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0. Introduction

The aim of this paper is to study the propagation of C ""-singularities for an
hyperbolic pseudodifferential operator whose principal symbol vanishes at order
m>2 on an involutive manifold, generalizing a well known result obtained by
R. Lascar [8] Chapter III, in the case m=2.

Let X be an open subset of Rn+\ denote by T*X^XxRn+1 the cotangent
n

bundle with canonical coordinates (xy ξ) and let ω~ Σ ζj dXj (resp. σ=dω
y=0

= Σ dξjΛdXj) denote the canonical 1-form (resp. 2-form) on T*X. By jΓ*J£\0
j = Q

we denote T*X minus the zero section. Let P(x, Dx) be a classical pseudo-
differential operator (pdo) in X of order m,m^N, with symbol

and let φ^C°°(X) be a real-valued function, with dφ(x)^Q
We shall make the following assumptions:

P is hyperbolic with respect to the level surfaces of φ, i.e. pm is real-
valued and

ii) for every (x, ξ)^T*X, ξ independent of dφ(x), the function
Pm(χy ξ+tdφ(x)) is a polynomial of degree m in t having only real roots.

(H2) There exists a C°°-conic, non radial, involutive submanifold NdT*X\Q
of codimension/>-f-l, such that, for j>0, pm.j vanishes at least of order
(m—2j)+ on N(t+=max(ty 0)).

The above conditions on N imply that, for any peJV, we have Tp(N)(rc:Tp(N)
(Tp(N)σ being the orthogonal of Tft(N) with respect to σ) and ω(ρ)&Tp(N)*.
As a consequence, Λ^ is foliated by leaves Fp, p^N, which are (immersed) C°°
submanifold of N of dimension p-\-l transversal to the radial vector field, with
Tp(Fp)=Tp(N)σ (note that^Xn). Moreover, for every p<^N, the bilinear form
σ induces an isomorphism Jp : TP(T*X)ITP(N)-*T*(FP) (see [6]).
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Because of the vanishing conditions on p, we can apply the results of [3] and

therefore associate to P a family qm-j,j=Q, •••, [#*/2], of (m— 2/)-multilinear
symmetric forms defined on T(T*X)jT(N), the normal bundle of N.

For every p^N and vGTp(T*X)IT,(N) we define:

Cm/23

ί(p) («0 = Σ ?«-y(p) (») > ί»-/p) («0 = ?.

and observe that

-, Ό = (O») (p) (*,

Using the isomorphism /p, ̂  and q will be considered as C°° functions of

and v^Tf(Fp). Thus, fixed a leaf F on TV, </w and q will be well defined as

C°° functions on Γ*(jF) (see [9]). Let φ=φoπ weere π: T*X-*X is the canonical

projection.
Since Hφ(p) is transversal to TP(N), its class modulo TP(N), say Hφ(p), does

not vanish. We shall suppose:

(H3) qm(p) (v) is strictly hyperbolic with respect to —ήφ(p), VpeTV.

(H4) The polynomial ί-^-q(p) (v+t H$(p)) has m real simple roots, VpeΛ^" and

Some comments on conditions (H3), (H4) are in order.

1— As will be shown in §1, condition (H3) is equivalent to requiring that for

(x, DφΛf and close to Ny the real roots of the polynomial pm(x, ξ+tdφ(x))

are simple (ξ independent of dφ(x))> hence pm is strictly hyperbolic outside N,

at least close to N.
2— Gondiciton (H4), which is obviously invariant by change of coordinates in
Xy is more technical. In [10] (when m=2) and [1] (for m>2), the authors
consider the case of an operator P satisfying conditions (H1)-(H3), whereas (H4)

is replaced by a suitable Levi condition on the lower order terms of P, which
in particular implies that VpeΛf, qm_.(p)=Q for j= 1, •••, [f»/2].

The case (H4), which we will treat here, is, in some sense, on the opposite side.
3— It is easy to see that if P satisfies conditions (H1)-(H4), then the same hypo-

theses are satisfied by the transposed operator 'P, with N replaced by

EXAMPLES. When m=2, using standard arguments, we can suppose that

φ=x0, that the operator P in the form P=—DlQ-\-A(x,D)9x=(xQ9y),

y=(y',y")^Rn~pχRp, where A is a second order pdo in Rn depending smo-

othly on xΌ9 with nonnegative principal symbol a^x, η) = Σ a*(x> η) ζ"*>
q=(ξ'9 ξ")f=R -*χR*, and that N= {ξQ=da2=0}. w"'
We have, if p(=N9

«) = y<Hess p2(p) v, v> , q(p) (v) = q2(p) (v
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where pι(ρ) denotes the subprincipal symbol of P.

