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1. Introduction

Let ¢(z) be a holomorphic function in the disk D= {z| | 2| <1} and & (<1)
a positive constant. Put u(2)=k®'(2)/9'(2) in D and u(2)=0 outside D. Then
the Beltrami differential equation w;=pu(2)w, is known to have a homeomorphic
solution w=f(2) in |z| <oo: f(2) is a Teichmiuller mapping in D and is mero-
morphic outside D: further the solution f(z) is unique if normalized by the
condition f(1)=1, lixg f(z)/z=1. (see [1], p. 91). In this paper we restrict

ourselves to the case in which @(z) is rational and investigate the solutions of
those Beltrami equations. First we introduce a function ®(z) which is defined
by means of ¢(2) and satisfies the relation gof(z)=®(z) for some rational func-
tion g(z). Next we find the conditions for ¢(2) under which f(z) maps D onto
itself. These are equivalent to the condition for f(2) to fix the boundary of D
pointwise. From this we shall obtain short proofs of Theorem 6 in [2] and
Theorem 2.3 in [3]. Finally we have an example which fixes the boundary of
D pointwise for some % but not for &’ other than k.

2. @(z) is a branched covering

Let ¢(2) be a non-constant rational function holomorphic in D. Put with
some &k, 0<k<1,

®(z) = o(2)+kP(2) for zin D,
" | @p(2)+kp(1/2)  for z outsde D.

Then we have

Lemma. &(2) is a branched covering and has the same number of sheets as
?(2).
Proof. By definition ®(z) is a branched covering in D and outside D. On

the boundary of D, ¢(2)+kP(2) and o(2)+kp(1/2) have the same values and
the same orientation. Therefore ®(z) has the same multiplicities as () on the
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boundary of D, so that it is an unlimited branched covering. Next we count
the number of sheets. Writing

(3—aty) - (x—pm)

(z—ﬁl)".(z_ﬁn)

P(2) =

we have

o) = (E ) (B—m) | ot (1 =@3)-(1—8m?)
) rY(Z—,@l)-"(zﬂe,.)+ (1—8,2)+-(1—B,3)

on the complement of D. Since 3; /=1, -, n, lie outside D, the number of = with
the multiplicities at which ®(2)=oco is n+max (m—n, 0)=max (m, n) which is
equal to the number of sheets of p(2). q.e.d.

Let f(2) be the normalized solution of fz(2)=u(2)f,(2) with u(2)=kP'(2)/
¢’(2) in D and =0 outside D. Then ®of " is a branched covering with the
same number of sheets as @(z). f(2) is meromorphic outside D with a simple
pole at oo so that ®of ! is meromorphic outside f(D). It will be shown as
follows that ®of ™' is holomorphic in f(D). The differentiation of fof "(w)=w
with respect to @ gives

(feof (@) (@)at(foof (@) (w)s =0 ae.

or

@y = — Dy — APy g
e = =g e = TRy e e

So, we have
(Pof Hw)s = (@oof (@) @)zt (Dzof (@) (w)a

N .

= (¢/of (@) A GO @t Ko @) Twlp = 0 ac..
This shows the holomorphy of ®of™* in f(D). Except for a finite number of
points which are f-images of the critical points of ¢(2), ®of *(w) is holomorphic
on the boundary of f(D) because it is locally a composition of the quasiconformal
mappings and 1-quasiconformal. By the finite multivalency of ®of ™" it is mero-
mrophic at the excepted points so that it is a rational function. We formulate
this as

Theorem 1. f(z) and ®(2) are related with a rational function g(2) such
that gof(2)=®(2).

Application. We consider the expansion of f(2) outside D. Under the

normalization f(0)=0, instead of f(1)=1, f(z) has an expansion
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f(z) = 2+P(u(h+1)) = 24+ Pu+PuTp+PuTpTp -,

where

Ph(t) = —%Sgh(z)(;l_g—%)dxdy and Tht) =lim —1 hz)_ gyay .

>0 g7 (z—¢)

12=gi>e
(see [1]). If g(=) is determined explicitly we shall be able to see Pu, PuTyu,
PuTuTp, -+ succesively. For example consider the case of

o(2) = 2"+a,_ 2" '+ taz

where a; are real and {z|’(2)=0} lies on the segment [—1, 1]. Then we find
gw)=(1+k)p((1+k&)/"w) and ®(2)=¢p(2)+kp(1/2) outside D. Substituting
these into gof(2)==>(z) we have

E"l a,-(l—{—k)l—i/”(Z—l-kP,u,'—f—kzPy,'Tp.’—{—kaPp,'Tp’T,u’—}--")i
= p(2)+ko(1/z), a, = 1.

