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Abstract

Quantum computers are believed to provide an exponential speedup compared
to classical computers for specific problems, such as factoring and quantum
simulations. After decades of research, we are in the noisy intermediate-scale
quantum era, which means we can access the quantum computer with hundreds
of physical qubits with noise. Due to the limited number of qubits on near-term
quantum devices, every shot is valuable. It is natural to ask how to utilize
near-term quantum devices more efficiently. Or we can ask how to reduce the
requirement of quantum resources when we implement the quantum algorithm.
In this thesis, we try to use optimization tools to reduce the requirement of
quantum resources in the following three tasks: expectation value estimation,
extracting non-linear features from noisy systems, and quantum channel simu-
lation using coherence.

In the first part, we point out that the sampling times of expectation value
estimation of Hamiltonian depends on the Pauli norm of Hamiltonian. Then
we propose a variational quantum algorithm called variational quantum Hamil-
tonian engineering to minimize the Pauli norm of Hamiltonian, such that the
sampling times for estimating expectation value can be reduced. We develop a
theory to encode the Pauli norm optimization problem into the vector /;-norm
minimization problem. Then we devise an appropriate cost function and utilize
the parameterized quantum circuits to minimize the cost function. We also con-
duct numerical experiments to show the effectiveness of our algorithm on the
Ising Hamiltonian and molecules’ Hamiltonian. This work makes a significant
contribution to improving the efficiency of quantum computing.

In the second part, we focus on extracting accurate high-order moments from
noisy quantum systems. To address the noise, we establish a method, called ob-
servable shift, for deriving protocols that using quantum operations and classical
postprocessing only. Compared with the existing method, our method requires
lower sampling overheads and easier implementations. We further construct
the protocol for large quantum systems to retrieve the depolarizing channels,
making the proposed method scalable. This work contributes to a deeper under-
standing of how quantum noise could affect high-order information extraction
and provides a more efficient way to tackle it.

In the third part, we study channel simulation using coherence, which refers
to realizing a target channel with coherent states and free operations. It was
shown that if there are no constraints on the coherent states, we can simulate
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arbitrary quantum channels with maximally incoherent operations (MIO) accu-
rately and deterministically. However, in real cases, the coherent states are lim-
ited, which motivates us to consider the more general probabilistic framework.
In this chapter, we develop the framework for probabilistic channel simulation
using coherence with free operations. When the chosen set of free operations is
the MIO, we provide an efficiently computable SDP to calculate the maximal
success probability and derive the analytic expression of success probability for
some special cases. When the chosen set of free operations is the dephasing-
covariant incoherent operations (DIO), we show that if the target channel is not
a resource nonactivating channel, then one cannot simulate it exactly both de-
terministically and probabilistically. The SDP for maximal success probability
of simulating channel by DIO is also given correspondingly. This work fills an
important gap in literature by establishing the probabilistic toolbox for the key
resource of quantum coherence.

In the first and second parts of this thesis, we consider sampling as a quantum
resource and find ways to reduce the requirement of such resources in the task
of expectation value estimation and non-linear features estimation from noisy
quantum states, respectively. In the third part, we consider coherence as a
quantum resource and study the framework of probabilistic channel simulation
using limited coherent states.

This thesis contributes to reducing the requirement of quantum resources
in different quantum tasks, such as expectation value estimation, non-linear
features estimation, and channel simulation using coherence, which makes the
quantum devices more efficient. We are confident that this thesis pushes quan-
tum computers a step toward the next milestone. One interesting research in
the future is to apply our method on the quantum device to check the actual
performance. Besides, another interesting research topic is proposing methods
to solve the problems that quantum computers will really encounter.
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Chapter 1

Introduction to Quantum
Computing

1.1 Development of quantum computers

Quantum mechanics and computer science started merging in the 1980s, creat-
ing a new interdisciplinary field called quantum computing. Quantum computing
is a cutting-edge computing model that manipulates units of quantum informa-
tion according to the principles of quantum mechanics. Over the past forty
years, quantum computing technology has advanced rapidly, leading to the de-
velopment of quantum computers, which are different from classical computers.
Quantum computers are considered to have the potential to speed up computing
exponentially in particular problems, such as large number factoring [1], Hamil-
tonian simulation [2], and machine learning [3, 4]. Once we solve these vital
problems with quantum computing, it will revolutionize the field of science. For
example, it is well-known that the RSA algorithm [5] is one of the first public-
key cryptosystems and is widely used for secure data transmission. The security
of the RSA algorithm relies on the difficulty of factoring a large number into its
prime components. If we can factorize large numbers efficiently with quantum
computing, then it will impact the field of cryptography [6]. Besides, if we can
simulate Hamiltonian with quantum computer efficiently, then it will impact
quantum chemistry [7]. By integrating quantum chemistry into the design and
optimization of sustainable technologies, we can significantly enhance the effi-
ciency and scalability of processes crucial for reducing greenhouse gas emissions
and transitioning to a low-carbon economy. This contributes to global issues
such as carbon neutrality. If we apply quantum computing to machine learn-
ing [3], it is expected to lead to transformative advancements, especially for
problems such as vast datasets [4] and high-dimensional spaces [8].

Since Feynman proposed the concept of quantum computing [2], research
on quantum hardware has also advanced rapidly. As the hardware founda-
tion for quantum computing, researchers have proposed many promising and
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operationally feasible quantum hardware platforms. Representative platforms
include: superconducting quantum computing [9]; trapped ion quantum com-
puting [10]; rydberg atom quantum computing [11]; semiconductor quantum dot
quantum computing [12]; photonic quantum computing [13]; nitrogen vacancy
center quantum computing [14]; topological quantum computing [15].

It is widely believed that fault-tolerant quantum computers [16-18] are es-
sential for solving complex problems such as factoring [1] and quantum chem-
istry [7] with theoretically proven quantum speedup. At this stage, we have
achieved several milestones on our way to realizing fault-tolerant quantum com-
puters, although there is still a long way to go before achieving our ultimate goal
(solving significant science problems by quantum computers with advantages).
In 2014, the high fidelity superconducting quantum computer was realized. The
fidelities of single-qubit and two-qubit gates are 99.92% and 99.4%, respec-
tively [19], and the measurement accuracy arrives at 99.8% [20]. Such high
fidelity quantum gates and measurements exceed the error correction thresh-
old [21, 22], making error correction possible on quantum devices. This was a
great milestone and attracted a great of interest from commercial companies,
such as Google and IBM. The development of quantum computers has gotten
faster since then. In 2016, IBM developed a 5-qubit quantum computer [23].
Later on, the variational quantum eigensolver algorithm [8] was conducted on
IBM’s 6-qubit processor in 2017 [24]. In 2018, Google conducted experiments
on a 49-qubit quantum computer [25]. One year later, Google posted a new
device called Sycamore, which possesses 53 qubits [9].

Due to the property of quantum mechanics, simulating quantum systems
requires exponential classical computing resources respect to the quantum sys-
tem size. Thus, the increasing number of qubits makes it harder and harder
for classical computers to simulate them. When the number of qubits exceeds
some threshold, it is obvious that even the best classical supercomputer cannot
simulate. We call such a phenomenon as quantum supremacy [9, 13, 26]. Quan-
tum supremacy is considered the second milestone on the way to fault-tolerance
quantum computing, for it breaks through the limits of our current comput-
ing power. In 2019, Google first claimed to have demonstrated the quantum
supremacy [9] that the quantum processor performs the target computation in
200 seconds while a classical algorithm would take approximately 10,000 years
in the world’s fastest supercomputer to solve the same problem. The task that
Google used to show supremacy is sampling the output of a pseudo-random
quantum circuit [25, 27]. The reason they chose this task is that it does not
possess structure and therefore allows for limited guarantees of computational
hardness [25, 28]. However, researchers have developed better classical algo-
rithms for the sampling problem used to claim quantum supremacy, vanishing
the gap between Google’s processor [9] and classical supercomputers [26]. Thus,
the quantum supremacy claimed by Google is not the real supremacy. In 2020,
Jianwei Pan’s group claimed quantum supremacy by implementing Gaussian
boson sampling [29] on 76 photons with their photonic quantum computer [13],
which is faster than using the state-of-the-art simulation strategy and super-
computers by a factor of 10'. The efficiency of implementation and the po-
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tential applications in graph-based problems [30] and quantum chemistry [31]
make authors choose the task of Gaussian boson sampling to show quantum
supremacy. In 2022, Xanadu reported another boson sampling experiment with
a programmable photonic processor and claimed to have obtained a speedup 50
million times more than the classical supercomputer [32]. In 2024, Google [33]
implemented an algorithm for random circuit sampling in the weak-noise phase
with 67 qubits at 32 cycles and showed that such a task takes 10'® years for
classical computers. Now, many evidences [13, 32, 33] has shown that quantum
computers are reaching a milestone where classical computers are difficult to
simulate for benchmarks such as random quantum circuits [25, 27].

1.2 Challenges of next milestone

The tasks used to demonstrate the quantum supremacy such as random quan-
tum circuit [25, 27] and Gaussian boson sampling [13, 32] are not so important
in reality, for it cannot solve practical problems. It makes no sense to build a ma-
chine that can only speed up something useless. The next milestone we should
pursue is applying quantum computers for practically important problems and
showing advantages.

10*1 .
o . Error correction threshold
2 1072 - - - - - - - - - - - - - oo oo oo oo oo oo m o mmmm o
8
=
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LE 1073 4

Classical
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10° 10 102 103 10* 105 108 107 108
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Figure 1.1: The roadmap of quantum computing. We are in the NISQ era with
a few hundred noisy physical qubits.

There are many challenges on the way to the next milestone of quantum
computing. One of the main obstacles is the limited access to the quantum com-
puters. At this stage, we are in the noisy intermediate-scale quantum (NISQ)
era [34], which means we can access to few hundred physical qubits with noise
as shown in Figure 1.1. While solving practical problems such as large number
factoring [1] and Hamiltonian simulation [2] requires more than millions error
corrected qubits, in other words, fault-tolerant devices are necessary. The huge
gap in the number of qubits between NISQ devices and fault-tolerant devices
needs time to fill, and there is a long way to go. Instead of waiting for the
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realization of fault-tolerant devices, we need to think about what we can do
with current quantum devices. Since the limited access to quantum computers,
it is very important to think about how to use the near-term quantum comput-
ers efficiently. In other words, reducing the requirement of quantum resources
when we implement quantum algorithms or quantum tasks is a necessary prob-
lem we have to consider. In this thesis, we aim to propose methods to reduce
the requirement of resources with optimization tools for three different tasks:
expectation value estimation [35], non-linear features estimation [36], as well as
channel simulation using coherent [37]. Specifically, we encode these problems
into optimization problems (encode the requirement of quantum resources into
the objective function) and choose suitable optimization tools such as varia-
tional quantum algorithms (VQA) or semidefinite programs (SDP) to minimize
the objective functions (requirement of quantum resources). We believe that
this thesis pushes quantum computers a step toward the next milestone.

1.3 Overview of this thesis

This thesis makes some attempts and explorations to reduce the requirement of
quantum resources in different tasks with optimization tools. The layout of the
thesis is shown as follows:

Chapter 2: Preliminary

In chapter 2, we first introduce the fundamental concepts in quantum comput-
ing, and then we introduce three problems we are going to solve in this thesis.
Besides, we also introduce two optimization methods: wariational quantum al-
gorithms (VQA) and semidefinite programs (SDP), which we utilized to address
the three problems we introduced. In the following three chapters, we solve one
proposed problem in each chapter with optimization tools.

Chapter 3: Variational Quantum Hamiltonian Engineering

In Chapter 3, we point out that the complexity of expectation value estimation
of Hamiltonian depends on the Pauli norm of Hamiltonian. Then we propose
a variational quantum algorithm called variational quantum Hamiltonian en-
gineering (VQHE) to minimize the Pauli norm of Hamiltonian, such that the
overhead for executing expectation value estimation can be reduced. We de-
velop a theory to encode the Pauli norm optimization problem into the vector
[;-norm minimization problem. Then we devise an appropriate cost function
and utilize the parameterized quantum circuits (PQC) to minimize the cost
function. We also conduct numerical experiments to reduce the Pauli norm of
the Ising Hamiltonian and molecules’ Hamiltonian to show the efficiency of the
proposed VQHE. This chapter is based on [Zhao and Fujii, arXiv:2406.08998
(2024)] with slight modifications to fit in the context.

Chapter 4: Retrieving Non-Linear Features From Noisy Quantum
States
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In Chapter 4, we focus on actually extracting high-order moments of quantum
states. But in reality, inevitable quantum noise prevents us from accessing the
desired value. We address this issue by systematically analyzing the feasibility
and efficiency of extracting high-order moments from noisy states. We establish
a method for deriving protocols using quantum operations and classical postpro-
cessing only. Our protocols, in contrast to conventional ones, incur lower over-
heads and avoid sampling different quantum operations due to a novel technique
called the observable shift method, making the protocols strong candidates for
practical use on current quantum devices. The proposed method also indicates
the power of entangled protocols in retrieving high-order information, whereas
in the existing methods, entanglement does not help. We further construct the
protocol for large quantum systems to retrieve the depolarizing channels, mak-
ing the proposed method scalable. This chapter is based on [Zhao, Benchi, et
al. PRX Quantum 5 (2), 020357 (2024)] with slight modifications to fit in the
context.

Chapter 5: Probabilistic Channel Simulation Using Coherence

In Chapter 5, we study the channel simulation using coherence, which refers
to realizing a target channel with coherent states and free operations, which
is a fundamental problem in the quantum resource theory of coherence. The
limitations of the accuracy of deterministic channel simulation motivate us to
consider the more general probabilistic framework. In this chapter, we develop
the framework for probabilistic channel simulation using coherence with free
operations. When the chosen set of free operations is the maximally incoherent
operations (MIO), we provide an efficiently computable semidefinite program
(SDP) to calculate the maximal success probability and derive the analytic
expression of success probability for some special cases. When the chosen set
of free operations is the dephasing-covariant incoherent operations (DIO), we
show that if the target channel is not a resource nonactivating channel, then
one cannot simulate it exactly both deterministically and probabilistically. The
SDP for maximal success probability of simulating channel by DIO is also given
correspondingly. This chapter is based on [Zhao, Ito, and Fujii. Phys. Rev.
Research 6, 043316 (2024)] with slight modifications to fit in the context.

Chapter 6: Conclusion
We summarize the thesis in chapter 6 and we also discuss some further possible
research directions.
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Chapter 2

Preliminary

This section introduces the fundamental concepts in quantum computing, in-
cluding quantum states, quantum dynamics, and quantum measurements. Then
we will introduce three obstacles in quantum computing and specify the prob-
lems we are going to solve in the following of this thesis. Next, we will intro-
duce the optimization tools, such as variational quantum algorithms (VQA) and
semidefinite programs (SDP), we used to solve the proposed problems.

2.1 Fundamental concepts

2.1.1 Quantum state

In classical computation, the bit is the fundamental unit, whose state is either
0 or 1. There is a counterpart in quantum computation, which is known as
quantum bit or qubit. Two possible states for qubit are the state |0) and |1).
The notation |-) is known as the Dirac notation. The difference between bits
and qubits is that a qubit can be in a state other than |0) and |1). It is also
possible to form a linear combination of states, or called superpositions:

) = al0) +B11). (2.1)

The number « and 8 are complex numbers. According to quantum mechanics,
when we measure a qubit we get either the result 0 with probability |a|?, or the
result 1 with probability |3|2. Naturally, |a|? + |8|> = 1, for the probabilities
must sum to one. The special states |0) and |1) are known as computational
basis states and form an orthogonal basis for this vector space.
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State vector

A state of a quantum system is described by a state vector
)= . (2.2)

on a complex d-dimensional system C? where the symbol |-) is called ket and
indicates a complex column vector. Similarly, the notation (| is called bra and
indicates a complex row vector, and they are related complex conjugate,

Wl=w'=1[c¢ ¢ - ] (2.3)

A quantum state in the d-dimensional system can be described by

d—1
[0) = cili), (2.4)
i=0

where [i) are orthogonal basis, i.e., (i|j) = 0,Vi # j, and Zf:_ol lci]> = 1. Let’s
take the qubit case (d = 2) as an example

e Ly U2
)= 510+ 550 = | v2] (25

with the basis

Density operator

Besides state vector, the quantum state of a quantum system can be described
in a more general way known as density operator. More precisely, suppose a
quantum system is in one of a number of states |¢;), where 4 is an index, with
respective probability p;. We call {p;,|¢;)} a ensemble of pure states. The
density operator for the system is defined by the equation

pi= Y pileafil, D pi=1. (2.7)
i=1 i
The density operator is often known as the density matriz. The density operator
satisfies the following properties:
p=0, T =1. (2.8)

p > 0 means p is a positive matrix, i.e., ()| p|¥) > 0,V [¢)).
A quantum system whose state |¢) is known exactly is said to be in a pure
state. In this case, the density operator is simply p = [)1)|. Otherwise, p is a
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mized state, i.e., a mixture of different pure states. We say a quantum state p
is a pure state if and only if Tr[p?] = 1. Otherwise, p is a mixed state.

The deepest application of the density operator is as a descriptive tool for
sub-systems of composite quantum systems. Such a description is provided
by the reduced density operator. Suppose we have a physical system A and B,
whose state is described by a density matrix operator pAZ. The reduced density
operators are defined by

pt =Trp[p?P], pP = Tra[p?”]. (2.9)

2.1.2 Quantum dynamics
Unitary

In closed quantum system, the evolution of the system can be described by
unitary transformation, mapping a quantum state from initial state |¢) to the
final state |¢'),

[y =Uly). (2.10)

In quantum computing, the time evolution U is sometimes called the quantum
gate. The Pauli operators are the most fundamental quantum gates, which are

I:Ll) (1)] X:[(l) (1)] Y:B ol]’ Z:[(l) _01] (2.11)

X gate is also called NOT gate or bit flip gate, while Z gate is also known
as phase flip gate. The set of Pauli operators forms an orthogonal basis set
in operator space, which means that we can decompose any operator on the
basis of Pauli. For example, a Hamiltonian H can be decomposed into Pauli
operators

H=> hP,. (2.12)

Quantum channel

In open quantum system, the system interacts with the environment, the quan-
tum dynamics can be described by quantum channel € or called super-operators,
mapping quantum system from initial state p to final state

o = E(p). (2.13)

We say a map M is a quantum channel if and only if it satisfies the completely
positive (CP) and trace-preserving (TP) condition:

1. Completely positive (CP): Z ® M(X) > 0, for all & > 0, for all posi-
tive operator X, where Z; is an identity map on reference system with
dimension k2.

2. Trace-preserving (TP): Tr[M(Y")] = Tr[Y], for all positive operator Y.
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Trace-nonincreasing is known as a relaxation of trace-preserving condition, given
by Tr[M(Y)] < Tr[Y]. Here we emphasize that CPTP maps are the largest
operation set on quantum hardware.

The quantum channel £ can be well described in several equivalent ways.
Here we are going to introduce two of them, namely Kraus representation and
Choi-Jamiotkowski representation.

Kraus representation
A quantum channel can be described by a set of Kraus operators {E;} [22]

Elp) = 3" Eipkl. (2.14)

where FE; are linear operators. Since the quantum channel must be TP, the
Kraus operators must satisfy >, Ej FE; = I. Note that the Kraus representation
is not unique.
Choi-Jamiolkowski representation

The Choi-Jamiotkowski representation [38-40] of a quantum channel pro-
vides a method to express a quantum channel as a bipartite operator, making it
a fundamental concept in quantum information theory. For a quantum channel
Ear_p, its Choi operator is defined as

Tean = D104 ®Earsn(i)i]ar)- (2.15)
,J
The Choi state of channel £4/_,p is defined as
1

1 o : . .
(I)S = ac}g = a; |’L><]‘A ®5A’—>B(|'L><]|A/) (216)

This representation is equivalent to applying the quantum channel £ on the
second system of the maximally entangled state ® 44+, as shown in Figure. 2.1

A

(DAA, , CI)((:
A B

Figure 2.1: The Choi state ®¢ of a quantum channel £. P44/ is the max
entangled state.

The completely positive and trace-preserving (or trace-nonincreasing) condi-
tions for the quantum channel have different expressions in Choi-Jamiotkowski
representation as shown in the following [38]:
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e & is completely positive <= Jg > 0;
e & is trace-preserving <= Trg[Jeg] = [ 4, where I refers to identity.
e & is trace non-increasing <= Trp[Jg] < I4.

The quantum dynamics in Choi-Jamiotkowski representation is

Ea-5(p) = Tral(ph ® 1p)Je). (2.17)

Given two quantum channels N4_, g and M p_,¢c, Choi representation of the
composed channel M o N4_,¢ is given by

Imon = TTB[(J/{fiHB @ Ic)(Ia ® Jmp.o)ls (2.18)

where the superscript Tp means take partial transpose on system B.

2.1.3 Quantum measurement

Quantum measurements are described by a collection M, of measurement op-
erators. The index m refers to the measurement outcomes that may occur in
the experiment. Given a quantum state p, and then make a measurement on it.
The probability of getting result m is

p(m) = Te[My,pM}], (2.19)
and the state after the measurement collapses to

/ My pMj,

¥ = R (2.20)

The probability of getting all results must sum to one, which implies the mea-
surement operators are complete, i.e.,

> MM, =1 (2.21)

2.2 Quantum resources

Quantum resources [41] refer to specific features or properties of quantum sys-
tems that provide advantages over classical systems in performing various com-
putational, informational, or physical tasks. These resources are central to
quantum information theory and are crucial in applications. If we would like
to achieve quantum advantage, then quantum resources are necessary. If a task
does not use quantum resources at all, this implies that such a task is a clas-
sical task, which, of course, shows no quantum advantage. Now, we are in the
NISQ era, which means that we can only access to few hundred noisy physical
qubits. Due to the limited number of quantum computing resources, it is nec-
essary to consider how to use them more efficiently. In this thesis, we attempt
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to propose methods to reduce the requirement of quantum resources in different
quantum tasks. Thus, implementing the same tasks with our methods needs
fewer quantum resources than that of the conventional method. The quantum
resources are saved, and the spared quantum resource could be used in other
tasks, maximizing the use of quantum computers.