The hyperbolicity of P means that a2(x, -η) is non-negative, while condition

(H3) is equivalent to require that a2 is transversally elliptic with respect to ξ"=Q\
condition (H4) is then equivalent to ^ι(p)>0, VpeΛΓ. This case was treated

in [8].
A typical example in the case m=4, φ=xQ, is represented by an operator P
which is factored as

P = ρω QW+AP QW+AP Q^+A t ,

with ρ<l>= -Dl0+a(x, D,) I D,, I \ Q^=-Dl^β(x, D,) \ D,,, \ \ where a(x, D,),
β(x, Dy) are pdo's in y of order 0 having real positive principal symbols and,

Vί=l, 2, -4J°(resp. A2) are pdo's of order 1 (resp. of order 2) in R", depending

smoothly on x0. We have N= {ξQ= ξ"~ 0} and

ίΛp) («) = ̂  <Hess #>(p) v, *> <Hess tf>(p) v, o> ,

ίs(p) W = Wp) <Hess '̂(p) β, t;>+α<1

2>(p) <Hess jf^p) β, P» ,

In this case condition (H3) is equivalent to a(ρ)3=β(ρ), VpeΛΓ, while (H4) means

that the polynomial

i 2) (-S+ΛP) i r i *)+<#\P) (-ξi+aω \ r i 2)

has real simple roots in f0, VpeΛ/", V

We now state the main result of this paper, concerning the propagation of

singularities for P.
For every ρQ^N consider the following sets:

Ct(p0)={peiV| p belongs to the leaf F=FPQ of N and there exist point £0e

Γp^F), ?eT*(P) and a piece of forward (backward) null

bicharacteristic of q on T*(F) joining (p0, ζQ) and (p, f)},
Ci/(p0)= {peJV| p belongs to the leaf F=FPQ of ΛΓ and there exist points £0e

T*(F),ζEίT*(F) and a piece of forward (backward) null

bicharacteristic of qm on T*(F) joining (p0, f0) and (p, ?)}.

The main result of this paper is the following theorem:

Theorem. Let P satisfy assumptions (fli)-(jff4) and let

N\WF(f). Assume that Pu—f, u^S)'(X}3 and there exists a conic neighborhood

ω of po and a choice of sign-}- or— such that

- 0 .
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Then

The above result will be easily obtained by constructing (microlocal) left
parametrices for P. We will prove that the methods used in R. Lascar [8] can

be suitably adapted to the more general case we are treating here.

1. Reduction to a normal form

Let us first fix some notations. If U is an open subset of R° and 2C T*U\Q

is a C°° conic submanifold, we denote by ZΛ*([7; Σ), μ^R, k^Z+, the class of all

classical pdo's with symbols X#, ?)~Σ .£/*-/#> f)> such that pμ-j vanishes at

least of order (k—2j)+ on Σ,y>0 (see [2]). With this notation, our operator P
belongs to Lm m(X; N).
Working microlocally near a given point of N and using the same kind of

arguments as in [1], Sect. 1, we can find a coordinate system (#, ξ)=(xQ, y, ξQy 37),
y = (x',xf')GR*-pχRp(η = (ξf,ξ")) such that, without loss of generality,
X=] — T9 T[χ Yc.RXQxRn

y and N, in these coordinates, is given by:

N = {(*„, y, ft, *) e Γ*^\0 1 ξ0 = 0, f" = 0} .

By putting M= {(y, η) e 71* Y\0 1 ξ"=Q} and disregarding elliptic factors, we can
suppose that, modulo a smoothing operator, we have:

P = D?Q+ Σ A fa, y, D,) Ώζ~> ,

for some Aj(=C~(]-T, T[,LU(Y;M)),J=1> ->m

Application of Taylor's formula to the Aj's easily yields:

P(x, Dg) =Σ Σ |β( βΣ v_^i(*b, y, D,) D«x,, D
k

XQ+ ΣlBfa, y, D,) Dk

XQ

where Afy(x, Dy) and Bk(x, Dy) are suitable pdo's in y of order j and — - ̂ ~

respectively, depending smoothly on x0(A^m=I).

Given a point p=(350, y=(55', &'), ξQ=0, ξ',ξ"=Q)tΞN the leaf through p is
simply:

Taking (Λ;O, Λ/', ^0, ξ") as canonical variables in Tf(Ff), one can easily see that

q(P) (Xΰ, X", f „, ro = ΣJ "if Σ βϋu*b, *'. ̂ "> i '. o) r - is ,
y=o k=o \a\=m-2j-k

a(JJk being the principal symbol of A*£\y while

*» *", ξΰ, ro = Σ Σ βfiiK *', *", r, o) r ? s
k=o \at\=m-k
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Condition (H3) amounts to require that for every (#0, x") and £"ΦO, and for

every p, the polynomial ξ0-^qm(ρ) (XQ, x", ξ0, ξ") has m real simple roots, whereas

condition (ί/4) means that the polynomial ζQ~^q(p) (#o> #"> ?o> ?") has m real sim-
ple roots for every p and for every (xQy xh ', ξ") (ξ/f is allowed to be zero).

For simplicity, we will use in the following the notation:

"> £<>, ro = 0 (*b> *'> *"> fβ, r, n ,

REMARKS 1. Since ̂ (Λ?, f)= Σ Σ <U^o> *', ̂ i Γ> I7/) l//β> f o, by writ-
fe=0 !αs'=m-fe

ing OΦf/x^rω, re] 0, +<χ>[, ωeS^"1 and u=ξQlr, we get

r-" ί.(Λ, πi, r , rω) = Σl Σ <i(*o, ^'> Λ/', f, rω) ω//Λ w--Λ .
k = 0 \06\ = m-k

On the other hand, for ρ=(x0> x', x'' ', ξQ=Oy ξ', |//=0), we have

r~m ί.(p) (Λ0, *", m, rω) = Σl Σ ^U^o, *', ̂ , f, 0) ω//Λ «•"* .
jfe±sθ |Λ|=»ι-A

Using Rouchό's theorem, it is not difficult to verify that the strict hyperbolicity

of qm(p) is equivalent to require that, for r positive and sufficiently small,

u-*r~m pm(x, ru, ξ', rω) has m real simple roots, i.e. pm is strictly hyperbolic near
N. Moreover, using the arguments of [7], Prop. 0.3 (ii), one can show that the

hamiltonian flow of Hpm in Char (P)\N has no limit points in N.

