

Title	Investigation on synthesis and structure analysis of twisted graphene on graphene/SiC template
Author(s)	姚, 瑶
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/101636
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

論文内容の要旨

氏名 (姚 瑶)	
論文題名	Investigation on synthesis and structure analysis of twisted graphene on graphene/SiC template (グラフェン/SiCテンプレート上ツイストグラフェンの合成と構造解析に関する研究)
論文内容の要旨	
<p>Twisted graphene with randomly stacked layers has attracted significant attention due to its unique electrical and optical properties, stemming from its linear band dispersion near the Fermi level and its ability to minimize substrate impurities. Traditionally, twisted graphene was fabricated by transferring monolayer graphene, produced via mechanical exfoliation or chemical vapor deposition (CVD) on copper, but contaminants generated during transfer processes could degrade device performance. Thus, clean crystal growth methods for large-area synthesis are essential.</p> <p>The catalyst-free CVD process on graphene templates offered a promising solution for high-performance twisted few-layer graphene (tFLG) synthesis. This vapor-solid growth method favors random stacking of graphene layers, as it is challenging for graphene nanoflakes to rotate on a solid surface during nucleation. However, macrostructural defects, such as wrinkles and impurities from the transfer process, hindered the vapor-solid growth, affecting the uniformity and crystallinity of the resulting graphene. To address these issues, this dissertation explored strategies for synthesizing high-quality twisted graphene on graphene/silicon carbide (SiC) templates using ethanol-based CVD.</p> <p>In the first part of the dissertation, the overlayer growth of graphene on epitaxial graphene/SiC was studied across a temperature range of 900–1450 °C. Atomic force microscopy (AFM) and scanning tunneling microscopy (STM) revealed that graphene islands grown at 1300 °C formed hexagonal twisted bilayer graphene with high crystallinity and random stacking angles. The growth mechanism for these randomly twisted structures was also discussed. Increasing the growth temperature above 1400 °C resulted in circular graphene islands, but moiré patterns with varying periodicities indicated the presence of multiple graphene domains with different twist angles, caused by high nucleation density during the initial stages. By analyzing multiple factors, the underlying mechanism that ran counter to conventional thermodynamic trends was elucidated.</p> <p>The second part investigated a sequential thermal (ST) process to reduce nucleation density. This method involved limiting the exposure of graphene/SiC templates to ambient air before CVD growth. AFM analysis revealed that the ST process significantly suppressed nucleation density compared to the air-exposure (AirE) process under identical growth conditions, likely due to the improved cleanliness of the template surface. A comprehensive temperature study showed that nucleation behavior drastically changed above 1300 °C, potentially due to etching effects. Raman spectroscopy confirmed the successful synthesis of twisted graphene, with a high proportion of twisted structures. To enable nucleation on the improved surface cleanliness below 1300 °C, an increased carbon source supply was required. However, this led to the formation of multilayer graphene islands, which limited the large-area layer-by-layer growth of tFLG.</p> <p>The third part introduced a carbon dioxide (CO₂)-assisted etching process to create active sites on the graphene/SiC surface for enhanced nucleation in ST process. Optimized etching conditions (1150 °C, 80 kPa, 1 minute) facilitated the growth of twisted monolayer graphene on etched graphene/SiC templates. The CO₂ etching process induced template defects and holes, promoting better nucleation during subsequent CVD growth. Structural analysis confirmed the regrowth and successful monolayer graphene growth under optimal conditions. This study also explored the impact of etchants during CVD growth, presenting a two-stage growth approach for uniform large-area tFLG synthesis. The CO₂-assisted etching process activated the surface, enabling reliable nucleation of twisted graphene on a clean template and laying the foundation for layer-by-layer growth.</p> <p>This dissertation offered innovative methods for synthesizing high-quality twisted graphene on graphene/SiC templates. It developed a catalyst-free CVD approach for high-crystallinity, randomly stacked twisted graphene, presented the ST process to control nucleation density, and introduced the CO₂ etching process to enable monolayer graphene growth on clean surfaces. These findings provided a foundation for large-scale production of tFLG and open avenues for studying its physical properties and applications.</p>	

論文審査の結果の要旨及び担当者

氏名 (姚 瑶)	
論文審査担当者	(職)
	主査 教授 小林 慶裕
	副査 教授 坂本 一之
	副査 教授 吉川 洋史
副査	准教授 大野 恒秀
	(徳島大学大学院社会産業理工学研究部)

論文審査の結果の要旨

本論文は、炭化ケイ素 (SiC) 基板上に形成したグラフェンをテンプレートとした化学気相成長 (CVD) 法により、ランダムに積層した多層グラフェン (以下、ツイストグラフェン) を合成する手法について検討した一連の研究成果をまとめたものである。単層グラフェンは、特異な直線状の電子構造に由来する高いキャリア移動度や、電気・熱伝導性、光透過性、機械的強度などで優れた物性を持ち、多方面への応用展開が期待されている。しかし実用上重要となる多層グラフェンについて、最安定構造であるAB積層構造では層間相互作用が強く、単層グラフェンの優れた物性が劣化することが課題となっている。本論文は単層グラフェンの電子構造が保持されるツイストグラフェンを利用してこの課題の解決に取り組むものであり、序論である第1章と結論を含めて6章から構成されている。

