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Nomenclature

a : Semi-major axis

e : Eccentricity

i : Inclination

Ω : Right ascension of ascending node (RAAN)

ω : Argument of perigee

f : True anomaly

M Mean anomaly

FB : Satellite body frame

FI : Earth centered inertial frame

FE : Earth centered rotating frame

hsat Satellite altitude

J : Satellite inertia tensor

J2 Coefficient describing Earth’s oblateness

RE : Mean equatorial radius of the Earth

rs : Satellite position vector in FI

β : CMG skew angle

θk : Gimbal angle of kth CMG

θ̇max: Maximum gimbal rate

θ̈max: Maximum gimbal acceleration

µ Gravitational parameter of the Earth

ωe Earth’s angular velocity of rotation

ωs : Satellite angular velocity
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Vector v in coordinate FX (X ∈ {I, E,B}) is expressed as [v]X . Let θ = f + ω be an
argument of latitude. In addition, the following variables are set:

n =

√
µ

a3
,

η =
√
1− e2,

p = a(1− e2).

5



Chapter 1

Introduction

1.1 Satellite constellation: achievement of sustain-

able Earth management system

Today, satellite systems support society in a wide variety of ways. Stable Internet access
provided by satellites is the basis for economic activity and social infrastructure. In addi-
tion, an Earth observation system that can quickly and accurately collect information on
a global scale is required to acquire information and rescue people in case of a disaster.
Moreover, the improvement of information gathering and monitoring capabilities is also an
important issue today. Satellite systems can contribute to this point. Using satellite sys-
tems, real-time monitoring activities can be achieved. This will enable the reinforcement
of national defense capabilities and counterterrorism measures. As the above examples
show, it is not too much to say that today’s society is made up of satellite systems.

To achieve sustainable Earth management systems, there are some problems with
single-satellite missions. The first one is mission continuity. It is difficult to continuously
monitor the target with one satellite, especially when placed in low Earth orbit. For
observation or communication missions, this problem is critical. The second one is the
satellite coverage. It is difficult for a single satellite to observe the entire Earth. Therefore,
there are places where information cannot be obtained, or communication services cannot
be provided. The third problem is real-time performance. For example, consider a situa-
tion in which one satellite is doing an observation mission in low Earth orbit. Suppose a
disaster occurs in Japan when a satellite is flying over Brazil. In that case, it takes more
than 40 minutes for the satellite to pass over Japan and start observation and sending
data. This example shows that a single satellite system cannot provide the necessary
information quickly in an emergency like a natural disaster.

6



To get over these problems, satellite constellations are becoming more and more pop-
ular today. They are large-scale systems with multiple satellites. Recent technological
developments have made satellites smaller, lighter, and less expensive. Accordingly, space
missions are shifting from missions with a single large satellite to large-scale constellations
with multiple small satellites [1]. If the orbit of each satellite and the number of them
are appropriately set, global coverage, where the entire Earth is always covered, can be
achieved. Then, in the case of communication missions, a continuous internet connec-
tion can be obtained. Also, observation missions can be conducted immediately in an
emergency, and necessary support can be provided quickly. One example is Planet Labs’s
Flock constellation [2]. This constellation achieves global coverage of the entire Earth
with many small 3U-sized satellites. In addition to mission continuity, satellite coverage,
and real-time performance, satellite constellations also have benefits in terms of system
reliability. In the case of a single satellite mission, the mission stops when the satellite
fails. On the contrary, in the case of a satellite constellation, other satellites can sup-
port the mission of a failed satellite. Therefore, satellite constellations can improve the
reliability of the whole system. They ensure data reliability and enable stable missions
over the long term. Like this, the use of the satellite constellation can achieve sustainable
Earth management systems.

