework.

3.5.2 Classification Prediction

The classification issue of landslides is complex due to the similarity between
items in normal images and landslide phenomena. Previous studies employed
convolutional neural networks to address this issue. For this investigation,
I employed ResNet50, a convolutional neural network renowned for its abil-
ity to classify landslide photographs. In this result consists of the proposed
method using VED from image to caption, ResNet50 training from scratch,
and ResNeth0 fine-tuning from ImageNet pretrained model. According to Ta-
ble this experiment uses the testing dataset for Disaster (landslide) images
from YouTube and the British Geological Survey (BGS), and for Non-disaster
(non-landslide) images from Kaggle. As depicted in Figure the Receiver
Operating Characteristic (ROC) curve of ResNet50 exhibits a 45-degree angle
at the center line, while the proposed method is positioned above the middle
line. In addition, the ResNet50 model has an Area Under the ROC Curve
(AUC) of 0.50, indicating that it is unable to differentiate between a normal
image and an image depicting a landslide in the context of landslide classifi-
cation. However, our suggested model has an Area Under the Curve (AUC)
value of 0.94. This indicates that the model is able to accurately differentiate
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Table 3.2: The performance for ResNet50 (Ofli et al.}|2021) and our proposed framework.

Method Accuracy | Precision | Recall | F1-Score
Fine-tune (Ofli et al.,|2021) 67.58 67.58 100.00 | 80.65
Scratch (Ofli et al.,|2021) 71.61 98.81 70.77 82.47
Our method 95.00 96.19 96.42 96.31

between normal images and landslide images with a 94% success rate. Hence,
I may infer that our new approach outperforms the existing methods in the
task of classifying landslides.

In addition, I developed the confusion matrix to determine the accuracy,
precision, recall, and Fl-score for evaluating the performance of each ap-
proach. The author used the normal and landslide datasets to do fine-tuning
on the ResNetb0 model in ResNetb0. The author modified the ResNet50
model by combining a dense layer consisting of 64 units, utilizing the pre-
trained ImageNet model. The author have fine-tuned the final two dense layers
to classify photos into two categories: common images and abnormal images.
The outcome shows an accuracy rate of 67.58%, indicating that ResNet50 was
able to accurately predict just 67.58% of the data in the table refer to table
Regarding other indices, the precision is 67.57% and the recall is 100.00%.
The precision refers to the accuracy of the model in distinguishing true posi-
tives (TP) from false positives (FP), with a ratio of 67.58%. The recall refers
to the adjustment of the model’s true positive (TP) to false negative (FN)
ratio, which is 100.00%. The F1-score is the mean value of the single metric
that combines precision and recall, which is 80.65%. Nevertheless, I must
mention that the ResNet50 model, which I used for landslide classification,
is unable to differentiate between two classes with an Area Under the Curve
(AUC) support. This is because I just fine-tuned the last two layers, and the
ImageNet pre-trained model is not adequate for landslide classification. Al-
ternatively, I attempted to compare the performance of the ResNetb0 model
trained from scratch, which showed superior results as indicated in the table.
The results may be found in Table with an Area Under the Curve (AUC)
value of 0.57.

Furthermore, our proposed technique provides confusion matrix indices
with accuracy, precision, recall, and F1-score values of 95.00%, 96.19%, 96.42%,
and 96.31%, respectively. As a result, our approach demonstrated improved
performance in classifying familiar and landslide scenarios. Therefore, our
proposed method utilizes computer vision to convert images into text, al-
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lowing us to determine the position of objects mentioned in the text caption.
Additionally, we utilize sentiment analysis to predict the classification of land-
slides, which can be difficult due to the similarities between landslide regions
and objects such as land or trees.

The result in Figure[3.4] (left) and Figure[3.4] (right) show that the caption
from VED explains the correct aspect, making the classification a normal case.

clear river with snowy hill alongside snowy mountain behind the tree

Figure 3.4: The result in normal class, and the model predicted to normal.

Nevertheless, our proposed solution, which utilized an image captioning
technique, may produce incorrect text captions in both false negatives and
false positives. For example, Figure (left) illustrates that the text of the
caption states "soil and rocks fall to the pond", yet the actual image displays
the presence of the pond along with soil, rocks, and trees in its surrounding.
Similarly, Figure (rifgt) displays the outcome of text captioning as "soil
slide down from the hill", but the actual image shows a mountainous region
with trees.
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soil and rocks fall down to the pond soil slide down from the hill

Figure 3.5: The result in normal class, but the model predicted to abnormal.

For false positive scenarios, Figure(left) indicates that a guy witnesses
the landslide at the high ground in the mountain region, but the model could
only inform us that "man on the hill." Thus, it can be inferred that the
model is capable of capturing only the primary items. Furthermore, the model
attempts to construct the primary caption due to the constraint of prediction
tokens, which results in the model not producing a detailed textual phrase.
In contrast, in Figure 3.6 (right), the amount of soil from the landslide on the
road is rather minimal.

RLLET

man on the hill building along the road

Figure 3.6: The result in abnormal class, but the model predicted to normal.

As a result, the model primarily emphasizes the larger items rather than
the smaller ones when generating the text caption. To enhance the model,
the author can optimize its performance by expanding the prediction token
limit. Furthermore, it is imperative to include a more comprehensive and
specific description in the caption label in order to enhance performance in this
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particular scenario. The figures representing the true positive are displayed
in Figure (left) and (right), while the figures representing the true

negative may be seen in Figure[3.7] (left) and [3.7] (right).

damaged hill caused by soil slide soil slide down from the hill

Figure 3.7: The result in abnormal class, and the model predicted to abnormal.

3.6 Conclusion

The author have presented a new method for image classification, specifically
in the context of landslides. The challenge involves accurately differentiating
between landslides and natural objects like dirt, rocks, and trees, which poses
a significant difficulty in classification. The author utilized the vision encoder-
decoder approach for generating image captions. This approach utilized pre-
trained Vision Transformers (ViT) as the encoder and Bidirectional Encoder
Representations from Transformers (BERT) as the decoder. Subsequently,
the author employed the text caption to categorize the feeling of the visual
scene. Furthermore, the author applied the ResNet50 model for landslide
picture classification, which had been previously utilized as a benchmark in
other studies.

The AUC analysis shows that ResNet50 is unable to differentiate between
normal and landslide photos. Our method achieved a 94% accuracy in dis-
tinguishing between normal and landslide photos. In addition, the ResNet50
model, after fine-tuning with ImageNet, achieved an accuracy of 67.58%, pre-
cision of 67.58%, recall of 100.00%, and F1-score of 80.65%. The ResNet50
model, trained without using pre-existing weights, achieves an accuracy of
71.61%, precision of 98.81%, recall of 70.77%, and Fl-score of 82.47%. Our
suggested model achieves accuracy, precision, recall, and F1-score of 95.00%,
96.19%, 96.42%, and 96.31%, respectively. These performance metrics surpass



3.7. Contribution 31

those of ResNetb0. However, the proposed method is unable to categorize pho-
tos that contain objects with complex locations. ResNet50, which the author
trained from scratch, is more effective at classifying landslide photographs
compared to ResNethH0 fine-tuned using ImageNet.

