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1. Introduction

Let two populations ]Jg (ί = l, 2) be such that

0 x<0,
( l . i )

fi~λt)dt x^O.

When we wish to test the hypothesis H: ]J1 = [J2 by two random samples
(Xίy X2, •••, Xni) and (Y19 Y2, ••, Yn) taken from [fλ and [J2 respectively,
ties occuring at the origin prevent us from using the Wilcoxon statistic.
As Kruskal and Wallis [4] and Putter [7] considered, however, the con-
cept of midrank is available in this case and we define the test statistic
Um as follows :

(1.2) UM = -±iti

where

m(X7 Y) = 1 X= Y,
2
0 X<Y.

If we define Vm by interchanging X and Y in (1. 2), we can easily see
that Um+Vm = l. So we consider only Um in the following.

The mean and variance of Um are calculated in section 2 and the
consistency as well as unbiasedness of the test based on Um are shown in
section 3. The asymptotic relative efficiency is calculated with respect to
the location alternative in section 4 and the asymptotic efficiency relative
to Halperin's Uc conditional test [2] in section 5. Finally in section 6
we apply these tests to some data of cleft-palate patients kindly provided
by Mr. A. Takayori, Dental School, Osaka University.
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2. Mean and variance of Um

Proposition 1. Mean and variance of the statistic Um defined in (1.2)
are such that

(2.1)

(2.2)

E(£7J = | -A

Var(J7J = ^ { ^ - | -

(= A

sι = - « + A.)Wi(0 + A (ί - -|-

(i = 0, 1),

Proof. By the definition of Um in (1.2), we have

E(C/J = E [ « ( I

= jj
l1>t2>0

to get (2.1). Since t/m is a kind of {7 statistic due to Hoeffding [3]
and Lehmann [5], Problem 8 in Fraser [1, p. 257] is available to cal-
culate its variance, that is,

where

Var (C7J = J L {£., + (»,-!)?..! + (»,-DC,..} ,

ripl = Var [m(X, F)] = pq-\p»P, >

r... = Var [/;*,(F)] ,

rM = Var ίf*0

= Eltn(X, Y)\Y = y],

= E[m(.X, Y)\X=x}.

In our case

y = 0,

y>o,
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and hence

fo.i = (ίo + yA,) A+

which, after some calculations, turns out to be equal to sx in (2.2). In
the same way, we get s2 in (2.2) from f10.

Corollary. Under the null hypothesis H

(2.3) 1

(2. 4) Var (UJ = j ^ — {3(1-#) + (* + *,-2) ( 1 -

Proof. Since under the null hypothesis fo{t)=fλ(t) and po=piy we
have from (2.1)

A-' \Um) r» rOT/'o^o'T o |_ O\*/ _lθ o *

Δ Δ Δ

and from (2. 2)

Var(ί/J = _L{-L(l-pg) + (ί

where

This proves (2.4).

3. Consistency and unbiasedness of the Um test

In this section we consider the following alternative,

(3.1) K: po + F0(x) < A + F^s) for any x ^ 0 ,

that is to say, /7Ί is stochastically larger than JJ2. Let the test function
determined by Um, which will be called the Um test, be

(3.2)

where the constant Ua is determined such that Έφ = ot under the null
hypothesis H.

Theorem l The Um test of the hypothesis H: ffi = IT2 against the
alternative K is unbiased and consistent under the limiting condition:
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(3. 3) nι + n2 = N, nλ = ccJSf, n2 = otJSί, aud N -> ^ ,

(with oc1 and oc2 fixed).

Proof. By the lemma 3.1 in Lehmann [5], it is sufficient, to prove
consistency, to show that, under the alternative K, E(Um)^>l/2 and
Var(C7J->0 as iV->oo. The former is derived from (2.1) and (3.1),
while the latter from (2.2).

Unbiasedness is proved from the following lemma which assures the
validity of Theorem 3.1 in Lehmann [5], even when the population distri-
bution is discontinuous at the origin as is the case with (1.1).