Quantum resource is not unique, the common quantum resources are entan-
glement [42-45], coherence [46-48] and magic [49-51].

e Quantum entanglement [42-45] is a phenomenon in quantum mechan-
ics where two or more particles become linked in such a way that the state
of one particle directly influences the state of the others, no matter how far
apart they are. If there is no entanglement in quantum computing, then
all the quantum systems are isolated and in the form of tenor products.
In this case, it is hard to show the advantage of quantum computing.

¢ Quantum coherence [46748] refers to the property of a quantum system
where it exists in a superposition of different states, allowing the system to
exhibit wave-like interference effects. Coherence is central to the concept
of quantum superposition. If there is no coherence in quantum computing,
then the quantum systems are just classical systems, and the computation
is classical as well.

e Quantum magic [49-51] refers to a key concept in the field of quantum
computing, particularly in the context of fault-tolerant quantum compu-
tation. It is known that a class of quantum computing, Clifford circuits,
is classically efficiently simulatable even if it includes entanglement and
coherence [52]. Thus, the non-Clifford (magic) resource state stands for
the difficulty of a classical simulation. In other words, quantum magic
determines the difficulty of classical simulation.

If we are considering the general quantum resources, then we need to take
quantum sampling [53, 54] into account. Quantum sampling refers to the use of
quantum systems to efficiently sample from complex probability distributions,
which may be infeasible or computationally intensive for classical methods. Ev-
ery shot executed on quantum device can be regarded as one sampling. Thus,
if quantum sampling is forbidden in computing, then it will be meaningless to
talk about quantum computing. In this thesis, we are going to focus on the
quantum resources of sampling and coherence.

2.3 Quantum problems

In this section, we introduce three problems that we are going to solve in this
thesis.
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2.3.1 Expectation value of Hamiltonian

Estimating the expectation value of Hamiltonian is a critical step in many quan-
tum algorithms such as variational quantum eigensolver (VQE) [24]. The expec-
tation value of a Hamiltonian H with respect to a quantum state |¢) is given by
(H) = (¢| H |¢). This quantity represents the average energy of the quantum
state |1) when measured on the basis of the eigenstates of the Hamiltonian H.
For a given Hamiltonian H, we can write it as

L
H= Z h;P;, (2.22)
=1

where L is the number of terms, h; is the coefficient of Pauli terms P;. To esti-
mate the expectation value of Hamiltonian H, one can estimate the expectation
value of each Pauli term and sum them up by post-processing (H) = . h;(F;),

with variance [55, 56]
L

2
s _ N~ il VarlP)
€= —_— 2.23
where S; is the measurement time of each of the operators P;, Var denotes the
variance in the measurement of the operator for the given trial state.
Generally, the variance of Pauli Var[P;] is unknown in advance. However,
since the terms P; are Pauli, the variance is upper bounded by Var[P;] <1 [55,
56]. One can confirm (e.g., via the use of Lagrange multipliers [57]) that the
least number of measurements required to bound variance below € can be found
by choosing S; o |h;| [55]. This implies the total measurement time N is upper
bounded by
IH 1%
N < 2 (2.24)
where [[H||p =, |hi| is called Pauli norm. Obviously, the total sampling time
is determined by Pauli norm, and it is natural to ask a question that

Can we find a method to engineer the Hamiltonian to minimize its Pauli norm,
such that the sampling times reduce correspondingly?

We propose an algorithm called variational quantum Hamiltonian engineering
to solve this issue in Chapter 3.

2.3.2 Non-linear features estimation from noisy systems

Non-linear features of a quantum state, i.e., Tr[p¥] with integer k, is a fun-
damental and significant quantity in quantum information theory. However,
quantum systems are rarely closed in practice as they unavoidably interact with
the environment. Quantum channels N, stemming from the unitary dynamics
in a larger Hilbert space, are considered the proper mathematical formalism
depicting the evolution of general quantum systems. A quantum state p, which
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suffers from noise, is denoted as p’ = N(p). The corresponding estimation of
non-linear feature becomes Tr[N(p)*], which is not the desired value.

Quantum error correction (QEC) [58] is widely considered a potential solu-
tion to address quantum noise. The idea of QEC is encoding several physical
qubits into logical qubits, such that the error can be detected and corrected.
Many efforts have been devoted to studying the error correction codes such
as color codes [59], stabilizer codes [21], and quantum low-density-parity-check
(LDPC) codes [60]. However, achieving a high-fidelity logical qubit requires a
huge amount of physical qubits (achieving a 1075 error rate would require a
distance-27 logical qubit using 1457 physical qubits [61]), making it impractical
on near-term quantum devices. To get precise results from near-term quan-
tum devices, quantum error mitigation (QEM) was proposed [62]. Unlike QEC,
QEM aims to remove noise from classical information, while QEC aims to re-
move the noise from the quantum information. Specifically, given noisy states
N(p), QEM outputs the accurate expectation value of some observables O, while
QEC removes the noise and outputs perfect quantum state p, which is

N(p) 225 Te(0p), N(p) ZE5 . (2.25)

The idea of QEM is to apply the inverse channel of noise channel N ! to
the quantum system, and then make measurements over observable O. In this
case, the estimated expectation value  will be

¢ = Tr[ON ! o N(p)] = Tr[Op], (2.26)

which is exactly the desired value. However, one critical problem is that the in-
verse channel N/ ~! is generally a Hermitian-preserving trace-preserving (HPTP)
map, which means that we cannot apply such a channel on a quantum device
directly. Fortunately, it was proved that any HPTP map can be decomposed
into a linear combination of CPTP maps [54], i.e

N_l = 61D1 + 62D27 (227)

where c¢1,co are real values, and Di1,Dy are CPTP maps. The target value
Tr[Op] can be obtained by the following steps:

1. For t-th sampling time, sample quantum channel D! from {D;, Dy} with
probability {lcgll |02|}, respectively, where g = |c1| + |co| is known as
sampling overhead

Apply the sampled channel onto the noisy state D®) o N(p)
Measure the observable of interest and record the measurement value o(®).

Repeat the above sampling and measuring process for T' times.

AT

Post process the N measurement results to get the desired value

T
_9 ()o®
0 Z , (2.28)
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where sgn stands for the sign of ¢(*).

By the Hoeffding’s inequality, the total sampling time that obtains the esti-
mation within an error e with a probability no less than 1 — § is upper bounded
by 292%. Thus, if we set the total sampling time 7" no less than the upper
bound, i.e.,

log(

T> 292¢ x g2, (2.29)
€

then it is guaranteed that the error of estimated value within e with a probability
no less than 1 — 6.

Note that the realization of Hermitian preserving map A ~! shown above
requires sampling quantum channels with certain probability [54], which is com-
plicated implementation. In Ref. [63], the authors proposed that a Hermitian
preserving map ® can be realized by injecting different quantum states, w; into
a fixed quantum channel A, ie., ®(-) = >, ¢;A(- ® w;). The new proposed
method [63], no doubt, simplifies the realization of Hermitian preserving maps.
However, we still need to sample different states with certain probabilities and
inject them into quantum channel. Since both methods [54, 63] have to imple-
ment probabilistic sampling, it motivates us to consider the following problem:

Can we design a more efficient way to mitigate noise when estimating non-linear
features without probabilistic sampling?

We propose a novel method called observable shift to solve this issue in Chap-
ter 4.

2.3.3 Channel simulation using limited coherence

Quantum resource theory [41, 64] can be viewed as a framework for understand-
ing the interconversion of various resources. This theory facilitates a wide range
of quantum information processing tasks. There are three fundamental compo-
nents of any resource theory: resources (such as entanglement), free resources
(such as separable states), and a restricted set of free operations (such as local
operations and classical communication). These components are interdepen-
dent; specifically, it is required that resources cannot be generated from free
resources using free operations. Coherence is an important topic in quantum
resource theories [41], which refers to the property of the superposition of states.
It empowers various quantum tasks, such as cryptography [65], metrology [66—
68], thermodynamics [69-71], and channel simulation [48, 72].

In previous works of resource theory of coherence, they focused on the quan-
tification and interconversion of static coherence—the degree of superposition
present in a state [73-75]. Later on, a more general framework was proposed,
called dynamic coherence—the power to generate coherence itself [72]. How to
convert static coherence into dynamic coherence (also known as channel simu-
lation using coherence.) raises great interest, and many efforts have contributed
to establishing the framework of deterministic channel simulation [48, 72, 76].
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At the same time, the limitations of deterministic channel simulation are also
shown. In Ref. [48, 72], it has been proved that any CPTP map can be simulated
by maximally incoherent operations (MIO) with the help of maximally coherent
states W,,. However, in many cases, we cannot access the perfect maximally
coherent state, and we can only access the limited resource state w with few
resources, then it is impossible to simulate the target channel deterministically
and accurately. Here we are curious about the question that

If we can only access the resource state w with few resources, can we simulate
the target channel accurately with probability?

We develop a probabilistic framework for channel simulation using coherence to
answer this question in Chapter 5.

2.4 Optimization tools

2.4.1 Variational quantum algorithms (VQA)

Variational Quantum Algorithms (VQAs) [8] have become the leading strategy
for achieving quantum advantage on NISQ (Noisy Intermediate-Scale Quantum)
devices. These algorithms are designed to handle the constraints of NISQ com-
puters through optimization-based or learning-based approaches. They utilize
classical optimization techniques by running parameterized quantum circuits on
quantum computers and then outsourcing the parameter optimization to classi-
cal optimizers. This hybrid approach not only leverages classical computational
strengths but also helps keep the quantum circuit depth shallow, thereby re-
ducing noise compared to quantum algorithms developed for the fault-tolerant
era.

One of the main advantages of Variational Quantum Algorithms (VQAs) is
their flexibility, providing a general framework for solving a wide range of prob-
lems. VQAs have been successfully applied to various tasks such as searching
ground state [24, 77] and excited state [78, 79], quantum classification [80, 81],
quantum information analysis [82-84], and quantum data compression [85, 86].

To develop a VQA to solve a particular optimization problem, we need to
follow the steps:

1. Encode the optimization problem into a cost function C(8);
2. Prepare the parameterized quantum circuit U(6);

3. Apply the circuit U(f) and estimate the cost function on the quantum
device;

4. Optimize parameter 6 with classical optimizer to minimize the cost func-
tion C(0);

5. Repeat 3-5 until the cost function converges to its minimum.
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Here we take variational quantum eigensolver as an example, which aims
to obtain the ground energy of a Hamiltonian. At the beginning, we are given
a Hamiltonian, then we prepare the quantum circuit as shown in the yellow
in Figure. 2.2. The parameter of rotation angles is chosen randomly at the
beginning. Our aim is to find the minimal eigenvalue of Hamiltonian, so we
cost function is set as

C(0) = (w(O)| H [(9)) = (0] U(0)'HU(0) [0) . (2.30)

Next, we apply the unitary U(6) to the trail state |0), and estimate the ex-
pectation value of Hamiltonian to get the cost function. Then we use classical
optimization to minimize the cost function until the cost function converges.
The converged value will be the desired ground engine value of Hamiltonian.
The process of VQE is shown in Figure. 2.2.

________________________________

RX (6) - RZ(6;) | -4—- ~+--Quantum Computer
|0)

S A I
1 c(e) = (0|Uut(9)HU(6)]0)

RX (05) - RZ(07) ]

| (=oo==o=msmoamsasoa=sossam0aos ')l Classical Computer

Optimize 0 to
minimize C(0)

Figure 2.2: The diagram for variational quantum eigensolvers.

2.4.2 Semidefinite programs (SDP)

Semi-definite programs (SDPs) represent a crucial category of optimization
problems frequently encountered in quantum information theory. An SDP is
characterized by its optimization variable, which is a positive semi-definite op-
erator X. The objective function in an SDP is linear with respect to X, and
the constraints involve an operator inequality that features a linear function of
X.

Definition 2.1. Given a Hermiticity-preserving superoperator ® and Hermitian
operator A and B, a semidefinite program (SDP) is defined by primal problem
and dual problem



20 CHAPTER 2. PRELIMINARY

supremum Tr[AX] infimum Tr[BY]
subject to  ®(X) < B, subject to  ®T(Y) > A,
X >0 Y >0

where ®f is the dual map to ®, which is Tr[Y ®(X)] = Tr[X ®T(Y)].

A variable X for the primal problem is called feasible solution if the two
constraints in the primal problem are satisfied, i.e., X > 0,®(X) < B; if a
variable X satisfies X > 0, ®(X) < B, then it is called strictly feasible solution.
It is similar to the dual problem that a variable Y is a feasible solution if Y >
0,®7(Y) > A; a variable Y is a strictly feasible solution if Y > 0, ®T(Y) > A.

We denote the optimal value obtained by the primal and dual problem as

a = sup{Tr[AX]: &(X) < B} (2.31)
X>0
— ol >
B SI/I%fO{TI‘[BY] :01(Y) > A} (2.32)
If there is no primal feasible solution, then @ = —oco, and if there is no dual

feasible solution, then 8 = 4o0.

Proposition 2.1. [38] For every SDP, the following weak duality inequality
holds
a<p (2.33)

This convenient relationship allows us to directly bound the optimal values
of the primal problem by selecting a valid variable from the dual problem, and
vice versa.

The condition where @ = (8 is referred to as strong duality, which does not
hold universally. However, it often holds for semidefinite programs encountered
in practice. Several conditions can be used to verify strong duality. The follow-
ing proposition outlines one set of conditions that ensure strong duality.

Proposition 2.2. [38] Slater’s theorem is a sufficient condition for strong
duality to hold, and it is given as follows

o If there exists X > 0 such that ®(X) < B and there exists Y > 0 such
that ®1(Y) > A, then a = 3 and there exists a primal feasible operator X
for which Tr[AX] = .

o [f there exists Y > 0 such that <I>T(Y) > A and there exists X > 0 such
that ®(X) > B, then a = 3 and there exists a primal feasible operator Y
for which Tr[BY] = 6.

The primal and dual problems are connected by the max-min of a Lagrangian
E(@7A’ B3X7 Y)?

L(®,A B, X,Y):=Tr[AX] 4+ Tr[BY] — Tr[®(X)Y] (2.34)

Tr[AX] + Tr[(B — ®(X))Y] (2.35)

Tr[BY] 4 Tr[(A — @T(Y))]. (2.36)
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Taking an infimum over ¥ > 0 on £L(®, A, B, X,Y) and then a supremum
over X > 0, such a max-min problem is equivalent to the primal problem, which
is

sup inf L(®,A,B,X,Y) = sup{Tr[AX]| + inf Tr[(B - ®(X))Y]} (2.37)
xX>0Y=>0 X>0 Y >0

=a. (2.38)

If B does not satisty the condition B > ®(X), then the term infy ¢ Tr[(B —
®(X))Y] will be —oo, which has no feasible solution.

If we first take a supremum over X > 0 on £(®, A, B, X,Y) and then take an
infimum over Y > 0, such a min-max problem is equivalent to the dual problem

inf sup £L(®, A, B, X,Y) = inf {Tr[BY] + sup Tr[(A — &7 (Y))X]}  (2.39)
Y>0 x>0 Y>0 X2>0

= 8. (2.40)

Similarly, if A does not satisfy the condition A < ®7(Y), then the term
sup x> Tr[(A — ®7(Y))X] will be +oo, which has no feasible solution.



22

CHAPTER 2. PRELIMINARY



Chapter 3

Variational Quantum
Hamiltonian Engineering

In this chapter, we point out that the complexity of expectation value estimation
of Hamiltonian depends on the Pauli norm of Hamiltonian. Then we propose
a variational quantum algorithm called variational quantum Hamiltonian en-
gineering (VQHE) to minimize the Pauli norm of Hamiltonian, such that the
overhead for executing expectation value estimation can be reduced. We de-
velop a theory to encode the Pauli norm optimization problem into the vector
l1-norm minimization problem. Then we devise an appropriate cost function
and utilize the parameterized quantum circuits (PQC) to minimize the cost
function. We also conduct numerical experiments to reduce the Pauli norm of
the Ising Hamiltonian and molecules’ Hamiltonian to show the efficiency of the
proposed VQHE. This chapter is based on [Zhao and Fujii, arXiv:2406.08998
(2024)] with slight modifications to fit in the context.

3.1 Introduction

Quantum computing, which harnesses the principles of quantum mechanics to
revolutionize computation, is a promising solution to tackle problems that are
currently intractable for classical computers. In recent decades, quantum tech-
nologies have emerged with a growing number of powerful applications across
diverse fields such as optimization [87, 88], chemistry [89, 90], security [91, 92],
and machine learning [3]. In quantum computing, the Hamiltonian of a quan-
tum system, an operator that represents the total energy of a quantum system,
plays a pivotal role in many critical tasks such as expectation value estimation
of a Hamiltonian and Hamiltonian simulation.

Estimating the expectation value of a Hamiltonian is a fundamental task
in quantum mechanics and quantum computing, especially when simulating
quantum systems or solving quantum chemistry problems. The expectation
value of a Hamiltonian H with respect to a quantum state |¢) is given by (H) =

23
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(¥| H |¢). This quantity represents the average energy of the quantum state |¢)
when measured on the basis of the eigenstates of the Hamiltonian H. The most
straightforward method to estimate the expectation value is to decompose the
Hamiltonian into Pauli terms, i.e., H = Zle h;P;, and estimate the expectation
value of each term (P;). Then calculate the expectation value by post-processing
(H) =Y, hi(P;). The total measurement time is N o< L|hmax|? [24, 56], where
L is the number of non-zero Pauli coefficients, and hya.yx is the largest Pauli
coefficient. While the number of Pauli terms typically increases polynomially
in the system size, it amounts to be large for complex quantum systems such
as those huddled in quantum chemistry, which makes this method no longer
efficient. To tackle this problem, one can sample the Pauli term P; of the target
Hamiltonian H randomly with a certain probability p;, which is proportional to
its absolute value of the coefficient, i.e., p; = Zlqh‘)” [55, 57, 93]. In this case,

the total measurement time is determined by the summation of the absolute
value of Pauli coefficients, i.e., N o (Zle |hi|)2.

Hamiltonian simulation is another fundamental task in quantum comput-
ing, which simulates the dynamics of a quantum system. The standard meth-
ods for Hamiltonian simulation, such as Trotter-Suzuki decomposition [94, 95],
are practical for sparse Hamiltonian. The gate count of such a method, which
quantifies the complexity of Hamiltonian simulation, depends on the number
of Pauli terms in the Hamiltonian. If the system’s Hamiltonian is not sparse,
then the consumption of the standard method will be too large to be accept-
able. To address this problem, Campbell proposed an approach called quantum
stochastic drift protocol (¢Drift) [96]. This protocol weights the probability of
gates by the corresponding interaction strength in the Hamiltonian, leading to
a gate count independent of the number of terms in the Hamiltonian but the
summation of the absolute value of Pauli coefficients, i.e., S27  |hy].

The complexity of both tasks, expectation value estimation and Hamiltonian
simulation, are dependent on the summation of the absolute value of Pauli
coefficients, which is called Pauli norm (or stabilizer norm) of Hamiltonian.

For a given Hamiltonian H = Zil hiP;, the Pauli norm || H| p is defined by

4qn

1E e =3 [hil. (3.1)
i=1

It is natural to wonder if a method exists to reduce the Pauli norm of a given
Hamiltonian H such that the complexities of the two tasks can be mitigated
further. Our answer to this question is positive. In this work, we proposed a
variational quantum algorithm (VQA) [8, 97] called variational quantum Hamil-
tonian engineering (VQHE) to minimize the Pauli norm of Hamiltonian, and
the complexity of the two tasks are reduced correspondingly. VQA is a popular
paradigm for near-term quantum applications, which uses a classical optimizer
to train parameterized quantum circuits (PQCs) [98] to achieve certain tasks.
VQAs have been successfully applied to various tasks such as searching ground
state [24, 77] and excited state [78, 79], quantum classification [80, 81], quantum
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information analysis [82-84], and quantum data compression [85, 86]. In previ-
ous works [99, 100], it was proposed to diagonalize the Hamiltonian by VQA.
Such a strategy can reduce the complexity of the expectation value of Hamilto-
nian because all the Pauli terms of the diagonalized Hamiltonian commute with
each other, and they can be measured simultaneously. However, the VQAs to
diagonalize the Hamiltonian are too costly. In the algorithm in Ref. [99], we
have to estimate each eigenvalue of the Hamiltonian in every iteration. The
non-zero eigenvalue of the Hamiltonian might increase exponentially with the
system size, making the algorithm impossible. In Ref. [100], the first step of the
algorithm to diagonalize the Hamiltonian is preparing the Hamiltonian thermal
state, which is a QMA-hard [101] problem. Thus, the algorithm in Ref. [100] is
not practical either.

In this work, we propose a pre-processing algorithm to engineer the Hamilto-
nian, called variational quantum Hamiltonian engineering (VQHE), to minimize
the Pauli norm of the engineered Hamiltonian. With the engineered Hamilto-
nian, the processing of Hamiltonian such as expectation value estimation and
Hamiltonian simulation becomes easier to implement. Specifically, we use a pa-
rameterized unitary U(0) to reduce the Pauli norm of a given Hamiltonian H,
i.e., min |U(@)HU(0)||p. We first develop the theory to convert the Pauli norm
optimization problem into the state [;-norm minimization problem. Then design
an appropriate cost function and minimize it variationally. The VQHE algo-
rithm outputs the engineered Hamiltonian, whose Pauli norm is minimized. We
then display how to apply the engineered Hamiltonian to the tasks of the expec-
tation value estimation and the Hamiltonian simulation. Especially in the task
of expectation value estimation, we emphasize that the engineered Hamiltonian
is compatible with grouping strategy [24, 102-104], which is another method
to reduce the measurement time. The numerical experiments are conducted by
applying the VQHE algorithms to the Ising Hamiltonian and some molecules’
Hamiltonian, which shows the effectiveness of our algorithm. This work pro-
poses a variational quantum algorithm to reduce the measurement complexity
of expectation value estimation and the gate count of Hamiltonian simulation,
making a significant contribution to improving the efficiency of quantum com-
puting.

