

Title	Cellulose-Based Polymer Electrolytes Exploring Their Applications in Li-ion Batteries
Author(s)	Qolby, Sabrina
Citation	大阪大学, 2025, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/101494
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、 https://www.library.osaka-u.ac.jp/thesis/#closed 大阪大学の博士論文について

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (QOLBY SABRINA)	
Title	Cellulose-Based Polymer Electrolytes Exploring Their Applications in Li-ion Batteries (リチウムイオン電池への応用を志向したセルロース系高分子電解質の開発)
<p>Abstract of Thesis</p> <p>The development of advanced materials for lithium-ion batteries (LiB) has become a critical area of research as the demand for high energy density and safe energy storage. LiBs traditionally utilize liquid electrolytes to transport lithium ions between the anode and cathode, facilitating the charge and discharge of energy. Nevertheless, the flammability and leaking potential of these liquid electrolytes raise safety concerns. Introducing polymer electrolyte (PE), a groundbreaking material that has the potential to revolutionize the field of battery technology. In battery systems, polymeric electrolytes (PEs) are large molecules that have the unique capacity to serve as both ionic conductors in the presence of a lithium salt and as separators that insulate the electrode to prevent short-circuiting. The performance of PE can be enhanced by incorporating the following ideal material features: excellent ionic conductivity and electronic insulation to facilitate ion movement and minimize self-discharge, a high Li⁺ transference number, a wide electrochemical stability range, strong mechanical properties (in a flexible form), exceptional thermal stability, leak-proof design (for enhanced safety), favourable electrode-electrolyte interphase properties, simple production process, and low cost with eco-friendly attributes. Polymer electrolytes require a polymer matrix capable of dissolving and complexing lithium ions. Polymers containing polar groups (-O-, =O, -S-, -N-, -P-, C=O, and C=N) can dissolve lithium salts to produce polymer-salt complexes.</p> <p>Polymer electrolytes from cellulose matrix are a viable substitute for conventional liquid electrolytes in liquid forms. These PEs can be manufactured more cheaply, while also providing enhanced mechanical stability and safety. Cellulose, an abundant and renewable polysaccharide, has been studied as a matrix substance for PEs. The advantage of cellulose is a match of physical, mechanical, and chemical characteristics for PE, such as thermal stability, electrochemical stability, flexibility, ion-conducting abilities, and formation of a stable interface between the electrolyte and the electrodes. Cellulose can be obtained from various sources, such as plants, microorganisms, and specific types of algae. Cellulose consists of glucose monomers linked by glycosidic linkages, resulting in a linear chain structure. The linked glucose monomers ensure the ability to impregnate li salt solution and an abundance of ionic channels. The presence of functional -OH groups, ether groups (EO), and glycosidic linkages on chains structure gives it a hydrophilic nature, facilitates the dissociation of lithium salts, enabling fast ion transport and the creation of a stable interface between the electrolyte and electrodes. This stability is essential for the optimal functioning of electrochemical devices. The semicrystalline structure of cellulose can be modified to improve structural stability and mechanical strength, making it an ideal candidate for use as a polymer electrolyte. In this dissertation, various approaches to improving the ionic conductivity characteristics of cellulose derivative substances have been explored with the aim of developing Cellulose-Based Materials as promising ion storage polymers for Li-ion batteries.</p>	

論文審査の結果の要旨及び担当者

氏 名 (QOLBY SABRINA)	
論文審査担当者	(職)
	主査 教授
	副査 教授

論文審査の結果の要旨

本論文は、低コストで環境に優しく、再生可能なセルロースに着目し、リチウムイオン電池（LIB）の高分子電解質として使用するためにセルロースの特性を向上させる様々な手法をまとめたものである。セルロースの水酸基がリチウムイオンへの配位により電子供与体として機能する。

第1章では、イオン貯蔵ポリマーとしてのバクテリアセルロース（BC）の利用に焦点を当てた。BCは他のセルロースと比較して結晶性が高いため、リチウムイオンとの相互作用を阻害する。BCの細孔構造を制御し、リチウム塩の吸収プロセスを最適化する乾燥技術によりBCを改質している。凍結乾燥プロセスは分子間および分子内の水素結合ネットワークを破壊し、電解液の吸収を促進するためにより多孔質な構造を形成した。さらに凝集を防ぐ安定剤としてカルボキシメチルセルロース、可塑剤としてグリセロールを添加し、セルロース鎖間の分子間水素結合を破壊した。DMAc/LiCl系に溶解したBCにアセチル基を導入し、電界紡糸することでポリマーマトリックスの結晶化度を効果的に低下させ、多孔度を増加させることで、従来の技術を凌駕している。

第2章では、ポリエチレンオキシド（PEO）マトリックスへのセルロースの補強を調べている。PEOの分子量は機械的特性とイオン拡散に大きく影響する。高い分子量（60万）のPEOは優れた構造的完全性とサイクル性能を提供した。ナノセルロースを極性基として加えることでリチウムイオンの移動度を促進し、高分子膜の成形性を向上させた。その結果として、バランスのとれたナノセルロース/PEO構造は電池性能評価として比容量131 mA h/gという高性能を達成し、PEO添加による性能の向上を示している。

第3章では、セルロース誘導体の水酸基がどのようにイオン輸送を促進するのかを、実験とシミュレーションに基づいたアプローチで調査している。ヒドロキシプロピルメチルセルロース（HPMC）、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロースなどの誘導体について、ナノセルロースやリチウム塩（Lithium Bis(trifluoromethane-sulfonyl)imide、LiTFSI）との相互作用を調べた。これらのセルロース誘導体の水酸基はLiTFSIの解離を促進し、リチウムイオンの移動度を向上させている。特にHPMCのメトキシ置換基は極性を高めてリチウム塩の解離をより大きくすることを明らかにし、HPMCが最も高いイオン伝導性（ 1.93×10^{-4} S/cm）を示している。

以上のように、本論文はインドネシアに豊富に存在するバイオマスであるセルロースの新たな有効利用方法として、セルロース系ポリマー電解質を開発するための持続可能で革新的な戦略を提示し、実証している。これらのアプローチは次世代LIBの性能と安全性に関する重要な課題に対処するものである。

よって本論文は博士論文として価値あるものと認める。