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Abstract

Efforts are underway to improve the performance and efficiency of electrochemical
devices like fuel cells and batteries, which share porous electrodes as a key com-
ponent. The structure of these electrodes significantly affects their performance,
cost, and durability, making it crucial to control their porosity. Inside, complex
interactions between solid, liquid, and gas phases enable transport and reactions
of molecules, electrons, ions, and heat. Computer-aided design, tied closely with
mathematical modeling and optimization, plays a central role in optimizing these

electrode structures for better performance.

A strong theoretical foundation is essential for understanding the physical princi-
ples behind these optimizations. Without it, the mechanisms driving performance
improvements may remain unclear. Entropy generation analysis, based on non-
equilibrium thermodynamics, helps quantify system inefficiencies, guiding design
changes to reduce energy loss and improve efficiency. Integrating entropy genera-
tion into optimization offers insights into the trade-offs between performance met-

rics, supporting the creation of more efficient designs.

Chapter 2 begins by optimizing porosity in a two-dimensional reaction-diffusion
system to improve reaction rates using topological optimization (TO). Chapter 3 ex-
tends this to electrochemical systems, optimizing material distribution to enhance
electrode performance, using the Butler-Volmer equation for nonlinear kinetics and
comparing two optimization strategies. An entropy generation model further high-

lights system inefficiencies.

Chapter 4 develops a two-phase flow model for a polymer electrolyte membrane
tuel cell (PEMFC), optimizing its catalyst layer (CL) to boost output current density
and improve oxygen delivery. Chapter 5 introduces a pore-level optimization frame-
work that combines pore network modeling (PNM) with metaheuristic algorithms

to optimize porous reactor designs, enhancing reaction rates and efficiency.

Ultimately, the objective of this thesis is to develop innovative design methodolo-
gies that enhance the structural configurations of electrodes and porous media in
reactive-transport systems. By advancing the understanding of material distribu-
tions and transport phenomena, this thesis seeks to contribute to the development
of more efficient, sustainable, and cost-effective electrochemical energy conversion

technologies.
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Chapter 1

Introduction

Abstract

Electrochemical energy devices hold great promise for addressing the intermittent
nature of renewable energy sources, though their widespread adoption is hindered
by suboptimal performance and high costs. Identifying the optimal electrode struc-
ture is crucial for improving device efficiency. Mathematical modeling and optimiza-
tion provide powerful methods for discovering ideal structures that are not easily
achievable through trial and error. In addition, physicochemical analysis of the op-
timization process can offer a theoretical framework for understanding effective de-
sign principles. This chapter outlines the necessity for improved electrode designs
and reviews previous efforts in this area through a detailed literature survey, empha-
sizing topology optimization methods. Additionally, the discussion will highlight
other significant techniques in the structural design of porous electrodes utilizing
mathematical optimization. The chapter will also explain the insights gained from
entropy generation analysis of an optimal design, aiming to clarify what constitutes
a good design from a physics perspective. Finally, the scope of this doctoral disser-

tation will be outlined.

This chapter is partially published as:

M. Alizadeh, P. Charoen-amornkitt, T. Suzuki, and S. Tsushima. “Recent advances
in electrode optimization of electrochemical energy devices using topology
optimization”, Progress in Energy, 7 (2025): 118739.
https:/ /doi.org/10.1088 /2516-1083 /ad8abd

M. Alizadeh, P. Charoen-amornkitt, T. Suzuki, and S. Tsushima. “Analysis of
local-global entropy generation in an electrochemical system”, In International Heat
Transfer Conference Digital Library, (2023). https://doi.org/10.1615/IHTC17.440-20


https://doi.org/10.1088/2516-1083/ad8abd
https://doi.org/10.1615/IHTC17.440-20
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1.1 Introduction

With energy production being a major contributor to greenhouse gas emissions, elec-
trochemical energy storage and conversion systems are critical components in the
global shift towards renewable energy adoption. One of the primary challenges
in this transition stems from the intermittent nature of renewable energy sources,
such as solar and wind power. While electricity can be generated efficiently from
these sustainable resources, its production is subject to variations in weather con-
ditions and daylight hours. Consequently, this intermittent availability poses limi-
tations and uncertainties on a continuous and stable supply of energy. To address
this challenge, electrochemical energy storage and conversion systems serve as vi-
tal solutions. These systems enable the efficient storage of excess energy generated
during periods of high production, subsequently distributing it during times of low
generation or high demand. The incorporation of electrochemical energy devices
(EEDs), such as batteries and fuel cells, can enhance the reliability of renewable en-
ergy sources by mitigating the dependence on external factors like weather patterns.
This improvement can take various forms, including but not limited to the storage
of electricity through secondary batteries, the conversion of chemical energy stored
in molecular bonds into electricity, as observed in fuel cells, or the utilization of
surplus electricity to produce energy carrier substances and other valuable fuels or
compounds, such as through water or carbon dioxide electrolyzers. In essence, these
systems provide a means to bridge the gap between energy supply and demand,
thereby facilitating the integration of renewable energy into the mainstream power
grid. In addition to stationary applications, certain EEDs, exemplified by lithium-
ion batteries, have found increasing utility in the transportation sector, particularly
in electric vehicles. As a result, electrochemical energy storage and conversion tech-

nologies play a pivotal role in enabling a sustainable and resilient energy future.

EEDs comprise various components that depend on their specific type and applica-
tion. However, they all share a critical component, the “electrode”, which typically
functions as a porous medium composed of one or several materials. Schematics of
various EEDs with their components are shown in 1.1. The performance and lifespan
challenges in EEDs are particularly associated with their electrodes, where essential
electrochemical reactions occur alongside various transport phenomena. These phe-
nomena include the transfer of mass, momentum, heat, and charge, all of which

are critical for the device’s overall performance. Electrodes serve as the interfaces
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where electrochemical reactions take place, converting chemical energy into electri-
cal energy (and vice versa) or breaking chemical bonds using electricity. However,
achieving optimal electrode performance requires comprehensive understanding of
complex interactions between the materials used, the design of the electrode struc-
ture as well as other components, and the dynamics of transport and rate processes
within the device. To drive widespread adoption of EEDs in commercial applica-
tions, several key objectives must be addressed. First, there is a need to reduce the
fabrication costs associated with electrode materials and manufacturing processes.
This involves finding cost-effective materials and production methods without com-
promising performance or durability. Furthermore, there is a continuous push to
enhance the overall performance of EEDs. This includes increasing energy efficiency
and capacity, power output, and stability while minimizing losses and degradation
over time. Improving electrode design and optimizing material properties are cru-
cial aspects of achieving these performance enhancement requirements. Lastly, ex-
tending the operational lifespan of EEDs is paramount for their practical utility and
economic viability. This involves developing electrode materials and configurations
that can withstand prolonged operation under various operating conditions without
significant degradation or loss of performance. Addressing the challenges associated
with electrodes in EEDs requires a multidisciplinary approach that integrates mate-
rials science, engineering, and electrochemistry.

Given the pivotal role of electrodes in these devices, one of the key challenges in
improving electrode performance lies in minimizing irreversible losses that are at-
tributed to the transport phenomena and electrochemical reactions. Irreversible losses
can result from various factors, including overpotentials, electrical resistance in the
electrode materials, sluggish mass transport, and side reactions that consume energy
without contributing to the desired output. To address these challenges and improve
electrode performance, a direct approach involves redesigning the electrode struc-
ture to minimize these irreversible losses. This can include optimizing the material,
composition, and morphology of the electrode to enhance their electrochemical ac-
tivity and transport properties while mitigating undesirable side reactions and other
phenomena. By focusing on minimizing irreversible losses in electrodes, researchers

aim to maximize the efficiency and overall performance of EEDs.

In the quest to enhance the performance of EEDs, researchers have explored various
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Figure 1.1: Schematic diagram showing the components of EEDs including (a) poly-
mer electrolyte fuel cells, (b) lithium-ion batteries, (c) redox flow batteries, and (d)
proton exchange membrane water electrolyzers.
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avenues, including the synthesis of novel materials [1-3] and modification of elec-
trodes [4-7]. However, despite these strides, many previous studies [8-10] have re-
lied on a trial-and-error approach to optimize electrode performance. In this method-
ology, researchers systematically test different materials, configurations, or fabrica-
tion techniques to identify optimal conditions for device operation. While this ap-
proach has yielded valuable insights and incremental improvements, it can be time-
consuming, resource-intensive, and limited in its ability to explore the full design
space for a broad range of applications and operational conditions. Moreover, this
approach primarily relies on the researcher’s intuition and experience, potentially
limiting the exploration of design solutions that may not be readily realizable. As
a result, there is a growing recognition of the need for more systematic and eftfi-
cient approaches to electrode design and optimization. By leveraging computational
modeling and simulation, advanced characterization techniques, and optimization
algorithms, researchers aim to accelerate the discovery and development of high-
performance electrode materials and structures. These approaches allow for a more
comprehensive exploration of the design space, enabling researchers to identify opti-
mal design solutions more effectively while minimizing the need for extensive exper-
imental testing. Furthermore, by integrating computational modeling with experi-
mental validation, researchers can gain deeper insights into the underlying mecha-
nisms governing multiphysics phenomena occurring in electrodes at nano to macro-
scales. This synergistic approach enables researchers to develop a more fundamental
understanding of electrochemical processes and design principles, leading to the de-

velopment of next-generation EEDs with enhanced performance and functionality.

Topology optimization (TO) has emerged as a systematic bottom-up design approach
in structural optimization, allowing for the spatial redistribution of materials to achieve
enhanced structural performance within a specified design domain [11]. It is de-
fined as a computational method for optimizing material distribution within a de-
tined design space to achieve the best possible performance while meeting specific
constraints. While TO has been successfully applied to address various physical
challenges in engineering and design [12-18], its application in optimizing systems
involving complex (electro-) chemical reactions, particularly in the realm of electro-
chemistry, has presented ongoing challenges. In the domain of EEDs, TO has pre-
viously been utilized for optimizing the design of components such as flow chan-
nels [19-21], cooling plates [22-25], and end plates [26-29]. However, recent years
have witnessed a notable shift in focus towards the application of TO in the design

of porous electrodes across various EEDs. The adoption of TO for porous electrode
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design represents a departure from traditional approaches and opens up new pos-
sibilities for enhancing the performance of EEDs that was not possible through con-
ventional methods. By systematically reshaping the microstructure of porous elec-
trodes, TO offers the potential to optimize key transport and rate properties such as
effective mass diffusivity, charge conductivity, and electrochemical reactive surface
area. This shift in approach reflects a growing recognition of the importance of elec-
trode design in determining overall device performance and efficiency. The adoption
of TO in porous electrode design represents a promising avenue for advancing the
tield of electrochemical energy conversion and storage. By leveraging the principles
of systematic design optimization, researchers aim to unlock new insights into the
fundamental relationships between electrode microstructure, electrochemical per-

formance, and device efficiency.

The mathematical aspect of TO is advancing and their application is expanding to
many engineering problems. However, the studies in the literature do not explain
how these topologically optimized layouts are beneficial from a fundamental stand-
point. In other words, previous research works only focused on improving mathe-
matical algorithms, providing no physical justification for their results. It is known
that results of optimization algorithms are highly sensitive to their tuning parame-
ters and mathematical schemes. For instance, choice of filter radius (as an example
of tuning parameter) or type of filter (as an example of mathematical scheme) in a
TO affects the produced results significantly [30]. This high sensitivity gives a rise
to the necessity of a fundamental understanding of the TO process. This gap might
be addressed by comparing the non-equilibrium characteristics of the system during

the optimization.

Real systems, such as porous electrochemical reactors, are working under a non-
equilibrium condition. Therefore, thermodynamic analysis cannot illuminate a thor-
ough picture of the processes in these systems. Non-equilibrium thermodynamics
(NET) is an extension of conventional equilibrium thermodynamics to the assess the
systems which are not in global equilibrium [31]. Although the system may not
be in equilibrium from a global viewpoint, NET assumes that the equilibrium con-
dition holds at the local level. Therefore, fundamental thermodynamics relations,
such as Gibbs equations, are valid at a local scale. Given this assumption, the ir-
reversibilities of a system might be quantified in terms of entropy production. By
tracing the changes in entropy generation rate during the optimization process, it
could be understood how the optimization process leads to a better design from a

physical standpoint. At a global level, a better performance (a system with lower
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losses) corresponds to a lower total entropy production. This principle is known as
Entropy Generation Minimization (EGM) [32] and particularly has been extensively
studied in thermofluid systems (e.g., heat exchangers) [33]. Moreover, Equiparti-
tion of Entropy Production (EoEP) [34] is another principle that might be used in
non-equilibrium thermodynamics analysis at a local level. This principle has been

comprehensively studied in heat exchanger and membrane systems [35].

1.2 Topology optimization

TO is a computational technique employed for the automated creation of an optimal
structural layout, achieved by identifying the most efficient spatial allocation of ma-
terial across a predetermined design space [11, 12]. The primary objective of TO is
to enhance the performance of a structure, adhering to prescribed design specifica-
tions and constraints. Though both fall under the umbrella of layout optimization,
TO adopts a more radical approach compared to shape optimization. Unlike shape
optimization, which refines an existing design by adjusting its boundaries while pre-
serving the overall layout, TO transcends this limitation. It treats the design space
as a vast, unexplored territory, employing computational algorithms to identify the
optimal layout from scratch [36]. This allows TO to potentially discover entirely
new configurations that may not have been conceived with traditional approaches.
Essentially, TO entails iteratively modifying the material allocation within a desig-
nated design space to optimize structural performance. Through the elimination of
material from non-essential zones and its redistribution to critical areas, the design
is refined to fulfill performance goals, such as weight reduction, stiffness maximiza-
tion, or stress concentration minimization. In the field of porous electrodes, these
goals may extend to other factors beyond mechanical properties. These factors in-
clude but are not limited to high reactive surface area, electrical charge conductivity,
and hydraulic permeability, which ultimately contribute to the overall performance
of EEDs.

TO originates from structural engineering and computational mechanics. The con-
cept of enhancing structural efficacy by optimizing material distribution emerged
in the latter part of the 20th century [12]. An important contribution to contempo-
rary TO methodologies is evident in the work of Bendsge and Kikuchi, documented
in their publication of 1988 [37]. In this paper, Bendsee and Kikuchi pioneered the
application of homogenization techniques to generate optimal structural topologies.

This work represented a notable progression in structural optimization, showcasing
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the viability of optimizing material configurations to attain enhanced structural in-
tegrity. Building on this foundational work, subsequent researchers advanced the
theoretical framework, methodological approaches, and application domains of TO.
The integration of mathematical optimization techniques, sophisticated algorithms,
and computational advancements empowered engineers and designers to explore
unconventional material distributions and generate high-performing structural de-
signs. Consequently, the application of TO has proliferated across diverse problems,
such as mechanical [12], chemical [38], thermal [13, 39], fluid [16], microfluidics [36],
and acoustic [40] systems. The potential of TO to automate design processes and
generate structurally efficient solutions has established it as an indispensable tool for
engineers seeking to optimize performance through improved structural designs. As
research efforts and computational methods continue to mature, the field of TO un-
dergoes continuous evolution, unveiling novel avenues for structural optimization

and fostering advancements in structural efficiency and design innovation.

The field of TO has witnessed significant advancements, with researchers introduc-
ing diverse strategies for optimizing structural configurations. Existing literature can
be categorized based on various criteria, including parameterization methods, sys-
tem modeling, optimization algorithms, and design update schemes, each offering
advantages and drawbacks. Given the wide variety of TO approaches, we briefly in-
troduce the main techniques used for electrode design. Interested readers may refer
to previously published comprehensive reviews [11, 12, 41-44] for more details on
mathematical and algorithmic foundations of TO. It is noteworthy that these reviews
primarily focus on compliance optimization in mechanical design problems, such as
the classical Messerschmitt—-Bolkow—-Blohm (MBB) beam and cantilever beam. In
contrast, optimizing electrode structures involves multi-physics systems that inte-
grate various physical and chemical phenomena, presenting challenges beyond the
mathematical aspects of TO, which is the focus of the present thesis. Selecting the ap-
propriate TO framework hinges on factors like problem formulation, geometric com-
plexity, relevant physical phenomena, and chosen models for performance evalua-
tion. Design parameterization refers to the method used to establish the connection
between design variables and the resulting physical properties [45]. Two dominant
approaches include density-based and level-set methods. Bendsee and Kikuchi [37]
introduced the concept of numerical homogenization, aiming to modify the internal

topology for achieving anisotropic material properties instead of solely focusing on
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boundary variations. This approach leverages homogenization theory, which esti-
mates the effective material properties at a macroscopic level by treating the mate-
rial as a uniform medium [12]. It is important to note, as pointed out in [12], that the
terms “micro” and “macro” scales within this context are used comparatively and
do not correspond to specific length scales (such as “microscale” or “microstructure”
typically referring to sizes less than 1 mm). Following homogenization, a density-
based method represented by Solid Isotropic Material with Penalization (SIMP) was
introduced [46]. Density-based TO is a technique that modifies the density of ele-
ments within a fixed finite element mesh, using an interpolation function to adjust
mechanical properties and determine the optimal distribution of solid and void ma-
terial. SIMP, the most commonly used version of density-based TO, seeks to find
the optimal material distribution based on an auxiliary density function assigned to
each discrete element of the design domain, with values ranging from zero to one.
Here, a density p = 1 and p = 0 represent solid and void phases, respectively. Inter-
mediate density values (0 < p < 1) correspond to fictitious materials with properties
(e.g., Young’s modulus in mechanics or thermal conductivity in heat transfer) ly-
ing between those of solid and void phases. While these “gray elements” lack an
explicit physical interpretation, the introduction of a continuous density function
significantly simplifies the mathematical calculations by transforming the problem
from an integer-based to a continuous formulation. It is crucial to remember that
the material properties within each element are assumed to be homogeneous, even
though the overall (global) material behavior exhibits heterogeneity throughout the
entire design domain due to the varying density distribution. Although the prop-
erties of the solid and void phases are known, SIMP interpolation, i.e. a power-law
relationship, is employed to estimate the properties of these intermediate-density

elements. The penalized material density can then be defined as:

Ppenalized = Pmin + (1 - ,Ornin)pp (11)

where pyenalizea i the penalized density, ppi, is minimum penalized density, and p is a
penalty exponent. It is noteworthy that while the penalized density can theoretically
reach zero, introducing a minimum penalized density is often necessary for numer-
ical stability during optimization. The penalty exponent, p, plays a crucial role in
steering the optimizer towards assigning either solid or void densities (p = Oor1).
By increasing the cost associated with intermediate densities, the penalty term dis-
courages the formation of “gray elements”. In other words, assigning a partial den-

sity leads to higher material usage without a significant improvement in beneficial



Chapter 1. Introduction 10

properties like mechanical stiffness. Consequently, the optimizer prioritizes assign-
ing densities close to either zero or one, ultimately leading to a clear distinction be-
tween solid and void regions within the design. The effective material properties in

each element as a function of penalized density is given by [45]:

)\eff = )\min + (>\max - )\min)ppenalized (12)

in which A\, and A ax are minimum and maximum values of physical properties,
corresponding to the void and solid phases. Other interpolation schemes with simi-
lar principles exist, such as Rational Approximation of Material Properties (RAMP)
and Darcy [47-49]. Porous electrodes in EEDs typically comprise multiple phases.
For instance, carbon fiber electrodes contain a carbon phase and voids, while fuel cell
catalyst layers involve a mix of catalyst material, support material, polymer binder,
and voids. Extensive research has explored the connection between electrode mi-
crostructure and key properties like catalytic activity, mass diffusivity, reactive sur-
face area, and permeability. These studies employ experimental, numerical, and the-
oretical approaches to establish correlations linking macroscopic material character-
istics (e.g., volume fraction of each phase or porosity) to bulk material properties [50—-
59]. A prominent example is the Bruggeman equation, which relates tortuosity and
porosity based on effective medium theory [53]. Despite their limitations, assum-
ing these established relationships hold true at the microscopic (element) level, and
considering that each element is isotropic and homogeneous, existing correlations
could be leveraged for topological optimization of electrode microstructure instead
of SIMP.

While density-based TO is popular due to its broad applicability and ability to avoid
re-meshing during optimization, it struggles to capture intricate interface shapes be-
tween different phases. Level-set parameterization methods address this limitation
by representing the structure’s geometry with a level-set function. Unlike tradi-
tional explicit boundary representations, where the geometry is explicitly defined,
the level-set method utilizes a higher-dimensional function, the level set function.
This scalar function mathematically defines the interface between various materials
or phases within the design space [60]. Each point in the design domain receives a
value from the level-set function, with positive values indicating one material (e.g.,
solid), negative values indicating another (e.g., void), and zero representing the exact

location of the interface, as expressed by:
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o(X)>0; XeQ
d(X)=0; Xeon (1.3)
P(X)<0; XeD\Q

where @ is the level-set function, X represent any point in the design domain, and
D, w, and 012 are the design domain, material domain, and the interface between
the two phases, respectively. By cleverly manipulating this level set function, the
method can track the interface’s motion implicitly. This method excels at captur-
ing sharp boundaries and complex interfaces between materials, making it ideal for
problems in which performance hinges on interfacial properties or behavior. This
approach offers significant advantages by decoupling the representation of the ge-
ometry from its topology, allowing for seamless handling of complex topological
changes such as merging, splitting, or evolving boundaries [61]. Moreover, the use
of an implicit representation allows for easy incorporation of shape optimization
techniques, offering designers and engineers a versatile toolset for achieving opti-
mal geometric configurations tailored to specific design objectives [60]. However,
the final design obtained from this method can be significantly influenced by the ini-
tial configuration provided [45]. The level set method’s inherent numerical stability
and avoidance of mesh-dependent spatial oscillations, such as staircasing, further
enhance its applicability in diverse engineering domains [60]. Regardless of the cho-
sen parameterization method, all TO procedures rely on optimization algorithms to
update design solutions. Updating design solutions involve evolution of either den-
sity or level-set function through an algorithmic procedure. These algorithms can
be gradient-based, such as Method of Steepest Descent [62], Sequential Linear Pro-
gramming (SLP) [63], Method of Moving Asymptotes (MMA) [64], Globally Con-
vergent MMA (GCMMA) [65]. Alternatively, derivative-free methods [66], such as
evolutionary algorithms [67] can be employed. While evolutionary structural opti-
mization methods are not the focus of this thesis, it is worth mentioning that these

approaches are often computationally expensive and may get stuck in local optima.

Gradient-guided TO involves an iterative process, akin to other optimizations. The
optimization process begins with defining the problem and formulating the objec-
tive function. The primary optimization loop then starts with an initialization step,
where an initial design is created. Subsequently, the objective function value is as-
sessed, typically as a function of one or multiple state variables, necessitating the
solution of a set of governing equations constituting the mathematical model. Re-

searchers employ various modeling and simulation techniques to describe system
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behavior, such as the finite element method (FEM), finite volume method (FVM),
and lattice Boltzmann method (LBM). Upon solving the state equations and obtain-
ing the values of state variables, the objective function is determined. Next, a sen-
sitivity analysis is performed to evaluate the gradient of the objective function with
respect to the design variables (e.g. material densities), often employing variational
calculus methods such as the adjoint state method [68]. Subsequent to sensitivity
analysis, regularization techniques [30, 60] may be employed to address issues such
as the checkerboard pattern problem [11, 69, 70], eliminate numerical artifacts, and
to promote convergence and smooth solutions. The design variables are then up-
dated utilizing the optimizer and the sensitivity information. This iterative process
continues until a convergence criterion, such as a maximum number of iterations,
is met. It is worth noting that, as with any optimization problem, the initial config-
uration (initialization step of optimization) and model boundary conditions play a
critical role in shaping the optimization process. An unsuitable initialization may
cause the method to converge slowly or get trapped in a local optima. Similarly,
improper boundary conditions can lead to unrealistic or unphysical outcomes. To
minimize these risks, sensitivity analysis can be conducted to assess how different
initial configurations and boundary conditions influence the results. This involves
running the optimization with various initial shapes (layouts) and boundary condi-
tions to observe their impact on the final solution. Such analysis helps ensure that

the results are robust and not overly dependent on arbitrary choices of conditions.

Although not within the scope of this thesis, other TO approaches are worth not-
ing, including evolutionary structural optimization (ESO) [71], bi-directional ESO
(BESO) [71], moving morphable component (MMC) [72], and moving morphable
void (MMV) [73]. ESO optimizes structures by progressively removing elements
with the least stress. BESO extends this by also adding new elements in high-stress
areas, allowing for improvements from both directions. MMC and MMV, based on
explicit Lagrangian descriptions, are dual methods. MMC uses adaptable compo-
nents that can move, change shape, overlap, and merge, facilitating precise geomet-
ric designs and complex structures. In contrast, MMV employs voids to refine the
topology. Both methods use geometric approaches to optimization, reviving classical

shape optimization techniques.
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1.3 Topology optimization for electrodes of electrochem-

ical energy devices

In the preceding section, we discussed two primary methodologies employed in TO,
namely level-set and density-based approaches. In the realm of porous electrode
design, level-set methods have been prevalent in studies examining the influence
of interfacial boundaries between different phases (e.g., electrode-electrolyte inter-
face shape). In this case, interfaces between material phases are defined implicitly
by iso-contours of a level-set function. This implicit function provides a clear de-
scription of the boundaries, enhancing the accuracy of the response captured near
the boundaries and eliminating ambiguities associated with intermediate material
phases encountered in density-based approaches. Consequently, the chosen math-
ematical model should be capable of capturing the specific phenomena under in-
vestigation, particularly how structural changes impact those phenomena. Density-
based methodologies, on the other hand, find application in scenarios where opti-
mization of macroscopic properties distribution—such as porosity or solid volume
fraction—is the focal point. As previously mentioned, density-based methods de-
scribe the layout through a set of material distribution functions, comprising two
or more phases, with one phase typically representing “no material” (i.e. the void
phase). This material distribution is often discretized using element-wise constant or
nodal shape functions. The following subsections review previous works that utilize

these two approaches for structural design of porous electrodes in EEDs.

1.3.1 Level-set methods

The initial investigations in the area of electrode optimization focused on employing
structural TO using level-set methods. This can be traced back to 2011 (see Fig. 1.2a-
c) when Iwai et al. [74] conducted optimization based on level-set techniques to ex-
plore the optimized cathode-electrolyte interface of solid oxide fuel cells (SOFCs)
at meso-scale. The authors used a 2D model of a SOFC to find the best design for
maximizing current density at a fixed voltage level. Their simulation included the
entire cell: the anode, electrolyte, and cathode. These components were 300 microns
long (through-plane direction) and 50 microns wide (in-plane direction). However,
they only optimized the design of a smaller rectangular area within the cathode and

electrolyte, measuring 150 microns long by 50 microns wide. They discovered that
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a non-flat wavy design of the cathode-electrolyte interface led to improved perfor-
mance compared to the conventional flat interface as seen in Fig. 1.2a. This figure de-
picts the changes of interface shape throughout the optimization process. As shown
in Fig. 1.2a the initial interface had a step-like rectangular shape; however, the op-
timizer favored a more curved form in the final step. The optimal interface shape,
however, depends on the simulation conditions. Their findings suggest that a flat-
ter interface is preferable when gas diffusion resistance within the cathode is higher.
Although the fabricated interface did not precisely match the optimized design ob-
tained from mathematical optimization (see Fig. 1.2b), preliminary experiments in-
volving the modification of the interface, such as fabricating grooved electrodes (a
structure similar to the optimized results to some extent), demonstrated enhanced
performance compared to electrodes with a flat interface. As illustrated in Fig. 1.2b,
two configurations with varying groove sizes—small and large—were fabricated,
both with an overall thickness of 500 microns. Fig. 1.2c compares the experimental
I-V curves of modified electrodes with small and large grooves, at various operat-
ing temperatures, to that of a conventional electrode. It reveals a noticeable increase
in current density across a range of terminal voltages. This finding highlights the
practical challenges and opportunities in translating optimized designs into real-
world applications. The experiments underscore the potential for performance gains
through interface modification, even when the fabrication does not perfectly align

with the theoretical optimization.

In 2013, Zadin et al. [75] embarked on a study aimed at enhancing the design of 3D-
microbatteries, as depicted in Fig. 1.2d-f. To achieve this, they employed a structural
TO based on the level-set method. The investigation centered around optimizing the
geometries, displayed in Fig. 1.2d, of the positive electrode (LiCoO,) and negative
electrode (LiCs) separated by a LiPFs - PEO,, polyethylene oxide polymer electrolyte.
With the idea of obtaining a more uniform electrochemical activity on the electrode
surface, the researchers formulated the optimization problem as a function of cur-
rent density. Moreover, to maintain the volume of electrode material in the cell, a
Heaviside function was applied to the level-set variable, helping to control the elec-
trode volume over the optimization course. Following the optimization process, the
researchers found that coating the current collectors with active material distributed
in a non-uniform manner yielded favorable results (see Fig. 1.2e) Further analysis
compared the performance of the optimized battery designs with those that were
not optimized. It was discovered that geometry optimization led to a remarkable

increase in cell performance, with improvements of up to 2.25 times observed, as
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Figure 1.2: Examples of applying topology optimization based on level-set tech-

niques to optimize the electrode/electrolyte interface in EEDs.
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Figure 1.2 (continued from previous page): Schematics and images show (a) the
evolution of the cathode/electrolyte interface of a solid oxide fuel cell during the
optimization process, (b) a cross-section view of the cathode/electrolyte interface
with small and large grooves, (c) a comparison of IV performance curves of cells
with grooved and flat electrolytes (Reprinted from Ref [74], Copyright (2011), with
permission from Elsevier); (d) a schematic illustration of a 3D-microbattery con-
sidered in the study of applying the level-set method with topology optimiza-
tion, (e) the evolution of the electrode/electrolyte interface of the 3D-microbattery
during the optimization process, (f) discharge curves of cells with optimized and
non-optimized electrode/electrolyte interfaces at various current densities, where
dashed lines represent the non-optimized interface and solid lines represent the op-
timized interface (Reprinted from Ref [75], Copyright (2013), with permission from
Elsevier); (g) a schematic illustration of the solid oxide fuel cell considered in the
study of applying the level-set method with topology optimization representing the
anode electrode-electrolyte interface, (h) the evolution of the anode/electrolyte in-
terface of a solid oxide fuel cell during the optimization process, and (i) the conver-
gence history of the optimization (Reproduced from Ref [76], Copyright (2019), with
permission from IOP Publishing).
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shown in Fig. 1.2f. This significant enhancement was attributed to the mitigation of
internal energy losses, which were caused by nonuniformities in the ionic transport
occurring within the battery.

Onishi and Shikazono’s research group [76-80] stands out among notable research
teams that have utilized the level-set TO technique to enhance the performance of
SOFCs. Their considered geometries are shown in Fig. 1.2g. Their approach in-
volves considering the spatial distribution of the level-set function as a design vari-
able, resulting in a design space with significant degrees of freedom. To address the
challenges associated with this approach, they adopted the adjoint method, wherein
adjoint equations are solved to compute the sensitivity of the objective function con-
cerning the design variable. In their initial study, Onishi et al. [76] discovered that
the optimal meso-scale structure for the electrolyte-anode interfaces of SOFCs ex-
hibited multiple branches at the top side and characteristic sub-structures like wrin-
kles at the bottom side (see Fig. 1.2h). These wrinkles were found to contribute to
performance enhancement by homogenizing the electrochemical potential. Fig. 1.2i
illustrates that the optimized electrolyte-anode interfaces show an improvement of
around 18.8% after 10,000 optimization iterations. Building upon this research, He
et al. [78, 79] employed a similar approach, incorporating local radius constraints, to
optimize the cathode porous microstructure of SOFCs made of Lag ¢St 4Cop,FeysOs3
(LSCF). Subsequently, they extended their efforts [80] to apply TO with multiple
level-set methods to the nickel-yttria-stabilized zirconia Ni—YSZ anode. Given that a
single level-set function can only distinguish between two different phases, the mul-
tiphase level-set method was employed to parametrize structures with more than
two phases. Simulation results indicated that the optimal microstructure comprised
Ni particles embedded into YSZ scaffolds, exhibiting a pillar-like structure along the
thickness direction. In addition to the studies focusing on the electrode-electrolyte
interface of EEDs, Ishizuka et al. [81] utilized TO with level-set methods to design
anodes placed in an electroplating bath. This application aimed to achieve uniform
deposition thickness, a critical factor in ensuring desirable surface qualities in vari-
ous products. The uniformity of the current density on a cathode was employed as
the objective function in this context.

TO employing level-set methods has found widespread applications across various
tields, ranging from electroplating to SOFCs and lithium-ion batteries. Typically,
level-set methods are employed in scenarios where the focus lies on material in-
terfaces. This preference stems from the fact that the interface between different

material phases can be precisely defined by iso-contours of a level-set function. This



Chapter 1. Introduction 18

implicit function provides a clear delineation of boundaries, facilitating accurate rep-
resentation of interfaces. Depending on how the interface is represented in the physi-
cal model, using level-set methods can enhance the accuracy of mechanical response
predictions near boundaries. Additionally, employing level-set methods helps to
mitigate the uncertainties associated with intermediate material phases, a challenge
often encountered when utilizing density-based approaches. This inherent capabil-
ity of level-set methods contributes to their widespread adoption in TO tasks.

1.3.2 Density-based methods

Building on a previous work [74], two years later, Song et al. [82] initiated a different
modeling and optimization perspective. Iwai et al. [74] treated the cathode-gas as a
homogeneous porous medium and aimed to find the optimal shape for the electrode-
electrolyte interface. On the other hand, the subsequent research by Song et al. [82]
shifted focus to the cathode-gas interface itself. The authors limited the scope of
their study to a specific electrode configuration consisting of a mixed ionic-electronic
conducting material deposited by infiltration onto an ionically conducting scaffold.
In such a case, their model predicted that a larger perimeter and a greater amount
of scaffold material, regardless of the specific electrode structure, resulted in lower
Ohmic resistance. Consequently, to isolate the effect of shape exclusively during the
optimization process, the authors introduced isoperimetric constraints on both the
perimeter and the amount of material used. The researchers utilized a formulation of
TO based on the SIMP method. Their approach involved design-dependent bound-
ary conditions, necessitating a dynamic treatment of material boundaries within the
optimization process rather than predefined delineations. Consequently, special-
ized methodologies were employed to address the implications of design-dependent
boundary conditions. The investigation revealed notable enhancements in perfor-
mance ranging from 18% to 50% across varied geometrical dimensions and material
properties compared to conventional column designs. This underscores the consid-
erable potential for performance improvement through meticulous organization of
the cathode microstructure, yielding intricate configurations that were not realizable
without a robust mathematical scheme. In addition to the efforts initiated by other
researchers, Mathieu-Potvin and Gosselin [83] employed density-based methods to
optimize platinum distribution in polymer electrolyte fuel cells (PEFCs). Their pri-
mary aim was to maximize current density while maintaining a fixed total amount of
platinum. The findings of their study unveiled that the most effective design show-

cased a gradient-based distribution, concentrating the majority of platinum near the
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membrane layer. It is crucial to acknowledge that Mathieu-Potvin and Gosselin sim-
plified the system by assuming high conductivity in the solid phase, enabling rapid
electron transport and eliminating Ohmic losses related to electron transport. Fur-
thermore, their design domain mesh consisted of only 50 nodes along the in-plane
direction and 15 nodes along the through-plane direction, indicating a relatively
coarse discretization. A key limitation acknowledged by the authors is their model’s
inability to account for liquid water transport. This omission leaves the significant
negative impact of flooding, caused by concentrating catalyst material in a confined
space near the membrane, unaddressed in the results. Despite these simplifications,
their research shed light on the potential advantages of optimizing platinum distri-
bution in PEFCs for enhanced performance. Meanwhile, Lamb et al. [84-88] tackled
a similar topic by optimizing catalyst distribution in PEFCs with the computational
domain depicted in Fig. 1.3a. In these studies, TO is performed by allowing the cat-
alyst amount to vary independently at each location within the design domain. This
freedom translates to a significant increase in the number of design variables com-
pared to Mathieu-Potvin and Gosselin [83], exceeding 10* , since the catalyst amount
at each node of the finite element mesh becomes an optimization variable. They also
considered the impact of land and channel on optimized catalyst distribution. In
their findings, Lamb et al. recommended placing more catalyst material (i.e. plat-
inum) under the gas channel than under landings and toward the membrane inter-
face, as seen in Fig. 1.3b, might improve the output power. Fig. 1.3b also compares
the optimized catalyst distribution under two different overall loadings of 0.1 and
0.2 mgcm~2. While the exact distributions are different, both cases show a similar
increasing incremental trend when moving from the gas diffusion interface toward
the membrane side. However, it is important to note that they solely considered
the amount of catalyst as a design variable, without considering the reorganization
of porosity and ionomer distributions, which could potentially benefit cell perfor-
mance. Evidently, since the total volume fractions of all materials in an electrode
must add up to unity, optimizing the amount of one component requires flexibility
in another. For instance, if the amount of ionomer is fixed and uniform throughout
the electrode, then the porosity needs to be freely adjustable when optimizing the
catalyst loading. Lamb and colleagues acknowledged the limitation of their study
in simultaneous optimization of multiple materials and successfully addressed it in
2020. In their recent studies [87, 88], they tackled the challenge of optimizing the
distribution of multiple components within the catalyst layer, including platinum
particles (catalyst material), Nafion polymer (ionic conductive material), carbon (cat-
alyst support and electric conductive material), and porosity. They achieved this by
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treating the volume fraction of each constituent as a design variable at every loca-
tion within the layer. However, managing such a complex optimization problem
presented a significant computational hurdle. To address this, the authors employed
an adjoint variable method. Particularly, [88] involved optimizing the distribution
of all constituents (catalyst, Nafion, carbon) simultaneously. Similar to the individ-
ual optimization of various constituents that was presented in [87], porosity was
not directly optimized. The results consistently demonstrated that a higher volume
fraction of catalyst and electrolyte material near the membrane was favorable as the
proxy to the ion exchange membrane improves the overall electrochemical reaction
rate. Additionally, higher porosity at the opposite side of the catalyst layer (near the
diffusion layer) and under the channel area enhances oxygen delivery, ultimately
boosting overall performance. It is important to note that, similar to the work by
Mathieu-Potvin and Gosselin [36], their model does not account for two-phase flow,
neglecting the transport of liquid water within the catalyst layer. In addition, since
the models used in these studies are 2D, the impact of longitudinal direction on the

tinal optimum design has not been well studied.

In addition to the advancements made in PEFCs, Mitchell and Ortiz [89] ventured
into applying density-based TO to design optimal multifunctional silicon anode struc-
tures for lithium-ion batteries, aiming to develop next-generation high-performance
secondary batteries. While the silicon anode holds promise due to its inherent high
capacity for storing lithium ions, its structures undergo a substantial 310% volume
expansion upon lithiation, leading to severe damage such as active particle pulver-
ization and disconnected charge transport paths. Furthermore, the low intrinsic elec-
tric conductivity of silicon results in poor rate performance due to sluggish electron
transport through the material. To tackle these structural and charge conduction de-
sign challenges, Mitchell and Ortiz employed TO methods. Initially, they considered
the objectives individually and later extended the methodology to a bi-objective for-
mulation to simultaneously address both the structural and conduction design crite-
ria. Through their research, they discovered that a rigid frame structure served as an
excellent compromise between the structural and conduction design criteria, offer-
ing both the required structural rigidity and direct conduction pathways. In a recent
work by Pejman and Raeisi Najafi [45], the authors introduced a novel approach
for multi-objective TO aimed at crafting Structural Battery Electrolytes (SBE) within
multifunctional structural battery composites. The study aimed to overcome the in-
herent conflict in achieving both high mechanical strength (stiffness) and high ionic

conductivity, while also minimizing heat generation in the electrolyte, which are
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Figure 1.3: Examples of applying topology optimization based on density-based
methods to optimize the electrode in EEDs.
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Figure 1.3 (continued from previous page): Schematics and images show (a) the com-
putational domain of a proton exchange membrane fuel cell considered in the study
of applying the density-based method with topology optimization, (b) optimized
catalyst distributions for two different Pt loadings and the 1D optimum platinum
distribution at the middle of the computational domain [84]; (c) the computational
domain of a negative half-cell compartment of a vanadium flow battery by which
the electrode is split into portions with a unit cell, (d) optimized porosity distribu-
tion of the electrode (Reproduced from Ref [90], Copyright (2021), with permission
from Elsevier); (e) two systems considered in the study of [91], which are a device
operates through redox reaction and a device operates through charge storage using
a double layer, (f) schematic diagram showing the porous electrode before and after
optimization in which the material seen is, in fact, porous, (g) 3D optimized designs
of two systems considered in the study (Reproduced from Ref [91], Copyright (2022),
with permission from Springer Nature); (h) flowchart of the algorithm for conven-
tional and mixed topology optimization, (i) convergence history of mixed topology
optimization with various starting points showing its self-guidance feature, and (j)
performance curves as well as the optimal volume fraction distribution of each mate-
rial constituent (Reproduced from Ref [92], Copyright (2023), with permission from
Elsevier).
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crucial factors for maximizing battery performance. The researchers implemented a
multiphysics, multi-objective gradient-based approach to simultaneously maximize
both the ionic conductivity and stiffness of the SBE. To ensure prevention of over-
heating, the optimization process incorporated constraints on the maximum allow-
able temperature and void volume fraction. The proposed design framework inte-
grates electrochemical, thermal, and structural physics, enabling the creation of an
optimized SBE microstructure. The study investigated two optimization scenarios,
including (1) bulk condition, and (2) carbon fiber included condition. The former fo-
cused on optimizing the microstructure of SBE assuming a bulk material, where car-
bon fibers were not explicitly included as part of the design solution. However, the
latter scenario built upon the first by introducing carbon fibers as an explicit element
within the design space. It is important to note that the carbon fibers were treated as
tixed, non-optimizable elements during the optimization process. In both cases, two
materials, including a solid phase and a compliant phase, were used. While the solid
phase ensured high stiffness and thermal conductivity, the compliant phase enabled
efficient electric charge transport. The study successfully generated a set of Pareto
optimal microstructures with various trade-offs between effective ionic conductiv-
ity and compliance. Additionally, explicit incorporation of carbon fibers within the
design space significantly altered the optimized SBE design compared to the bulk

scenario.