3.2 Theoretical framework

In this section, we are going to encode the Hamiltonian into a quantum state
and prove that applying a unitary channel on a Hamiltonian is equivalent to
applying a unitary gate on the Hamiltonian state.

For a given n-qubit Hamiltonian H, we can always decompose it into Pauli
basis as

"
H= Z h;P;, (3.2)
=1

where h; is the real Pauli coefficient and the P; € {I,X,Y, Z}®" is n-qubit
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Pauli tensor product. The problem of our task is minimizing the Pauli norm of
Hamiltonian H by optimizing the unitary U, which can be written as

Popi(H) = min |UHUT||p. (3.3)

On quantum computers, it is not convenient to apply a unitary channel U
on the Hamiltonian H directly. For simplicity, our first step is to encode the
Hamiltonian into a quantum state by the following Definition 3.1.

Definition 3.1. (Hamiltonian vectorization) For a given n-qubit Hamiltonian
H= Z?:l h;P;, it can be encoded into a 2n-qubit state

1
|H> = X(hlahQa"' ah4"‘)T7 (34)

where |H) is the Hamiltonian state, and Hamiltonian vector refers to the un-
normalized Hamiltonian state, T stands for transpose, and \ refers to the nor-

o . L=4n
malization factor, i.e., X =1/> ;= h?.

For example, if the given Hamiltonian is H = I +2X + 3Y — 47, then the

corresponding Hamiltonian state is |[H) = \/%(1, 2,3,—4)T. The [;-norm of the

Hamiltonian state is || |[H) ||; = 10/v/30. The state initialization process can be
efficiently executed on a quantum device. It was proved in Ref.[105] that arbi-
trary n-qubit, d-sparse quantum state can be deterministically prepared with a
circuit depth O(log(nd)). Fortunately, the number of Pauli terms of the most
meaningful Hamiltonian is polynomial, i.e., O(n*). Thus, the corresponding
Hamiltonian state is @(n4)—sparse, implying it can be prepared efficiently.

The engineered Hamiltonian state can be directly represented as |H') =
|[UHU'). Such a state can be equivalently expressed as an encoded unitary V
applied on the Hamiltonian state |H). The formal statement is shown in the

following theorem.

Theorem 3.1. For a given Hamiltonian H and unitary U, the vectorized engi-
neered Hamiltonian is |H') = |UHUT>, which is equivalent to applying a unitary
gate V' on the Hamiltonian state

\UHUY) =V |H), (3.5)

(e
with V. = o |, where|c;) = ’UTPiU> is the engineered Hamiltonian state of

(can|
Pauli P;.

Proof. For a given Hamiltonian H, we can decompose it into a linear com-
bination of Pauli terms, i.e., H = ZZ h;P;. The engineered Hamiltonian by
unitary U is H' = UHUT = Y, h}P;. The engineered coefficients are obtained



3.2. THEORETICAL FRAMEWORK 27

by following

1
= 2—"Tr[UHUT P}] (3.6)
1
= ﬁTr[Z h;P;UPU| (3.7)
J
1
= Q—nTr[Z hiP; Y Cim Pl (3.8)
J m
1
= 27 Z hjcimTI‘[Pij] (39)
J,m

Since Tr[P;P,,] = 2"0m, where P; and P, are Pauli matrices, n is number of
qubits. Then

= hje; = (el H), (3.10)
i

where |¢;) = ‘U tPU > is the engineered Hamiltonian state of Pauli operator P;.
Here we can construct an operator V

(ca]
V= <C:2| (3.11)
(can|
such that
\H') =V |H). (3.12)

Since unitary U preserves the ly-norm, so (1) (¢;|¢;) = 1. Because
Tr[URUUP;U' = Tt[P,P;] =0 for i#j,

then

Tr[z CimPm Z cit P = Z CimCit I[P P = 0.
m t

m,t

Since Tr[Pp, Py = 2™ 0y, it becomes Y, ¢imCjm = 0, which implies (2) (c;|c;) =
0,Vi # j. The two properties imply that the matrix V is unitary. O

This theorem informs us that engineering Hamiltonian is equivalent to ap-
plying a unitary V on the Hamiltonian vector. Specifically, from definition 3.1,
the Hamiltonian state requires normalizing, so it is straightforward to have the
relation between Pauli norm of Hamiltonian |H||p and the /;-norm of Hamil-
tonian state

|UHU | p = X[V |H) 1. (3.13)
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Since unitary preserves lo-norm, meaning A is a constant, the problem of min-
imizing Pauli norm ||H||p is equivalent to minimizing /;-norm of Hamiltonian
state || |[H) ||1, which is

Pope(H) = Amin |V [H) 1. (3.14)

Thus, when the optimal unitary V is found to minimize the l;-norm of V' |H), it
is equivalent to the optimal U such that |[UHUT||p is minimized. The specific
relation between U and V' is shown in Sec. 3.3.3.

Note V is unitary (linear operation), so we can derive the following proper-
ties.

Corollary 3.1. The properties of operation V

(1) |vath HUTUS) = VWi |H) (3.15)
2) (Vi + BVa) |H) = aVi |H) + BVa |H) (3.16)
(3) ’U1®U2HU1T®U2T> — Vi@ Vs |H) (3.17)

Proof. For property (1), we can denote the H= UlHUI, then ‘UgUlHUIU§>

‘UQFNIU2T> =1 ‘f[> Apply the theorem again, V5 ‘f[> =W ‘UlHUf> =
VoV |H). For property (2), it is obtained straightforwardly from the linear-
ity of unitary V. For property (3), suppose H = Zij hi; P; ® P;, then we have

Uy ® Uy HUf @ US =Y hijUy PU] ® Uy PUS (3.18)
ij
where i, j € {1,2, 3,4} such that P;, P; corresponds to Pauli operators {I, X,Y, Z}
respectively. From Theorem 3.1, we have UP,U' = V&;, where @; refers to the

basis vector, i.e., only position ¢ in d@; is 1 and other positions are all 0. In
another word, |P;) = @;. Correspondingly, |H) = —=t=>",. hi;@; ®d;. Now,

we have
Ui ® UQHUI &® UQT = Z hijvld'i ® Vgc_ij (319)
ij
=" ®V22huc‘il®&’] (320)
ij
If we take Hamiltonian vectorization on both sides, it becomes

U, ® U HUY ® U§> — Vi@ Vs |H). (3.21)

Note the fact that unitary is lo- norm preserving operation, so the normalization
factors are canceled out in this equation. O



3.3. VARIATIONAL QUANTUM ALGORITHMS 29

Input: Quantum Computer..-+-""

He Z WP, Encode IH) M ) [ | rZ'05) | |
T N !

5)

Update 8’ = 6 + A@

e . S
Classical Computer ™|

Optimize 0 to
minimize C(0)

J

Figure 3.1: Diagram of the variational quantum algorithm for Hamiltonian
engineering. Encode the given Hamiltonian H into quantum state |H), then
apply parameterized quantum circuit V(0). Note that the rotation gates
RX'(09),RZ' (), and control-Z gates CZ' are transferred gates, the exact circuit
representation is shown in Figure. 3.4. Measuring the circuit and calculating
the cost function, which is the /;-norm of the quantum state, the classical com-
puter optimizes the cost function by updating the parameters in the PQC. After
iterations, the cost function converges to the optimized value.

3.3 Variational quantum algorithms

It is well-known that due to the non-convexity of unitary, it is very hard to
obtain the optimal unitary to satisfy our requirement as shown in Eq. (3.14).
Here we propose to apply the variational quantum algorithm (VQA) to approach
the optimal unitary. The workflow of our algorithm is shown in Figure. 3.1. At
the beginning, we encode the Hamiltonian into a quantum state. Randomize the
parameters in the PQC, and estimate the cost function by measurement. Then
we use a classical computer to optimize the parameters in the PQC and update
the parameters correspondingly. Repeat this process until the cost function is
minimized.

In this section, we are going to present the details of the cost function and the
choice of PQC in the algorithm design. The specific algorithm is also provided
as shown in Algorithm 1.
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Algorithm 1 Variational quantum Hamiltonian engineering (VQHE)

Input: Classical description of n-qubit Hamiltonian H = )" h, P;, parameter-
ized quantum circuit (PQC) V(0), number of iterations ITR,
Output: The optimized parameters 8*, engineered Hamiltonian state |H')
1: Calculate the normalization factor of the Pauli coefficients A = ", |h;|
2: Encode Hamiltonian H into quantum state |H)
3: Randomly initialize parameters 6
4: foritr =1, ..., ITR do
5. Apply V(0) to the Hamiltonian state|H)
6:  Apply the estimation algorithm (Sec 3.3.2) to estimate the cost function

in Eq. (3.23)
7 Maximize the cost function C and update parameter 0
8: end for

9: Output the optimized parameters 6*, and the engineered Hamiltonian state
[H')

3.3.1 Cost function

We have shown that the complexities of many tasks depend on the Pauli norm
of the Hamiltonian, such as expectation value estimation [102] and Hamiltonian
simulation [96]. We then convert the problem of minimizing the Pauli norm
(Eq. (3.3)) to the problem of minimizing the [;-norm of Hamiltonian vector
(Eq. (3.14)). It is natural to consider the I;-norm of the corresponding Hamil-
tonian state as the cost function, i.e., || |H) ||1. However, estimating the /;-norm
of a quantum state is generally hard on quantum devices. Fortunately, there is
a quantum algorithm that can efficiently estimate the sum of the fourth power
of elements in the Hamilton vector |H), i.e.,

d—1 d—1
Q=Y _[GIH)* = |hil* (3:22)
i=0 =0

where d is the dimension of the system. The detail of the algorithm to esti-
mate the quantity @ is shown in the Sec 3.3.2. This algorithm is also used
in inverse participation ratio estimation [106]. Both [j-norm and @ describe
the uncertainty of a quantum state. From this point of view, minimizing [;-
norm and maximizing () have the same optimizing direction, which reduces the
uncertainty of a quantum state. Thus, we set @) as the cost function, i.e.,

d—1
c=q=Yn! (3.23)
=0

Although minimizing /;-norm and maximizing @ is not exactly the same prob-
lem, the effectiveness of setting @) as the cost function emerges in the numerical
experiment in Sec. 3.4.4.
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3.3.2 Quantum algorithm for estimating cost function

We denote the summation of the fourth power of elements in an n-qubit pure
state |¢) = (ho,...,hq_1)T as Q, which is

d—1 d—1
Q=Y 1wl =3 nif* (3.24)
i=0 =0

where |i) refers to the computational basis. There exists an efficient quantum
algorithm to estimate the quantity @, which is shown in Figure. 3.2.

0) H H A

) —#
)
|0>®n A &

Figure 3.2: Quantum circuit for estimating ). The quantum circuit consists of
n CNOT gates and n controlled-SWAP gates. @ is estimated through single-
qubit measurements on the top qubit.

The first step of the algorithm is to initialize the quantum state. We need
four registers in total. The first register is called the measurement register,
which is initialized as |0). The second and third registers are prepared as the
n-qubit quantum state |¢). The last register is prepared as n-qubit zero state
|0)". At the beginning, we have

W) =10) @ [¥) @ [¢) ®[0)°",
=>_al0) o) ® i) © 0)°". (3.25)

Apply CNOT gates on the third and fourth register, we then have

CNOT34|%0) = Z ¢il0) ® [¢) ® [i) ® [i). (3.26)

At this step, we can discard the fourth register and the quantum state on
the third register becomes a mixed state p = >, |¢;|?|i)(i|. Take the SWAP test
on the first three registers, the probability of getting the measurement as +1 is

b L Tkl 1, Q

_ PIPATL 3.27
=5+ 5 5+ 5 (3.27)
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where Q) = Z?;OI |h;|* is the desired value. In Ref. [106], A similar algorithm is
also used in inverse participation ratio estimation.

3.3.3 Parameterized quantum circuit

U(o) V(6)
e Xn
RX(Gl)HRZ(Gs)}—"—'—X " RX'(61) | | RZ'(85) "
RX (02)|-{ RZ(65)) RX/(0) || RZ/(65) i B :
RX(0;) |-{RZ(07)] RrX'(0) | | RZ/(07) B ] :

Figure 3.3: Structure of one entangled layer. (a) is the ansatz U(0) for training
Hamiltonian H. (b) is the ansatz for training Hamiltonian state |H). The
circuits for RX’, RY’, and CZ’ are displayed in Figure. 3.4.

From Theorem 3.1, the encoded unitary V is constructed from the unitary
U, so U and V have a one-to-one correspondence relation. We can consider
unitary V as a function of unitary U, i.e., V = f(U). The function f maps
an n-qubit unitary U into a 2n-qubit unitary V. Here we take the hardware-
efficient ansatz for U as shown in Figure. 3.3 (a), and we automatically obtain
the corresponding encoded ansatz V' as shown in Figure. 3.3 (b). The ansatz for
U contains single qubit rotation gates rotation-X (RX), rotation-Z (RZ), and
entangled gates control-Z (CZ). The corresponding encoded unitary components
V are denoted as RX’, RZ’, and CZ’, whose detailed information is shown in
Figure 3.4. The encoded unitaries are all real, thus there is no need to worry
about the imaginary element in the optimized Hamiltonian state. There is one
thing we need to note that U(0) and V(@) share the same parameters 6. Once
the parameter optimization in unitary V(0) is done, we can obtain the unitary
U(0) directly by inserting the parameters 8 into U. The unitary U is necessary
when we apply the algorithm to expectation value estimation and Hamiltonian
simulation, which will be discussed in Sec. 3.4.

3.4 Application

In this section, we are going to apply the proposed algorithm to reduce the
measurement time in the task of expectation value estimation and the gate count
in the task of Hamiltonian simulation, respectively. We especially emphasize
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Figure 3.4: Unitary gates U and the corresponding encoded unitary V.

that the proposed VQHE is compatible with grouping, which is another method
to reduce the measurement complexity. The measurement complexity can be
reduced for a further step. We also propose a partition trick to tackle the issue
of scalability.

To apply the engineered Hamiltonian H' to the tasks of expectation value
estimation and Hamiltonian simulation, we must first obtain the engineered
Pauli coefficients h;. Quantum state tomography [22] is a candidate to get such
information from the engineered Hamiltonian state |H’). However, the cost
of state tomography increases exponentially with respect to the system size.
Fortunately, the engineered Hamiltonian state |H’) is optimized by reducing
its uncertainty, hence the complex amplitude is expected to be concentrated
on a certain computational basis. In other words, we expect the engineered
Hamiltonian state |H') to be a sparse pure state. In Ref. [107], a more efficient
algorithm than quantum state tomography was proposed to reconstruct the
sparse pure state. With the engineered Hamiltonian coefficients hf, the I1-
norm of the engineered Hamiltonian norm can be calculated |H'||p = 3, |hil
straightforwardly.
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3.4.1 Expectation value estimation

In quantum computing, estimating the expectation value of a Hamiltonian H
to a quantum state, i.e., (H) = (| H |¢), is one of the most fundamental
processes in many tasks. The total measurement time is determined by the
Pauli norm, i.e., N ~ ||H|p. In order to reduce the measurement time, we
can apply the proposed VQHE algorithm first as shown in Algorithm 1 as a
pre-processing, which returns us the engineered Hamiltonian state |H') and
the optimized parameters 8*. Then estimate the engineered Pauli coefficients
R} from the engineered Hamiltonian state |H'). The optimized Hamiltonian
norm is obtained by summing up all the absolute values of the coefficients, i.e.,
I1H'lp =32 pi-
When we estimate the expectation value of Hamiltonian H, we have

(W H ) = (W|UTH'U [4), (3.28)

where H' = UHUT is the engineered Hamiltonian. Here we set the unitary U as
U(60*), where U(0*) is the Ansatz shown in Figure. 3.3 (a), and the parameters
0* are optimized by Algorithm 1. In this case, the corresponding measurement
time of estimating Hamiltonian H reduces to N ~ ||U(8*)HU(6*)|p.

The measurement time can be reduced further by applying a grouping al-
gorithm to the engineered Hamiltonian. Grouping [24, 102-104] is an efficient
classical algorithm to reduce the measurement time in the task of expectation
value estimation. The main idea of grouping is dividing the Pauli terms into
collections, such that all the Pauli elements in a collection commute with each
other, thus they can be measured simultaneously. Many grouping methods have
been proposed, such as qubit-wise commuting (QWC) [24], general commuting
(GC) [103, 104], and sorted insertion [102]. Here we focus on the sorted inser-
tion strategy, which is described as follows, and the details of QWC and GC
can be found in Appendix A.1 and Appendix A.2.

For a given Hamiltonian as shown in Eq. (3.2), the set {(h;, P;)}*, is sorted
by the absolute value of coefficients h; so that |hq| > |ha| > -+ > |hgn|. Then,
in the order ¢ = 1,---4", it is checked whether P, commutes with all elements
in an existing collection. If it does, it is added to that collection. If not, a
new collection is created and h;P; is inserted there. The collections are checked
in order of their creation. After division, there are N collections in total, and
the i-th collection has m; Pauli terms. Here denote the grouped Pauli norm as
| H|lgp = vazl \/2_i= |hij|?, which is highly dependent on the group strategy.
The total measurement time of the grouped collections is proportional to the
square of the which is N ~ ||H||y4, [102]. The details and examples are shown
in the Appendix A.3. If we apply the VQHE algorithm followed by the sorted
grouping algorithm, the corresponding measurement time will be

N ~ U0 ) HU(6")lly- (3.29)
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3.4.2 Hamiltonian simulation with qDrift

Consider a Hamiltonian H = Zle h;Hj, where H; is hermitian and normal-
ized, h; is the weight. For each H;, the unitary e~ Hi
quantum computers for any 7. In the Trotter formulae, one divides U = e
into segments so that U = U7 with U, = e~"H/" and uses V,, = [[_, e~ ithiHi/r
to approach U, in the large r limit. Repeat this process for r times such that
V" — U in the large r limit. It has been proven in Refs. [108, 109] that the
total gate count is G ~ L3(At)?/2¢, where A := max; h; is the magnitude of
the strongest term in the Hamiltonian, € is the error tolerance. The gate count
of this method depends on the terms of decomposition, which is not practical
for electronic structure Hamiltonians due to its large number of terms.

can be implemented on
—itH

The quantum stochastic drift protocol (qDrift) [96] was proposed to solve this
problem. Each unitary in the sequence is chosen independently from an identical
distribution. Denote v = > . h;. The strength 7; of each unitary is fixed
7; = t7/G, which is independent of h;, so we implement gates of the form e =7
Then we randomly choose the unitary e~*"#i with probability pj = hj/vy. The
full circuit is described by an ordered list of j values j = {4j1, 42, -+ ,jn} that
corresponds to unitary

G
V=] e ", (3.30)
k=1
which is selected from the product distribution P; = -G Hszl hj,. The gate

count of Hamiltonian simulation by qDrift method is G ~ O((yt)?/e), where v
is the Pauli norm of Hamiltonian.

Before simulating a given Hamiltonian H, we can first apply the VQHE
algorithm to engineer the Hamiltonian such that the Pauli norm of the engi-
neered Hamiltonian H' = U(6*)HU(6*) is reduced. Instead of simulating the
original Hamiltonian, we can simulate the engineered Hamiltonian. Because of
Eq. (3.31)

et = U (0")e ' U(07), (3.31)

we need to sandwich the Hamiltonian evolution by unitaries. The corresponding
gate count of simulating the engineered Hamiltonian is

G~ O((7')*/e) + O(U(67)), (3.32)

where 7' = |[U(6*)HU(6*)||p, and O(U(6*)) is the gate count of the unitary,
which can be ignored because it is a constant. The Eq. (3.31) can be proved
directly as shown in the following
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The second and last equations come from the Taylor expansion.

3.4.3 Scalability

One obstacle to variational quantum algorithms is barren plateaus [110-112],
which refers to the phenomenon that the gradient decreases exponentially with
the increase of the quantum system. To solve this problem, we propose a
straightforward trick called partition trick. Briefly speaking, we can divide the
Hamiltonian into parts, where they have common factors. For each part, we
extract the common factors and apply the VQHE to the rest Hamiltonian. We
take the Hamiltonian H =3XIXYYZ +2XIXZYI - XIXIIZ+1ZXIY I+
2IZZIY 1 as an example. We can first divide the Hamiltonian into two parts,
and extract the common factor, thus we have H; = XIX ® 3YYZ +2ZY 1 —
I1Z) and Hy = (IZX +21Z7) @ IYI. Then we apply VQHE to minimize
YYZ +2ZYI —11Z and I1ZX + 2IZZ, respectively. The engineered Hamil-
tonian will be H' = H{ + H) with H} = IQ U, - H; - I ® U}L and similarly
Hy=Uy®I-Hy, Ul ®1I

The partition trick is compatible with estimating expectation value. When
we estimate the expectation value, we have

(WL H ) =" (W Hy [p) = > (| UTH]U; |v) (3.33)

A A

where H; is the partite sub-Hamiltonian, and H] = UiHl-U;r is the engineered
sub-Hamiltonian. We should estimate the expectation values of each sub-
Hamiltonian first, then sum them up. In such a case, the measurement time is
N ~ 3 . ||H||p. In the task of Hamiltonian simulation, Eq. (3.31) doesn’t hold
anymore, for the unitaries U; are not the same for different partition Hamilto-
nian H;. The partition trick is not compatible with Hamiltonian simulation.
The partition trick gets rid of barren plateaus by dividing a big optimization
problem into several small ones, which helps us find the effective unitary to
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Figure 3.5: The Pauli norm comparison of different sizes of neighbor Ising Hamil-
tonian (left) and all-to-all Ising Hamiltonian (right). The solid line stands for
the original Pauli norm, and the dashed line is the engineered Pauli norm.

reduce the Pauli norm. However, such a trick will also reduce the expressibility
of the ansatz, making us unlikely to obtain the optimal unitary to engineer
Hamiltonian. This trick can be understood as a trade-off between effectiveness
and optimality.

