

Title	Investigation on control of graphene interlayer interaction by nanospacer insertion
Author(s)	丁, 明達
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/101637
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (DING MINGDA)	
Title	Investigation on control of graphene interlayer interaction by nanospacer insertion (ナノスペーサ挿入によるグラフェン層間相互作用制御に関する研究)
<p>Abstract of Thesis</p> <p>Monolayer graphene has been renowned for its exceptional properties in various fields, making it a highly promising material for applications. Its unique linear electronic dispersion can lead to high carrier mobility and wavelength-independent uniform light absorption. However, in the multilayer AB-stacking graphene, the strong interlayer interactions, result in a parabolic electronic dispersion that undermines the performance. It is essential to reduce interlayer interactions and preserve the intrinsic property of each layer. Moreover, the porous 3D sponge graphene structure has promising applications in energy storage, environmental remediation, and sensor technology due to its high surface area, conductivity, and mechanical resilience. The material's porosity and interlayer spacing critically influence its performance. Understanding and optimizing the microstructure are essential to tailor the material's performance.</p> <p>The strategy of this dissertation was to reduce the interlayer interactions of multilayer graphene with the insertion of nanomaterials, such as carbon nanotubes (CNTs) and nanodiamonds (NDs). These nanospacers can increase the interlayer distance, weakening the interlayer coupling and altering the properties of the stacked graphene layers. To obtain a systematical understanding of the phenomena and mechanism, both experimental study and theoretical analysis were conducted. The simulations can overcome experimental limitations in illustrating microstructures and difficulties in controlling variables. The study also accumulated experience in increasing the monolayer ratio in the graphene sponge structure.</p> <p>The first part of this dissertation focused on the effect of CNT insertion in multilayer graphene. Graphene-CNT (Gr-CNT) stacking structures were experimentally fabricated via dry transfer, enabling precise control over the layer number and CNT insertion. Atomic force microscopy (AFM) and Raman spectroscopy confirmed the increase in interlayer distance and reduction in interlayer interaction, respectively. Molecular dynamics (MD) simulations further explored the impact of CNT diameter and inter-tube distance on the microstructure. Two distinct stable configurations: separation and adhesion were observed, determined by the CNT geometric parameters and the difference in potential energy.</p> <p>The second part investigated graphene-ND (Gr-ND) stacking structures. Unlike CNTs, NDs can provide point-like contact, minimizing the impact on graphene's intrinsic properties while the larger size can further increase the interlayer distance. The Raman spectroscopy and AFM experimentally verified the reduced interlayer interaction and layer separation. The MD simulation and continuum model analysis were conducted to predict the critical inter-ND distance for the interlayer separation.</p> <p>In the third part, the property modulations of Gr-CNT and Gr-ND structures were studied. Firstly, the mechanical behavior of Gr-CNT structures was studied from a microscopic view. MD simulations studied the effect of CNT wall numbers and initial configurations on the stable structures. The loading-unloading curves exhibited hysteresis and energy dissipation due to the bi-stable nature of the system. The dissipation was experimentally verified in multilayer Gr-CNT. Secondly, the electrical transport measurement was experimentally implemented for the Gr-ND stacking system. The non-linear I-V curve was obtained which came from the tunneling current through ND spacers. Such nonlinearity has potential applications for physical neural network devices.</p> <p>In this dissertation, the multilayer Gr-CNT and Gr-ND stacking structures were separately studied by combining experiment and simulation. The spacer effect on the interlayer interaction and microstructure was illustrated. The differences between the two spacers were compared. Then, the bi-stable microstructure and hysteresis mechanical behavior of the Gr-CNT stacking system were unveiled. Finally, the non-linear I-V property of the graphene-ND stacking system was studied. The contributions of this dissertation include the layer-controllable fabrication method, atomistic insight, and property adjustment. These studies advance the understanding of interlayer interactions in multilayer graphene and pave the way for optimizing graphene-based materials for high-performance applications.</p>	

論文審査の結果の要旨及び担当者

氏名 (DING MINGDA)		
論文審査担当者	(職)	氏名
	主査 教授	小林 慶裕
	副査 教授	小野 寛太
	副査 教授	桑原 裕司
	副査 教授	森川 良忠
	副査 教授	根岸 良太 (東洋大学理工学部)

論文審査の結果の要旨

本論文は、多層グラフェンの層間相互作用について、ナノ材料をスペーサとしてグラフェン層間に挿入することによる制御効果の検討を実験と理論計算の両面から進めた一連の研究成果をまとめたものである。スペーサ材料には、グラフェンとの親和性から、ナノ炭素材料であるカーボンナノチューブ (carbon nanotube, 以下CNT)・ナノダイヤモンド (nanodiamond, 以下ND) を用いている。単層グラフェンは、特異な直線状の電子構造に由来する高いキャリア移動度や、電気・熱伝導性、光透過性、機械的強度などで優れた物性を持ち、多方面への応用展開が期待されている。しかし実用上重要となる多層グラフェンでは、強い層間相互作用のためにこれらの優れた物性が劣化することが課題となっている。本論文はこの課題の解決に取り組むものであり、序論となる第1章と結論を含めて6章から構成されている。