Meanwhile, thermal mismatch significantly influences the stress state and lifetime
of SOFCs. In response, Li et al. [93, 94] endeavored to mitigate this issue by de-
signing LSM -YSZ cathodes and Ni—-8 YSZ anodes using density-based TO. The mi-
crostructures of the cathode and anode took the form of periodic fiber bundles. The
results demonstrated that the coefficients of thermal expansion of these microstruc-
tures closely matched those of the electrolyte layer at different temperatures, effec-

tively eliminating thermal mismatch issues.

Inspired by the configuration of electrodes in redox flow batteries (RFBs), where
the electrode typically comprises a disordered, homogeneous assembly of micron-
scale electroactive particles like carbon fibers and felts, Beck and Worsley’s research
group [90, 91] stands out as a prominent contributor in applying TO to enhance
porous electrode structures. The primary goal behind their design philosophy is
to maximize surface reactions while minimizing overpotential and hydraulic losses.
In their initial study, Beck et al. [90] focused on restructuring porosity distributions

with the objective of minimizing power loss and creating electrodes with engineered
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porosity distribution, as shown in Fig. 1.3c. A comparison between these architec-
tured electrodes (demonstrated in Fig. 1.3d) and bulk, uniform porosity electrodes
revealed enhanced power efficiency across various flow rates and currents. Con-
tinuing their investigation, Roy et al. [91] illustrated a framework of TO in design-
ing porous electrodes for two applications: one involving a porous electrode driv-
ing a steady Faradaic reaction (as seen in RFBs), and the other operating transiently
without a Faradaic reaction (like in electric double layer capacitors), as depicted in
Fig. 1.3e. In their research, they utilized a porous model (illustrated in Fig. 1.3f),
wherein the porous material is termed microporous to differentiate it from the larger
pores formed through the optimization process. Across all scenarios, the optimized
designs exhibited superior performance compared to undesigned, monolithic single
porosity electrodes. In the case of RFBs, this translated to overpotentials reduced
by up to 84%, while the electric double layer capacitor electrode showed energy
losses reduced by up to 98%. Moreover, they demonstrated the versatility of these
techniques by extending them to a three-dimensional electrode design (displayed
in Fig. 1.3g), paving the way for manufacturing and testing high-performance ar-
chitected electrodes. This exploration holds significant promise in advancing the
efficiency and functionality of porous electrode systems across various electrochem-
ical applications. However, the model developed by Roy et al. [91] has limitations
regarding its consideration of concentration effects and hydraulic requirements. In
systems with convective-reactive transport, like those in RFBs, the concentration of
the solution flowing through the electrodes depends on the flow rate. This flow rate
in turn affects the pressure drop needed to pump the solution (hydraulic require-
ments). Higher pressure drop requirements mean more power loss by the cell-pump
system, which could affect the net generated power and should be considered in the
optimization objective function. Another key factor is the difference between the
concentration of the solution in the bulk and at the surface of the electrodes. Elec-
trochemical reactions happen at the electrode surface, so for accurate simulations, it
is necessary to distinct surface and bulk concentrations. This difference can be ac-
counted for by including a mass transfer coefficient, which typically depends on the
tlow velocity. However, the authors oversimplified the modeling and optimization

by ignoring the concentration effect and hydraulic requirements.

In a recent study, Charoen-amornkitt et al. [95] explored the application of TO in the
design of anode catalyst layers for proton exchange membrane water electrolyzers
(PEMWESs). They focused on a 2D electrochemical porous electrode model, which

encompasses various processes such as water transport, species diffusion, electric
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charge transport, ionic charge transport, and redox reactions. The porous electrode
was conceptualized to consist of three phases: a void phase, an electrolyte phase, and
a carbon-supported catalyst phase. Their optimization approach aimed to maximize
cell performance by adjusting the volume fractions of the electrolyte and carbon-
supported catalyst materials. The results revealed that introducing a heterogeneously-
distributed structure led to more efficient cells. During the optimization process,
changes in the volume fraction of constituent materials occurred, resulting in the
formation of a zigzag interface in the reactor. This interface facilitated a sufficient
supply of charges required for the electrochemical reaction. Compared to cases
with uniform spatial distribution of constituent materials, the proposed heteroge-
neous structure demonstrated a notable enhancement in the electrochemical reac-
tion, achieving approximately a 40% improvement. This highlights the effectiveness
of TO in enhancing the performance of PEMWEs by optimizing the electrode de-
sign. Despite this, the authors simplified the system by disregarding the effects of
oxygen bubble formation within the electrode, among other factors, resulting in a
uniform distribution of porosity that eliminates the necessity for an oxygen bubble
removal pathway. Additionally, their research indicates that distinguishing between
electronically conductive materials and the catalyst, coupled with utilizing multi-
objective optimization to minimize the catalyst volume fraction, has the potential to
significantly reduce catalyst usage. While fuel cells have a longer history of model-
ing, water electrolyzers are catching up. Researchers are adapting their knowledge
from fuel cells to improve existing electrolyzer models. However, water electrolyz-
ers involve additional complexities, like bubble formation [49], which need to be
factored in. The coverage of reaction sites by these bubbles is an additional limit-
ing factor that requires detailed consideration of the bubble evolution process, such
as nucleation and bubble growth. This means there is a need not only for better
optimization methods, but also for more advanced modeling techniques to create
robust and reliable electrode designs for electrolyzers. To overcome some of the lim-
itations mentioned earlier, Passakornjaras et al. [96] optimized the anode catalyst
layer of a PEMWE, accounting for limitations related to gas coverage and effects of
temperature distribution. Although their modeling of physical phenomena differs,
the optimization process is similar to that in [95]. The resulting optimized structures
significantly outperformed a homogeneous electrode design, with electrode current
densities 2.7 times higher at high operating voltage (2.03 V) and 1.2 times higher
at low operating voltage (1.73 V). Future research on TO for PEMWEs should in-
corporate more advanced models of the various physical and chemical phenomena

occurring in the electrode and consider the durability of optimized structures under
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thermal and mechanical stress. Additionally, exploring multi-objective optimiza-

tions to balance reaction rates and material usage may be necessary.

While TO has been widely used to search for optimized electrode structures in EEDs,
previous studies have not achieved maximum output power for power sources. This
limitation arises because researchers are typically constrained to either minimizing
overpotential at a fixed current density or maximizing current density at a specified
overpotential. While both strategies can improve performance in terms of power
density, they do not necessarily lead to maximum output power. Alizadeh et al. [92]
proposed a novel mixed TO approach to enhance the performance of these systems
by simultaneously modifying the electrode structure and the working conditions
(see Fig. 1.3h). Unlike conventional approaches, this method focuses on enhanc-
ing the maximum power point. Their research demonstrates that the mixed TO
approach outperforms conventional vertical and horizontal optimizations, where ei-
ther terminal voltage or current density is optimized. Additionally, it has been tested
under various starting points, as shown in Fig. 1.3i, consistently yielding the same
output. This self-guidance feature of this method eliminates the need for a prior
decision on the optimization starting point. Fig. 1.3j reveals that the optimal dis-
tribution of materials within the design domain resembles a complex tree-root-like
structure. The formation of diffusion channels, facilitated by high concentrations of
voids in certain parts of the system, enables the delivery of reactant material across
the entire system. This structural pattern bears resemblance to the vascular layout
observed in nature, such as in the leaves of plants. The network of veins in plant

leaves, which transports water and nutrients, exhibits a similar structural pattern.

Charoen-amornkitt et al. [38] utilized TO to engineer porosity distributions within a
system characterized by a 1D nature. In this system, the concentration remains con-
stant at = 0, and there are no fluxes at + = L. By exploring various dimensional
models, they discovered that increasing the design dimensionality beyond one en-
hances system performance by minimizing entropy generation. However, they ob-
served a relatively modest performance improvement when transitioning from 2D
to 3D designs. This led to the hypothesis that due to the inherently 1D nature of the
problem, a 2D model suffices to significantly enhance performance. Building on this
insight, Long et al. [97] focused on systems with a 2D flow nature, specifically inves-
tigating the impact of rib structures and electrode thickness. They evaluated three
different geometries, including one with fixed species concentration at the inlet and
zero-flux boundary conditions, effectively confining the system to a 1D nature. To
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increase the nature of the species diffusion to a 2D flow characteristics, they intro-
duced a rib at the inlet. Beneath the rib, a region restricted reactant movement while
allowing electron transfer. Additionally, they reduced the thickness to encourage
more 2D flow characteristics. Their findings indicated that in rib-containing cases,
reduced inlet area limited species availability, a challenge mitigated by decreasing
reactor thickness. Examining the optimized porosity distribution, they observed the
formation of diagonal channels in systems exhibiting 2D characteristics. Interest-
ingly, augmenting the system model’s dimensionality beyond its inherent nature did

not significantly impact the reaction rate.

Until now, with a few exceptions, prior research primarily focused on maximizing
the reaction rate within the designated design domain. However, as previously dis-
cussed, there exists an alternative approach: minimizing overpotential at a fixed
current density. Alizadeh et al. [98] undertook a comparative analysis of two opti-
mization strategies aimed at enhancing the performance of electrochemical reaction-
diffusion systems, as displayed in Fig. 1.4a-c. These strategies involved minimizing
overpotential at a fixed current density and maximizing current density at a speci-
tied overpotential. The researchers analyzed a 2D triple-material electrode, similar
to the catalyst layer found in PEFCs. However, their model simplified the processes
occurring in PEFCs by neglecting the two-phase flow of gas and liquid water, a com-
mon phenomenon in low-temperature fuel cells. The electrode consisted of solid,
electrolyte, and void phases. While the solid phase was responsible for electron
transport and provided necessary reactive surface area, the two other phases facil-
itated ion transport and mass diffusion. The optimization aimed to find the best
distribution of constituents volume fractions through a density-based method. The
resulting optimal layouts exhibited intricate root-like structures (see Fig. 1.4a), which
facilitated transport processes and led to a remarkable improvement in the conver-
sion rate of up to 116.7%. Further analysis revealed that the optimal layout varied
significantly depending on the dominant processes at different voltages (or current
densities). For instance, when the optimization focused on low voltages (high cur-
rent density), where concentration overpotential limits performance, the algorithm
favored designs with higher porosity and larger diffusion channels. Conversely, op-
timization at high voltages (lower current density) resulted in a design with a higher
solid phase volume fraction distributed throughout the electrode. This increased the

reactive surface area, thereby reducing activation overpotential.

density-based methods are more prevalent than level-set methods in optimizing the
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structure of electrodes for EEDs, as evidenced by the abundance of studies employ-
ing this approach. A closer examination of these studies reveals a fundamental dif-
ference in the focal point of interest compared to those utilizing level-set methods.
Density-based methods primarily concentrate on optimizing the distribution of ma-
terials within the electrode structure rather than delineating the interface between
different materials. These density-based methods have found applications across a
wide range of EEDs, spanning from power sources like PEFCs and SOFCs to power-
consuming devices such as PEMWEs, as well as energy storage systems like lithium-
ion batteries and RFBs. However, it is important to note that the treatment of ma-
terial density may vary across different studies employing density-based methods.
In density-based methods, material density typically ranges from 0 to 1, signify-
ing regions containing a mixture of material and void. While this “gray area” typi-
cally holds no physical meaning in structural mechanics applications, it holds phys-
ical significance in the context of EEDs, particularly in porous models used at the
macroscale level. Here, material density values between 0 and 1 are meaningful and
directly inform the modeling process. To address the gray area and ensure meaning-
ful material distribution for structural mechanics problems, projection methods are
often employed. However, in EEDs, where porous models are prevalent, material
density values between 0 and 1 are utilized and hold relevance in representing the
actual physical structure of the electrode materials by assigning them as macroscopic

properties, like volume fraction and porosity.

1.4 Entropy generation analysis and topology optimiza-
tion

TO plays a pivotal role as a mathematical tool in the intricate design and optimiza-
tion of complex structures. However, it is crucial to acknowledge the numerical
nature of the solutions derived from TO, which are influenced by various factors
including the choice of objective function, algorithmic approach, and tuning param-
eters. Consequently, it becomes imperative to establish a robust theoretical frame-
work to underpin these optimized solutions. In addressing this need, Tsushima’s re-
search group [38, 92, 95, 97-100] advocates for the integration of principles derived
from entropy generation minimization theory. Inspired by the widespread use of
entropy generation analysis in evaluating thermal systems, their objective is to align
with a system characterized by minimal entropy generation. This approach aims to

lay the groundwork for a design methodology that is firmly grounded in physical
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principles, thereby reducing reliance on arbitrary tuning parameters that are usually
necessary for optimization algorithms (e.g. filter radius). Entropy generation anal-
ysis offers a rigorous framework for assessing the thermodynamic efficiency of sys-
tems, enabling the identification of optimal designs that minimize energy wastage
and maximize performance. By incorporating these principles into the design pro-
cess, it is anticipated that the resulting electrode structures will exhibit heightened
reliability and effectiveness. This is because they are founded on fundamental phys-

ical principles rather than ad hoc parameter adjustments.

Charoen-amornkitt et al. [38], embarked on a comprehensive research endeavor,
commencing with the utilization of TO to optimize the structure of porous electrodes
(see Fig. 1.4d-f). To evaluate the entropy generation during this optimization process,
they employed entropy generation analysis, recognizing the complexity of assessing
entropy generation in the porous media of EEDs. The nonequilibrium nature of
these systems, compounded by the presence of chemical reactions, posed significant
challenges. In response, they adopted NET as a theoretical framework, enabling the
assessment of local entropy generation rates in systems not in a state of global equi-
librium. In their study, the researchers simplified the system by focusing solely on a
porous reactor within reaction-diffusion systems involving a single species. As the
optimization progressed with the objective of maximizing reaction within the design
domain, entropy generation inevitably increased. To facilitate comparison, they in-
troduced scaled entropy generation, mitigating the influence of the increasing objec-
tive function. An essential aspect of their investigation was to examine the effects of
design dimensionality on optimization. They found that while 0D and 1D optimiza-
tion results exhibited little difference in overall reaction, significant increases in reac-
tion were observed when 2D or 3D optimization was permitted. This phenomenon
stemmed from the emergence of a geometrically intricate diffusion field reminis-
cent of biological structures in 2D or 3D optimization. The 3D optimized porosity
distribution obtained from their work is illustrated in Fig. 1.4d. As the optimiza-
tion process advanced, not only did the global scaled entropy generation approach
a minimum, but the distribution of scaled entropy generation in 1D also gradually
transitioned towards greater uniformity (see Fig. 1.4e and f). These findings align
with the equipartition principle, indicating that uniform entropy generation across
space may result in less dissipation, leading to the minimum entropy generation rate
and a thermodynamically optimal design.

In the subsequent phase of their research, Alizadeh et al. [99] expanded their inves-

tigation to encompass a reaction-diffusion system involving two species operating
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in a steady-state mode, as depicted in Fig. 1.4g. They utilized a density-based TO
algorithm, which resulted in a remarkable 57% improvement in system performance
compared to a uniform layout with equivalent average porosity. Throughout the
optimization process, the researchers closely monitored the porosity distribution,
concentrations of reactant and product substances, and reaction rates. The study’s
outcomes underscore the importance of achieving a delicate balance between dif-
fusion and reaction mechanisms to enhance performance. This equilibrium was
achieved through the formation of primary and secondary channels within the re-
actor during the optimization process. The optimized porosity distribution, derived
from the algorithm, exhibited a tree-root-like configuration, resembling patterns ob-
served in previous research [38]. Similar to their earlier study, this research delved
into dissecting the contributions to system entropy generation and quantifying them
throughout the optimization procedure (see Fig. 1.4h and i). The findings revealed
that the optimized design solution corresponded to the minimum scaled entropy
generation resulting from chemical reactions. The researchers suggested that these
tindings could have significant implications for advancing the understanding of the
theoretical upper limit of reaction-diffusion system performance, regardless of the

inherent limitations of optimization methods.

Additionally, Alizadeh et al. [98] also introduced an entropy generation model to
quantitatively evaluate irreversibilities in a system involving transport phenomena
and electrochemical reactions. By analyzing entropy generation trends for both opti-
mization approaches, the research provided insights into optimizing the distribution
of constituents in porous electrochemical reactors and elucidated the relationship be-
tween TO and entropy generation rate. As depicted in Fig. 1.4b and c, the findings
aligned with principles of entropy generation minimization [32] and equipartition
of entropy production [34, 35]. It is noteworthy that when employing the strategy
of maximizing current density at a specified overpotential, scaling of entropy gen-
eration is necessary to counteract the escalating entropy flux during optimization.
However, the proper scaling becomes more complicated with additional physics in-
troduced to the system. In contrast, minimizing overpotential at a fixed current den-
sity corresponds to reducing entropy generation without requiring scaling. This dis-
tinction arises intuitively as overpotential is commonly associated with irreversible
losses within EEDs.

In various applications, researchers have observed intricately distributed pores that
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Figure 1.4: Examples of works attempting to draw connections between topology
optimization and entropy generation minimization.
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Figure 1.4 (continued from previous page): Schematics and images show (a) op-
timized volume fraction distribution of material constituents in electrochemical
porous reactors, (b) global entropy generation of each phenomenon occurring in
porous reactors, approaching minima post-optimization, (c) 1D projected entropy
generation distribution of each phenomenon in porous reactors, displaying in-
creased uniformity akin to the equipartition principle [98]; (d) 3D optimized poros-
ity distribution from different angles, where surfaces represent areas with porosity
higher than 0.95, (e) scaled entropy generation distribution during optimization, (f)
history of global scaled entropy generation and 1D projected scaled entropy gen-
eration distribution, showcasing the approach towards minima and a more uni-
form distribution resembling the equipartition principle (Reproduced from Ref [38],
Copyright (2023), with permission from Elsevier); (g) computational domain of two-
species reaction—diffusion system, (h) history of global entropy generation during
the optimization process, and (i) spatial distribution of entropy generation by vari-
ous mechanisms at different iterations (Reproduced from Ref [99], Copyright (2023),
with permission from Elsevier)
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resemble tree-root-like structures, reminiscent of natural patterns such as root sys-
tems in trees and respiratory networks in lungs. These natural systems are char-
acterized by efficient mass transport mechanisms, suggesting that exploring similar
structures in engineered systems could enhance our understanding of natural design
principles. The studies discussed above utilize TO techniques to design electrodes
for electrochemical energy storage and conversion systems. By integrating these op-
timized structures with established theories like entropy generation minimization,
researchers aim to uncover connections between engineered designs and natural
phenomena. With a design reminiscent of nature, it may very well be the optimal
design we are in search of, acknowledging that nature tends to design its systems
in the most effective manner. By drawing parallels between topologically optimized
structures and entropy generation minimization, researchers seek to unravel the un-
derlying principles governing natural design. This area of research has the potential
to bypass the optimization process by minimizing the need for repetitive evaluation
of the objective function and governing equations. By doing so, it could significantly
reduce the computational resources and the reliance on tuning parameters typically
required in optimization tasks. This interdisciplinary field has the potential to rev-
olutionize the design of various technologies by harnessing insights from nature’s
efficient solutions. Ultimately, by emulating nature’s design strategies, humanity
may unlock new avenues for innovation and enhance the performance of engineered

systems.

One of the significant contributions in this field was made by Long et al. [101]. In
their study, Long et al. [101] derived exact solutions for 0D optimization of reaction-
diffusion systems, focusing on both maximization (maximizing the reaction) and
minimization (minimizing the concentration at the boundary) problems. Their work
provided critical insights into the relationship between optimized structure and en-
tropy generation. Following this, they extended their research to 2D and 3D TO to
explore the characteristics that an optimized system should possess. They projected
the concentration distribution into a 1D representation, identifying that the key char-
acteristic of an optimized system is a linear concentration distribution. Based on this
observation, they developed a design theory suggesting that an optimized system
should exhibit a linear concentration distribution. By assuming that the optimized
structure consistently produces a linear concentration distribution, they were able
to substitute this assumption into the governing equations to directly solve for the
porosity distribution. This approach allowed them to obtain the porosity distribu-

tion without relying on an iterative optimization process. However, it is important
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to note that this assumption was primarily applied to 1D optimization. Further re-
search is necessary to extend these findings to 2D and 3D optimization, as the com-
plexities introduced in higher dimensions may require additional considerations and

refinements to the design theory.

1.5 Other notable numerical studies in electrode struc-

tural optimization

For innovative electrode design in EEDs, other approaches exist for optimizing elec-
trode morphology. Over the years, researchers have utilized various mathematical
techniques, such as parametric optimization and functionally graded methods, to
improve the topographical design of electrode structures. Parametric optimization
aims to find the optimal value(s) for one or more macroscopic properties (e.g., poros-
ity) of a homogenous design to enhance overall cell performance. While TO adjusts
material distribution locally, resulting in a heterogeneous design, parametric opti-
mization operates at a global level, fine-tuning design variables. Examples include
optimizing Nafion loading in PEFC catalyst layers for maximized power output or
finding the ideal porosity or fiber diameter in RFB electrodes to balance reactive sur-
face area with hydraulic permeability. While simpler to implement, these methods
are limited in generating highly efficient designs. Functionally graded methods are
more advanced approaches building upon parametric optimization. It can involve:
(1) dividing the electrode design domain into multiple regions and performing inde-
pendent parametric optimization on each [102], and (2) utilizing pre-defined distri-
butions based on mathematical functions (e.g., sinusoidal or polynomial) [103]. De-
spite offering greater design freedom than standard parametric optimization, func-
tionally graded methods are still limited by the number of pre-defined domains or
functionalities. In contrast, TO provides a robust framework for automatically gen-
erating material distributions with high resolution. It is noteworthy that approaches
like functionally graded design differ from the formal TO which automatically ma-
nipulates the material distribution itself. Nonetheless, the algorithmic approaches
share similarities, as they both offer a heterogeneous material property distribu-
tion for improved performance. Here, some noteworthy works that have employed
mathematical techniques for morphological modification and improved electrode
performance are brefiely mentioned. These studies offer valuable insights for inter-

ested readers but are not in any way inclusive.
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He et al. [104], for instance, investigated the effect of catalyst layer design on the per-
formance of a PEFC. The researchers developed a macroscopic 3D multiphase non-
isothermal model of PEFC to simulate the cell behavior under various conditions.
The study aimed to understand how different design parameters, such as platinum
(Pt) loading, platinum-to-carbon (Pt/C) ratio, ionomr-to-carbon (I/C) ratio, carbon
particle radius, and electrochemical specific area (ECSA) of platinum particles, in-
fluence oxygen transport resistance, performance, water transport, and the oxygen
transport process within the electrode. Through their numerical simulations and
analysis, the researchers found significant correlations between the electrode design
parameters and the performance of the cell. They observed that variations in Pt
loading, Pt/C ratio, and I/C ratio directly impacted the oxygen transport resistance
within the catalyst layer. Additionally, they highlighted the importance of consider-
ing the carbon particle radius and ECSA in optimizing the performance of PEFCs.
While the study is primarily a parametric sweep analysis, rather than an algorithmic
optimization, it provided valuable insights into the complex interplay between de-
sign parameters and performance metrics in PEFCs, offering a foundation for further
research and development in the field of fuel cell technology. In a different applica-
tion, Tsushima and Suzuki [105] used a bound optimization by quadratic approxima-
tion (BOBYQA) algorithm to simultaneously optimize fibrous electrode architecture
of a vanadium RFB. The multi-parameter optimization included porosity, fiber diam-
eter, and electrode thickness as well as two other channel-related geometrical param-
eters. Each of these parameters were allowed to vary in a given range. Their results
showed that a combination of thinner fibers and thicker electrodes could enhance
the overall cell performance thanks to a higher reactive surface area. However, this
should be accompanied with a relatively high porosity ( 0.89) to facilitate electrolyte
flow that can directly affect the active species transport resistance between bulk so-
lution and solid /liquid interface. The authors suggested simultaneous optimization
of various electrode parameters are crucial for a comprehensive design with boosted
performance. Functionally graded electrode design has been used for various ap-
plications, such as fuel cells and batteries [102, 106]. Srinivasarao et al. [107] used a
multi-layer design of catalyst layer to maximize the generated current density and
minimize platinum loading. To achieve this, the researchers considered an innova-
tive design with four catalyst layers as shown in Fig. 1.5a and optimized various
design variables such as the platinum loading, ionomer loading, weight fraction of
platinum on carbon, and thickness of layers under a range of cell voltages from 0.4
to 0.7 V. By optimizing these parameters for each layer, the study sought to achieve

cost reduction and performance enhancement in comparison to the base case design
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with uniform material distribution. The findings revealed that the PEFC with multi-
ple catalyst layers exhibited superior performance compared to an optimized PEFC
with a single catalyst layer across all operating voltages. Under all operating condi-
tions, the optimization favored a higher porosity in the layers closer to the gas diffu-
sion layer (see Fig. 1.5b). The optimal ionomer volume fraction, on the other hand,
shows an opposite trend with more ionomers concentrated in the layer neighboring
the membrane (see Fig. 1.5c). Additionally, the study demonstrated a significant re-
duction of 17% to 60% in platinum loading with an increase in the number of catalyst

layers for low and high current density regions, respectively.

Although the formal implementation of TO typically involves coupling an optimiza-
tion algorithm with a continuum macroscopic model to find the best distribution of
continuous variables, applying topological optimization to electrode structures ex-
tends beyond this method. Various phenomena at micro- or nano-scales take place
at electrodes of EEDs. Geometrically resolved models can describe these intertwined
multiphysics phenomena at a higher resolution. However, the high computational
cost of approaches like direct numerical simulation (DNS) of geometrically resolved
structures has posed challenges in integrating these models with TO algorithms.
As computer technology advances and more efficient modeling and mathematical
schemes are developed, a new trend is emerging. Pore- and particle-scale models
are now combined with optimization algorithms for morphological optimization of
porous electrodes. An exemplary instance is the use of TO with the LBM. Previ-
ously applied in thermofluidic systems [108-111], TO using LBM has recently been
extended to electrode design for RFBs [112]. Tanaka et al. [112] focused on fluid be-
havior in fibrous porous electrodes and optimized electrode structure using adjoint-
state LBM. By updating solid and fluid distribution through a level-set function, the
optimization algorithm aimed to minimize concentration flow rate at the outlet of a
domain with a resolution of 1 micron per voxel. Fig. 1.5d compares the structure and
vanadium ion concentration distribution of an ordered fibrous electrode with those
of optimized one. According to Fig. 1.5e, compared to an ordered structure with
tiber diameter of 4 microns, the optimized structure had a lower cost function value
by about an order of magnitude in only 25 iterations. The optimization boosted re-
action rate by minimizing the amount of active species leaving the electrode before
reacting, leading to a more efficient process. Another research direction for design-
ing electrodes with engineered microstructure, initiated by Forner-Cuenca’s research
group [113, 114], employs pore network modeling (PNM) together with metaheuris-

tic optimization algorithms. This approach seeks optimal pore network topology
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Figure 1.5: Examples of other notable efforts in electrode optimization (functionally
graded design, LBM, and PNM).
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Figure 1.5 (continued from previous page): Schematics and images show (a)
schematic of PEFC with multiple catalyst layer, (b) optimum void volume fraction
(porosity), (c) optimum ionomer volume fraction in a multiple catalyst layer design
under various terminal voltage conditions (Reproduced from Ref [107], Copyright
(2012), with permission from Elsevier); (d) results of fiber-scale simulations of elec-
trode structure and vanadium ion concentration distribution under charging con-
dition (optimized structure is on the right; initial structure is in the center; left is
the ordered structure with a fiber diameter of 4 microns), (e) evolution of concentra-
tion flow rate at the outlet of the domain (objective function) over the optimization
course in comparison to that of ordered structure [103]; (f) schematic representation
of pore network modeling of RFB electrode, (g) evolution history of cost function,
electrical power, and pumping power during the optimization as well as comparison
of pore size distribution and polarization curves before and after optimization, and
(h) comparison of pore network morphologies, including pore diameter and throat
radius, before and after optimization [113].
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to enhance cell performance. Despite methodological differences with level-set or
density-based TO, they also investigate how a heterogeneous design of porous elec-
trodes could benefit overall cell performance. To achieve higher resolution not at-
tainable through macroscale models and to mitigate the intensive computational
cost of DNS methods, authors initially developed a PNM model of RFB (see Fig. 1.5f).
With the goal of building a predictive design framework, the developed PNM model
is coupled with a genetic algorithm (GA) to optimize network morphology based on
a bottom-up design approach. In their first attempt [113], they employed a cubic
lattice as shown in Fig. 1.5f and manipulated the pore and throat size distributions
without changing the pores positions. The optimized structures exhibit improved
fluid distribution through the formation of a bimodal pore size distribution (see
pore size distribution in Fig. 1.5f), resulting in preferential longitudinal flow path-
ways (see Fig. 1.5g) and a 73% decrease in required pumping power as depicted in
Fig. 1.5g. The optimization also led to a 47% increase in surface area and a 42% im-
provement in electrochemical performance. Despite the initial motivation for using
PNM to capture various phenomena at a pore level, their model uses a uniform value
for the mass transfer coefficient without considering the impact of local fluid veloc-
ity. Additionally, keeping porosity constant throughout the optimization iterations
imposes an extra limitation on design freedom. The use of a cubic lattice also restricts
pore movement within the design domain. This limitation was somewhat addressed
in their subsequent study [114] by introducing a pore merging and splitting function.
Their research highlights the importance of optimizing electrodes tailored to specific
reactor designs and operating conditions. Results reveal that electrolyte kinetics and
ionic conductivity can affect the final optimal design. Electrodes with a large num-
ber of tiny pores and a large surface area are more effective for kinetically slow elec-
trolytes and high ionic conductivity. Conversely, low through-plane tortuosity and
high hydraulic conductance are advantageous for kinetically active electrolytes with
low ionic conductivity. A recent study [115] on multi-objective optimization of pore
network morphologies in an advection-diffusion-reaction system addressed some
limitations of earlier research [113, 114] by introducing a local velocity-dependent
mass transfer coefficient and a morphable pore network that extends beyond a fixed
cubic lattice. However, the model is limited to a first-order chemical reaction and
does not account for electrochemistry-related phenomena, such as electric charge

transport, species transport via electromigration, or electrochemical reactions.
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1.6 Thesis objectives and outline

The increasing demand for efficient energy conversion technologies, such as fuel
cells and electrochemical reactors, has underscored the critical need for enhanced
structural designs of electrodes and porous media. A review of the literature re-
vealed that traditional designs often face significant limitations in mass and charge
transport, leading to suboptimal performance and heightened energy consumption.
Numerous studies have emphasized the importance of optimizing material distribu-
tions within these systems to maximize reactant-to-product conversion rates while
minimizing energy losses associated with irreversible thermodynamic processes. The
primary objective of this thesis is to develop and apply advanced optimization method-
ologies to enhance the performance of reaction-diffusion systems, with a particular
focus on electrochemical reactors. Specifically, this work aims to establish robust
design frameworks for porous electrodes based on mathematical modeling and op-
timization across various length scales and resolutions. Additionally, a secondary
objective is to elucidate the theoretical aspects of optimal design. To achieve this,
the thesis incorporates a comprehensive analysis of entropy generation, quantifying
the thermodynamic irreversibilities present in these systems. This analysis offers
valuable insights into the factors contributing to energy losses and informs design
modifications aimed at improving efficiency. Notably, the entropy generation analy-
sis in this thesis was conducted as a post-processing step to identify the features that
characterize a good design from a physicochemical perspective. However, further
research is needed to understand how these characteristics could serve as guiding
principles for designing optimal electrode structures. Through such studies, it is
anticipated that future research may reveal a theoretical performance limit under
non-equilibrium thermodynamic conditions. However, it is important to note that
such an upper performance limit could be defined based on a theoretical foundation
rather than optimization algorithms, as methods like TO are unable to guarantee a

globally optimal solution.

This thesis is organized into five chapters. Chapter 2 focuses on the topological op-
timization of a reaction-diffusion system, the simplest case involving mass transport
via molecular diffusion and a first-order chemical reaction with reversible kinetics.
The aim is to optimize the porosity distribution to maximize the reactant-to-product
conversion rate. Chapter 3 extends the scope to an electrochemical reactor, where
mass and charge transport are coupled with an electrochemical reaction. The sys-

tem is more complex due to multiple transport phenomena and nonlinear reaction
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kinetics, resembling the catalyst layer of a PEFC. TO is applied to improve system
performance from two distinct perspectives, while an entropy generation analysis
provides critical insights into the characteristics of efficient designs. In Chapter 4, a
macroscopic two-phase flow model of a PEMFC is developed and validated against
experimental data. The catalyst layer structure is optimized using a density-based
TO method. The performance improvement is analyzed in terms of key factors such
as effective diffusivity, conductivity, and liquid water management, illustrating the
advantages of heterogeneous designs. the systems and physical phenomena stud-
ied in Chapters 2 to 4 differ, they share a common approach in using density-based
topology optimization to design electrode structures through macroscopic mathe-
matical modeling. Each chapter presents distinct modeling details, including the
transport phenomena considered, reaction kinetics, and the composition of materi-
als constituting the electrode. Specifically, Chapters 2 and 3 provide a foundational
study of reactive transport system optimization, with certain physical phenomena
assumed, while Chapter 4 applies this methodology to a real-world application of a
PEMEC.

In all these chapters, a macro-scale mathematical model of reactive transport is cou-
pled with density-based topology optimization to generate optimized designs for
macroscopic properties of porous reactors, such as porosity. However, in the field
of porous media modeling, macroscopic models rely on volume-averaging relation-
ships that connect effective properties (e.g., effective diffusivity) with intrinsic prop-
erties (e.g., intrinsic diffusivity). These relationships typically use macroscopic struc-
tural properties (e.g., porosity) to form these connections, and numerous studies
have examined them in depth. Despite extensive research producing various empir-
ical, semi-empirical, and theoretical models, no universal relationship has emerged
that accurately connects effective and intrinsic properties across all operational and
structural conditions. This challenge is likely due to information loss regarding the

porous media’s microstructure during volume-averaging.

In the absence of a universal model describing porous media properties, shifting to
geometry-resolved approaches—where the microstructure is fully or partially rep-
resented—could address some of the limitations inherent in low-resolution macro-
scale models. However, these geometry-resolved models come with increased com-
putational demands. Therefore, Chapter 5 adopts a different approach by optimiz-
ing the reactor structure at a pore-level resolution. This system, analogous to the
electrode of a redox flow battery, involves both convective and diffusive mass trans-

port. A pore network model is employed to simulate system behavior at the pore



Chapter 1. Introduction 42

scale, and a metaheuristic optimization algorithm is used to identify Pareto-optimal
solutions in a multi-objective framework. Given the significance of convective flow,
both conversion rate and pumping cost are considered to achieve an efficient de-
sign. In addition to establishing pore-level structural optimization with manageable
computational costs, a key novelty of the proposed optimization framework is the
introduction of the idea of background grid. This grid allows the optimizer to freely
select any morphology that may yield higher performance. As aforementioned, al-
though algorithmic optimization of pore networks has been previously attempted
by another research group, their approach was limited to adjusting pore diameters
within a fixed cubic lattice configuration, without enabling the optimizer to freely
choose the optimal network morphology. Finally, Chapter 6 presents the conclu-
sions of the thesis and offers future research directions.

Abbreviations

BESO Bi-directional evolutionary structural optimization
BOBYQA  Bound optimization by quadratic approximation
DNS Direct numerical simulation

ECSA Electrochemical specific area

EED Electrochemical energy devices

EGM Entropy generation minimization

EoEP Equipartition of entropy production

ESO Evolutionary structural optimization

FEM Finite element method

FVM Finite volume method

GA Genetic algorithm

GCMMA  Globally convergent method of moving asymptotes
LBM Lattice Boltzmann method

MBB Messerschmitt—-Bolkow—Blohm

MMA Method of moving asymptotes

MMC Moving morphable component

MMV Moving morphable void

NET Non-equilibrium thermodynamics

PEEC Polymer electrolyte fuel cell

PEMWE Proton exchange membrane water electrolyzer
PNM Pore network modeling

RAMP Rational approximation of material properties
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RFB Redox flow battery

SBE Structural battery electrolytes
SIMP Solid isotropic material with penalization
SLP Sequential linear programming
SOFEC Solid oxide fuel cell

TO Topology optimization
Nomenclature

D Design domain

p Penalty exponent

w Material domain

X Point coordinates

Greek symbols

P Density

A Physical properties

d Level set function

o0 Interface between two phases

Subscripts/superscripts

eff Effective
max Maximum
min Minimum

penalized  Penalized
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Chapter 2

Investigation of transport-reaction dynamics and
local/global entropy production in topology

optimization of two-species reaction-diffusion systems

Abstract

There is a growing body of research on the enhancement of porous reactors through
the modification of their structures. So far, however, there has been little elucidation
on how altered spatial structure might be beneficial to reducing irreversible losses.
To explain the optimization procedure from a theoretical basis, this study aims to
investigate the dynamics of rate and transport processes in a reaction-diffusion sys-
tem with two-species operating under a steady-state mode. A topology optimization
method is employed to increase the overall reaction rate by modifying porosity dis-
tribution. Additionally, an entropy generation model is developed to examine the
irreversibilities of the system. Based on this model, the local and global rates of
entropy production in the system are evaluated, and contributions by various mech-
anisms are separately quantified. The results show that an optimal porosity distribu-
tion can boost the system performance by 57% through formation of proper primary

and secondary diffusion channels.

This chapter is published as:
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2.1 Introduction

Heterogeneous catalysis is a catalytic process where more than one phase exists [1].
This type of catalysis, in contrast to homogeneous catalysis, includes most of in-
dustrial applications—chemicals production, chemical refining, photocatalysis, en-
ergy conversion, and environmental protection to name a few [1]. Porous catalytic
reactors are extensively used in various chemical and electrochemical engineering
applications, from synthesis of chemical products (e.g., hydrogen peroxide [2]) to
fuel cells. Improving these porous reactors is therefore facilitating the transition to a
more efficient and sustainable society which is an urgent task for researchers world-
wide [3-5]. In a gas-solid reactor, the reactant species, that exists in a gas phase,
is converted to product species through a chemical reaction. For instance, the cat-
alyst layer of a fuel cell is a porous catalytic reactor in which the rate of a reduc-
tion/oxidation reaction is boosted by a noble catalyst metal [6]. Given the broad
applications of heterogeneous catalytic reactors, improving their performance might
have a significant impact on the cost-effectiveness of these systems. A typical porous
catalytic reactor is a reaction-diffusion (RD) system in which the reactant gas is dif-
fused through the pores of the reactor while getting converted to a desirable product
in presence of a catalyst. In such a system, a transport phenomena (mass diffusion) is
coupled with a rate process (chemical reaction). It is favorable to increase the produc-
tion rate by enhancing the chemical reaction rate. This goal might be accomplished
by using a better catalyst (with higher catalytic activity). However, catalyst materi-
als are usually precious metals and therefore, using a more amount of them might
increase the reactor fabrication cost substantially. Moreover, the rate of a chemical
reaction typically depends not only on the catalytic activity of the catalyst but also
on the concentration of reactant species. In a porous reactor, the reactant is delivered
to the reaction site through the voids. Increasing the volume fraction of solid phase
in a porous reactor and consequently decreasing the porosity might degrade the re-
actor performance due to insufficient reactant supply. Based on these explanations,
the structural design of a porous reactor could have a decisive impact on its overall
performance. In addition, the complexity of coupled transport and rate processes
that are taking place in these systems makes the structural design of a porous reactor
more complicated. As the system is complicated, our previous studies [7-9] aimed to
characterize and quantify how porous media modification affected the active surface

area, reaction rate constant, and mass transfer coefficient.

Historically, it was known that a non-uniform reactor in which the activity of the
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pellet changes with position might be beneficial in some cases. Aris [10] discussed
how the effectiveness factor of a pellet may be improved by a concentrated catalyst
toward the outside. However, they do not provide any rigorous mathematical ap-
proach for obtaining such non-uniform distributions. Shape and sizing optimization
have been widely employed to enhance system performance [11]. More recently,
topology optimization techniques have drawn growing attention from researchers
in a variety of engineering fields [12]. Topology optimization offers an innovative
method to construct an optimal structure layout within a design domain automati-
cally. While at first it was given a rise in structural mechanics [13], the application of
topology optimization has now been extended to more complex systems with multi-
physics, including heat and fluid [14]. Topology optimization has a high potential
to generate pioneering structures that are able to prevail over the dissipation in the
conventional porous reactors. Therefore, this technique might be used for structural
design of porous reactors with the aim of increasing the overall conversion rate. Re-
cently, some studies addressed utilization of topology optimization for design of
porous reactors [15-17]. For instance, Bhattacharjee and Atta [15] investigated op-
timized porosity distribution in a bed microreactor for a non-Newtonian reactant.
Their proposed method enhances the reaction rate without a need for changing the
properties of the catalyst in a first-order exothermic reaction. While these studies in-
troduce an inventive method for generating architectured reactors, they do not deal
with the fundamental mechanism which leads to the system improvement. The need
for a fundamental understanding of the system dynamics could be met by analyzing
the irreversibilities caused by various processes taking place in the system. Based on
the concept of non-equilibrium thermodynamics (NET) [18, 19], the irreversibility
contribution by each mechanism could be quantified in terms of entropy generation
rate. Despite the fact that the second law of thermodynamics was initially applied to
systems at an equilibrium state, NET has been established to extend the application
of this law to systems that are not in global equilibrium. From this angle, NET pro-
vides a powerful tool to examine a system only based on its local characteristics. This
comprehension at the local scale provides further information about the interaction
between various processes in a system and its behavior that is not achievable from
a black box analysis. When combined with entropy generation minimization [20],
NET analysis has been successfully used for the optimization of thermo-fluid sys-
tems (e.g., heat exchangers) [21-26]. For instance, Avellaneda et al. [22] investigated
the multi-objective optimization of entropy generation and pressure drop for a gas
flow in a channel with convective heat transfer using variational methods. Their

findings show that improvement of heat transfer and increase of Nusselt number is
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attributed to the reduction of entropy generation rate and increase of viscous dissi-
pation. Moreover, Guo et al. [25] successfully addressed the optimization of shell-
and-tube heat exchangers through entropy generation minimization and modified

entropy generation number.