3.4.4 Numerical experiments

In this part, we are going to show the effectiveness of the proposed VQHE,
which can reduce the Pauli norm of Hamiltonian. Specifically, we apply VQHE
to the Ising Hamiltonian and the molecules’ Hamiltonian.

Ising model, a mathematical model of ferromagnetism in statistical mechan-
ics, involves representing a material as a lattice of discrete points, where each
point or ”spin” can be in one of two possible states, typically denoted as ”up”
or "down.” The spins interact with their nearest neighbors, and the interac-
tions are characterized by a coupling constant. The Hamiltonian of the Ising
model describes the energy of the system and is given by the sum of the in-
teractions between neighboring spins. The basic form of the Hamiltonian for a
one-dimensional Ising model is H = —Ji; 3 ; 11 050 — g Yy, 0k Where {i,j, k}
refers to the sit.

In the first numerical experiment, we apply the VQHE algorithm to the
Ising model with different system sizes and compare the original Pauli norm
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Figure 3.6: The Pauli norm of different Hamiltonian of molecules, including
Hy [24], HeH™*, Hy [113] and LiH [24]. We compare the Pauli norm of the
original Pauli norm, engineered Pauli norm, grouped Pauli norm [102], and
engineered grouped Pauli norm

and the engineered Pauli norm. For convenience, we set the coefficients in the
Ising Hamiltonian to be the same, i.e., J;; = gr = 1. In this experiment, we
consider two Hamiltonians which are neighbor Ising Hamiltonian Hye (7 = i+1)
and all-to-all Ising Hamiltonian H,y (i and j are independent), respectively.
Specifically, we have

Hypei = — Z ZiZiy1 + ZX’“ (3.34)
{ii+1} k
Hai=-Y ZZj+>» X, (3.35)
A’j k

where X and Z refer to Pauli-X and Pauli-Z operators, respectively. From the
numerical results (Figure. 3.5), the engineered Hamiltonian shows advantages
over the original Hamiltonian with smaller Pauli norms in both cases of neighbor
Ising Hamiltonian and all-to-all Ising Hamiltonian.

We also conduct numerical experiments on more complicated systems, in-
cluding Ho, HeH™, H;' , and LiH molecules. In this experiment, we apply
VQHE to the tapered Hamiltonian [114, 115] of molecules for simplicity. The
qubit tapering approach encodes the original quantum system into a smaller
system, which preserves the ground state and ground energy. Thus, the tapered
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Hamiltonian reduces the requirement of the number of qubits, making the vari-
ational quantum eigensolver (VQE) [24] more efficient. By applying VQHE to
the tapered Hamiltonian of molecules, one observes the engineered Hamiltonian
has a smaller Pauli norm compared with the original one. For a further step, we
also take the sorted insertion grouping strategy into consideration. Specifically,
we engineer the Hamiltonian with VQHE first, then apply the sorted insertion
grouping method to the engineered Hamiltonian. The numerical results in Fig-
ure. 3.6 show that the engineered grouped Pauli norm of Hamiltonian || H'| gy
can be reduced further compared with that of engineered Hamiltonian ||H'|| p
and that of grouped Hamiltonian ||H||g,. These results emphasize that the
proposed VQHE is compatible with the grouping strategies.

3.5 Conclusion

In this work, we propose the VQHE algorithm to reduce the Pauli norm of
Hamiltonian such that the overheads for expectation value and Hamiltonian
simulation can be reduced. We first develop the theory to convert the Pauli
norm optimization problem into the vector /;-norm minimization problem, and
then design the cost function and parameterized quantum circuits to minimize
Pauli norm variationally. We then display how to apply the proposed VQHE
algorithm to expectation value estimation and Hamiltonian simulation. In the
task of expectation value estimation, we also emphasize that the proposed al-
gorithm is compatible with grouping, such that the measurement time can be
reduced further. The numerical experiments are conducted by applying the
VQHE algorithms to the Ising Hamiltonian and some molecules’ Hamiltonian,
which shows the effectiveness of VQHE algorithm.

For further research, it would also be fun to find the optimal Pauli norm
of Hamiltonian we could obtain. It will also be interesting to apply the pro-
posed algorithm VQHE to other applications in quantum computing. Besides,
this framework may also be applied to tensor networks, empowering classical
computers to solve quantum problems.
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Chapter 4

Retrieving Non-Linear
Features from Noisy
Quantum States

In this chapter, we focus on actually extracting high-order moments of quantum
states. But in reality, inevitable quantum noise prevents us from accessing the
desired value. We address this issue by systematically analyzing the feasibility
and efficiency of extracting high-order moments from noisy states. We establish
a method for deriving protocols using quantum operations and classical post-
processing only. Our protocols, in contrast to conventional ones, incur lower
sampling overheads and have simple workflows, making the protocols strong
candidates for practical use on current quantum devices. The proposed method
also indicates the power of entangled protocols in retrieving high-order informa-
tion, whereas in the existing methods, entanglement does not help. We further
construct the protocol for large quantum systems to retrieve the depolarizing
channels, making the proposed method scalable. This chapter is based on [Zhao,
Benchi, et al. PRX Quantum 5 (2), 020357 (2024)] with slight modifications to
fit in the context.

4.1 Introduction

Quantum computing has emerged as a rapidly evolving field with the potential
to revolutionize the way we process and analyze information. Such an ad-
vanced computational paradigm stores and manipulates information in a quan-
tum state, which forms an elaborate representation of a many-body quantum
system [116]. One critical task for this purpose is to estimate the k-th moment
of a quantum state’s density matrix p, which is often denoted as Tr[p*], k € Z+.
For example, the second moment of p is commonly known as the purity of
p. Accurately computing Tr[p*] provides an elementary precondition for ex-

41



42 CHAPTER 4. RETRIEVING NON-LINEAR FEATURES...

Nonlinear i Entanglement )

N ( p) computation : spectroscopy
N (p) . - Tr [ p k] _________________
i ©
\ i
N (p) Material I More
‘ prediction i Applications y

Figure 4.1: The general framework of recovering the high-order quantum infor-
mation Tr[p*] given copies of noisy resource N (p) based on our derived protocol,
i.e., a quantum channel C and measurement-based post-processing. The infor-
mation can be further employed in various applications in practical quantum
computing.

tracting spectral information of the quantum state [22, 117], which is crucial
in supporting the evaluation of non-linear functions in quantum algorithms [83,
118], applying to entanglement spectroscopy by determining measures of entan-
glement, e.g., Rényi entropy and von Neumann entropy [119, 120], and char-
acterizing non-linear features of complex quantum systems in materials [121—
124]. In particular, as a core-induced development, understanding and control-
ling quantum entanglement inspire various quantum information breakthroughs,
including entanglement theories, quantum cryptography, teleportation and dis-
crimination [42, 125-127].

Numerous methods have been proposed for efficiently estimating quantum
state spectra on a quantum computer, including the deterministic quantum
schemes processing intrinsic information of the state [128] and the variational
quantum circuit learning for approximating non-linear quantum information
functions [129, 130]. Meanwhile, a direct estimation method of Tr[p*] through
the Newton-Girard method and generalized swap trick [119] has been proposed
in [123], and then it was further improved by [131].

However, quantum systems are inherently prone to the effects of noise, which
can arise due to a variety of factors, such as imperfect state preparation, coupling
to the environment, and imprecise control of quantum operations [132]. In
definition, quantum noise can be described in a language of quantum operation
denoted as N. Such an operation can inevitably pose a significant challenge to
the reliable estimation of Tr[p*] from corrupted copies of quantum state N (p).

Previous works concentrated on the first-order situation by applying the in-
verse operation N =1 [54, 62, 133, 134] to each copy of the noisy state, such that
N~1oN =id, where id means identity map. Such inverse operation might not
be physically implementable, which requires the usage of the quasi-probability
decomposition (QPD) and sampling techniques [135], decomposing N1 into



4.1. INTRODUCTION 43

a linear combination of quantum channels N/ 7! = ZZ ¢;C;, where ¢; are real
coefficients and C; are quantum channels. Then, we have to sample and prepare
the quantum channels with certain probabilities, i.e., p; x |¢;|. Sampling and
preparing different channels on quantum device is very complicated. To simplify
the process, the authors proposed that a Hermitian preserving map N ~! can be
realized by injecting different quantum states [63], w; into a fixed quantum chan-
nel A, i.e., N71(-) = >, ¢;A(- ® w;). The new proposed method [63], no doubt,
simplifies the realization of Hermitian preserving maps from sampling channels
into sampling states. However, we still need to take the process of probabilis-
tic sampling when realizing Hermitian preserving channels. The total required
sampling times for both methods (sample channel and sample states) are the
same, which are square proportional to sampling overhead g = >, |c;| [136].
Nevertheless, the situations for estimating Tr[p*] with k£ > 1 stay unambiguous
apart from handling individual state noise. In this chapter, we are going to
retrieve the k-th moment from noisy states, which is illustrated in Figure. 4.1.
To systematically analyze the feasibility and efficiency of extracting high-order
moment information from noisy states, as shown in Figure. 4.1, The following
two questions are addressed:

1. Under what conditions can we retrieve the high-order moments from noisy
quantum states?

2. For such conditions, can we obtain a better sampling complezity than ez-
isting method?

These two questions address the existence and efficiency of quantum proto-
cols for retrieving high-order moment information and essential properties from
noisy states, which help us to access accurate non-linear feature estimations.

In the present study, we aim to address both of these questions. For the
first question, we establish a necessary and sufficient condition for the retrieval
of high-order moments from noisy states, which states that a quantum protocol
can achieve this goal if and only if the noisy channel is invertible. Regarding the
second question, we propose a method called observable shift for deriving pro-
tocols using quantum operations and classical postprocessing only. In contrast
to the conventional sampling techniques, our protocol only employs one quan-
tum operation and avoid quasi-probability decomposition. Besides, our method
requires smaller sampling complexity compared to quasi-probability decompo-
sition. We further construct a protocol for large quantum systems to retrieve
the depolarizing channels, making the observable shift method scalable.

We also demonstrate the advantages of our method over existing probabilistic
sampling method [62, 63, 133, 135] with step-by-step protocols for some types
of noise of common interest. Our protocols incur lower sampling overheads
and have simple workflows, serving as strong candidates for practical usage
on current quantum devices. The proposed method also indicates the power
of entanglement in retrieving high-order information, whereas in the existing
methods, entangled protocols do not help [54, 63]. In the end, numerical ex-
periments are performed to demonstrate the effectiveness of our protocol with
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Figure 4.2: Illustration of Theorem 4.1. Suppose a state p is corrupted by an
invertible channel A/, and H is the moment observable, such that Tr[H p®*] =
Tr[p*]. The state information is deformed but can be retrieved via applying
D and post-processing (Top). However, for non-invertible N, the high-order
moment is completely destroyed and cannot be retrieved (Bottom).

depolarizing noise applied on the ground state of the Fermi-Hubbard model.
Our sampling results illustrate a more accurate estimation on Tr[p?] compared
with no protocol applied.

4.2 Moment recoverability

In this section, we are going to address the first question proposed in the intro-
duction. We discover a necessary and sufficient condition for the existence of a
high-order moment extraction protocol as shown in Theorem 4.1.

Theorem 4.1. (Necessary and sufficient condition for existence of protocol)
Given a noisy channel N, there emists a quantum protocol to extract the k-th
moment Tr[p¥] for any state p if and only if the noisy channel N is invertible.

Intuitively, we can understand Theorem 4.1 from the following aspects. Esti-
mating high-order moment demands complete information about quantum chan-
nels. If a noise channel A is invertible, it means information stored in quantum
states is deformed, which can be carefully re-deformed back to the original infor-
mation with extra resources of noisy states and sampling techniques. However,
when the loss of information is unattainable, i.e., the noise is non-invertible.
Part of the information stored in the quantum state is destroyed completely,
leading to an infeasible estimation problem even with extra quantum resources.
An illustration of the theorem is shown in Figure. 4.2.
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In the following, we will present a sketch of proof for our main theorem.
Starting with the definition of a quantum protocol which is usually described
as a sequence of realizable quantum operations and post-processing steps used
to perform a specific task in the domain of quantum information processing.
Mathematically, we say there exists a quantum protocol to retrieve the k-th
moment from copies of a noisy state N'(p) if there exists an operation D such
that

Te{HD 0 N (p29)] = Te[H P, (4.1)

where H is what we call the moment observable, as the usage of it is the core of
extracting the high-order moment from quantum states, i.e., Tr[H p®*] = Tr[p*].
For example, in estimating the purity of single-qubit states, the moment ob-
servable H is just a SWAP operator correlating two qubits. It is proved in
the Appendix B.1 that for any order k, there exists such a moment observ-
able H to extract the k-th moment information. The inspiration for our proof
comes from the method used to simulate Hermitian-preserving maps on quan-
tum devices, which has enjoyed great success in a variety of tasks, such as error
mitigation [62, 133, 134], and entanglement detection [42, 137]. We extend our
allowed operation D to the field covering the Hermitian-preserving maps.

If the noisy channel A is invertible, then there exists the inverse operation
of the noisy channel A/~!, which is generally a Hermitian-preserving map, and
(N~H®k stands for a feasible solution to the high-order moment retriever. On
the other hand, by assuming a Hermitian-preserving map D satisfying Eq. (4.1)
and non-invertible A/. In the view of the Heisenberg picture, the adjoint of the
maps in Eq. (4.1) satisfies

Te[(NEF)T o DT (H)p®*] = Te[H p®*). (4.2)

It has been proven in [138] that given an observable O, a Hermitian-preserving
map M satisfies Tr[M(p)O] = Tr[pO] for any state p if and only if it holds that
MT(O) = O. Thus, we can derive that as long as we find a Hermitian-preserving
operation D such that the condition

N o DY H) = H (4.3)

is satisfied, the problem is solved. Since the effective rank of H is full, whose def-
inition and proof are shown in Appendix B.2, then from the fact that rank(B) <
min (rank(A), rank(B)), we can deduce that N is invertible, contradicting to our
assumption. This means there exists no quantum protocol for extracting high-
order moments when the noise is non-invertible. The detailed proof is given in
Appendix B.2.

4.3 Observable shift method

In the previous part, we mentioned that applying the inverse operation of a
noisy channel N ~! to noisy states simultaneously to mitigate the error is one
feasible solution to retrieve high-order moments. However, this channel inverse
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method requires exponentially many resources with respect to k to retrieve the
k-th moment. Also, the implementation of inverse operation N ~! is not quan-
tum device friendly because it has to sample and implement different quantum
channels probabilistically.

In this section, we propose a new method called observable shift to retrieve
high-order moment information from noisy states, which requires only one quan-
tum operation with comparable sampling complexity.

Lemma 4.1. (Observable shift) Given an invertible quantum channel N and an
observable O, there exists a quantum channel C, called retriever, and coefficients
t, f such that

1
Ntoct(0) = 7 (O +1tI), (4.4)
where I is identity.

Proof. Since the noise channel N is invertible, the image of the adjoint map
of the noise channel N'7(£) has full dimension and hence O € NT(L). It was
proved in [138] that there exists a HPTS map D such that Nt o DY (H) = H.
Then we take the trick of observable shift, which is

NT(DV(H)) = H +tI —tI. (4.5)
Since N is CPTP, its adjoint map N is unital-preserving, implying
NToDI(H +tI) = H +tI. (4.6)

Denote f)*(H) = DI(H) +tI. Since D is an HPTS map, thus D' is a HPUS,
i.e., DY (I) = al, where a is a real coefficient. Correspondingly,

DY) =D (1) +tI = (a+t)] (4.7)

is also an HPUS map. Due to the fact that the adjoint of an HPUS map is
HPTS, meaning D is an HPTS map. As long as the value ¢ no smaller than the
absolute minimum eigenvalue of DY(H), i.e., t > |min{eig(D(H))}|, the map
D reduces to CPTS. Thus, we have

Nto DI (H)=H +tI (4.8)

Note that any CPTS map and be written as a coefficient f times a CPTP map
C, which is D = fC, meaning

fNToCH(H) = H+tI (4.9)

~ N oCl(H) = %(H ) (4.10)

which complete the proof. O
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We develop this observable shift technique since the expectation of O + tI
regarding any quantum states can be computed as Tr[Op] + ¢ during the mea-
surement procedures. Moreover, if one wants to maintain the retrievability of
Tr[Op*] from the noise channel A" with respect to any possible quantum states,
then the only change that could be made to the observable is to add constant
identity since such a transformation could maintain the original information
of p. Therefore, the trace value can be retrieved via measurements and post-
processing. For instance, when we estimate Tr[Op|, where O = I + X + Z, By
skipping the identity, often called shifting the observable, the value of Tr[Op]
can still be re-derived by post-adding a value of one to the expectation value of
the shifted observable O' = X + Z, i.e., Tr[Op] = 1 + Tr[O’ p].

Besides, instead of mitigating noise states individually, our method utilizes
entanglement to retrieve the information with respect to the moment observable
H. Compared with the channel inverse method, the proposed observable shift
method requires fewer quantum resources, and its implementation is easier.

In our cases, we aim to find a Hermitian-preserving map D such that Eq. (4.3)
holds together with the allowance of observable shifting (4.4), i.e.,

(N®O o DY H) = H' —tI, (4.11)

where H' = H + tI is the shifted observable, and ¢ is a real coefficient. Note
that the quantum channel N'®* is a completely positive and trace preserving
(CPTP) map, and the adjoint of a CPTP map is completely positive unital
preserving [38], which refers (N®*)T(I) = I. Thus, we have

(NI (DY (H) +t1) = H, (4.12)

where we can consider DY(H) 4 tI as a whole and denote it as D(H). With
proper coefficient ¢, the map D could reduce to a completely positive map C.

If we apply the quantum channel C to a noisy state and make measurements
over moment observable H, the expectation value will be

¢ = Tr[HC o N®* (p®*)] = Tr[(N®F)T o CT(H) p®F) (4.13)
_ %Tr[(H +11)p®H] = %(Tr[Hp@“] +1). (4.14)

Obviously, the desired high-order moment is given by Tr[Hp®*] = f( —t. By
the Hoeffding’s inequality [136], obtaining the estimation within an error e with

a probability no less than 1 — p is upper bounded by f25% log(%). Thus, the
number of total sampling times 7" is should be

T> f"% log<2>. (4.15)

Usually, the success probability 1 — p is fixed. Thus, we consider it as a
constant in this chapter, and the corresponding sample complexity is O(f?/62),
which only depends on error tolerance § and the sampling overhead f. Specifi-
cally, we have the following Definition 4.1.
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Definition 4.1. Given error tolerance §, the sufficient sampling complezity of
retrieving k-th moment information by observable shift method is O(f*(N, k)/5?%).
The sampling overhead f(N, k) is in the following set

_!

VR € {7 IV o et = 5

(H+tl),feRT,teR,C € CPTP},
(4.16)

where N is the noisy channel, C is quantum channel, t is the shifted distance,
H is the moment observable.

Since sampling complexity depends on the overhead f, it is desirable to find
a quantum retriever C and shift distance ¢ to make the sampling overhead f as
small as possible, and the minimum sapling overhead fiin (N, k) is defined as

Fin N k) = min {7 [(W94)" o €1 () = % (H+1I),f €R*,t €R,C € CPTP},

(4.17)

which can be calculated by the following SDP
fmin(Nv k) = min f (418&)
subject to Jz >0 (4.18b)
Tl"c[JéBC] = fIB (4.18C)
JFie = TrB[(JI;%},; ®Ic)Ia® Js, )] (4.184)
Tre[(la ® HE)JF, ] = Ha + ta. (4.18e)

The J; and Jyser are the Choi-Jamiotkowski matrices for the completely pos-
itive trace-scaling map C = fC and noise channel N®* respectively. Eq. (4.18b)
corresponds to the condition that the map C is completely positive, and Eq. (4.18c¢)
guarantees that C is a trace-scaling map. In Eq. (4.18d), J is the Choi matrix
of the composed map C o N'®F. Eq. (4.18e¢) corresponds to the constraint shown
in Eq. (4.4). The dual SDP of the original problem is shown as follows

Smin(NV, k) =max —Tr[KH] (4.19a)
subject to Tr[M] <1 (4.19b)
Tr[K] =0 (4.19¢)
M I+ Tra[(KY ®Ip ®HC)(JAT[§§ ®1c)] >0 (4.19d)

Beyond retrieving particular non-linear features, i.e., Tr[p*], we can also ap-

ply our method to estimate non-linear functions. For a toy example, if we wish
to estimate the function F(p) = 1Tr[p?] + 3 Tr[p?], we should design the mo-
ment observable first, which is supposed to be H = [%HQ @I+ %Hg], where

H, and Hj are the moment observables for two and three qubits respectively.
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Then, the retrieving protocol with sampling overhead fmin(N,k) is given by
SDP as shown in Eq. (4.18). With the power of estimating non-linear functions,
our method applies to the entropy evaluation from noisy quantum states, show-
casing the practical potential in quantum many-body correlation determination
and entanglement detection. One can directly assist the estimation of Rény:
entropy [139] provided a quantum state p, which is

Ha(p) 1= —— log (Tr[5"]), (4.20)

—

where a € (0,1) U (1, 00).

4.4 Protocols for particular noise channels

We have introduced the observable shift method in the previous part, next will
provide the analytical protocol for retrieving the second-order moment informa-
tion Tr[p?] from noisy quantum states suffering from depolarizing channel and
amplitude dimpling channel, respectively.

4.4.1 Mitigate depolarizing channel

Depolarizing channels have been extensively studied due to its simplicity and
ability to represent a wide range of physical processes that can affect quantum
states [22]. A quantum state that undergoes a depolarizing channel would be
randomly replaced by a maximally mixed state with a certain error rate. The
single-qubit depolarizing (DE) noise M has an exact form

Now(p) = (1= o+ €3, (1.21)
where € is the noise level, and I refers to the identity operator.