In addition, the model mainly highlights the key objects to clarify the
surrounding circumstances rather than the small details. For instance, the
view includes trees, rocks, and dirt surrounding the pond. However, the cap-
tioning text refers to the entire scene as falling down to the pond, as shown
in Figure Furthermore, it is worth noting that while the landslide takes
place at the highest point of the mountain region, the accompanying image in
Figure [3.6] depicts a guy standing atop a hill. This outcome illustrates that
the model primarily prioritizes the principal things in the image as the central
figures of the scene, rather than emphasizing the smaller objects and intricate
details of the image. Based on the outcome, employing picture captioning
for the categorization of intricate sceneries yields superior performance and
enhanced efficiency compared to the pixel-based approach. Furthermore, I
might enhance the performance by augmenting the constraint on text cap-
tioning tokens and providing more comprehensive labeling for captioning the
scenes.

3.7 Contribution

The contributions of the work presented in this chapter were:

e Creating the image-caption dataset for Vision Encoder Decoder image
captioning model.

e Extract features from Image caption from Vision Encoder Decoder (VED)
to capture the action features of natural scenes helps to distinguish be-
tween non-disaster and disaster scenes.

e Classifying disaster and non-disaster scenes based on the action features
obtained from the Vision Encoder Decoder (VED) model.






CHAPTER 4

Shifted Attention

4.1 Introduction

Traditional image classification tasks usually require determining only one
category for each image, as mentioned in several research papers (Sardogan
et al.}|2018][Trnovszky et al.l|2017). Several methods in this field have utilized
neural networks to extract image characteristics, thereby aiding the classifi-
cation process (Meena et al., |2022; |Soares et al.| 2020} [Liu et al.l 2020} |Ofli
et al.l|2021}2022; [Li et al.; 2022} Can et al.||2019). Following the progress
in image classification, object detection has become a crucial technique that
aims to find more precise classes inside each region of an image. The use
of anchor boxes is utilized to precisely define the bounding boxes for target
object classes in object detection, as described in the works of (Girshick et al.,
2014; |Girshickl 2015} |Ren et al. 2015). Notwithstanding these progressions,
the task of detecting landslides, floods, and wildfires in nature continues to be
difficult. The challenge commonly arises due to the frequent indistinct look of
affected areas, such as landslide zones resembling regular soil or flooded areas
reflecting the appearance of ponds or lakes (Ibrahim et al.| 2021; |Hernandez
et al.} 2022), which can result in potential misclassification.

However, the development of image captioning has revealed a more subtle
aspect of computer vision. This extends beyond basic classification to en-
compass the representation of the surrounding context of an image. In the
past, image captioning approaches typically required extracting features from
images using Convolutional Neural Networks (CNNs) and then generating tex-
tual captions using Recurrent Neural Networks (RNNs) (Johnson et al.|[2016).
In recent times, the introduction of transformers (Vaswani et al., |2017)) has
brought about a significant transformation in this particular industry. This
method converts the image into a sequence of image tokens, while the textual
caption is translated into text tokens in a similar manner. The tokens undergo
processing using an encoder-decoder attention layer called Vision Transform-
ers (ViT) (Dosovitskiy et al., [2020). This layer helps develop connections
between the image and the caption content. While current image captioning
models have the ability to generate detailed captions about images, which can
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Figure 4.1: Concentrated captioning for more focusing and explanation on the target ob-
jective.

improve disaster detection, existing research (Thanyawet et al., 2023) shows

that these models mainly concentrate on major objects when generating cap-
tions, as shown in Figure This approach frequently fails to consider tiny,
yet important, areas inside the image. Specifically, aerial photographs that
capture large areas may include small locations where disasters are present.
Creating a model that can identify both the primary items in a scene and
generate descriptions of additional significant elements in the image could
facilitate faster emergency response.

Natural calamities such as landslides(Hungr et al.;2014), flooding
et al.} 2021} |[Hernandez et al., 2022), or wildfires (Pan et al.||2020) have the
potential to transpire in any location and have a profound impact on individu-

als’ lives and day-to-day routines. Landslides, which are most common in hilly
areas, are caused by a range of factors such as heavy rainfall, unstable slopes,
or seismic activity. Disasters like landslides have the potential to obstruct
transit routes and do significant harm to essential infrastructure, including
roads, buildings, and highways. Accurate identification of damaged areas is
essential for decision-makers to successfully plan for restoration and recovery.
Unmanned Aerial Vehicles (UAVs) are crucial in this process, as they provide
critical visual data to evaluate damage and inform decision-making. A mul-
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titude of computer vision methods, such as detection and classification, have
been created to enhance the efficiency and velocity of catastrophe detection,
aiming to address these challenges.

This research introduces a retargeting network called RetNet, which guides
the model’s attention towards specified goal objectives, even if they are lit-
tle regions of disaster in the photos. Based on the work of (Johnson et al.,
2016)A on dense captioning, the author use anchor boxes and optimize their
central positioning, height, and width to determine the first masked areas.
In addition, RetNet also has a secondary goal, which is to choose the most
suitable anchor boxes for masking that fit with the specific objectives be-
ing addressed. This innovative technique allows the model to concentrate on
important things, resulting in a more comprehensive and contextual compre-
hension.

Our contributions in this field are threefold:

e This study presents RetNet, a new approach that refocuses image cap-
tioning models’ attention. Previously, these models give higher impor-
tance to larger and more noticeable things in an image. RetNet, on the
other hand, is specifically meant to emphasize less prominent but still
important aspects, which is especially advantageous in intricate natural
surroundings. Conventional methods can often miss important infor-
mation in such contexts, but these small features can provide crucial
data.

e This study showcases an advanced approach for enhancing anchor boxes,
building on the existing Fast-RCNN architecture. This approach specif-
ically emphasizes the precise adjustment of the central position, height,
and width of the anchor boxes. Optimizing the detection and labeling of
smaller items in real situations is essential, especially as typical picture
captioning algorithms may struggle with this task.

e The research expands the validation of the RetNet model to encom-
pass a wide array of disasters, including floods and wildfires. It ex-
plores these events from several angles, including airborne, shipborne,
and conventional human-captured perspectives. RetNet is utilized to
examine regions impacted by calamities, utilizing the model’s improved
picture captioning and text categorization abilities to effectively detect
and categorize different elements and types of disasters. This application
showcases the tangible and noteworthy influence of RetNet in realistic
situations, specifically in prompt and efficient catastrophe response and
evaluation.
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4.2 Related works

This section provides an overview of previous research on the development
of computer vision techniques for disaster detection. It includes studies on
traditional image classification (Sardogan et al.,|2018| | Trnovszky et al.}||2017}
Meena et al.}[2022; Soares et al., [2020;|Ofli et al.;|2021}2022), object detection
(Can et al.}|2019}|Sameen and Pradhan;|2019), object segmentation (Liu et al.|
2020; |Li et al.}|2022), and image captioning generation (Johnson et al.||2016;
Castro et al.| |2022). Despite the utilization of sophisticated methodologies,
accurately discerning indistinct or ambiguous entities in photographs, such as
calamities, continues to pose a formidable obstacle.