Lemma. // the test function satisfies φ(xly •••, xni y19 •••, yn) ^>
Φ(xlf --yXni; z19 •••, zn) whenever y{^z£ (i = l , 2, •••, w2), then the power
function against the alternative K in (3.1) satisfies E G o G l ( φ ) ^ E G o Go(φ)
for Go and Gλ representing the distribution function of JJt and fj2 respec-
tively in (1.1).

Proof.* Let

/
= Ί Go \ A) > x >

then the distribution function of g(x) under f/\ is G^z). From (3. 4) and
(3.1), g(x)^x for all x^O. Hence

W1; Yl9 - , FWl)] = E ^

4. Efficiency of the Um test for the location alternative

When the hypothesis H: Πi^IIz a n d th e alternative K in (3.1) differ
only in location such that

A = j°_ fit - θo)dt, A = j°_ f{t - θ)dt,

(4.1) Πi' χ Ih-

Fix) = [fit-θo)dt, Fix) =\X fit-θ)dt,
Jo Jo

then we are concerned with testing H: θ = θ0 against K: Θ<^ΘQ. Suppose
there exist the maximum likelihood estimators of θ0 and θ denoted by
S0 = θ0 (X19 •••, Xni) and Θ = S (Y19 •••, Ynz) and let the test function ψ
be

(4.2) ψ{Xly ,Xni,Y19 , ^ 2 ) - l o § S > C

* This lemma is also proved from the lemma 1 of chapter 3 and the lemma 2 of chapter
5 in Lehmann, "Testing Statistical Hypothesis", John Wiley & Sons, Inc. 1959.
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where the constant cΛ is determined such that Έψ=a under H.

Theorem 2. // the maximum likelihood estimators of θ0 and θ de-
noted by SQ and S exist and are distributed asymptotically normal and
efficient, the asymptotic efficiency of the test Um defined by (3. 2) relative
to the test ψ defined by (4. 2) is

{ίe/(-*o) + 2J" f(t)2dtj
<43) * • * V

Proof. Put θ=θo—kN~1/2 and consider the limiting condition (3.3).
As Um is distributed asymptotically normal under K by Lehmann [5],
the asymptotic power of the test φ is Φ[(E θ ( f / w )- 17Λ)/Varβ(t/m)1/2],
where Φ is the distribution function of standardized normal distribution.
From Proposition 1 we have

dθ

and

Hence the asymptotic power of φ is

where

(4.4) c= N /«A ,.,„ , J ϊoV and

Since by assumption ^—^0 is distributed asymptotically normal with mean

θ— θ0 and variance

the asymptotic power of the test ψ at θ=θo—k*N~1/2 is

(4.5)
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where

(4.6) c* = \/<x1a2 I —/'( —0o)4-_y7_0 v
y Po °

We can get the asymptotic relative efficiency from (4.4), (4.5), and

e .Ψ = (**/*)2=(*/**)2.

EXAMPLE 1. Normal distribution. When f{x) = (2τr)-1/2e-χ2/2 in
Theorem 2, the efficiency becomes

e , = {Φ( flo)/(flo) + * Φ ( V Y Θ 0 ) } 2Φ( -
••• ( φ ( _

Some numerical values of e^ψ are shown in the following Table 1.

Table 1. Efficiency for the normal distribution.

- 1 0 1 oo
0.970 0.972 0.969 0.955 ( = 3/τr)

As ΘQ tends to plus infinity, eφφ tends to the efficiency 3/?r for the
ordinary Wilcoxon test relative to the Student £-test (see Mood [6]).
It is interesting that the efficiency is nearly equal to 1 irrespective of the
value of θ0.

EXAMPLE 2. Exponential distribution. When f(x) is equal to e~x for
x^0 and zero otherwise, the condition concerning So and θ stated in
Theorem 2 is not satisfied. Calculating directly, we get 00 = \og{l — r1ln^)
and O = log(l—r2/n2). Using the asymptotic normality of r1/n1 and r2/n2,
we can conclude that θ0 is distributed asymptotically normal with mean
logtfo a n d variance polnλqQy and S with mean log qt and variance pjn2q1.
From this we can get the asymptotic power (4. 5) of the test ψ in (4. 2)
with c* in (4. 6) as follows :

This turns out to be equal to the right side of (4.6), and hence the
efficiency may be calculated by (4. 3), i.e.

