

Title	Development and application of dual fluorescence-linked immunosorbent assay for the quantification of full and empty particles of adeno-associated virus vectors
Author(s)	Soth, Sereirath
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/101476
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (SOTH SEREIRATH)	
Title	Development and application of dual fluorescence-linked immunosorbent assay for the quantification of full and empty particles of adeno-associated virus vectors (アデノ随伴ウイルスベクターの完全粒子および空粒子定量のための二重蛍光結合イムノアッセイの開発と応用)

Abstract of Thesis**Chapter 1: General Introduction**

Gene therapy is the treatment of a genetic disease by the introduction of specific cell function-altering therapeutic gene into a patient's body. Adeno-associated virus (AAV) vector is one of the most advanced platforms for gene therapy because of its low immunogenicity, non-pathogenicity, and ability to substantiate long-term gene expression in different tissues. The concentrations of both AAV vector empty particles (EPs), which do not contain DNA and do not show any efficacy, and AAV vector full particles (FPs), which contain DNA, are important quality attributes. During the upstream process, it is difficult to completely remove EPs by purification because the physicochemical properties of EPs are only slightly different from those of FPs.

Analytical ultracentrifugation (AUC) is the gold standard for characterizing AAV vectors and can quantify FPs, EPs and ExPs. Mass photometry (MP) is a method that measures the mass of individual particles and provides the percentage of the particles against total counts (% counts). However, these analytical methods have limitations, especially in the case of crude sample. For example, it is burdensome that prior purification is required before using these analyses. A combination of enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), which do not require purification before analysis, is a conventional method to quantify capsid and genome titers and to calculate FP ratios. However, the combination of ELISA and PCR is subject to inherent drawbacks of error and variability because it relies on data from two independent quantitative analyses which are based on different principles, and capsid and genomic titers must be quantified separately using non-identical samples.

In my study, I aimed to establish a dual fluorescence-linked immunosorbent assay (dFLISA) as an analytical method capable of simultaneously quantifying viral capsid and genomic titers in a single analysis using the same 96-well plate. This method is primarily based on ELISA followed by genome staining where two different fluorescent dyes are employed to quantify full and empty AAV vector particles and the FP ratio. After the addition of fluorescent dye conjugated secondary antibody, the plate was subjected to heat treatment to release the genome from the capsid before the introduction of the second fluorescent dye with.

Chapter 2: Development, validation, and comparison of dFLISA

In **Chapter 2**, a novel method named dual fluorescence-linked immunosorbent assay (dFLISA) was developed. Analytical conditions, such as genome detection following release from the capsid and the detection wavelength, were optimized. The dFLISA results for capsid titer, genomic titers and FP ratio were comparable to the expected values. Therefore, dFLISA allows the determination of the FP ratio in a simple way with high precision, high accuracy, and high sensitivity.

In addition, the developed method was validated successfully such as limitation of quantification (LOQ) and linearity, as well as in comparison with orthogonal methods. These results demonstrated that the good linear correlation between dFLISA and AUC was well observed with respect to FP ratio and other orthogonal methods including AUC, MP, and rather than the combination of ELISA and dPCR. This validates the robustness and reliability of the dFLISA method.

Chapter 3: Application of dFLISA

dFLISA was successfully developed, allowing the determination of capsid and genome titers as well as the

FP ratio in a simple way with high precision, high accuracy, high sensitivity and good linearity. The production of AAV vectors is a complex process influenced by multiple factors such as cell line or plasmid ratios. It is not only FPs that are generated, but also EPs, ExPs, and PPs. Remarkably, there is no existing methods that can quantify the full particle ratio of AAV vectors before purification in one assay. Considering this complexity, it is essential to apply the dFLISA method for the quantification of diverse AAV vectors in both purified and crude lysate samples.

In this **Chapter 3**, I also investigated on the application of dFLISA to determine if dFLISA can be used to quantify the FP ratio for different AAV serotypes. The results showed that dFLISA can be easily modified to measure other AAV vector serotypes. Moreover, the fluorescence intensity of the AAV vector varies with different genome lengths, and this factor is also relevant to dFLISA. I further performed the dFLISA analysis to compare the fluorescence intensity between AAV vectors with different genome lengths.