The retrieving protocol and retrieving overhead for such noise channel was
well studied in [138]. Here we will focus on retrieving the second order infor-
mation Tr[p?] from two-copy of depolarizing noised state N'(p ® p) = Nfg @

Se(p ® p), after applying such channel, the state becomes

N(p @ p) = Npg(p) ® Npg(p) (4.22)
=[(1—-e€p+ eé] R[(1—e)p+ eé] (4.23)
:(1—e)2p®p+¥l®p+¥p®l+§l®l. (4.24)

Given many copies of such noisy quantum states, our method derives a
protocol for retrieving the second-order moment Tr[p?] using only one quantum
channel and post-processing. Specifically, we have Proposition 4.1.
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Proposition 4.1. Given two copies of noisy states, N5 (p)®?, and error tol-
erance 8, the second order moment Tr[p?] can be estimated by

fminTr[HC (NBE(9)®2)] -1,

with sample complexity O(f2; /6?), where fumin = ﬁ, t = % The
term Tr[HC (NS5g(p)®?)] can be estimated by implementing a quantum retriever
C on noisy states and making measurements over moment observable H. More-
over, there exists an ensemble of unitary operations {p;,U;}; such that the

action of the retriever C can be interpreted as

C() = ijUj(')UJT (4.25)

Proof. To begin with, we give the explicit form of the retriever C

12

1

JOEDY Ui Ul (4.26)
j=1

where all the probabilities p; are the same, i.e., p; = %7 and the corresponding
unitaries U; are

U1:I®I; U2:X®X; U3:Y®Y; U4:Z®Z;

- 1 1 4 i -1 -1 —i
14+ 1 -1 4 1(s 1 =1 i
Us = 214 -1 1 il Us = 21i =1 1 4 |’
- =1 =1 1 7 1 1 —1
7 7 7 7 —1 7 7 —3
1{-1 1 =1 1 11 1 -1 -1
U7*§ -1 -1 1 1 ’U8*§ 1 -1 1 =11
N T i i 4 i (4.27)
i 1 1 =i - -1 =1
11— 1 -1 —i 1= 1 =1 —i
Uy = 21— -1 1 —i +Uio = 21— -1 1 =i’
i -1 -1 —q —7 1 1 7
7 -7 —1 7 -7 —1 —1 —1
11 1 -1 -1 1(-1 1 -1 1
Un = 211 -1 1 =11 Uiz = 91-1 -1 1 1

- =1 —i —i T =1 =1

To prove estimating the second order moment by implementing quantum chan-
nel C with sampling overhead fui, = ﬁ, we divide the process into two

steps. For the first step, we prove that quantum channel C is a feasible solution

to the prime problem with sampling overhead ﬁ, meaning fupin < ﬁ
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Then we are going to find one feasible solution to the dual problem with over-
head ﬁ, meaning frin > ﬁ Thus, we have overhead fui, = ﬁ,
which complete the proof.

Now, we are going to proof the first part. At first, we need to write the Choi

matrix form of the retriever C, which is
1 1
Je = ZHH+ E(XX +YY+Z2)@ (XX+YY +2Z2). (4.28)

For an arbitrary state p ® p, after applying the noise A onto it, we denote the
state as p’ = N(p ® p), thus

CoN(p®p) =Clp) = Tra[(p" @ I1)Jc] (4.29)
=Tra|(pT @ H)(iHU + %(XX +YY +Z2)@ (XX +YY +27))
(4.30)
= iTr[p’T}II + %Tr[p’T(XX +YY +Z2)NXX+YY +Z2)) (4.31)
- iu + %Tr[p’T(XX FYY 4 Z2)) (XX +YY + ZZ))] (4.32)

Note that the above equations utilized the face that transpose operation is
trace preserving, i.e., Tr[p?] = Tr[p] = 1. Since the matrix XX + YY + ZZ is
symmetry, thus we have

1 1
CoN(p®p) = 1T+ 1—2Tr[,o'T(XX +YY 4+ Z)O)T(XX +YY + Z7))
(4.33)

= iHJr %Tr[p/(XX +YY +ZO)|( XX +YY +27)) (4.34)

The trace term can be calculated by substituting Eq. (4.24), we have

Tr[p (XX +YY +Z2)] = Te[(1 - €)*p@p

N #mﬁ a ;E)Ep®l+62(I®I))(XX+YY+ZZ)] (4.35)

=(1-e)’Tr[p@ p(XX +YY + ZZ))

1_
+ U)X @ X 4+ Y ® Y + Z ® pZ]

2
(1—e)e €
+ Te[pX @ X +pY @V +pZ © Z]+ TTr[XX +YY + Z7]
(4.36)
=(1-e)?Trlp@p(XX +YY + Z2)]. (4.37)

In the second equation, since X,Y, Z are all traceless Hermitian matrices, all
terms are zeros except the first term. Replace the equation back to Eq. (4.34),
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then

(1-¢?
12

1
CoN(p®p):ZH+ Trp@p( XX +YY + ZO(XX +YY + Z2).

(4.38)

The information Tr[p?] is estimated from Tr[H (p®p)], where H = 1 (II+X X +
YY + ZZ) is cyclic permutation operator (in the 2-qubit case, H is just SWAP
operator). It is easy to check that

Tr[HCoN (p & p)] = ﬁ i
(1-¢)?
12

Tr[H = 1)

+ Trlp® p(XX +YY + ZZ)|Tx[H + (XX +YY + Z2)]|.

(4.39)

We can quickly get Tr[H] =2 and Tr[H * (XX +YY 4+ ZZ)] = 6. Then

Te[HC o N(p ® p)] = % i _26)2Tr[p Rp(XX +YY + Z2)] (4.40)
—(1-e2 ﬁ ST @ p(XX +YY +22)] (4.41)
—(1—¢)? ﬁ - % + % + %Tr[p Rp(XX +YY + ZZ)]} (4.42)
— (1= ) i2(1 i = 2((1 __62)2 N %Tr[p Qp(XX+YY +ZZ + H)]]

(4.43)

—(1—e)? 22(61%:)2 T Trp® pH]} (4.44)

- [26 = 2 4.45

== gzt ) (4.45)
The desired high-order moment Tr[p?] value equals to

Tr[p?’] = fTi[HC o N(p® p)] — t (4.46)

where f = ﬁ is the sampling overhead and ¢t = %__5)22 is the shifted
distance. In order to estimate the value with the error ¢, the sampling overhead
should be 1/(1 — €)2. Thus, we have fii, < 1/(1 — €)%

Next, we are going to use dual SDP to show that fumi, > 1/(1 — €)%, We set
the dual variablesas M = 11— 5(XX+YY+ZZ),and K = q(XX+YY+ZZ)
where ¢ = —ﬁ. We will show the variables {M, K} is a feasible solution
to the dual problem.

If we substitute the variables into the dual problem Eq. (4.19), we can easily
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check that Tr[M] < 1, Tr[K] = 0. For the last condition, we have

Tra[(K4 © Ip © Ho)(J o © I0)] (4.47)

AB

1
= —gXX+YY + Z2)(IT + XX +YY +27)  (448)
Thus, we have
M @I+ Tral(K © Ip ® He)(J 5 ® 10)] (4.49)
AB

1 1 1
= LT = c(XX +YY + 22)11 = (XX +YY + Z2)(XX +YY +27)

(4.50)

>0, (4.51)
which means {M, K'} is a feasible solution to the dual SDP. Therefore, we have
Sfmin > —Tr[KH] = ﬁ Combined with prime part, we have fii, = (1%@2[]

As a result, the second order moment can be retrieved from depolarized
states N5g(p)®? by applying the unitaries U; randomly with equal probabilities
and then performing measurements with respect to the moment observable H.
After repeating these steps for T' rounds, where T is given by Eq. (4.15), and
averaging the measurement results, we can obtain the estimated expectation
value ¢ = Tr[HC(N§g(p)®?)]. Then, the desired second-order moment is given
by

1 1—(1-¢)?
Trlp?] = - 4.52
When estimating Tr[p?] from copies of the noisy state N5g(p)®?, conven-

tional methods incurs a sampling overhead (1&'1 )2;22 On the other hand, our

observable shift method offers a protocol with a lower sampling overhead ﬁ,
which is much lower than that of the conventional method.

4.4.2 Mitigate amplitude damping channel

The quantum amplitude damping (AD) channel is another important model
that we are interested in, which often appears in superconducting qubits or
trapped ions. This type of noise is particularly relevant for the loss of energy or
the dissipation of excited states [140], whose action results in the transition of a
qubit’s excited state to its ground state, offering a more realistic representation
of energy relaxation processes in quantum systems. The AD channel N3 is
characterized by a single parameter ¢, representing the damping rate, which
has two Kraus operators: A§ := [0X0]| + /1 — £]1X1] and A5 := /£ ]0)(1|, where
¢ € [0,1]. Similarly, given many copies of AD-produced quantum states, the
second-order information Tr[p?] can be retrieved by applying only one quantum
channel and post-processing with our protocol in Proposition 4.2.
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Proposition 4.2. Given two copies of noisy states, N5p(p)®?, and error tol-
erance 8, the second order moment Tr[p?] can be estimated by

FrinTr[HC (NZp (p)%)] — 1,

with sample complezity O(fumin/02), where fuin = ﬁ, t = —%. The

term Tr[HC (N5 (p)®?)] can be estimated by implementing a quantum retriever
C on noisy states and making measurements. Moreover, the Choi matrix of such
the retriever C is

Je = |00)00] ® é((l +26)I1 + (1 - 4e)H)
+ U ® %((1 +2e)II + (1 —4e)H)
FUNET | @ %(II — H)
+ 1) 11| @ é([[—i—H), (4.53)

where [UEYWE| = 1(]01) £ [10))((01] £ (10]) are Bell states.

Proof. The amplitude damping (AD) channel is a physical channel that de-
scribes the energy leakage, dropping from a high energy state to a low energy
state. The qubit amplitude damping channel N5 has two Kraus operators:
A§ = 10)0]+ /1 — ¢|1X1] and A5 = /|0)1|. A single qubit state (Z(l)g Zi)
after going through the AD channel is

c Poo + €p11 1 —epor
_ 454
<o) ( ptemm vl s)pn) (454)

where € € [0, 1] is the damping factor. This part we will focus on retrieving the
information Tr[p?] from two-copy AD channel noised state N5 @ N5p(p @ p).
The noised state is

N(p®@p) =Nip @ Nip(p @ p) (4.55)
(poo+epi1)? (poo+ep11)(vVI—epo1) (V1—epo1)(poo+epir) (1—€)p3,
_ | (pootep11)(vI=ep10) (pootepir)(l—e)p11 (1—¢)po1p10 (1—e)vI—epo1pi1
B VI=¢pio(poo+ep1) (1—¢)p10po1 (1—€)p11(poot+epii) (1—e)v/I—ep11por
(1—¢)p3, (1—e)v1—eprop11 (1—e)vI—ep11p10 (1—¢)*p3,
(4.56)

To prove to estimate the second order moment by implementing quantum
channel C with sampling overhead fu, = ﬁ, we divide the process into
two steps. For the first step, we prove that quantum channel C is a feasible
solution to the prime problem with sampling overhead ﬁ, meaning fuin <

ﬁ. Then we are going to find one feasible solution to the dual problem with

overhead ﬁ, meaning fuin > ﬁ Thus, we have the sampling overhead

frin = ﬁ, which complete the proof.
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Now, we are going to prove the first part. For an arbitrary state p ® p, after
applying the noise A/ onto it, we denote the state as p’ = N(p @ p), thus

CoN(p®p) =C(p') = Tral(p™" @ I1)Jc]
— Tr, [(p’T ® IT) (|oo><00\ ® é(u +26) I + (1 — 4¢)H)
4 5101) +110)({01] + (10)) ® (1 -+ 26T + (1 — 42 H)
+ 201) — [10))((01] — {10) ® (1T — H)
Lyl @ %(IIJrH))] (4.57)
— Tr[p' 00)(00)] (é(u +2e) T+ (1— 45)H)>
T[T ((01) + ]10Y)((01] + (10])] (112((1 42T+ (1— 45)H)>
(1) = L) (01 - (0] (1017 - 1))

+Tr[p/T|11><11](é(H+H)> (4.58)

we can take transpose of the quantum noisy state p’, as shown in Eq. (4.56),
then substitute it into our equation, we get

CoN(p @ p) = (o + epur? (1 + 2901+ (1~ 4901

10— om0 +epn) + (1 — )porpaal (2«1 2oy (1 4e>H>)

+[(1 = ¢e)p11(poo +ep11) — (1 — €)po1pio] (;(U - H))

(=22 (é(n + H)) (4.59)

The value Tr[p?] is usually estimated by Tr[H (p®p)], where H = £ (IT+ X X +

YY + ZZ) is the two-qubit cyclic permutation operator. Then the estimated
value from our protocol can be arrived at

CoNlp®p) = pon + epur)? (FTH(+22)17 + (1 42)17)]
101 ) (o + epur) + (1= ol (FTHH(1+ 2017 + (1~ 42)17)] )

+[(1 = &)p11(poo + €p11) — (1 = €)po1pio] (1TF[H(U - H)])

2

+(1—¢)?*p% (éTr[H(II + H)]> (4.60)
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Note that the Tr[H] = 2 and Tr[H - H| = 4, then we have
Te[HC o N'(p ® p)] = (poo +ep11)*(1 — 2¢) + [(1 =€) pr1(poo + £p11)

+ (1 = ¢€)porpio(1 — 2¢) — [(1 — €)p11(poo + £p11)
— (1 =¢)porpro] + (1 — €)*p%, (4.61)
= (1= 2¢)p3y + 2(1 — €)*porpro — 2¢° poopr + (1 — 2¢)pi; (4.62)
= (1—¢)%pgo + 2(1 — €)?porp1o + (1 — €)?pT;, — €2pdo + 26 poop11 + £7p1;
(4.63)
i &2
=(1—¢) _pﬁo + P11 + 2p10p01 — m[ﬂgo + P11 + poopi1 + pi1poo]
(4.64)
2[ g2
= (1-2)*[Te[Hp o ) - m} (4.65)
2[mr 2 g2
= (1 - )| Txlp?] - W} (4.66)
(4.67)
The desired high-order moment Tr[p?] value equals to
Trfp’] = fT[HCoN(p @ p)] — t (4.68)
where f = ﬁ is the sampling overhead and ¢ = —ﬁ is the shifted

distance. In order to estimate the value with the error ¢, the sampling overhead
should be 1/(1 —¢)2. Thus, we have fyn < 1/(1 —¢)?

Next, we are going to use dual SDP to show that fiin > 1/(1 —¢)?. We set
the dual variables as

M = i(\m) —10))((01] — (10]) + %|11><11\ (4.69)
1 1+e
K = S —zy7 ||~ £100X00] — [LLY11] + —5=(101)01] + [10K10]
4 & ; 1 (J01)10] + |10)01])]. (4.70)

We will show the variables {M, K} is a feasible solution to the dual problem.
If we substitute the variables into the dual problem Eq. (4.19), we can easily
check that Tr[M] < 1 and Tr[K] = 1. For the last condition, after simplifying,
we have

Tra[(KY @ Ip® zar(;)(bfﬁi@g ® 1) = (M —|11Y11]) ® H (4.71)
Therefore,

M @I+ Tral(K}©Ip® Hc)(Jf\F,%; ® I¢)] (4.72)

=M @I+ (M-—|11Y11))® H (4.73)

>0 (4.74)
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which means {M, K} is a feasible solution to the dual SDP, therefore, we have
fmin > —Tr[KH| = ﬁ Combined with prime part, we have fin = (1%5)2[]

The above retriever C can be implemented based on the following measure-
ments and post-processing. Given amplitude damping noisy states N5 (p)®2,
we make measurements in the basis B = {|00),|¥*),[¥~),[11)}. From the
Choi matrix of the retriever C, which is shown in Eq. (4.53), we know that
based on the obtained measurement results, the quantum system collapses to the
states 01,02, 03, 04 correspondingly, where o1 = 03 = §((1+2¢)I11+(1—4e)H),
o3 =1(II — H) and 04 = £(II + H). Each state corresponds to a fixed expec-
tation value Tr[Ho;], which can be predetermined via direct matrix calculation
with fixed H and known o;. The next step is to run sufficient shots of basis-B
measurements to determine the probability of measuring each basis state, de-
noted as p;, respectively. The term Tr[HC (N5p(p)®?)] is then given by the
estimated value ¢ = Z?Zl p;Tr[Ho;]. The desired second-order moment is ob-
tained by

1 e?

R kvt T

(4.75)

More details can be found in the Supplementary Material. The sampling over-

head for conventional methods is 85;27 while the overhead incurred by our

method is still as low as ﬁ, saying that our method requires fewer quantum
resources.

4.5 Generalized observable shift method

The specific protocol of the observable shift method with minimal sampling
overhead is given by SDP as shown in Eq. (4.18). However, when the size
of the system increases, the computer memory for solving such SDP increases
exponentially. In personal computers, a 5-qubit system is the largest problem
size that SDP can solve. Achieving a specific error mitigation protocol on a
large system is a crucial problem.

We present a scalable approach for creating an error mitigation protocol by
exploiting the observable shift method recursively. More specifically, we demon-
strate the capability to design a quantum protocol for mitigating depolarizing
noises on arbitrary copies of noisy qudits, as evidenced in the subsequent Propo-
sition 4.3.

Proposition 4.3.  Given arbitrary k copies of noisy states NSE(p)®k, the k-
th order moment Tr[p*] can be estimated by fi, Tr[HC), (N5g(p)®*)] — ti, where
the term TY[HCy, (NS (p)®*)] can be estimated by implementing a quantum re-
triever Cy, on noisy states and making measurements. Moreover, such Cy, fi, tk
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can be recursively constructed as

fk (1 —c k> (476)
k—1 k
Cr=idi+ Y <z> (1—e) " R o (€ ®idy_y), and (4.77)
=2
eh k(1 —e)ehl 3k (1 —g)leh
tk:fk dk+dk_12(l>dk_ltl ) (4-78)
=2

for Co,to given in Proposition 4.1 and some CP maps R;.

Note that the implementation of Cj, requires post-selection of measurement
outcomes, as Cj, is completely positive but not necessarily trace-preserving. The
detailed proof of Proposition 4.3 are deferred to Appendix B.3.2. We also numer-
ically verify the feasibility of the number of state copies to be up to a hundred.

4.6 Comparison with existing protocols

To extract high-order moment information from noisy states, one straightfor-
ward method is to apply an inverse operation of noisy channel N ~! on quantum
states to mitigate error, and then perform measurements over moment observ-
able H, which is Tr[Hp®*] = Tr[H (N_1)®k (M(p)®*¥)]. However, the map
N~! might not be a physical quantum channel [54], thus we cannot implement
it directly on a quantum system. Fortunately, we can simulate such channel
by quasi-probability decomposition, which decomposes such non-physical map
into a linear combination of physical quantum channels, i.e., N 7! = > ¢iCi,
where ¢; are the real coefficients and C; are physical quantum channels. We
need to note that ¢; can be negative. From the aspect of physical implementa-
tion, in the ¢-th round of total T" times of sampling, we first sample a quantum
channel C*) from {C;} with probability {|c;|/g}, where g = 3, |c;|, and apply
it to noisy state C*) o N(p). Then we take measurements and get results o(®).
After T rounds of sampling, we attain an estimation for the expectation value
(=437, sgn(ct?)o® = Tr[Op).

In Ref. [63], the authors proposed a similar but simpler method to realize
Hermitian preserving map, which replaces the probabilistic sampling of channels
into probabilistic sampling of states. Specifically, a Hermitian preserving map
N~ can be realized by injecting different quantum states, w; with probability
‘Cg"l into a fixed quantum channel A, i.e., N71(-) = 3. ¢;A(- ® w;). The new
proposed method [63], no doubt, simplifies the realization of Hermitian pre-
serving maps to some extent. However, we still need to sample different states
with certain probabilities and inject them into quantum channel. Besides, it
was proved that the sampling overhead of probabilistic state sampling method
should be the same as that of probabilistic channel sampling [63].
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Figure 4.3: The sampling overhead respective to noise level for estimating Tr[p?]
from amplitude damping noise corrupted state N'(p). The dashed curve refers
to the overhead for the channel inverse, and the solid curve stands for the newly
proposed method. The light blue and dark blue curves represent results from
amplitude damping (AD) and depolarizing channel (DE), respectively.

The total sampling times 7" is also given by Hoeffding’s inequality as shown
in Eq. (4.15), and the sampling overhead gmin(/N) is given by [54, 63, 13§]

gmin(/\/) = min { Z |Ci| |N_1 = Zcici, Cc; € R, Ci S CPTP} (479)

When we apply the channel inverse method to retrieve the k-th moment, we
should apply the inverse operation simultaneously on k& quantum systems, the
corresponding sampling overhead if given by gmin (N, k), which is

(2

gmin(N, k) = min { Z |Ci| |(N_1)®k = Zcici, ¢ € R, C; e CPTP}, (4.80)

With Eq.(4.16) and Eq. (4.80), we can make a comparison of the sam-
pling overhead between our method and the conventional QPD channel inverse
method, which leads to Lemma 4.2.