From (4. 8) we can see that the efficiency decreases monotonically from
one to zero, as θ0 changes from — oo to zero. Some numerical values
are shown below.
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Table 2. Efficiency for the exponential distribution.

2
0.99

- 1

0.93
-0.5
0.76

-0.2
0.45

-0.1
0.26

0

0

EXAMPLE 3. Uniform distribution in [0, 1], In this case we take
the test function ψ corresponding to (4. 2) as follows :

) ri _ r2 \ r

Then the asymptotic power of the test ψ is given by (4.5) with

A { - " , ( l + α " ' / ! . Hence

(4 9) c,.- -

From (4. 9) we can see that the curve of efficiency is unimodal with the
maximum value 3(4^/1^—5) at θo = l — \/~2.

1

Table

-0.8

1.42

3. Efficiency

-0.6

1.80

for the

-0.4

1.97

uniform distribution.

-0.2

1.57

-0.1

0.98

-0.05

0.54

0

0

5. Efficiency of the Um test relative to Halperin's Uc conditional
test

Halperin [2] proposed the following Uc conditional test: Put

(5.1) U^Λ

where

c(x'γ)-\o

and let r1 and r2 be the number of zeroes appearing in the X's and the
Y's respectively, then Halperin [2] showed the conditional asymptotic
normality of Uc under the null hypothesis H for given r ( = r1^-r2) and
considered the test (3.2) with Um replaced by Uc, which will be denoted
by φ\ The relation between two statistics Um and Uc is given by

(5.2) Ut=Um- rxr2

2nxn%'
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Theorem 3. Suppose p0 and pλ in (1.1) are such that po=p(θo)
 and

Pi=P(θ) with the function p{Θ) differentiable in some neighbourhood of
θ = ΘQy then (JJC—E)V~ιμ is distributed asymptotically normal with mean
zero and variance one, for given r, under the alternative K: θ<^θQ with
Θ=ΘO + O(N~1/2) and under the limiting condition:

n2 = oc2N, and N

n1

Jrn2 = N,

where

n^ ί." F*
(5. 4) V = £&{(«,-«,)?. Γ FUFt + nlQί)nxn2 i Jo

nλn2 { Jo

+ 0(N~3/2),

and

Ft = *ψ. (f = o, 1).

Proof*. The conditional distribution of r1 for given r is

(5.5)

Using the normal approximation of rλ and r2 in (5. 5), we find that under
the condition for r's being given, w = (r1 — E(r1\r))V(r1\r)~1/2 is distribut-
ed asymptotically normal with mean zero and variance one, where

(5.6) E ( r | r ) = j ( +

* Prof. M. Okamoto, Osaka University, remarks that this proof is heuristic and seems to
be improved and simplified by generalizing the Theorem of Steck [8]. This point will be di-
sςμssed in another occasion,
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(5. 7) Vfo I r) = -Ά- poqo(l +0(N-1'2)).

On the other hand,

(5. 8) £/ = (^i
c nxn2 nλn2 '

where U* is calculated from Ue in (5.1) by excluding the rx + r2 zeroes
in two samples. Since U* is the ordinary Wilcoxon statistic for given
r and r19 t = (U* — E*)V*-1/z is distributed asymptotically normal with
mean zero and variance one under the same condition, where

£* = [~ FfdFt,
Jo

_J_ Γ ίp*-
n1—r1 Jo \

Rewriting (5. 8) in terms of w and / instead of rx and U* as in Halperin
[2] and noticing r = ( « 1 + w2)^0 + 0(iV1/2), we have

Uc = E+w{pΰq0/n1n2(n1 + n2)}1/2{(n1-n2)E*-n2p0-n1g0}

whence follows Theorem 3.
In particular we.get from Theorem 3,

Corollary. Under the null hypothesis H, Uc is distributed asympto-
tically normal with mean E and variance V for given r> where

F = [ι±λ{nx + nA— r)

V= M

From Theorem 3, we can calculate the asymptotic efficiency of the
Um test relative to the Uc conditional test for the location alternative.