Another application of dFLISA focused on the analysis of crude lysate samples; the recovery efficiency of spiking levels was also evaluated to determine if dFLISA could be used to analyze crude samples without purification, despite the presence of host cell DNA and proteins that could potentially interfere with measurements. The results showed that dFLISA could accurately detect capsid and genome titers without interference from the sample matrix, whether it was purified or crude lysate. Subsequently, I evaluated the ability of dFLISA to quantify capsids/genomes in the presence of untreated crude lysate sample and compared the results with other methods such as ELISA and dPCR. The results showed that dFLISA could assess both capsid and genomic titers without purification. The capsid titer determined by dFLISA was comparable to that determined by ELISA whereas the genomic titer results with dFLISA were higher than those from dPCR. Therefore, dFLISA results are relatively unaffected by matrix interference or impurities from the crude lysate.

The applicability of dFLISA as the developed method for the quantification of FP and EP in AAV vector samples, including other AAV vector serotypes and AAV vectors with different genome lengths, was demonstrated. Notably, since a potential advantage of dFLISA is to be applicable for the crude samples, spike recovery test was performed using crude lysate to evaluate the capability of dFLISA for capsid/genome quantification without interference the impurities from crude lysate. Thus, the result shown that dFLISA could accurately quantify the titer of crude samples, making it uniquely capable of directly quantifying the genomic titer and FP ratio of crude sample. dFLISA could be easily modified for measuring other AAV vector serotypes and AAV vectors with different genome lengths. These features made dFLISA a valuable tool for the future development of AAV-based gene therapies.

Chapter 4: General conclusion and future perspective

Through the **Chapter 2** and **Chapter 3**, the correlation between dFLISA and BS-AUC proved robustness and the reliability of the dFLISA for both full and empty capsids. dFLISA results also corresponded with those of other orthogonal techniques, including MP and a combination of ELISA and dPCR. Remarkably, dFLISA showed significant potential for evaluating the capsid and genome titers of unpurified samples and different AAV vector serotypes, making it a reliable analytical technique for AAV vector particle analysis.

In addition, I also viewed the future perspective with several promising directions for future developments and applications of dFLISA. Firstly, dFLISA has the potential to significantly increase throughput, making it an ideal solution for large-scale screening in pharmaceutical and clinical laboratories. Secondly, while this study concentrated on AAVs, the principles of dFLISA could be applicable to other viral vectors, including lentiviruses (LVs) and adenoviruses, thereby broadening its applicability in gene therapy research. Thirdly, non-viral vectors such as lipid nanoparticles (LNPs), including liposomes or solid lipid nanoparticles, would encounter similar challenges and could be evaluated using a method like dFLISA. Fourthly, the combination of dFLISA with advanced imaging techniques or next-generation sequencing could provide comprehensive insights into viral vector characteristics and improve the precision of quantification. In sum up, it is expected that this work represents an exploration and generation of a novel method with significant implications for AAV quantification, offering substantial benefits for the advancement of AAV-based gene therapy in the future.

論文審査の結果の要旨及び担当者

氏 名 (SOTH SEREIRATH)		
	(職)	氏 名
論文審査担当者	主 査 教授	内山 進
	副 査 教授	大政 健史
	副 査 教授	藤山 和仁

論文審査の結果の要旨

遺伝子治療は、治療用遺伝子を患者体内に投与することで遺伝病を治療する治療法である。アデノ随伴ウイルス (AAV) ベクターは、非病原性で、さまざまな組織で長期的な遺伝子発現を実現できる能力があるため、遺伝子治療の最も先進的なプラットフォームとなっており、既に米国では 5 以上の製品が発売されている。AAV ベクターは遺伝子組換えと細胞培養技術を駆使したバイオテクノロジーを利用して製造される。現在、AAV ベクターで課題となっているのは、目的遺伝子をカプシドに内包する AAV ベクターの完全粒子 (FP) に加えて、細胞での製造の際に、產生される空粒子 (EP) の定量と低減である。EP は DNA を含まず、FP と競合し副作用の原因となると認識されているものの、EP と FP では、物理化学的特性が大きく変わらないため、精製によって EP を完全に除去することは困難である。そのため、細胞による產生時に EP と FP の量をモニタリングし、細胞による產生時にできる限り EP 含量を低減する製造方法の開発が期待されている。現在、FP と EP の定量にはいくつかの手法が利用されている。分析用超遠心法 (AUC) は、FP と EP の定量のゴールドスタンダードであり、近年開発された散乱光干渉質量測定法 (MP) は、FP と EP の質量を持つ成分を計数し、総計に対する FP と EP の割合 (EF 比) を算出する方法である。ただし、これらの分析法は精製が必要なため、細胞による產生条件の検討に直接利用するには適さない。従来、細胞培養によるベクター產生時の試料について、同一サンプルを分割して、酵素結合免疫吸着測定法 (ELISA) によるカプシド数の定量と、ポリメラーゼ連鎖反応 (PCR) によるゲノム力値 (ゲノム量) の定量を実施し、両者の定量結果を統合することで EF 比を求める手法が利用されてきた。しかし、ELISA と PCR の組み合わせは、異なる原理に基づく 2 つの独立した定量分析のデータを利用するため、エラーやばらつきが大きい。特に PCR の定量の CV 値は 10% を超える場合が多く、さらに夾雑物が多い細胞培養サンプルの定量を正確に実施するのは困難である。また、ELISA と PCR の組み合わせでは、カプシドとゲノムは、同一ではないサンプルを使用して個別に定量する必要があり、煩雑である。こういった背景のもと、本研究では、同一の 96 ウェルプレートを使用して、カプシド数とゲノムの力値 1 回の分析で同時に定量できる方法として、新しい手法として二重蛍光結合免疫吸着測定法 (dFLISA) の開発が行われ、開発手法を用いて細胞による產生時の FP と EP の定量が行われた。