4.2.1 Advancement in object detection

The utilization of anchor boxes for object detection in images is a state-of-
the-art computer vision methodology. This technique prevents the detection
of objects with low probability throughout the process of making predictions
and generates anchor boxes for every patch in a picture. The approach em-
ploys intersection over union (IoU) calculations for each class, as elucidated
in seminal publications such as R-CNN, Fast R-CNN, and Faster R-CNN, to
retain just the most probable detection (Ren et al.| 2015} |Girshick et al.l|2014;
Girshick} 2015). During the training phase, it is crucial to assign labels to the
object classes and define the boundary boxes as a fundamental aspect of this
technique. Just like in image segmentation, where boundary labels are used
to extract features before training, this preparation is essential for accurately
training the model to generate anchor boxes.

Our methodology provides uniqueness by repurposing the anchor box pro-
duction process to construct masked regions inside the image, thus expanding
upon the concept of anchor boxes. The model is trained to learn the optimal
positions and sizes for these anchor boxes, which are then used to cover the
original image. The purpose of this strategy is to redirect the model’s atten-
tion towards the things in the image that are less accurate and are overlooked
more frequently. The author aim to enhance the model’s ability to detect and
classify ambiguous or less prominent features in the visual data by modifying
the model’s attentional hierarchy.

4.2.2 Transformer-based image captioning

The emergence of transformer models in recent years has represented a notable
progress in the industry. Originally designed for machine translation, these



4.2. Related works 37

Image Captioning based Transformers (Conventional model)

Dependent attention Drawback

g - Still Focus on the major
o1 3 Caption objects at the

f High Anomaly | GT:Disaster center/foreground
"the human investigate | ™| petection | Predict: Non-disaster | - Cannot detect the
the hill” background object that
Low attention more significant

N

attention ==
-

Retarget Network (Proposed Method)

Masking to shifted attention

Advantage
Using patch grid to
: Caption extract and attention in

" i . -+ D ecific region
Masked | High Anomaly | GT: Disaster speci
- attention W | .ihe soil sliding down from | M | Devection | Predict: Disaster - Masked region to shifted
N & the M’ attention to the target

Explain the relation detail
of the objects in the scene

Low attention

Figure 4.2: Disaster image classification network architecture between prior works and our
proposed method. There are convolution layers and flatten layer for prior work. For pro-
posed method, VED to generate caption token with masked images from Retarget Network
for text classification.

models employ attention layers consisting of transformer blocks. These blocks
greatly improve the model’s ability to concentrate on values that demonstrate
important correlations, hence enhancing its concentration. This advancement
signifies a significant change in the way visual information is analyzed and un-
derstood, providing a more sophisticated and situationally conscious method
for computer vision tasks. Transformer models, which have achieved signif-
icant advancements in natural language processing, have also been used to
computer vision tasks, namely in the area of image classification (Dosovit-|
skiy et al.l |2020; |Rothe et al.| 2020} |Li et al.| 2021). Utilizing transformer
approaches in this particular situation improves the process of extracting fea-

tures, enabling a more concentrated focus on important elements within im-
ages. This advancement signifies a significant progression in the examination
of visual data, facilitating more precise and comprehensive understandings.

4.2.3 Challenge in current image captioning

An essential focus of computer vision research involves generating textual
descriptions based on input images. RNNs are commonly employed for gener-

ating captions, after the use of CNNs for extracting features (Johnson et al.,

|2016|; |Castro et al.L |2022D. This method effectively establishes a coherent sto-
ryline for the visual data by linking the textual captions with the retrieved

image characteristics. In light of the complexity of the photographs, com-
prehensive captioning has been employed, particularly due to the frequent
inclusion of several objects. By employing anchor boxes, this method divides
the image into sections of interest and generates a distinct caption for each
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zone, resulting in a more comprehensive explanation (Johnson et al.| 2016).

The author suggest that an image has the potential to encompass multiple
components, each of which warrants a more comprehensive elucidation than
a solitary statement. Image captioning offers a more significant method to
convey these intricacies, particularly when producing results in terms of hu-
man language. This approach is very effective for clarifying uncertain objects,
such as those seen in the aftermath of natural calamities. In these instances,
it may be necessary to accurately identify or categorize object properties that
are solely represented as pixel-based images. Consequently, image caption-
ing can have a crucial role in providing individuals with a more profound
comprehension of these intricate scenarios.

4.2.4 Application in disaster management

The 2P2R method(Tantanee et al.| 2018), emphasizes that disaster manage-
ment begins with proactive measures such as constructing or renovating in-
frastructure to mitigate the impact of disasters. Two examples include con-
structing sea walls to mitigate tidal impacts (Thomas and Halll 2015) and
enhancing building foundations to better absorb seismic vibrations (Mirzaev
et al., 2021 [Haseeb et al., 2011). The subsequent stage involves preparation,
encompassing pre-event arrangements such as ensuring the availability of food
and water provisions and charting evacuation pathways. The rehabilitation
phase following an incident involves assessing and rectifying the harm caused,
which includes identifying the affected individuals and regions. The response
phase involves the issuance of warnings and the evacuation of individuals. The
utilization of UAV or helicopter aerial surveillance is quite valuable during this
time.

Our research aims to utilize images to identify damaged regions through-
out the recovery phase, in order to pinpoint areas that require restoration
utilizing our innovative approach. Disasters can cause natural features to be
moved to unfamiliar places, which makes it difficult to identify these uncer-
tain things using traditional approaches. Determining whether earth pouring
from a cliff and blocking a mountain transportation route qualifies as a dam-
aged area might be challenging. By enhancing the accuracy of item detection,
our approach has the capacity to greatly enhance the precision as well as
effectiveness of damage evaluation in disaster management.
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4.3 Preliminary Investigation

In this section, the author examine how the caption-based approach (Thanyawet
et al.}|2023)), outperforms pixel-based strategies(Ofli et al., |2021), in terms
of classification accuracy. The caption-based approach has the ability to gen-
erate more significant characteristics, resulting in improved classification of
disaster photographs. Furthermore, the machine-learning models developed
by the captioning process (Johnson et al.| |2016; Vaswani et al.,|2017) have a
tendency to prioritize the things that are most prominent in the foreground.
This experiment showcases the model’s ability to effectively extract important
properties from masked and cropped photos, as well as the key attributes of
appropriate masking for accurately identifying target items.

4.3.1 Classification (Pixel-based vs Caption-based)
4.3.1.1 Experiment Setup

The objective of this experiment is to illustrate the difficulties faced by classic
pixel-based models in classifying disaster images, as they heavily depend on
feature extraction for image classification. The author conduct a comparison
between pixel-based models, notably ResNet50 (specifically, ResNet50 (Ofli
et al.||2021)), and text-based picture captioning features that employ a Vi-
sion Encoder-Decoder (VED) framework, in the context of catastrophe scene
classification. The author utilized a testing dataset consisting of 620 images,
trained the model using 5,280 images, then allocated 605 images for valida-
tion. The image dataset comprises a collection of both regular images and
landslide scenes.