1.2 Research background

1.2.1 Optimal constellation design

In Earth observation missions, the most significant benefit of using satellite constellations
is to improve the frequency of revisiting and observation opportunities. It enables us
to make observations more frequently, collect information quickly in an emergency with
observation satellites, and continuously provide internet services and position information
with communication satellites. However, in the orbit determination of satellite constella-
tions, we must consider not only multiple design parameters for multiple satellites but also
some factors peculiar to satellite constellations, for example, revisit time, nadir tracking,
and global coverage [3]. Therefore, a new orbit design method for satellite constellations
is needed.

In previous studies of satellite constellation determination, there have been studies
that analyzed satellite revisit time and distribution from geometrical configurations of
satellite constellations [4, 5], and studies evaluated the revisit frequency and the image-
able range of satellite constellations from the shape of satellite nadir trajectories (ground
tracks) [6, 7]. In addition, Ge [8] obtained a navigation satellite constellation in low Earth
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orbit (LEO) from Precise Point Positioning (PPP) analysis, and Huang [9] proposed an
optimal LEO and medium Earth orbit (MEO) constellation determination method that
achieves global coverage for communication and positioning satellites. To simplify de-
sign problems, many of these constellation design methods evaluate mission performance
with a relatively simple coverage shape, for example, round or rectangle. These geometri-
cally simple coverage evaluations are helpful for communication and positioning missions.
Therefore, many previous researches on satellite constellations [10, 11] mainly focus on
these missions.

As for the Earth observation satellite constellation, Li [12] proposed a constellation
design and evaluation method for Earth observation satellites, and Chao [13] proposed
an optimal constellation design method using multi-step optimization. In addition, Ra-
zoumny [14, 15, 16, 17, 18] proposed the route theory method for designing the optimal
satellite constellation. Route theory describes the constellation design problem in an-
alytical form by mathematically modeling the satellite coverage. This method has the
advantage of achieving the optimal design for an arbitrary satellite constellation. From
these studies, it can be said that the optimal constellation design method for general
satellite observation missions has been established. However, these studies all model the
satellite coverage with a simple shape, such as a rectangle. Thus, design approaches that
accommodate special mission requirements, such as the unique coverage geometry or the
uneven placement of imaging targets, must still be considered.

One of the most popular observation tools is Synthetic Aperture Radar (SAR), and a
SAR mission suitable for satellite constellations is the Interferometric Synthetic Aperture
Radar (InSAR) [19]. InSAR is an observation method that detects minute changes in
the Earth’s surface by conducting multiple radar observations at the same location and
measuring the phase difference between the reflected waves. This observation method is
helpful because it can precisely observe changes in the Earth’s surface caused by crustal
movement [20]. However, SAR observations cannot take images in the nadir and front-
back directions. Hence, geometrically simple coverage models such as rectangles and
circles cannot be used in the mission design process of SAR satellites. In addition, par-
ticularly in InSAR, images should be captured from the same point at different times.
When designing a satellite constellation for SAR (especially for InSAR) observation mis-
sions, these requirements must be considered. Although Zhang’s research [21] for SAR
observation missions concerned with specific coverage requirements for SAR observations,
it evaluates orbit performance by investigating the limited number of candidate orbits,
and no optimality is guaranteed. Therefore, it is necessary to establish an optimal design
method for the Earth observation satellite constellation, considering mission requirements
and observation conditions.
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1.2.2 Constellation deployment control

Considering the launch cost, some satellites in the constellation are generally launched
simultaneously into the same orbit. Therefore, research on orbit trajectory design and
orbit control is essential to deploy satellites into the desired constellation configuration
after launch appropriately.