2. It will be crucial in the sequel to observe that q(p) (xQ, xn ', (f0, ξ"} has a par-
ticular homogeneity property.

Precisely, for every f>0, if p=(x0, y=(&, x"\ ξ0=0, Γ, ?/7-0), we have

» x', x", 0, f |',0) (.τ0, ^
/x, if o, ίf/7) = tm q(P) (x0, x", ξ0, Γ) ,

i.e., if Mt denote the dilations Mt(ξ0, ξ', ξ")=(tξQ, tξ', tξ"), we have

q (P) (*b, Λ lo> n = -̂  ί WOO) (̂ o, ̂ , M,(f β> D) -

2. Construction of a parametrix

From now on we will use the notation introduced in Sect. 1. We fix a po-

int pQ^N (without loss of generality we will suppose pQ=(x=Q9 £0— 0> *?)>
97— (f =(1,0, •••, 0), |/7=0)) and try to solve, microlocally near p0, a Cauchy

problem of the form:

= 0, -, m-l
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for a given /eCjΓ(y) supported near the origin (S^-i denotes the Kronecker

symbol). Following an already classical procedure, we will solve the Cauchy

problem by using a suitable class of Fourier integral operators. As in [8], we are
led to consider operators of the form:

- e(Xΰ,y, a,

acting on/eC7(y), having a suitable phase φ and amplitude e.

Since φ and e will not be classical symbols, we first fix the corresponding no-

tation. Let VdRv be an open set and let Γc/2Λ\0 be a conic nieghborhood

of (£'=*!=(!> 0, ",0),r'=0).

By S"*'*(Fxr; M), μ, &eΛ, we denote the class of all functions φr, ?', £")e

C°°(FxΓ) such that the following inequalities hold:

1 9? θ? θgr *(*, r , ro i < ( i r i + 1 r i rlβ/l Hβ//l A-1*"1 (*, *) , * = (r, ro ,
( I & / / I 2 J \l/2

ιg ' + - ) - The notation^ means that the left hand side
M e h l x

is dominated by a positive constant times the right hand side on every

F'XΓ'CΓXΓ, for \η\ large.

When Y=R\ϋ we simply write Sμ-*(F; M) (cfr. [2] for further details).

We also denote by OPSμ'*(FxΓ; M) (resp. OPSμ'*(V; M)) the related class of

pdo's. We will use phase functions φ of the form

(2.1) φ(x»y, η} = <*',

with φw(x0,y, -η)^Sl'\UxG\ M), where U is some neighborhood of the origin

in X and GcΛM\0 a suitable conic neighborhood of (|'=^1,f
//=0), φ™ real

valued. On φ(l} we will impose the condition

|det

when (*o, y, 77) e Ux Gτ, for T large, GΓ= {η e G | | η \ > T}.
For the amplitudes, we will look for symbols e(x^y, z, η)^S0'°(VχG; M) with

Our first task will be the construction of the phase functions. It will be con-

venient to use the following dilations in jR", -η=(ξ'> £")'•

Accordingly, a function £ will be σ-homogeneous of degree k iff g((rt(η))=tk g(η)

for ί>0 and 9?ΦO. We also put <?>=( | ξ" \2+\ξ'\ )1/2.

2(a). Eikonal equations

As first step we need the asymptotic expansion of
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(x, Dx) (β*e*.ι> e(x, 97)),

where φ is as in (2.1) and e\
We claim that, modulo terms belonging to Sm~2 m~2:

1 n
CJ 9\ />-*'<p(*.'7) P/v D ^ ^/»»^(*»1J) Λ/'V vi^ — Λ^v \7 /r>^-l- "V1

\ί-ι.Lι\ & x iΛ, ^-Jχ\ ic c^Λ, vyyy —jr \ > * X r ) >^—~ - '

In faet, it is easily verified that Dla(eiv e)=eiφ gk, where

Moreover:

e~l" A^(x, D,) D ,, Z)*β(β» e) = «-" A<£k(x, D,) /)?/

«IPI>o

with p(«, 3, v)=9>(«o, ^> •>))— φ(χ0,y, 5?)— <vχ^o. y> n\ z—y>
Therefore:

(2.3) e~» A&(xt D,) D*, D^e* e) = a&(X, V,φ) gk(x,

As a consequence, the asymptotic expansion in (2.3) is given (modulo terms
in Sm'2'm~2) by:

' «+4 ( i X $=i \ 2 /V Q^ /
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In the same way we get:

*-» Bk(x, Dy) (<f ak) ~ Σ o (b*(x, *)) (*,
o

-». -» , λ = o, ..., «-ι .

Hence (2.2) is proved. Furthermore, taking into account that Sm~2 m~2ClSm~1 m

9

by using the asymptotic expansion of the symbol p and by applying Taylor's

formula in (2.2), we can get rid of the terms which are in Sm~ltm and obtain:

(2.4) *-"<«•*> P(x, Dx) (eiφ^ e(x, 97)) =

= ±
*=0

Cm/21 m-2J

+ Σ Σ Σ «î ,r,
y = l *=o |Λ|=»-2/-*

where L.(^) - — { Σ */ -̂ -+4 ,̂ with suitable a^S*-1*"-1, j=Q, — ,'

In fact, we have:

(i) Λ«,Vrf.)=ί^,

(ii) -(Λr.