Lemma 4.2. For arbitrary invertible quantum noisy channel N, and moment
order k, we have

fmin(N7 k) S gmin(N7 k) (481)

Lemma 4.2 implies that in the task of extracting the k-th moment Tr[p*]
from noisy states, the proposed method requires fewer sampling times, i.e.,
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Figure 4.4: Comparison of the setting between three error mitigation methods.

consumes fewer quantum resources. The detailed proof is displayed in Supple-
mentary Material. It has been proven by Regula et. al.in Ref. [63] that the
sampling overhead for simulating a trace preserving linear map is equivalent to
its diamond norm. Specifically, in the case of inverse operation N/ ~!, we have
Imin(N) = [[N71|. Note that the diamond norm is multiplicative with respect
to tensor product [54, 63], i.e., |[(N~H®¥||, = [N 71|k, Thus, we conclude that
the sampling overhead for retrieving high-moment from noisy states increases
exponential respect to the moment order k, which is

gmin(-/vv k) = gmin(-/v(g)k) = H(N_1)®kH<> = ”N_IHI;
= gmin(N)". (4.82)

In order to illustrate the advantage of the proposed method over the channel
inverse method in terms of sampling overhead, we conduct a numerical experi-
ment to extract the third moment Tr[p3] from amplitude damping noise channel
with different noise levels. The results are shown in Figure. 4.3. The dashed
and solid curves stand for the sampling overhead for the channel inverse and
observable shift method, respectively. We also made a comparison with another
method which was proposed in [138].

Here, we are going to make a comparison of the sampling overhead of three
different methods, which are channel inverse, information recover, and observ-
able shift, respectively. The straightforward comparison is shown in the follow-
ing.

1. Channel inverse. This method was proposed in Ref. [54, 62], which
cancels the noise by applying the inverse of the noise channel A’ ~! on noisy
state A/(p), such that the expectation value is unbiased, i.e., Tr[ON ! o
N(p)] = Tr[Op]. The minimal sampling overhead of this method can be
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given by SDP:

min  p; + p2 (
subject to Jp = J; — Jo (
TrplJi] = pila, Trp[Ja] = pala (

J1>0, Jy>0 (4.86
(
(

JFac = TYB[(JKEB ® IC)(IA ® JDBC)]

JFac = Jidac

Jp and Jy are the Choi matrices for retriever D and noisy N respectively.
Jid,p refers to the Choi matrix for the identity channel.

2. Information recover. This method was proposed in Ref. [138], which
aims to find the hermitian preserving trace preserving map D such that
the information can be recovered respective to observable O, i.e., Tr[OD o
N(p)] = Tr[Op]. Note that this method differs from the channel inverse
method. The channel inverse can be understood as recovering information
for all observables, while this method only recovers information concerning
a certain observable. The minimal sampling overhead of this method can
be given by SDP:

min ¢ + ¢y (4.89)
subject to Jp = J; — Jo ( )
Trp[Ji]) =c1la, Trplla] =cala (4.91)

J1 >0, J2>0 (4.92)

Jrac = Tepl(J35, ® Ic)(1a © Jpye)] (4.93)

(4.94)

TTC[(IA Y Og)‘];;Ac] = OA

Jp and Jy are the Choi matrices for retriever D and noisy N respectively.
T, Tg stand for transpose and partial transpose, respectively. O refers to
observable.

3. Observable shift. This method is proposed in this work. Details can be
found in the OBSERVABLE SHIFT METHOD section in the main text.
The minimal sampling overhead of this method is given by the following

SDP:
min f (4.95)
subject to  J5 >0 (4.96)
TrelJs,, | = f1B (4.97)
Trac = Trp((T o ® 1) Ta © T, )] (4.98)
Tre[(Ia @ HE)JE, ] = Ha + tla. (4.99)
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Figure 4.5: Comparison of sampling overhead between three error mitigation
methods under amplitude damping channel.

Jg and Jy are the Choi matrices for retriever C and noisy A respectively.
I is identity. T', T’ stand for transpose and partial transpose, respectively.
H refers to observable for estimating high order moment.

We also conduct a numerical simulation to compare the minimal sampling
overhead of the three methods in the task of estimating Tr[p?] from noisy states.
The noise model is amplitude damping and the observable is H = (S + S1)/2,
where S is the cyclic permutation matrix. The results are shown in Fig-
ure. 4.5. It is straightforward to conclude that the new proposed observable
shift method requires the lowest sampling overhead compared with the channel
inverse method and observable shift method.

Compared with the existing method, the proposed observable shift method
has at least two-fold advantages: lower sampling overhead and easier imple-
mentation. First, our method can achieve a lower sampling overhead, i.e.,
Smin(NV, k) < gmin(N, k). In previous, we have shown examples where finin (N, k)
is strictly smaller, indicating the effectiveness of the newly proposed observable
shift technique. The lower sampling overhead is also illustrated in numerical
results (Figure. 4.3 and Figure. 4.5). Second, protocols given by our method
are more hardware friendly. In previous method [54], to realize HPTP map
® =", ci\;, it is necessary to sample different quantum channels A; with cer-
tain probability {c;/ ", [c;|} and prepare them on quantum devices, which is
very complicated. Later on, such a process (realizing HPTP map ®) is simpli-
fied into feeding in the different states w; into the circuit which realizes the fixed
operation A, i.e., ®(-) = A(- ® Y, ciw;) [63], which simplifies the implementa-
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tion greatly. However, the simplified method still needs to sample the quantum
states with certain probability. While in our method, we only need to implement
a fixed a quantum circuit without any probabilistic sampling process.

4.7 Application to Fermi-Hubbard model

The Fermi-Hubbard model is a key focus in condensed matter physics due to
its relevance in metal-insulator transitions and high-temperature superconduc-
tivity [141, 142]. Recent studies have shown that entanglement spectroscopy
can be utilized to extract critical exponents and phase transitions in the Fermi-
Hubbard model [143-145]. As the model is characterized by a broad range of
correlated electrons, it necessitates multi-determinant and highly accurate cal-
culations [145, 146] which hence demand ingenious methods of quantum noise
control.

In a physical system such as a metallic crystal with an n; x n, square lattice,
each lattice point, known as a site, is assigned an index. The Hubbard model
Hamiltonian takes on a fermionic form in second quantization

Huubbarda = —J Z (azaajd + a’}aai0>

(bs)o (4.100)
+U Z N1 N4y + Hiocal,

o1 Qio are fermionic creation and annihilation operators; n;, = afg, iy
are the number operators; the notation (i,j) associates adjacent sites in the
ng X ny rectangular lattice; o € {1,l} labels the spin orbital. The first term
in Eq. (4.100) corresponds to the hopping term, where J denotes the tunneling
amplitude. The second term involves the on-site Coulomb repulsion, represented
by U. The final term in the equation defines the local potential resulting from
nuclear-electron interaction, which we have chosen to be the Gaussian form [147]

Hiocal = Z Z €5 0MNj s €ju = —)\ye_%(j‘m")z/"g. (4.101)
j=1v=m4

where a!

In the following, we consider a specific 3-site (6-qubit) Fermi-Hubbard Hamil-
tonian with J = 2,U = 3 and Ay} = 3,0.1, m4,| = 3,3. The standard deviation
oy for both spin-up and -down potentials are set to 1 guaranteeing a charge-spin
symmetry around the center site (i = 2) of the chain system.

The ground state entanglement spectroscopy of the model identifies the
topological-ordering signatures of the system which requires high-precision en-
tropy estimations over each bipartite sector of the entire system. We show that
the mitigation of the quantum noise can be achieved and therefore, enhance the
determination of Tr[N(p4)?], via our proposed method, which is displayed in
the Supplementary Material.

Figure. 4.6 displays the sampling distribution with and without error miti-
gation. The orange curve refers to the estimation distribution of second-order
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Figure 4.6: Simulation of high-order moment Tr[p?] estimation. The curves
are calculated from sampling. The orange curve represents the estimation from
depolarizing noised state N'(p) with noise level ¢ = 0.1. The cyan curve is the
estimation with the proposed error mitigation method. The black dashed line
stands for the exact value of Tr[p?].

information Tr[p?] from noisy states, and the cyan curve shows the estimation
distribution with error mitigation. And the black dash line is the exact value of
Tr[p?].

4.8 Conclusion and discussion

In this study, we establish that when quantum states are distorted by noises,
the original moment information can still be retrieved through post-processing if
and only if the noise is invertible. Furthermore, our proposed method, called ob-
servable shift, outperforms existing techniques in two aspects: (1) The proposed
method requires lower quantum sampling complexity than the existing one. (2)
The observable shift method is easier to implement than the existing method,
which makes our method more friendly to quantum devices. We also propose
the construction of a protocol to retrieve the depolarizing channel of large-size
quantum systems. Our findings have implications for the dependable estima-
tion of non-linear information in quantum systems and can influence various
applications, including entanglement spectroscopy and ground-state property
estimation.

For further work, one important task is to improve the scalability of the
observable shift method, which makes this approach more practical. Also, in-
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vestigating the approximate version of retrieving non-linear features is also in-
teresting. We expect the observable shift technique can be incorporated into
more algorithms and protocols to boost efficiency. It will be also interesting to
explore other error mitigation methods [148-153] to extract non-linear features
from noisy quantum states.
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Chapter 5

Probabilistic Channel
Simulation Using Coherence

In this chapter, we study the channel simulation using coherence, which refers
to realizing a target channel with coherent states and free operations, which
is a fundamental problem in the quantum resource theory of coherence. The
limitations of the accuracy of deterministic channel simulation motivate us to
consider the more general probabilistic framework. In this chapter, we develop
the framework for probabilistic channel simulation using coherence with free
operations. When the chosen set of free operations is the maximally incoherent
operations (MIO), we provide an efficiently computable semidefinite program
(SDP) to calculate the maximal success probability and derive the analytic
expression of success probability for some special cases. When the chosen set
of free operations is the dephasing-covariant incoherent operations (DIO), we
show that if the target channel is not a resource nonactivating channel, then
one cannot simulate it exactly both deterministically and probabilistically. The
SDP for maximal success probability of simulating a channel by DIO is also
given correspondingly. This chapter is based on [Zhao, Ito, and Fujii. Phys.
Rev. Research 6, 043316 (2024)] with slight modifications to fit in the context.

5.1 Introduction

In recent years, many efforts have contributed to establishing the framework of
quantum resource theories [41, 64] to understand the unique properties of quan-
tum mechanical systems such as coherence [73, 74, 154-161], entanglement [42,
44, 45, 82, 162], and magic [49, 163-167]. In general, a resource theory is defined
by specifying free states and free operations. Free states are states that do not
possess the resource under consideration, while free operations are operations
that preserve the set of free states. Taking the resource theory of entanglement
as an example [42, 44, 45, 82, 162], the free states are separable states, which are
not entangled, and one of the free operation sets is local operation and classical

67
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communication (LOCC) [22, 168], which does not generate entanglement. Sim-
ilar to entanglement, coherence is another important topic in quantum resource
theories [41], which refers to the property of the superposition of states. It em-
powers various quantum tasks, such as cryptography [65], metrology [66-68],
thermodynamics [69-71], and channel simulation [48, 72].

In the resource theory of coherence [154], the free states are defined as clas-
sical states, i.e., density operators that are diagonal in a given reference or-
thogonal basis {|i)}. Such states are called incoherent states and denoted as
Z. The corresponding mazximally coherent state in dimension m is the state
|U,n) = \/% Z;nz_ol |7). In this work, we denote the density matrix of a max-

imally coherent state with rank m as ¥, = |U,,,\¥,,| for convenience. The
resource theory of coherence does not have a gold-standard physics-motivated
class of operations like LOCC in the entanglement resource theory. With this in
mind, our task is to characterize the operational properties and applications of
quantum coherence under several different sets of operations, such as dephasing-
covariant incoherent operations (DIO) [169], and maximally incoherent opera-
tions (MIO) [73]. An operation M is in DIO if it commutes with A, or equiv-
alently M(|i)i|) € T and A(M(]i)j|)) = 0, Vi # j, where A is the coherence
destroying map [170] (completely dephasing channel), i.e., A(-) = >, [i)(3]-]i)(i].
MIO consists of all operations M such that M(p) € Z for any free state p € Z.
From the definition, DIO is a subset of MIO, i.e., DIO C MIO. Note that both
MIO and DIO are defined in a mathematical way and don’t have correspond-
ing physical implementations. However, it doesn’t mean MIO and DIO are
useless. In the resource theory of coherence, physically incoherent operations
(PIO) [169], a subset of MIO and DIO, are physically consistent operations. But
the set of PIO is hard to characterize by mathematics. In order to investigate
the property of PIO, relaxing the operation into a larger set of operations such
as DIO or MIO is a common strategy. Although relaxing the operations cannot
study the exact property of PIO, the bounds can be characterized efficiently.

Initial research primarily of coherence focused on the quantification and in-
terconversion of static coherence [73-75], which refers to the degree of superpo-
sition within a state. Later on, a more general framework was proposed, called
dynamic coherence—the power to generate coherence itself [72]. How to con-
vert static coherence into dynamic coherence (also known as channel simulation
using coherence, as shown in Fig. 5.1) raises great interest, and many efforts
have contributed to establishing the framework of deterministic channel simu-
lation [48, 72, 76]. At the same time, the limitations of deterministic channel
simulation are also shown.

A given resource state does not necessarily allow for the exact and deter-
ministic MIO simulation of a given target quantum channel, although for each
channel there exists a state such that such a simulation is possible [48, 72]. In
fact, if we can only access the resource state w whose robustness of coherence is
smaller than the requirement of the channel simulation, then it is impossible to
simulate the target channel with no error. Also, in Ref. [76], the authors found
that any coherent unitary channel cannot be simulated by DIO exactly (e.g. the
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Figure 5.1: (a) The quantum channel N. (b) Utilizing a free operation M and
a given resource state w to implement channel £. The realized channel L is
e-close to the target channels N.

Hadamard gate) no matter what resource state w is provided. More generally,
in Ref. [46], the authors showed that if the target channel is not a resource
nonactivating channel [170], then it cannot be simulated by DIO exactly and
deterministically.

The limitation of deterministic channel simulation motivates us to consider a
more general probabilistic framework, in which the channel simulation will suc-
ceed only with some probability. The probabilistic framework has been applied
to many quantum tasks and has shown advantages over deterministic ones. For
example, in Ref. [171], the author observes that one can transfer the quantum
state from p to o probabilistically, while such transformation is forbidden in
the deterministic scenario. Moreover, in the task of coherence distillation [155],
with the same input state, the output state by probabilistic distillation is closer
to the maximal coherent state than deterministic distillation.

In this chapter, we focus on the probabilistic channel simulation using coher-
ence, characterizing the relation between the maximal success probability and
the distance from simulated channel £ and target channel A/. In the first part,
we show three cases of channel simulation with MIO depending on the types of
the resource state. (i) If the resource state is the rank-m maximally coherent
state w = V,,,, we provide the analytical expression of maximal success proba-
bility. (ii) If the resource state w is a pure coherent state, we derive the non-zero
success probability. (iii) If the resource state w is a general coherent state, we
provide an efficiently computable semidefinite program (SDP) to achieve the
maximal success probability. In the second part, we concentrate on the channel
simulation with DIO. It was proved in Ref. [46] that if the target channel N is
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not a resource nonactivating channel, then it cannot be simulated exactly by
DIO with any resource state deterministically. We further show that such an
exact simulation is impossible even in probabilistic scenarios. We then provide
the efficiently computable SDP for achieving the maximal success probability
of channel simulation with DIO. Our work fills an important gap in the litera-
ture by establishing the probabilistic toolbox for the key resource of quantum
coherence.

5.2 The problem of probabilistic channel simu-
lation

To quantify the coherence of a quantum channel, the robustness of coherence
(ROC) of a quantum channel was proposed

Definition 5.1. [72] The robustness of coherence of a quantum channel N,

Cr(N) is defined by
14+ CrWN) :=min{\: N <M, M € MIO}. (5.1)
The inequality of N < AM means that the map MM — N is completely positive.

Definition 5.2. [72] The smoothed version of a robustness of channel is called
e-robustness of coherence of channel, which is defined by

C(N) o= min { (L) - %HN £l <<} (5.2)

If we consider replacement channel A, , whose output is independent of the
input state p, i.e., Ni(p) = Tr[p|o, then the ROC of a channel (Definition 5.1)
reduces to the ROC of states [158, 160].

Definition 5.3. [158, 160] Given an arbitrary quantum state p, the robustness
of coherence of the state is defined as

CR(p):mTin{SZO‘pl—:_S; :aeI}, (5.3)

where I refers to the set of free states.

Similar to the ROC of a state, the ROC of a channel quantifies the minimal
mixing required to destroy all the coherence in a quantum channel N [72].
The ROC of quantum channel Cg(N), as well as e-ROC of a channel can be
effectively calculated by SDP [72].

The task of probabilistic channel simulation can be defined as follows. For
a given target channel N4, g, which transforms linear operators in the system
A to the system B, resource state w and error tolerance e, we aim to find a
free operation M such that M(w ® -) probabilistically outputs a channel £
which is close to N(-) up to error €. A single-bit classical flag register F is
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used to indicate if the simulation is successful. If the register F' is found to be
|0), then it implies the output channel £(-) simulates our target A(-) up to an
error €. Otherwise, the simulation fails and we discard the ”rubbish” output
K(-), where K can be arbitrary MIO. When the channel simulation fails, we can
perform a replacement channel A1, which replaces input state into identity, on
K(-) as post-operation, i.e., N% o K(-) = Tr[-]I/d, where I is identity and d is
the dimension of the system. Note that such post-operation won’t change the
success probability. The state version of this trick is shown in Ref. [155]. Our
goal is to maximize the success probability of channel simulation. Here, we can
define the problem as follows

Problem 5.1. Given triplet (N, w,€), what is the mazimal success probability
Po(N,w,e) to simulate channel N up to error € with the given resource state w
and free operation class O € {MIO,DIO}? Mathematically, it is an optimization
problem

Po(N,w,e) = max  p; (5.4)
st Mprasrp(w®-) = pl0}0|r ® L(-)

F- Pl © T (5.4)

%Hﬁ ~ Ml <5 (5.4c)

Me o, (5.4d)

where L are the probabilistically implemented channels, which approximates the
target channel, and I refers to identity.

System R is the resource system containing the resource state, and system
F is the flag system, indicating if the channel simulation is successful. || - ||,
is known as the diamond norm [172], which has two operational meanings:
First, it quantifies how well one physically discriminates between two quantum
channels [173]. If we set ¢ = 0, it implies the exact implementation of the
target channel. Second, it quantifies the cost for simulating a general hermitian
preserving map with physical implementations [63, 174].

5.3 Probabilistic channel simulation with MIO

In this section, we are going to study the channel simulation with MIO under
three cases. First, if the resource state is the rank-m maximally coherent state,
we provide the analytical expression of the maximal success probability. Sec-
ond, if the resource state w is a pure coherent state, we derive analytical lower
bounds on the maximal success probability. Third, for general coherent states,
we provide an efficiently computable SDP to determine the maximal success
probability.
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Theorem 5.1. Given an arbitrary target channel N and a fized maximally
coherent state W, of dimension m > 2, the mazximal success probability of the
exact channel simulation with MIO is

. m—1
Puio(N, ¥, =0) zmln{l,m}. (5.5)

Proof. If a target channel N can be simulated by MIO and the given resource
state ¥,,, it means that there exists an operation M € MIO, such that

MW @) = L) =plo}0 @ N(-) + (1 = p) 1)1 @ K(-),

with p > 0. The output k() is a failure branch, which should be discarded. And
the channel K can be arbitrary MIO, i.e., Cr(K) = 0. The main idea is to prove
Cr(L) = pCgr(N), which will be obtained directly by proving Cr(L) < pCr(N)
and Cr(L) = pCr(N).

Due to the convexity of the ROC of channels [72], we have

Cr(£L) = Cr(p|0X0] @ N + (1 = p) [1X1]| ® K)
< pCr(|0X0] @ N) + (1 — p)Cr(|1X1| ® K)
=pCr(N) + (1 - p)Cr(K)
= pCr(N). (5.6)
The third equation holds because removing and appending systems in incoherent

states are in MIO.
On the other hand, from the definition of the ROC of a channel, we have

1+ Cgr(£)
:min{)\|p./\/[o] +(1 —p)’C[l] < AIM, M e MIO}
AM = (1-p)k
:min{)\‘J\f[O] < (p Py EMIO}
o Adp—1 IM—(1-p)Kp
—min {\| N < T Me MIO}  (5.7)
=\*, (5.8)

where we define Mgy = [0X0] ® N and My) = [1)(1| ® M. Here, the minimum
A* always exists, which can be straightforwardly derived from Theorem 2 in
AR for M € MIO.
Because the minimum is attained by A > 1, the inequality in Eq. (5.7) ensures
that M’ is completely positive, i.e., 0 < [p/(XA 4+ p — 1)]N|g < M. Since both
M, Ky € MIO, we have Tr[M(p)] = Tr[p] = Tr[Kpi(p)] and M(p),Kpj(p) € T
for any free state p € Z. Therefore, we have

AM(p) — (1 = p)Kyy(p)
A+p—1

Ref. [72]. For convenience, we define M’ :=

M (p) = €T (VpeI),
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and Tr[M'(p)] = Tr[p]. Hence, we obtain M’ € MIO. Then, noting that
Cr(N) = Cr(N|q)), we have

1+ Cr(N) =1+ Cr(Nj)
= min{7|Njy < 7M, M € MIO},
LA Fpl
P

Because A* =1+ Cr(L) from Eq. (5.8), we arrive at
pPCr(N) < Cr(L). (5.9)
Combined with Eq. (5.6), we obtain
pCr(N) = Cr(L). (5.10)

From Theorem 4 in Ref. [72], there exists an MIO to simulate channel £ if and
only if m —1 > Cr(L). By considering Eq. (5.10), we can rephrase that there
exists an MIO to simulate channel A/ probabilistically if and only if the success

probability p satisfies
m—1

— > . 5.11
Cr(N) = F (6.11)
Because the probability cannot exceed 1, the maximal success probability is
m—1
P, W, e = 0) = mi {17} 5.12
Mio (N e =0) = min CrN) (5.12)
The proof is complete. O

Theorem 5.1 implies the success probability of simulating a channel by using
MIO and maximally coherent states is always greater than 0, i.e., Pyro(N, ¥y, e =
0) > 0 with m > 2. In other words, any quantum channel can be simulated by
MIO probabilistically with ¥,,.