In recent years, researchers’ attention has been drawn to the use of topology opti-
mization methods for designing state-of-the-art reactors. Despite these breakthrough
advancements in designing optimal porous reactors, to the best of the authors” knowl-
edge, the working principles that explain how these optimized design solutions are
better, have not been elucidated yet. To put it in another way, a closer look into the
literature reveals that so far, researchers were only dealing with finding improved
design solutions through mathematical optimization rather than being concerned
about the physicochemical explanation behind the optimization process. It is well-
known that the results obtained from optimization studies are always affected by the
choice of mathematical scheme and tuning parameters. For instance, choice of filter
radius in topology optimization or value of parameters in meta-heuristic algorithms
(e.g., particle swarm optimization) [27], have a considerable effect on optimization
performance. Therefore, the results of previous research work strongly depend on
the mathematical scheme and tuning parameters used for the optimization process.
Given the limitations of mathematical optimization techniques, the upper limit of
performance of these systems is still unknown. This research gap in the previous
studies comes from the lack of a well-established conceptual understanding of the
transport processes and chemical reactions that are taking place in such systems.
The dimensional effects on overall reaction rate and its relation with the averaged
distribution of concentration is discussed in another publication by our research
group [28]. The present study aims to address the aforementioned gap in knowl-
edge through the concept of NET and provide a solid framework to elucidate the
hidden mechanism behind obtaining an optimal design solution. To do so, a porous
RD system with two species is considered. Specifically, this study aims to introduce a
framework for NET analysis in designing more efficient RD systems. The developed
mathematical model is implemented in FreeFEM++ [29], an open-source partial dif-
ferential equation (PDE) solver, to solve the system of equations. The porosity of the
system is then optimized using the adjoint field method and steepest descent algo-
rithm. Moreover, the local entropy production rate in the RD system is evaluated
according to the concept of NET. The improvement of system performance during
the optimization process is comprehensively examined and explained in accordance
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with the mechanisms taking place in the system. In addition, a comprehensive as-
sessment is conducted to investigate the contribution of each dissipation source dur-
ing the optimization process. A significant contribution of the present study lies in
the establishment of an original framework to understand the working principles
that leading to irreversibility in multiphysics systems like porous reactors. Such a
physicochemical-based understanding might aid subsequent researchers to not only
focus on mathematical aspects of developing better porous reactors but also reach a
better grasp of their engineered designs. The contributions of this study open a new
pathway to the potential determination of the upper bound for the performance of
RD systems from a NET point of view which has been undiscovered so far. More-
over, it extends the concept of entropy generation minimization to two-species RD

systems and analyze the topology optimization results from a NET point of view.

2.2 Mathematical modeling of the reaction-diffusion sys-

tem

Reaction-diffusion processes could be found in a broad range of applications, from
chemical engineering to non-chemical fields like biology, ecology, and physics [30—
32]. In this study, only chemical reaction and mass transport are of our interest. A
two-dimensional (2D) RD system is considered, as shown in Fig. 2.1. A previous
study [28] showed that the difference between the topology optimization results of
2D and 3D cases are insignificant. Therefore, despite the fact that real systems are 3D,
a 2D model is a proper choice since it reduces the computational cost substantially.
Since this study aims to provide physicochemical insight of the topology optimiza-
tion process rather than complex mathematical modeling, the system is kept simple.
However, the established procedure in this study might be applied to more com-
plex systems after some modifications. A first-order reversible chemical reaction is

considered as follows.

A—B (2.1)
ky
In this reaction, chemical species A is converted to species B with a forward kinetic of
ke (s71). Also, the backward reaction, in which chemical species B is being converted
to species A, is taking place with a kinetic of ki, (s™1).
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Figure 2.1: Schematic representation of 2D reaction-diffusion system

Moreover, the spatial diffusion of both species in the porous reactor (Fig. 2.1) is
described using classical diffusion equation for binary systems, Fick’s second law.
By combining the diffusion equation with chemical reaction rate equation, the well
known RD equation reads as:

oC;
ot

where C; is the concentration (molm~2), DT is the effective diffusion coefficient

=V (D{"VC;) + R (2.2)

(m?s71), and RS is the effective reaction (production/consumption) rate (mol m =3 s~1)
of spices i. Given that both forward and backward reactions are first order, the reac-
tion rates are expressed as:

Rf = kaA (23&)
Ry = kyCp (2.3b)

Since the reactor is considered a porous medium, it is necessary to adjust the dif-
fusivity and reaction rate in accordance with the local porosity. Although effective
diffusion coefficient in porous media has been the subject of numerous studies, such
as [33—40], it is still in dispute among researchers, and there is no consensus on a
unique method for its determination. A power-law relation, initially proposed by
Bruggeman [41], is one of the alternatives that is extensively used and recognized
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in the literature to correlate effective diffusivity with porosity. As a result, in this
study, the effective diffusivity of chemical species is derived using a power law. The
effective diffusivity coefficient is given as:

Dt = DYen (2.4)

in which DY is the bulk diffusivity (m?s™') of species i and 7 is the correction ex-
ponent. The value of 1 should be determined based on the exact porous micro-
structure; however, typically a value between 1.5 to 3.0 is reported in the literature
for porous reactors [42, 43]. The rate of chemical reaction also needs to be corrected
locally. The effective reaction rate, R, is proportional to the volume fraction of
catalyst material and is given by:

R = R 4 BT — (—Ry + R,)(1 — &) (2.5a)
R — Re — RO — (R — RL)(1 — &) (2.5b)

where (1 — ¢) is considered to be the volume fraction of catalyst material required
to initiate the chemical reaction. In this equation, a similar power-law relation used
for diffusivity is employed with « as the correcting exponent for reaction rate. It
is noteworthy that the two reaction rates in Egs. (2.5a) and (2.5b) are equal with
different signs, which is induced by the nature of the chemical reaction Eq. (2.1).
This could be interpreted as the amount of species A that is consumed is equal to
the amount of species B that is produced and vice versa. By confining the scope of
this study to the analysis of system performance under a steady-state, the system of
PDEs describing this RD system can be identified as

V- (DIVC) — R+ RY" =0 (2.6a)
V- (DFVCs) + Ri" — R =0 (2.6b)

By imposing sufficient boundary conditions (B.C.s), this system of equations could
be numerically solved. In the present study, a Dirichlet B.C. is assumed for species A
and B on boundaries 0¢2; and 0123 (Fig. 2.1), respectively. Since the governing equa-
tions are second-order PDEs, the given B.C.s are sufficient. The full mathematical

representation of system B.C.s is as follows:
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)
Cyh =C ond
—D{IVC,y -n=0 ond,

B.C. of Eq. (2.6a) (2.7a)
—DSEVCA -n=0 onody
\ —DSEVCy -n=0 ondfy
—DIVCE -n =0 ondy
—DIVCE-n=0 ondfy

B.C. of Eq. (2.6b) (2.7b)
Cp = O™ on 0f)3
\—DEEVCB n=0 ondy

in which C¥ and Cg™ are fixed concentrations of species A and B on boundaries,
respectively. While the chosen B.C.s results in conversion of all amount of species A
supplied from the boundary 0€); to species B, the problem is formulated in a way
that various porosity distributions give different conversion capacities. Indeed, this
study looks at the problem from a capacity perspective, not an efficiency standpoint
(which usually deals with the ratio of system output and input). While capacity
perspective is of interest in this study, the chosen perfectly absorbing B.C. is not an
essential ingredient for the model to work. The developed model could be employed
together with any other sufficient B.C.s to investigate the system characteristics. To
generalize the applicability of the developed model, the non-dimensional formalism
of RD equations (Eq. (2.6)) reads as:

V* - (ETVCL) — by (1 — €)7C% + o1 — €)Cf = 0 (2.8a)
V' (e"VCg) +3(1 —€)’Cy —hu(1 —€)’Cy =0 (2.8b)

where C; and Cj; are dimensionless dependent variables, V* is differentiation with
respect to dimensionless coordinates z* and y*. Also, 11, 12, 13, 14 are dimensionless

parameters. The dimensionless groups are defined as:

kel? ko L? kL2 kL2
,lvz)l_ D0A7 ¢2— D%’ 1/]3_ D%a ¢4_ D% (2 9)
s Y e _COa o _ O '
L YT MAT e BTG,
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in which L and Cj are the characteristic length and characteristic concentration of
the system, respectively. A reasonable choice for the latter characteristic parameter
might be made according to the boundary conditions of the RD system (Eq. (2.7)).
Moreover, assuming that the characteristic time of the system is 7, the non-dimensional

effective reaction rate is:

R = p5(1 — €)% — (1 — €)7C (2.10)

where 15 and 1) are dimensionless forward /backward kinetics and are defined as:

s = ke apg = kyT (2.11)

Further discussion on non-dimensionalization is out of the scope of this study. Fi-
nally, the explained mathematical model is implemented in FreeFEM++ [29] to find
the concentration distribution of both species within the reactor. The developed code
is provided in the Supplementary Materials.

2.3 Entropy production

Irreversible thermodynamics first appeared in an endeavor to describe systems that
are not in global thermodynamics equilibrium. Such a characterization might be pro-
vided by employing a local equilibrium assumption, which has been shown experi-
mentally to be valid for extending the equilibrium thermodynamics to non-equilibrium
systems [18]. In engineering systems, the entropy production rate is typically consid-
ered an index of performance degradation or dissipation. However, it is noteworthy
that, in general, minimum entropy generation does not correspond to the maximum
performance [44]. Otherwise, “doing nothing”, which produces no entropy, would
be definitely the best case. Therefore, when using entropy generation as a measure of
how efficiently a system is working, a great deal of careful consideration should be
taken into account to set sufficient constraints. The necessary conditions for equiva-
lence of “minimum entropy production”, and “maximum system performance” are
comprehensively discussed by Salamon et al. [44].

2.3.1 Entropy production in RD system

Based on NET [18, 45], the local entropy generation rate could be estimated through
the Gibbs differential equation as follows.
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dU =TdS — pdV + Y pdN; (2.12)

where U, S, V, and N; are internal energy (J), entropy (J K™'), volume (m?), and the
number of moles (mol), respectively. Also, T, p, and p are temperature (K), pressure
(Pa), and chemical potential (Jmol™?), respectively. It is assumed that all processes
in the reactor are taking place at a constant temperature (isothermal condition), and
the chemical species in the RD system are ideal gases. Therefore, it can be concluded
that the local internal energy of the system is constant everywhere (dU = 0). It is
noteworthy that this conclusion is only valid for the case of ideal gases (or other
similar cases) where the potential energy of molecules is negligible, and as a result,
the change of internal energy is only associated with the temperature. Considering
that the volume of the system is constant, Eq. (2.12) could be expressed in the form
of densities of entropy and mole numbers as:

1 dN; 1
ds = — Z W =7 Zuida (2.13)

In Eq. (2.13), s = S/V is entropy density (J K~ m~?). Since the system does not have
any convective flow, the time derivative of entropy density reads as:

ds 1 oC;
o= T 214

By substituting the right-hand side of Eq. (2.2) for % in Eq. (2.14) and doing some

mathematical manipulation, the entropy accumulation is re-written as:

0s 1 1
%=V T(ILADZHVCA + MBDEHVOB)] tT [VNA (DYVCA) + Vs - (DFVCp)

— RE(—pa + pm) = R — pis)| - (2.15)
The entropy balance equation could be expressed as:

0s
T (2.16)
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in which J, is entropy flux (W K~!m™?) and ¢ is entropy source term (W K~' m™).
The latter term indicate the local entropy production rate per unit volume. When
Egs. (2.15) and (2.16) are compared, entropy flux and local entropy production rate

are separated as:

1
). = T(MADXHVCA + us DR VCp) (2.17)

and

1 1 1 1
o= TVMA'(DZHVCA%LTVMB'(DEHVCB)—fRﬁﬁ(—MA-FMB)—fRﬁﬁ(MA—MB) (2.18)

The terms on the right-hand side of Eq. (2.18) are entropy generation contributions
by transport of species A, transport of species B, forward chemical reaction, and
backward chemical reaction, respectively. Furthermore, the total entropy production
rate is computed by integrating the local production rate over the entire domain, 2,

as follows:

P = /Q odQ) (2.19)

From thermodynamics, it is known that the chemical potential of an ideal gas at a

constant temperature is given by:

p=p + RTIn % (2.20)

where p°f, C**f, and R are chemical potential at the reference point (J mol~1'), refer-
ence concentration (mol m~?), and universal gas constant (J K~! mol™'), respectively.
For a chemical reaction given by Eq. (2.1), the difference between reference chemical

potentials is expressed by:
it — it = RT In — (2.21)

2.3.2 Entropy production under finite time/size condition

According to the second law of thermodynamics, the entropy production rate in a
system in which one or several physical phenomena are taking place is larger than



Chapter 2. Optimization of a reaction-diffusion system 67

or equal to zero. To put it in mathematical form

>0 (2.22)

In an ideal case, the entropy production of a system would be zero. In practice, how-
ever, systems are confined to finite-size devices and finite-time processes. Hence,
within the context of finite time/size thermodynamics [46—48], some degree of en-
tropy production is inevitable. Indeed, in practical situations, higher system duty
(e.g., higher reaction rate or higher power output) is always associated with a higher
rate of entropy generation. This is in accordance with the aforementioned discus-
sion regarding the equivalence of “minimum entropy production” and “maximum
system performance”. In real-world problems, minimization of entropy production
could result in more efficient systems only if the system duty is considered a con-
straint. This issue is further discussed in the subsequent section, where the results
of entropy production evaluation are reported for the present RD system. Based
on these explanations, the entropy production in any system could be divided into
two parts, which we will call “inevitable contribution” (Pinevitabie) and “controllable

contribution” (P.ontrollable):

P = Pinevitable + P controllable (223)

The “inevitable contribution” is the entropy that is produced due to the limitations
in time and size. In other words, according to finite time/size thermodynamics, sys-
tems are always doomed to some amount of entropy production, and this amount
is increased with the increment of system duty. On the other hand, the “control-
lable contribution” could potentially be decreased by controlling the driving forces
or transport properties within the system. In an ideal case (with no physical restric-
tions), full control of the driving forces could result in zero entropy production due
to the “controllable contribution”. However, in realistic cases, where driving forces
cannot be controlled independently, reaching a zero entropy production by “control-
lable contribution” is impossible. The mathematical distinction between these two
contributing terms depends on several factors, including but not limited to the flux-
force relationship in the system. The entropy production rate is often expressed in
terms of the product sum of conjugate flux and forces as given in Eq. (2.24). In this
equation, J; and X; denote flux and forces j in the system. This expression of the

second law is known as Onsager’s formulation [45].
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o=>_ JX (2.24)
j

Without losing generality, the simplest case could be defined according to the fol-

lowing assumptions:
1. The system has only one driving force (X)

2. The force-flux relationship is linear as: j = LX, where L is phenomenological
coefficient

3. The phenomenological coefficient, L, is constant over the entire system

Considering these simplifying assumptions, the total entropy production is expressed
by:

P= / od) = / LX?dQ) = LAX? + LA Var(X) (2.25)
Q Q

in which P is total entropy production rate over domain (2, X is average of driving
force X over the entire system, Var(X) is the variance of the driving force X, and A
is the total size of system domain. Knowing that the total flux, J, is given by

J = / jdQ = LAX (2.26)
Q
the total entropy production rate could be re-written as:

2

J
P = + LAVar(X) (2.27)

According to Egs. (2.25) and (2.27), for a fixed system duty (constant total flux), a
proper control could result in lower entropy production rate (system dissipation) if
the driving force is distributed uniformly (Var(X) = 0). This fact gave the rise to the
concepts of equipartition of entropy production (EoEP) by Tondeur and Kvaalen [49]
and equipartition of force (EoF) by Sauar et al. [50]. The equipartition idea has been
thoroughly discussed in the literature in the later studies and has been extended to
other quantities like thermodynamic speed and thermodynamic length [51]. If the
objective of an optimization problem is maximizing the overall flux in the system,
the total entropy production given by Eq. (2.27) would inevitably increase. Hence,
the scaled entropy is introduced by the following equation as an index to somehow
suppress the impact of “inevitable entropy production”.



Chapter 2. Optimization of a reaction-diffusion system 69

P 1 Var(X)
Pscaled - - _ 2.28
7 LA T TAX) @.25)

Although in more complicated cases, where the phenomenological coefficient is a
direct function of the position, the expression of scaled entropy might be different,

the same idea might be helpful for scaling the entropy generation.

2.4 Topology optimization algorithm

Mathematical optimization techniques provide powerful tools for determining the
best size, shape, or topology for a given problem [52]. Topology optimization im-
proves the structural layout of the system by controlling the material distribution
within a given design domain. From this perspective, topology optimization gives
additional degrees of freedom and design flexibility, making it more sophisticated
than other approaches [53, 54]. While the roots of topology optimization can be
traced in the research works by Maxwell [55] and Michell [56], the modern methods
originate in Bendsee and Kikuchi’s study [57] in 1988, in which they introduced the
homogenization method. Topology optimization could be interpreted as a material
allocation problem in a given design domain, (2, and mathematically be expressed
as:

oo (%) = 1 ifx € Qy (2.29)
0 ifx e Q\Qy

in which x is any position in the design domain (£2). Additionally, pp is a discon-
tinuous function representing material allocation condition in any position x. In the
material domain, {2y a value of pp = 1 is assigned to this function, while a value of
pp = 0 indicates void. Since treating a discontinuous function causes mathematical
complications, a relaxation method called “density method" [58] is typically used. In
this approach, the discontinuous material distribution function is substituted with a
continuous density function 0 < pc(x) < 1.

2.4.1 Problem formulation

The performance of RD systems is degraded owing to several limiting mechanisms,
including kinetic and concentration losses. While the former is due to sluggish reac-

tion kinetics, the latter is associated with the lack of reactant at the reaction site. The
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concentration loss becomes more serious when the reactor is working at a higher
conversion rate which results in rapid consumption of the reactant. The topology
optimization problem of the RD system described by Eq. (2.6) is defined as a maxi-
mization of the total reaction rate in the porous reactor. The optimization problem is

mathematically presented as:

max Fopj = / (R{™ — R dQ
€ Q

s.t. Eq.(2.6) (2.30)

0<e(x)<1 ¥xeQ

where F,,; is the objective function. Since this optimization problem is constrained
by Eq. (2.6), it is called a PDE-constrained optimization. In this problem, the local
porosity distribution is considered a design variable. It is noteworthy that according
to Egs. (2.4) and (2.5), both mass diffusivity and reaction kinetics depend on local
porosity. Hence, it can be understood that while higher porosity values improve the
mass transport and consequently reduce the concentration loss, the activation dis-
sipation will be increased due to the lower volume fraction of the catalyst material.
Therefore, there is a trade-off between the activation and concentration losses, and
an optimal distribution for the porosity might be identified. Hence, the ultimate goal
of the aforementioned optimization problem is to increase the conversion capacity
of the reactor with a proper distribution of porosity and catalyst material within the

design domain.

2.4.2 Adjoint field and sensitivity analysis

A classic method for solving PDE-constrained optimization problems is using ad-
joint optimization [59] which is based on the evaluation of the sensitivity of objective
function with respect to the design variables. In general, the total derivative of the

objective function given in Eq. (2.30) with respect to the porosity is

de Oe e
where A is the vector of adjoint variables and G is a system of PDE constraints. The

dFoy _ OFoy 470G 231)

adjoint variables could be computed by solving the following equation, known as
the adjoint equation.
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0G\T OF ;T

in which C is the vector of state variables (concentration of species A and B in this

case). Based on the objective given by Eq. (2.30) and the PDE constraints expressed
in Eq. (2.6), the adjoint equations are given as follows after some mathematical ma-

nipulations:

—V (DY) + k(1 —e)" (M — Xg) — k(1 — €)Y =0 (2.33a)
—V - (DR ) + k(1 — &) (=A1 + X)) + kp(1 — €)Y =0 (2.33b)

The adjoint variables are computed by solving this system of PDE equations accord-

ing to the boundary conditions indicated by Eq. (2.34).

A =0 ond
—DSEVA D=0 ondQ,
B.C. of Eq. (2.33a) (2.34a)
DIV - =0 ondQs
\ DIV -n =0 ondQy
(
—DFVXN, - =0 ond
_DEHVAQ ‘N = on 892
B.C. of Eq. (2.33b) (2.34b)
Ao =0 on 02
\ —DIV - n =0 ondQy

As a result, the sensitivity of the objective function is:

dFop;

P key(1 — )" 1Op — kpy(1 — )7 1Cp + DS 'VCy - VA

— Mky(1 =€) Cp + MEpy(1 — £) 10 + DEne 'V COs - VA,
k(1 — &) 1Cn — Aokiy(1 — 5)7_103] (2.35)
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2.4.3 Regularization

The checkerboard pattern, which are areas of alternating black and white elements,
is a common challenge in any topology optimization process [58]. This issue has
been addressed comprehensively in topology optimization literature [60-62] and
some regularization methods, such as filtering and projection of solutions, are pro-
posed to restrict the output produced by the optimization algorithms. In this study,
a Helmholtz-type filter [60] is used along with a hyperbolic tangent projection [63] to
obtain more robust results. This filter is the solution to a Helmholtz-type PDE with
homogeneous Neumann boundary conditions as

—R*V? (%) + po(x) = pel(x
ﬂc( ) Pc( ) Pc( ) (2.36)
Voc-n=0 ond2

where pc is filtered density function and R is the filter radius. The projection is
conducted using a hyperbolic tangent function [63] as

P tanh (8 (pc — pg)) + tanh (Bps)
™ tanh (B (1 — pg)) + tanh (Bpp)

in which pc is the projected density function, and § and pg are projection steepness

(2.37)

and projection point, respectively, which are used to control the amount of projec-
tion. The regularized density function is used to determine the spatial distribution of
porosity in each iteration (¢ = p¢). While this function does not appear explicitly in
the optimization problem (Eq. (2.30)), the relationship between the density function

and porosity distribution defines its role in optimization process.

244 Updating scheme

For updating the solutions in each iteration, the well-known steepest descent method
is used. The updating scheme is given by

dFop;
de
old

where p¢™ and p2° are the density function of the current and previous iterations

pET(x) = p2i(x) — 0 (2.38)

and ¢ is a given move limit. The complete steps of topology optimization algorithm
is depicted in Fig. 2.2.
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Figure 2.2: Flow chart of optimization algorithm
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Table 2.1: The system specifications used for simulations

Parameter Value Unit

Reactor dimensions 1 x 1 m X m

T 298.15 K

n 2 -

Y 2 -
ci 1 mol m—3
cpu 1 mol m ™3

2.5 Results and discussion

In order to increase the overall reaction rate in the porous reactor, the porosity distri-
bution should be properly controlled so that the reaction becomes faster while ensur-
ing an adequate reactant supply. Although according to Eq. (2.5), the local effective
reaction rate can be improved by lower porosity (which is equivalent to a higher cat-
alyst volume fraction), the mass transport can be facilitated only by larger diffusion
tields. To address this engineering challenge, an optimization process is conducted
with the purpose of finding the best porosity distribution. As a post-processing step,
the entropy generation in the reactor is assessed according to the second law of ther-
modynamics concept. The system specifications used in the following simulations

are reported in Table 2.1.

2.5.1 Parametric analysis

As a preliminary step, a parametric analysis is performed to evaluate the porosity
dependence of system performance. At this stage, the total reaction rate is examined
for a range of uniform porosity distributions. Since the porosity is assumed to be
distributed uniformly in this analysis, only the value of porosity is used as a design
variable. For the parametric study, the average reaction rate over the entire system is
characterized by various porosity levels and compared under different working con-
ditions. The impact of backward reaction kinetics and bulk diffusivity of species A
is investigated while keeping the forward reaction kinetics and diffusivity of species
B constant, respectively. The operating conditions of various cases examined in this
step are presented in Table 2.2. To inspect the impact of the reaction rate on the op-
timized porosity, the backward reaction rate, %, is changed from an extremely low
value of 0.01 to an extremely high value of 0.99. In the second investigation, the bulk
diffusivity of the reactant, DY, is varied between 0.1 and 10, which are respectively
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lower and higher compared to that of the product species, D}. It is notable that Cases
1-2 and 2-1 in Table 2.2 are identical.

As depicted in Fig. 2.3a, when the backward reaction kinetics is increased, the over-
all performance of the reactor gets decreased at any porosity. Moreover, at a fixed
backward reaction rate of &, = 0.01s™! (extremely low backward kinetics), the high-
est average reaction rate is achieved at a uniform porosity of ¢ = 0.378. However,
with an increment of backward reaction rate (from Cases 1-1 to 1-5), the optimal
porosity shifts toward higher values. This is due to the fact that at higher backward
reaction rates, the supply of the reactant species A should be enhanced by facilitat-
ing mass transport to keep the average reaction rate as high as possible. The result
of the porosity trade-off for a range of bulk diffusivity (Cases 2-1 to 2-5) is shown
in Fig. 2.3b. This figure reveals that at higher bulk diffusivity levels, where reactant
supply is guaranteed by enhanced mass transport, a lower porosity assists the re-
action speed. Hence, the optimal porosity is diminished from a value of € = 0.5 to
e = 0.289 when the diffusivity is increased by two orders of magnitude. The reaction
rate curves presented in Figs. 2.3a and 2.3b are all comparable and have a single,
optimal porosity point that strikes a compromise between the mass transport lim-
itations and reaction rate. Moreover, it can be seen that the variance of optimum
porosity is larger under different backward kinetics (0.378 < ¢ < 0.462) compared
to the cases with different diffusivity (0.289 < ¢ < 0.5). Finally, the optimal poros-
ity over a range of backward reaction kinetics and diffusivity levels is demonstrated
in Fig. 2.3c. These different sets of parameters represent various diffusion-kinetic
regimes that are described in classical resources [64]. As explained in [64], in a RD
system, two limiting conditions may occur. When the reaction rate is relatively much
faster than mass transport rate, it is called diffusion regime. Conversely, a high mass
transport rate compared to chemical reaction leads into a kinetic regime. The mini-
mum optimized porosity occurs at a low backward reaction rate and a high diffusiv-
ity. Under these conditions, high diffusivity assures sufficient mass transport, and
low porosity boosts the reaction rate. Moreover, in the worst-case scenario in which
the backward reaction kinetics is relatively high and bulk diffusivity is low, larger
pores are required to achieve a higher average reaction rate. However, for median
conditions, in which both backward reaction kinetics and bulk diffusivity values are
relatively high or low simultaneously, the optimum porosity should be determined
based on the absolute value of the working parameters. It is evident that for the
given set of parameters, an extremely low bulk diffusivity (a diffusion-limited sys-

tem) necessitates larger pores compared to an extremely fast backward reaction.
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Table 2.2: The system specifications used for simulations

Study Case DS(m?s™) D¥(m?s™') ke(s™') ky(s™)
1-1 0.01
1-2 0.1
Impact of reaction kinetics ~ 1-3 1 1 1 0.5
1-4 0.9
1-5 0.99
2-1 0.1
2-2 1
Impact of diffusivity 2-3 2 1 1 0.1
2-4 5
2-5 10
DY (m

o
)

Optimized porosity
ja]
e

e
o

ky, (871)

(c) Dependence of optimized porosity on the values of backward reaction rate, ky,, and bulk
diffusivity of the reactant, D%, at constant k;, = 0.1s7! and D% = 1m?s~!

Figure 2.3: Average reaction rate and optimized porosity under various reaction
kinetics and diffusivity values
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Figure 2.4: Changes of porosity layout during topology optimization process

2.5.2 Topologically optimized porosity layout

To investigate the topological optimization of porosity, the parameters are adjusted
the same as those of Case 1-2 (or Case 2-1) in Table 2.2. Fig. 2.4 illustrates how
the porosity distribution alters during the optimization iterations. Starting with a
uniform porosity layout, the optimization process changes the local distribution of
porosity in accordance with the previously mentioned methodology to achieve a
higher overall reaction rate. The re-distribution procedure is accomplished such that
the final design provides a compromise between the mass transport and reaction
speed limitations. The findings of Fig. 2.4 show that while the porosity level was set
to be ¢ = 0.5 at the beginning, the difference in local sensitivity of overall reaction
rate with respect to porosity caused a porosity gradient in the system. This gradient
in local porosity levels grows during the optimization process and finally leads to the
formation of some large diffusion channels within the reactor. These channels first
appeared in the area close to the inlet boundary and then expanded toward the outlet
boundary. The diffusion channels are responsible for the reactant delivery to the re-
gions far from the inlet boundary, where the reaction rate is restricted due to the defi-
cient reactant. In addition, these channels provide an efficient path for the discharge
of the reaction product, which is required to keep the overall reaction rate as high as
possible. On the other hand, the regions with lower porosity have a higher potential
for accelerated reactions due to a higher volume fraction of catalyst material and are
primarily used as the chemical reaction sites. Finally, the optimization resulted in a
complex tree-root-like structure with lots of secondary branches. These secondary
channels further dispense the reactant from the main primary channels all over the
reactor. With the advancement of fabrication methods and technologies [65, 66], it is
anticipated that such complicated reactors to be realized experimentally in the near
future.
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The convergence trend of the optimization problem is shown in Fig. 2.5a. In this dia-
gram, the average rate of overall reaction (i.e., objective function) is plotted together
with those of forward and backward reactions. The data in this figure indicates that
as the optimization proceeds, the average rate of both forward and backward reac-
tions increases. However, the difference between the forward and backward rates
is also increasing. The increment trend continues until the average overall reaction
rate converges to a value of 0.291 molm™3s™! at iteration number 1000. The average
porosity over the entire reactor is computed at each iteration, and its variation is pre-
sented in Fig. 2.5b. While the average porosity changes severely in the first iterations,
it tends to have a constant value at subsequent steps. According to Eq. (2.38), the lo-
cal porosity is updated based on the sensitivity of the objective function. Since the
sensitivity is higher in the early steps of optimization, this graph shows a sharp fall
in average porosity at low iteration numbers. In this simulation, the average porosity
converges to a value of £ = 0.389. This value is roughly close to optimal porosity
obtained from a parametric study under a uniform porosity distribution for Case 1-2
(or Case 2-2), as shown in Fig. 2.3. It is interesting to note that a uniform porosity
of 0.389 would result in an average overall reaction rate of 0.185 molm3s~'. How-
ever, the same average porosity for a topologically optimized layout corresponds to
an objective function of 0.291 molm~3s~!, which is 57% higher than the uniform dis-
tribution. This significant elevation of reaction rate is linked to the heterogeneous
distribution of porosity which maintains a suitable balance between the supply and
consumption of reactant. To further investigate the porosity evolution, the 2D dis-
tribution is projected on the z-direction by measuring the average of porosity along
the other axis of the coordinate. Fig. 2.5c exhibits the average projected porosity
for some selected iterations. As stated before, the optimization problem is initialized
with uniform porosity. Hence, the projected porosity for the initial layout is a straight
horizontal line. The distribution along the z-direction becomes increasingly asym-
metric as the optimization process continues. Evidently, the optimum layout has the
maximum difference between the projected porosity in areas close to the inlet (z = 0)
and areas adjacent to the outlet (z = 1).

Fig. 2.6 compares the spatial distribution of porosity, concentration of reactant (species
A), concentration of product (species B), and reaction rate through the optimization
process. This figure reveals that, while the maximum local concentration of species
A is fixed on the inlet boundary, the minimum concentration is getting reduced as

the optimization proceeds. Thanks to the new distribution, the reactor has more
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potential for consuming the available reactant in the system. Indeed, this poten-
tial for higher consumption improves the rate of the forward reaction. For the case
of species B, the minimum local concentration is fixed and dictated by the outlet
boundary condition. However, as the optimization is progressing toward the op-
timal solution, the concentration of this species shows a fluctuating behavior. The
maximum local concentration of species B first gets larger till iteration number 100
(from 1.35 at the initial step to a value around 2.1 at iteration number 100) and then
declines till the optimized case (from 2.1 at iteration number 100 to a value of 1.85
for the optimal layout). The observed increase in the primary steps (up to iteration
number 100) could be attributed to the enhanced forward reaction rate. On the other
hand, as the optimization process goes on, the large diffusion channels are extended
toward the outlet boundary. These channels assist discharge of the reaction product
(species B), and consequently, the maximum local concentration of species B dimin-
ishes. This concentration reduction leads to a lower backward reaction rate after a
peak at early iterations (see Fig. 2.5a). These findings prove the significant role of
the diffusion phenomenon and how a well design may boost the performance of RD
systems. Moreover, what stands out in this figure is that the difference between the
minimum and maximum reaction rates becomes larger, which subsequently causes a
higher degree of non-uniformity. A closer inspection of Fig. 2.6 shows how the large
diffusion channels formed in the optimization process facilitate the reactant supply
to the farthest regions (close to the outlet boundary) of the system. Although these
regions had a very low overall reaction rate in the initial layout, an optimal porosity
distribution led to a substantial escalation. From Fig. 2.6, it is apparent that in the
case of optimized layout, the reaction rate in the channels, where porosity is ¢ = 1,
the reaction rate is almost zero due to lack of catalyst material. In contrast, the reac-
tion rate in other regions depends on both porosity and reactant concentration. As
a result, areas near the reactor inlet (close to x = 0), in which the concentration of

species A is higher, have the largest overall reaction rate.

Fig. 2.7, which illustrates the projected overall reaction rate, provides further insight
on how the optimization procedure works. At the initial uniform layout, the reac-
tion rate is more homogeneous over the domain; however, the average magnitude is
low. As the system configuration gets more optimized, the reaction rate in the areas
close to the inlet boundary almost doubled. This considerable rise caused a signifi-
cant variance in the projected reaction rate of the porous reactor. This is associated
with the fact that these areas have a higher potential for improvement because of the

proximity to the inlet boundary. In the subsequent steps, the optimization algorithm
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attempts to reduce the raised non-uniformity by amplifying the overall reaction rate
in the areas close to the outlet boundary.

2.5.3 Entropy production analysis

A comprehensive entropy generation analysis is conducted based on the entropy
model developed in Section 2.3. As indicated before, an optimized layout with a
higher reaction rate is expected to have larger entropy production. Hence, great care
should be taken when interpreting the entropy production results. To put it in other
words, when connected with a high overall reaction rate, a large total entropy gen-
eration is favorable. On the contrary, a large magnitude of total entropy generation
due to a significant variance of local entropy production rate is negative. Based on
the terms on the right-hand-side of Eq. (2.18), the entropy generation is divided into
three sources, including contributions by diffusion of the reactant (species A), diffu-
sion of the product (species B), and chemical reaction. Fig. 2.8 displays the history of
total entropy production during the optimization process. As shown in this figure,
for the given set of system parameters, the total entropy increases monotonically.
The separate contributions of each phenomenon are also depicted in this figure. It



Chapter 2. Optimization of a reaction-diffusion system 85

can be seen that the chemical reaction has a relatively greater share in total entropy
compared to mass transports. It is noteworthy that the absolute magnitude of dif-
ferent contributions depends on the system parameters settings. What is interesting
about the data in this figure is how each of the contributions is changing through the
optimization. By expansion of the diffusion channels over the reactor, the reactant
is transported more effectively, and in return, the entropy production by diffusion
of species A rises. The situation for the diffusion of the reaction product is differ-
ent. According to Fig. 2.8, the growth of entropy production by diffusion of species
B is accompanied by a decline after early steps. This fluctuation finally becomes a
constant value when the optimization problem converges. Similar to the reactant,
the initial rise in entropy production of species B is attributed to the higher diffu-
sion rate in the system. In fact, this rise in entropy production is favorable. On
the other hand, as aforementioned, when the larger channels are formed in the ar-
eas close to the outlet boundary, the product is discharged from the reactor more
easily. This causes a slight reduction in the average concentration of this species,
which finally results in a more uniform concentration distribution throughout the
reactor. Correspondingly, the entropy production by diffusion of species B experi-
ences a depletion. Finally, the entropy production by chemical reaction also shows a
small fluctuation. Because the overall reaction rate is increasing monotonically, the
entropy generated by this source is also expected to grow. However, this entropy
contributor shows a downward trend at the beginning. A possible explanation for
this might be that although the reaction rate is improved in the initial steps, this
improvement is due to the enhanced effective reaction kinetics. As discussed be-
fore, the average porosity also shows the same behavior. Lower porosity means a
higher volume fraction of catalyst material and thus higher effective reaction kinet-
ics. However, this reduction in porosity level causes a temporary drop in reactant
supply. Therefore, further porosity reduction is not beneficial to the system perfor-
mance due to the disruption of the balance between the supply and consumption of
the reactant. The drop in reactant supply is compensated, and the chemical poten-
tial of reactant increases. Consequently, the entropy production by chemical reaction

starts increasing.

Since the reaction rate changes with optimization of porosity distribution, a simple
comparison of total entropy production is not possible. Another possible approach
is to use the scaled entropy production introduced in Section 2.3. The scaled total
entropy production, the scaled projected entropy production, and the entropy pro-

duction ratio are demonstrated in Fig. 2.9. What can be clearly seen in Fig. 2.9a is
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the continuous drop of scaled entropy. These results prove that the optimal con-
tiguration corresponds to the minimum scaled entropy production over the entire
system. This relationship might be explained by looking at Fig. 2.9b that illustrates
the scaled projected entropy generation for various iteration steps. As it can be seen,
a more optimized layout not only is associated with lower scaled entropy on aver-
age but also corresponds to more equipartitioned entropy distribution. These out-
comes are in agreement with those reported in the literature about the equipartition
principle [49-51]. However, it is notable that the equipartition principle should be
employed with a considerable amount of care. Magnanelli et al. [51] fully addressed
the conditions under which the numerical optimum and equipartition principle con-
cur. Based on their results, if the driving forces in the system cannot be controlled
independently, the equipartition principle does not fully coincide with the numerical
optimum. However, the equipartition of entropy production might provide an ac-
ceptable approximation. It is possible to hypothesize that even better configurations
might be obtained under a more equipartitioned entropy production condition. As
can be seen in Fig. 2.9b, there is a potential to improve the reaction rate in the areas
close to the outlet boundary. However, this hypothetical configuration might not
be necessarily favorable from a design viewpoint and needs further investigation,

which is out of the scope of this study. Furthermore, the entropy production ratio
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(f), which is defined according to the Eq. (2.39), is also shown in Fig. 2.9a. This pa-
rameter indicates the ratio of total entropy production contributed by the reaction
process to the entropy contribution by the diffusion mechanism over the entire do-

main.

reaction reaction

. P _ Jo0o dQ
diffusion diffusion

P fQ o ds)

(2.39)

A well-designed reactor should provide a compromise between these two entropy
generation contributors. As it can be seen from the plot of f in Fig. 2.9a, the entropy
production ratio changes over the optimization course and finally reaches a value of
2.11. This ratio can specify which mechanism is degrading the reactor performance.
At the initial configuration, this ratio is high, which shows that the overall system is
diffusion-limited. By the formation of the diffusion channel in the reactor, the ratio
[ starts declining. Further decrease of this parameter takes the system to a reaction-
limited condition. However, to increase the objective function, the optimization al-
gorithm increases the ratio f from a minimum value of 1.72 to a final value of 2.11,
which provides a compromise between the entropy generation by chemical reaction
and mass transport. The exact optimized value of this ratio depends on the bulk
parameters of the system, including forward /backward kinetics and species diffu-
sivity coefficients. According to Fig. 2.9a, the system once passes the optimized en-
tropy production ratio (f = 2.11) at early iterations (iteration number 7). While the
value of f at that iteration is equal to the optimized configuration, the total entropy
production, which is another essential factor impacting the system performance, is
low (see Fig. 2.8). That is why both ratio f and the absolute value of total entropy

production are important in obtaining an optimal design solution.

The contribution of different mechanisms to the entropy production in the RD sys-
tem is depicted locally in Fig. 2.10. The largest values of entropy production by
transport of the reactant are localized in the regions close to the inlet boundary. This
is caused by a higher gradient of reactant concentration in these areas compared
to those on the other side of the reactor. Moreover, by the emergence of the diffu-
sion channels, the transport of reactant is enhanced and eventually leads to higher
entropy production. This entropy rise is an inevitable kind of entropy production
that has been discussed in Section 2.3 and, therefore, is positive. The entropy gen-
eration due to the diffusion of product is mainly located near the outlet boundary,
where species B is discharged from. Unlike the reactant, the concentration of species

B shows a large gradient in this region where there is a possibility for the reaction
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product to go out of the system. From Fig. 2.10 it could be understood that as op-
posed to entropy production by diffusion phenomenon, the contribution by chemi-
cal reaction is larger in the areas outside of the diffusion channels. This is due to the
higher rate of chemical reaction in areas with low porosity (see Fig. 2.6). As shown
in Fig. 2.10, from a local distribution perspective, it seems that transport of species
B produces the largest entropy. However, this big entropy contribution is limited to
small areas in the calculation domain where there are narrow secondary channels.
However, from a global point of view (see Fig. 2.8), the chemical reaction is the main

contributor to entropy production.