序論となる第1章では、本研究の背景、目的および論文の構成を示している。まず、本論文で対象とする材料であるツイストグラフェンの構造や物性について単層グラフェンと対比しつつ説明している。さらに、これまでに報告されたツイストグラフェンの形成方法として金属触媒上CVD法、SiC熱分解法、転写法について紹介し、清浄かつ大面積での作製が課題であることを指摘している。これらの背景を踏まえ、SiC熱分解法で形成した高結晶性単層グラフェン (以下、SiC-G) 上に、転写プロセスを用いることなく、CVD法を用いて清浄なツイストグラフェン層の形成を可能とする本論文でのアプローチについて説明している。

第2章では、本論文で用いているグラフェン合成法と構造評価法について述べている。SiC熱分解によるテンプレートグラフェン形成やツイストグラフェン層成長には1200°Cを超える高温での反応プロセスが必要となる。そのために新たに構築した赤外線加熱炉を中心としたCVDシステムについて説明している。得られた試料の構造解析手法として、ラマン分光法や原子間力顕微鏡法 (AFM)、走査型トンネル顕微鏡法 (STM)、走査型電子顕微鏡法 (SEM) について概要をまとめている。

第3章では、CVD法によるSiC-G上のツイストグラフェンの合成可能性を探るため、900~1450°Cの広いプロセス温度範囲にわたって島状グラフェンの成長挙動を検証している。AFM像によるグラフェン島の形状解析に加えて、ツイスト角、すなわちSi-Gと成長グラフェン層との回転角の分布をSTM像におけるモアレ模様とAFM像におけるファセット形状から解析している。その結果、1200°C以下では望ましくない三次元の島状構造となること、1300°Cで成長したグラフェン島は六角形のファセット形状をもつ單一ドメインからなる単結晶で、下地のSiC-Gとはねじれた構造であること、より高温 (1400°C) の場合に得られるファセットを持たない円形のグラフェン島はツイスト角の異なる複数のドメインから構成されていることを明らかにしている。観測されたグラフェン島の構造や核形成密度のプロセス温度・時間依存性を説明するための成長モデルを提案している。このモデルはデバイス応用に望まれる高結晶性の単結晶・單一ドメイングラフェンをテンプレートグラフェン上に作製するための指針を与えるものである。

第4章では、試料を大気にさらすことなく同一の反応装置内でSiC-Gの形成とSiC-G上グラフェン成長をおこなう真空一貫熱 (ST) プロセスについて検討している。第3章に示す試料を大気にさらす大気曝露 (AirE) プロセスで見られる不均一な高密度グラフェン島成長などの制御性不足は、SiC-G形成後にいったん大気中で構造評価することによる表面清浄度の低下に起因すると推定される。STプロセスによる試料表面の清浄度向上がグラフェン成長挙動に及ぼす効果をAFM観察とラマン分光法を用いてAirEプロセスと対比させて解析している。その結果、1300°C以下のSTプロセスでは、AirEプロセスで問題となる局所的な不均一・高密度核生成が効果的に抑制され、大面積のグラフェン2次元島が得られること、しかもツイスト構造の形成比率が向上していることを明らかにしている。しかし、1300°Cを超えるSTプロセスでは、不均一な3次元島やピット状構造が形成され、成長挙動が不安定化することを観測している。これらの現象を統一的に説明するために、グラフェン成長だけではなく、エッチングや修復効果を組み込んだ新たな成長モデルを提案している。大面積ツイストグラフェンのスケーラブル合成に向けたSTプロセスの適用可能性を示すものである。

第5章では、STプロセスにおいてエッチング成分を添加して人為的にSiC-Gに欠陥を導入し、生成した欠陥が核形成に及ぼす効果を検証している。清浄グラフェン表面においてはグラフェン核形成頻度が低下するため、欠陥によってグラフェン核密度を制御し、層状成長に結びつけることを目指している。炭素に対してエッチング効果を持つ二酸化炭素をSTプロセスでのグラフェンCVD成長の直前に導入することで、核形成が著しく促進される現象を見出している。処理温度や二酸化炭素分圧への依存性を詳細に検討した結果、このような核形成の促進効果は比較的狭い最適プロセス条件 (1150°C, 80 Pa) 近傍でのみ観測され、より穏やかな条件では核形成頻度は増大せず、過剰な条件では基板まで浸食されてエッチピットが形成するという結果を得ている。このように適切なプロセス条件が狭い理由として、いったん生成したSiC-G内の欠陥領域が成長過程において修復される現象が進行し、その結果小さな欠陥領域は完全にされて核形成サイトとして機能しなくなるという成長モデルによる説明を提案している。さらに、最適条件で得られた単層グラフェンはツイスト積層であることをラマン分光による解析から検証している。以上の結果は、STプロセスにより清浄なツイストグラフェンをスケーラブルに製造するための基盤技術を提供し、ツイストグラフェンのユニークな物理的特性の探求と電子・光デバイスへの応用展開に結びつくものである。

第6章は全体の総括であり、本論文の内容をまとめるとともに、本論文の成果の将来展望について述べている。

以上のように、本論文は応用物理学、特にナノ材料科学の発展に寄与するところが大きい。グラフェンのデバイス応用に向けて重要な課題である無転写での多層ランダム積層グラフェン合成の基盤となる技術について確立しており、学術界・産業界での今後の発展に大きく寄与するものである。よって本論文は博士論文として価値あるものと認める。