Σ ^ " [ v» r ε' ^T' \ t/ u <p i
77 I ^» ϊ ? > 77~ ) 77

• X Λ Λ.»^. x^ i Λ / / t x% c- α f+.r^nA'' \ Λ<v> ΛΛΛ' ' I f\ P Λ nafr

OXn OX ' OXn
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τ >ιp'i=2/3 ! Qξ'*

tfM^j 9θo.^Vα) ,

HM » 9£Λ 9rβ/ 8f/p" ' 9^o 9*'*1' 9*"""
ICβo,β")l-ι

1 9"VP")g Λ. 9?>(1) g, Qφ
/β" ^ ' 9^o ' ' 8*"

As a consequence (2.4) holds with

(2 4V L (e) = — 1 y1 ^

where

U ί UCp f*/ U(D \ Q{™Q'™ ' ffy
— I Xy ) ζ ) — I — .

From (2.4) we are naturally led to impose that φw satisfies the eikonal equation:

(2.5)

— <Cx" ^//N>0=0 — \x > ζ /

The following result holds:

Proposition 2.1. T/" UC.X is a sufficiently small neighborhood of the origin
and G is a conic neighborhood of ψj=^(ξ/=e1) ξ"=Q) in R"\Q of the form

G = {(r , ro
then equation (2.5) ίy solvable in UxGT,for T=T3 large, and it has m independent
solutions φf\x, ^)e5u(t/xG; M),-;=l, — , m.

Proof. We look for a solution w in the form

with ^(I)(Λ;, ω', ω/7, ̂ , Γ)eC°°(J7χΩg), where
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(£ small) and φw solves the Cauchy problem:

(2.6) IW23 m-2y

+ Σ Σ _Σ (*,«', 0) MΎ =

To prove the existence of m independent solutions of the Cauchy problem (2.6)
in Z/Xfϊg, we first observe that for #=0, ω'=eί9 2?Jr\ω"\2= 1, equation (2.6)
reduces to

(2.6)' βί%(<U,rω'')ω'/-τo*+

\.m/2\ m-2J

Σ Σ Σ «a(0,eι,
/ = ! A = 0 \<*\ = m-2j-k

where TO^

If ζ=z=Q, equation (2.6)' becomes

?,(0, τ0, *!, ω/x) = Σ 45(0, ^i, 0) ω//Λ τ$ = 0 .

Since |ωx / | =1, (ί/"3) guarantees that this equation has ̂  real simple roots in TO.
On the other hand, if ?=0 and 0<z<slί (2.6)' reduces to

- 0Σ Ϊ Σ βiίi(0, ^i, 0)
y=o k=o \a\=m-2j-k

(2.6)"

which is equivalent to

q(O, -3>, el9 —) - CΣ] Σf Λ Σ2. î;?*(0> *ι> 0) (—)* (—)* = °

By assumption (H4) this equation has m real simple (smooth) roots in -̂  for any

(
// \

0, ^,-^—),/=!, •••, m, so (2.6)" has m real simple roots in TO of
z /

the form .s λy ί 0, el9 ̂ — \

By using a compactness argument, it follows that (2.6) has m real simple
roots. Hence, by applying a version with parameter of a classic result (see Th.
6.4.5 in [5]), it is possible to construct m independent solutions of (2.6), say
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φγ\ /=!, •••,#&. Clearly, for anyj, the φW corresponding to φ(^ solve equa-
tion (2.5) in UxGT, where

We leave to the reader to verify that φγ\j=l, •••, m, belong to 5u(Z7xG; M).

Since aV^^^i 7> we get |det (9V^(^ *)) | >g>0 for fo η)<=Uχ GΓ,
8*ί'8K' ° \ 8*ί'8K' / v ^;

V/=l, ...? /ft (by possibly shrinking C7).

We observe that the phases φ/s, which are the main technical tool in the
construction of the parametrix, are neither homogeneous nor σ-homogeneous.
On the other hand, for a precise description of the singularities of the parame-
trix we will need other phases which take care of the propagation within N and
on the simple characteristic set of P.
We are led to solve the following Cauchy problems :

( [m/2l m-2j /Λ fΛ1) \* /ΛifΛ 1 ) \k

Σ Σ Σ ^K*,r,0) ?- =0

. . v ~«» I- "" 8Φ(1)

(2.8) £. ,„£_,

(2.9)

By putting as in (2.1)

ψ(*. ,) = ψ(1>(*, ,)+<*', ?'> ,
we have the following existence result:

Proposition 2.2. If U, G are as in Prop. 2.1, the equation (2.7) (rap. (2.8),

(2.9)) are solvable in UxGT (resp. UxGτΓ\ {|/7Φθ}),/(9r Γ-Γε large, and each
of them has m independent solutions ψφ(x, 77), Φγ\x, η), Ψ^^ rj)yj=^ly •• _,m,

respectively. Moreover, ι]rγ\x, η),j=l, •• ,m) are σ-homogeneous symbols of degree

1 in Sl \UχG\ M), whereas Φf\x, η), Ψ^I}(Λ:, η)>j=^> •••, w, are positively hom-
ogeneous symbols of degree 1 m S\UxGf} {

Proof. If ^^1}, y=l, •••,»/, are the m solutions of (2.6) we found in Prop.