2.6 Conclusions

This study deals with the modeling and optimization of a 2D reaction-diffusion sys-
tem. RD systems in which a transport mechanism is taking place together with a
chemical reaction are used in many industrial application. Hence, a deep under-
standing of transport and reaction dynamics provided by this research work could
contribute to the development of these systems. A porous reactor with two species
converted to each other through a simple first-order chemical reaction is mathemat-
ically modeled. This work also introduces an optimization technique for topological
optimization of porosity distribution in RD systems with the aim of enhancing the
overall reaction rate. The optimization algorithm employed in this research leads
to a 57% enhancement of the system performance compared to a uniform layout
with the same average porosity. The porosity distribution, concentration of reac-
tant and product substances, and reaction rates are traced over the optimization
steps. The results of this study show that a proper balance between the diffusion
and reaction mechanisms is required to achieve higher performance. This balance
is obtained by the formation of primary and secondary channels inside the reactor
during the optimization. The optimal porosity distribution obtained from the opti-
mization algorithm has a tree-root-like configuration. Moreover, it is revealed that
an optimal layout has a higher porosity in the regions close to the inlet boundary and
a lower porosity in the areas near the outlet boundary. In addition, an entropy anal-
ysis model is developed to investigate the irreversibilities of the system. This study
has identified the various contributions to the system entropy generation and quan-
tified them over the optimization process. To obtain a better understanding of the
entropy production, the concept of scaled entropy is introduced, and the areas in the

system which has a potential for further improvement are recognized. It is shown



Chapter 2. Optimization of a reaction-diffusion system

90

Diffusion of B Chemical reaction Total

Diffusion of A

o .l

(13 W M) 9124 Uoponpoad Adonug (1) g W M) 9124 UopoNpoId Ado.qu3 () 5 W M) 9124 uononpoud Adou3

© © ¥ ~ o

22
20
22

0

|
=
S

© ©®© ¥ o o
w ©

22
0

© ©®© ¥ o o
© © = 2 2 8 2

4
2
0
4
;4
0

o © =«

2
0

(| 5.\ M) 918 uoponposd fdonuz (L g M) 9324 uononpoud Adonu3 (L 5. M) 32 uononpoud Adonu3

12
12
12

10

o
2 © © -

1
8

|

© -

2
0
2
0

© © -

2
0

EET T T BT T

L4 L LALLL ”l

(13 W M) 9124 Uoponpoad Adonug (1) W M) 9124 uonoNpoId Ado.qu3 () 5 W M) 914 uononpoud Adoug

18
6

B
E

+ o o

18
6

+ & ©°
®  © =

4
2
0

(13 W M) 9124 Uoponpoad Adonug (1) g W M) 9124 uononposd Ado.qu3 () 5 W M) 914 uononpoud Adoug

7
6
5
4
3
2
1
0
F
6

0 - © o~ — o

l

Iteration 200

o
e}
Ll
g
Qo
o=
=
<
o
O
-
p—

(13 W M) 9124 Uoponpoad Adonug

J

(13 W M) 9124 Uoponpoad Adonu3

12

=
2 © © - ~ o

| R

(1 W M) 9324 uoponpoad Adonug

+
=]
o
>

=
g
=]
g

=
joF

O

Spatial distribution of entropy production by various mechanisms

Figure 2.10



Chapter 2. Optimization of a reaction-diffusion system 91

that an optimized design solution corresponds to the minimum scaled entropy gen-
eration by chemical reaction. The findings of this study have potentially significant
implications for the understanding of the theoretical upper limit of RD systems per-
formance irrespective of limitations of optimization methods. The present research
establishes a quantitative framework for detecting the diffusion-reaction dynamics
and irreversibilities caused by these mechanisms during a topology optimization
process and has gone some way towards enhancing our understanding of the theo-
retical maximal performance of porous reactors. Further investigation is required to
determine how other transport phenomena, such as heat and electric charge trans-
fer, could impact optimization and interactions between the coupled driving forces

of the system.

Abbreviations

BC Boundary condition

EoEP Equipartition of entropy production

EoF Equipartition of force

NET Non-equilibrium thermodynamics

PDE Partial differential equation

RD Reaction-diffusion

Nomenclature

C Concentration mol m~3
Co Characteristic concentration mol m ™3
D Diffusion coefficient m?s!
Fop; Objective function molm=1!g"
J. Entropy flux WEK-1m2
k Reaction kinetics 571
L Characteristic length m
N Number of moles mol
p Pressure Pa
P Total entropy production WK 1m!
R Reaction rate / Filter radius molm—3s™! /m
s Entropy density JK'm3
S Entropy JK-1!
T Temperature K
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t Time 5
U Internal energy J
\% Volume m®
Greek symbols

5} Projection steepness —
) Move limit -
3 Porosity —
n Diffusivity correction exponent —
g Reaction correction exponent —
v Chemical potential Jmolt
p Density function -
Ps Projection point -
Y Dimensionless group -
o Entropy source term WEK1m3

Characteristic time S

Subscripts/superscripts

b Backward
eff Effective
f Forward
ref Reference
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Chapter 3

A numerical simulation of evolution processes and
entropy generation for optimal architecture of an
electrochemical reaction-diffusion system: comparison

of two optimization strategies

Abstract

Employment of electrochemical energy devices is being expanded as the world is
shifting toward more sustainable power resources. To meet the required cost effi-
ciency standards for commercialization, there is a need for optimal design of the elec-
trodes. In this study, a topology optimization method is proposed to increase the per-
formance of an electrochemical reaction-diffusion system. A dimensionless model is
developed to characterize the transport and rate processes in the system. Two op-
timization strategies are introduced to improve system performance using a hetero-
geneous distribution of constituents. In addition, an entropy generation model is
proposed to evaluate the system irreversibilities quantitatively. The findings show
that the system performance could be enhanced up to 116.7% with an optimal tree-
root-like structure. Such a heterogeneous material distribution provides a balance
among various competing transport and rate processes. The proposed methodology
could be employed in optimal design of electrodes for various electrochemical de-
vices. This study also offers a fundamental comprehension of optimal designs by
showing the connection between the optimal designs and the entropy generation. It
is revealed that a less dissipating system corresponds to a more uniform current and

entropy generation.

This chapter is published as:

M. Alizadeh, P. Charoen-amornkitt, T. Suzuki, and S. Tsushima. “A numerical
simulation of evolution processes and entropy generation for optimal architecture
of an electrochemical reaction-diffusion system: comparison of two optimization
strategies”, Journal of The Electrochemical Society, 170.11 (2023): 114520.
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3.1 Introduction

Using renewable energies is a shortcut to combating environmental and energy secu-
rity issues [1, 2]. Electrochemical energy conversion and storage devices, including
secondary batteries and fuel cells (FCs), play an essential role in the transition from
fossil fuel-based societies to ones that rely heavily on renewable resources to respond
human energy needs [3, 4]. Despite recent advancements in the research and devel-
opment of these technologies [5, 6], more work has to be done before they can be
widely commercialized. Electrodes are vital components of any electrochemical de-
vice since they facilitate the electrochemical reactions that produce electricity. They
serve as a bed for several transport and rate processes, and play a significant role
in determination of the performance and efficiency of the electrochemical devices.
Electrodes are typically porous medium that are made of an electrically conductive
material, such as carbon, and coated with a catalyst. The catalyst promotes the de-
sired electrochemical reaction at the electrode by increasing the reaction rate. In
FC applications, for instance, the fuel and oxidant are supplied to the cell through
channels in the electrodes. As the fuel and oxidant react at the electrodes, the re-
leased electrons flow through the external circuit to power an electrical load. The
movement of reactant species and electric charges is essential for generating power
in these systems. The performance of an electrochemical cell is mainly determined
by the processes that are occurring at the electrode. Several research works [7-9] ad-
dressed these processes via electroanalytical methods. These transport processes (in-
cluding mass diffusion, electric charges transfer, and heat transfer) and rate process
(electrochemical reaction) are competing with each other. From an electrochemical
standpoint, catalytic activity of the catalyst material and the electrochemical surface
area are crucial factors that specify the rate of reactant consumption. However, the
overall rate of an electrochemical reaction depends on the transport characteristics
of the system as well. In other words, the speed of reactant delivery and product
discharge are likewise influential in electrode performance. Hence, the design of
the electrodes is an important consideration in the development of electrochemical
technologies, and researchers are constantly working to improve the efficiency and
durability of this component [10].

The electrochemical factors are dominantly hinged on the choice of catalyst material
(or electrochemically-active material). Various catalysts come with different catalytic
activity. However, the transport properties and effective utilization of the catalyst

material strongly depend on the structural design of the porous electrode [11, 12].
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A better design solution might improve the transport phenomena and consequently
lead to a more effective utilization of the catalyst material. Modifying the compo-
sition of an electrode is an approach used by previous researchers [13-15] to get an
appropriate compromise between various processes. Depending on the application,
composition modification includes, but is not limited to, changing the porosity, cat-
alyst loading, and electrolyte loading. Mathematical optimization can be utilized to
search for the optimal composition. So far, the studies in the literature focused on
controlling the composition in a global level. A heterogeneous design, however, can
provide a superior control of the transport and rate processes by extending the de-
gree of freedom to a local level. In this regard, topology optimization (TO) [16] is
a mathematical technique that can provide innovative design solutions for a vari-
ety of engineering applications. In this approach, the goal is to find the best shape
and layout of structure or system that improves one or several performance crite-
ria. This is typically conducted by using iterative mathematical procedures to test
different material distribution until finding the one that best meets the desired per-
formance criteria. TO outperforms other categories of mathematical optimization,
such as parametric optimization, thanks to its higher degree of freedom. It has been
successfully applied to a wide range of engineering applications, including mechan-
ical [17], chemical [18, 19], thermal [20], and fluid [21] systems. In electrochemical
devices, TO can be used to design efficient and high-performing electrodes [22-24],
flow channels [25, 26], and other components. To date, only a few studies addressed
the employment of TO for designing electrodes with heterogeneous structures. For
instance, Roy et al. [22] used this technique to find the best porosity distribution lay-
out in the electrode of a redox flow battery. Their results show that a non-uniform
distribution of porosity could increase the cell performance by reducing the ohmic
losses in the system. However, this study does not account for the effect of concentra-
tion depletion. Reviewing the literature shows that TO has a significant potential for
designing better porous reactors for electrochemical applications. It is worth noting
that recent advancements in additive manufacturing and 3D printing technologies
have made it possible to fabricate complex structures [27]. For instance, in a recent
study [28], researchers introduced a grooved electrode structure for FCs, which im-
proved cell performance by enhancing ionic conductivity and mass diffusion. As a
result, the development of innovative designs necessitates the application of rigor-
ous mathematical approaches, such as TO.

In power generating electrochemical devices (e.g., a fuel cell), a better design is re-

ferred to the increment in the output power. In this sense, design enhancement might
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be gained by controlling either the current density or the system overpotential. This
give a rise to two strategies in optimization of electrochemical systems: (1) maximiz-
ing the current density at a given overpotential and (2) minimizing the total overpo-
tential at a given current density. Both these approaches will lead to a higher output
power in the case of power generating system. The same approaches could be ap-
plied for a power consuming electrochemical system (e.g., electrolyzers). However,
in such devices, optimization will reduce the power consumption or increase the out-
put products. From a physicochemical standpoint, however, the above-mentioned
approaches are different. Despite promising results reported by previous researchers
in the employment of TO for designing better system, they usually overlook inves-
tigation of optimization process from a physical basis. Such elucidation is crucial
because it might open new room for further improvement of system performance be-
yond the capabilities of existing mathematical schemes. To obtain a physical under-
standing, one can investigate the changes in system irreversibilities over the course
of optimization. The irreversibilities of a system could be expressed quantitatively
in the form of entropy generation. Non-equilibrium thermodynamics (NET) [29, 30],
a branch of thermodynamics that deals with the systems that are not in a global
equilibrium conditions, could be used to determine the local and global rate of en-
tropy generation in a system. Previously, it has been extensively used for analysis of
thermofluid systems [31-41]. In a recent study by Charoen-amornkitt et al. [18], the
authors used NET to describe entropy generation in a chemical reactor. The entropy
production approach based on NET of physical processes at the interfaces has been
applied for efficiency improvement in PEM fuel cells with porous electrodes [42].
Entropy generation is known as an index of power dissipation in a system. There-
fore, it is desirable to reduce the rate of entropy generation (if and only if the system
duty is not changed). This idea led to a so-called Entropy Generation Minimization
(EGM) principle [43]. It is noteworthy that EGM only works when a certain system
duty is guaranteed. Since under a finite time/size condition, any system is doomed
to generate some amount of entropy, the two aforementioned optimization strategies
may have different behaviors in terms of entropy production. These differences will

be comprehensively discussed in the subsequent sections.
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3.1.1 Research objectives and gaps

In this study, a mathematical optimization process is employed to seek the optimal
architecture for a porous electrochemical reactor. Such an engineered structure ob-
tained by TO is shown to be capable of enhancing the system performance substan-
tially. This enhancement is obtained by improving the utilization of the constituents
materials that is achieved thanks to a heterogeneous layout. This research work
introduced a general framework for optimization of constituents placement in an
electrochemical reactor. Hence, similar procedure might be used for real applica-
tions, such as catalyst layer of a FC. By revisiting the definition of performance en-
hancement in an electrochemical system, the present work compares two different

strategies in optimizing electrochemical systems.

While previous optimization studies (e.g. [13, 14, 22]) predominantly concentrated
on the comparative analysis of designs pre- and post-optimization, this research
takes a deeper dive into the physical aspects driving design improvements. To
achieve this, the entire course of optimization is thoroughly explored, rather than
just looking at the starting and ending designs. Furthermore, this study introduces
two distinct electrode optimization strategies and examines their physicochemical
differences. To the best of the authors” knowledge, such distinctions have not been
observed in prior research. As previously highlighted, the full-scale commercializa-
tion of electrochemical energy devices hinges on advancing their performance and
cost efficiency. In this context, the application of topological optimization to elec-
trode structures may yield highly efficient designs. Furthermore, a more comprehen-
sive understanding of the optimization process through NET analysis could pave the
way for uncovering the upper limits of performance achievable with current materi-
als. This insight could also shed light on areas ripe for further improvement through
research and development efforts.

3.2 Methods

In this study, a 2D electrochemical porous reactor involving reactant diffusion, elec-
tric charges transport, and a redox reaction is inspected. The porous reactor is con-
sidered being composed of three phases. A reactant is diffused into the system ac-
cording to the Fick’s law of diffusion. This reactant is converted to the products
through an electrochemical reaction in the presence of a catalyst material. The rate of
this reaction is described using the Butler-Volmer relationship. A non-dimensional
mathematical model is developed to characterize the performance of this system.
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Two sets of boundary conditions are assumed to analyze the system, including a
given current density and a given total overpotential. By solving the governing
equations together with a given current density as the boundary condition (B.C.),
the total overpotential of the reactor is calculated. On the other hand, when the total
overpotential is given as the B.C., the numerical simulation provides the system cur-
rent density. An entropy generation model is also developed to evaluate the rate of
irreversibilities in the system by various mechanisms. The entropy generation rate
is also non-dimensionalized to generalize the applicability of the results and discus-
sions. Next, a TO method is used to find the optimal distribution of constituents in
a given design domain. The local volume fractions of constituents are controlled to
obtain the best performance. For this purpose, two different optimizations, includ-
ing maximization of current density and minimization of total overpotential, are
performed. The local and global entropy production is calculated in each iteration.
The trend of entropy generation is compared for the two optimization approaches
to explain the differences from a physical viewpoint. The methods are described in

details as follows.

3.3 Mathematical modeling

In the present study, a continuum model is employed to describe the behavior of var-
ious rate and transport phenomena occurring in a 2D electrochemical reactor. The
schematic of the representative porous reactor is depicted in Fig. 3.1. As it can be
seen in this figure, the reactor is assumed to consist of three phases, including void,
electrolyte, and solid phases. This reactor design with triple phases is not common
in electrochemical systems. For instance, in lithium-ion batteries and redox flow bat-
teries, the pore is filled with electrolyte solution, resulting in a double-phase system
(solid and electrolyte). In this study, however, we modeled the system in a way to
be applicable to both double- or triple-phase systems, with the aims of covering FCs
that are triple-phase systems. The reactant species is diffused through pores and the
produced ion is transferred by the electrolyte material. The solid phase is respon-
sible not only for transport of exchanged electrons but also for increase in reaction
rate. In electrochemical energy devices, such as FCs, the solid phase is typically com-
posed of a catalyst material (e.g., platinum) and a supporting material (e.g., carbon).
In this study;, it is assumed that the reactant species A,.q is oxidized in the presence
of a solid phase (catalyst material) as follows:
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Electrolyte
Solid

Ared

Figure 3.1: Schematic of electrochemical porous reactor

Ag = Ak +ne” (3.1)

where A,.q and A, are reducing and oxidizing agents, respectively, and n is the
number of electrons involved in this reaction. For simplicity, n is assumed to be
unity (n = 1). It is noteworthy that choice of an oxidation reaction over a reduc-
tion reaction may not affect the generality of methods and discussions drawn in this
study. In fact, a reversed redox reaction, i.e. reduction reaction, might be obtained
by using the same formulations proposed in the present study and a slightly differ-
ent choice of B.C.s. This issue is explained in the subsequent parts, where B.C.s are
discussed. It is assumed that the investigated system in this study is working un-
der a steady-state and isothermal conditions. The equations governing the transport
and production/consumption of reacting agent and electric charges are given in the
following subsection.

3.3.1 Governing equations

The governing equations presented here are based on a volume-averaged approach.
The generic differntial form of any balance equation (e.g., mass, energy, and charge)

on a control volume is expressed as:
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% =V-f+5 (3.2)
where p is any quantity of interest, such as mass, energy, and charge. Moreover, f
and S represent the flux and source terms of the relevant quantity. In the present
study, it is assumed that the distribution of the reactant concentration throughout
the porous reactor is controlled by the Fick’s second law of diffusion [44—46] and
electrochemical reaction rate. Therefore, conservation of species in this ERD system

reads as [44]:

%—f =V - (D'VC) + Rg (3.3)
in which C' is reactant species concentration (molm=3), D is effective diffusivity
(m?s71), and R is the reaction source term (mol m 2 s~!). This source term is defined
as Rc = —% for an oxidation reaction and R¢ = % for a reduction reaction.
Also, jg. is current density source (A m~?), a°® is effective active specific surface area
(m?m™?), and F is Faraday constant (96485 C mol™'). Under a steady-state condition,
the term on the left-hand side of Eq. (3.3) is zero. Therefore, in the calculations of
the present study, the species accumulation term is disregarded. However, since the
unsteady form of this equation is used for derivation of entropy production rate in
the subsequent section, it is shown in this form. The conservation of electric charges
in electrolyte and solid phases follows Ohm’s law and is expressed as follows for an

electroneutral system [47]:

8(]+ _ eff eff -
5 = V- (o' V) + a Jare (3.4)
Oqi _ eff eff -
o = Vo (00V0) = a e (3-5)

where ¢ and ¢~ are positive and negative charge densities (Cm~3), off and o° are
effective electrolyte and solid phases charge conductivity (Sm™!), and ¢, and ¢, are
electrolyte and solid phases potentials (V), respectively. It should be emphasized that
the left-hand side of Egs. (3.4) and (3.5) represent accumulation rate of electric charge
in the system. In electrochemical reactors (e.g., electrode of batteries or FCs), no
charge is accumulated and therefore, this term is usually not shown in the literature.
Moreover, since this study assumes a steady-state condition, these terms are zero
(similar to what exists in the literature). However, as aforementioned, the unsteady

form of governing equations is used for derivation of local entropy generation rate.
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The current density source, jy., might be expressed by well-known Butler-Volmer
equation as follows [47].

S C aF'n —a.F'n
() o[22 -en [ 6o

In Eq. (3.6), o, Ct ., o, n, R, and T are exchange current density (A m~2), ref-

erence concentration (molm™?), anodic charge transfer coefficient, cathodic charge

transfer coefficient, activation overpotential (V), gas constant (8.3145 Jmol™* K1),

C_
Cret

of mass transport limitations. In this study, one of the terms on the right-hand-side

and temperature (K). The correction term ( ) is considered to include the effect
of Eq. (3.6) is neglected by assuming a largely-polarized condition. The activation
overpotential is measured based on the local electrolyte and solid phases potentials
as follows [47]:

n= ¢s - ¢1 - Eeq (37)

where E,, is equilibrium potential (V). As indicated in Eq. (3.6), in such an ERD sys-
tem, current density and overpotential are correlated through two rate mechanisms,
including: (1) charge transfer rate and (2) mass transport rate. The former mecha-
nism dictates how fast the reactant species is consumed (or likewise, the speed at
which the products are produced). On the other hand, the mass transport rate de-
termines the pace of reactant supply and products discharge from the reaction site.
The overall process kinetics depends on the slowest mechanism. In electrochemi-
cal applications, sluggish mass transport is a serious challenge when the device is
working at a high current density and causes a huge drop in output power. There-
fore, not only sufficient supply of reactant species but also adequate discharge of
products is vital to improve the performance. This issue is elaborated in Section 3.4.
While thanks to previous experimental studies, the bulk magnitude of mass diffu-
sivity and electric charges conductivity are known for many substances, estimating
the effective values of these transport properties in porous media is a long-running
dispute among researchers [48-50]. The Bruggeman equation is an enduring cor-
relation relating the effective properties to the material volume fraction through a
power-law. Despite numerous arguments around its validity [51, 52], the simplicity
of the Bruggeman equation led to frequent utilization and recognition of this model
in various disciplines, including electrochemistry applications [53-57]. Therefore,
in this study, the effective properties are computed based on the Bruggeman model

with a different exponent from that of the original equation as follows:
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eff _ O . eff 0 _fBo. eff 0 . ef _ 0
Dt = DOh, el — 02, ot = 0cfs, ot = 0ch (3.8)

in which D°, 60, 62, and a° are bulk mass diffusivity (m?s™!), bulk electrolyte ionic
conductivity (Sm™!), bulk solid phase electric conductivity (Sm™'), and bulk active
specific surface area (m?m™?), respectively. These bulk values are corrected accord-
ing to the volume fractions of void (e,), electrolyte phase (¢;), and solid phase (g;)

together with the relevant given penalty exponents, ; to ;.

3.3.2 Boundary conditions

The system of partial differential equations (PDEs) given by Egs. (3.3) to (3.5) might
be solved in the calculation domain, €2, if sufficient B.C.s are provided on the bound-
ary of the domain, 9€). While the proposed model could work with any set of suffi-
cient B.C.s, two of them are our interest in this study. The chosen B.C.s, according to
Fig. 3.1, are given by:

C=C" onl'y and —DIVC-n=0 ondQ\Iy
¢ =" only and —offfVe -n=0 ondN\I3
s =" onl; and —ofVe,-n=0 ondO\I', (3.9)

and

C=C" onl'y and —DIVC-n=0 ondQ\Iy
—ofVe -n=35"4 onl3 and —offfVe-n=0 ondN\I[3
s =" onl; and —offVe,-n=0 ondO\I', (3.10)

where CP1, ¢Prd, ¢Pnd and ;P4 are constant concentration (mol m~3), electrolyte po-
tential (V), solid potential (V), and ionic current density (A m~2) on boundary, re-
spectively. Also, n denotes the outward unit normal vector. In the first set specified
by Egs. (3.9), a combination of Dirichlet and homogeneous Neumann B.C.s are in-
troduced for all variables. The values of all variables (concentration, electrolyte po-
tential, and solid potential) are given on one of the system boundaries. This means
that the system total overpotential (i.e., the difference of solid and electrolyte phases

potentials on the boundaries that the current density is flowing) is given. Based on
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these settings, the total electric current that passes the system boundaries is com-
puted by solving the system of PDEs. This current represents the total electrochem-
ical reaction rate that is taking place within the ERD system. In Eq. (3.10), the B.C.s
for reactant concentration and solid phase potential are kept the same as in previous
conditions. In contrast, the ionic current density passing I's is prescribed. Accord-
ingly, the total electrochemical reaction rate, that is happening the entire porous re-
actor, is known. As a result, in such kind of setup, the system overpotential would

be determined as a solution of governing equations.

The reason behind these choices for B.C.s are explained as follows. As stated pre-
viously, one of the aims of this study is to elucidate the best material distribution
(structure) in the porous reactor that enhances the system performance. Hence, it is
essential to clearly interpret the meaning of “performance”. In electrochemical sys-
tems, performance enhancement is achieved either by: (1) maximization of total re-
action rate (or likewise, the current that is flowing through the system boundaries) at
a given overpotential level or, (2) minimization of system overpotential (which rep-
resents the energy loss) for a given total reaction rate. Although the combination of
both these strategies might be a third alternative for performance improvement, it is
out of the scope of this study. Based on the given definitions of “performance” in an
ERD system, the optimization is formulated as both maximization and minimization
problems. The B.C.s given by Egs. (3.9) and (3.10) are chosen in a way to fulfill the
aforementioned optimization goals. Using the first set of B.C.s, the solution of gov-
erning equations (i.e., total current density flowing the system boundaries), might
be used as the objective function for the maximization problem. On the other hand,
by employment of B.C.s given in Eq. (3.10), the system overpotential could be used
as the objective function for minimization formulation. The details of maximiza-
tion and minimization problems are comprehensively discussed in Section 3.4. To
distinguish the two formulations described above, hereinafter, the governing equa-
tions (Egs. (3.3) to (3.5)) together with B.C.s of Eq. (3.9) are called “overpotential-
based ERD system” and the combination of the governing equations and B.C.s of
Eq. (3.10) are called “current-based ERD system”. The names are assigned based
on the electrolyte phase condition on boundary I's that is given as the model in-
put. Thus, “overpotential-based ERD system” is associated with the maximization
optimization and “current-based ERD system” is associated with the minimization
optimization. It is also noteworthy that by a proper choice of values for B.C.s given
in Egs. (3.9) and (3.10), the electrochemical reaction might be switched between ox-

idation and reduction. For instance, a positive value for j”" in B.C.s of Eq. (3.10),
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provides an oxidation reaction. A negative value will result in a reduction reaction.

3.3.3 Entropy generation model

A system is at an equilibrium state if all macroscopic flows, such as heat or mass
fluxes, are zero within its boundaries. Equilibrium thermodynamics, as part of
contemporary thermodynamics, successfully handles the systems at an equilibrium
state as well as those involving low equilibrium, relatively slow, quasiequilibrium
processes. NET extends conventional equilibrium thermodynamics to characterize
the systems which are not in an equilibrium state [29, 30]. The concept has been
widely used in the literature to analyze the entropy generation in various engineer-
ing applications and thermofluid systems [58-64]. Since the ERD system in this
study is in a non-equilibrium condition from a global standpoint, the concept of NET
is recruited to develop a model for evaluation of local and global entropy generation
rate. A lower entropy production is only favorable if the output of the system (in
ERD system, the total reaction rate) is kept at a certain amount. If a system is work-
ing under a finite time/size thermodynamics, doing more (i.e. a higher electrochem-
ical reaction rate in the case of ERD system) will inevitably result in a higher amount
of entropy production. Therefore, maximization of current in the “overpotential-
based ERD system” is expected to increase the total amount of entropy generation
rate. However, at a same level of reaction rate (i.e. happening in “current-based
ERD system”), an optimized design solution will minimize the system losses and
consequently reduce the total entropy generation of the system. The difference be-
tween the two optimization approaches, including maximization and minimization
formulations, might be recognized in terms of entropy generation. This contrast is
highlighted in Section 3.5 where the results of both strategies are discussed. Develop-
ment of entropy generation model starts with the extended form of Gibbs equation,
which is a fundamental thermodynamics equation and reads as follows [29, 65, 66]:

dU = TdS — pdV + pdN + ¢ dQ" + ¢.dQ~ (3.11)

where U, S, V, N, Q" and Q) are internal energy (J), entropy (J K™!), volume (m?),
the number of moles (mol), positive electric charge (C), and negative electric charge
(C) respectively. Also, T, p, and p are temperature (K), pressure (Pa), and chemical
potential (Jmol ™), respectively. It is assumed that the reactant substance is an ideal
gas, and the system is working under a constant temperature (isothermal) condition.

Since the internal energy of an ideal gas is a function of temperature and the volume
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of the porous reactor is not changing, dU and pdV" are zero. By dividing Eq. (3.11) by
the volume, it is simplified into:

Tds = —pdC — ¢1dq™ — pedq™ (3.12)

where s = S/V is the entropy density (J k' m~?). Given the fact that the system does
not have any convective flow, the time derivative of the entropy is given by:

Js 1 oC gt
% T ( E+¢1—+¢s ) (3.13)

By substituting the partial derivatives on the right-hand-side of Eq. (3.13) with Egs. (3.3)
to (3.5), the rate of entropy accumulation is as follows:

Os { puD IV C + ¢tV ¢ + 90TV ¢
- _V.
ot T

} T(DGHVC \J7
eff ;
KA~ Jsrc

+0{"V 1 - Vor + ot Vo - Vo = —

- (blaeﬁjsrc + (bs&eﬂjsrc) (314)

in which plus and minus signs of term =+ % are related to oxidation and reduction
o=V
J, + 0) [29, 30] with Eq. (3.14), the entropy flux (W K~ m~?) and entropy generation

rate per unit volume (W K~! m~?) are respectively given by:

reactions, respectively. By comparing the general form of entropy balance (2

uD*VC + (blafHV@ + ¢SU§HV¢S

J, = = (3.15)
and
1
= (DIVC - Y+ 0f V6, Vor + 0"V, - Vb,
aeff bsrc . .
i% - (blaeﬁjsrc + (bsaeﬁjsrc) (316)

The first three terms on right-hand-side of entropy generation rate equation, o, are
related to the entropy produced by the transport processes. The other three terms
correspond to the source terms in the governing equations (Egs. (3.3) to (3.5)). To
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quantify the individual contribution of each process to the entropy generation rate,
the terms are split into four contributions as follows:

Tunt = LDfVC - Vi
o = L0tV - Vo
Oel = LoctV e, - Vo,
O = A (FETE 0T+ da o) (3.17)

where 0., 0it, e, and o, correspond to the entropy production by mass diffusion,
ion transport, electron transport, and reaction (W K~! m~3), respectively. Moreover,
to evaluate the total amount of entropy production throughout the entire system
(WK~'m™1), the local entropy generation rate, o, should be integrated as:

pP= /Q odS) (3.18)

Likewise, the total entropy production is also broken into four parts, including P, =
Jo 0mtd), Py = [, 034dQ, Py = [,06dS), and Py = [, 0:xdS2, each of which is asso-
ciated with the integral of corresponding local term over the entire domain. The
chemical potential of an ideal gas at a constant temperature is computed by [29]:

p=p* +RTIn ( C%) (3.19)

in which p*f and R are chemical potential at the reference point (J mol~!) and uni-
versal gas constant (8.314 J K~ ! mol™?), respectively. For a given electrochemical re-
action, the reference chemical potential correlated to the equilibrium potential by the
following equation [67].

B ="t (3.20)

3.3.4 Non-dimensional analysis

To generalize the applicability of this study, the governing equations are converted

into a dimensionless form. Non-dimensionalization might reduce the number of
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model parameters, expand the applicability of the obtained results, increase the sta-
bility and accuracy of the simulated results, and make the comparison between var-
ious scenarios easier [68, 69]. The system of governing equations, as well as the
B.C.s, are non-dimensionalized by substitution of proper dimensionless variables to
remove the units. The dimensionless form of Egs. (3.3) to (3.5) at a steady-state con-

dition reads as:

Ve (010 Cr) F i, =0 (3.21)
v (2 el ) + P =0 (3.22)
1_'_93 1 1 s Jsrc
0205 g, B ;
o Bt ) — P =0 3.23
v (1"‘8365 V ¢S 8S jSI‘C ( )

in which C*, ¢f, and ¢} are dimensionless concentration, electrolyte potential, and
solid potential, respectively. Moreover, V* is differentiation with respect to dimen-
sionless coordinates 2* and y*. The dimensionless dependent and independent vari-

ables are given by:

*=Z * Y R O «
=5 y=1 U= =g
x _ b1, x _ Os. x« _ a°f, e Jsre
o = %o’ ¢s—%a =" Jse T T (3.24)

In addition, the dimensionless groups are expressed as:

0, — DO _ DO
1 - L2a0i0/(COF) ~  PDexchange
9, = toitod) _ (of+o2)
2 - L2a0i0/¢0 - Ui)}i;hange
0
g,
0 -5 (3.25)

where L, C and ¢, are the characteristic length (m), characteristic concentration
(mol m~?), and characteristic potential (V) of the system, respectively. Based on these
definitions, ¢, is the dimensionless conductivity. This dimensionless number could
be interpreted as the ratio of species intrinsic diffusivity and system exchange dif-
fusivity (Dexhange = [24%,/(CyF)). From another perspective, 6, is attributed to
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inverse of Damkohler number (or inverse square Thiele modulus) in chemical en-
gineering literature [70-73], which indicates the ratio of the bulk diffusion rate and
reaction rate. Moreover, 0, represents the ratio of intrinsic conductivity and system
exchange ohmic conductivity (655" = 12a% /). In electrochemistry literature,
dimensionless parameter 6, is known as Wagner number [47, 67], which shows the
proportion of kinetic resistance to ohmic resistance. Finally, 5 represents the ratio of
solid and electrolyte phases conductivity. In many real electrochemical applications,
such as polymer electrolyte membrane fuel cell (PEMFC), this ratio is relatively large
(65 > 1). While there might be different alternatives for the characteristic parameters

of the system, a reasonable choice is given:

_ AT

Co=C™;  ¢g Ia

(3.26)
Based on Eq. (3.26), the characteristic concentration is assumed to be the constant
concentration on the inlet boundary. This way, the concentration B.C. would be eas-
ily scaled to unity. Also, characteristic potential is chosen to be the thermal voltage
of the system that is correlated to the temperature at which the system is working.
The characteristic length is considered to be equal to the length of the domain, as
shown in Fig. 3.1, for the sake of simplicity. Using the dimensionless parameters in-
troduced before, the B.C.s of “overpotential-based ERD system” and “current-based

ERD system” are non-dimensionalized as follows:

C*=1 only, and — D'V*C*-A=0 ond\T,
o= only and —ofV*¢r -A=0 ondQ\Is

0
¢r = ¢ onTy and  —orVi¢r-n=0 ondQ\Iy (3.27)

and

C*=1 onl'y and —D*V*C*-n=0 ondQ\I'
—ofV*gr -n =4 only and —ofV*¢r-n=0 ondQ\Il3
¢ = ¢ onl, and —o*Vi¢r-A=0 ondQ\l, (3.28)

in which, the boundary values are converted to a dimensionless form according to:
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bnd - bnd P buds _ I

1'1,*: ; Sn 7*: S ; '1’17*:._ 3‘29

: o ¢ bo / o ( )
Furthermore, the dimensionless entropy generation rate, c* might be determined
through diving the left-hand-side of Eq. (3.16) by the exchange entropy generation
rate (W K~'m~3) and is formulated as:

g g 92
g aOZ'OgbO/T O—exchange 1€y 2 + 1 + 93 81 ¢1 ¢1
0,0
_|_A€S/53V*¢: ' V*¢: + 8§4M*j:rc - €§4¢Tj:rc + €§4¢:j:rc (330)

1+65

in which the exchange entropy generation rate is defined as o™° = %, /T. The
individual contributions, oy, 0it, 0et, and o, could be non-dimensionalized to o7,
oy, oa, and o7, after dividing by the exchange entropy production. Finally, the total

dimensionless entropy generation is computed as:

P = / oY (3.31)

where Q" represents the non-dimensional domain. The related dimensionless break-

downs, P, P, P}, and P}

mt/ rx/

are evaluated by a similar integration.

3.4 Optimization algorithm

In the present study, a TO technique is used to seek the best spatial distribution of
constituent, including solid phase, electrolyte phase, and voids, in the given design
domain. By controlling the local volume fraction of each constituent, the local effec-
tive properties of the system (i.e., diffusivity, ionic conductivity, electric conductivity,
and active specific surface area) might be adjusted in a way that provides the best
compromise between the transport and rate processes. Such a balance could result
in a better system performance. As aforementioned, a better performance might be
interpreted in two ways: (1) in an “overpotential-based ERD system”, an optimized
system should have a higher total electrochemical reaction rate and (2) in a “current-
based ERD system”, an optimized system should lead into a lower energy loss (or
lower total overpotential). Hence, for each system setting, a unique formulation is

used as the optimization objective. However, the optimization procedure for both
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problem formulations are same. Therefore, in this section, first, the two problem

formulations are described and next the common TO algorithm is briefly explained.

TO outperforms other mathematical optimization methods, such as parametric opti-
mization, because of higher degrees of freedom provided by this technique [74-76].
Although such a substantial increase in degrees of freedom makes the algorithm
more sophisticated, it possibly allows obtaining a much better result. Advantages of
TO over conventional optimization methods are comprehensively studied in the lit-
erature and interested readers may refer to a previous publication of our group [77]
or the works of other research groups [22, 78, 79]. According to TO formalism, the
optimization is defined as a material allocation problem in a prescribed design do-
main. A so called “density method” [16] is used to describe the local volume frac-
tions. Pursuant to this method, at any position, x, in the design domain, €2, the vol-
ume fraction of each constituent is a continuous function changing between 0 and 1
(0 < g(x) and g5(x) and e, (x) < 1) with the restriction that £)(x) + £5(x) + &,(x) = 1.

3.4.1 Problem formulation: Current-based ERD system

Since the current density that passes the system boundaries is given in a “current-
based ERD system”, the total rate of electrochemical reaction is prescribed in this
system setting as an input. In this formulation, the goal is to minimize the system
total overpotential for a certain reaction rate. Total overpotential indicates the excess
required potential to drive a Faradaic reaction at a specific current density. Hence,
it is favorable to reduce the total overpotential in an electrochemical system for a
given current density. Minimization of total overpotential will lead to maximization
of output power for a power generating system and will reduce the input power for
a power consuming system. Based on these explanations, the optimization problem

is defined as:

{51111611 Fopja = [0 = |(#2Ir, — 67 Iry — B
s.t. Egs. (3.21) to (3.23)
elnin < g(x*) < e yx* e O
emin < g (x*) < emax yx* € QF

a(x*) + es(x*) +ey(x) =1 Vx* € Q* (3.32)
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in which Fy;,; is the objective function and £, = < is non-dimensional equilibrium

potential. Knowing that the total overpotential for a reduction reaction is negative,

the absolute value of overpotential is used in the objective function definition. It is
noteworthy that in an ideal condition, the reactor potential (i.e., ¢|r, — ¢} |r,) should
be as close as possible to the thermodynamic equilibrium potential (£7). Volume
fractions of electrolyte and solid phases are considered as design variables in this
optimization problem. These volume fractions are the system parameters that are
required for solving the system of governing equations. Since the summation of all
volume fractions should be equal to unity, by knowing two of them, the third one
might be calculated automatically. Hence, the porosity (volume fraction of voids) is
calculated based on the values of two design variables. Moreover, the optimization
problem is constrained by the governing equations of the system. As an additional
constraint, it is assumed that the local volume fractions of the electrolyte and solid
phases could only alter within a predefined range. These ranges are given by ™",
gnax emin and M that are minimum and maximum allowed volume fractions of

electrolyte and solid phases, respectively.

3.4.2 Problem formulation: Overpotential-based ERD system

In an “overpotential-based ERD system”, the total overpotential (7" = ¢s|r, — ¢1|r;)
is given as the problem input through the B.C.s and the total electrochemical reac-
tion rate might be calculated by solving the governing equations. Total electrochem-
ical reaction rate is equivalent to the total current that passes the system boundary.
Since the system is electroneutral, the total amount of negative and positive electric
charges that leaves (or come into) the system is equal. Hence, in this system setting,
the aim is to maximize the total electrochemical reaction rate. Increasing the electro-
chemical reaction rate (or system current) at a given overpotential is equivalent to
maximizing the output power of the system (for a power generating system). Im-
proving the active specific surface area and discharge of products from the reaction
sites will boost the reaction rate. This could be obtained by increasing the volume
fractions of electrolyte and solid phases. However, to keep the reaction rate high, it is
necessary to assure sufficient reactant delivery to the reaction sites through pores. By
increasing the volume fractions of electrolyte and solid phases, the volume fraction
of voids will consequently be reduced. This means that the mass transport resis-
tance will be increased and the delivery of reactant spices will be more complicated.
Therefore, there should be a trade-off between reactant consumption and delivery

rates. This trade-off leads to an optimization problem that might be addressed by
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controlling the local composition of the porous reactor. This optimization problem is

mathematically indicated in a non-dimensional form as:

Ba 5%
E:S erC

max Foga = o |84 a9
1)Es

s.t. Egs. (3.21) to (3.23)
elin < g(x*) < e x*t e O
emin < g (x*) < elax  yx* € QF
a1(x*) +es(x*) Fe,(x) =1 Wx* € QF (3.33)

where Fi; 2 is the objective function. Given the fact that ;7 is negative in case of
a reduction reaction, the absolute value of reaction rate is used in this equation to
generalize the applicability of the objective function for any kind of electrochemical
reaction. As represented in Eq. (3.33), the goal is to maximize the overall dimension-
less rate of electrochemical reaction over the entire domain. The term a*jZ . is the
local dimensionless rate of reaction and by integrating it over the non-dimensional
domain, the overall value might be computed. Evidently, this objective function
could be expressed in a dimensional form with the corresponding dimensional pa-
rameters. However, since this study focuses on a non-dimensional analysis of the
ERD system, the objective function is also expressed in a dimensionless form.