具体的には、プレート上に AAV ベクターを補足する抗体で AAV を補足後、蛍光色素標識した抗体により AAV ベクターのカプシド数の定量を行った後、加熱によりカプシドを崩壊させ内包されていたゲノムを露出させ、ゲノム力値を別の蛍光色素により定量する、という原理が考案され、dFLISA と名付けられた。

手法開発に際しては、最初に精製した AAV ベクターの血清型 8 (AAV8 ベクター) の FP と EP を用いて、AAV ベクター粒子の固定化と定量条件、加熱によるゲノム放出条件と定量条件、さらに検出波長などの分析条件の最適化がなされ、その結果、dFLISA によるカプシド、ゲノム力値、FP 比の定量結果が、期待値と同等の値を与えることが示された。加えて、開発した dFLISA 法は、定量限界 (LOQ) や直線性、および他の手法との比較検証においても良好な結果を示し、更に AUC、MP、dPCR と ELISA の組み合わせといった他の定量手法と良好な線形相関が確認され、カプシド、ゲノム力値、そして EF 比について信頼性の高い定量方法が本研究の結果、確立された。

次に、異なる血清型や異なる内包ゲノム長の AAV ベクターの場合について、dFLISA の EF 比定量の適用可能性につ

いて検討された。その結果、dFLISA は AAV2 ベクターにも利用可能であり、また、内包ゲノムの力価を反映する蛍光強度はゲノム長によって異なるものの、鎖長さが変わっても適切な校正直線を利用することでゲノム力価の定量が可能であることが明らかとなった。このように、AAV8 ベクターと AAV2 ベクターでの結果が示されたことで、他の血清型の AAV ベクターを適切に認識する抗体を利用すれば、dFLISA を異なる血清型の AAV ベクターへ適用可能であることが期待された。

さらに、dFLISA の応用例として、細胞による產生時を想定した試料として、細胞溶解液サンプルの分析に焦点が当てられた。細胞溶解液中試料として、宿主細胞の DNA やタンパク質などのマトリクスが測定に干渉する可能性が考慮され、AAV ベクターを含まない細胞粗溶解液に既知量の FP や EP を添加した試料についての定量可能性が調べられた。結果として、細胞粗溶解液サンプルでも、マトリクスによる干渉を受けずに、dFLISA が正確にカプシドとゲノム力価を検出できることが示された。また、細胞粗溶解液サンプルについて、dFLISA で得た数値に対して、ELISA と dPCR を組み合わせた方法により得た数値を比較すると、dFLISA ではゲノム力価をより正確に定量可能であることが示され、当初の目的であった細胞による產生時のカプシド、ゲノム、および EF 比の定量を実現可能な手法であることが示された。

以上、本研究では新規手法として dFLISA の開発がなされた。そして、開発された dFLISA により、精製された AAV ベクターサンプルおよび細胞による產生時を反映する細胞粗溶解液に AAV ベクターを含むサンプルについて、カプシド、ゲノム力価、および EF 比の決定を実現する手法であることが示された。本研究は、今後、遺伝子治療用 AAV ベクターの開発、特に現在課題となっている完全粒子率が高い製造条件の探索、に貢献する研究であり、よって本論文は博士論文として価値あるものと認める。