2.1, it is easy to verify that
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*?>(*, *) = <v> <W (*, |jpp ̂  -̂ , o), y = i, -, m,
solve (2.7) in UχGτ, whereas

Φ^I}(Λ, 77) = I ζ" \ φ(^ (x, ^ , -̂ -, 0, -L^

are defined in UχGτ for £"ΦO and there they are solutions of (2.8) and (2.9)

respectively.

It follows from the definition that ψ>f\xy -η) are σ-homogeneous symbols of

degree 1 belonging to Sl \UxG\ M), while Φγ\x, rj) and Ψ$υ(Λ?, 97) are homo-

geneous symbols of degree 1 in S\Ux G Π {?'7ΦO}).

We now show how the phases ψ and Φ are related to φ on suitable subsets

of UxGT.

Precisely, we have the following:

Corollary 2.3. Under the same assumption of Proposition 2.2, we have:

(0 φfa *) = ΨX*ι Ύi]+^\ p'j(x> η)

/ \2

where p}(x, ?)= , pK^ ?) ^ r̂̂ V estimates of type S0>0 z'w «wy σ-conic set of the

(if)

; (̂  ?y)— '^J σ>(ΛJ, 97) ^^π^y estimates of type S0'"1 m any σ-conίc set of the

Proof. Using Taylor's formula at f— 0 we get:

j(*,7) with p<eS° °([/xG;M).

Since 5 _ verify estimates of type S°'° on every set

On the other hand, on any σ-conic set of the form

Γ"= {(*, 77) e ί/X GΓ | I ξ" 1 2>c/x | ξ'\ } , by the uniqueness of the solutions of the

Cauchy problem (2.6), we can also write

r r ιrιv2 i
- --
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Application of Taylor's formula at #— 0 yields

for some σ] e S° °( t/ X G M) . Since verifies estimates of type S° -1 on Γ",

claim (ii) follows. ' ̂  '

It will be useful to considerall the φ?\ ψ<1}, Φ^, Ψ^,/^!, •••, m, as smo-
othly defined on the whole t/xG, trivially extending them as 0 in ί/xG when

\1\<T.

2(b). Transport equations

If φj is one of the phases determined in Sect. 2(a) and eeS0'0, from (2.4)
we get:

(2.10) e~iφJ P(eiφJ e) = L(

p

j\e)+R^(e) on 17 x G ,

where /#> is the first order operator (2.4)' with φ=φ , and jR(/): S° °ι->Sf'M-1 'w.
Let us observe that, possibly after shrinking U and G, we can suppose that the

o

coefficient a0 of - in L(

p

i} is different from zero on C/χGΓ, as follows by ob-
9#o

serving that from (2.4)' we have:

<Φ, r, n =
Cm/23 m-2/

= Σ Σ Σ *&(*, ω'» 0)
y = 0 ft = l 'Λ\=m-2j-k

which for Λ:=0, ω'=ely #2+ |ωx / |2=l and ζ"=0 reduces to

(2.11) Σ Σ Σ «#i(0, βlf 0) j
y=0 * = l \Λ\=m-2j-k

Since the roots in TO of equation (2.6)x/ are simple, (2.11) is different from

zero and, as a consequence, a0(x, ξr, |?//)Ξ>£<0?)>W~1 on UxGT if [/ is a small
neighborhood of the origin and G is contained in the set described by (ξf, ξ")

when X = , l , , belongs ,o

Ω8 = {(ω'; ω", x, ζ) e S"-*-1 X 72* X R X Λ |

|ω'-«

with a suitable small £.
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Let us fix some notation. If V= {(XQ, y, #) | (x0, y) e t/, (0, z) e U} , we put

Γ= Fx G, 8Γ= {(y, *, 7) | (0, y, *, 97) e Γ} and

r*'Γ = r n {(* = fa, j), *, * = (r ,

In this section we will look for suitable amplitudes efaztf) e S° Q(R2n+1 X Λ"\0 M),
with supρ(£y)cΓΓ, for any j=l, •••, /ft. We will construct every 0y as a sum of
two amplitudes.
More presisely we have the following result:

Proposition 2.3. If T is sufficiently small, ω is a small neighborhood of 0 in
Rn+l, c, T are large enough, for any k(y, z, η)^SQ supported in a small neighborhood

of (0,0,f =^lf|
//=0)=(0,0,9) in 8ΓΓ, there exist ^e50 0(Λ2Λ+1χβw\0; M),

supp(iy)cΓΓ and F,.eS°(β2n+1X/r\0), supp(Fy)cΓc'Γ

jy-l, ••-, m, such that
satisfies

To prove Prop. 2.3 we need two preliminary results.

Lemma 2.4. If Γ w s/n#// enough, £>0 w ί/«β//, y e {1, •••,///}
then, for any f<^Sm-l>m-l+h(R2n+lxRn\Q\M}, supp(/)CΓΓ, and for any
e(ΞS° h(R2* X Rn\0 M), supp (?) c 9ΓΓ, there exists e e S° h(R2n+1 X βΛ\0 M)
supp (^)dΓΓ,

Proof. By dividing the coefficients aiy i=Q, * ,p and c of the operator L(

p

i}

for <?7>wί~1, we are led to study a first order equation with respect to x, with
coefficients in S°'°(UχG', M). We must verify the possibility of solving this
equations globally with respect to ξ.