According to Theorem 5.1, if given enough resource, i.e., Cr(¥,,) =m—1 >
Cr(N), it implies the success probability equals to one, thus we can simulate
channel deterministically. Otherwise, if we can only access a limited amount of
coherence, i.e., Cr(V¥,,) = m —1 < Cr(N), then the channel fails to be simu-
lated deterministically. Even though, we can still succeed in such a simulation
probabilistically, with the probability given by the ratio between the robustness
of resource state ¥,, and the robustness of coherent channel N, i.e.,

m—1

p:CR(N).

(5.13)

In this sense, Theorem 5.1 quantitatively gives in terms of the resource measures
how the advantage of probabilistic channel simulation over the deterministic one
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appears. Examples of coherent unitary channels are studied to demonstrate such
an advantage at the end of this section.

If we are allowed to simulate target channel N up to error ¢, it is equivalent
to exactly simulate a channel £ which satisfies 1||£ — Ao < . From the
definition of e-ROC of channel, we have ming Cr(L) = C{(N'), which leads to
the following corollary directly.

Corollary 5.1. Given an arbitrary target channel N and a fized mazimally co-
herent state V., of dimension m > 2, the mazximal success probability of channel
simulation with MIO up to error € is

PMIO(Na \I/,”“E) = mgx PMIO(‘Cv ‘Ij’ma O)

:min{lv#;‘;(ﬁ)}

:min{l,c%}, (5.14)

where L are e-close to the target channels N.

From Corollary 5.1, we can approximately simulate the target channel. The
more error we allow, the higher the success probability that we can simulate it.

For a further step, instead of using a maximally coherent state, we consider
a general pure coherent state. We obtain the following corollary, which gives a
lower bound of the maximal success probability for the general pure resource
state.

Corollary 5.2. Given target channel N and coherent pure state v = |)1],
where ) = SO i |i), i # 0,n > 2, the mazimal success probability of
channel simulation with MIO up to error € is lower bounded by

Puio(N, ¥, €) > Paio(N, W, €) x Py — 0,,), (5.15)
. m—1 n?
> min {1 G s ) (510)

where PSS (|) | — U,,) is the success probability of coherence distillation
with MIO from input state |)y| to the rank-m maximally coherent state for
arbitrary integer m > 2.

Proof. Before starting the proof, we need to note that arbitrary coherent pure
state 1) can be distilled into maximal coherent state ¥,,, by MIO with non-zero
probability [155], which is
s n2
Ple/lllsgn(w = Up) >
m

e Y (5.17)

where m > 2 is an integer.
In order to simulate channel A/ using a given coherent pure state 1), one fea-
sible method is to probabilistically distill the maximally coherent state W¥,, from
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9 first, then probabilistically implement the target channel using the distilled
maximally coherent state. Therefore, the maximal success probability is lower
bounded as

PMIO(Nawag) Z PMIO(N> \I’m,E) X Pﬁ‘fgllﬂwxw — \I/m) (518)

By considering Eq. (5.17) and Corollary 5.1, we arrive at the lower bound of
the maximal success probability as

-1 n?

8 sz(/\/)} (S )

Puto(N, ¥, ) > min{ (5.19)

The proof is completed. O

This corollary implies that if we take an arbitrary coherent pure state as
a resource state, we can simulate an arbitrary channel by MIO with non-zero
probability. In other words, any coherent pure state is ”useful” in the probabilis-
tic channel simulation with MIO. Even if only having a few resources, coherent
pure states ¥ possess the potential to simulate the target channel, albeit with
a small probability of success Pyro (N, ¥,e) > 0.

So far, we have studied the probabilistic channel simulation with MIO by
considering the resource states as maximally coherent states and coherent pure
states, respectively. For a more general case, where the given resource state is
a coherent mixed state, we provide an efficiently computable SDP to achieve
the maximal success probability of channel simulation. Due to the non-linearity
of Eq. (5.4b), we cannot formulate Problem 1 into an SDP directly. We thus
consider a generalization of the set of free operations O, namely the set of free
sub normalized quantum operations Og,; which consist of completely positive
and trace non-increasing maps that are free in the sense of O. By adopting
this generalization, we convert the probability optimization into the following
expression. A similar technique is also applied in Ref. [175, 176].

Lemma 5.1. For any triplet (N,w,e) and operation class O, the mazimal
success probability of coherence channel simulation Po(N,w,e) = max{p €
Ri|€(w® ) =pL(), ||1L — Nl < &,€ € Ogup}, where L are the implemented
channels.

Proof. For any quantum operation A(w®p) = [0X0|@E(w@p)+|1)1|®RE (wRp),
where & and £; are two subnormalized operations, we can check that A € O if
and only if &, &1 € Ogup, and Ey+ & is trace preserving. Thus, the optimization
in Eq. (5.4) is equivalent to finding the optimal subnormalized operations £ and
&1 such that Ey(w ® p) = pL(p), E1(w ® p) = (1 = p)I/d, 3||£ — N|o < ¢, and
o + & is trace preserving. Since we can take & (w ® p) = (1 — Tr[€y(w ® p)]) I,
without compromising the success probability, the maximal success probability
of coherence channel simulation is only dependent on &, which complete the
proof. O
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By generalizing the free operation into the subnormalized version, Lemma 5.1
simplifies the optimization of the maximal success probability. For further steps,
we formulate the success probability optimization as an efficiently computable
SDP, which is shown as follows.

Proposition 5.1. For a given triplet (Na_,p,w,€), the maximal success proba-
bility to simulate the target channel with MIO is given by Pyio(Na_p,w,€) =

1/tmin, where tmin s given by

tmin = min t;

st.Trg[Jz(w! @14 @ 1) = Jz,p; (5.20a)
Je > 0, Trp[Jg] < tlRra; (5.20b)
TrralJe(|ij)ijlha ® 1p)]
= A(TrralJg([ij)ij|ha ® 18)]), Vi, j; (5.20c)
TrplJz] = Ia; (5.20d)
Z>0,Z>J;— Jy, Trp[Z] < ela. (5.20¢)

Proof. To get rid of the non-linearity, we consider the map & = t£, where

= 1/p, the inverse of success probability, and £ is the subnormalized MIO.
The notations of Jz and J, are the Choi-Jamiotkowski matrices of maps € and
L, respectively. Jxs is the Choi-Jamiotkowski matrix of the target channel V.
Eq. (5.20a) corresponds to the constraint £(w ® -) = L(-). Eq. (5.20b) and
Eq. (5.20c) implies that £ is a subnormalized MIO. From the result in Ref. [172]
(Sec.4), Eq. (5.20d) and Eq. (5.20e) guarantee that the simulated channel £
includes the target channels A" up to error e, which is 3||[£ — N[, <e. O

A general qubit unitary possesses four real parameters. However, we can
transform unitaries into each other without any additional cost by incorporating
coherent unitaries before or after them. This observation implies the existence
of an equivalence relation among qubit unitaries up to coherent unitaries. A
unique representative of each equivalence class [48, 72] is given in Eq. (5.21)

cosf —sinf
Uo = (sin@ cos ) ’ (5.21)

where 6 € [0, 7/4].
Here we choose the unitary channel L{(gl) ()= U(;@l ~U;®l, as the target channel

to simulate. The success probability of unitary channel simulation Uél) can be
derived from the robustness of the channel. We take the default that Uy refers
to [ = 1. The specific statement is shown in the following.

Proposition 5.2. Given the triplet (U(gl), U,,,e = 0), the mazimal success prob-
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ability of channel simulation is

m—1
Puio", ¥,,,e = 0) = min {1, 75} (5.22)
CrUy)
. m—1

Proof. The cohering power [177, 178] of a channel Pr(/N) is defined as
Pr(N) = maxlog(1 + Cr(N([i)il)))- (5.24)

We denote i* to be the optimal solution, i.e., Pr(N) = log(1 + Cr(N(|i*Xi*]))).
In [72], it has been proved that the cohering power of a channel Pg(N) is equiv-
alent to the log-robustness of the channel, which is Pr(N) = log(1 4+ Cr(N)).
It is straightforward to have

Cr(N) = Cr(N([i")i"]))- (5.25)

If we replace the unitary channel Uy into the equation, we can deduce
Cr(Up) = Cr(Up(]i*)}i*])) directly. For a single-qubit channel, the robustness
of a state is equal to its ly-norm of coherence [158], which is the summation of
the absolute value of all non-diagonal elements [74]. Then, we have

Cr(Us) = CrUy(|i")"[)) = Ci, Up(|i")i"])) = sin 260 (5.26)

Note that the robustness is multiplicative under the tensor product of states [179],
specifically

1+ Cr(p1 ® p2) = (1 + Cr(p1))(1 + Cr(p2))- (5.27)
We correspondingly have
CrUY) = (1 +sin20)! — 1. (5.28)

Recall Theorem 5.1, the maximal success probability is the ratio between the ro-
bustness of the resource state and the robustness of the target coherent channel,
also the success probability p cannot exceed 1. Then we have

l . m—1
Pasio Uy, ¥, = 0) = min {1, (1+sin20)0 — 1 b (5:29)

which completes the proof. O

Hence, we obtain the analytic expression of the maximal success probability
of the exact simulation of unitary channel Z/lél) with MIO. We also conduct nu-
merical experiments to show the approximate probabilistic channel simulation.
We consider 2-qubit unitary channels 4}=2 (0 < § < 7/4) as the target chan-
nels. The resource state used is the rank-2 maximally coherent state ¥5. For
different error tolerance ¢ € {0,0.05,0.1,0.15,0.2}, the maximal success prob-
abilities of channel simulation with MIO are calculated by the SDP given in
Proposition 5.1. The results are shown in Figure. 5.2
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Figure 5.2: Success probability p of unitary channel simulation with coherent
state Wy and MIO. The rotation angle 6 is the parameter of target unitary
channel Z/le(g), which is chosen from 0 to w/4. The resource state is the rank-2
maximally coherent state W5. The five curves from bottom to top correspond
to the error tolerance e equaling to {0, 0.05, 0.1, 0.15, 0.2}, respectively.

The robustness of the unitary channel C’R(L{Q(Q)) increases with respect to
the increase of the rotation angle . When the angle is small, the resource state
W5 has more resources than the required resource of the task, so we can sim-
ulate such a channel deterministically. When the rotation angle exceeds some
threshold, the coherence of the resource state W5 is not enough for its determin-
istic implementation. Thus, one can never implement the target channel exactly
in the deterministic scenario, and can only realize it approximately. While in
the probabilistic scenario, one can exactly implement the target channel at the
expense of the reduced success probability.

5.4 Probabilistic channel simulation with DIO

It was proved in Ref. [46] that if the target channel N is not a resource nonac-
tivating channel, then it cannot be simulated exactly by DIO with any resource
state deterministically. We further show that such an exact simulation is not
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possible even in probabilistic scenarios. Also, SDP for calculating the success
probability of the channel simulation is provided.

In the previous part, we have shown that arbitrary channels can be simulated
by using an appropriate resource state and MIO. But for DIO, it is not the same
story. Explicitly, we have the following theorem.

Theorem 5.2. [46] (Appendix Eq.(109)) If a quantum channel N can be im-
plemented by a DIO channel M using resource state w, i.e. M(w & ) = N(-),
then N satisfies Ao N = Ao N oA.

Proof. Since N (p) = M(w ® -) holds for any quantum state, we directly have
AoN() = AoM(w®:-). Considering M is a DIO channel, which means
AoMw®:)=MoA(w®-), we arrive at

AoN()=MoAw® ). (5.30)

If the input state is applied to the completely dephasing map, we directly have
Ao N(A() = Mo A(w @ A(Y)) (5.31)

= AoNoA()=MoA(w®-). (5.32)

Combine Eq. (5.30) and Eq. (5.32), we have

AoN()=AoNoA() (5.33)
Eq. (5.33) holds for any quantum state, which implies Ao N = Ao N oA i.e.,
N is resource nonactivating channel. The proof is complete. O

In other words, this theorem implies that if a quantum channel A/ does not
satisfy the condition Ao N = Ao N oA (also known as a resource nonactivating
channel [170]), then it cannot be simulated by DIO. Also, it is straightforward to
extend this theorem to the probabilistic scenario, which is shown in the following
corollary 5.3.

Corollary 5.3. If a quantum channel N' can be simulated exactly by a DIO
channel M using resource state w with non-zero probability p, i.e., M(w® -) =
p|OXO|@N() + (1 —p) 11| @ T[], where I is the identity, d is the dimension,
then N satisfies Ao N = Ao N o A.

Proof. Denote N'(-) = p|0)0|@N(-)+ (1 —p) [1)1|®@Tr[] 5. From Theorem 5.2,
N is a nonactivating channel, then we directly have Ao A = AoN oA, which
completes the proof. O

Theorem 5.2 and Corollary 5.3 tell us that not all quantum channels can
be simulated exactly by DIO, even probabilistically. Take single-qubit unitary
channel Up and quantum state|+)+| as an example. One can easily obtain

| )
_ (5 —cosfsinf 0
Aot(xeh = (200D

)

ON=

Aotlo A = (

= O



80 CHAPTER 5. PROBABILISTIC CHANNEL SIMULAT...

Aoly # Aolyo A represents that a single qubit unitary channel Uy is not a
resource nonactivating channel. Thus, qubit unitary channel cannot be exactly
simulated by DIO even probabilistically.

If a quantum channel A can be simulated by DIO, then the success proba-
bility can be efficiently computed by the SDP as shown in Proposition 5.3.

Proposition 5.3. For a given triplet (Na_,p,w,€), the mazimal success prob-
ability to simulate the target channel with DIO is given by Ppio(Na_p,w, &) =
1/tmin, where tmin s given by

tmin = min t;

st.Trg[Jz(w! @14 @ 1) = Jz,p; (5.34a)
Jz >0, Trp[Jg] < tlRra; (5.34b)
TrralJg(ij)ijlha © L5)]
= A(TrralJg([ij)ij|ha ® 18)]), Vi, j; (5.34c)
A(TrralJg(lij)Xmn[ g, @ 1)) = 0, Vij # mn; (5.34d)
Trp[Jz] =1a; (5.34e)
Z>0,Z>J;— Jn,Trp|Z] < ella; (5.34f)

Compared with the SDP for success probability of channel simulation with
MIO in Eq. (5.20), the SDP in Eq. (5.34) has one more constraint as Eq. (5.34d),
which corresponds to A(M([|i)Xj])) =0, Vi # j.

We conduct a numerical experiment to simulate a target channel with DIO.
We consider a 2-qubit random channel as the target channel, the Choi-Jamiotkowski
matrix of which is shown in Appendix C. The resource state is a coherent pure
state, |¢) = /a|0) + /1 —«a]l) for a € [0,0.5]. The state’s coherence in-
creases as parameter « increases. When « = 0.5, the resource state is a rank-2
maximally coherent state ¥5. The maximal success probabilities of channel sim-
ulation by DIO with different error tolerances and coherent states are calculated
by the SDP (Eq. (5.34)).

From the results shown in Figure. 5.3, we can see that the probabilistic
channel simulation with smaller probability p admits smaller error tolerance.
In other words, probabilistic relaxation is also effective for DIO. As « increases
(larger coherence), the success probability of simulation increases faster and gets
closer to the case of the maximally coherent state (o = 0.5).

5.5 Conclusion

We have focused on the probabilistic channel simulation with MIO and DIO,
respectively. For the MIO part, we talked about three cases: If the resource
state is the maximally coherent state, we provide an analytical expression for
the maximal success probability. If we select any pure coherent state as the
resource state, the maximal success probability is guaranteed to be greater than
zero. If the resource state w is a general coherent state, we offer an efficiently
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Figure 5.3: Success probability of simulating a random channel by DIO with
different error tolerances. The resource state is pure coherent state [¢) =

Va|0) + T —al0), with o € {0.01,0.03,0.1,0.5}.

computable SDP for achieving the maximal success probability. For the DIO
part, we show that not all quantum channels can be exactly simulated by DIO,
even probabilistically. Furthermore, we present an efficiently computable SDP
for attaining the maximal success probability of channel simulation with DIO.

For further research, it would be interesting to apply the framework of prob-
abilistic channel simulation to other important quantum resources such as en-
tanglement and magic.
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Chapter 6

Conclusion

In this thesis, we attempt to reduce the requirement of quantum resources in
different quantum tasks with the help of optimization tools such as variational
quantum algorithms (VQA) and semidefinite programs (SDP). This thesis fo-
cuses on three tasks including expectation value estimation, non-linear features
estimation, as well as channel simulation using coherence. The details are as
follows:

In Chapter 3, we propose the VQHE algorithm to reduce the Pauli norm
of Hamiltonian such that the overheads for expectation value and Hamiltonian
simulation can be reduced. We first develop the theory to convert the Pauli
norm optimization problem into the vector /;-norm minimization problem, and
then design the cost function and parameterized quantum circuits to minimize
Pauli norm variationally. We then display how to apply the proposed VQHE
algorithm to expectation value estimation and Hamiltonian simulation. In the
task of expectation value estimation, we also emphasize that the proposed al-
gorithm is compatible with grouping, such that the measurement time can be
reduced further. The numerical experiments are conducted by applying the
VQHE algorithms to the Ising Hamiltonian and some molecules’” Hamiltonian,
which shows the effectiveness of VQHE algorithm.

In Chapter 4, we establish that when quantum states are distorted by noises,
the original moment information can still be retrieved through post-processing
if and only if the noise is invertible. Furthermore, our proposed method, called
observable shift, outperforms existing methods in two aspects: (1) The pro-
posed method requires lower quantum sampling complexity than the existing
one, which implies the superiority of entangled protocols over product proto-
cols. This contrasts with the multiplicativity of overhead observed in existing
methods for quantum error mitigation. (2) The observable shift method is eas-
ier to implement than the existing method, making our method more friendly
to quantum devices. We also propose the construction of a protocol to retrieve
the depolarizing channel of large-size quantum systems. Our findings have im-
plications for the dependable estimation of non-linear information in quantum
systems and can influence various applications, including entanglement spec-
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troscopy and ground-state property estimation.

In Chapter 5, we focus on the probabilistic channel simulation with MIO and
DIO, respectively. For the MIO part, we talked about three cases: If the resource
state is the maximally coherent state, we provide an analytical expression for
the maximal success probability. If we select any pure coherent state as the
resource state, the maximal success probability is guaranteed to be greater than
zero. If the resource state w is a general coherent state, we offer an efficiently
computable SDP for achieving the maximal success probability. For the DIO
part, we show that not all quantum channels can be exactly simulated by DIO,
even probabilistically. Furthermore, we present an efficiently computable SDP
for attaining the maximal success probability of channel simulation with DIO.

This thesis contributes to reducing the requirement of quantum resources
in different quantum tasks, making the quantum devices more efficient in par-
ticular tasks such as expectation value estimation, non-linear features estima-
tion, and channel simulation using coherence. We are confident that this thesis
pushes quantum computers a step toward the next milestone. One interesting
research in the future is to apply our method on the quantum device to check
the actual performance. Besides, another interesting research topic is applying
optimization methods such as SDP or VQA to solve the problems that quantum
computers will really encounter.



Appendix A

Measurement times of
expectation value
estimation

Estimating the expectation value of Hamiltonian is a critical step in many quan-
tum algorithms such as variational quantum eigensolver (VQE) [24]. The expec-
tation value of a Hamiltonian H with respect to a quantum state [¢)) is given by
(H) = (| H |¢). This quantity represents the average energy of the quantum
state |¢) when measured on the basis of the eigenstates of the Hamiltonian H.
For a given Hamiltonian H, we can write it as

L
H=> hP;, (A1)
i=1

where L is the number of terms, h; is the coefficient of Pauli terms P;. To esti-
mate the expectation value of Hamiltonian H, one can estimate the expectation
value of each Pauli term and sum them up by post-processing (H) = 3. hi(F;),
with variance [55, 56]

L

2 _ N\ |hil*Var[P]
=Y S (A.2)

K3
where S; is the measurement time of each of the operators P;, Var denotes the
variance in the measurement of the operator for the given trial state.

Generally, the variance of Pauli Var[P;] is unknown in advance. However,
since the terms P; are Pauli, the variance is upper bounded by Var[P;] <1 [55,
56]. One can confirm (e.g., via the use of Lagrange multipliers [57]) that the
least number of measurements required to bound variance below € can be found
by choosing S; o |h;|. This implies the total measurement time N is upper
bounded by
IH %

2

N < : (A.3)
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where |H||p =Y, |hi| is called Pauli norm.

To reduce the total sampling times for expectation value estimation, group-
ing strategy is proposed. The main idea is to partition the Pauli terms into
groups, and in each group, all elements commute with each other. Since com-
muting Pauli terms can be measured simultaneously, all elements in a group can
be measured at the same time. This kind of method is called Cligue Cover. If
the number of such groups is minimum, it is called Minimum Clique Cover.

A.1 Qubit wise commuting (QWC)

Qubit-wise commuting (QWC)[103] is one of the simplest methods to partition
the Hamiltonian terms, which only group the terms that commute in qubit wise.
For example {I1 X5, Z1 X5} is a QWC group because I; commutes with X; and
Xy commutes with X5. While the case of {X1X5, 7175} is not a QWC group
for X; and Z; do not commute. When doing the measurement, we only need
to apply for local Clifford unitary U. This method can decrease 70% terms.

A.2 General commuting (GC)

The general commuting method [103, 104] is a more powerful method compared
with QWC. Note that QWC is simply the subset of GC corresponding to the case
where the number of non-commuting indices is 0. When we make measurements,
we need to apply the unitary U transfer to the GC group into QWC group such
that we can make measurements directly, i.e.,

(H) =Y (¢ Hi|o) (A.4)

(3

=Y (G UUH:U]U; |9) (A.5)
=2 (#IU] AT |9) (A.6)
=Wl Aily) =3 (4, (A7)

i

where A; is the corresponding QWC group. The unitary U can be decomposed
into Clifford gates. This method can decrease two two-magnitude number of
terms.