序論となる第1章では、本研究の背景、目的および論文の構成を示している。まず、本研究で対象とする材料であるグラフェンの物性や典型的な成長方法および応用技術について紹介した後、最安定構造であるAB積層の多層グラフェンでは強い層間相互作用のために単層での電子構造が変調し、それに伴い優れた物性が失われる課題について指摘している。それを踏まえ、グラフェン層間にナノスペーサ材料を挿入して層間相互作用を抑制し、多層でありながら単層グラフェンの物性の発現を可能とする本論文でのアプローチについて説明している。

第2章では、本研究において用いているスペーサを層間に挿入した多層グラフェンの作製方法として、乾式および湿式の転写法やナノスペーサ材料の分散方法について説明している。得られた試料の構造解析手法として、ラマン分光法や原子間力顕微鏡法 (AFM) について概要をまとめている。さらに分子動力学 (molecular dynamics, MD) 法でスペーサ挿入多層グラフェンの構造をシミュレートし、スペーサ材料のサイズ・密度が微細な積層構造に及ぼす効果を解析する手法について説明している。

第3章では、ナノスペーサ材料としてCNTを取り上げ、多層グラフェンへの挿入効果について検討している。実験的に層数とCNT挿入量を精密に制御するため、乾式転写法によって積層構造を作製する手法を確立している。得られた試料の構造をラマン分光法とAFM法で解析した結果、高密度のCNT挿入によってグラフェンの平坦な構造は維持しながら層間距離が増大し、層間相互作用は減少することを明らかにしている。さらに、挿入するCNTの密度を減少させ、CNT間隔を概ね600 nm以上に拡大すると、CNT間で架橋した平坦構造を保つことができず、グラフェン層が接触してスペーサとしての効果が失われる現象を見出している。このようなスペーサ挿入積層構造の微視的な安定性について、MDシミュレーションによりCNTの構造パラメータ、すなわち径、密度、配列様式の効果を系統的に解析している。その結果、この系での2種類の安定構造、すなわちグラフェン架橋状態が維持された層間分離構造と上層が下層に吸着した接触構造となる条件について、これらのCNT構造パラメータとポテンシャルエネルギー差に依ることを明らかにしている。

第4章では、スペーサ挿入積層構造についてより深く検証するため、線状で支える1次元物質のCNTに代わり、点で支える0次元のNDをスペーサ材料として層間に挿入した場合に取り組んでいる。CNTの場合と同様に、ラマン分光法・AFM法による実験的なアプローチとMDシミュレーションの両面から検討をおこない、グラフェン層間の分離と層間相互作用の抑制を実証し、NDの面密度とサイズが系の安定性を決定することを見出している。さらに、スペーサ挿入積層構造の安定性についてより大きなサイズを取り扱うために、MDシミュレーションよりも計算負荷の少ない連続体モデルによる計算手法を開発している。このモデルにより、NDのサイズ・密度と架橋構造の形態安定性の関係を明らかにし、グラフェン層の分離に必要な臨界ND間距離 (密度) の計算を可能としている。ここで得られた結果は多層グラフェンの材料特性向上のための構造指針を与えるものである。

第5章では、スペーサ材料の多層グラフェン層間挿入による物性変調について、第3, 4章で得られた結果を系統的に拡張するとともに、応用展開に向けた試みについて述べている。CNT系について、径・層数が構造安定性に及ぼす効果の検討を進め、2層CNTの場合に円筒状構造の変形が抑制され、臨界CNT間距離が拡大することを明らかにしている。さらに薄膜の機械的特性をシミュレーションと実験から調べた結果、架橋構造と接触構造の間で多安定な挙動となり、負荷の印加・解放時の歪みに強いヒステリシスが観測されることを見出している。ND系について、NDスペーサを介したキャリア輸送特性を検証したところ、電圧・電流特性に強い非線形性を観測している。本結果で得られた非線形性をナノ炭素系のランダム性と融合することにより、ニューラルネットワークデバイスへの応用展開が期待される。

第6章は全体の総括であり、本論文の内容をまとめるとともに、本論文の成果の将来展望について述べている。

以上のように、本論文は応用物理学、特にナノ材料科学の発展に寄与するところが大きい。多層グラフェン応用に向けて重要な課題である層間相互作用制御の基盤となる技術について確立しており、学術界・産業界での今後の発展に大きく寄与するものである。よって本論文は博士論文として価値あるものと認める。