3.4.3 Numerical implementation

In this research work, COMSOL Multiphysics ® (version 5.6) is used to solve the
governing equations and to implement the optimization procedure. The calculation
domain, system parameters, governing equations, and B.C.s are specified in the soft-
ware. In the first step of the optimization process, the design variables are initialized
and Egs. (3.21) to (3.23) are solved using a finite element method. By solving these
equations, the distribution of concentration, electrolyte potential, and solid potential
are obtained. Next, the objective function is evaluated according to Fip;1 or Fopj .
The choice of objective function depends on the system of interest. Afterward, the
sensitivity (or gradient) of objective function is computed with respect to the design
variables using an adjoint state method [80]. Since the adjoint method is independent
of the number of the design variables, it is computationally much cheaper than other
approaches, such as the forward method. Therefore, it is very useful for optimization
problems which contain numerous decision variables. Next, the design solutions are

regularized using a Helmholtz filter [81] and hyperbolic tangent project [82]. These
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regularization helps to prevent checkerboard pattern [16], which is a common chal-
lenge in TO. This problem has been addressed in the literature comprehensively and
the readers are referred to the papers in this field, such as [81, 83, 84], for further
information. In the next step, the design variables are updated locally in throughout
the entire calculation domain. The updating procedure is conducted using a glob-
ally convergent method of moving asymptotes (GCMMA) algorithm [85]. GCMMA
is an efficient algorithm for handling problems with abundant design variables. As a
post-processing step, the local and total entropy production rate are also calculated.
This step is separate from the optimization process and the entropy generation is
assessed in each iteration of optimization to track the changes. The explained pro-
cess is repeated until the convergence criterion (in this case, maximum number of

iteration) is reached. The optimization procedure is summarized as follows:

Step 1: The calculation domain, governing equations, and B.C.s are defined and the
design variables are initialized.

Step 2: The ERD system is solved based on Egs. (3.21) to (3.23) and the objective
function is evaluated using Eq. (3.32) or (3.33).

Step 3: The gradient of objective function with respect to the design variables is eval-
uated using the adjoint method.

Step 4: The design solutions are regularized using a Helmholtz filter and a hyper-

bolic tangent projection to obtain smoothed solutions.
Step 5: The design variables are updated using the GCMMA algorithm.

Step 6: The local and global entropy generation rates are evaluated using Egs. (3.30)
and (3.31).

Step 7: If the convergence criteria are met, the iteration is stopped. Otherwise, steps
2 to 6 are repeated.

3.5 Results and discussion

This section presents the results of numerical calculations. The design domain is a
square with a 1 x 1 non-dimensional size (see Fig. 3.1). The optimization process is
conducted under several conditions, as indicated in Table 3.1 for both minimization
and maximization problems. 10, 000 structured quad meshes are used for numerical
calculations. A mesh dependency assessment was conducted prior to optimization
to ensure that the finite element method results were independent of the chosen
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Table 3.1: Values/ranges of system dimensionless parameters

Parameter Value/Range Parameter Value/Range

0, 2-5 B, 0

0, 20 - 50 gbndx 0

05 5-10 pods 1-9
B, B2, B3 2 jbnd’* . 5-30

Ba 1 glnin, gmin 0

a 1 E[NX, enax 0.5

’~s

mesh size. Given that the volume fractions of electrolyte and solid phases are con-
trolled at each grid in the optimization process, the total number of design variables
is 20, 000. Each optimization is carried out for 300 iterations and necessary measures

are taken to guarantee sufficient convergence with this number of iterations.

3.5.1 Current-based ERD system

As explained before, in this problem setting, the objective is to reduce the total over-
potential of the system. The total overpotential refers to the amount of energy nec-
essary for an electrochemical reaction to proceed at a given conversion rate (current
density). Figs. 3.2 and 3.3 depict the optimized distribution of constituents under
various system settings. The optimal spatial distribution of electrolyte, solid, and
void phases are illustrated for two different dimensionless current densities (j°"4*).
In each figure, the optimized results for four different combinations of dimensionless
numbers (0; to 6s) are shown to reflect the impact of each number on the final opti-
mization outcome. Analyzing and contrasting the results from each system configu-
ration elucidates the impact of diverse transport, rate, and characteristic parameters
on the ultimate optimal structure. Under all conditions, the optimization process led
to complex tree-root-like shapes. Comparing the final objective function values of
each scenario across Figs. 3.2 and 3.3 shows that in general, a higher working current

density corresponds to a higher total overpotential. For instance, as ;"

is changed
from 30 to 5 at the first §s settings (Fig. 3.2a vs. Fig. 3.3a), the non-dimensional total
overpotential is altered from 4.64 to 0.589. This is due to the intrinsic relationship
between current density and overpotential in an electrochemical system. The higher
the working current density of the system, the higher total overpotential. The ini-
tial layout used for all the cases reported in these two figures are the same (uniform
g1 = 0.25 and g5 = 0.25). However, it is evident that the solid volume fraction in

final layouts of Fig. 3.3 (j”%* = 5) is higher than those of Fig. 3.2 (j"%* = 30). Ata
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low current density, the activation overpotential is the major contributor to the total
overpotential. Therefore, it is favorable to increase the average volume fraction of

the solid phase. On the contrary, at a high current density (j>4*

= 30), where slug-
gish mass transport is dominant, larger diffusion channels are preferred to assure a
sufficient reactant delivery. As it can be understood from Eq. (3.25), the system mass
transport is controlled by dimensionless number 6¢,. Therefore, changing the value
of this parameter should affect the optimized distribution of voids. As it can be seen
in Fig. 3.2, decreasing the value of this parameter influences the optimized porosity
distribution in the ERD system. However, this impact is more significant at a high
current density because of a serious mass transport limitation under this operational
condition. The same changes in ; at a low current density cause a slight change in
the final void distribution. This is due to the fact that at j*"%* = 5, the concentration
overpotential is small and a variation of #; could be compensated by a tiny change

in the optimized layout (see Figs. 3.3a and 3.3b).

In addition, dimensionless number f, dictates the ohmic conductivity of the sys-
tem. Hence, diminishing this parameter is associated with new layouts (Figs. 3.2¢c
and 3.3c) which provide a better pathway for conduction of electric charges. Finally,
decreasing parameter 03 boosts the ionic conductivity of the system in comparison
to the electric conductivity. In many real applications, the electrochemical devices
suffer from a high ionic resistance, but not electric one. Therefore, decreasing 05 (by
keeping 6, constant) improves the balance between electron and cation transport in
the ERD system. Consequently, a lower total overpotential could be achieved after

optimization with a smaller ;. For j"d~

= 5, this means a less requirement for the
electrolyte phase (see Fig. 3.3d). The optimized layouts shown in Figs. 3.2 and 3.3
reduce the overpotential of the ERD system between 39.6% and 64.2% compared to
the initial uniform configuration (before optimization). The improvements owe to
the heterogeneous structures obtained from TO. These tree-root-like structures facil-
itate diffusion of reactant species and electric charges while augmenting the reaction
rate throughout the system. For instance, in the case of mass diffusion, all opti-
mized structures involve some primary diffusion channels together with secondary
channels. The primary channels are extended throughout the system in z-direction,
which facilitates the delivery of the reactant material to the regions far from the inlet
boundary (0€2;). Evidently, the system of interest in this study is symmetrical with
respect to the y-axis (see Fig. 3.1). Therefore, it is necessary to direct the reactant in z-

bnd,*

direction, especially at a high j""“*, which mass transport limitation is more severe.

Additionally, the secondary channels connected to the primary ones help a better
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dissemination of the reactant over the entire porous reactor. On a similar note, the
electrolyte and solid phases are also arranged in a way that give a greater access to
electric charge currents. Since the left boundary is isolated to the transport of ions,
the electrolyte phase is more concentrated on the right half of the reactor. It is no-
table that the solid phase not only transfers the produced electrons to the outside
but also provides the necessary surface area for the reaction. Therefore, both these
roles are reflected in the optimal layout. The heterogeneous distribution of mate-
rials within the ERD system strikes a balance between multiple transport and rate

processes, consequently leading to enhanced overall performance.

To further analyze the optimization process, the scenario with ¢, = 5, 6, = 50, and
5 = 10 is assessed in details. The convergence history of the optimization process is
plotted in Fig. 3.4a along with the system layout at two intermediate iterations (itera-
tion number 20 and 70). As expected, during the optimization, the objective function
monotonically decreased. A sharp decline is observed at the beginning, which is due
to the higher sensitivity (or gradient) of the objective function in these iterations. As
the optimization proceeds, the change rate slows down. The objective function (to-
tal overpotential) reaches a constant value of 4.64 after around 125 iterations, where
the changes in objective function drops under 0.01% afterwards. This assures a con-
tfident convergence. Fig. 3.4b demonstrates the current density-overpotential (I-V)
relationship of the system before and after optimization. Indeed, an I-V curve shows
the performance of the system for a wide range of current densities. To demon-
strate how the results of optimization at various current densities are different, the

I-V curves are plotted for two structures obtained from optimization at ;"

equal
to 30 (point A on the plot) and 5 (point A on the plot). From the first optimization,
point A is shifted to A’ and the structure shown in Fig. 3.2a is obtained. Then, this
optimal layout is used to plot the I-V curve over a range of 5 < j"4* < 30. A similar
procedure has been conducted for optimization at point B. In both cases, the optimal
I-V curve is vertically shifted downward (vertical optimization). However, the final
I-V characteristics of the two optimal structures are different. Evidently, at medium

~bnd,*

and high current densities (j > 15), IV curve of A’ is superior. However, in

low current density regions (j°**

< 5), the I-V characteristics of B’ surpasses that
of the other optimization. The reason for this difference is when the optimization is
performed at a high current density, the optimal layout comes with large diffusion
channels (see Fig. 3.2a). At j*4* > 15, the concentration depletion is the prevailing
mechanism. Hence, larger diffusion channels (higher average porosity) is benefi-

cial to make a compromise between the competing processes. On the other hand, at
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Figure 3.2: Optimized volume fraction distribution of electrolyte, solid, and void
phases under various system settings at j”"4* = 30; Improvement of optimized
layout compared to initial uniform distribution is: (a) 49.5%, (b) 52.5%, (c) 64.2%,
and (d) 39.6%
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Figure 3.3: Optimized volume fraction distribution of electrolyte, solid, and void
phases under various system settings at j”"4* = 5; Improvement of optimized lay-
out compared to initial uniform distribution is: (a) 59.1%, (b) 48.8%, (c) 57.6%, and
(d) 61.4%
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fraction of the solid phase is needed to increase the effective electrochemical surface

< 10, sufficient reactant is supplied to the reaction site. Hence, a higher volume

area and consequently decrease the system total overpotential. What stands out in
this figure is that when optimizing an electrochemical system at a specific working
point, the optimal result might not be equally good over the entire I-V curve. There-
fore, the optimization point should be adjusted according to the application and
purposes. The average effective transport coefficients of the system before and after
optimization are compared in Table 3.2. The transport properties after optimization
are divided by the relevant exchange properties (D¢ and ¢ """ to obtain the
dimensionless properties. As it can be seen in this table, all transport properties are
considerably enhanced after optimization. The only exception is average diffusivity

after optimization at ;"

= 5. Since the overall reaction rate is low at j""* = 5, the
reactant delivery is sufficient even at a relatively lower effective diffusivity. There-
fore, TO favors to reduce the porosity (effective diffusivity) and instead increases the

volume fraction of solid phase to augment the electrochemical surface area.

To clarify the benefits of a heterogeneous structure, the optimal layout (obtained
from optimization of #; = 5, 6, = 50, and 653 = 10 at j""* = 30) is compared to two
uniform distributions. As aforementioned, the optimization process started with
a homogeneous material distribution in which volume fractions of both electrolyte
and solid phases were 0.25. In this case, the non-dimensional total overpotential is
9.18. After optimization, this value is declined to 4.64, which shows a 49.5% reduc-
tion in system losses. Such a substantial improvement proves the advantage of the
topologically-optimized layout over the uniform distribution. In the final optimum
layout, the average volume fraction of various phases are £{** = 0.264, 5° = 0.313,
and 2" = 0.423 as shown in Table 3.2. Considering these average values with a

tot,*

uniform distribution gives a total overpotential of |*"*| = 9.83, which is consider-
ably higher than 4.64. In fact, it is even higher than that of before optimization. This
reveals that the placement of constituents is as important as their overall average
amounts. In other words, TO adjusts the overall volume fraction of constituents as

well as their distribution in a manner to reduce the total overpotential.

A closer inspection of system evolution is required to obtain a deeper grasp about
how TO lead to a better design solution. To do so, some of the system parameters
are traced during optimization. Since the system is symmetrical, the parameters of
interest are projected on z-axis to reduce their distribution to 1D for the sake of sim-
plicity. The projected dimensionless concentration (C*) and current source (|a*jZ.|)

along with entropy production evolution are set out in Fig. 3.5. What stands out in
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Figure 3.4: (a) Convergence history and (b) I-V curves for §; = 5, 62 = 50, and
03 =10
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Table 3.2: Average values of dimensionless transport properties and volume frac-
tions before and after optimization for §; = 5, #; = 50, and 03 = 10; the values in
parentheses shows the changes with respect to the before optimization case

Optimization D*ave o™ olave give  gve  gave
Before 125 0.284 284 025 025 05
) (-) )
1.62 0.679 5.05

After - jPrd* = 30 0.264 0.313 0.423

(+29.6%)  (+139%)  (+77.8%)

0.766 0.537 9.78
_ sbndx _
After - j 5 (B87%) (489.1%) (s2440) 0274 0446 0280

Fig. 3.5a is during the optimization process, the reactant concentration is elevated in
the system. The concentration at 2* = 1 is increased by two orders of magnitude
after the optimization. This is attributed to a better porosity distribution that assist
delivery of reactant to the regions far from the system inlet. The emerged diffusion
channels in z-direction prevent significant concentration overpotential. This is espe-
cially essential for high operational current densities where mass transport limitation
is dominant. What is striking about these results is that the increase in concentration
occurs in a condition where the average porosity in the optimal structure (0.423)
is lower than the initial one (0.5). Checking the general trend of projected current
source, that is depicted in Fig. 3.5b, shows that the optimization algorithm favors
design solutions with a more uniform current source distribution. This means that
to lessen the total overpotential, it is necessary to scatter the electrochemical reaction
all over the ERD system. From a global standpoint, spreading the reaction through-
out the design domain assists to reduce the entropy that is generated in the system.
Fig. 3.5c illustrates the changing progress of dimensionless total entropy generation,
P*, in the course of optimization along with local distribution at some selected iter-
ation numbers. As it can be confirmed by both local and global analysis, the total
entropy generation rate is decreasing as the optimization proceeds. This observa-
tion is in full agreement with the principle of EGM [43]. Hence, for a minimization
problem set-up, the total overpotential could be substituted with the total entropy
generation as an objective function. It will be later discussed that this replacement
does not hold for a maximization formulation. Since the entropy generation rate
is reduced after optimization, it can be concluded that the second law efficiency of
the system is increased. To understand how the entropy production reduced by TO,
the distribution of projected entropy is plotted in Fig. 3.5d for some iterations. It
can be seen that the entropy curve at iteration zero is at a higher level than other

iterations. After some early changes in the system layout, the entropy curve shifted
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downward considerably. This huge drop in entropy generation happened thanks to
an improvement in transport processes. In the subsequent steps, the optimization
algorithm attempted to further reduce entropy generation rate by providing a more
uniform distribution of entropy production throughout the system (see the curves
for iterations 35, 50, and 300 in Fig. 3.5d). A more uniform distribution of entropy
production might (but not necessarily) be helpful in reducing the total entropy pro-
duction and consequently increasing the system efficiency. This principle is known
as Equipartition of Entropy Production (EoEP) [86, 87] in the literature. It has been
applied to many heat exchanger and membrane systems [88-95].

These behaviors can be observed in the individual entropy contribution by each
process. Fig. 3.6 illustrates the breakdown of entropy production by various pro-
cesses, including mass diffusion, ion transfer by electrolyte phase, electron transfer
by solid phase, and electrochemical reaction. The projected distribution of entropy
production by each mechanism is shown in this figure. From these breakdowns,
one can understand that the entropy curves of transport processes (Fig. 3.6a to 3.6c¢)
lay quickly down hinged at one boundary. Especially, the entropy production by
ion transport (Fig. 3.6b) shows a significant drop. This is because of the enhanced
pathways formed by TO for transport of reactant, ion, and electron. Meanwhile, the
flattening of these entropy curves causes a sharp decrease in total entropy produc-
tion, as shown in Fig. 3.5c. The behavior of entropy contribution by the electrochem-
ical reaction is, however, different from that of transport phenomena. According to
the curves of Fig. 3.6d, the entropy production distribution becomes more equipar-
titioned during the optimization. This is mainly because of a more uniform distri-
bution of the current source that is discussed before. To achieve this flatness, the
entropy production in part of the system is reduced, while it is increased in the other
part. Therefore, the total amount of entropy production by the reaction does not
change very much. This could be confirmed from the column chart demonstrated in
Fig. 3.6e. This chart compares the total entropy production by each process. It can
be seen that the contribution by electrochemical reaction stays almost constant dur-
ing the optimization process. The slight reduction is related to the more equiparti-
tioned distribution of entropy generation, which prevents excess dissipation caused
by non-uniformity of thermodynamics driving force in the system [86, 87]. Since the
total reaction rate is given by the system current density, most entropy production by
the reaction is the inevitable entropy generation that cannot be prevented in a finite
time/size context [18, 77]. Based on the data of Fig. 3.6e, the electron transport has
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the smallest contribution to the total entropy compared to other transport phenom-

ena. This is because of the high intrinsic electronic conductivity of the system.
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3.5.2 Overpotential-based ERD system

In this subsection, the optimization results of the overpotential-based ERD system
are briefly discussed. In contrast to the previous strategy, the goal of this optimiza-
tion is to increase the current density that is passing the system boundary at a given
overpotential level. The optimized system layout for an ERD system with 6; = 5,
6, = 50, and 65 = 10 are demonstrated in Fig. 3.7 for two different overpotentials
(gb}ond’* = 1 and 9). The structure obtained for ng]and’* = 9 (Fig. 3.7a) increased the
system current density by 116.7%. A closer look at this optimal layout reveals that
it is pretty similar to Fig. 3.2b. While the exact distributions are different in the two
tigures, the overall shapes look alike. However, the system settings (0,) are different.
The reason for this similarity is as follows. The value of 6; in the optimized sys-
tem of Fig. 3.2b has a small value, meaning that the system is diffusion-controlled
(diffusion-limited) by nature. Therefore, the optimization algorithm attempts to
compensate for the weak reactant delivery by forming a distributed high porosity
region in half of the reactor (far from the inlet boundary). On the other hand, the
system in Fig. 3.7a is not diffusion-limited by nature. However, increasing the cur-
rent density necessitates a faster reactant delivery to the reaction sites. As stated
before, the output power of a power-generating electrochemical system could be in-
creased in two ways, including reduction of total overpotential and increment of
current density. The latter comes at the cost of a higher overall electrochemical reac-
tion rate. To increase the reaction rate, it is required to supply more reactant. This
explains why the optimized layouts in Fig. 3.2b and Fig. 3.7a are similar despite their
different settings (different ;). The results of optimization at a lower overpotential
(¢ = 1) are presented in Fig. 3.7a. At a lower overpotential level, the activation
overpotential prevails. As a result, a higher volume fraction of the solid phase is

beneficial to increase the current density.

From the convergence diagram shown in Fig. 3.8a, it is understandable that the ob-
jective function reaches a constant maximum value after around 115 iterations. The
insets in Fig. 3.8a illustrate how the distributions of decision variables are changing
over the optimization course before fully converging. The I-V curves obtained from
the optimized systems for the two cases (¢ """ = 1 and 9) are plotted in Fig. 3.8b.
Opposed to a minimization problem, this optimization approach shifted the initial
I-V curve horizontally to the right (horizontal optimization). Performing an opti-

mization at a high overpotential point (¢"** = 9, point C in Fig. 3.8b) leads to a
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Figure 3.7: Optimized volume fraction distribution of electrolyte, solid, and void
phases for 6; = 5, f2 = 50, and 03 = 10 at different overpotential levels; Improve-
ment of optimized layout compared to initial uniform distribution is: (a) 116.7% and
(b) 70.5%

significant improvement in terms of I-V characteristics for medium and high over-
potentials (¢""* > 5). However, this optimization is mainly focused on the im-
provement of reactant deficit as a result of increased reaction rate. Since the volume
fraction of solid phase is relatively low in the optimized structure, the I-V perfor-

mance of this structure is comparatively weak at low overpotentials (¢, < 3). In

"% = 1) increases the

addition, optimizing the system at a lower overpotential (¢
current density by 70.5%. However, it is not as beneficial when the system is work-

ing at a high overpotential level.

To obtain some insight about maximization approach and identify the differences
with the previous formulation, the evolution of projected concentration and conver-
gence of entropy production are investigated for optimization at ¢""* = 9. As it
can be seen in Fig. 3.8c, the concentration changes non-monotonically during the
optimization process. In the primary iterations, when there is an increase in the re-

action rate as a result of an increase in ionic conductivity, the reactant concentration
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suddenly drops. To compensate for the concentration depletion and raise the re-
action rate, TO forms some diffusion channels, which helped the concentration to
be almost retrieved to the value before optimization. Increasing the concentration
through facilitated mass transport helps the system to work at a higher reaction rate
without experiencing any reactant shortage. The behavior of dimensionless entropy
generation differs from that of the minimization approach. As shown in Fig. 3.8d,
the total entropy production is increasing during the optimization. Before the opti-
mization, the local distribution of entropy generation was relatively uniform and its
quantity was also low. However, the final optimized solution comes with a higher
entropy generation rate, especially in areas with a high volume fraction of the solid
phase. This behavior might be assigned to the fact that the electrochemical reaction
occurs in those areas. In a finite time/size thermodynamics context, any system that
is “doing” something is doomed to produce some amount of entropy. Therefore,
when the “doing” of a system is increased (in this case the reaction rate is increased),
it is expected that total entropy production to rise. As discussed in [18, 77], this
increase is associated with the “inevitable entropy production”. Another striking
point in Fig. 3.8d is that despite the objective function shows a monotonic conver-
gence behavior (see Fig. 3.8a), the convergence curve of total entropy production
shows some noises. This means that the maximization formulation may produce
some design solutions that are desirable in terms of objective function but are not
completely favorable from the perspective of the second law of thermodynamics.
Hence, maximization of current density is not equivalent to the maximization en-
tropy production and the objective function cannot be substituted. To rephrase it, a
lower entropy production corresponds to a lower dissipation; nonetheless, a higher
entropy production does not imply a higher reaction rate. This is the major differ-
ence between the two optimization strategies. A vertical optimization attempts to
reduce the losses in the system; however, a horizontal optimization aims to increase
the conversion capacity of the system. Therefore, the results obtained from the latter
approach might not have the highest possible second law efficiency. In summary, the
findings of this study proves that introducing a heterogeneous material distribution
within an electrode can effectively enhance material utilization, thereby improving
overall performance. This enhancement is achieved through a balance among com-
peting transport and rate processes. Unlike parametric optimization, which primar-
ily controls design variables globally, TO fine-tunes material distribution locally, thus
surpassing conventional optimization methods. Moreover, the results of this study
show that a proper choice of optimization approach depends on the application of
interest. In principle, both strategies might be used for any application by sufficient
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considerations. Yet, a vertical optimization may be recommended in power generat-
ing systems (e.g., FCs) where there is a need to reduce the energy losses. Moreover, a
horizontal optimization may be employed for power consuming systems (e.g., elec-
trolyzers) in which the conversion rate is a major challenge. It is also important to
choose the optimization point on I-V curve in accordance with the practical working
conditions. Although the optimized design enhances the performance at the chosen
optimization point, it might not be beneficial for other working conditions. In the
case of an ERD system, the I-V characteristic does not improve equally over a wide

operating range.

3.6 Conclusions

The present study investigates a 2D electrochemical porous reactor that involved
mass transport, electric charge transfer, and a redox reaction. A dimensionless math-
ematical model is developed to describe the performance of the system, and a TO
method is employed to find the optimal distribution of constituents in the reactor.
Since any mathematical optimization algorithm, including TO, is confined to some
extent by their tuning parameters and employed mathematical schemes, a more
fundamental understanding of optimal design may pave a path beyond the com-
putational limitations. With this goal, the present study also proposes an entropy
generation model to evaluate the rate of irreversibilities in the system. Hence, the
methodology presented in this study holds potential appeal for researchers engaged
in electrode design and optimization as well as those seeking a deeper, fundamental
comprehension of optimal designs. Two different optimization approaches, includ-
ing minimization and maximization formulations, are used to enhance the system
performance. The final optimal layouts are complex root-like structures that facil-
itate the transport processes while improving the conversion rate. The optimized
structures are obtained for various combinations of dimensionless numbers and the
differences are discussed. The process that leads into a better design solution is ex-
plained using the proposed entropy generation model. By comparing the entropy
generation trends for two different optimization approaches, this study provided a
framework for optimizing the distribution of constituents in porous electrochemi-
cal reactors and offered insight into the relationship between TO and the entropy
generation rate. The results are shown to be in line with the EGM and EoEP princi-
ples. The findings of this study could have potential applications in the optimization
of the electrode structure for various electrochemical technologies, such as FCs and

electrolyzers. Moreover, the two optimization approaches (vertical and horizontal
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optimizations) are compared. It is shown that the choice of proper optimization ap-
proach and optimization point depends on the practical application. There is, there-
fore, a definite need for more studies on real devices. Given the generic form of the
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presented optimization and entropy generation analysis, the proposed framework
may be applied to other electrochemical systems. This research sheds new insights
on how topology optimization relates to the reduction of entropy generation, of-
fering promising pathways for the development of optimization strategies that are
both more efficient and firmly rooted in theoretical principles. Future research might
also explore a mixed optimization strategy that is a combination of vertical and hor-
izontal ones. In this study, entropy generation analysis was performed as a post-
processing step to clarify the characteristics of the optimized design. However, fur-
ther research is needed to establish a stronger link between entropy generation and
performance optimization. One possible direction could involve optimizing the uni-
formity of entropy generation as an objective function to examine whether this leads

to enhanced performance and to determine if the relationship is reciprocal.

Abbreviations

BC Boundary condition

EGM Entropy generation minimization

EoEP Equipartition of entropy production

FC Fuel cell

GCMMA Globally convergent method of moving asymptotes

NET Non-equilibrium thermodynamics

PDE Partial differential equation

PEMEC Polymer electrolyte membrane fuel cell

TO Topology optimization

Nomenclature

a Active specific surface area m2m3
Concentration mol m—3

Co Characteristic concentration mol m~3

D Diffusivity m?s™!

Eeq Equilibrium potential \Y%

F Faraday’s constant Cmol™*

Fop; Objective function —

io Exchange current density Am2

j Current density Am—2

J. Eentropy flux WK 'm™?
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L Characteristic length m
n Number of electron -
N Number of moles mol
p Pressure Pa
P Total entropy production WK tm!
q Charge density Cm-3
Q Electric charge C
R Gas constant Jmol ' K™*
Rc Reaction source term molm—3 ™!
S Entropy JK!
s Entropy density JK1m3
t Time S
T Temperature K
U Internal energy J
% Volume m?
Greek symbols

a Charge transfer coefficient —
6} Penalty exponent -
Ui Overpotential AV
7 Chemical potential Jmol™!
¢ Potential \Y
oo Characteristic potential AV
o Charge conductivity / Entropy generation rate Sm™ !/ WK 'm™
0 Dimensionless group -

Volume fraction

Subscripts/superscripts
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Boundary
Effective

Electron transport
Ion transport
Electrolyte

Mass transfer
Oxidizing
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Chapter 4

A hierarchical design solution for structure of PEMFC

catalyst layer based on a two-phase flow model

Abstract

Proton exchange membrane fuel cells (PEMFCs) have emerged as a promising solu-
tion as the world is moving toward sustainable energy resources. However, in order
to compete economically with existing technologies, further improvements in per-
formance are necessary. Mathematical modeling and optimization are viable tools
for designing better PEMFCs. This study aims to provide a framework for topo-
logical optimization of the electrode structure, with the ultimate goal of enhancing
cell performance. To achieve this, a two-phase flow model of PEMFC is developed
to characterize the cell performance. The model is then coupled with a topology
optimization technique, which is the main focus of the present work, to seek an opti-
mized constituent distribution in the catalyst layer. Results indicate that an electrode
with a heterogeneous structure can enhance the overall cell performance by balanc-
ing various transport and rate processes. The optimized designs are investigated for
various key factors, including effective diffusivity, effective conductivity, and liquid

water management, to demonstrate how an optimized design can be advantageous.

This chapter is published as:

M. Alizadeh, P. Charoen-amornkitt, T. Suzuki, and S. Tsushima. “A mathematically
optimized design solution for structure of PEMFC catalyst layer based on a
two-phase flow model”, Journal of The Electrochemical Society, 171.11 (2024): 114506.
https:/ /doi.org/10.1149/1945-7111 /ad8efte
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4.1 Introduction

As the world is moving toward carbon-free energy resources, electrochemical en-
ergy conversion and storage technologies, such as secondary batteries and fuel cells,
received much attention [1, 2]. In particular, proton exchange membrane fuel cells
(PEMFCs) have attracted significant attention due to their high efficiency, high power
density, and low startup time, as well as their scalability and ability to operate at low
temperatures. These characteristics make PEMFCs suitable for a wide range of ap-
plications, from stationary power generation [3, 4] to transportation [5, 6]. Although
they offer various advantages, their manufacturing cost remains high due to the use
of precious metals such as platinum as catalysts, which poses a significant obstacle to
their widespread commercial adoption [7-10]. Therefore, it is crucial to focus on fur-
ther enhancing their performance and reducing costs to make these energy devices
more feasible for extensive deployment. This goal might be achieved by enhance-

ment of a vital component called catalyst layer (CL), which is shown in Fig. 4.1a.

The significance of CL is twofold: (1) it is the largest cost contributor, and (2) the elec-
trochemical reaction is taking place in this component. As previously mentioned,
the former is attributed to the usage of costly noble metals as catalysts to increase
the electrochemical reaction rate. CL is a crucial determinant of the overall perfor-
mance of a PEMFC, as it facilitates several coupled transport phenomena, including
mass and electric charge transfer, alongside electrochemical reactions. As a result,
any improvement in CL not only reduces system costs but also enhances cell per-
formance. The CL of a PEMEFC is a thin, porous medium consisting of a catalyst
supported by a support material (such as carbon-supported platinum), a polymeric
binder material (ionomer), and voids. This triple-phase layer serves as the bed for
redox reactions, where the fuel and oxidant undergo reduction and oxidation, re-
spectively, on the catalyst material’s surface. The electrochemical reaction involves
chemical substances, electrons, and protons. In the CL, carbon-supported platinum
(PtC) and ionomer phases are responsible for transporting electrons and protons,
respectively. In addition, the reactant is delivered to the reaction site through the

pores.

Several approaches have been attempted in previous research works to address the
performance-cost challenge of CL. For instance, some studies explored the use of
cheaper catalyst materials, such as non-platinum group metals, to reduce fabrication
costs [11-16]. However, substituting platinum group metals (PGMs) with other ele-
ments in the fabrication of PGM-free catalyst layers can pose new challenges, such as
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low durability and reduced oxygen reduction reaction (ORR) activity. Thicker elec-
trodes can be used to overcome the low ORR activity issue, but this can increase mass
transport resistance and degrade liquid water discharge [17]. In another attempt,
a number of studies [18-21] employed electroanalytical methods to assess and ob-
tain a deeper understanding of electrode modification. Moreover, over the last three
decades, remarkable dedication and substantial advancements have been devoted
to improving PEMFCs performance by focusing on modeling of CL with the goal
of optimizing its structure and composition [22-31]. A summary of some selected
past research works on this topic is presented in Table 4.1. Numerical methods are
efficient approaches in designing superior CL and have been vastly used in the lit-
erature [32-36]. This strategy is based on mathematical modeling and optimization
of CL structure. Mathematical modeling provides a powerful tool for simulation of
cell characteristics under various structural and operational conditions. By changing
any structural or operational parameter, the impacts of these changes might be deter-
mined. When integrated with mathematical optimization algorithms, the best set of
parameters might be identified within a given bound [37]. As aforementioned, sev-
eral coupled transport phenomena, including mass, heat, and electric charge trans-
fer, and a rate process (i.e., electrochemical reaction) are happening simultaneously
in CL. The cell performance is mainly dictated by two mechanisms in CL: (1) charge
transfer rate, and (2) reactant supply/product discharge rate. Charge transfer rate
represents how fast the reactant species are consumed (or likewise, product species
are produced). On the other hand, the latter mechanism specifies the pace of re-
actant delivery to the reaction site (or product discharge from reaction site). This
mechanism is also known as mass transport resistance and becomes dominant when
a PEMEFC is working at a high current density. At higher current densities, the rate
of the chemical reaction increases, causing the reactant substance to be consumed
more rapidly. To maintain the desired reaction rate, it is necessary to compensate
the available amount of reactant accordingly. Insufficient reactant delivery leads to
a substantial performance drop at high current densities. Moreover, excess liquid
water production at these current density regions blocks the pores and makes the re-
actant delivery more complicated. This phenomenon is known as flooding [38, 39].
In a porous medium, like CL, the effective transport and electrochemical properties
depend on its microstructure. For instance, the effective ionic conductivity of CL is
related to the volume fraction of ionomer. However, enhanced ionic conductivity
(at a constant PtC volume fraction) translates into lower porosity, which lessens the
effective reactant diffusivity. Therefore, an appropriate CL composition might pro-
vide a balance between the transport and rate processes, which consequently results
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in an elevated overall cell performance. The described trade-off between different

mechanisms gives a rise to an optimization problem.

The aim of this optimization problem is to maximize the membrane electrode as-
sembly (MEA) performance by providing a compromise between the processes oc-
curring in CL. A proper balance between dynamics of these phenomena is obtainable
by controlling the composition of CL. In other words, an appropriate adjustment of
volume fractions of constituent materials would improve the performance. As a re-
sult, the volume fraction of PtC, volume fraction of ionomer, and porosity could be
considered as the decision variables of this optimization problem. Several previ-
ous studies in the literature focused on parametric optimization of CL composition.
For instance, He et al. [33] investigated the impact of five parameters of the cathode
catalyst layer (CCL) on the current-voltage (I-V) relationship of a mathematically
modeled PEMFC. These parameters include platinum loading, platinum to carbon
(Pt/C) mass ratio, ionomer to carbon (I/C) ratio, carbon particle radius, and elec-
trochemical surface area (ECSA). Their results revealed that platinum loading sub-
stantially affects the cell performance. Also, according to their findings, contrary
to limiting current density that might be increased by a smaller 1/C ratio, a higher
value of this parameter is beneficial for enhancing maximum power density. Some
other studies [40, 42—-46] tried to expand parametric analysis by dividing CL into sev-
eral sub-domains and finding the best composition of CL in a double- or multi-layer
configuration. These studies proposed that the cell performance improvement can
be achieved with a functionally graded multi-layer design for the catalyst layer [45].
The composition of each sub-layer is controlled independently of other ones with the
aim of amplifying the output power. In a more advanced form, Havaej et al. [35], for
instance, compared several non-uniform catalyst loading distribution based on a set
of predefined functions. They found that by introducing a non-uniform distribution
of catalyst in the longitudinal direction, the cell current density could be increased by
3.1% at a voltage level of 0.2 V. In a recent work, Fan and colleagues [47] used a 1D
two-phase model to investigate the impact of graded CL designs on output power
and current density distribution of a PEMFC. Despite some improvement in current
density uniformity and the output performance, their study is only limited to a lin-
ear distribution of ionomer and catalyst within CL. Reviewing the literature clearly
shows that a graded or multi-layer design of CL outperforms the simple paramet-
ric optimization due to a relatively higher degree of freedom achieved thanks to the

heterogeneous distribution of design parameters. However, in graded CL designs,
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Table 4.1: Summary of some selected papers from the literature

Ref.

Year

Summary of approaches and results

[40]

(23]

[24]

[25]

[41]

(27]

(28]

2000

2004

2006

2007

2008

2012

2014

The impact of catalyst gradients on the performance of the active layer in a PEMFC has been
verified through both experimentation and modeling, encompassing both porous and non-porous
active layers. The modeling of diffusion and ionic ohmic drop in the cathode’s active layer further
corroborated the experimental findings, demonstrating that the graded distribution of platinum
nanoparticles enhances performance.

The study employs mathematical modeling and simulation to investigate transport and reac-
tion kinetics in two types of CCL agglomerates: ionomer-filled and water-filled. It reveals that
ionomer-filled agglomerates display more consistent reaction rate distributions, while water-
flooded agglomerates exhibit high catalyst utilization due to significant proton penetration under
specific conditions. The findings highlight the importance of designing an idealized CL com-
posite with hydrophobic secondary pores for effective macroscopic reactant transport and water
removal, along with hydrophilized primary micropores for optimal wettability and proton acces-
sibility.

A model linking spatial distributions, water handling capabilities, and performance is developed
using statistical theories and a macro-homogeneous model. The simulation results reveal the sen-
sitivity of CCL operation to various factors, such as porous structure, thickness, wetting angle,
and gas pressure. Notably, the findings propose that with favorable parameters (i.e., 10 ym thick-
ness, 5 atm cathode gas pressure, and 89° wetting angle in case of this study), the flooding current
density could reach as high as 2 to 3A cm™2.

The paper introduces a numerical framework for optimizing cathode electrodes under different
operating conditions. By coupling an agglomerate model with a gradient-based optimization
algorithm, the study determines the ideal parameters setting. The results highlight that higher
platinum loading and moderate electrolyte volume fraction improve performance at low current
densities, while reduced platinum loading and increased electrolyte volume fraction and porosity
enhance performance at higher current densities. The research also suggests that reducing the
solid phase volume fraction in the CL could lead to improved electrode performance.

The study presents a model for the CCL, incorporating considerations of random porous mor-
phology, transport properties, and electrochemical conversion. A feedback mechanism triggers
a transition from low saturation, which leads to high voltage efficiency, to excessive water accu-
mulation, affecting reaction rate distributions and causing voltage losses. Optimizing the critical
current density during this transition enhances both voltage efficiency and power density, with
optimal conditions favoring high porosity, a significant fraction of secondary pores, an approxi-
mate 90° wetting angle, high gas pressure, and elevated temperature.

This research explores the oxygen gain in hydrogen fuel cells, which refers to the performance
difference observed between cathode fuel streams with varying oxygen levels (depleted and
oxygen-rich). The study develops mathematical models to distinguish between mass-transport
resistances in CL and GDL medium. Two extreme scenarios are examined: cases where mass
transfer limitations occur solely within CL and those external to it, in GDL. In the former situa-
tion, oxygen gain values are confined to a finite range, while in the latter, they are unrestricted.
The paper proposes a diagnostic technique aimed at identifying the primary source of mass trans-
fer degradation.

The study develops a model to investigates voltage losses and to explore how agglomerate size
and ionomer distribution influence the effectiveness of platinum utilization and the distribution
of reaction rates during ORR. The results indicate that smaller agglomerates with higher oxygen
pressure at their surface exhibit higher effectiveness factors. Moreover, it is shown that the impact
of pore diameter on effectiveness factor is less significant compared to agglomerate size. While
the variation of effectiveness factor with ionomer coverage is insignificant within the range of
0.125 to 0.5, higher coverage reduces the effectiveness factor due to increased resistance to oxygen
diffusion. Ultimately, the study suggests that a high effectiveness factor is achieved by combining
high oxygen pressure, small agglomerate size, and medium ionomer coverage.
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the material distribution function should be usually prescribed in advance. Topol-
ogy optimization (TO) is a rigorous mathematical optimization technique which pro-
vides a high degree of freedom in controlling distribution of decision variables in a
given design domain [48-50]. TO can automatically generate spatially graded elec-
trode designs with gradual variations in microstructural topology to achieve favor-
able MEA performance. In contrast to parametric optimization, which is restricted
to adjusting decision variables at a global level while maintaining a uniform distri-
bution, TO allows for control of decision variables values at a local scale [51-53].
Moreover, contrary to the graded designs, TO does not require any material distri-
bution function prior to the optimization. Thus, it is capable of providing various
heterogeneous distribution of decision variables while maintaining their global av-
erage constant. TO was initially emerged in the field of structural mechanics [54];
however, its application has been then extended to other disciplines, such as fluid-
based problems [55] and reaction-diffusion systems [56, 57]. To date, the implemen-
tation of TO for electrochemical energy devices has been mainly limited to the flow
tield design [58-60] and thermal management [61, 62]. However, there are only a few
number of studies that have investigated the employment of TO for designing inno-
vative electrodes with heterogeneous structures [63-66]. In a recent study, Beck et
al. [63] proposed a pioneer non-uniform structure design procedure for electrodes of
redox flow batteries based on mathematical optimization. Their findings show that,
as compared to conventional electrodes with uniform porosity distribution, using
an engineered electrode with varying porosity can increase the efficiency of the bat-
tery under various operating conditions. In another study conducted by Deng and
Lu [64], the authors used an optimization algorithm integrated with self-directed
online machine learning to obtain the optimal topology of the porous electrode of a
lithium-ion battery. By controlling the distribution of solid volume fraction in a 2D
electrode, they successfully found a pattern for the structure of the electrode, which
leads to 18% increment in the cell’s maximum specific energy. For the purpose of
optimization, they used a 5 x 5 grid, which is coarser than the mesh used for finite
element calculations. Moreover, Lamb and Andrei [65] implemented a gradient-
based topology optimization method to achieve the best configuration for the spa-
tial distribution of constituent materials in the catalyst layer of a PEMFC. Unlike [64],
which only considered porosity or solid volume fraction as a decision variable, the
researchers in [65] conducted a multi-variable optimization of catalyst, electrolyte,
carbon, and void volume fractions. They reported that in the case of PEMFC, it is
desired to increase the volume fraction of catalyst and electrolyte in the region close
to the membrane and increase the volume fraction of carbon and voids in the region
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near the gas diffusion layer (GDL) to obtain higher output voltage. While the study
presented in [65] shows promising results, it is important to note that the use of a
single-phase model for simulating the behavior of PEMFC means that the liquid wa-
ter transport mechanism was not accounted for. Since liquid water has a significant
impact on PEMFC characteristics, particularly at high current densities, it is crucial
to incorporate a multi-phase model to obtain a more comprehensive understanding

and more robust results in the optimization process.

