



|              |                                                                                               |
|--------------|-----------------------------------------------------------------------------------------------|
| Title        | Mitochondrial dynamics and autophagy during giant lipid droplet formation in oleaginous yeast |
| Author(s)    | 段, 澪                                                                                          |
| Citation     | 大阪大学, 2024, 博士論文                                                                              |
| Version Type | VoR                                                                                           |
| URL          | <a href="https://doi.org/10.18910/101465">https://doi.org/10.18910/101465</a>                 |
| rights       |                                                                                               |
| Note         |                                                                                               |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

## 論文内容の要旨

| 氏名 ( 段瀬 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 論文題名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mitochondrial dynamics and autophagy during giant lipid droplet formation in oleaginous yeast<br>(油脂酵母の巨大脂肪滴形成におけるミトコンドリア動態とオートファジー) |
| <p>論文内容の要旨</p> <p>Emerging evidence suggests a pivotal involvement of mitochondria and autophagy in lipid droplet (LD) biogenesis and breakdown. In contrast to the conventional yeasts containing small multiple LDs, the oleaginous yeast <i>Lipomyces starkeyi</i> has a remarkable ability to generate a single giant LD, attracting a great deal of attention as an excellent lipid supplier for promoting biofuel production in the chemical industries. Although formation of giant LDs appears to be induced and regulated through mitochondrial metabolism under autophagy-inducing nitrogen starvation, challenges in genetic manipulation have impeded the comprehensive understanding of mitochondrial behavior and autophagy-related processes in this unconventional yeast.</p> <p>To overcome these issues, I generated an <i>L. starkeyi</i> strain expressing mito-DHFR-mCherry, a mitochondrial fluorescent marker, and investigated, for the first time, mitochondrial dynamics under various growth conditions using fluorescence microscopy and western blotting. I found that a fraction of mitochondria was localized to the vacuole, a lytic organelle in yeast, indicating degradation of mitochondria in <i>L. starkeyi</i> cells. Next, I generated an <i>L. starkeyi</i> strain defective in lipidation of the ubiquitin-like protein LsAtg8, a process required for autophagy, and found that mitochondrial degradation was strongly suppressed, establishing this catabolic event as mitophagy (mitochondrial autophagy). My observation also revealed minimal mitophagy during giant LD formation under nitrogen starvation. Notably, mitochondria transitioned from fragmented to thinned morphology and juxtaposed to giant LDs under nitrogen starvation, whereas they kept fragmented in cells lacking giant LDs under carbon-limited conditions. Surprisingly, <i>L. starkeyi</i> cells exhibited suppression or promotion of autophagy under conditions depleting nitrogen or carbon, respectively.</p> <p>These findings suggest that nitrogen-starved <i>L. starkeyi</i> cells undergo formation of giant LD in close proximity to elongated mitochondria in a manner independent of mitophagy and autophagy.</p> |                                                                                                                                      |

## 論文審査の結果の要旨及び担当者

| 氏　名　（段　瀬） |     |           |
|-----------|-----|-----------|
|           | (職) | 氏　名       |
| 論文審査担当者   | 主　査 | 教授　　池田　史代 |
|           | 副　査 | 教授　　深川　竜郎 |
|           | 副　査 | 教授　　野田　健司 |
|           | 副　査 | 准教授　岡本　浩二 |

## 論文審査の結果の要旨

細胞は余剰なエネルギーを脂質に変換し、脂肪滴に蓄積することで、エネルギー需給のバランスを維持している。近年の研究から、脂肪滴形成にミトコンドリアやオートファジーによる関与が示唆されているが、その詳細はよくわかっていない。段瀬氏は、単一の巨大な脂肪滴を形成する油脂酵母*Lipomyces starkeyi*をモデルに用い、ウェスタン解析やボリューム電子顕微鏡による定量解析を駆使して、①オートファジー誘導条件の窒素源飢餓下における脂肪滴の肥大化過程で、ミトコンドリアが断片状・棒状からチューブ状・シート状の形態に変化すること、②チューブ状・シート状のミトコンドリアは巨大脂肪滴に近接すること、③窒素源飢餓下であるにも関わらず、オートファジー関連分解が抑制されていることを見出した。これらの新たな知見は、油脂酵母で巨大脂肪滴の形成が進行する際、ミトコンドリアが脂肪滴へ密接に作用することを初めて示唆するものである。また、窒素源飢餓下でオートファジー関連分解が抑制されている可能性を提起する初めてのケースであり、博士の学位を授与するに値するものと認める。

なお、チェックツール“iThenticate 2.0”を使用し、剽窃、引用漏れ、二重投稿等のチェックを終えている。