Theorem 4. Let two polulations [Jλ and JJ2 be defined by (4.1), then
the asymptotic efficiency of the Um test relative to the Uc conditional test
at r=(n1 + n2)p0 is given by
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* = — 2 .

Proof. The method of proof is the same as in Theorem 2. Corre-
sponding to c* in (4. 5) and (4. 6), we get from Theorem 3,

* _ rdE\
C \dθ

_1/2

With c in (4.4), we get eφy = (c/c*)2 in (5.12).
Resolving eφy into partial fractions with respect to x ( 0 ^ # ^ 2 ) , we

have

ffldt
(5.13) e*s = , i ^ - ^ T A •

3

where

(5.14) β = ί o / ( - * o ) - 2 Γ

Regarding βψfφ/ as a function of x, we get the following:

(i) When D^O, eΦy{x) is nonincreasing. Hence max eφy = e(0) and

(ii) When D < 0 , we put xQ= -qQpo\l+f(-θQ)βD)y and
(a) if xo<Cβ> maxeφtφ' = e(2) and mineφy = e(0),
(b) if 0 ^ Λ ; 0 ^ 2 , max^φφ/ = max(^(O), e(2)) and

min eΦy=pώi(pof(-θo)+2 J^ f(t)2dt

(c) if ΛΓO>2, max^φφ/ = ̂ (0) and min^ψy = e(2). From these facts
we can get the following:

Corollary. The asymptotic relative efficiency eφy in Theorem 4 is one
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when \\mnλln2 = l and takes both larger values and smaller values than
one as lim njn2 changes, except when xo = l and

EXAMPLE 4. Normal distribution in Example 1. When ΘO=O> D =

^y and #0 = 0.6. Hence this is the case (ii) (b). So we have

M / = (15 + KV1D/28 = 1.04,

min eΦy = (57 + 4(V~2Γ)/343 - 0.99 .

EXAMPLE 5. Exponential distribution in Example 2. Since D becomes
always zero, this is the case (i). Hence

__ l — e 2 θ o

Φ Φ -*• I Q / - | Λ \ 2Q >

min 1 e2θi3-eθή(l-eθή
( 3 3 ^ ^ ) ( 2 ^

EXAMPLE 6. Uniform distribution in Example 3. Since D=—

, this is the case (ii). We have ^ O ^ I + OTΓ+OTW- When

θ0 = — — , χ0 = 1, and maxeφφ^ = 49/48 ,

min e$y = 1,

θ0 = — — , j o < ζ θ , and maxβφy = 261/224 ,
Δ

min eΦtΦ' = 45/56.

It is interesting that in case 0O=—1/4 the ί7w test is better than the Uc

conditional test irrespective of the value of lim n1/n2.

6. Application

The following table shows the ratio of nasal to oral leakage at the
time of blowing for each one of 38 cleft-palate patients classified ac-
cording to their ages at operation.

age at
operation

1-3.

16-.

0,

0.55

0,

0.94,

0,

0.62,

0,

1.01,

0,

0.75,

0,

1.39,

0,

0.84,

0.11,

1.39,

0,

1.00,

0.32,

1.40,

0,

1 70

0.47,

1.44,

0,

0.58,

1.62,

0,

0.70,

1.85,

0.25,

0.81,

2.01,

0.46,

0.83,

2.50

0.50,

0.86,

From these data, we want to test whether the ratio is stochastically
larger in the group of operation age above 16 than the group of age



268 N. SUGIURA

1-3. After numerical calculation we get Um = 269/(21 x 17) and (Um-E(Um))
/Var(Um)1<2 = 2.72 from (1.2), (2.3) and (2.4). From (5.2) and (5.11),
we also get Uc = 257/(21 x 17) and (Uc-E)/V1/2 = 2.87. Noticing the
asymptotic normality of Um and Ucy we can conclude that there is a
significant difference between two groups ditected either by the Um or
the Uc test.
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