Reviewing the existing research works on optimal design of CL composition shows
that there is a relatively small body of literature that is concerned with implemen-
tation of powerful mathematical optimization methods, like TO, to find novel elec-
trodes with heterogeneous distribution of constituent materials. The objectives of the
present study are to establish a framework for topology optimization of PEMFC elec-
trode and to explore the optimal CL structure that provides an appropriate balance
between dynamics of transport and rate processes, which as a result might enhance
the overall cell performance. To accomplish this goal, first, a 2D two-phase model of
PEMEC is developed that captures major electrochemical and transport phenomena
of PEMFC. By considering the liquid water transfer in PEMFC, the proposed model
is capable of accurately simulating the cell behavior even at high current densities.
The model is then validated against experimental data to ensure the precision of
the proposed mathematical formulation. Next, a topology optimization algorithm
based on density model [67] is used to obtain the best structure of CCL in a given
design domain with the aim of increasing the output current density at a constant
cell voltage. Whilst the models that were used in the previous TO studies, such
as [65], dominantly suffered from a lack of two-phase flow effects, this gap is filled
by adoption of a robust mathematical description of PEMFC performance that con-
siders those mechanisms. Hence, the findings of this research are more reliable and
consistent than those reported in the literature. However, it is noteworthy that the
primary aim of this study is establishment of an optimization procedure that seeks
optimized structure for CL of PEMFC rather than overstated claims. The readers
should bear in mind that some limitations are present in the current cell-scale mod-
eling of PEMFC in the literature. For instance, the electrode properties (e.g., porosity)
vary between the regions beneath the rib and beneath the channel due to differences
in compression during the cell assembly process. However, most modeling studies
in the literature assume uniform properties across these regions. Those details are
beyond the scope of this study, as the current work primarily focuses on applying TO

to achieve optimized material distribution in the CL. Finally, PEMFC performance
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improvement as a result of the optimized CL structure will be discussed in terms of

electrochemical aspects and transport phenomena.

The following parts of this chapter is divided into five sections. Section 4.2 deals with
modeling of PEMFC, where the governing equations used in the present work are
described. In addition, a brief explanation of various categories of PEMFC modeling
that exists in the literature is provided. All the processes considered in this model
are descried and their relevant mathematical correlations are provided. Section 4.3
reviews the topology optimization procedure and presents the optimization prob-
lem formulation with an explanation of the objective function and constraints. In
Section 4.4, first, the developed model is validated against experimental results. Af-
terwards, the results obtained from the optimization process are given together with
a comprehensive discussion of electrochemical and transport phenomena. Finally,

the conclusion of this chapter is drawn in Section 4.5.

4.2 Mathematical modeling

In the present study, a two-phase flow, non-isothermal model is developed to simu-
late the performance of the PEMFC. The computational domain is shown in Fig. 4.1a.
The model considers the flow channel as well as five layers of the cell, including two
GDLs, two CLs, and a proton exchange membrane (PEM). The governing equations

are given as follows.
Conservation of mass and species:

The conservation of species and mass for gaseous are described by the Maxwell-
Stefan and Brinkman equations, respectively [68, 69]. The Maxwell-Stefan, mass

continuity, and Brinkman equations are given as:

Vp vT

pu-Vw —V - (pwi Z Dy |:V1’k + (l’k — wi)7:| + DTT) = M;R; (41)
k

V- (pu) = Qu 42)
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Evoid Evoid
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void

Evoid

in which u is velocity (ms™!), p is pressure (Pa), T is temperature (K), p is density
(kgm™?), and p is viscosity (Pas) of the gaseous mixture. In addition, w, z, DT, M,
e, and x are mass fraction, mole fraction, thermal diffusion coefficient (kgm~!s7!),
molecular weight (kgmol™!), porosity, and permeability (m?), respectively. Dj is
multi-component diffusivity (m?s~'). The subscripts i and k denotes the gas species.
Also, R and @), represent the source terms.

Liquid water transport:

The liquid water transport equation is expressed by:

-V - (DcapVC’lw) +uVCy, = Ry (44)

where C},, is liquid water concentration (molm™?) and D, is capillary diffusivity
(m?s™!). The source term, Ry, is determined by the rate of water condensation and
evaporation in the cell. However, in CCL, where ORR is taking place, the produced
liquid water is also contributing to this source term. The water saturation, sy, is
correlated to the liquid water concentration through the following relationship.

MHQO C]W (4.5)

Slw =
Evoid Plw

Dissolved water transport:

The transport of dissolved water through membrane/ionomer in ACL, PEM, and
CCL is given by:

—V - (DawClaw) = Sa (4.6)

In Eq. (4.6), Dqy, and Cy,, are dissolved water diffusivity (m?s~') and dissolved water
concentration (mol m~?), respectively. The boundary conditions required for solving
this equation are calculated based on the relative humidity level (RH) at the interface
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Table 4.2: Source terms

Source terms Domain
Qm = M, Su, + Mo, So, + Muz051,0 GDLs and CLs
Sn, = 3 ACL
So, = i CCL
Evoid(1=81w)%Y1,0 /v o sat e v S o sat
1\320 _ hcond RT . (xHQOp p ) lf 'r‘I;IgOp - p‘at GDLS and CLS
hevpCrw (P°** — ngop) if ¥i,0p < p°
R = ;F CCL
Sd = hmassgCHQO - pr) CLs
5%1‘3%15 = Jelegpic GDLs and CLs
SPiivae = " CLs and PEM
S’?‘ rxn |ZbI‘C (|77 | - TAS&) ACL
S5 en = liSeel (1] = T“) CCL
ST,phase = Mu,0S5%,0Ah1,0 GDLs and CLs

between CL and GDL. The dissolved water concentration at this interface is formu-
lated as [69]:

Cawlcr/eor, = (0.043 + 17.81RH — 39.85RH” + 36.0RH?) E;lv 4.7)

where p,, is density of ionomer/membrane (kg m—?) and EW is the equivalent weight

of ionomer/membrane (kg mol™1).
Conservation of energy:

Given the assumption that all phases are in thermal equilibrium, the energy conser-
vation is governed by [62, 68]:

V- <Z[pcp > (Z kVT) (4.8)

i=g,l i=g.Ls
where ¢, and k are specific heat capacity (Jmol™' K™') and thermal conductivity
(Wm™' K1), respectively. The subscript i denotes the gas mixture, liquid water, and
solid phase. It is noteworthy that the energy source term, Sv, is a summation of heat
generation/consumption by electrochemical reaction, Joule heating, and the water

phase change process. All source terms are listed in Table 4.2.

Conservation of charge:
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The electrons and protons are transferred through carbon-supported platinum and
ionomer, respectively. The electron transport in GDLs and CLs of both anode and
cathode sides, as well as proton transport in CLs and PEM, is modeled by Ohm’s
law. The conservation of charges are expressed by:

V- (—USHV(%) = —lgre (49)
V- (_Uﬁ?VCbm) = lgre (410)

in which ¢ and ¢ are effective electric and ionic conductivities (Sm™!), respec-
tively. Moreover, ¢; and ¢,, are solid and electrolyte phases potentials (V), respec-
tively, and iy, is volumetric current density source (Am~?). The current density
source is zero within both the GDLs and PEM. The calculation of i... within the CLs

is addressed in the next subsection.

4.2.1 Agglomerate model

A spherical agglomerate sub-model (see Fig. 4.1b), adopted from [68-71], is utilized
to determine the electrochemical kinetics. It is assumed that the agglomerate is cov-
ered with a thin ionomer film. Moreover, owing to the hydrophilic properties of the
ionomer, the liquid water produced during the electrochemical reaction is consid-
ered to form an additional layer, overlaying the ionomer film [69]. The ionomer film
thickness is treated as an input for the model, whereas the water film thickness is cal-
culated based on the liquid water saturation, as described in a subsequent equation.
Previous experimental and numerical studies reported various values for the thick-
ness of ionomer film, spanning from a few nanometers to as much as 100 nm [72-75].
Moreover, although microscopy studies [76, 77] reported a value between 50 to 170
nm for the agglomerate radius, numerical studies typically reported larger values in
a range between 50 and 5000 nm [68, 73, 75, 78]. This occurs because, in cell-scale
modeling, the intricate microstructure of CL is substituted with volume-averaged
characteristics, like porosity. Consequently, certain adjustments or fittings are neces-
sary to mimic the experimental performance results. The summation of constituent

volume fractions in CL is as follows:

eptc + €1+ Evoid = 1 (4.11)
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where epic and ¢ are volume fractions of carbon-supported platinum and ionomer,
respectively. The volume fraction of platinum and carbon might be separated ac-
cording to Egs. (4.12) and (4.13).

mpy

(4.12)

Epy =
Lenppt

1 _
o= mPt( thc) (4.13)
YpectoLpc
in which mp, is platinum loading (kg m~2), tcy, is thickness of CL (m), pp; and pc are
platinum and carbon densities (kg m ™), and yp.c is platinum mass fraction. Know-

ing the carbon loading mc (kg m~?), the platinum mass fraction is expressed as:

mpy

Ve = ———— (4.14)
mpy + Mg

The radius of agglomerate r,,, and thickness of ionomer film dy (m) are given as
model input. The agglomerate density, which is defined as the number of agglomer-

ates per unit volume of CL, reads as:

11— Evoid

Nagg = , 4.15
&8 %ﬂ(ragg + 0n)3 (4.15)
The specific surface area of agglomerate with water coating is given by:
2
! Tagg + 5N + 5W
= a, 4.16
Tagg = Uagg ( Toas 1 O (4.16)

where a,,, and a,,, are specific surface area of agglomerate without and with wa-
ter coating (m™!), respectively, and dy is the thickness of liquid water coating (m)

covering the agglomerate. The value of a,4, is computed by:

agg = AT Nagg (Tage + ON)? (4.17)

Knowing that Nafion ionomer is hydrophilic, it is assumed that the generated water
by the electrochemical reaction forms a liquid water coating on the ionomer film [69].
The thickness of liquid water coating is estimated by [69]:
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SlwEvoi
o= \B/(ragg +0n)3 + 4l 2 - (Tagg + 6n) (4.18)

3T Vagg

For CCL, the volumetric current density source is expressed by [69, 70]:

-1

. P 1 a0
Zgrc - 4FH02 nggaagg T <T §7g" ) (419)
2 | Brbetr arane e
in which
0 = ON + Ow (4.20)
and
Enéw
= 4.21
. En +&w ( )
gy = QassDouN (4.22)
on
!
Do, _
by = g OV (4.23)
ow

where Do, n and Do,_w are diffusivity of oxygen in ionomer and water (m?s™?),
respectively. In Eq. (4.19), Fo, is oxygen partial pressure (Pa) and Ho, is Henry’s
constant for oxygen dissolution (Pam®mol™!). In addition, the reaction rate coeffi-

cient (k.) and effectiveness factor (E;) in this equation are calculated as follows [69]:

APt Z‘Oc (1 - ac)Fnc _aanc
. = : — - 4.24
be = TR0 = cor) (Cgf) { P ( RT TP\ TRy (4.24)

1 1 1
B = Th [tanh(Th) a ﬁ} (425

in which Ap, is total reaction area per unit volume of agglomerate (m™'), ig. is ex-
change current density for oxygen reduction reaction (Am~2), C§! is oxygen refer-
ence concentration (molm~2), a. is cathode charge transfer coefficient, 7. is cathode
overpotential (V), R is gas constant (Jmol™' K™'), and Th is Thiele modulus. It is

noteworthy that the dependence of ORR rate on the local concentration (pressure) of
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oxygen is considered in Eq. (4.19). The temperature dependence of exchange current
density is expressed using an Arrhenius relationship as [79]:

E T
io,c = T €Xp l— 2 (1 )] (4.26)

RT \© T

where i{fﬁ, E,, and T are reference exchange current density (A m~2), activation
energy (Jmol™'), and reference temperature (K). The activation energy of ORR on
platinum is 66000 J mol~* [79]. In addition, Ap, reads as [69]:

App = Ag®t (4.27)
ter
where 4, (m?kg™') is given by the following empirical relationship as a function of

platinum mass fraction [69, 70].

Ag = [2.27799,c — 1.585T75¢ — 2.01537pic + 1.5950] x 10° (4.28)

Additionally, Thiele modulus is evaluated as:

ke
Def‘f

agg

Th = g (4.29)

where D¢, is effective diffusivity of oxygen within agglomerate (m®s~') and is com-

puted based on Bruggeman equation as follows:

D — Do, N x €5 (4.30)

agg agg

In Eq. (4.30), €44, is fraction of agglomerate volume filled with ionomer and might be
evaluated as:

EptC
o =1 — [ PO (4.31)
88 (%WNaggT‘3 >

agg

For ACL, the hydrogen reduction kinetics follows the well-known Butler-Volmer re-

lationship as [69]:
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P = Apitet (1 - €void) ( P, f)0'5 [exp (%Fﬁa> exp (—(1 — Oéa)FUa)]
2\ epio Hu, Cf RT RT

(4.32)
in which i} is anode exchange current density, Py, is hydrogen partial pressure (Pa),
Hy, is Henry’s constant for hydrogen dissolution (Pam?® mol™'), and Cf{! is hydrogen
reference concentration (mol m~?). Moreover, a, is anode charge transfer coefficient
and 7, is anode overpotential (V). Since anode charge transfer coefficient and anode
exchange current density exhibit weak dependence on temperature, they are consid-
ered constant across various operating temperatures [69]. However, considering the
relatively greater influence of temperature on the cathode charge transfer coefficient,
this parameter was fine-tuned during the validation process to achieve results that
effectively replicate the experimental data [69]. For both anode and cathode CLs,
activation overpotential is given by:

n=¢s— om — £ (4.33)

where E°4is equilibrium potential (V). A list of additional relationships and physical
properties are given in Tables 4.3 and 4.4.

4.2.2 Boundary conditions

The electric potential on the anode rib (A — A"’ and A” — A") and cathode rib (F — F’
and F” — F") are defined as Dirichlet boundary conditions. The value on anode
side is set to be zero and on the cathode side corresponds to the cell voltage. The
dissolved water concentration at the CL/GDL interface for both anode and cathode
sides (B — B’ and D — D) are defined as Dirichlet boundary condition according to
Eq. (4.7). The conditions at anode inlet (A’ — A”) and anode rib (A — A" and A” — A")
are given by:

PsatRHa
D = Da; x?{go,a = x%m =1- x%goﬁa; T = TE? (4.34)

in which z represents the mole fraction. Likewise, the boundary condition at cathode
inlet (" — F”) and cathode rib (F — F" and F” — ") are expressed as:
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PsatRH
P = Dc; x%QQC = p—c; x%z’c =0.21(1 — x%zoﬁ);

x%m =0.79(1 — x%QQC); T =T (4.35)

The liquid water saturation at the cathode inlet (F' —F") is set to be zero. A symmetry
boundary condition is considered for all other boundaries.

4.3 Topology optimization

TO is a relatively more advanced method compared to other conventional optimiza-
tion techniques, such as shape and size optimizations. Compared to other optimiza-
tion approaches that usually focus on globally tuning a set of decision variables to
maximize or minimize one or more objective functions, TO stands out for its ability
to finely control those variables at a local level. From this standpoint, the higher de-
gree of freedom provided by TO makes it a robust and strong optimization tool. TO
considers optimization process as a material distribution problem and seeks to gen-
erate creative layouts within a defined design domain to either maximize or mini-
mize a specified objective function. In this sense, a material allocation problem might
mathematically read as:

0(x) = 1 ifx e Qy (4.36)
0 ifx e Q\Qy

in which x is any position in the given design domain (£2) and 6 is a material distri-
bution function. The distribution 6 takes a value of one (¢ = 1) in regions where
material exists (), while it is set to zero (§ = 0) in void regions. Given the
fact that working with a discontinuous function is mathematically troublesome, a
“density method" [67] is usually used in real applications. This method replaces
the discontinuous function, ¢, with an analogous continuous density function, 6,
which can take any value between zero and one (0 < 6c(x) < 1). In structural
mechanics problem, where any intermediate value for the density function (other
than zero or one) is physically meaningless, some additional considerations, such as
“Simplified Isotropic Material with Penalization" (SIMP) method [67], are taken into

account to obtain a more accurate correlation between density value and material
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properties. However, in this study, as we are working with volume fraction of con-
stituent materials (rather than Boolean-type distribution of materials), the effective
material properties are correlated to the volume fraction of corresponding materials
through power-law relationships as expressed in Table 4.3. In other words, a power-
law (Bruggeman equation) penalization scheme is utilized to reflect the effect of TO
homogenization on the material parameters in the governing equations. Standard
regularization methods are implemented on optimization solutions to prevent the
checkerboard pattern problem. It is a well-studied problem in the field of TO [83-
85] and has been resolved by utilization of solution filtering and projection. This
research exploits a Helmholtz-type filter [83] as well as a hyperbolic tangent projec-
tion [86] to address this problem. Helmholtz filter is expressed as a solution to the

following partial differential equation (PDE).

—R2V%0c(X) 4 O (xX) = Oc(X)

N (4.37)
VOz-n=0 onl

In Eq. (4.37), 6 and R; are filtered density function and the filter radius, respectively.
To obtain filtered density function, Helmholtz PDE should be solved based on a ho-
mogeneous Neumann boundary condition, as shown in the above equation (I' is the
boundary of the design domain). Additionally, a hyperbolic tangent projection [86]
is used to further regulate the optimization solutions, as follows:

;. tah (B(6lc - 65)) + tanh(865) i
7 “tanh(B(1 — 05)) + tanh(563) (438)

where 6, is the density function after projection, and 3 and 6 are projection tuning
parameters. In the literature, 3 is called projection steepness and 6 is known as pro-
jection point. Next, “globally convergent method of moving asymptotes" (GCMMA)
algorithm [87] is used to update the decision variables. GCMMA is a gradient-based
algorithm; as a consequence, the sensitivity of objective function with respect to the
decision variables should be calculated. Sensitivity analysis is performed using the
adjoint state method [88]. Contrary to other approaches, like forward method, which
are computationally expensive, the adjoint method is independent of the number of
the decision variables. Hence, it is a very efficient technique from the computational
perspective, which makes it especially suitable for TO problems that typically in-
clude numerous decision variables. According to this method, the total derivative of

an objective function (Fy,;) with respect to each decision variable, (;, is indicated as:
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dFy;  OF; . 0G
~~-oby _ Z7obj 4.
i oa NG (4.39)

in which A is the vector of adjoint variables and G is the system of governing PDEs.

As this study deals with CL structure optimization, the decision variables ({) are con-
sidered being volume fractions of PtC (epc) and ionomer (e;). The adjoint variables

are given as the solution to the following adjoint equation:

9G\T OF i\ "

where U is a vector of state variables that are determined from the governing equa-

tions.

4.3.1 Problem formulation

As previously mentioned, the performance of PEMFC depends on several coupled
transport and rate processes that are taking place in the cell. In such a situation, the
overall cell performance is dictated by the slowest process. For instance, the rate
of an electrochemical reaction not only depends on charge transfer rate but also is
affected by the rate at which reactant species are supplied (or product species are re-
moved). The effective transport and rate properties of CL might be controlled by the
volume fraction of constituent materials. For example, a very high volume fraction
of PtC is beneficial to increase the rate of reactant consumption. On the other hand,
this means a lower porosity, which in return causes sluggish gas transport. A huge
drop in reactant delivery might deteriorate the overall cell performance. Hence,
the composition of CL should be adjusted in a way that a compromise would be
obtained between various processes. The output power density of PEMFC, which
indicates the cell performance, could be estimated knowing the cell voltage and cur-
rent density. At any specific current density, the cell voltage can be calculated using
the governing equations expressed in Section 4.2. Therefore, at any given current
density, a superior performance might be achieved if the overpotential is decreased
and consequently, the cell voltage is increased. The optimization problem at a given
current density (12

cell

) is defined as:
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max Fobj = Veenl

EPtC,El @ Jin
cell

s.t. €ptc(x) + El(X) + Evoid(x) =1 Vx¢& QCCL
0 <epic(x)andeg(x) <1 Vx € Qccr

avg max
0 < mpg < mpy

(4.41)

avg max
0<¢eg°<gq

where Qccy, is the CCL domain. Since the overpotential in CCL is greater than that
of the anode catalyst layer (ACL), this study only focuses on the spatial structure of
this component. However, the described procedure might be applied to any other
component of PEMFC by considering appropriate decision variables. Furthermore,
according to the formulation of Eq. (4.41), the optimization objective is defined as

maximization of the cell voltage at a specific current density I

cell*

The optimization
problem is subject to some physical and design constraint as shown in Eq. (4.41).
First, at the local level, a physical constraint applies to any position x in the CCL do-
main, which requires that the summation of volume fractions of constituents adds
up to one. Additionally, by definition, the volume fraction of each decision variable
cannot be more than unity at a local level. In practical implementation, the optimiza-
tion algorithm updates the value of decision variables (¢p and ¢)) in each iteration
while calculating the porosity automatically through e,5iq = 1—(epic+¢1). At a global
level, the optimization problem might be subject to some additional constraints. In
the present study, the problem is formulated so that the average mass loading of plat-
inum (mp;®) and average ionomer volume fraction (¢{**) over the entire CCL do not
exceed a maximum value (mp®* and ). A major difference between parametric
and TO rises from the fact that parametric optimization can only control the average
mass loading (or average volume fraction) of constituent materials; however, TO not
only controls the average mass loading but also adjusts their distribution. When per-
forming parametric optimization, a higher loading of platinum or ionomer may lead
to enhanced output power. Nevertheless, it should be noted that a higher platinum
(or ionomer) loading implies more expensive cell as well. Opposed to conventional
parametric optimization, TO does not necessarily improve CL design by using more
amount of platinum or ionomer. However, it promotes the cell performance through
more effective distribution of the available materials. It is also noteworthy that while
the previously introduced density function (6¢) does not appear explicitly in the op-
timization problem Eq. (4.41), a unique density function is assigned for determina-

tion of each decision variable during the optimization process. In this regard, the
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decision variables (spyc and ¢;) are updated according to the value of their relevant

density function after regularization.

4.3.2 Numerical implementation

The numerical procedure used in the present study to find the optimal CL design
is as follows. The mathematical model developed in the previous section is imple-
mented in COMSOL Multiphysics ® (version 5.6) software to solve the governing
equations by a finite element method. The parameters used in this study are tabu-
lated in Table 4.5. By solving these equations for a wide range of current densities,
polarization characteristics of the PEMFC are obtained. The obtained I-V is then
compared to an experimental data set to confirm the validity of the proposed model.
Next, an optimization is conducted to obtain the optimal distribution of material in
CCL. TO process begins with initialization of the design variables and evaluation of
the objective function according to Eq. (4.41). Next, the sensitivity (gradient) of ob-
jective function with respect to the design variables is computed. By regularization
of the design variables using a Helmholtz filtering and hyperbolic tangent projection
schemes, the optimization process is continued. In the subsequent step, the GCMMA
algorithm is used to update the design variables. As the measured sensitivity has a
different value at each position in the calculation domain, the design variables are
updated at a local level accordingly. Hence, the updated values of design variables
vary with the position, which gives a rise to a heterogeneous layout. TO favors non-
uniform distribution of design variables in order to maximize the objective func-
tion. In other words, it enhances utilization of the constituent materials by placing
them in areas that they are needed more. This iterative procedure is repeated till the
maximum number of iterations is reached. In summary, the optimization process is

described as follows:

Step 1: The PEMFC model, related parameters, and the design variables are initial-
ized.

Step 2: The mathematical model is solved at a given current density and the objec-

tive function is computed according to Eq. (4.41).

Step 3: A sensitivity analysis is performed using the adjoint variable method to cal-
culate the gradient of objective function with respect to the design variables.

Step 4: A regularization process is conduced to smooth the design solutions over

the calculation domain.
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Table 4.5: Operational and structural parameters of the cell

Parameter Validation Base case Unit
Relative humidity (RH) 100 [69] 100 %

Cell temperature (7') 80/60 [69] 80 °C

Cell pressure (P) 1.0 [69] 1.0 atm
Channel width (W) 1[69] 1 mm

Rib width (W) 1.5 [69] 1.5 mm
GDL thickness (tGDL) 300 [69] 300 pm

CL thickness (tc1,) 15 [69] 8 pm
PEM thickness (tpgnm) 55 [69] 55 pm
Pt/C mass ratio (ypic) 0.2 [69] 0.4 -
Cathode platinum loading (mpt ) 0.4 [69] 0.25 mg cm 2
Anode platinum loading (mp;.,) 0.1 [69] 0.1 mg cm 2

Cathode ionomer volume fraction (g,,,) 0.133[69] 0.2 -
Anode ionomer volume fraction (¢,,,)  0.133[69] 0.1 -

GDL porosity (£yoid,cpL) 0.8 0.8 -

Cathode charge transfer coefficient (a,.) 1(80°C) 1 -
0.95(60°C)

Anode charge transfer coefficient (o) 1 1 -

Cathode exchange current density (ig%) 107" [68] 107 Am™

Anode exchange current density (i 10% [69] 104 Am—?

Anode equilibrium potential (ES9) 0 0 \Y

Step 5: Using the GCMMA method, the design variables are updated.

Step 6: If the maximum number of iterations is reached, the optimization process is
terminated. Otherwise, steps 2 to 5 are repeated.

4.4 Results and discussion

4.4.1 Mathematical model validation

To verify validity of the developed model, the simulated I-V curves are compared
with the experimental ones adopted from [69] for a single cell with an active elec-
trode area of 1 x 1cm?. The mathematical model of Section 4.2 is solved using the
values reported in Table 4.5 for two different cell temperatures. The values of these
structural and operational parameters are according to those reported in [69] for the
experimental condition. It is noteworthy to note that, similar to [69] where the exper-
imental data was adopted from, the model in the present work is based on parallel
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straight channels. This results in mass transport within the catalyst layer being pri-
marily driven by molecular diffusion rather than convection. Other flow channel
configurations, such as serpentine or interdigitated designs, warrant further investi-
gation, which lies beyond the scope of this study. The simulation and experimental
curves are plotted in Fig. 4.2. Comparison of the experimental and simulated polar-
ization curves reveals good agreement across different operating temperatures. At
low current densities, a sharp decline could be observed in the cell voltage due to the
activation losses. This overpotential is followed by Ohmic and concentration voltage
drops at higher current densities. The former is caused by transport of electrons and
protons through PtC and ionomer, which becomes considerable at medium current
densities. The concentration overpotential, however, is dominant at high current
density regions. The observed phenomenon is the result of slow transport of oxy-
gen through the water and the ionomer films that surround the agglomerates. This
sluggishness creates an oxygen delivery rate that is outpaced by the rate at which
oxygen is consumed, leading to an imbalance in the cell performance. Furthermore,
at high current densities, liquid water formation accelerates, leading to an excessive
accumulation of liquid water in the CCL. This surplus of liquid water can block the
pores that are responsible for oxygen delivery. This is included in the developed
model by introducing an effective porosity. Fig. 4.2 confirms that the present model
well follows the polarization trend of a real PEMFC over a range of current densities

and operating conditions.

4.4.2 Optimization of electrode structure

This study focuses on the optimization of CCL structure at high current density lev-
els. Under such working condition, the excess liquid water generated as a result of
high electrochemical reaction rate blocks the pores. This makes the reactant deliv-
ery complicated and results in considerable oxygen depletion. Moreover, a thicker
water film formed around the agglomerates at a relatively high current density in-
creases the resistance against diffusion of oxygen into the agglomerate, where could
react in the presence of platinum particles. Therefore, an optimal distribution of
the constituents could enhance the utilization of available materials and provide a
compromise between various transport and rate processes. The optimization is per-
formed on a base case with a uniform material distribution. The parameters of this
reference cell is reported in Table 4.5. At a current density of 1.69 (A cm™2) the base
case corresponds to a voltage of 0.1 (V), which is computed by solving the govern-

ing equations. This is the operating point at which the optimization is conducted.
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Figure 4.2: Validation of the simulation results against experimental ones [69]

Table 4.6: Optimization scenarios

max

Optimization scenario Decision variable(s) m®® (mgem™2) &}

OPT-1 epyc and g 0.25 0.2
OPT-II EPtC 0.25 -
OPT-1II €] - 0.2

Moreover, the generic form of the designated optimization problem in Eq. (4.41),
considers two decision variables, including volume fractions of PtC and ionomer, as
well as two global constraints. To extend the analysis scope of this study, various
possible combinations of decision variables are considered in form of three differ-
ent optimization scenarios as summarised in Table 4.6. As indicated in this table,
scenario OPT-I represents the formulation of Eq. (4.41). This scenario includes si-
multaneous optimization of volume fractions of both PtC and ionomer. In this case,
the average mass loading of platinum and volume fraction of ionomer are kept the
same as the base case to obtain a fair comparison between the results. In scenario
OPT-1I, only the volume fraction of PtC is considered as the decision variable and
the average platinum loading is restricted to that of the base case. In the final sce-
nario (OPT-III), the volume fraction of the ionomer is the only decision variable and
the average of this variable cannot exceed that of the base case.
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Fig. 4.3 demonstrates the optimization history of material distribution for OPT-I. The
volume fractions of PtC, ionomer, and void (i.e., porosity) are shown at initial, inter-
mediate, and optimized steps. Although the optimization process started with a
uniform distribution of various phases, the optimal design shows a heterogeneous
distribution of materials over the CCL domain. As can be seen in this figure, the op-
timized design solution exhibits high porosity in regions underneath the rib, while
areas closer to the channel have relatively higher PtC and ionomer concentrations.
This is because of the significant depletion of oxygen concentration in the regions
farther away from the channel, specifically beneath the rib where oxygen delivery is
insufficient. Closer examination of the optimal design depicted in Fig. 4.3 shows that
the spatial distribution of materials remains uniform in the through-plane direction,
which is attributed to the low thickness of CCL. Therefore, the optimization favors a
heterogeneous distribution in lateral direction rather than through-plane direction.
A similar behavior is observed in other optimization scenarios as well. Hence, for
other cases, only the projected distributions on the lateral direction (y-direction) are
plotted as shown in Fig. 4.4. According to the findings of this figure, materials dis-
tribution for various optimization scenarios is different. However, in any case, the
optimal design shows a complicated heterogeneous material allocation, which pro-
vides a balance between different transport process and the electrochemical reaction.
While the exact optimum solution depends on the cell characteristics and problem
settings, analyzing the outcomes of Fig. 4.4 provides some useful qualitative infor-
mation. What is striking about the optimized designs in this figure is that the poros-
ity increases when getting farther from the channel. In the areas under the rib, oxy-
gen concentration drops due to the sluggish mass transport. This causes a significant
concentration overpotential. To overcome this problem, the optimization algorithm
tavors designs with higher porosity in those regions to compensate for the insuffi-
cient oxygen delivery through a higher effective diffusivity. Moreover, an increment
in porosity might improve discharge of liquid water generated in those areas as a
result of ORR. In addition, distribution of both PtC and ionomer have a local mini-
mum in the middle of CCL, followed by symmetrical maxima close to the border of
the regions under the channel and rib. Such a structure further facilitates dispersion
of oxygen from areas under the channel, where oxygen concentration is relatively
higher, and assures an improved proton transport and an escalated ECSA, where
there is a potential for a higher reaction rate. The topologically-optimized distri-
bution of PtC in our study shares similarities with the layout proposed by Havaej et
al. [35]. In their work, they achieved improved cell performance by employing a pre-
defined parabolic distribution of catalyst material in the lateral direction. However,
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their approach relied on trial and error, searching for the optimal catalyst loading dis-
tribution through prescribed functions. In contrast, the present study introduces a
novel optimization framework that offers a more robust and informed procedure for
discovering such functionality. Our method does not depend on any prior informa-
tion regarding the distribution and allows for a high degree of freedom to conduct
multi-variable optimization. This advancement ensures greater accuracy and effi-
ciency in identifying the best material distribution, ultimately leading to enhanced
cell performance. Also of note is that achieving a finely graded design for CL in prac-
tice may not be possible at a high precision. Nevertheless, recent progress in additive
manufacturing and 3D printing technologies has introduced new opportunities for
realizing topologically optimized microstructures [89-91].

Lateral direction

CCL/PEM GDL/CCL

Rib Air channel Rib

Step 0
(initial design)

Step 10

Step 20 l l
Step 50
(optimal design)

0 0.5
EptC

uondIIp
ouerd-ySnoxyy,

|

Evoid

Figure 4.3: Optimization history of material distribution in CCL for scenario OPT-I
(contour plots are not to scale)

Table 4.7 compares the cell voltage (objective function) of optimized designs with
that of the base case. The objective function increased between 18% and 42% af-
ter different optimization scenarios. From the data in this table, it is apparent that
scenario OPT-I outperforms the two other ones thanks to its higher freedom in mate-
rial arrangement provided by simultaneous optimization of two decision variables.
While the cell voltage is enhanced considerably in all optimizations, the overpoten-
tial improvement is relatively lower. However, it is anticipated that optimization of
a 3D model, in which longitudinal effects are also included, may result in further en-
hancement. Evidently, such an optimization would require a significant amount of
computational resources and it falls outside the scope of the present study. The total
overpotential is decomposed using an applied-voltage breakdown (AVB) method
proposed by Gerhardt et al. [92], which made it possible to separate contribution
of each process quantitatively. Fig. 4.5 provides an overview of total overpotential
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Table 4.7: Performance enhancement for various optimization scenarios

Scenario Base case OPT-I OPT-II OPT-III
Cell voltage (V) 0.1 0.142  0.118 0.133
Voltage change (%) - 42 18 33
Overpotential change (%) - -3.89 —1.67 —3.06
Activation - 0.47 0.46 0.52
Ohmic - 4.94 3.03 4.50
Concentration - —19.78 —9.80 —16.43
1.5 \ \ T
O Activation B Ohmic
B Concentration
1.2 N
>
~
= 0.9
=
s
o)
% 0.6
S
o
0.3 X

0
BaseCase OPT-1 OPT-I1 OPT-III

Figure 4.5: Overpotential breakdown analysis for various scenarios at current den-
sity of 1.69 (A cm™2)

breakdown, including activation, ohmic, and concentration losses for different sce-
narios. Moreover, the changes of overpotential components with respect to the base
case are given in Table 4.7. These findings suggest that, in all optimization scenar-
ios, there is a slight increase in both activation and ohmic overpotentials. Despite
these factors at play, the reduction in concentration overpotential ultimately proves
to have the greatest impact on overall performance improvement.

According to the problem formulation of Eq. (4.41), the optimization algorithm fa-
vors those topological structures that maximize the cell voltage. This aim may be

accomplished by obtaining a proper balance among transport and rate processes,
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such as oxygen diffusion, liquid water discharge, proton transport, and electrochem-
ical reaction. To elucidate how an optimized design enhances the overall cell per-
formance from a physical standpoint, some key parameters are inspected more in
detail. To do so, first, the distributions of oxygen concentration are compared be-
fore and after optimization. Investigation of oxygen concentration shows that the
gradient of this parameter along CL thickness (through-plane direction) is mainly
negligible with a maximum difference of 10% in some limited parts. This variance
is significantly smaller than that of lateral direction. Similar to what was mentioned
before, the small thickness of CCL is the reason that makes the concentration gra-
dient insignificant in this direction. Therefore, for the sake of clarity, the projected
concentration along the cell width is presented in Fig. 4.6. As shown in Fig. 4.6a, all
optimized designs have a higher average concentration compared to the base case.
Significant improvements have been made, particularly in the concentration under
the rib, which previously suffered from oxygen starvation in the base case. The ob-
served increase in average concentration could be attributed to the more effective
distribution of porosity, which augmented effective diffusivity in the areas under
the rib. It could also be related to an enhanced product discharge which prevents
pores blockage with the liquid water. This is discussed in a later part. Moreover, it
can be clearly confirmed that such heterogeneous porosity distributions do not ad-
versely affect the concentration in the rest of CCL, where the optimized porosity is
lower than that of the uniform base case (see Fig. 4.4). Fig. 4.6b illustrates the changes
of concentration over the course of optimization OPT-, as a representative scenario.
According to this figure, at the initial step, the oxygen concentration shows a large
drop in the lateral direction. As the optimization algorithm modifies the material
distribution (see Fig. 4.3), it gradually compensates for oxygen depletion. In the fi-
nal optimized design (step 50), the concentration at the two ends of CCL is almost
two times higher than the initial uniform configuration. Interestingly, this significant
improvement is achieved because of a better material distribution, despite the fact

that the average porosity remains consistent in both the initial and final stages.

Water management is a critical issue in the design of low temperature PEMFCs since
the water exists in the liquid phase. The liquid water accumulation increases the
gas transport resistance in the secondary pores. Moreover, due to the hydrophilic
nature of the ionomer, a greater amount of water results in a thicker liquid water
film around the agglomerates. This, in turn, leads to an additional resistance against

the delivery of oxygen to the platinum particles. Fig. 4.7 compares distribution of
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water concentration, saturation, and capillary diffusivity before and after optimiza-
tions. According to Fig. 4.7a, the overall amount of accumulated water is decreased
in CCL after all optimizations. This decline is more significant in areas under the rib.
As discussed before, the oxygen concentration is low in those areas due to the slug-
gish mass transport. A decrease in the liquid water accumulation may facilitate the
oxygen delivery process. This has been already confirmed by inspection of oxygen
concentration distribution (see Fig. 4.6). Liquid water saturation, that represents the
ratio of water volume to void volume, is another critical index. Despite the decrease
in local water concentration in the CCL after optimization, as depicted in Fig. 4.7b,
the saturation exhibits a non-monotonic trend. Since saturation is related to both
water volume and porosity, this behavior is attributed to the non-uniform porosity
distribution after optimization. Optimization favored low porosity in certain areas,
which, in turn, led to an increase in saturation within those regions. The capillary
diffusivity is correlated to the water saturation through Leverett J-function. A higher
saturation in some part of the CCL improved the capillary diffusivity in those areas
as illustrated in Fig. 4.7c. This higher diffusivity is the reason behind the enhanced
water management in optimized designs.

As previously mentioned, during the process of hydrogen oxidation in ACL, hydro-
gen ions (protons) are produced. These ions are then transported across a polymeric
membrane to the CCL, where they participate in ORR. These protons are transported
through the ionomer phase within CCL. Therefore, ionic conductivity of CCL is an-
other crucial factor in determining the overall cell performance. The intrinsic ionic
conductivity of the ionomer is much lower than the electric conductivity of PtC.
Hence, electron transport is not a limiting phenomenon. The effective ionic conduc-
tivity depends on water content as well as volume fraction of ionomer. While excess
water generation at high current densities can have negative impacts on oxygen de-
livery, it may have a positive effect on ionic conductivity. Since in this study it is
assumed that the cell is working at a high current density and RH level, the ionomer
is fully hydrated. In such a case, the ionomer volume fraction becomes the deter-
mining factor. The distribution of effective ionic conductivity is depicted in Fig. 4.8a.
Because the ionomer distribution is kept unchanged during OPT-II, as expected, the
conductivity plot of this scenario coincide that of the base case. The conductivity
distribution after OPT-I and OPT-III follows the trend of the ionomer volume frac-
tion distribution. A heterogeneous distribution of ionomer leads into a non-uniform
conductivity. Although the ionic conductivity in the two ending parts far from the

channel is reduced compared to the base case, it is considerably enhanced in the
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Figure 4.7: Spatial distribution of (a) liquid water concentration, (b) liquid water
saturation, and (c) capillary diffusivity before and after optimizations

rest of CCL. The average effective conductivity throughout CCL is increased from a
value of 1.19S m™" for the base case to 1.33Sm ™' and 1.32Sm ™! for OPT-I and OPT-
I1I, respectively. This 11% enhancement is achieved thanks to an uneven ionomer
distribution. According to Fig. 4.8b, which shows the distributions of current source,
overpotential, and power loss, a higher reaction rate can be observed in the areas be-
neath rib/channel border before optimization. Also, in a through-plane direction,
the regions close to the CCL/PEM interface show a higher potential for ORR. As a
result, instead of distributing the ionomer phase uniformly, the optimization algo-
rithm places more ionomer in areas with a high possibility for reaction. Increasing
the ionic conductivity in regions where there is a high potential for reaction may
further improve the conversion rate in those areas thanks to an improved proton
transport. Thus, this variation in ionomer distribution made the ionic conductivity
to match the reaction rate and consequently enhanced the material utilization. It is
noteworthy that, since the optimization is performed at a constant current density,
the average current density in all current source contour plots (]S, |) are the same.
However, its distribution is changed so that the overall performance is enhanced.
Investigating the overpotential magnitude (|7.|) presented in Fig. 4.8b shows a lo-
cal increase in some parts of the CCL after optimization. However, this increase in
overpotential is accompanied by a decrease in the current source in those regions
as well. The combined effect of these two changes resulted in a lower power loss
(|7S.. % me|) over the entire CCL that has been confirmed before through the overall

Src
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tion of current source and overpotential before and after optimizations

cell performance. The power loss contour plots (|i,. X 7.|) are compared for all sce-
narios in Fig. 4.8b. For instance, after OPT-I, the average power loss decreases by 8%
compared to the base case, from an initial value of 1.59 x 10° Wm™ to a final value
of 1.46 x 10 Wm 3.