Let us observe that it is possible to express &i=^ηyl"m a{, i—Q, β ,^, c=(ηyl~m c,

as C°° functions of x and of the parameter λ=( —-—, -̂ —, J-^J—, ^' ); to be
v I ξ I 0?> <^7> 15 I '

more precise, 5f (Λ?, λ), c(x, λ) are C°°(ί7xΩg), 6>0, where Ωg is the set described

by λ when ξ varies in Gτ. As we noted at the beginning of this section, we can
also suppose that άQ(x, λ)φO when (#, λ)e t/xΩ8.
By integrating the Hamiltonian flow starting from xQ=0, when U is sufficiently

small, we get a diffeomorphism %: (Λ, X)I->(Λ?O, #', ^(ΛP, λ), λ), from C/xΩε onto
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/ ε' K" I*:'!1/2 /rΛ \
its image, such that *<'(*, τ|rr, ^-y '* ' , y^yj, i=l, -, ί are in

SQ \UχGτ]M) and verify |det(^)| >£> Of or (*,,?) <Ξ[/χGr. Moreover, in
v Qx'i' /

A ^ A O

these coordinates, the vector field - -f- Σ ^ό"1 # « - is transformed into — .

In fact, assuming that a cutoff function with respect to x" is applied to the coef-
ficients &Ql άiy /—I, ~,p and putting σ= (#', λ), we obtain the system

with Λ?0=ί, F=(ά^ άly — , ^o"1 ̂ ) and /?(*, */x, σ)=0 when |*/x| >C.
Thus, for |ί| <Γ, there exists CΓ>C such that */x(ί, */7, σ)=-*/x for \x"\ >CT.

On the other hand, when |Λ?"|^CΓ, since — - (0, */7, σ) = /^, the map
OΛ

x" -> x"(t, x", σ) is locally invertible for \t \ <, T for some
Finally, we observe that if fεΞSQ h(R2n+1xRn\Q', M) has sufficiently small sup-

port then / defined by /(%(*, η))=f(x, 97) still belongs to SQ h(R2n+1χ JT\0; M)
and that exp^1 c) is in S* *(Ux G; M), because αj1 ceS° °(C7χ G; M).

We can thus construct eeSM(β2n+1χβw\0; M), supp(έ>)cΓΓ, satisfying (2.13).

For the next result, we first need a definition.

DEFINITION. If g eS", we say that g is "flat" on M iff

We have:

Lemma 2.5. I f T is sufficiently small, cy T are sufficiently large and £>0 is
small, then for any h^Sm~1~t(R2n+1xRn\0) flat on M, supp (A) C Tc>τ, ίAere <

rGS-'(R2Λ+lxR*\Q)flat on M such that

"ίφ P(έ?ίφ r) = A wfoώίfo α ίym&o/ m Sm~2-* flat on M, if \XQ\

for any t^Z+, where Φ is any of the Φy s in Proposition 2.2.

Proof. We have to verify that, in spite of the singularities of the function

Φ for £"ΦO, it is possible to perform the classical construction by means of
flat symbols. Let r e S -*(R2n+l X Rn\0) be flat on M. We claim that :

x, Dx)(eiφr) = pm(x, V»Φ)r+L(r) modulo a symbol in S^2"* flat on M,
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where I-iίίX — +c]
I U=o QX. )

is the usual transport operator i.e.

In fact, by considering the expansion (2.2) corresponding to Φ and proceeding

as in Sect. 2(#), we have

(i) χ«, v,Φ) _ tJf. v,Φ)+Σ ,, S._.««* v,

-

(ii) -(*, V,Φ) = s(«, V^+S"-2, vi= 0,
9£, 9&<

It comes out that the αjs, i=Q, ••-,/*, belong to 5m"1'w"1(C/xGΓ), while

By the same kind of arguments used in the beginning of this section, we get

I "o I > 1 177 1 "-1. Hence, since | f/7 1 « h I ̂  on Γ^Γ, we get K I > M "-̂ S'1

on any σ-conic set ΓC'Γ.

Let us point out thta£M(#, V^Φ)=0.

In order to establish the global sovability with respect to ξ of the equation

L(r)=h, for x sufficiently close to 0, we can go on in the same way as in Lemma
2.4. Putting ai=\ξ"\l-mai,i=Qy—,n,Z=\ ξ" \*~mc and integrating the Ham-
iltonian flow starting from x0=09 we obtain the existence of a diffeomorfism

O ft O Λ

transforming the vector field - + Σ ^o"1 ,̂- - into - on
QxQ y-i dXf QxQ

Ux(Gn{^(^9n)^Rn\^\\^\2>c^\, \ξ'\>T})

for a suitable choice of a neighborhood U of the origin and of the conic set G.

Then for any t EΞ Z+ and for any λeS*-1-'(Λ2ll+1x,R'l\0) flat on M with

supp(Λ)cΓc'Γ, it is possible to find a solution r^S~* flat on M of the usual
transport equation L(r)=h, with r\XQ==Q=0.

Proof of Proposition 2.3.
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By a well known argument, using (2.10) and Lemma (2.4) we can find a
symbol ^eS° °(/22Λ+1xΛΛ\0; M) with supp(*y)cΓΓ such that for a suitable
neighborhood ω of the origin

with/,e Γ\Sa-ί k(ωχR"xR*\Q> M)=Sm-1 °°(ωχRaxRΛ\0, M),supp(/,)cΓΓ.
A^O

If %eC7(Λ), X(t)=l when t<c/2 and %(ί)=0 for t>c, c large enough, we write

( i £7/ 1 2\l g ^ j/y belongs to S~°° since

\ξ I

(being I Γ I 2 ̂ | IΠ on supp (%)).