One approach for this purpose is optimization-based deployment maneuver design. As
in previous studies on optimization-based constellation deployment, Liu [22] proposed an
optimal maneuver design method using Simulated Annealing. Pasquale [23] introduced
a multi-objective trajectory optimization method, and Crisp [24] designed a large-scale,
integrated deployment maneuver based on trade-off relations of the entire satellite system.
However, these studies assume the fuel consumption during the orbit transition. Thus, it
is difficult to adopt these methods for nano- or micro-satellites. Fuel consumption is one
of the biggest problems for small satellites, particularly for nano- and micro-satellites. To
extend mission lifetimes, it is necessary to conduct the constellation deployment maneuver
without fuel consumption. One method for achieving fuel-free orbit deployment in Low
Earth Orbit (LEO) is the use of the differential drag proposed by Leonard in 1979 [25, 26].
In this method, each satellite executes different attitude maneuvers to control the effect
of the atmospheric drag. Then, each satellite takes a different orbit trajectory. To realize
the desired constellation, it is essential to appropriately design attitude maneuvers and
the resulting orbit transitions for each satellite. Concerning the deployment maneuver
design with the differential drag, Li [27] designed a drag-based constellation deployment
maneuver using the optimization method. In addition, Sin [28] also proposed a drag-based
optimal maneuver design method using Simulated Annealing. However, one problem with
the optimization-based maneuver design is the long computation time. Therefore, these
methods cannot be used in on-board calculations for real-time orbit control during the
deployment.

Pontani [29, 30] proposed a constellation deployment method using nonlinear control
as one approach to achieving orbit deployment without complex optimization calculations.
Another approach is using analytical solutions for the trajectories of the required attitude
maneuver and the resulting orbit trajectories. Shang [31] analytically expressed satellite
deployment maneuvers within the same orbital plane. However, these studies assume
the use of thrusters for orbit deployment. Based on these considerations, an analytical
solution for constellation deployment without fuel consumption using differential drag has
been formulated [32]. Nevertheless, that research only considers conditions immediately
after launch and cannot be used for the recalculations during deployment. Thus, the
orbit control method for the drag-based constellation deployment using the analytical
maneuver model has yet to be proposed.
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1.2.3 Optimal mission scheduling

The actual mission operation is considered after the mission design and initial opera-
tion phases. Optimal observation scheduling of the satellite during the mission period is
necessary to implement the actual mission efficiently. This chapter establishes a mission
scheduling method for an Earth observation satellite flying in a given orbit to perform
more observations efficiently.

Defining mission performance evaluation indicators and performing optimization un-
der the necessary constraints is a common way to achieve optimal mission scheduling. In
previous studies, some addressed maximizing the total weight of assigned tasks [33, 34, 35],
and Spangelo [36] considered maximizing data download. Research was also conducted on
optimization, considering multiple evaluation functions, such as the average image quality
and the total weight [37, 38]. Kim [39] considered the optimization for multiple satellites’
rapid observation of target areas. A lot of optimization methods are used for satellite
mission scheduling according to the problem settings and objective functions, for exam-
ple, genetic algorithm [37, 38, 39], taboo search [34], and ant colony optimization [33, 35].
When considering these mission scheduling problems, the maneuver time calculation is a
severe problem. Since the satellite’s attitude kinematics are nonlinear, complex computa-
tion is needed to calculate the attitude maneuver time. The computation time should be
reduced because thousands of iterations are performed in optimization algorithms. As in
previous studies of the maneuver time calculation, an approximated tabulation technique
[40] and a data fitting method [41] were proposed. However, these researches do not con-
sider the actual motion of the satellite’s attitude control actuators. Reaction wheels and
Control Moment Gyros (CMGs) are mainly used as attitude control actuators. In this
research, CMGs are considered. The advantage of CMGs is their large torque. If CMGs
are installed on satellites, faster attitude maneuvers can be achieved, and more targets
can be observed during the mission period. From above, an optimal imaging mission
scheduling method by a satellite equipped with a pyramid configuration CMG system as
attitude control actuators is needed.

In the scheduling process, it is necessary to calculate the attitude maneuvering law
using the CMGs. The previous maneuver calculation method with nonlinear optimization
[42] requires several seconds for computation. If this method is applied in the mission
scheduling optimization process, it takes too long time to finish the optimization since
thousands of calculations are required. Kawajiri [43] used the maximum angular momen-
tum calculated by the interior-point method as an attitude maneuver calculation method
with a low computational cost. However, that research considers only large attitude
changes of tens of degrees and is not applicable to the small attitude changes required for
Earth observation. From above, a low-cost maneuver calculation method for a satellite
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with pyramid configuration CMGs for arbitrary attitude maneuvers is also needed.