4.3.1.2 Experimental Results

The results are displayed in Table. The utilization of 620 images in the
testing dataset provides evidence that the VED technique surpasses tradi-
tional models in terms of performance, obtaining an impressive Area Under
the Curve (AUC) value of 0.94 (Thanyawet et al.||2023). This is a noteworthy
enhancement compared to the performance bar set by ResNetb0(Ofli et al.,
2021). Nevertheless, the author have seen that conventional ResNet50 models
and the VED approach exhibit a tendency to give higher importance to fore-
ground objects, frequently overlooking small catastrophe zones present in the
image. This observation prompted us to create a framework specifically aimed
at redirecting attention onto the items in the vicinity, such as tiny catastrophe
areas, as depicted in Figure[4.2] The Retarget Network aims to optimize the
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Figure 4.3: Landslide image captioning between applying cropping and masking techniques
to focus on the affected area in different view aspect.

prioritized regions for enhanced target area detection in catastrophe photos,
especially in images of significant scale.

Table 4.1: Comparison of existing methods for image classification

Method Accuracy | Precision Recall F1-Score

ResNet50
fine-tune (Ofli | 67.58 67.58 100.00 80.65
et al.| 2021

ResNet50 from
scratch (Ofli | 71.61 98.81 70.77 82.47

et al.l ’m[)

VED
(Thanyawet | 95.00 96.19 96.42 96.31
et al., 2023

4.3.2 Image Captioning from Cropping vs Masking
4.3.2.1 Experiment Setup

The author conducted experiments to compare the effects of cropping and
masking, which are two separate techniques used in image editing. Cropping



4.3. Preliminary Investigation 41

involves trimming the outer areas of an image to focus on specific sections,
which can prompt the model to give more attention to often disregarded ele-
ments. Masking is the act of concealing specific parts of an image to allow the
model to concentrate on the visible elements, which may be less conspicuous
yet are crucial. In these studies, the author employ a total of 16 photos that
are representative of side view, shipborne, and aerial view images.

4.3.2.2 Experimental Results

The analysis, depicted in Figure demonstrates contrasting outcomes ob-
tained from our two experimental approaches. A notable disadvantage of crop-
ping photos is the loss of essential characteristics from surrounding objects.
As a result of this paucity, captions frequently contained false information or
lacked enough details to fully explain in everyday language.

Conversely, the masking strategy produced more promising results. The
model generated captions that incorporated these secondary things by uti-
lizing masking techniques, which selectively obscured the primary object of
interest while keeping other elements visible. This approach facilitated a more
thorough comprehension of the scene as the captions elucidated both the sin-
gle object and its broader context, as well as the interconnections among the
different elements. Masking specifically enables the model to concentrate on
gaining a more unbiased and comprehensive comprehension of the disaster
scenario.

4.3.3 Optimal Masking
4.3.3.1 Experiment Setup

In these studies, the author utilize 16 photos that are representative of side
view, shipborne, and aerial view images, similar to the cropping versus mask-
ing experiment. Subsequently, the author investigated the impact of selec-
tively concealing specific regions on a model’s ability to generate precise image
descriptions. By employing a systematic and exhaustive approach, the author
analyzed all possible regions to identify the specific attributes that yielded
captions that closely matched the actual data. To facilitate the experiment,
the author partitioned each image into nine patches and organized them in
a 3x3 grid. As a result, 512 distinct masking configurations could be made,
or 2(3%3) " The author examined the characteristics and trends in the captions
created for these masked images in all possible combinations.
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(a) Masking (some part) (b) Masking (all major objects)

Caption: damage hill by soil slide Caption: damage hill caused by soil slide

(c) Masking (some part) (d) Masking (all major objects)
Caption: people investigate collapsed cliff Caption: people investigate collapsed cliff

Figure 4.4: Comparison of images with only some parts masked ((a) and (c)) and with all
major objects masked ((b) and (d)).

4.3.3.2 Experimental Results

Our results indicate that achieving precise caption creation does not necessi-
tate the masking of every discernible object in the image. Figure depicts an
example that demonstrates the similarity between the captions of photographs
with partial masking and images with complete masking of the main items.
In addition, the author have seen that the process of handling 16 photos using
the brute-force masking technique takes over 4 hours of computational time.
These findings demonstrate that the use of masking substantially increases
the computational requirements, despite its ability to effectively redirect the
model’s focus. This underscores the necessity for improved methodologies.
Therefore, the author present the Retarget Network, an innovative approach
aimed at achieving a compromise between computational efficiency and accu-
rate detection.

4.4 Methodology

This section presents the network architecture and pipeline of our proposed
RetNet. RetNet is designed to redirect attention from prominent objects to
other objects that may be less conspicuous but still play crucial roles in the
image. In the training phase, the author balanced the dataset to train for
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Figure 4.5: Our network architecture.

landslide disaster detection by shuffling the Non-disaster images, which were
more numerous than the Disaster images. Then, the RetNet model, which
was trained on landslide disasters, was fine-tuned with flood and fire disasters,
respectively, before being used for inference to evaluate its performance in the
inference phase.

4.4.1 Network Architecture

The architecture of RetNet is depicted in Figure Prior to extracting the
picture features and converting them into feature maps using the VGG-16
model, the author first train the Visual Encoder-Decoder (VED) for image
captioning, (Johnson et al.||2016). In this network, the author introduce two

new layers to the RetNet architecture: the Localization layer and the Retarget
layer. The retarget layer further enhances the potential masked region can-
didates generated by the localization layer to get ideal masks. Patches and
anchor boxes are employed in the localization layer to generate candidate-
masked regions. The image captioning model then redirects its attention by
utilizing the retarget layer to identify the most prominent masked regions
among the candidates.
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4.4.2 Vision Encoder Decoder

Image captioning is performed using a Transformer model within a VED
(Dosovitskiy et al., 2020{ Rothe et al.} 2020} Li et al.| |[2021)) framework gen-
erates a caption for an image by combining computer vision and natural lan-
guage processing techniques. The framework consisted of two primary com-
ponents: the text decoder and the visual encoder.

e Vision Encoder: The image is split into patches, which are subsequently
inputted into an encoder transformers block to generate feature vectors.
For this procedure, the author employed a pre-trained Vision Trans-
former (ViT) model (Dosovitskiy et al.||2020) to encode the images.

e Caption Decoder: The incoming text is processed by the decoder trans-
former block (Vaswani et al.l [2017) to embed text caption labels into
feature vectors. During the decoding process, the author employed the
Bidirectional Encoder Representations from Transformers (BERT) (De-
vlin et al.| [2018) to incorporate the caption text, along with the use of

tokenizers.

The author use a dataset consisting of pairs of images and fixed-length
captions to train the network. The objective is to enable the network to
understand the connections between the feature vectors of the images and
their related textual descriptions (Zhou et al.;|2020). The model utilizes learnt
parameters during the inference process to generate text captions based on
the correlations observed in the picture feature vectors.