On the other hand, g} is of class Sm-l(R2n+1xR"\Q)), flat on M, with
supp (gj)clTCtT since

To conclude the proof of Proposition 2.3 we need to solve

e-iφiP(eiφifj] = -̂ y mod 5'°°Γ e-iφiP(eiφi

lf,U-o =

We first observe that, given a symbol ̂  of class S9(R2*+l X βn\0), v e Z, flat on M
with supp (£)CΓC'T, for c sufficiently large, then by Corollary 2.3 (ii), we have

ge«j = (geiσjy*J Vj=l, ,m

Then, by Lemma 4.33 in [8] Chapter III, hj=gei<rj is still a symbol of class

Sf(«2β+1xΛ*\0)) flat on M.
By applying Lemma 2.5, we can find a symbol ̂ ;)eS0 flat on M such that

ί e-'*jP(e**JrP) = — ̂ σ^/ mod Sw~2 flat on M
1 r(j) I _ A
( ro I *-o — u
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Then Fiy)=β-ίβMy) is still a symbol of calss 5° flat on M such that, modulo

S~°°, we have

«-2 flat on M

By repeating the same argument, we can construct an asymptotic sum
with Fiy)eS-* flat on M such that Proposition 2.3 holds.

2(c). Solution of the microlocal Cauchy problem

Consider now the Fourier integral operators

= J , *, θ)f(z}dzdθ ,

where the phases φ^ are given by Prop. 2.1 and the amplitudes es by Prop. 2.3.
It is important to observe that we are still free to choose βj\XQ=Q=k since we
only required &eS°, suρρ(β)c8ΓΓ.
It is clear that, since φ^y, θ) \ JCo=0^<y, <9>, DζEj\XQtm0(r=Q, •••, m— 1) are pseu-
dodiίferential operators having principal symbol equal to (3^0^>y(0,jy, θ))r k(y, z, θ).
Moreover, we can find a conic neighborhood of (0, ή) in RnχRn\Q in which the

Vandermonde determinant det [(dXQ<pj(x, θ) L0=o)r]r-o.....«-ι is elliptic in the class
j = l',—\m

Sm(m-v/2,m(m-u/2^ j)ecause near (0, ^), taking into account the independence of the

9>y's, we have

I det [8,β9>/*, θ) L0=0) Ίr:o,::,r 1 1 =

= IΠ (9,0̂ -3,o^Γ(0, i" θ) I >const<0>^-1>/W'''-1)/2 .

By using this ellipticity, we can find a combination of the "pure" solutions Ej
by means of pdo's on xQ=Q acting on the right hand side, in order to suitably

adjust the traces of the operators £",-, as stated in:

Proposition 2.6. If γ is a sufficiently small conic neighborhood of (0, rj] in
Rn X βn\0, for a suitable choice of k(y, zy θ) there exist
σj(y, D,)eOPS1-w'1-'» (/r χ/Γ\0; M ),j=l, -, m such that

- 0 , Vr = 0, -., m-l .
>

(see R. Lascar [8], Chapter III, Prop. 4.38).

From Prop. 2.6 it follows that the operator E=*Σ E}= Σ EJ<TJ solves (modulo
C°°-f unctions) the Cauchy problem:

= 0,
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for every /eC7(F) (actually for every /e£'(F) with J#F(/)c«y).
We can rewrite the kernel of the operator E as:

(2.15) E(*0, y, *) = Σ £/*0, y, *) = Σ ^(* ')-^°'<''))*, (*, *,
y=ι

where βj^S1'1**1 m vanish outside a closed conic neighborhood Γ of (0, 0, η) in
R2»+1χR"\Q.

If we want to construct a microlocal right parametrix for the operator P, the

usual procedure consists in applying the DuhameΓs principle. To this purpose,
we first observe that the whole preceding construction which was performed
taking xQ=ϋ as the initial surface, can be actually done for all the initial surfaces
x0=s with |$| small enough.
More precisely, we can construct for | s \ < 0̂̂  T a kernel

(2.16) E(s, x, y09 *) = E;(s, *0, y, *) = Σ

where φj(s, x0,y, θ)=ζx'y θfy+φ(^(sy x0, y, θ) and ^^solve the eikonal equation

in (2.5) with <p< %*o>^0)U- = <*" ̂
βn\0; M), satisfy equation (2.12) with <pj=<pj(s, x, yQ9 θ) (and suitable initial

condition at xQ=s), so that the operators jB(ί) = Σ Έ/W satisfy (modulo C°° func-
tions) the Cauchy problems

1 DS (̂ί)/ |IO=. = 8r,a.J, r = 0, -., «-l .

At this point, by applying the DuhameΓs principle, we define (microlocal) for-
ward and backward parametrices for P

(E+ /) (*) = * Γ° Ws)(E(s)°Ύ.oA)(f)(x)ds ,

where χeCΓ(J2), supp %c]—^Γ0, J5Γ0[, %=1 on >|^JΓ$<^0, ^4 is a fixed
compactly supported pseudodifferential operator with support near p0 and γ,
is the restriction operator to xQ=s. Since the normal directions to these surface

are not in WF'(A)y the operators γ^A are well defined for every f^6'(X)
with WF(f) concentrated near p0.