4,5 Conclusions

This research provides a mathematical optimization approach for the mathemati-
cally optimized design of material distribution in CL of PEMFC based on TO. First, a
two-phase flow model of PEMFC is developed to simulate the cell performance. The
model is validated against experimental data. Next, TO is employed to optimize the
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material distribution in CCL with the objective of increasing the cell performance.
While a mathematical model is an essential part of any optimization, this work pri-
marily focuses on applying TO to PEMFC, rather than on the model itself. The per-
formance enhancement is formulated as a higher voltage at a given current density.
The optimization is performed with various decision variables. Under a high work-
ing current density, the excess liquid water generated in CCL may cause significant
mass transport losses. An optimal design can reduce the concentration overpotential
through an improved distribution of materials within the electrode. In general, an
optimal CL design showed a higher volume fraction of PtC and ionomer in areas un-
der the channel compared to those under the rib. The optimization results are further
investigated through the breakdown of overpotential contributions. It is confirmed
that the concentration overpotential is considerably decreased after optimization.
Moreover, inspecting the oxygen distribution in the CCL proves the improvement in
oxygen delivery to those areas under the rib that suffer from oxygen starvation. This
improvement in oxygen transport is achieved thanks to a better porosity distribu-
tion, which in return increases the effective gas diffusivity and enhances the liquid
water discharge. A better ionomer placement in accordance to reaction rate also pos-
itively affected the cell performance. In the application of TO for electrode design,
reliable design solutions require validating the models against experimental data to
ensure real-world performance improvements. While existing models of PEMFC, in-
cluding the present work, have been validated under varying operational conditions,
their applicability to different structural designs remains uncertain. To enhance the
robustness of TO applications for electrode design and ensure the practical relevance
of the results, future PEMFC modeling efforts should prioritize validation across a
wider range of structural conditions, which is currently less common compared to
validation under operational conditions. Furthermore, continuum models must ac-
curately capture the relationship between local microstructure and overall perfor-
mance. In this regard, structural optimization based on alternative modeling ap-
proaches, such as the lattice Boltzmann method [93] or pore network modeling [94],
may offer valuable insights. Subsequent studies may explore the optimization of
a 3D model, which is expected to provide additional benefits after introducing the
effects of concentration depletion in longitudinal direction. However, solving a 3D
multiphysics finite element model of a PEMFC at high current densities requires
substantial computational resources. Furthermore, incorporating this into an opti-
mization process, which involves repeated simulations, significantly increases the
computational burden.
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Abbreviations

ACL Anode catalyst layer

AVB Applied-voltage breakdown

CCL Cathode catalyst layer

CL Catalyst layer

ECSA Electrochemical surface area

GCMMA  Globally convergent method of moving asymptotes

GDL Gas diffusion layer

MEA Membrane electrode assembly

ORR Oxygen reduction reaction

PDE Partial differential equation

PEM Proton exchange membrane

PEMEC Proton exchange membrane fuel cell

PGM Platinum group metals

PtC Carbon-supported platinum

RH Relative humidity

SIMP Simplified Isotropic Material with Penalization

TO Topology optimization

Nomenclature

a Specific surface area of agglomerate without wa- .
e ter w

Total reaction area per unit volume of agglomer-

Apy ate m !

Upee Specific surface area of agglomerate with water m~!

C Concentration mol m~?

Cp Specific heat capacity Jmol 1 K1

D Diffusivity m?s™!

DT Thermal diffusion coefficient kgm~!s!

E, Effectiveness factor -

Eea Equilibrium potential V

EW Equivalent weight of ionomer kg mol ™!

F Faraday’s constant Cmol™!

Fop; Objective function \Y%

Hop, Henry’s constant for oxygen dissolution Pam3 mol~!

Condensation rate constant

S—l



Water content
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Nevp Evaporation rate constant g1
Tsre Volumetric current density source Am3
io Exchange current density Am2
k Thermal conductivity WmtK!
ke Reaction rate coefficient 571
M Molecular weight kg mol~*
Mpy Platinum loading kgm—2
Noge Agglomerate density -
p Pressure Pa
Po, Oxygen partial pressure Pa
@m Mass source term kgs !tm™3
R Gas constant Jmol 1K~}
R Species source term mols™tm™3
Tage Agglomerate radius m
Ry Filter radius m
s Saturation —
St Heat Source term Wm3
T Temperature K
t Thickness m
Th Thiele modulus -
u Velocity ms!
w width m
x Mole fraction —
Ah Latent heat of condensation/evaporation Jkg!
AS Reaction entropy Jmol ' K1
Greek symbols

! Charge transfer coefficient —
15 Projection steepness —
s Projection point —
ON Thickness of ionomer film m
ow Thickness of liquid water coating m
n Overpotential AV
YPtC Platinum mass fraction -
K Permeability m2
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U Viscosity Pas
w Mass fraction —
¢ Potential AV
P Density kgm™
o Electric charge conductivity Sm™!
0 Material distribution function —
€ Volume fraction -
Ev Porosity -

Subscripts/superscripts

agg Agglomerate

C Cathode

cap Capillary

ch Channel

CL Catalyst layer
dw Dissolved water
1 Electrolyte phase
lw Liquid

m Membrane
phase Phase change
ref Reference

rel Relative

rib Rib

xn Reaction

s Solid phase

sat Saturation

src Source
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Chapter 5

Topological optimization for tailored designs of
advection-diffusion-reaction porous reactors based on
pore scale modeling and simulation: A PNM-NSGA

framework

Abstract

Reactive transport within porous reactors is crucial to many diverse applications,
and the efficacy of these reactors hinges on their microstructure. Mathematical mod-
eling and optimization play a pivotal role in the exploration of efficient designs,
enabling the generation of structures that may not be achievable through random
realizations of packings. In this study, we propose a framework for high-resolution
topological optimization of porous flow-through reactors based on pore-scale simu-
lations using a non-dominated sorting genetic algorithm II. A pore network model
for an advection-diffusion-reaction system is developed to simulate reactor perfor-
mance. This model is integrated with a mathematical optimization algorithm, incor-
porating a background grid and Delaunay tessellation. The optimization framework
generates enhanced porous structures, simultaneously maximizing conversion rates
while minimizing pumping costs. Striking a balance between permeability and re-
active surface area, the final designs yield a set of Pareto optimal solutions, encom-
passing diverse non-dominated designs with varying reaction rates and hydraulic
requirements. The results demonstrate that optimal pore configurations lead to a
280% increase in conversion rates and a 6% reduction in pumping costs at one end,
while on the opposite end of the Pareto front, a 15.2% increase in reaction rates and
an 11.3% reduction in pumping costs are observed.

This chapter is published as:

M. Alizadeh, J. Gostick, T. Suzuki, and S. Tsushima. “Topological optimization for
tailored designs of advection-diffusion-reaction porous reactors based on pore scale
modeling and simulation: A PNM-NSGA framework”, Computers & Structures, 301

(2024): 107452. https://doi.org/10.1016/j.compstruc.2024.107452
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5.1 Introduction

Porous reactors are found in a variety of applications, including redox batteries,
fuel cells, and catalytic reactors [1-3]. The reactive transport occurring within these
porous media includes advection and diffusion of reactive species in single- or multi-
phase fluids, as well as singular or multiple (electro-) chemical reactions. The porous
matrix provides the active surface area on which heterogeneous catalytic reactions
occur and also facilitates the flow of heat and charge. The void space provides
pathways for the flow of reactive and product species, and carrier fluids. Conse-
quently, reactor performance, hydraulic efficiency, operational costs, and durability
of porous reactors are intertwined with the microstructural characteristics. For in-
stance, achieving a higher reaction rate can be accomplished by increasing the sur-
face area, which is most readily achieved by incorporation of smaller pores, but this
generally hinders flow and diffusion of reactant. Hence, optimizing overall per-
formance entails balancing between maximizing surface area and minimizing mass
transport resistance. An ideal porous reactor should consist of pores of varying size
and appropriate distribution to enhance both surface area and mass transfer concur-
rently. Recent progress in additive manufacturing and 3D printing technologies has
unlocked fresh prospects for the fabrication of porous reactors featuring complex
microarchitectures, offering promising advances in fields such as catalysis [4], elec-
trochemistry [5, 6], and pharmaceuticals [7]. However, leveraging the full potential
of these fabrication methods requires a finely tuned design of the porous microstruc-
ture. Several experimental investigations have explored tailored reactors with en-
gineered structures to enhance performance [8-10]. For instance, Xu et al. [8] pro-
posed an electrospinning method to fabricate a free-standing carbon nano-fibrous
web with ultra-large pores for vanadium redox flow batteries (VRFBs). Their find-
ings showed that the new design reduces concentration polarization, resulting in a
VRFB with 10.3% higher voltage efficiency and double the electrolyte utilization effi-
ciency compared to traditional electrodes at a current density of 60 mA cm 2. Despite
these promising results, performing comprehensive parametric studies to pinpoint
the optimal structural parameters (e.g., pore size) remains challenging due to the cost
and time associated with experiments. Evidently, achieving a fully optimal topology
(including factors like the ideal pore size and spatial distribution) through experi-
mental trial and error appears to be a daunting task. Alternatively, mathematical
modeling and optimization offer a systematic approach to investigate the structure-
performance relationship and generate more efficient designs [11-16]. For instance,

topology optimization using continuum macroscale models has been successfully
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utilized for optimizing reactive transport in porous media. In a recent study by
Roy et al. [17], researchers employed a density-based topology optimization method
to automatically optimize the distribution of porosity throughout the electrode of
VRFBs. Their optimized designs reduced losses caused by overpotentials by up to
84%. Additionally, Mitchell and Ortiz [18] employed density-based topology opti-
mization to enhance the anode electrode structure of a lithium-ion battery. By im-
proving the sluggish electron transport caused by the low intrinsic electrical conduc-
tivity of silicon, they significantly enhanced the electrode performance. While these
approaches provide a powerful tool for optimizing macroscopic material properties
(e.g., porosity), they are typically unable to optimize the porous microstructure at
the pore level. Particularly, since the interactions between the aforementioned trans-
port and rate processes happen at a pore level, a pore-scale mathematical model
becomes imperative for precise simulation of reactor behavior under varying struc-
tural and operational conditions. Moreover, in advection-diffusion-reaction (ADR)
systems, around which this study revolves, several conflicting objectives must be
met simultaneously, namely high conversion rate, low mass transport resistance, and
low pumping cost. The absence of trade-offs among these objectives gives rise to a
multi-objective optimization (MOO) problem, wherein a set of Pareto optimal (non-
dominated) solutions can be attained. Another emerging trend is the utilization of
particle-scale models, such as the lattice Boltzmann method (LBM), together with
topology optimization algorithms. In a paper published in 2024, Zheng et al. [19]
utilized LBM coupled with level-set topology optimization to generate optimized
porous diffusion-reaction systems with hierarchical structures. Their optimization
yielded structures with enhanced reaction rates and material utilization. However,
their study only considers diffusion and reaction processes, without incorporating
any convective flow. Currently, integration of LBM and topology optimization in
the literature is limited and does not encompass various complicated transport and

rate processes.

Mathematical models for reactive transport can be broadly classified into two pri-
mary categories: (1) macro-scale continuum models and (2) pore-scale models. In
practical applications, porous reactors exhibit a diverse and heterogeneous structure.

However, macro-scale continuum models assume uniform, averaged properties —
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such as flow resistance, thermal resistance, and reaction activity — within a represen-
tative elementary volume (REV). These models typically describe porous media us-
ing multiple isotropic and anisotropic properties (e.g. porosity, tortuosity, permeabil-
ity coefficient). Although this approach offers valuable insights into reactive trans-
port phenomena, it falls short in capturing the impact of the detailed microstructure
at a high resolution — a necessity for precise simulation and design of porous re-
actors. In contrast, pore-scale models offer a geometrically resolved simulation of
the system, addressing flow, transport, and reactions at a pore level. While this ap-
proach comes with increased computational requirements, it enables a thorough and
dependable insight into the 3D morphology of porous reactors, resulting in a more
robust comprehension of the structure-performance relationship. Numerous stud-
ies in the literature have introduced pore-scale models aimed at analyzing transport
and rate processes within porous media across a range of applications [19-27]. For
example, Zhan et al. [21] employed a 3D pore-scale lattice Boltzmann method (LBM)
to simulate transport mechanisms and electrochemical processes within VRFB elec-
trodes. Their investigation revealed a critical link between the microstructure of the
electrode and its electrochemical performance. They concluded that an optimal mi-
crostructure with a single dominant pore size peak (around 10 — 20 ym) and some
large pores is essential for achieving both superior electrochemical performance and
low-pressure drop, which are crucial for reducing operational costs. In another ap-
plication, Kod¢i et al. [22] introduced a novel methodology for pore-scale simulation
of flow, diffusion, and reaction in coated catalytic filters. They accomplished this us-
ing 3D reconstructions of porous structures based on X-ray tomography (XRT). The
reconstructed medium was then used for simulation in OpenFOAM using the fi-
nite volume method (FVM). Their results highlight that gas primarily flows through
cracks in the coated layer and remaining free pores in the filter wall, with mass trans-
port driven by diffusion. The results also underscored that compact catalytic coat-

ings lead to a significant increase in pressure drop due to reduced local permeability.

While geometrically resolved models offer valuable insights into reactive transport
phenomena, it is well-known that direct numerical simulation (DNS) demands sub-
stantial computational resources and is often limited to unreasonably small calcula-
tion domains [28]. Therefore, modeling an entire component (e.g., an electrode of a
battery) or device (e.g., a battery cell) with a realistic length scale remains a challenge
through these approaches. Also, the majority of these studies have concentrated on
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existing materials and structures [29], while pursuit of a systematic technique in gen-
erating novel optimal designs is not yet well studied. This is partly because mathe-
matical optimization algorithms usually involve iterative model solutions, requiring
extensive computational resources to seek even a single local optimum solution. In
light of these constraints, it becomes evident that topological optimizing using ge-
ometrically resolved pore scale models is not yet feasible, at least with reasonable

computational resources.

Pore network modeling (PNM) [30-32] represents an alternative approach to DNS,
simplifying the intricate microstructure of porous media into a network of intercon-
nected pores and straight tubes (throats). This abstraction accelerates simulations
by several orders of magnitude (typically >10000 times faster) compared to conven-
tional pore-scale DNS models while maintaining an acceptable level of pore-scale
accuracy. The computational efficiency of PNM positions it as a viable alternative
for large-scale mathematical optimization of porous microstructures at a geometri-
cally resolved level. PNM has been successfully employed to investigate various
physical phenomena in different systems—diffusion in fuel cells [33], electrochemi-
cal reactive transport in battery electrodes [1], dispersion in porous media [34], and
two-phase flow [35] to name a few. For example, in a recent publication, Misaghian
et al. [1] extended PNM to include multiple coupled physical processes to assess the
influence of heterogeneous electrode structures on a VRFB cell performance, solving
the advection-diffusion and Nernst-Planck equations for ion transport coupled with
Butler-Volmer kinetics and solid-liquid mass transfer films. Their findings demon-
strated that multi-layer structures with higher permeability near the membrane and
lower permeability near the channel substantially increased current density, result-
ing in a remarkable 57% performance enhancement compared to the opposite layer

arrangement.

Furthermore, Sadeghi et al. [28] introduced a PNM-based framework to investigate
reactive transport within hierarchical porous catalyst particles, emphasizing the gen-
eration of optimal microstructures rather than exclusively modeling existing porous
media. Notably, the study finds that increasing macroporosity does not always en-
hance catalytic activity, and particles with lower pore size ratios exhibit higher re-
activity. Subsequently, another research group extended this study into 3D [36], in-
corporating pore interconnections as an adjustable parameter. It has been found that
particle performance exhibits distinct trends, influenced by macroporosity and other
factors, depending on the average pore Damkohler number. Also of note is that

the advantages of hierarchical structures are most pronounced in systems where the
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reaction-controlled process is absent, and species diffusivity is the limiting factor
for reactive transport. Following these earlier research endeavors, Huang et al. [30]
investigates the influence of adding channels to a porous reactor with a first-order
chemical reaction. After validating their PNM model against a finite element method
(FEM), they showed that the addition of channels in these structures significantly en-
hances mass transport, making multi-channel featured porous systems desirable for
catalyst applications. Nevertheless, although these studies yielded valuable results,
their proposed frameworks lack a comprehensive mathematical scheme for gener-
ating innovative microstructures automatically. Instead, they often presuppose cer-
tain characteristics of the optimal microstructure, such as the presence of macrop-
orosity or extended channels, primarily conducting parametric analysis on various
parameters. In a more rigorous approach, van Gorp et al. [29] integrated a genetic
algorithm (GA) with PNM to design highly efficient electrodes for VRFBs. Their
optimized design effectively reduced pumping costs by 73% and improved electro-
chemical performance by 42% compared to a randomly generated initial structure.
Although that study provided a valuable proof-of-concept, it was limited in several
regards. The pores were confined to a cubic lattice with a relatively limited num-
ber of pores (a total of 676 pores), which also limited the size distribution that could
be attained. Their model did not account for the influence of local convective flow
(local Reynolds number) when estimating the mass transfer coefficient for the trans-
port of species from the bulk solution to the solid-liquid interface. Instead, a uniform
Reynolds number was assumed throughout the domain, based on the superficial ve-
locity. Additionally, they manually maintained overall porosity at a constant value
during the optimization process. As such, their framework did not encompass the

capacity to generate entirely distinct pore network (PN) topologies.

The primary objective of this study is to present a framework for the large-scale op-
timization of porous reactors by integrating PNM and a non-dominated sorting ge-
netic algorithm II (NSGA-II). This framework specifically addresses advection, dif-
fusion, and chemical reaction phenomena within a porous network, which is gen-
erated using a Delaunay tessellation of random base points [37]. By employing a
Delaunay tessellation, the optimization algorithm gained the flexibility to distribute
pores in arbitrary spatial configurations, in contrast to previous efforts which were
limited to a cubic lattice. The network generation and simulations are conducted
using OpenPNM, a Python-based open-source package developed for PN simula-
tions [38]. Moreover, the optimization process is carried out through NSGA-II, al-

lowing for theres simultaneous optimization of multiple objectives. In this study,
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the focus is on two key objectives: conversion rate and pumping cost. However, it
is worth noting that this framework is versatile and capable of accommodating any

number of objectives as needed.

5.2 Modeling and optimization

In many practical applications, diverse and concurrent processes (e.g., advection,
diffusion, and reaction) compete within porous reactors, collectively shaping their
overall performance. Should any one of these processes impose limitations, it may
degrade the overall performance. Given the significant influence of porous mi-
crostructure on these processes, the topology of porous networks should seek a
balance among different processes without imposing severe limitations on any of
them [39—41]. Furthermore, such systems frequently necessitate the simultaneous
optimization of multiple conflicting objectives. For instance, in the context of ADR
porous reactors, it is favorable to maximize the overall conversion rate while mini-
mizing the hydraulic power requirements (pumping cost). Therefore, a MOO algo-
rithm becomes a requisite tool to concurrently satisfy these diverse and contradictory
requirements. In the present study, a designated set of points is provided as input
for the network generation algorithm to create the PN. This constructed PN is subse-
quently used to solve flow and reaction in accordance with predetermined boundary
conditions (BCs). The PNM simulation is in turn incorporated into an optimization
algorithm, enabling the systematic refinement of the porous topology through an
iterative process. Further details on these steps are provided in the following sub-

sections.

5.2.1 Network generation

Transport through the PN depends not only on the pore size distribution, but also
on the spatial and topological arrangement of the pores. Recent work by van Gorp
et al [29] demonstrated the ability of genetic algorithm-based optimization to gener-
ate improve electrode performance by adjusting the pore size distribution and their
spatial distribution on a cubic lattice. Confining the pore centers to a cubic lattice
restricted the possible designs in several ways: the maximum pore size could not ex-
ceed the lattice spacing (lest pores overlap), the connectivity distribution was limited

to 6 neighbors, and all connections between pores were oriented along the principal



Chapter 5. PNM-NSGA framework for optimization of porous reactors 208

axis of the lattice. The present work aimed to overcome these limitations by develop-
ing a procedure for using random PNs based on Delaunay tessellations. Generating
a PN from a Delaunay tessellation has been described in detail previously [37].

The communication between PNM and NSGA-II lies in the network generation pro-
cess. On the PNM side, network generation is performed using a Delaunay tessel-
lation in OpenPNM. It receives the coordinates of some base points to generate a
network. The background grid specifies the coordinates of all possible pores in the
design domain. The optimizer, NSGA-II, tries to improve the structural design by
selecting these possible coordinates from the background grid. It does this by in-
cluding or excluding them in an algorithmic way, to enhance the objective functions

(maximizing reaction rate and minimizing pumping requirements).

Generating random network topology

The main challenge when coupling random networks to genetic optimization is the
incompatibility between having a fixed number of genes in each individual and each
generation, and the infinite possible locations of pores. To address this, we defined a
grid of possible locations and setup the genetic algorithm to optimize which of these
locations were activated (described in section 5.2.4). The grid of possible location
essentially adds a lower limit to the resolution of the pore locations. A resolution
of 40 pm was chosen meaning that the smallest pores size and smallest pore-to-pore
space cannot be less than this if no other operator is applied. Fig. 5.1a shows the
result of applying a Delaunay tessellation on a grid, which yields a standard cubic
lattice, while Fig. 5.1b shows the result after randomly activating 30% of the sites
on the grid. In this case the pore centers still lie on the grid, but the connectivity of
the pores is more diverse than on a fixed lattice. The pore size distribution, shown
in Fig. 5.1e, is also wider than a cubic lattice (Fig. 5.1e) because the pore diameters
were able to grow up the distance of the nearest pore rather than the fixed lattice
spacing. The randomized network shown in Fig. 5.1b was further enhanced by ap-
plying a relaxation of the pore centers after the tessellation. A rigorous relaxation
as described by Lloyd [42] uses the geometric centroid of each Voronoi cell, which
requires computing many convex hulls and is time consuming. An alternative, less
computationally demanding, relaxation method was performed here such that new
pore locations were computed as the distance-weighted average of each neighbor
pore. This relaxation was applied iteratively by moving the pore centers halfway to
the new locations to avoid overcorrecting, then repeated N times by recomputing

the weighted average after each step. It was found that N = 3 provided a good
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Figure 5.1: 2D schematic of random network generation on a grid. The subfigures
show results (a) when all possible locations are used, (b) with using only 30% of pos-
sible locations, and (c) using 30% possible location with relaxation of the base points.
The bottom row shows the corresponding pore size distributions (in arbitrary units)
attained by assuming all pore diameters are between 90 to 100% of the distance to
their nearest neighbor.

balance between stable results and efficient computation. The final result is shown
in Fig. 5.1c where it can be seen that most pore centers no longer lie on the grid and
the distribution of the pores fills space. The pore size distribution in Fig. 5.1f is even
broader than the case in Fig. 5.1e. The sites along the edges and faces of the do-
main were always included to ensure that the internal pores were confined to a fixed
domain size. The pores on the inlet and outlet faces were used to apply boundary
conditions so did not affect the flow through the domain. The layer of small pores
on the other surfaces can be considered as physically compacted or compressed so
not relevant to the flow. All simulation results reported below were obtained on a
3D network, and the 2D representation shown in Fig. 5.1 is only to aid visualization.
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Assigning geometric properties

Once the spatial locations of the pores and their connectivity was established, the
geometric properties of the pores and throats were calculated. Pore radii were as-
signed by finding the maximum possible size of each pore that just touched its near-
est neighbor, then multiplying this value by a random number between 0.75 and 0.9.
Throat diameters were assigned by finding the minimum diameter of the two neigh-
boring pores, then multiplying this value by a random number between 0.5 and 0.7
to create constrictions. The aforementioned ranges are chosen arbitrarily but they fall
within the range of previously reported values in the literature [29, 30]. Pores were
treated as spheres and throats as cylinders for all subsequent geometry calculations
such as surface areas and volumes. Throat lengths were computed by assigning the
overlap between the spherical pore bodies and cylindrical throats to the throat. This
is illustrated in Fig. 5.2.

Adding throat nodes

As will be discussed in section 5.2.2, it was necessary to incorporate local mass trans-
fer coefficients in the reaction term. Mass transfer coefficients are a function of local
fluid velocity, which is only known in the throats, while the reaction is also a func-
tion of concentration, which is only known in the pores. It was therefore necessary to
incorporate throat nodes into the network, as described by Misaghian et al. [1]. Each
throat was divided into two segments and a new “node” (i.e., a pore) was inserted
at the junction. The fluid velocity through this node could then be found from the
upstream throat segment. The reaction term was only enabled in these throat nodes.
This process increased the number of degrees of freedom so increased the computa-
tional time required to solve the transport problem, but this was unavoidable. The
geometric properties of the throat nodes were chosen such that they had no impact
on the hydraulic and diffusive conductance of the conduit, which were calculated
before the throat nodes were added.

5.2.2 Modeling of dilute solution transport

Transport through the domain was modeled as advective-diffusive transport of a re-
active solute. The pressure in each pore (and throat node) was first found by solving
the flow problem assuming a fixed pressure drop across the domain (boundary con-
ditions are outlined in section 5.2.3). The velocity in each throat was found using the
computed pressures, then used to compute the advective-diffusive conductance val-

ues using the power-law scheme [34]. Finally, the advection-diffusion problem was
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Figure 5.2: Schematic diagram showing the assumed shape and pertinent dimen-
sions for calculating transport conductance values.

solved to determine the concentration distribution in the domain in the presence of
a reaction.

The conductance values were computed assuming cylindrical throats and spherical
pore bodies, as shown in Fig. 5.2. The length of the pores, L,, was found by subtract-
ing the length of the intersection between a sphere and a cylinder from the radius
of the pore. Due to the way that pore sizes were assigned they never overlapped,

which helped to ensure the throat node procedure remained viable.

Given these assumptions, the total hydraulic conductance, G", of each pore-throat-

pore conduit was computed as:

1 1 1 1
— = (5.1)
G ghy gt g,

) )

where g ; for a sphere is [43, 44]:

LA (M + tanh™! (ﬁ)) (5.2)
g;l’i Wrg (T% - L]%) Tp

and g} for a cylindrical throat is:

1 8/,6Lt
— 57 (5.3)
Gt Ty

Similarly, the diffusive conductance, G¢, was found from:
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= =4 — (5.4)
G4 ogsy g g5,
where:
1 1 L
— = tanh ™! (—p) (5.5)
9p D amry, T'p
and:
1 L,
-t 5.6
gl mriDy (5.6)

And the advective-diffusive conductance, G*¢, was found using the following power-

law formulation [34]:

G = (5.7)

ePei —1

Pe;; is the pore-scale Peclet number defined as:

ij Lt

where Q;; is the volumetric flow between pores i and j. L, and A, are the length

and cross-sectional area of the element, respectively, and D, s the diffusion coeffi-
cient of the solute. Inserting the definition of the diffusive conductance and the fact
that Q;; = GY;AP,;; yields the Peclet number for a conduit in terms of pre-computed

conductance values and the calculated pressure values in each pore:

Peij = JAPW (59)

The system was modeled at steady state so the mass balance around each node i can

be expressed as:

D (QijCay+ G(Cay— Cai)) =724 (5.10)

J

Writing Eq. (5.10) for every pore in the network yields a system of linear equations
which must be solved simultaneously to determine the concentration in every pore.
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The value of r4 in Eq. (5.10) was set to zero for pores where no reaction was occur-
ring. In the throat nodes, the solute was consumed in a first-order heterogeneous
reaction occurring at the solid-liquid interface in the throat nodes according to the
standard rate expression:

ra = kTAsCA,surf (511)

where £, is the kinetic constant per unit area, A is the wetted surface area, and C'4 g¢
is the concentration of the reactant at the surface. Only the bulk concentration is
known after solving the system of equation defined by Eq. (5.10); however, since the
reaction was assumed to occur at the solid-liquid interface the rate of mass transfer

between the bulk fluid and the wall can be expressed as:

ra = _kLAs<CA - OA,surf) (512)

noting that the diffusion from the bulk to the surface corresponds to a consumption
of A and hence a negative reaction rate. In Eq. (5.12), k;, is mass transfer coefficient.
Equating these two expressions for the reaction rate and solving for r4 in terms of
C'4 yields:

o krkL
kL —k,

which provides the required expression for the rate of consumption of A in terms

A,Cy (5.13)

TA

of the known concentration. The kinetic constant, k,, was taken from Misaghian et
al. [1] for consumption of vanadium in a redox flow battery, while the mass transfer
coefficient was computed from:

kir D
Sh = 1L>At = 1.0 Re®7 5033 (5.14)

Sh was computed for each throat node and the throat diameter D, was taken as the
characteristic length. The surface area of each throat node was taken as the sum of
the internal surface areas of the two neighboring throat segments which comprised
the original throat. As mentioned above the velocity is not known in pores, yet
this is where the mass balances and reactions are applied. Dividing throats into two
segments separated by a “throat node” means that the velocity from the neighboring

throat segment can be adopted as the velocity in each throat node. Finally, the total
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rate of reaction in the network was found by summing up the rate of consumption

of species A in each pore using Eq. (5.10).

5.2.3 Boundary conditions

Constant pressure conditions were assigned to the inlet and outlet nodes of the net-
work to solve for the pressure distribution and throat velocity. This is translated as a
tixed pressure drop (A P) across the domain. Additionally, at the inlet, the concentra-
tion (C},) remained fixed, while an outflow boundary condition was imposed at the
outlet pores, ensuring a zero gradient for the reactant species concentration. The spe-
cific values of boundary conditions used in this study are discussed in section 5.2.5
(System parameters).

5.2.4 Optimization algorithm

GA is a well-established optimization technique that draws inspiration from the
principles of biological evolution, which find application in a wide range of fields,
including optimization problems, machine learning, scheduling, and parameter tun-
ing for machine learning models, among others. GA is a part of a broader class
of algorithms known as evolutionary algorithms, which are designed to mimic the
process of natural selection by adopting operators such as crossover, mutation, and
selection to address computationally difficult or time-consuming problems. The so-
phisticated, nonlinear nature of reactive transport within porous media at the pore-
level necessities the employment of gradient-free metaheuristic algorithms, such as
GA, to seek the optimal PN morphology. In this work, a binary NSGA-II algorithm,
a MOO variant of GA, is used to improve the conversion rate while concurrently
minimizing pumping costs. NSGA-II is a mainstream choice for multi-objective op-
timization problems and has been successfully employed for various problems [45-
48]. In this work, we opted for NSGA-II because of its robust and efficient algo-
rithm for MOO problems. We acknowledge that other metaheuristic algorithms
that might be advantageous for topological optimization of porous reactors, such
as sailfish optimization (SFO) [49], whale optimization algorithm (WOA) [50], par-
ticle swarm optimization (PSO) [51], and multi-objective imperialist competitive al-
gorithm (MOICA) [52] could be explored. However, a thorough comparison of these
algorithms would require a comprehensive investigation that falls outside the scope
of the present work.
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As previously explained, the PN is generated based on a set of points residing on
a background grid, forming the initial coordinates for potential pores. These initial
coordinates undergo a relaxation function to determine the final pore coordinates
within the PN. Each point in the problem grid corresponds to a potential pore within
the PN, with the optimization problem controlling the presence or absence of these
potential pores. Consequently, a Boolean value is assigned to each point, indicating
whether the corresponding pore exists or not, and the optimization solutions are en-
coded as a Boolean vector, representing the existence or absence of candidate pores.
Eliminating one pore may lead to the expansion of nearby pores, which facilitates
the transportation of reactant species. Nevertheless, this action simultaneously af-
fects the available reactive surface area. The algorithm begins with the Initialization
step, wherein a set of n,, initial solutions, referred to as the population or chro-
mosomes, is randomly generated. Each individual within the population represents
distinct combinations of potential pore existence, yielding a binary vector of length
ng, where n, denotes the total number of points in the problem grid. The size of the
grid is determined based on the number of points in each direction and the voxel
size, which defines the spacing between neighboring grid points. Subsequently, the
initial population undergoes iterative evolution, generating increasingly improved
solutions over successive generations until convergence or a predefined termination
criterion is satisfied. This study uses the maximum number of iterations as the ter-

mination criterion. The optimization problem is formulated as:

Nthroatnode
max Folbj = g T A
Ve i=1
min FO2bj =Q xAp
Vg

st. Vy,;€{0,1} for j=1,2,...,n,

(5.15)

In which, F; and F3,

respectively. As previously mentioned, F),; is computed by summing the reaction

represents the total conversion rate and pumping power,

rates in all throat nodes where reactions occur. Moreover, F;; is determined by mul-
tiplying the overall reactor flow rate (()) and the pressure drop (AP). ) is evaluated
by summing up the flow rate of fluid moving through the inlet pores, while AP
is dictated by the specified boundary condition. Also, the solution vector, denoted
as V,, represents the status of each pore in the problem grid. Following the initial-
ization, NSGA-II proceeds to the fitness evaluation step. In this phase, the perfor-
mance of each individual is assessed, by generating the corresponding PN, solving
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the governing equations, and calculating the conversion rate and pumping cost. It is
worth noting that, in this study, population fitness evaluation is executed in parallel
on several CPU cores. This parallelization significantly accelerates the calculation
speed, allowing the algorithm to explore a wide search space and find high-quality
solutions more rapidly. Subsequent to fitness evaluation, the algorithm performs a
ranking process. It categorizes the population into different non-dominated fronts
based on their fitness and dominance relationships. The first front contains Pareto
optimal solutions, which are the best trade-offs between conversion rate and pump-
ing cost and are not dominated by any other solution. In the crossover and mutation
step, NSGA-II selects a pool of parent population via a binary tournament selection
process for reproduction. These selected parents undergo a uniform crossover as
well as mutation process to produce a new set of offspring. The crossover process
combines data from two parent solutions, enabling the offspring to inherit their dis-
tinctive attributes, while the mutation operation makes random modifications to a
single parent, thereby enriching exploration of the search space. Finally, in the selec-
tion and truncation step, the current population and offspring are merged to form a
combined pool. Here, the algorithm applies ranking operation once again to select
tittest individuals from the combined pool according to their ranking and crowd-
ing distance for the next generation. An overview of the optimization procedure is
depicted in Fig. 5.3, with the primary operators briefly described as follows.

Initialization

In the initialization step, n,,, distinct PNs are generated randomly using Delaunay
tessellation. As previously mentioned, each PN is represented by a solution vector,
Vg, comprising n, Boolean values that indicate presence or absence of each candidate
pore in the final PN. To generate each V, first, a vector of random numbers between
0 and 1, with the same size (n,), is produced using a uniform random distribution.
Subsequently, each element in this vector is compared to a chosen threshold value.
Values below the threshold indicate the existence of the corresponding pore, while
values exceeding the threshold signify the absence of the potential pore. As the ini-
tial random numbers (between 0 and 1) were generated using a uniform random
distribution, tuning the threshold value approximately determines the overall per-
centage of pores that exist in the final PN. For instance, choosing a threshold with an
extreme value of one will lead to the presence of all potential pores from the back-
ground in the final PN (see Fig. 5.1a). It is well-known that the efficiency of GA is
significantly influenced by the quality and diversity of the initial population [53].
To ensure appropriate diversity, a range of threshold values is considered based on



217

Chapter 5. PNM-NSGA framework for optimization of porous reactors

"SUI3LIO3Te uonenwls pue uonezrundo Jo 31eyoMor] :€'g 3ImSIrg

Jojesado Supjuey

9oUEelSIp SUIPMOID

uo paseq 3uiJos

paseq 3uiJos

sHued uo

A

doue)sip Suipmold

Sunejnoje)

Supjueu

uone|nWIs NINJ

asuodsau
wia1sAs Suluiniay

UOI1BAI9SUOD
s9109ds 3uinjos

A

MOJ} $3%01S SuIn|oS [«—] uoinesauasd yiomiaN

|
I 91e0UnJ|
1
1

_oT_o_ﬁ_ﬁ_AH__ﬂ R H_

[t]ofr]ofo] [oft]rfofr]

pajeujwop-uoN -
R TS g e
P N P!
A\ Al L RPN A A
cunsss Sumndan dundsyjo pue duewJsopad | uoneindod Suiue duewJopad
H RAELID sjuaied 3upjuey 8undsyjo Suiinejen3 Hel HUEY e 3unnejenay
A A
; uonejndod HOHEINTIpUE sjuased 3u13d99 uolezi|eiu
cUOREIAIXEN Suneouna Jan0ssoJd SuiAjddy [ HI9I9S HezlfERIul
oN K - 17
1 LI |
PR — yo— IR
I N - 1
1 /X\ Sundsyo " _o:_ﬁ_o_ﬁ_AH__o_ﬁ H_e_ﬁ_ ﬂﬁllilhlllwl |||||||| NUI_
i Ly Y— [rofrlofolf [of ohso|r|(a!
| I~
| d=======4 - I | AN |
- o + [fofxfoJo] = [ofofofofo] | [ sot > @0 @
lued sjualed 1 “ I = I :Sunjuey 1
I
| |

Jojesado uoiljeonJj

Jojesado uol3a9|9s



Chapter 5. PNM-NSGA framework for optimization of porous reactors 218

linear spacing between 0 and 1, in accordance with n,,,. This initialization strategy
ensures the presence of a diverse range of design solutions in the initial population,
encompassing configurations with low, medium, and high numbers of pores. In
other words, out of the entire intial populations generated in this study, the thresh-
old value for each one was different, ranging linearly from 0 to 1. Hence, among the
initial populations, there existed design solutions with various numbers of pores.
From this perspective, we started with generating populations with a “vector of ran-
dom continuous variables”, but then converted this to a “binary vector” using the
threshold value.

Population ranking front

NSGA-II [54, 55] employs a non-dominated sorting operator to rank the individuals
of a population in a case with multiple objectives. The initial step in this operator
is non-dominated sorting, which classifies individuals into distinct fronts based on
their dominance relationships. Dominance is determined by comparing the objec-
tive function values of two individuals. If one individual is superior in at least one
objective and not worse in any other, it is considered dominant. For instance, in this
study, conversion rate and pumping cost are treated as two conflicting objectives. A
solution exhibiting a higher conversion rate and lower pumping cost consistently
dominates any alternative solutions characterized by lower conversion rates and
higher pumping costs. However, in scenarios where both the conversion rate and
pumping cost of two solutions are either simultaneously higher or lower compared
to each other, mutual domination does not occur, and these solutions are categorized
within the same class (or front). This process organizes individuals into a series of
fronts, where the first front consists of non-dominated individuals, the second front
contains individuals dominated only by those in the first front, and so on. After
non-dominated sorting, the next step is to calculate the crowding distance (CD) for
each individual within a front. CD reflects the density of individuals in the objective
space, helping to maintain diversity in the population. It is calculated by consider-
ing the distances between an individual and its neighboring individuals along each
objective dimension. Individuals with higher CDs are preferred as they contribute
to a more evenly distributed Pareto front. The final sorting of the entire population
is a two-step process: first, individuals are sorted based on their crowding distance
in descending order, ensuring that individuals with greater CDs are prioritized. The
second sorting is the front ranking, arranging individuals based on their front rank-
ing. This sequential sorting based on CD and front ranking guarantees a systematic

arrangement of population according to dominance. In tied rankings, priority is
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assigned by considering their CD values. This dual-criteria sorting mechanism en-
sures a meticulous organization of individuals within the population, promoting a
comprehensive and balanced exploration of the solution space. In each generation,
following the arrangement of the merged parent and offspring populations through
the previously outlined procedure, the top n,,, individuals survive and advance to
the subsequent generation during the truncation process. This mechanism ensures
that only the fittest individuals, determined by their performance in the optimiza-
tion objectives, pass to the next generation, fostering a continuous progression of the

population toward superior solutions.

Binary tournament selection

The optimization process uses a binary tournament method to select parents for the
reproduction of offspring. This method randomly samples two individuals from
the population and evaluates their dominance relationship, ultimately selecting the
parent with a superior front ranking and CD. This strategic approach ensures that
all individuals have an opportunity to participate in reproduction, thereby promot-
ing overall diversity. However, fitter individuals are granted a higher probability of
passing on their genomes to the subsequent generations, aligning with the princi-
ple of biological evolution and natural selection. Further information regarding this
selection scheme can be found in the literature [56, 57].

Crossover

In the present study, a uniform crossover operator is utilized to generate new PNs
by exchanging genetic information between pairs of parent networks. The selection
of parent networks is performed through a binary tournament. The number of re-
produced offspring from the crossover process is determined by a given crossover

ratio (p.) and is calculated by 2 x (%W

. Each PN is represented by a vector of
binary genome, and the uniform crossover operates independently on each genome
(see Fig. 5.3). Notably, a pair of parents gives rise to two children, with the decision
on the inheritance of genomes from each parent to each child being dictated by a

uniform random distribution.

Mutation

The mutation operator introduces random changes into the genetic makeup of so-
lutions, fostering diversity in the population and promoting exploration within the

search space. First, a subset of [py, X ny0p | individuals are randomly selected for
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Table 5.1: Optimization algorithm parameters

Optimizer parameter Value

Population size (n,,,) 1200

Crossover ratio (p.) 0.85
Mutation ratio (p.,) 0.05
Mutation rate (ry,) 0.1

mutation from the parents’ pool, where p,, is a specified mutation ratio. The severity
of mutation is then dictated by the mutation rate (r,), with [r,, x ny| genomes be-
ing flipped at random positions (see Fig. 5.3) using a “bit mutation” operator. This
targeted alteration in genetic information introduces variability among the individ-
uals, contributing to the algorithm’s capacity for effective exploration of the solution
space. This inherent randomness is fundamental for avoiding premature conver-
gence and promoting the continued exploration of the search space. The introduc-
tion of slight variations ensures that the optimization algorithm is not confined to a
narrow region of the solution space and is better equipped to discover diverse and
potentially optimal solutions. The values of algorithm parameters are given in Ta-
ble 5.1. The number of generations (iterations) in optimization is specified based on
the size of search space. It is also noteworthy that “crossover ratio” and “mutation
ratio” indicate the proportion of the population that undergoes crossover and mu-
tation operations, respectively. Once an individual is selected for mutation, only a
portion of its genes undergoes mutation. “Mutation rate” defines the severity of the

mutation by specifying this proportion.