4.4.3 Localization Layer

The purpose of this layer is to produce potential areas for concealing regions
from the feature map of an image, as described in the study by Long et al.
(2015). The author utilize the cutting-edge VGG-16 architecture (Simonyan
and Zisserman, 2014; Russakovsky et al.;|2015)), which consists of 13 layers of
3 x 3 convolutions alternated with 5 layers of 2 X 2 max pooling, to extract
the feature map I. As a result, an input image with dimensions 3 x W x H is
transformed into a feature map with dimension C' x W’ x H’, where C' = 512,
W= (%], and 1= | 2],

The author use this method to provide potential areas for concealing re-
gions, drawing inspiration from the Region Proposal (Johnson et al., |2016]),
which employs patches and anchor boxes to construct comprehensive descrip-
tions. The author utilize feature maps within my work 7 x 7 grid patches to
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ensure coverage over even small objects in the image. Four parameters are
specified for each patch: its width w,, height h,, and center position (z,,y,).
Using a regressive offset model represented by the following equations, the
author define k£ anchor boxes within each patch with four parameters for size
(wq, he) and the center position (x,,y,) of each anchor box’s region:

T, = Tp+ t 2 (4.1)
Ya = Yp + t 2p (42
W, = wy-exp(ty) (4.3)
he = hy-exp(ty) 4.4

In this case, the normalized offset from the center of the anchor is indicated
as (t;,t,), and the log-scale transformation of the anchor size is represented
by tw,tr). The author then map (z4, Ya, Wa, hy) onto the input feature map’s
X XY grid and then transform the feature map back to its original dimensions
of W x H.

4.4.4 Retarget Layer

In addition to the information derived from the feature map for the self-
attention process, the author acquire a collection of anchors R(xg, Ya, Wa, ha)

RBXCXWXH 4 the feature

from the localization layer to use as candidates. I €
map that the author use, in which B stands for batch size, C' for number
of channels, W for width, and H for height. The attention map A is first

calculated as follows:

A(Q, K) = Softmax <QT[§:) (4.5)

In this section Q, K € R? X§XN pefers to the query and key matrices that
are obtained from the feature map. The scaling factor for the dimensionality
of the crucial vectors is determined n = 8, is denoted by the term d = =

Subsequently, the author convert the attention map A to a single dimension
of N = W x H using the value of the feature map matrix V?. The output
feature map is obtained by multiplying the attention map A by V. The output
of masking region O is then obtained by scaling this result by a learnable
parameter v and adding the input feature map I, which includes a residual
connection as follows:
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O(A,V,I) =~ - Reshape(AVT) 4+ I (4.6)

After that, the output is reshaped using the Reshape() function to return
it to the original spatial dimensions, W x H. Then, O is subjected to the
sigmoid function to determine the optimal masking anchor boxes M.

M = Sigmoid(O) ® R (4.7)

The anchor box candidates R in this case have dimensions of X x Y x 4k.
As a form of optimal masking, the author subsequently remapped M from its
X XY x k dimension back to the original images’ X x Y dimension. It is
important to notice that, for each anchor parameter, the author apply a mask
over the original photos using a masking value M of 1, which is indicated
by the condition Sigmoid(O) > 0.6. The author designate areas that are
not masked by assigning a value of 0 to the mask, which is indicated by the
condition Sigmoid(O) <= 0.6. Next, the author inputted the masked images
into the VED framework (Dosovitskiy et al., [2020; Rothe et al.}[2020; |Li et al.|
2021) in order to generate captions Cle,.

4.4.5 Loss Function

During the training phase, the author utilize the reference captions Cj,,. as-
sociated with each image as the ground truth. The author utilize a smooth L1
loss, denoted as L1]%, in the altered coordinate space (Tanatipuknon et al.|
2021) to measure the similarity between the generated captions and the ground
truth captions. To assess the similarity of the captions, the author also utilize
the inverse cosine similarity loss Lipye.

Calculating loss requires an encoding and embedding technique. Using
the BERT model, which is known for its effectiveness in creating contextual
embeddings, the author build captions Cye, based on the reference captions
Cirue- The author utilized the BERT tokenizer to construct encoded vectors
for both Cy.,, and Ciye. Subsequently, the author generate the embeddings
Vgen and Vie by calculating the average of the final hidden states of the
encoded vectors in the following manner:

Vyew = Mean(BERT(Encode(Clep))) (4.8)
Virwe = Mean(BERT(Encode(Cirye)))



4.4. Methodology 47

Table 4.2: The statistics of our dataset.

Data source | Training | Validation | Testing | Total | Type
BGS (b
2023)< = 1,690 200 146 2,036 | Disaster
Normal (lan
| 1 4,319 | Normal
2020) 3,500 669 50 ,319 orma,
DID (did
2019)( - 550 70 114 734 | Disaster
Disast
Shipborne (Li 1saster
- - 270 270 and
et al.||2023)
Normal
Total 5,740 939 680 7,359

After obtaining the embedding Ve, and V., the author used them to
calculate the inverse cosine similarity loss, L., as follow:

‘/gen . V;true

L. —~— __gen Tlrue
T Vel Virel

(4.10)

The author additionally compute the smooth L1 loss L1 in the coordinate
space of the transformation, using the following method:

L= > el (4.11)

peParameters

Finally, during the training phase of our model, the author employ a cus-
tomized loss function that merges the cosine similarity loss L;,,. and the
smooth L1 loss L1®. Each of these losses is assigned weights 5 and a corre-
spondingly. Here is the equation for combined loss:

Lcustom =« Lin'uc + 6 : L71"eg (412)
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Table 4.3: The statistics of our dataset in each disaster.
Scene type | Training | Validate | Testing Source
Landslide 1,690 200 416 BGS, DID, Shipborne
Flood 225 35 60 DID
Fire 225 35 54 DID
Normal 3,500 669 150 Kaggle

4.5 Experiments and results

Our approach involves using the RetNet algorithm to analyze photos and
generate region proposals, which are then inputted into RetNet. This section
presents the results of our proposed method, including its performance with
different ablation loss functions, patch grid counts, and anchor box counts.
Furthermore, the author utilize our network to examine additional calamities
such as floods and wildfires, and produce descriptive titles for the different
situations. In addition, the author employ our system to examine landslide
situations using shipborne imagery, and evaluate its effectiveness in compari-
son to traditional detection methods.

4.5.1 Dataset

In this study, the author utilize image datasets from four primary sources, as
detailed in Table

e The British Geological Survey (BGS) (bgs, 2023) provided the landslide
images. The author further annotated these images with text captions
to enhance our dataset for the intended analyses.

e Kaggle (lan, [2020) contributed an extensive collection of 4,319 images,
from which derived the common scene image dataset.

e Disaster Image Dataset (DID) (did}[2019) provided the flood and wildfire
images. The author annotated the images with captions for our network.

e Shipborne (Li et al., |2023) provided the landslide and non-landslide
images that were captured during a survey conducted from a ship.
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The models in our system were trained, validated, and tested utilizing
data sets from BGS, Kaggle, and DID. The Shipborne dataset was exclusively
utilized for the purpose of testing in a classification application. Table
indicates that there are a total of 2,036 abnormal images from BGS and 4,319
typical images from Kaggle. In addition, the author expanded the disaster
datasets to include floods and wildfires, using the methodology described in
the DID report (did, [2019). The author have chosen to incorporate these
two parts on catastrophic events within our studies in order to examine the
different scenarios. Table [4.3] demonstrates the dataset the author used in
each disaster type; there are consists of Landslide, Flood, Wildfire for disaster
type, and Normal for non-disaster type from Kaggle.