1.3 Thesis overview

This thesis comprehensively discusses all phases of the satellite constellation mission from
the mission design to actual operation. Chapters 2, 3, and 4 focus on the pre-launch mis-
sion design, initial operation after launch, and actual mission operation, respectively. The
organization of this thesis is shown in Fig. 1.1. Chapter 2 considers the optimal orbit de-

Chapter 4: Optimal mission scheduling

Chapter 2: Optimal constellation design

Chapter 5: Conclusion and future work

Mission design: Where to fly?

Mission operation: What and When to image?

Initial operation: How to place satellites?
Chapter 3: Constellation deployment control 

with atmospheric drag

Launch

Chapter 1: Introduction
Why is the constellation needed ?

Figure 1.1: Organization of thesis.

sign problem of the constellation. Based on the given mission requirements, orbits should
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be planned appropriately to execute the mission more efficiently. Once the orbit design is
completed, Chapter 3 considers the initial operations immediately after launch. In order
to perform the mission, launched satellites must be deployed to the correct constellation
configuration. Hence, this chapter proposes a constellation deployment control method
using atmospheric drag. Chapter 4 proposes a mission scheduling method for an Earth
observation satellite. The optimal mission scheduling problem for the satellite is formu-
lated as the attitude maneuver schedule optimization problem, considering the satellite
condition, imaging requirements, and actuator behavior. The low-cost attitude maneu-
ver computation law to execute the observation mission with CMGs is also proposed in
this chapter. Finally, Chapter 5 summarizes the thesis. This research will contribute to
achieving the human’s sustainable Earth management system by solving technical prob-
lems in each phase of the satellite constellation mission. The details of each chapter are
shown below.

Chapter 2: Optimal constellation design

Based on the background in section 1.2.1, this chapter focuses on the optimal constella-
tion design based on satellite ground track configurations. Considering the constraints
and mission requirements needed for InSAR observations, the optimal design problem is
described and solved using the meta-heuristic optimization method. First, the orbit dy-
namics are formulated using Kepler orbital elements. From dynamics equations (Gauss’s
planetary equations), the effect of the J2 perturbations in one orbit is evaluated, and the
averaged time derivative of each orbital element is formulated. From this, the analyt-
ical model of orbital element trajectories is formulated. Using the obtained analytical
orbit model, orbit conditions for single satellites to perform InSAR observation, repeat-
ing Sun-synchronous orbits, are mathematically formulated. By comparing the two types
of expressions of the satellite position vector, the expression using the orbital element
and the expression using the latitude and longitude of the nadir point, the calculation
method of the satellite ground track is shown. Then, orbital requirements considering
the ground track placement of multiple satellites to perform InSAR observations are pre-
sented. From these conditions, an optimal constellation design problem can be formulated
as a multi-objective mixed-integer programming model, and a method to solve the prob-
lem is proposed. Finally, the results of the optimal constellation design using the proposed
method for several mission conditions are presented.
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Chapter 3: Constellation deployment control with atmospheric drag

This chapter proposes the atmospheric drag-based in-plane constellation deployment
method for the initial operation of the mission. The required attitude maneuver and
the resulting orbit trajectories are formulated analytically to achieve the required constel-
lation configuration with the smallest altitude decrease. Then, an orbit control method
based on these analytical models is constructed. First, the simplified orbit dynamics
considering the atmospheric drag and averaged J2 perturbation are formulated by simpli-
fying Gauss’s planetary equations. Then, as reference attitude and orbit maneuvers, each
satellite’s optimal cross-section trajectory and the resulting orbit trajectory are obtained
using Direct Collocation with NonLinear Programming (DCNLP). The attitude maneu-
ver, orbit trajectories, and deployment time are analytically modeled from the obtained
optimal trajectories. The accuracy of the obtained analytical solutions is verified by com-
paring them with the result of numerical simulations. Then, a control method based on
the designed analytical model is proposed. The simulation verifies the usefulness of the
proposed control method.