After partitioning into GC groups, we need to apply unitaries first, and then
make simultaneous measurements. Since the unitaries are Clifford [180], the
coefficient won’t change after the unitary.
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A.3 The grouped Pauli norm

For a given operator H, we have

N N m;
=1 =1 j=1

where N is the number of collections of mutually commuting operators, m;
the number of operators in collection 7, P;; is the j Pauli operator in the ith
collection and a;; € R is its coefficient.

It has been shown [102] that the number of m; measurements of collection ¢
is

N
n; = é\/Var[Hi] Z \/ Var[H;] (A.9)

Therefore, the total number of measurements is

N 1 N 2
M= n= (E ; \/Var[HiD : (A.10)

where
Var[H;] = Cov[H;, H;] = (H?) — (H;)? (A.11)

Theorem A.1l. [103] Given My, Ms, two commuting but non-identical Pauli
strings, E(Cov[My, M3]) = 0 where the expectation is taken over a uniform
distribution over all possible state vectors.

For convenience, we assume we do not know the quantum state, and replace
the variances and covariances by their expectation value over uniform spherical
distribution. From Theorem A.1, it is straightforward to have

(A.12)

N

To make a comparison with the ungrouped Pauli norm of Hamiltonian, we
denote it as the grouped Pauli norm

N my
[Hllgp = > | D Ihil>. (A.13)
i=1 \ j=1

Here we give a simple example by setting the Hamiltonian as H = 3XTI —
YY +2Z7Z. The first step is to sort it by the absolute value of coefficients, which
will be {3X1,2Z7,—1YY}. At this stage, no collection is created, so we need
to create one for the first element, such that {3XI}. For the second element
277, we have to create another collection for ZZ anti-commutes to XI. Now
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the collections will be {3XI},{2ZZ}. For the third element —1YY, it does
not commute with the element in the first collection, thus we need to check the
commutativity of the second collection. Luckily, the third element commutes
with all elements in the second collection, thus we can put it into this collection,
which becomes {3X1},{2ZZ, —1YY}. In this case, the corresponding grouped
Pauli norm is || H||4p = 5.24, while the Pauli norm without grouping is |[H||p =
6.



Appendix B

Proof for Retrieving
Non-Linear Features from
Noisy Quantum States

B.1 Proof of the existence of observable for high-
order moment

Lemma B.1. Suppose p is an n-qubit state. Then for a positive integer k,
there exists an nk-qubit Hermitian matriz H such that Tr[H p®*] = Tr[p"].

Proof. Consider the computational basis {|z)}, for an n-qubit system. The de-
sired Hermitian matrix can be constructed from an nk-qubit cyclic permutation
matrix

2mk 1 k

Sk=" Y @l Xail, (B.1)

x:=x1---c=0 j=1

where 7 = (1, ..., k) is a permutation function in cyclic notation. Note that the
conjugate transpose of this matrix permutes the subsystems in an inverse order
ie.

SE=>"QlziXzrn| =D @ ln1y X (B.2)

x j=1 x j=1

In the rest of this proof, we will prove that
Tr[Syp®*] = Tr[S}p®*] = Tr[p"] (B.3)
for all p, and hence the result follows by setting H = % (Sk + S,TC)

89
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To start with, decomposing p =}, Cuy[2)y| gives

k k—1
pk = Z H ijyg |I]><yj| = Z H Cxﬂ?w(]‘) Capyr |l‘1><yk|
z,y j=1 ®,ye \j=1
— Trlp Z H Cayanis s (B.4)
xz j=1
k
F =3 Coy, )yl - (B.5)

z,y j=1

Apply Si on p®* and we have

k k
=3 Qi Xz Cous lei)uil = D @) Cayy |70 Xy

x,y,z j=1 x,y j=1
(B.6)
= Tr[Skp®F] = ZHCI] ey = Tr[p*]. (B.7)
xz j=1

Lastly, the statement Tr[SZp@)k] holds from the fact that p is Hermitian and
thus

ST ®4] Z]._.[Of” i Tr=1(4) ZH Tr=1l()Ti

z j=1 z j=1
k
=> T, = TloM" = Tulp]. (B.8)
x j=1
O

B.2 Proof of necessary and sufficient condition
for existence of mitigation protocol

The theorem is established through the vectorization of observables and their
effective rank. To start with, we present the definitions of these two concepts.

Definition B.1. (Vectorization [38]) The vectorization of a matric M =
> Mij li)j] is defined as

= ZMij 1) ® i) . (B.9)
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Definition B.2. (Hermitian effective rank) For a 2" x 2" Hermitian matriz O
in a bipartite system AB, the effective rank R(O) is defined as

R(O) = rank(|OXO0|4), (B.10)
where |OXO|4 = Trg[|OXO|aB].

Definition B.3. (Matrix of channel [138]) A quantum channel N can be repre-
sented in the matriz form My by its Kraus operators {Ey}. Given N (|i)j]) =
>k Bk |Z><j|E;£, we can represent it in vector form, which is vec(N(|i)j])) =
S v Bk i) ® By iy = (X, Ej ® Ey) |j) ® i), where Ey, is the complex conjugate
of E. Here we can define

My = ZEk@Ek (B.ll)
k

as the matriz representation of channel N'. The rank of such matriz My is
called the channel rank of N .

In addition, here are a few results that will be used in the following proof of
Theorem 4.1.

Lemma B.2. [138] Suppose H is an observable and M is a Hermitian-preserving
is a map. Then Tr[(M(p)O)] = Tx[pO] for any state p if and only if MT(O) =
0.

Lemma B.3. Suppose H is an nk-qubit Hermitian matriz with k subsystems,
such that Tr[H p®*] = Tr[p*] for any n-qubit state p. Then the effective rank of
H for arbitrary subsystem A is full.

Proof. The property Tr[XY] = (X|Y) implies
<p®k|H> = Tr[p"]. (B.12)

Let A be an n-qubit subsystem and B be the rest of the subsystems. With
respect to bipartite system AB, applying Schmidt decomposition on |H) gives

(p®F[H) =" ¢; (plus) 4 - <P®(k_l)‘vj>3 , where [H) = c¢;lu;) 4 [vj) -
j j

(B.13)
Note that [H)H|, =3, |cj|? |u;Xu;|. Then the assumption |p) € ker(|H)XH]| ,)
would imply

> " lei* plug) (ujlp) =0 = (plu;) =0Vj = (p®F|H) =0 = Tr[p*] =0,
J
(B.14)
which forms a contradiction as Tr[p*] > 0 for finite k. That is, the vectorization
of all n-qubit quantum states are in the column space of |[H)H]|,, and hence
|H)H|, is of full rank. O
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We are now ready to present the main theorem.

Theorem 4.1 (Necessary and sufficient condition for existence of protocol)
Given a noisy channel N, there ewists a quantum protocol to extract the k-th
moment Tr[p*] for any state p if and only if the noisy channel N is invertible.

Proof. From Lemma B.1, there exists an observable H such that Tr[Hp®*] =
Tr[p*]. If the noisy channel A is invertible, then there exists the inverse oper-
ation of noisy channel A'~!, such that we can apply the inverse operation on
quantum system, and perform measurements with respect to moment observable
H. Thus, the high-order moment can be retrieved, which is

Te[H - (N 7H®% o NOF(p®F)] = Tr[Hp®*] = Tr[p"]. (B.15)

The proof for the ”if” part is completed.

For the "only if” part, let’s assume there exists a quantum protocol to extract
k-th order information Tr[p*] from noisy state A(p), with non-invertible noise
channel A. Then, from the definition of quantum protocol, the existence of
quantum protocol to extract information Tr[p*] refers to the existence of an HP
map D such that the following equation holds

Tr[H - D o N®*(p®F)] = Tr[H p®*] = Tr[p"]. (B.16)

From Lemma B.2, we convert the problem into that there exists an HP map D
such that the following equation holds

(N oD (H) = H. (B.17)

Since D is an HP map, then the adjoint map D' is an HP map as well, thus we
have D (H) = Q, where Q is hermitian. Now we have

NEI(Q) = H (B.18)

Next we vectorize the Hermitian matrix H and @ into |H) and |Q), the
corresponding channel (N®*)T in vectoriztion representation is M?}T, where

Myt =3 E_kT ® EZ, {E})} is the Kraus representation of channel A/ operator,

and Fj is the complex conjugate of Ej. Thus the equation becomes
M |Q) =|H), (B.19)
which is equivalent to
k
M 1QXQI M = |HYH]|. (B.20)
Then take partial trace on both side,

Trp (Mgt |QXQI M) = Tes(| HXH]I), (B.21)
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where B is an arbitrary subsystem that contains k — 1 copies of p. We can
simplify it into

My Trp[I @ MgV [QNQI T @ Mg VM, = Trp[|[HYH].  (B.22)

For further step, let’s take P = Trp[l ® Mﬁ%k_l) |IQXQ| T ® Mf}gk_l)”, and
T = Trp[|H)H]], thus

Myt PM},, =T. (B.23)

From Lemma B.3, the matrix 7" is full rank, thus the rank of Myt PMJT\,T is full

as well. Due to the fact that rank(XY') < min(rank(X), rank(Y")), the rank on
the left hand side is

rank (Mt PMLT) < min{rank(Mps+ ), rank(P), rank(M;{ﬁ)}, (B.24)
implying that M+, P and M;{ﬁ have full ranks. Then we have

My =S ES 0 Bl =S (Beo Byt = M, (B.25)
k k

since conjugate transpose won’t affect the rank of a matrix, which means My,
has full rank. This concludes that N is invertible, and eventually, a contradiction
is formed. Thus, no quantum protocol exists to extract high-order moment
Tr[p"]. O

B.3 Proof of Proposition 4.3

B.3.1 Depolarizing noise retriever for the 2nd moment
when p is n-qubit state

Proposition B.1. Given noised states Ng(p)®?2, and error tolerance 6 where p
is an n-qubit state, the second order moment Tr[p?] can be estimated by fTr[HCo

N5g(p)®2 —t where f = ﬁ and t = % The term Tr[HC o N5g(p)®?]

can be estimated by implementing quantum retriever C with sample complexity
O(1/6%(1 — €)*). The Choi matriz of such a quantum retriever is,

1 1
Jo=—I®"[®" 4 P,® P P, ® P;).

Proof. For an arbitrary state p® p, after applying the noise A/ onto it, we denote
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the state as p’ = N(p ® p), thus

CoN(p®p)=D(p) = Tra[(p" @ I®")J¢] (B.26)
=Try (p/T X I®n)(%j®n1®n —+ ﬁ(z PZ & Pl) X (ZPJ X PJ)):|
i#0 j#0
(B.27)
= T M;_l)Tr[p'W#ZOPi SRILRER) (B2
1 n 1 /
— 471® + mTr[pT(; P ®P,»)](j§ P;® P)) (B.29)

Note that the above equations utilized the face that transpose operation is trace-
preserving, i.e., Tr[p?] = Tr[p] = 1. Since the matrix Z#O P; is symmetric, thus
we have

4 4n(4n — 1) Z#O ;0
_ 1 Xn 1 / 3 X . .
“wl @yt (géo P® Pi)}(j%éo P; @ Pj) (B.31)

The trace term can be calculated by substituting Eq. (4.24), we have

Tr[p’(ZR- QP =Tr[(1—-€e?p@p+ MIW ®p+ @p ® %"

+ §(1®" ® 1) (> P P)] (B.32)
i£0

=(1-e*Tpepd PoP)o(d PoP). (B33)
i#0 J7#0

In the second equation, all other terms are traceless, thus, only the first term
survives. Replace the equation back to Eq. (B.31), then

1 1—¢€)?
CoN(pep) = 1% + il oY o PN Py ).
i£0 §#0

(B.34)

The information Tr[p?] is estimated from Tr[H (p®p)], where H = 5~ dizo Bi®
P; is cyclic permutation operator. It is easy to check that

Tr[HC o N(p® p)] = %Tr[H * 197

(1-¢)?

R Ty

Tr[p@ p(Y_ P @ P)|Te[H (Y P; @ Py)].
i#0 J#0
(B.35)
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We can quickly get Tr[H] = 2" and Tr[H = (3_, ., P; ® P;)] = 2"(4" —1). Then

fTe[HC o N(p® p)] = a _1 BE [2% e ;f) Trlp@p(d P® Pi)]} (B.36)
i£0
1 1
= _ep + o Ttlp @ P(;Pi ® P;)] (B.37)
Zﬁ—%ﬂ—i—z—n—i— Trp®p#ZOP ® P;)]
(B.38)
1 1—¢)?
= a7 zi(l_)) + 2nTrp®p ZP ® P)]
(B.39)
= 12:((11__ )) + Tr[p ® pH| (B.40)
=t + Tr[p?]. (B.41)

12,7 ((11 E))z is the shift coefficient. The desired high-order moment Tr[p?]

is directly obtained by estimated value Tr[HC o M (p ® p)] substrate a constant
t. O

where t =

B.3.2 Depolarizing noise retriever for the k-th moment
when p is a qudit state

Appendix B.3.1 demonstrates the efficacy of the observable shift method
in extracting the second moment of an n-qubit quantum state p subjected to
a depolarizing channel D.. This section extends the method’s applicability,
showing it can also determine the k-th moment of a p given k copies of D.(p)
for 100 > k£ > 2. Our extension is based on the fact that the k-th moment of p
is intrinsically a linear combination of Tr[p?], ..., Tr[p*~!] and Tr[D.(p)¥] with
a constant, as evidenced by the following binomial expansion:

k O NL_k—1
D)) = T - o+ et/ = 3 () S mil, @
=0

where I is the identity matrix of dimension d = 2". Then the recovery map can
be recursively found by reducing Tr[p'] to an expectation value of Hamiltonian
Hj. under the depolarizing noise, and finally the observable shift method can
be applied. Before presenting the details, we need an extra proposition to
guarantee the existence of such a reduction, and the proof of which is deferred
to Appendix B.3.3.
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Proposition B.2.  Suppose 100 > k > 2. Denote H; = %(Sl + S;L) for the
cyclic permutation operator S; € Cl*ld permuting | subsystems. Then there
exists CP maps T, and Ty such that

Ti(Hy) = Hyor @ I/d,  To(Hy) = —Hy—1 ® I/d. (B.43)

To see how this proposition works, for any k& > [ > 2, one can construct a
CP map

Ry = (Tiz1 @idg_i_1)0...0 (T @idy) o (Th—1 ®id) o Ty. (B.44)
By Proposition B.2,

Riy(Hp) = (Tis1 @ idg_i—1) 0...0 (Th—2 ®ids) o (Th—1 ®id) o Tr(Hy) (B.45)
= — (77+1 (%) idkflfl) 0...0 (77672 X idg) (77671 (H]Cfl) X I/d) (B46)
= —Tip1 (Heot41) @ Iyg1 Jd* 7 = —H @ Iy /d™ (B.47)

where the negative sign here is to preserve completely-positiveness of Cy in the
later proposition. Then for any state o, the computation of Tr[o!] is understood
as an expectation value of Hy:

Tr[o'] = Te[H;0®'"] o< —Tr[Ry(Hy,)o®*] = —Te[Hy - R} (o®F)]. (B.48)

We are ready to present the main conjecture in this section.

Proof of Proposition 4.3 The statement is proved by induction.

(Base case: k = 2) The base case follows by Proposition B.1.

(Inductive hypothesis) For all k > | > 2, there exists a CP map C), constants
fi and t; such that

AT[H, - C o D' (p®)] — t, = Tx[p']. (B.49)
(Inductive step) Proposition B.1 and Equation (B.42) implies

ek k(1 —e)ekt
&

k—1 o NL_k—1
+¥ (?) d=eyer di)_f e, (B.50)
=2

From the induction hypothesis, we have

Tr[Hy, De(p)®*] = Tr[De(p)*] =(1 — &) Tx[p"] +

Tr[Hy, - idy, (D-(p)®*)] =
k—1

(e ()0 + 3 () 0 ' ATl (D))

- (B.51)
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where the constant ¢j, is constructed as

1 b k(1—e)eht 2k (1 —e)leh
_ e _ L=ee 4|, B.52
b (1—e)k |dF + dk—1 ; (l) dk—1 t (B.52)

Further, from the construction of R, in Equation (B.44), the trace quantity on
the last equality can be expanded as

Te[H/d* - C (De(p)®)] = Tr[(H; @ Ij—i /d* ") - (G @ idg—1) (D (p)®*)]
(B.53)

= —Tr[Ri(Hy) - (C ®@idg—;) (De(p)®*)]  (B.54)
= —Tr[Hy - R} o (Cr®idi—y) (De(p)®*)].  (B.55)
By moving the term around, we eventually get

1
(1—e)t

k=1
+12:( ) e)'e* ! fiTr[Hy, - R o (C; ®idg—) (D (P)®k)]}—tk (B.57)

Tr[p"] = {Tx[Hy - idy, (D-(p)®F)] (B.56)

e _15) : <1dk+z< ) )k LRI o (Cl®idk_l)> (De(p)®")]

— g (B.58)
= fiTe[Hy - Ci (De(p)®")] — ti, (B.59)
where fi, = 1/(1 —)* and

Cr = idy + Z( > )P R o (€ @idy_y) . (B.60)

The CP property of Cy follows by the positiveness of f; and the CP properties
of Cl, Rl . |

B.3.3 Proof for Proposition B.2

This section presents the necessary lemma for proving the existence of phys-
ical protocol to retrieve generalized depolarizing noises. Particularly, we show
that there exists CP maps that convert the permutation unitary S to £S;_1
for k > 2, as stated in Proposition B.2. Denote wy = exp (27i/k) as the k-th
unity root. Let Crﬁ be the minimal set of length-k combinations that generates
{0,...,d — 1}** under cyclic permutations, i.e.,

{0,...,d=1Y*F = {zqy 2 | 21z € Crl, 1 € N} (B.61)

For example, Cr2 can be non-uniquely constructed as {000,001, 011,111}. Note
that |Crk| = & =d = + d. One can then have the following result:
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Lemma B.4 (Spectral decomposition of Sy). The cyclic permutation matriz
can be decomposed as

k—1
Sy = Z W}Zm Z ‘wm,wxwm,ﬂa (B.62)

k
z€eCrj

for @ = x1 - - xp and eigenstates defined as

E
[ay

|¢m,m> =

k
® (B.63)

S
gM

Proof. We first prove that [¢),, ) is an eigenstate of Sy with eigenvalue w}”,

then show that the state set forms a basis of H4x. Applying Sk on |1y, o) gives

S [Yme) = | D@ =i Xusl| - | D Q) lemis)) (B.64)
Yy J l J
= Zzw;nl ®6y1xﬂl<j) |y7"(J)> (B65)
y 1 J

k—1 k
= sz@l ® ’xﬂl+1(j)> = Zw;n(l_l) ® |l’.,rl(j)> (B.66)
1=0 J =1 J

Note that for fixed point & such that x; = 2.(;) for all j, [t ) # 0 if and only
if m = 0. Then the total number of such eigenstates are

d+k- (\cr§| —d) = d~. (B.68)

As for the orthogonality, for 0 < m,m’ < k, @, 2’ € Crk,

<wm,m‘wm’,w — kzw]:ml ml! H<

LU

k
T Mo, (B.70)

LU

L,(])> (B.69)

1 I(m'—m
= (k‘ wk( )> 5mw’ = 5mm’6mm’a (B?].)
l

where & # ' if and only if there does not exists [ such that x; # x/. ') for all
J-
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Proof of Proposition B.2 One can observe that for k& > 2, there exists
non-negative matrices @, Q € Rffl)x}g such that for all 0 <[ < k — 2,

k—1 k—1
Z lewl::n = w;{}—17 Z lew? = _ng_l- (B72)

m=0 m=0

Such @, @ can construct the desired transformations in Proposition B.2. Using
the package CVX [181, 182], Equation (B.72) can be numerically verified for

100 > k '. For a general k > 2, Q and @ can be explicitly constructed as

1
T Y
Qodd k = Tm  Ym : (B.73)
Ym Tm
Y1 X1
1
r Y
Lom— —
Qevenk = ot yglml Tom s (B74)
Ym—-1 Tm-—1

Yy

@odd k= (X ® I(k—l)/Q) : Qodd k> éeven k= Qeven k- (X & Ik/Q) (B75)
dependent on the parity of k, where X = (9 }) is the Pauli-X gate, m = |k/2]
and constants x;,1y; are given as

2 2(k—1-1 2 21
;= cse % sin W, Y, = CSC % sin k(k‘ijl) (B.76)
The fact that k > 2 ensures the angles exist in csc are no greater than 2?”, and

those exist in sin are no greater than 7,
non-negative. _
Now we use @, @ to construct the maps. To be specific, denote the eigenspace
; (m) (m) _ ;
with respect to wi® as II,", ie., I = ZmeCr’; |2V —m.z|,. Consider

and hence these constants are always

the map Tx, T satisfying

T (M) =Y Quay @ 1/, T (™) =" Qually), @ 1/d - (B.77)
l l

1For the data and verification files, see the GitHub repository https://github.com/Dragon-
John/high-moment-info



100 APPENDIX B. PROOF FOR RETRIEVING NON...

Then it follows that

k—1 k—1 k—2
Te(S0) = > wp @™ = 3w Y Q) | @ 1/d (B.78)

m=0 m=0 1=0

Z(Zlew]T> (l) ®I/d Zwk 1H(l)1*Sk 1®I/d
l m l
(B.79)
and analogously

Tr (Sk) = —Sp_1 ® I/d. (B.80)

Since {Hém)}fnzl is an orthogonal set and () is non-negative, 7 can be com-
pletely positive and hence Ty, (S,t) =Tk (Sk)T. We conclude that

Th (Hy) = n(Sk)+7; (s)] = [Sk Sl era=m o1/
- (B.81)
Similar statement holds for 7. |



Appendix C

Random channel simulation
with DIO

The target channel N used in the numerical experiment of channel simulation
with DIO (Figure. 5.3) is a random 2-qubit rank-4 real channel, whose Choi-
Jamiotkowski matrix Jxr is shown below.

We can easily check that Ao AN # Ao AN oA, implying the target channel
N is not a resource nonactivating channel.

101
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