The author made a deliberate attempt to incorporate often used label
terms from this collection, such as trees, rocks, soil, water, rivers, fires, and
lakes. A textual caption was added to the dataset. In addition, the author
utilized the terminology of the objects themselves to depict the surrounding
objects and their respective positions. This approach was employed to enhance
the model’s comprehension of the scene’s circumstances.

The author utilized the shipborne image-based landslide dataset (Li et al.,
2023)), which has a total of 270 photographs. Among these, 231 images are un-
related to landslides, while the remaining 39 images depict landslides. Conse-
quently, the author was able to apply the categorization to a different dataset.
This dataset is utilized as a benchmark to assess the efficacy of our suggested
methodology.

4.5.2 Ablation Study

Our methodology utilizes image masking to redirect attention throughout the
process of generating captions for images. The L1 regularization loss function
proposed by Girshick et al.(Girshick| 2015) is recommended for optimizing
parameters, specifically for anchor box form. To enhance the retarget layer
and ensure that the captions are equivalent to the labels, the author utilize
a cosine similarity loss function. The author developed an inverse cosine
similarity loss method to identify distinct captions. This approach promotes
the masking of images to emphasize specific objects, which is innovative in
the identification of distinct objects using an inverse function. Our collection
includes images and captions that showcase a diverse range of things unrelated
to disasters, such as "The man in front of the rocky mountain, whose soil has
collapsed."
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Table 4.4: The ablation of loss functions in our proposed method.

Cosine ci‘;;'ne L1 BLlEU' BLzEU' BL::U' BLfU' METEOR| ROUGE_L| CIDEr
v - - 0.360 0.276 0.234 0.199 0.224 0.350 1.260
- v - 0.378 0.295 0.253 0.218 0.237 0.362 1.470
- - v 0.415 0.339 0.297 0.258 0.270 0.400 1.770
v v 0.415 0.339 0.297 0.258 0.270 0.400 1.770
- v 0.416 | 0.339 | 0.298 | 0.258 0.270 0.401 1.779
v v v 0.416 | 0.339 | 0.298 | 0.258 0.270 0.401 1.779

The L1 regularization loss function has a considerable impact on the
model’s performance, as demonstrated by the results presented in Table
BLEU (Papineni et al.;|2002)), METEOR (Banerjee and Laviel 2005), ROUGE-
L (Lin, 2004), and CIDEr (Vedantam et all 2015) are standard linguistic
metrics the author utilize to assess the relevance of text captions.The findings
indicated that the inverse cosine similarity loss function outperforms the co-
sine similarity loss function. The combination of inverse cosine similarity and
L1 regularization produced the following scores for several evaluation metrics:
0.416 for BLEU-1, 0.339 for BLEU-2, 0.298 for BLEU-3, 0.258 for BLEU-4,
0.270 for METEOR, 0.401 for ROUGE-L, and 1.799 for CIDEr. While the
inverse cosine similarity performs marginally better than the cosine similarity
loss, incorporating an additional loss function does not improve the results
beyond the combination of inverse cosine similarity and L1 regularization.

Table 4.5: The ablation of number of patch grid with 3 anchor boxes in our proposed
method.

1::2}1: :i(;f BLIEU' BLzEU' BL;EU' BLfU' METEOR ROUGE L CIDEr
3 0.416 0.339 0.298 0.258 0.270 0.401 1.779
4 0.416 0.339 0.298 0.258 0.270 0.401 1.779
5 0.416 0.339 0.298 0.258 0.270 0.401 1.779
7 0.416 0.339 0.298 0.258 0.270 0.401 1.779

Table 4.6: The ablation of number of anchor boxes with 7 patch grids in our proposed
method.

ai‘;’;‘:’izz; BLIEU' BLZEU' BL;:U' BL4EU' METEOR ROUGE L CIDEr
3 0.416 0.339 0.298 0.258 0.270 0.401 1.779
5 0.416 0.339 0.298 0.258 0.270 0.401 1.779
7 0.416 0.339 0.298 0.258 0.270 0.401 1.779

In addition, as shown in Table[4.5] the author conducted experiments with
patch grids of sizes 3, 4, 5, and 7, with each grid containing three anchors.
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In addition, the author conducted experiments with seven patch grids, using
three, five, and seven anchor boxes, in order to determine the configurations
that optimize the performance of the model. The results are presented in
Table Although the number of anchor boxes in each grid and the patch
grids were adjusted, these alterations had no meaningful effect on the model’s
performance as measured by all evaluated metrics. The scores for BLEU-
1, BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE-L, and CIDEr remained
constant at 0.416, 0.339, 0.298, 0.258, 0.270, 0.401, and 1.799, respectively.

4.5.3 Flood and Wildfire

The author refined the model by utilizing photographs of floods and wildfires
collected from the Disaster Image Dataset (DID). Descriptive captions were
added to each image to be used during both the training and testing phases.
The findings suggest that the model exhibits superior performance in identi-
fying and describing photographs of wildfires compared to images of floods,
as depicted in Figure The BLEU-1 score for photographs depicting floods
is precisely 0.223, and for images portraying fires, it is precisely 0.205. The
ROUGE-L score for floods, which is 0.230, is somewhat higher than the score
for wildfires, which is 0.219. This indicates a better similarity in the longest
common subsequences found in the captions of flood photographs. In addition,
the METEOR scores of 0.146 for floods and 0.156 for wildfires demonstrate
a satisfactory level of semantic and grammatical agreement with the captions
supplied by the reference. The marginally elevated score for wildfires indi-
cates improved model accuracy in depicting wildfire imagery. Furthermore,
the METEOR and CIDEr ratings of 0.423 for floods and 0.627 for wildfires
indicate that the captions for wildfire images are more accurate and closely
match the reference evaluations.

Table 4.7: Performance metrics for landslide, flood, and wildfire disaster in image caption-
ing.

Disaster | BLEU-1 | METEOR | ROUGE L | CIDEr

Landslide 0.416 0.270 0.401 1.779

Flood 0.223 0.146 0.230 0.423

Wildfire 0.205 0.156 0.219 0.627
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4.5.4 Classification

The classification performance of RetNet, VED, and ResNet50 (Ofli et al.|
2021) has been compared and the results are presented in Table In this
classification experiment, the author used two datasets from different view-
points: side view from the BGS dataset and shipborne view from the Ship-
borne dataset. For the BGS dataset, the author used the testing set, which
was split from the dataset. However, the Shipborne dataset was not used for
training, but only for the inference process to evaluate the performance of
RetNet with unseen data. Based on the recall, accuracy, precision, and F1-
score values of 0.9160, 0.9067, 0.9510, and 0.9283, respectively, it is evident
that our strategy outperforms the others. In addition, the author utilized
data obtained from surveys conducted on ships to assess the accuracy of the
classification process from a new perspective. RetNet’s accuracy, although
lower than that of the Fusion approach (Li et al.||2023), surpassed the Fusion
approach in terms of F1-score, recall, and precision. Significantly, our method
surpassed Fusion in performance, with a recall rate of 0.9643 compared to
Fusion’s 0.8290.