Chapter 4: Optimal mission scheduling

This chapter considers the optimal mission scheduling of the satellite with CMGs for the
actual mission operation. The optimal imaging plan for the satellite during the mission is
formulated as the attitude maneuver scheduling problem, considering the satellite condi-
tion, imaging requirements, and actuator behavior as constraint conditions. Using these
constraints, the mission scheduling optimization problem is formulated as a mixed-integer
programming problem. Then, the mission scheduling optimization method is solved using
ant colony optimization to observe more targets more accurately. When calculating the
maneuver time constraints, gimbal trajectories of CMGs and the satellite attitude maneu-
ver should be calculated at a low computational cost. Thus, a low-cost satellite attitude
maneuver computation law using CMGs is also proposed. Using the obtained optimal
observation scheduling result, the validity of the proposed attitude maneuver estimation
method is verified through the numerical simulation. Although this chapter considers
the mission scheduling of a single satellite, the proposed design path selection algorithm
and the candidate refinement method can be extended to multi-ground track situations.
Hence, this research can be easily extended to mission planning for satellite constellations.
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Chapter 2

Optimal constellation design

In this chapter, an optimal constellation design method is introduced. At the beginning,
orbit dynamics, which is the basis of this research, are described. Considering require-
ments for the observation mission, orbit conditions are formulated. Taking such conditions
into account, multiple constraint conditions and objective functions are mathematically
expressed to reflect the mission requirements. Then, constellation design problems are
formulated as a mixed-integer programming problem and solved by the ant colony opti-
mization. The optimization is done for two mission cases, and the trend of the optimal
solution is discussed.

2.1 Orbit dynamics model using orbital elements

2.1.1 Gauss’s planetary equations

In this research, the Kepler orbital elements (orbit semi-major axis a, eccentricity e,
inclination i, right ascension of ascending node Ω, argument of perigee ω, and true anomaly
f) are used as parameters for the satellite orbit. Also, the argument of latitude θ is defined
as θ = f+ω. Fig. 2.1 shows the relation between orbital elements and the satellite position.

Consider the coordinate system {r̂, ŝ, ĥ} that moves with the satellite, where r̂ is the
unit vector in the satellite direction, ĥ is the vector normal to the orbit plane (angular
momentum direction), and the ŝ is a unit vector and satisfying ŝ = ĥ × r̂. In this case,
the perturbation force Fp applied to the satellite is expressed as follows:

Fp = Frr̂ + Fsŝ+ Fhĥ, (2.1)
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Figure 2.1: Relation between orbital elements and the satellite position.
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where Fr, Fs, and Fh mean the {r̂, ŝ, ĥ} elements of the perturbation force Fp, respec-
tively. If satellites perform the Keplerian motion without any perturbations, orbital ele-
ments a, e, i, Ω, and ω are constant. However, if these perturbation forces exist, these
elements are not constant and vary according to the current position, velocity, and pertur-
bation forces. Gauss’s planetary equations, which represent the time variation of orbital
elements when a perturbation force Fp is applied, are expressed as follows[44]:

ȧ =
2

nη

(
Fre sin f + Fs

p

r

)
, (2.2)

ė =
η

an

{
Fs sin f + Fs

(
cos f +

e+ cos f

1 + e cos f

)}
, (2.3)

i̇ =
rFh cos θ√

µp
, (2.4)

Ω̇ =
rFh sin θ√
µp sin i

, (2.5)

ω̇ = − η

ane

{
Fr cos f − Fs

(
1 +

r

p

)
sin f

}
− r cot i

a2nη
Fh sin θ, (2.6)

Ṁ = n+
η

ane

{
Fr

(
cos f − 2re

p

)
− Fs

(
1 +

r

p

)
sin f

}
, (2.7)

where r = |r| and r = p/(1 + e cos f) holds. When true anomaly f is used instead of
mean anomaly M , the following relation holds:

ḟ =

√
µp

r2
+

p
√
µpe

{
Fr cos f − Fs

sin f(2 + e cos f)

1 + e cos f

}
. (2.8)

A method for obtaining true anomaly f from the known mean anomaly M is described
here. The relation between eccentric anomaly E and M is expressed in Eq. (2.9) from
Kepler’s equation.