3. Calculus of the wave front set of the parametrix

Let us consider the kernel E(xQ,y, z) in (2.15) as an element of 3)'(Rn+lX

Rn). Then WFf(E)CL U WF(Ej) and by the same arguments as in R. Lascar

[8], Chap. Ill, we get:'=1
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WF'(E,)c:\(x,ζ, ^,
I ϋη

ξ = (*, 7) U (*, ξ, *, ,)eΓ*Λ»«\Ox Γ*β"\0|£0 = Γ = 7" = 0,

x> = */, f = ,' and 30eβ"\0, θ' = ,', *" = ̂ (*, (9)} U
σc/ /

U {(*, ξ, *, 57)eΓ*β»«\Ox Γ*β"\0|£0 = f" = ?" = 0, *'=*', ζ' = ,'

and 3^eΛ"\0, ^' = ,', (9"ΦO s" = ̂ /(*,

In the same way, for the forward microlocal right parametrix E+ defined in

(2.17), we have WF'(E+)CU WF'(E<P), where

By regarding the kernels βj(s, xa, y> si) as elements of ^)'((βχβ"+1)χβ"), we
find:

s, x, σ o, f), (*,
097

,>,*), σβ = (ί, *,,)=-£, U

U \(s, x, <r0, ?), (2, 97) I s<xϋ, ξ0 = σ o = £" = i?" = 0, *' = a',

f = ,' and 30eβ"\0: θ' = 7', *" - ̂ (ί, *, β)} U

U {(*, *, o o, ξ), (z, η)\s<xΰ, ξa = o o = r = "̂ = 0, *'=*',

f = η' and 3^eβ"\0: ί' = ,', ^'Φθ, *" = |̂ (ί, *, θ)] U
9σ J

U {(*, *, σ0) f), (ar, 97) I * = xa, η" Φ 0, j = *, ξ' = V, ξ» = V, f „ = -σ0} U

U {(*,*, <70, ξ), (a, v)\s = xα, ξβ = σt=ξ" = ̂ " = 0, y = z, ξ' = η'}.

As a consequence, for the WF(E(4)) we obtain:

= {(*, ξ), (X, |)| I ̂ 0 \<X{, and

either Λ:O>*O and (5?0, *, |0-|0, ,), ( y, tί)

or Λ;O = xα and

or
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In particular, (χQ9 x, μ—ξQ, £0— μ> rj), (z, v))^WF'(Ej(x^) means x=X9 ξ=ξ.
For our choice of the operator A in (2.17), the terms x0=XQ η=η=Q, £o=?o do
not give any contribution to WF'(E+) and we can conclude that there exists a

conic neighborhood Γ of p0 such that

'/(r) u Δ*(Γ)
with:

C+(Γ) = U (*, ξ), (x, f)e=ΓxΓ|*0>*β, r ΦO, J =

y=ι
i(r) = ϋ (*, a (*,f)erxπ *„>*„, ?0=io=r =r'=o, *'=*',

'=5' and 3^eβΛ\0: θ' = ξ', x" = >ft, *, 5) ,

? = ί7 and

Δ*(Γ) being the diagonal in ΓxΓ.

The relations C+, C+, C+r have the following geometrical interpretation:
(i) (Xy ξ)y (Xy ξ)^C+ if (Xy ξ) belongs to the forward null bicharacteristic of

p starting from (xy ξ) (i.e. #0>^o);

(ii) (x, ξ), (X, ξ) e Cς(resρ. C'+') if (x, ξ) and (X, ξ) belong to the same leaf

FdN and there exist (λ0, λ")e Tfx^(F), (X0, X
7/) <Ξ T%tί>(F) such that

(x, ξy X0, λ
x/) and (ic, f, X0, X) are connected in T*(F) by an integral curve

of i^(resp. ̂  J contained in ί-1(0) (resp. jfi^O)) with #0>^o
Clearly, similar arguments give the description of the wave front set for the

backward right parametrix £"_ changing the relations C+, C+, O'+ into G_, Ci,

Cl7.
We observe that PE±(f)=f, V/e^-Y) with JFF(/)cΓ, modulo smooth func-
tions.

4. Proof of the theorem

Let us suppose that P verifies assumptions (f/i)— (ί̂ ), u^3)'(X) satisfies

Λ=/with/e^(JiΓ), Po(=N\WF(f) and (0.1)+ holds.

As we already observed in remark 3, *P verifies the same assumptions of P on

—N={(x9 ξ)\(x, —ξ)^N}. Hence we can use the same arguments of the

previous Sections to construct microlocal right parametrix E± for Φ, near the

point —pQ=(x, — I). It is easy to verify that, in some conic neighborhood Γ
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of p0 we have:

WF(E±) n (-N) n rc(-Ci(Γ) u -cy(Γ)) ,
where — Cί (resp. — Cq/) is the relation obtained from C^ (resp. Cq/) by chang-

ing the sign of the fiber variable in both terms.
Passing to the transposed operator *E±, we get microlocal left parametrices for
Pwith

WF'(Έ±) = -WF'(E*) .

Now, if ω is a conic neighborhood of p0 in which (0.1)+ holds, by using standard

cut off procedures, we can suppose that WF(u}CLω and WF(tE^Pu—u)Γ\ω=0.
Arguing by contradiction, let us suppose that pQ^WF(tι)\WF(f) i.e.

Then, since simple bicharacteristics for P do not have limit points in Ny it would

exist p'EEΛΓnωnB^(/),yΦp0, such that (Po, p')ePFF'('£L) i.e.

ί(ft) u c-(p0))\{p0})c WF(U) n ω n ((C'+(Po) u

which is impossible.
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