5.2.5 System parameters

The proposed framework is employed to optimize the PN topology of an ADR porous
reactor. This reactor facilitates the transport of a dilute solution through advection-
diffusion mechanisms, extending from the inlet to outlet boundaries, while simul-
taneously an arbitrary solute species A is reacted in presence of active surface area.
Depending on the configuration of parameters, the system may exhibit characteris-
tics of either kinetic or hydraulic sluggishness. The optimization process is designed
to yield a tailored PN topology that improves system performance by achieving a
balanced compromise between transport and rate phenomena. This involves proper
control of both surface area and permeability through alternation of PN morphology.
The properties of the solution and solute are adopted from literature for vanadium

ion redox reaction in a VRFB. The values of these properties as well as the operating
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Table 5.2: System properties and operational conditions

Parameter Unit Value / range
Grid shape - 50 x 50 x 50
Voxel size (d) pam 40

Grid dimensions mm?® 2 x 0.52 x 0.52
Number of candidate pores - 8450
Solution density (p) [1] kgm—3 1350
Solution viscosity (u) [1] Pas 0.005
Solute diffusion coefficient (D 4) [1] m2s~! 3.9 x 10710
Kinetic constant per unit area (k) [1] ms™ 5x 1077
Solute concentration (Cy,) [1] molm 3 600
Charge transfer coefficient («) [1] - 0.5
Temperature (7') K 298
Pressure drop (Ap) Pa 400
Overpotential (p) \% 0.3

conditions (boundary conditions) are presented in Table 5.2. Although the devel-
oped model does not involve all phenomena occurring in a VRFB, the reaction con-
stant, k,, is estimated according to the Butler-Volmer kinetics assuming a constant
overpotential and a largely polarized condition (only forward reaction) as described

below.

alF
k. = koexp <ﬁn) (5.16)

In this equation, o, T, 1, F', and R are charge transfer coefficient, temperature, over-
potential, Faraday’s constant, gas constant, respectively.

5.3 Results and discussion

A 3D background grid with shape 50 x 50 x 50 and spacing of 40 ym is assumed
as the PN design domain. The optimization process aimed to identify the optimal
PN morphology within this 2 x 0.52 x 0.52 mm? lattice, toggling candidate pores on
and off under the assumption of flow occurring in the longitudinal direction (2 mm).
Following the determination of the presence or absence of each potential pore in
the configuration, the PN was constructed, and simulations were conducted using
OpenPNM, as described in the preceding sections. This iterative procedure was re-

peated for 1000 generations, during which the optimizer generated an improved set
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of Pareto optimal PN topologies in each iteration. The parent population pool ini-
tially consisted of 1200 solutions and 1080 new offspring were reproduced through
crossover and mutation processes npop X (Pc+Pm) = 1200 % (0.8540.05) = 1080. Next,
the objective function was evaluated, resulting in the model being solved over one
million times in total during the optimization process. Such an ultra-large optimiza-
tion with high resolution was only manageable through a cost-effective modeling
method like PNM.

Fig. 5.4a illustrates the history of Pareto fronts of dual objectives over all genera-
tions, showing reaction rate and pumping cost of various non-dominated solutions.
As optimization progressed, enhanced PN morphologies were generated, leading to
higher conversion rates and lower pumping costs. It is noteworthy that all points on
the Pareto graph of each generation can be considered as potential optimal points,
depending on the trade-off between reaction rate and pumping power. If minimal
pumping cost is crucial, the point on the bottom-left corner of the Pareto front can be
chosen as the optimum design. Conversely, if maximal conversion rate is the goal,
the point on the opposite extreme could be selected. The “ideal point” on this graph
lies on the top-left corner, where a very high reaction rate could be achieved with
minimal pumping requirements. The Pareto optimal solutions in this figure tend to-
ward that ideal point. For instance, comparing points A; and B;, the ending points of
the Pareto fronts after and before optimization (generations 1000 and zero), reveals
a 280% increase in reaction rate accompanied by a 6% reduction in pumping cost.
Such a significant elevation in the conversion rate, along with an appreciable reduc-
tion in hydraulic requirements, was only achievable through a robust optimization
process that led to proper configuration of the pores in the final PN. Furthermore,
comparing points A; and Bs, situated at the other end of Pareto fronts of the opti-
mal and initial generations (see Fig. 5.4a), shows a similar trend. The reaction rate
increased by 15.2%, and pumping power decreased by 11.3%. Choosing any points
between the two ends on the Pareto front depends on practical constraints and the
trade-off between the two objectives. For instance, in a practical application such
as VRFB, the net generated power (i.e. the difference between cell and pumping
power) can determine a proper trade-off between the two objectives. In such cases,
the framework presented in this study can be utilized with a single-objective opti-
mization algorithm, such as GA, to produce innovative PN with improved perfor-
mance. However, in the absence of any particular trade-off, points A, and B, are
chosen for the sake of comparison in this study. These points have a median pump-

ing power among all solutions in their corresponding Pareto front. A quantitative
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Table 5.3: Optimization algorithm parameters

Cases
Al A2 A3 B1 BQ Bg

Reaction rate (x10®mols~'m=2) 506 167 258 133 122 224
Pumping power (x1072Wm™2) 201 274 389 215 26 4.39
Number of pores 7082 4540 3198 7847 5407 3084
Minimum pore diameter (ym) 235 233 233 26 21.8 236
Maximum pore diameter (ym) 539 67.7 88 464 60.5 116.7

Parameters

Average pore diameter (ym) 303 317 326 306 314 328
Average throat diameter (y/m) 16.7 17.1 177 166 169 17.7
Superficial velocity (mms™!) 0.194 0.263 0374 0.206 025 0422
Porosity (-) 0379 0423 0473 0392 041 0475
Permeability (D) 484 658 936 516 624 10.55

Specific surface area (m* m™?) 8273 27086 36641 1827 19841 29882

comparison of these three representative points before and after optimization is re-
ported in Table 5.3. A more detailed comparison of the PN of optimal solutions is

provided later in this study.

Moreover, Figs. 5.4b and 5.4c show the convergence history of optimization process
in terms of entire population and hypervolume, respectively. As shown in Fig. 5.4b,
it is evident that the entire population, over generations, improved in both reaction
rate and pumping cost, shifting toward the ideal point. This figure also confirms
that while the randomly generated population at generation zero is spread on the
plot surface, the solutions in subsequent generations become more converged. As a
post-processing step, optimization convergence is tracked using a hypervolume in-
dicator [58], shown in Fig. 5.4c. In this case, the hypervolume is the area under the
Pareto plot in each generation with respect to a reference point. The reference point,
assumed in this study as (pumping cost, reaction rate) = (0.0527 Wm™2, 0), repre-
sents a relatively poor solution dominated by all Pareto solutions. The incremental
trend of hypervolume plot in Fig. 5.4c indicates the improvement of Pareto front
over generations. It is noticeable that the hypervolume indicator increased sharply
in the first 200 generations, signifying rapid improvement at the beginning of the op-
timization process, followed by a gradual slowing down as the optimization reaches

convergence.

While the optimization was conducted at a fixed pressure drop (Ap = 400Pa), a
more comprehensive understanding was sought by investigating the porous reac-

tor’s performance before and after optimization for a wide range of pressure drops.
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Figure 5.4: History of (a) Pareto fronts, (b) entire population, and (c) hypervolume
over optimization process. In (a), each color spectrum represents Pareto optimal
solutions of one generation, from dark purpule for generation zero and yellow for
generation 1000.

Figs. 5.5a and 5.5b illustrate pressure drop and pumping power versus reaction rate,
respectively, for six representative PNs. Comparing the conversion rate of PNs af-
ter optimization (points A) with their corresponding networks before optimization
(points B), as depicted in Fig. 5.5a, clearly demonstrates the superior performance
of optimal PNs across various pressure drops. Furthermore, it is observed that the
pressure drop-reaction rate curve of A3 shows the best performance among all other
PNs in Fig. 5.5a, even when compared to PNs A; and A,. However, it is important to
note that while the reaction rate of Aj is higher than other PNs at the same pressure
drop, this higher conversion rate comes at the cost of a higher pumping cost, as con-
tirmed by the pumping power-reaction rate curves shown in Fig. 5.5b. All curves in
this figure are plotted for a pressure drop up to 1000 Pa, similar to Fig. 5.5a. Clearly,
A5 demands a higher hydraulic power compared to A; and A,. Moreover, A; has the
capability to cover a wider range of pumping cost for a given pressure drop range,
thanks to its higher permeability, which is not achievable by other PNs. Similarly,
with a common pumping cost, A3 exhibits a higher conversion rate (see Fig. 5.5b),

but this is only possible with different pressure drops. Therefore, the choice of the
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Figure 5.5: (a) Pressure drop-reaction rate and (b) pumping power-reaction rate per-
formance curves of representative PMs before and after optimization.

best PN depends on the application constraints and the trade-off between the reac-
tion rate and pumping cost.

Fig. 5.6 demonstrates the morphology and simulation results of the initial and opti-
mal representative PNs without throat nodes. A closer look at Fig. 5.6a reveals that
PNs B; and A, contain a higher number of pores compared to B; and A3, as quanti-
tatively reported in Table 5.3. This condensed configuration leaves less space for the
pores to grow in the given design domain, resulting in many relatively small pores.
In contrast, by deleting some potential pores, the remaining pores in PNs B; and Aj
had the chance to become larger, with some pores exhibiting a diameter larger than
100 pm in Bs. Comparing the PNs before and after optimization illustrates how the
network topologies evolved over the optimization process.

Additionally, in a PNM, throats serve as pathways for fluid transport. As explained
earlier, the throat diameter is determined based on the minimum diameter of its
neighboring pores. Therefore, a PN with larger pore diameters features larger throats
on average, facilitating fluid flow. This is confirmed by Fig. 5.6b, which illustrates
the velocity magnitude in the bundle of throats, and the superficial velocity stated in
Table 5.3. According to Eq. (5.3), the hydraulic conductance of a cylindrical throat is
proportional to the fourth power of its radius. Hence, enlarging a throat can greatly
increase the flow rate passing through it with a fixed pressure difference. Since the
reaction rate depends on the local concentration of active species, a fast delivery
of reactant species may lead to a higher total conversion rate. However, it is note-
worthy that an excess hydraulic conductance and flow rate may be obtained at the
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Figure 5.6: Comparison of representative PNs before and after optimization. (a)
pore size, (b) solution velocity, and (c) bulk concentration distribution.
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Figure 5.7: Macroscopic structural and performance properties of the representative
PNs: (a) before optimization and (b) after optimization.

cost of higher pumping power and lower reactive surface area, without contribut-
ing to the total reaction rate. Therefore, during the evolution process from Bj to A,
for instance, the optimizer favored changing the topology so that very large pores
were replaced with several smaller ones. In ADR systems, the mass transfer coeffi-
cient plays a key role in determining the rate of reactant consumption. According
to Eq. (5.14), K, is a function of Reynolds number, which itself depends on the fluid
velocity. Therefore, even a concentrated solution with a high bulk concentration may
not result in rapid chemical reaction if the convective fluid velocity is low. For ex-
ample, the concentration distribution of PN A; in Fig. 5.6c indicates that the species
concentration in the pores near outlet boundary is almost equal to those near inlet
boundary. Due to the slow fluid flow in this network, the mass transfer coefficient
is so low that a considerable portion of the active species exits the reactor without
undergoing reaction. In contrast, the higher velocities observed in PNs A, and Aj
(refer to superficial velocity values in Table 5.3) and velocity magnitude in Fig. 5.6b)
promote enhanced species transport from the bulk solution to the solid surface, re-
sulting in a faster consumption of active species. The elevated reaction rate in A
corresponds to a lower bulk concentration in regions near the outlet, with the mini-

mum concentration reaching approximately 284 mol m~>.

However, the fluid velocity, prescribed by the network hydraulic conductance, is
not the sole determining factor in the overall performance of a PN. Another critical
parameter in this multi-objective optimization problem is the active surface area. In

a PNM, this value depends on the definition of the surface area and the geometrical
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assumptions of the network. As discussed earlier, in this study, the reactive surface
area of each "throat node," where the chemical reaction occurs, is assumed to be equal
to the internal surface area of throat with which it is associated. The surface area of
the pore bodies was excluded since the fraction of its area to associate with each
throat is not easily determined. This assumption is justified on geometrical grounds
because the internal surface area of a pore is reduced by the opening created by each
intersecting throat, so the internal surface areas are quite low. In fact, the internal
surface area of all pores in network A; was 1.81 x 107%m?, while the throat surface
area was 1.05 x 107° m?, so on average we can expect ignoring this surface area only
affects the active surface area by 17%. This assumption is also supported on physical
grounds since the fluid velocity in pores is lower than throats so the reaction will be
more mass transfer limited, thus would contribute relatively little reaction to each
throat.

The radar charts in Fig. 5.7 display the topological characteristics and performance
of the representative PNs before and after optimization. Here, ¢, x, SSA, Rixn, Ppump,
and C*® denote porosity, permeability, specific surface area, reaction rate, pump
power, and average bulk concentration, respectively. The values with a hat sym-
bol (") are normalized with respect to a common reference value, converting them
all between 0 and 1. Porosity, permeability, and SSA values are calculated using
OpenPNM for each network. In this context, SSA is defined as the ratio of the wet-
ted surface area to the volume of the solid phase. Comparing the results before
(B points) and after (A points) optimization reveals a considerable increase in SSA
value for all three networks. The enhancement of SSA, resulting from an improved
network topology, contributes to the increment of the reaction rate in all PNs. Ad-
ditionally, permeability serves as an index of the overall network hydraulic conduc-
tance. Since the pressure drop was kept fixed during the optimization process, the
pumping cost depends solely on permeability. For instance, the lower permeability
(9.36 D vs. 10.55D, 11.3% decrease) and higher SSA (36641 m? m~? vs. 29882 m?*m 2,
22.6% increase) of A; compared to B3 helped reduce the pumping requirement and

increase the reaction rate after optimization.

The pore size distribution of the optimized networks (represented by points A) is
illustrated Fig. 5.8. As depicted, the histogram of PN Aj is right shifted compared
to the other networks, indicating the presence of larger pores. PN A3 comprises a
number of pores exceeding a diameter size of 40 m, a characteristic not observed
in PN A,. Larger pores are associated with larger throats connected to them. As

previously discussed, larger throats exhibit higher hydraulic conductivity, leading
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Figure 5.8: The pore size distribution of optimized PNs, displaying pore diameter
frequency and the cumulative frequency in terms of percentange (%).

to an elevated Reynolds number. This, in turn, enhances mass transfer between
the bulk fluid and the solid-liquid interface, increasing the likelihood of reactant
species undergoing reaction before leaving the electrode. Moreover, the larger pores
distributed in the longitudinal direction (see Fig. 5.6a) facilitate the rapid delivery of
reactants to regions far from the inlet and therefore mitigate significant concentration
depletion. In contrast, as demonstrated in Fig. 5.8, PN A; exhibits a more uniform

pore size distribution within a condensed configuration.

Finally, the 3D rendered representations of the solid-phase porous reactor, derived
from the dimensions of pores and throats across six representative PNs, are pre-
sented in Fig. 5.9. This figure showcase how the predicted networks can be turned
into a solid object. While manufacturability of these tailored designs currently re-
lies on the accuracy and resolution limitations of existing technologies, it is envi-
soned that the ongoing advancements in additive manufacturing methods, such as
projection micro stereolithography [6], offer promising avenues for fabricating such
intricate structures with greater precision and efficiency. The proposed PNM-NSGA
optimization framework proves capable of tailoring innovative microstructures at
a pore-scale with high resolution, encompassing multi-physics considerations with-
out relying on a cubic lattice. Further studies are imperative to explore the impact of

various operating and structural parameters, the trade-off between objectives, and
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Figure 5.9: Solid-phase porous skeleton of networks generated by PNM-NSGA
framework. The grey is solid phase.

the incorporation of additional physics and more complicated reaction kinetics.

5.4 Conclusions

This study presents a robust framework for the large-scale optimization of porous
reactors by integrating PNM with the NSGA-II algorithm. The proposed approach
capitalizes on the computationally efficient nature of PNM to model reactive trans-
port in a porous reactor at the pore scale. It employs the NSGA-II multi-objective op-
timizer to enhance the porous network morphology, aiming to maximize conversion
rates and minimize hydraulic requirements. Distinguished from previous studies,
the proposed framework introduces the idea of background grid, and utilizes De-
launay tessellation as well a relaxation operation to provide greater freedom for the
pore coordinates. Formulating the problem as a multi-objective optimization offers a
versatile framework applicable to various applications with contradictory objectives,
eliminating the need for a specific trade-off.

The proposed PNM-NSGA framework was applied to optimize the microstructure
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of a 2 x 0.52 x 0.52mm? porous reactor, coupling advection-diffusion phenomena
with a first-order chemical reaction. To account for the impact of convective flow
on the mass transfer coefficient between bulk liquid and the solid-liquid interface,
“throat nodes” were introduced to the developed PNM where a local mass trans-
fer coefficient was incorporated into the reaction term. The algorithm generated a
range of Pareto optimal solutions for various pumping costs. Comparison of the
optimal solution with the lowest pumping cost on one end of the Pareto front with
its corresponding PN in the initial generation revealed a significant 280% increase
in reaction rate accompanied by a 6% decrease in pumping cost. This improvement
is attributed to the precise placement and sizing of pores in the designated design
domain. In the absence of a specific trade-off between objectives, three distinct op-
timal solutions were selected from different regions of the Pareto front and thor-
oughly compared. The presented methodology can be used for designing porous
reactors with pore-scale resolution in various applications, such as electrodes for
electrochemical energy devices (e.g., flow batteries, fuel cells, and electrolyzers) and
catalytic reactors. With advancements in additive manufacturing techniques and
manufacturability resolution, it is envisioned that these robust algorithmic methods
will have broad application in generating high-performance porous reactors. Fur-
ther exploration is necessary to extend this framework to accommodate additional
physics, enhance its degree of freedom, and reduce computational costs. Addition-
ally, more investigation is required concerning the manufacturability of the gener-
ated network topologies. Future research could compare the results obtained from
the PNM-NSGA framework with those from the topology optimization of a macro-
scale model. For example, the optimal pore network derived from the PNM-NSGA
framework proposed in this study could be used to calculate volume-averaged struc-
tural properties, such as porosity distribution, and compare them with the optimal
distribution obtained from the density-based topology optimization applied in the
previous chapters. However, it is important to note that the compatibility of results
from these two approaches heavily depends on the volume-averaging relationships
fundamental to macro-scale modeling, which connect effective and intrinsic trans-
port and reaction rate properties (e.g., diffusivity). As a result, directly translating
tindings between these approaches may involve complexities that warrant further,

more comprehensive research.
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Figure 5.A.1: Representation of sphere segment in a pore-throat-pore conduit. (a)
shows assumption of infinite number of differential rings in series, and (b) shows
the geometric dimensions of an infinitesimal ring.

Appendix

5.A Derivation of hydraulic conductance for a sphere

The hydraulic conductance of pore segment, ¢!, as expressed in Eq. (5.2) can be de-
rived via two methods. First, the simpler approach is explained as follows. Since the
cross section of a sphere is not constant when moving from a pole to the center, the

Hagen-Poiseuille model cannot be used for evaluation of hydraulic conductance.

Assuming that the part of the sphere from center to L, (see Fig. 5.A.1) consists of infi-
nite number of infinitesimal cylinder-like rings in series, the Hagen-Poiseuille model
can be used to calculate the overall hydraulic conductance by taking an integral of

the hydraulic resistivity over this portion as follows:

1 Ly
/ Bpdr (5.A.1)
0

g Jo wri(z)
where = denotes the distance from center of the sphere. The radius of an infinitesimal

ring depends on x and is given by:

2 2 (5.A.2)

r(z) =/r

By inserting Eq. (5.A.1) into Eq. (5.A.2) and calculating the integral, the overall hy-

draulic conductivity is expressed as:
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A more comprehensive and robust derivation could be obtained based on the ap-
proximate analytical solution of laminar, single-phase flow in a gradually-varying
channel of arbitrary cross-section that was previously studies by Bahrami and cowork-
ers [43, 44]. They showed that the pressure drop in a conduit with slowly changing
cross-section is expressed by:

)l () (] e

in which [} is the specific polar moment of inertia and A(x) is the cross-section area.

For a circular cross-section, A(z) is given by:

A(x) = mr¥(z) = w(r2 — 2?) (5.A5)

The first and second terms on the right-hand-side of Eq. (5.A.4) correspond to fric-
tional and inertial losses, respectively. Given the assumption that the cross-section
area is changing gradually (dA(x)/dz — 0), the frictional loss is typically substan-
tially more than the inertial loss and therefore the second term could be neglected.
The total pressure drop can be computed by integrating Eq. (5.A.4) over the length
of L, after ignoring the inertial term as follows:

Ap ) / Le ¥
— = 167 ——dx 5.A.6
R ey o4O
Given the definition of hydraulic conductance as the ratio of the volumetric flow rate
to the pressure drop (g, = Q/Ap) and knowing the specific polar moment of inertia

of a circle is 5-, the hydraulic conductance is derived as:

Ly = 4 L L
ih — 1672 / [(% de = 1 | 222 4 panp ! (-”)} (5.A.7)
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5.B Numerical analysis of rendered solid-phase images

To obtain further insight into the tailored designs generated by PNM-NSGA frame-

work, the solid skeletons of representative pore networks (PNs) were analyzed using
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Table 5.B.1: Porosity, permeability, and tortuosity of representative PNs obtained
from numerical image analysis of the rendered solid-phase reactor microstructure.

PN Porosity Permeability - Permeability -  Turosity - LBM

LBM (D) PNM (D) (x/y/z)

Aq 0.4658 3.11 4.57 1.681 / 1.736 / 1.768
A, 0.5247 4.89 6.17 1.673 / 1.750 / 1.719
Aj 0.5352 9.7 9.86 1.589 / 1.735 / 1.749
B, 0.4667 3.26 492 1.634 / 1.718 / 1.728
B, 0.5258 4.75 6.12 1.624 / 1.668 / 1.641
Bs 0.5507 12.9 12.8 1.548 / 1.662 / 1.637

direct numerical simulation. Permeability and tortuosity values obtained via the lat-
tice Boltzmann method (LBM) are detailed in Table 5.B.1. It is important to note
that, due to computational constraints, image analysis was limited to the central
core region of the reactor, spanning 500 ym in size. Consequently, the values pro-
vided in this table may differ from those reported in the main manuscript, which
were derived from pore network modeling (PNM) of the entire reactor. To facil-
itate comparison between the two methods, permeability for the core region was
recalculated based on PNM, as indicated in Table 5.B.1. The permeability values
obtained by LBM and PNM are fairly close, affirming the validity of the generated
PNs through the proposed framework. Additionally, Fig. 5.B.1 illustrates the ra-

tio of post-optimization to pre-optimization values for various pore radii and chord

lengths.

Abbreviations

ADR Advection-diffusion-reaction
BC Boundary condition

CD Crowding distance

DNS Direct numerical simulation
FEM Finite element method

FVM Finite volume method

GA Genetic algorithm

LBM lattice Boltzmann method

MOICA Multi-objective imperialist competitive algorithm
MOO Multi-objective optimization
NSGA Non-dominated sorting genetic algorithm
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PN Pore network

PNM Pore network modeling
PSO Particle swarm optimization
REV Representative elementary volume
SFO Sailfish optimization

WOA Whale optimization algorithm
XRT X-ray tomography
Nomenclature

Ay Wetted surface area

C Concentration

d Voxel (spacing) size

Da Solute diffusion coefficient
Dy Throat diameter

Fop; Objective function

G Total conductance

g Conductance

kr, Mass transfer coefficient

ky Reaction constant

L, Pore segment length

Ly Throat length

Mg Number of genomes (candidate pores)
Npop Population size

p Pressure

De Crossover ratio

Pm Mutation ratio

Pe Peclet number

Q Volumetric flow rate

r Radius

TA Reaction rate

T'm Mutation rate

Greek symbols

Iz Viscosity

P Density

mols™!

m3s~ ! Pa~!orm?s~!

m3s~ ! Pa~!orm?s™!

ms!

ms!
m

m

Pa

Pas

kgm—3
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Chapter 6

Conclusions and future work

Abstract

This final chapter provides a summary of the core conclusions and insights gained
throughout the preceding chapters. The main findings as well as the critical learn-
ings from each part of the research are revisited. Additionally, it outlines several
promising avenues for future investigation, expanding on potential developments

and areas that could benefit from further exploration.

This chapter is partially published as:

M. Alizadeh, P. Charoen-amornkitt, T. Suzuki, and S. Tsushima. “Recent advances
in electrode optimization of electrochemical energy devices using topology
optimization”, Progress in Energy, 7 (2025): 118739.
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6.1 Conclusions

This dissertation seeks to address the question of what constitutes a superior struc-
tural design for enhancing the performance of porous reactors in applications involv-
ing reactive transport phenomena. To tackle this question, a mathematical modeling
and optimization approach was employed to systematically generate design solu-
tions with improved performance. In terms of modeling, macro-homogeneous as
well as pore-scale modeling were adopted to simulate systems performance. For op-
timization, density-based topology optimization (TO) and metaheuristic algorithms
were applied to optimize the morphology of porous reactors in accordance to the
utilized model. These methodologies were applied to various systems, ranging from
a simple reaction-diffusion reactor—where only diffusion is coupled with chemical
reactions—to a real-world application, the polymer electrolyte membrane fuel cell
(PEMEFC), in which multiple transport phenomena are integrated with complex elec-
trochemical reactions. Furthermore, this work investigated the underlying physic-
ochemical reasons behind improved designs, attempting to answer the question of
what makes a better design truly better. To achieve this, entropy generation anal-
ysis was employed to track the optimization process from a physical standpoint.
While conventional studies in mathematical optimization focus primarily on the
conditions before and after optimization, often disregarding the evolution process
unless it bears mathematical or algorithmic significance, this research delved into
the intermediate stages of optimization. By doing so, it provided a physicochemical
explanation for the characteristics of an optimal structural design in porous reactors.
A brief summary and the key conclusions of each chapter are presented below.

In Chapter 2, a two-dimensional reaction-diffusion (RD) system was explored, fo-
cusing on two species involved in a first-order reversible chemical reaction. The
primary goal was to optimize the porosity distribution within a porous reactor to
improve the overall reaction rate. To achieve this, a TO method was applied to
reshape the reactor’s spatial structure, with the aim of forming effective diffusion
pathways that facilitate delivery of reactant and discharge of product while keeping
the net reaction rate as high as possible. Additionally, an entropy generation model
was introduced to assess the system’s irreversibilities, offering insights into the ther-
modynamic implications of the design modifications. The methodologies employed
in this research included mathematical modeling of RD system, implemented using
FreeFEM++, an open-source partial differential equation solver. The optimization

process used the adjoint field method combined with a steepest descent algorithm to
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refine the porosity distribution. The results demonstrated that the optimized poros-
ity distribution enhanced system performance by 57% compared to a uniform layout
with the same average porosity. The optimal design displayed a tree-root-like config-
uration, featuring higher porosity near the inlet and lower porosity near the outlet,
thereby promoting more efficient diffusion and reaction dynamics. To gain further
insights, both local and global rates of entropy production were evaluated to quan-
tify the contributions from different mechanisms during the optimization. Entropy
generation was categorized into “inevitable” and “controllable” components. The
inevitable entropy refers to the entropy produced due to inherent limitations in the
system, such as time and size constraints, which cannot be avoided. This contribu-
tion increases as the system’s operational duty rises—meaning that as the system is
pushed to perform more work or operate under more extreme conditions, inevitable
entropy generation escalates accordingly. In contrast, the controllable component
of entropy production can potentially be minimized by manipulating the driving
forces or transport properties within the system. This component is influenced by
design and operational parameters, such as flow rates, concentrations, and poros-
ity distribution. While it is theoretically possible to reduce controllable entropy to
zero by perfectly controlling the driving forces, practical limitations often hinder
achieving these ideal conditions. Optimizing this controllable entropy is vital for
enhancing overall system efficiency. Although the optimization in this chapter fo-
cused on maximizing the system’s operational duty, scaled entropy was introduced
as a normalized measure to account for inherent system limitations. The concept of
scaled entropy helped to suppress the impact of inevitable entropy production and
was computed based on the square of the reaction rate. While an approximation, it
served as a useful index to assess how the optimization process contributed to the

improved design.

In Chapter 3, building on the research from Chapter 2, the RD system was extended
into an electrochemical reaction-diffusion (ERD) system. The chemical reaction was
replaced by an electrochemical reaction involving electron movement throughout
the electrode. Similar to the RD system, the objective was to enhance electrode
performance by optimizing material spatial distribution. However, several aspects
distinguish the work in this chapter from the RD system. First, the ERD system’s
physics involved both electron and ion transport resulting from the electrochemi-
cal reaction. Additionally, the well-known Butler-Volmer equation was employed
to describe the nonlinear kinetics of the electrochemical reaction. Analogous to the

catalyst layer (CL) of a PEMFC, the electrode was assumed to have a triple-phase
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composition: void space for diffusion of reactant species, a solid phase for electron
transport, and an electrolyte phase for ion transport. TO was used to find the op-
timal distribution of materials within the reactor to achieve the best performance.
To thoroughly explore the concept of “best performance” in this context, two differ-
ent optimization strategies, vertical and horizontal optimizations, were compared
in detail. Vertical optimization involved minimizing overpotential at a fixed cur-
rent density, while horizontal optimization focused on maximizing current density
at a fixed overpotential. The former can be interpreted as finding the best material
layout to minimize cost while maintaining a fixed doing of the system (current den-
sity). The latter, on the other hand, aimed to maximize system doing capacity at a
fixed cost (overpotential). The findings revealed that introducing a heterogeneous
material distribution within the electrode significantly enhances material utilization
and overall performance. Moreover, the choice of the optimization point on the cur-
rent density-voltage (I-V) curve is critical, as optimized designs may not perform
well under varying operational conditions. The differences between vertical and
horizontal optimization approaches were further analyzed from a physical perspec-
tive by comparing changes in entropy generation during optimization in both cases.
The results showed that during optimization, the distribution of entropy production
became more equipartitioned. This indicates that the contributions to entropy pro-
duction from different processes (such as mass diffusion, electric charge transport,
and electrochemical reactions) were more evenly balanced, a desirable outcome for
improving system efficiency. This physicochemical insight could guide future elec-
trochemical reactor designs and may help establish the upper performance limit for
electrochemical systems under non-equilibrium conditions with a given material. A
subsequent study [1], not included in this dissertation, demonstrated how employ-
ing a mixed TO approach can offer a self-guided method that is independent of the
choice of the optimization point.

In Chapter 4, TO was employed for the real-world application of CL structural de-
sign in PEMFC. A two-phase flow model was developed to accurately simulate the
electrochemical and transport phenomena within PEMFCs, especially at high cur-
rent densities, and was validated against experimental data. The TO algorithm
aimed to optimize the CL’s material distribution, focusing on increasing output cur-
rent density at constant voltage. Key findings suggest that an optimal CL design
enhances performance by improving reactant delivery and reducing concentration
overpotential through better material distribution, particularly under areas with high

mass transport losses. This chapter established a robust optimization procedure for
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CL design for PEMFC application, emphasizing the need for validated models and
future explorations into 3D modeling to capture more complex behaviors and im-

prove real-world applicability.

In Chapter 5, a pore-level optimization framework was developed for designing
porous reactors involving advection, diffusion, and reaction. The proposed frame-
work integrated pore network modeling (PNM) with metaheuristic optimization
algorithms to systematically design porous reactors with high pore-scale resolu-
tion. Utilizing PNM enabled modeling reactive transport phenomena without re-
lying on (semi-)empirical relations for describing macroscopic properties such as ef-
fective diffusivity and permeability. The investigated processes involved convective
flow of an electrolyte solution and advection-diffusion transport of active species
within the solution. In addition, the active species reacted in the presence of a solid
porous skeleton. The modeling also introduced “throat nodes” to account for lo-
cal velocity-dependent mass transfer coefficients, previously overlooked in the lit-
erature [2, 3]. All simulations were conducted using OpenPNM, an open-source
Python-based package for PNM simulations. With the goal of going against the
electrolyte flow while improving conversion performance, the optimization prob-
lem aimed to maximize the reaction rate while minimizing pumping requirements.
By introducing a “background grid” of potential pore locations, this multi-objective
optimization was formulated as a binary problem, where the existence of each pore
in the final optimal network was algorithmically determined from the grid. A non-
dominated sorting genetic algorithm II (NSGA-II) was employed to generate a range
of Pareto optimal solutions. The optimization process led to a significant increase
in reaction rates (up to 280%) while simultaneously reducing pumping costs by
6%. Furthermore, the study demonstrated that the pore configuration could be ef-
fectively tailored to meet desired performance metrics, establishing the proposed
framework as a robust tool for high-resolution optimization of porous reactor mor-
phologies.

6.2 Future outlook

Structural optimization and particularly TO hold the promise of crafting ground-
breaking electrode structures capable of reducing material usage while enhancing
the performance of electrochemical energy devices (EEDs). Nonetheless, several

challenges loom on the horizon, including;:
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1. Given that topologically optimized electrode structures tend to be intricate,
the fabrication process presents challenges, particularly due to the electrodes’
thickness, often less than 1 mm (for PEFCs, it can be as thin as 10 microns). This
issue caused many studies in this field to rely solely on mathematical compu-
tations to generate optimal designs but lack sufficient experimental validation
to confirm these designs actually work well. Future research could explore
innovative methods for fabricating the optimized design solutions generated
through mathematical optimization. Additionally, future modeling and opti-
mization studies might incorporate fabrication constraints to ensure the feasi-
bility and practicality of the resulting designs.

2. The primary drawback of this approach lies in its high computational expense,
stemming from the iterative assessment of the objective function. This cost can
become unaffordable, especially for complex systems with a realistic size and
3D model. To mitigate this challenge, previous research endeavors have fre-
quently resorted to simplifying phenomena into more manageable problems
or reducing the design domain or dimensionality to curtail computational ex-
penses. Hence, incorporating all the relevant physics into the TO posed a sig-
nificant challenge. In addition to that, on the mathematics side, researchers are
constantly refining the algorithms used in TO. Their goal is to speed up the
optimization process using one or a combination of techniques, including but

not limited to multi-grid solvers, model reduction, and machine learning [4].

3. The topologically optimized electrode structure represents a mathematical so-
lution that depends on several parameters, including the objective function,
algorithmic approach, tuning parameters, and so on. However, to eliminate
dependence on these factors, a robust design theory is necessary. This theory
would provide a solid framework for optimizing structures without relying on
specific parameters, thus bypassing the optimization process.

4. In optimization techniques like TO, a mathematical model of the system is ini-
tially developed, which is solved for evaluation of objective function(s). To
ensure reliable design solutions that translate to real-world performance im-
provements, validating these continuum models against experimental data is
crucial. While existing studies using TO for electrode design have validated
their models under various operating conditions (e.g. temperature, flow rate,
and relative humidity), the applicability of these models to different structural
designs remains unclear. To address this, future TO applications should in-

corporate validation with experimental data encompassing a broader range of
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operational and structural variations. Specifically, the employed continuum
models should accurately describe the correlation between local microstruc-

ture and overall performance [5].

5. Future research could explore the durability and degradation of tailored elec-
trode structures, though this falls beyond the scope of the current thesis. The
electrode structures presented here were optimized solely for performance.
However, the durability and degradation of these designs occur on a differ-
ent timescale from steady-state performance, requiring further investigation.
To address this, potential approaches may include experimentally or numeri-
cally assessing the durability of these designs, or integrating durability models

into the optimization process as an additional objective or constraint.

In terms of fabricating topologically optimized electrodes, there is a push to exper-
imentally demonstrate the potency of topologically optimized porous electrodes in
practical applications. Currently, the fabrication of these optimized designs proves
challenging due to their geometrical complexity. However, with the ongoing progress
in additive manufacturing and 3D printing technologies, it is envisioned that these
advancements could be leveraged to create such complex structures [6-13]. In one
notable study [14], conducted by Beck and Worsley’s research team, projection micro-
stereolithography was employed to fabricate electrodes for electric double-layer ca-
pacitors, as illustrated in Fig. 6.2.1 a and b , resulting in observed enhancements in
capacitance. Specifically, a 77% and 99% increase in capacitance was achieved for
the optimized electrode compared to the control lattice electrode in numerical simu-
lations and experiments, respectively (see Fig. 6.2.1c). It is essential to note that this
demonstration is currently limited to applications involving electrodes with a single
material. There is substantial room for researchers to delve into the fabrication of
complex structures incorporating multiple materials, such as electrodes for PEFCs
containing electronically conductive materials, catalysts, and ionomers. Neverthe-
less, this type of structure holds promise as a potential avenue for advancing the
performance of electrochemical energy storage systems.

In addressing computational costs, the field has long recognized the imperative need
for efficient techniques to expedite the design process. To mitigate computational
expenses, effective solution schemes and innovative methodologies have been de-
veloped. In recent years, machine learning technologies, particularly deep learn-
ing methods, have witnessed remarkable success across various applications. These
methods have also been employed to alleviate the computational burden of TO by

offering predictive solutions [4]. Many of these techniques are generative models,
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trained on optimal solutions, which can forecast solutions for similar problems un-
der diverse conditions. The generative models depend on existing optimal designs
as training data, setting them apart from conventional TO algorithms. The predic-
tive capabilities of these models are limited by the coverage of the training datasets,
necessitating the consideration of new datasets and networks to accommodate di-
verse domain geometries or constraints. Motivated by these limitations, Deng et
al. [15] recently proposed the Self-directed Online Learning Optimization (SOLO)
algorithm to significantly expedite the TO process. This algorithm approximates
the original costly-to-calculate function by replacing it with a Deep Neural Network
(DNN), which learns and maps designs to objectives as a surrogate model. Based on
the DNN’s optimal predictions, a small amount of training data is dynamically gen-
erated. As the algorithm converges, the DNN adapts to the new training data, pro-
viding improved predictions in the area of interest. SOLO was tested on four types
of simple problems—truss optimization, heat transfer enhancement, fluid-structure
optimization, and compliance minimization—and outperformed state-of-the-art al-
gorithms. It substantially reduced computational time by 2 to 5 orders of magnitude
compared to directly applying gradient-free heuristic optimization. In the context of
utilizing TO to discover groundbreaking electrode structures in EEDs, the integra-
tion of machine learning-assisted algorithms is particularly vital. Electrodes pose a
complex 3D problem involving multiple non-linear coupled partial differential equa-
tions (mass, electronic charge, and ionic charge transports as well as electrochemical
rate process). Therefore, employing machine learning techniques can significantly
enhance the efficiency and effectiveness of TO processes in this domain. Various
objective functions, algorithmic approaches, and tuning parameters yield diverse
optimal solutions in TO. To ascertain whether a solution obtained is globally opti-
mal, robust theoretical frameworks are essential. Recently, efforts have been made
to link entropy generation to topologically optimized structures, proposing that the
optimized structure should minimize entropy generation. Recent findings have in-
deed demonstrated a connection between entropy generation and optimized struc-
tures [16-19]. However, while entropy generation analysis offers valuable insights
into electrode design, it falls short of becoming a comprehensive design theory capa-
ble of guiding the creation of optimal electrode structures. Research in establishing
a theory to design electrodes for high-performance EEDs is pivotal for advancing
energy storage and conversion technologies. While the ultimate goal is to develop
a comprehensive design theory that obviates the need for TO, current TO outcomes
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Figure 6.2.1: Examples of employing additive manufacturing to fabricate topologi-
cally optimized electrodes.
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Figure 6.2.1 (continued from previous page): Schematics and images show (a) the ex-
perimental procedure of electrode fabrication employing 3D printing technology, (b)
topologically optimized and lattice porous electrodes for supercapacitor application
after printing, and (c) comparison between capacitances of topologically optimized
and lattice porous electrodes showing the superiority of the topologically optimized
electrode over the lattice electrode (Reprinted from Ref [14], Copyright (2023), with
permission from Elsevier).
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can serve as valuable benchmarks and represent the best available designs for spe-
cific applications. The key challenge now is to establish a robust theoretical frame-
work capable of generating these optimal designs without relying on numerical tech-
niques like TO. Such a theory would provide researchers with a systematic approach
to electrode design, enhancing the efficiency and effectiveness of EEDs.

In summary, various structural optimization for the design of porous electrodes in
electrochemical EEDs represents a new emerging research direction. Topologically
optimized electrodes possess the potential to overcome longstanding barriers in ef-
ticiency, cost, and performance. The present thesis proposed some novel computer-
aided design strategies for electrodes of EEDs. Furthermore, by exploring the inter-
section of natural design principles and engineering innovation, this thesis inspires
future research directions that not only enhance technological capabilities but also
deepen our understanding of complex systems in nature. The synthesis of cutting-
edge research presented in this thesis is expected to stimulate fruitful discussions
and inspire new avenues of inquiry, thereby contributing to the advancement of the

global transition towards a sustainable energy future.

Abbreviations

CL Catalyst layer

DNN Deep Neural Network

EED Electrochemical energy device

ERD Electrochemical reaction-difussion

NSGA Non-dominated sorting genetic algorithm
PEMEC Polymer electrolyte membrane fuel cell
PNM Pore network modeling

RD Reaction-diffusion

SOLO Self-directed Online Learning Optimization
TO Topology optimization
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