Table 4.8: Classification performance on different datasets.

BGS Dataset Shipborne Dataset
Method

RetNet | |/Ofli et al.|| RetNet | |Li et al.

Accuracy 0.9160 0.8700 0.8750 0.9444
Precision 0.9067 0.7370 0.8852 —
Recall 0.9510 0.6680 0.9643 0.8290

F1-Score 0.9283 0.7010 0.9231 —

4.6 Discussion

4.6.1 Image Captioning

The findings indicate that both the size of the patch and the quantity of
anchor boxes did not have a significant impact on the produced captions, as
demonstrated in Table [4.4] The localization layer’s region candidates were
considered as potential options for selection as the ideal ones for masking.
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The patch size and number of anchor boxes are not significant factors in image
captioning because the masked sections often occupy comparable places.

In relation to the side-view images depicted in Figure and Figure
our model effectively prioritizes the target objects, unlike the original captions
which may have focused on or misread other features. Moreover, the Figure
and Figuredemonstrate the encouraging outcome of landslide detection
using shipborne images. Similarly, the aerial images depicted in Figure
and Figurem showcase the model’s proficiency in detecting landslides from
an elevated viewpoint. Despite the model being mostly trained on side-view
photographs, our approach surpasses other methods in detecting landslides in
aerial view images.

Figure shows the image containing the persons in front of the image,
while behind the scene, there is a disaster region and a landslide at the top in
the background. Figure (right) shows the result of RetNet, which masked
some part of the human to shift the attention of the image captioning Vision
Encoder-Decoder model to detect the disaster region. The original image
caption demonstrates that the people investigating the damaged ground which
is not specific to the landslide region at the back. After masking the image
from RetNet, the masked caption represents more specific detail in the scene
without completely masking the major objects, humans, and instruments.

people investigate the damaged ground Collapsed hill caused by soil slide

Figure 4.6: The original image caption and masked image caption to detect disaster at the
background.

Figuredemonstrates the original image caption (left) that could detect
and explain the soil and rocks sliding down to the road. However, the soil and
rocks slide down from the hill/mountains but do not fall to the road. Applying
RetNet to mask some parts of the image before generating a caption is much
better than an original caption in this situation. Nevertheless, the masked
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caption in Figure (right) contains logs, which seem not to appear in the
scene.

soil and rocks slide down to the road logs slide down from the hill

Figure 4.7: The original image caption and masked image caption without major object in
the scene.

The original and masked image caption could detect the disaster in the
scene in Figure The caption from the original image Figure (left)
seems to explain the detail better than the caption from the masked image.
While the masked caption in Figure (right) attention to the correct region
of the image with no specific caption.

damaged hill by soil slide cracked rocks and ground

Figure 4.8: Side view from shipborne detecting the landslide.

Figure demonstrates the complex scene for a computer vision model in
which the landslide blends to the rocky cliff from a shipborne side view image.
The caption from an original image cannot detect the disaster with the rocky
cliff; detect the rocky cliff and water body in Figure (left). The RetNet
masked caption can completely detect the landslide disaster at the rocky cliff
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in Figure (right) by masking some part of the image between the rocky
cliff and the water body.

rocky cliff in front of sea damaged cliff by soil slide

Figure 4.9: Shipborne image with landslide blend to the cliff.

Figure(left) shows the caption from the original image explaining the
obstacles to the snow in the mountain. The RetNet caption in Figure m
(right) demonstrates the correct caption with soil and rocks sliding down from
the hill. The masking region at the obstacle (the white particles in the scene)
could achieve the caption, making the classification part more accurate.

snow capped mountain range soil and rocks slide down from hill

Figure 4.10: Aerial image view at the landslide region with the obstacle things.

The caption from the original image and the masked image generated the
correct situation in the scene and were quite similar to each other in Figure
In this image, the disaster scene contains landslides and other objects
without the typical region. The model’s attention to any part of the image
could detect the disaster region, which made the caption from the original

image and RetNet not different.
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collapsed hill caused by fallen soil destroyed hill caused by fallen soil

Figure 4.11: The aerial view with complex objects in the scene.

Additionally, the author present a heat map that illustrates the new at-
tention derived from RetNet. For landslide disaster images, as seen in Figure
the heat map indicates that our model shifts its focus from people to the
landslide region in the upper part of the image, thereby generating captions
that describe the disaster situation in the targeted region.

People investigate the damaged ground Collapsed hill caused by soil slide

Figure 4.12: The landslide from side view with attention color map.

Conversely, in Figure where the landslide occupies the center of the
image without being obscured by other objects, the application of masking via
RetNet enables the VED to concentrate exclusively on the specific landslide
region depicted in the image.
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Damaged hill by soil slide Cracked rocks and ground

Figure 4.13: The landslide from shipborne view with attention color map.

In scenarios involving floods, the captions generated by our model accu-
rately identify the specific areas depicted in heat map images (Figure .

Car driving through water on the road Rapids flow in a sea

Figure 4.14: The flood from side view without other objects in the scene and attention

color map.

However, it is common for the original image (as shown in Figure [4.15]
(left)) and the corresponding masked image (as illustrated in Figure [4.15]
(right)) to produce identical captions. This occurrence is due to the extensive
water regions in the images, which are sizable enough to be detected without

the need for attention to shift.
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Water overflow into a town Water overflow into a town

Figure 4.15: The flood from side view which flood is in the center of image and attention
color map.

For the wildfire disaster, Figure[4.16] (left) and [4.16] (right) show that our
model not only allow VED to focus on wildfire but also other surrounding
objects and humans. As a result, generated captions are correct even it is
from different aspects from the original image.

Smoke covers the fire area Fireman controls the fire

Figure 4.16: Fire disaster with complex objects and attention color map.

Moreover, in Figure the original image caption misinterpret the phe-
nomena. On the other hand, our model could generate the correct perspective,
but only partially correct captions as shown in Figure In general, the
author realized that the VED captioning model would pay attention to the
center of the image to generate the circumstance captions, while RetNet cap-
tions attention to the specific regions.
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Rapids flow in canal Fireman spraying water to put out fire

Figure 4.17: The wildfire from side view in dark scene with attention color map.

Finally, the author showcase instances of mistaken recognition by pro-
posed method in Figure m RetNet erroneously directs attention towards
the upper sections of the lateral perspective of a fire catastrophe image (as
depicted in Figure m (left)), instead of the central area. The misguided
emphasis leads to the production of captions that are not accurate. Similarly,
in the lateral perspective image of a landslide (as depicted in Figure.
(right)), RetNet has a tendency to concentrate on the upper portion of the
image instead than the accurate target areas situated in the center.

= : 5 4

f [t
Original: heavy fire is burning Original: stones slide donw to the ground
RetNet: water overflow in residence RetNet: buildings beside the canel with forest behind
Fire disaster failure case. Landslide disaster failure case.

Figure 4.18: Heat map attention of caption from original image and RetNet image in failure
case.