Here we put u'=p/k=%'(2)/@’(2). Comparing the coefficients of j-th power
of k, j=0, 1, 2, -+-, of both sides we have

Py = (p(1/2)—p(2))/¢'(2)+=2/n,
PuTy = —— 1 (¢”(z)(Pp’)’—|—2P;L’gi(l—i/n)a,-z""

2¢/(2) .
+ 23 (1—ifn)(—i[n)a;z)

3. The case in which 7(z) keeps every boundary point of D fixed

Let F(2) be a quasiconformal mapping of D onto D which satisfies F;(2)=
u(2)F,(2). If F(z) fixes the boundary of D pointwisely, then we have a nor-
malized solution of f;(2)=u(2)f,() by setting f(2)=F(z) in D and f(2)== outside
D. 'This implies that f(z) maps D onto D. Conversely if a normalized solution
f(2) maps D onto D then f(z)== outside D and therefore it fixes the boundary of
D pointwisely. The restriction of f(2) to D is a solution of Fy(2)=pu(2) F,(2)
which fixes the boundary of D pointwisely. Therefore we can say that F(z)
fixes the boundary of D pointwisely if and only if the normalized solution f(z)
maps D onto D. If f(2) maps D onto D, then we have g(2)= @(2)+ kp(1/2)
outside D and therefore everywhere. In this case all poles of @(2) lie on the
boundary of D. More precisely, m<n and |B;|=1,i=1,2, -, n. Proof is
as follows;

First we observe that the number of sheets of g(z) is equal to max (m, n).
This follows readily from Lemma and Theorem 1. g(2) has poles at 8;, 87, i=
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1,2,--,m,and at 0, co if m>n. If m>n then the number of 2 with the multi-
plicities at which g(2)=rcc is not less than 2(m—n)+n=m-(m—n), which is a
contradiction. Therefore m<n. If thereis a 5;, |5;| =1, then the number of
z with the multiplicities at which g(g)=co is greater than n, a contradiction.
The assertion follows.

The identity g(2)=¢(2)+k$(1/2) implies that ¢(2)-+kp(1/2) has the branch
points at w;, t=1, 2, .-+, /, and only there in D, where w; is the f-image of the
branch point 2;, =1, 2, --+, ], of ¢(2) in D with the same order as ¢(2) has at z;,
and that @(w;)+kP(1/w;)= p(2;)+kP(2;), 1=1,2,--+,1. Conversely if g(z)=
@(2)+kp(1/2), this is true when the above conditions on ¢(2) are satisfied, then
f(2) maps D onto D. We summurize those as

Theorem 2. The followings are all equivalent.
a) F(2) fixes the boundary of D pointwisely,
b) f(z) maps D onto D,
¢) e(x)=p(=)+ha(1[3),
d) @(2) has poles only on the boundary of D, ¢(z)+kp(1/2) has the branch points
at w;, 1=1, 2, -++, I, and only therein D, where w; is the f-image of the branch point
25 1=1,2, -, [, of @(2) in D with the same order as ¢(z) has at z;, and @(w;)+
kq‘)(l/w,)=q)(z,)+k¢(z,), i'—“l: 2) ) L

4. Short proofs

If @(2) has no branch point in D, then d) implies that ¢(2) has poles only
on the boundary of D. This is Theorem 6 in [2]. On the other hand if ¢(2)
has the branch points in D and if a) is true for all 2, 0<<k< 1, then we can show
w;=2; 1=1,2, ---,1. In this case d) implies that ¢(2) has poles only on the
boundary of D and #(1/2) has the branch points at z;, 7=1, 2, ---, ], and only
there in D with the same order as @(z) has at 2; and that ¢(1/2;)=¢(%;), i=
1,2,--,1. Conversely if the above conditions on ¢(2) are satisfied then d) is
satisfied with w;=z;, i=1, 2, -+, [, and hence a) is true for all k., 0<k<1. This
is Theorem 2.3 in [3].

Proof of w;=z;, i=1,2, ---,/. By the well known fact that |w;,—z;| <2k
for all 2, 0< k<1, d) implies that for all &

k(P(2:)—P(1[w;)) = p(w;)—p(2:) = @'(2:)(w;i—2:)+O((w; —=;)°) -

Dividing both sides by % and letting 2—0, we have ¢(1/2;)=¢(2;). Therefore
@(2)+kP(1/2)=p(2;)+kP(2:)=p(2:)+kP(1/2;) is satisfied by z; and w;. We
set E;={z|p(2)=@(2;)} ND and E/={2<E;|z+z2;}. Then for sufficiently
small %, w; lies near 2;, and f(E,’) and w; have a positive distance which tends to
the distance between E,” and z; as k—0, hence we have w;=z; for small .. By
the continuity of f(2) in % we have w;=z; for all k, 0<k< 1, because all w;, i=
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1,2, -+, I, are fixed for small & and they do not change with each other without
a jump.

5. Special solution

In general c) in Theorem 2 does not imply that w;=z;, i=1, 2, ---, [, for
there are ¢(2) and &, that is u(2)=k®’(2)/®’(2), such that f(z) maps D onto D
and 2, to w,#=2,. This gives an example of u(z) for which F(z) fixes the
boundary of D pointwisely but not for k4%, 0<k’<<1. The existence of such
u(z) is known in [2] where u(2) is not restricted to be the Teichmuller type.

Let o(2)=2(z—(54+1v13)/2)/(z—1)’, k=(3++/13)/8. Then we have
@'(2)=0 at =0 and @(0)4-kp(0)=0. On the other hand @(2)+kp(1/2)=
(2—1/2)(2—(34++/13)/2)/(z—1)?, hence (p(2)+kP(1/2))=0 at z=1/2 and
@(1/2)+kp(2)=0. Therefore we have g(2)=¢(2)+kp(1/2) with k=(34++/13)/8
and 2,=0, w,=1/2.
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