RetNet could be used for other types of disasters, as represented in Figure
4.19] Earthquake events destroy constructions such as buildings, roads, or
highways, leaving debris over urban areas. In this case, RetNet could be used
to detect debris scenes as well. Similarly, in a tsunami event, the aftermath
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Earthquake Tsunami

Storm Oil Spill

Figure 4.19: Other type of disaster such as earthquake, tsunami, storm, and oil spill.

involves flooding and debris flows, which are similar to flood and landslide dis-
asters. However, storm disasters present some limitations, as they are quite
difficult to detect. Since wind is not visible in RGB images and the effect of
storms may only cause slight movements in objects like trees, detection is chal-
lenging. In a similar vein, oil spills can be detected by RetNet through color
changes in the ocean. However, as shown in Figure[4.19] oil spills sometimes
appear similar to land.

4.6.2 Classification

Our technique focuses on specific regions, as indicated by Table which
demonstrates that RetNet achieves better results than Ofli et al. (Ofli et al.|
in analyzing side view images, particularly with the BGS dataset. Con-
trasting with the findings of Li et al. , our model demonstrates
reduced rates of accurate positive and accurate negative predictions when uti-
lized with shipborne photos. However, RetNet outperforms other methods in
terms of recall, indicating its enhanced ability to identify landslides in unclear
situations.
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4.7 Conclusion

Detecting disaster-related locations in aerial or shipborne imagery is typically
challenging due to their small size within the photos. This research presents a
new framework called the Retarget Network (RetNet), which aims to improve
the capability of image-captioning-based machine learning models to identify
important regions in an image. The network we propose has a distinct fea-
ture of adjusting detection priorities by combining a localization layer with a
retarget layer, using a combination of patch and anchor box techniques. The
RetNet model underwent comprehensive testing over a spectrum of disaster
situations, encompassing landslides, floods, and wildfires, from diverse view-
points. The results of our study indicate that by preprocessing images using
RetNet and then analyzing them with a Vision Encoder-Decoder (VED), the
accuracy of landslide detection in side-view image captions improves signifi-
cantly to 91.60%. Additionally, for images captured from shipborne perspec-
tives, the accuracy rate achieved is 87.50%.

4.8 Contribution

The contributions of the work presented in this chapter were:

e Inspired by the state-of-the-art anchor boxes, this approach applies
masked regions. In this part, masking is used to exclude regions that are
not significant for detection, thereby retargeting the model’s attention
to the areas of interest.

e Apply the optimal equations to generate the size and position of anchor
boxes.

e Design the model to achieve two main objectives: generating masked
candidate anchor boxes and selecting the optimal masked regions using
a loss function derived from captions.
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Conclusion

This chapter will concludes the study by addressing the significant research
findings related to the research questions, philosophies, and contributions. It
will also discuss the study’s limitations and provide suggestions for further
research.

5.1 Summary of Major Findings

This study aims to detect disaster scenes within environmental scenes and
natural objects. Conventional techniques often fail to achieve this objective
accurately due to the limitations of pixel-based methods. As a result, this
study successfully distinguishes between natural and disaster objects. Fur-
thermore, in complex scenes where other objects, such as humans, dominate
the center of the image and disaster regions are in the background or too small
compared to other objects, the challenge is significant. The results demon-
strated that the proposed architecture in this study can shift and retarget the
model’s attention to significant objects, namely the disaster regions.

In Chapter 3, the proposed method classifies disaster scenes from natu-
ral scenes using text-based techniques instead of relying solely on pixel-based
methods. The methodology employs Vision Encoder Decoder (VED) tech-
niques to encode the image, capturing the relationship between it and its
caption. The results showed that the proposed method achieved an accu-
racy, precision, recall, and Fl-score of 95.00%, 96.19%, 96.42%, and 96.31%,
respectively. In comparison, the conventional method, ResNet50, achieved
an accuracy of 71.61%, precision of 98.81%, recall of 70.77%, and F1-score of
82.47%. In AUC analysis, the proposed method achieved 94% accuracy in dis-
tinguishing between normal and landslide images. In this study, the ResNet50
model trained from scratch proved more effective at classifying landslide im-
ages than the ResNetb0 model fine-tuned using ImageNet. Therefore, the
results demonstrate that the caption-based method provides more informa-
tion for classifying scenes than pixel-based methods alone. Furthermore, the
information from human-language captions captures significant features and
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action details, offering more comprehensive insights into the actions and rela-
tionships within the scene through text tokens instead of pixel tokens.

In Chapter 4, the proposed architecture, Retarget Network (RetNet), uses
state-of-the-art techniques inspired by anchor boxes to generate masked candi-
date regions. Simultaneously, the features extracted from the image are used
to select the optimal masked positions, enabling accurate disaster detection.
In this study, the proposed method employs VGG16 for feature extraction
before generating anchor boxes, which serve as candidate masking regions. In
this process, the shape and center of each anchor position are set according to
specific conditions within each patch. After generating the anchor boxes, the
optimal ones are selected to effectively mask the areas, shifting the model’s
attention to detect the target regions. From diverse viewpoints, the RetNet
model underwent comprehensive testing across various disaster situations, in-
cluding landslides, floods, and wildfires. The results indicate that preprocess-
ing images using RetNet, followed by analysis with a Vision Encoder-Decoder
(VED), significantly improves the accuracy of landslide detection in side-view
image captions to 91.60%. Additionally, the accuracy rate achieved for images
captured from shipborne perspectives is 87.50%.

Referring to the research questions and philosophy, the author aims to
study and develop a machine-learning model capable of detecting disaster
scenes from various perspectives without relying on boundary labeling. The
image captioning features discussed in Chapter 3 provide detailed and ex-
planatory insights to address the research questions. Moreover, conventional
methods tend to focus on the major objects in complex scenes where disaster
objects coexist with other objects. However, the proposed method can shift
attention, prioritize, and optimize the model to achieve the desired objectives.
The results of this study demonstrate that the proposed method can adapt
to different viewpoints in images and can be applied to various real-world
scenarios. This adaptability highlights the potential for broader application
beyond this research’s specific disaster detection scenarios.

However, during the experiment, the limitation of caption tokens led to
insufficient information for detection in some cases. Additionally, the pro-
posed method sometimes needed help to generate accurate captions when the
situation in the scene was on a small scale and could not be classified as a
disaster. There is also a limitation in retargeting the detection when there are
more than two major objects in the scene, which can cause the RetNet to fail
in detecting the disaster area.
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5.2 Suggestions for Future Work

The architecture could be improved by expanding the number of generated
text tokens from 30. Enhancing the caption generation component with a
more robust Natural Language Processing model would provide better infor-
mation for detection. To improve the performance of the Vision Encoder-
Decoder (VED), various techniques can be applied. For the vision part, using
methods such as Shift Windows (SWIN) can help to focus more attention. For
the caption part, experimenting with different types of tokenizers can generate
more concrete captions.

To address the limitation in detection when there are more than two major
objects in the scene, implementing a looping inference mechanism to shift
attention until the target region is identified could be beneficial. Additionally,
incorporating multi-input and multi-modal approaches could provide more
comprehensive information, leading to more accurate detection.
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