M = E − e sinE. (2.9)

When M is known, the value of E that satisfies Eq. (2.9) can be obtained from Newton’s
method. Using the obtained E, f can be calculated using the following equation:

tan
f

2
=

√
1 + e

1− e
tan

E

2
. (2.10)
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In the case of the circular orbit (e = 0), f ,M , and E all coincide. Here, the J2 perturbation
is considered as the perturbation force in the orbit design. Other disturbances, such as
the higher-order terms of the perturbation force and air drag, are not considered. Then,
each component of Fp is described as follows:

Fr =
3µJ2R

2
E

2r4
(3 sin2 i sin2 θ − 1), (2.11)

Fs = −3µJ2R
2
E

2r4
sin2 i sin 2θ, (2.12)

Fh = −3µJ2R
2
E

2r4
sin 2i sin θ. (2.13)

2.1.2 The evaluation of perturbations in one orbit

By integrating Gauss’s planetary equations from 0 to 2π with f using Eqs. (2.2) - (2.8),
the deviation of orbital elements in one orbit caused by the effect of J2 perturbation can
be obtained as follows:

∆a = 0, (2.14)

∆e = 0, (2.15)

∆i = 0, (2.16)

∆Ω = −3πJ2RE
2 cos i

a2(1− e2)2
, (2.17)

∆ω =
3πJ2RE

2(5 cos2 i− 1)

2a2(1− e2)2
, (2.18)

∆M =
3πJ2RE

2(3 cos2 i− 1)

2a2(1− e2)
3
2

. (2.19)

From Eqs. (2.14) - (2.19), a, e, and i do not fluctuate in one orbit, and only Ω, ω, and M
shift. Here, using orbit mean angular velocity n =

√
µ/a3, the orbital period T can be

obtained in the following manner:

T =
2π

n
= 2π

√
a3

µ
. (2.20)
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Then, ¯̇Ω, ¯̇ω, and ¯̇M defined in Eqs. (2.21) - (2.23) can be treated as the averaged time
derivative of Ω, ω, and M :

¯̇Ω =
∆Ω

T
= −

3πJ2RE
2 cos i

√
µ

2a
7
2 (1− e2)2

, (2.21)

¯̇ω =
∆ω

T
=

3πJ2RE
2(5 cos2 i− 1)

√
µ

4a
7
2 (1− e2)2

, (2.22)

¯̇M =
∆M

T
=

3πJ2RE
2(3 cos2 i− 1)

√
µ

4a
7
2 (1− e2)

3
2

. (2.23)

From the averaged time derivative of these elements, the values of Ω, ω, and M at time
t can be analytically formulated as follows:

Ω = Ω0 +
¯̇Ω(t− t0), (2.24)

ω = ω0 + ¯̇ω(t− t0), (2.25)

M = M0 +
¯̇M(t− t0), (2.26)

where Ω0, ω0, and M0 is the values of Ω, ω, and M at t = t0.
The validity of the analytical solution Eqs. (2.24) - (2.26) is evaluated. The analytical

solution and the simulation result of trajectories of Ω and argument of latitude θ = f +ω
are compared in Figs. 2.2 and 2.3. ”Approximate” in the figure means the analytical solu-
tion, and ”Gauss” means the numerical solution obtained by integrating Gauss’s planetary
equations using the Runge-Kutta-Gill method. The simulation and analytical calculation
are performed over two orbits. The satellite orbit is a = 6939.15[km], e = 0, i = 97.64[deg],
and f is obtained from Eqs. (2.9) and (2.10). From Fig. 2.2, the analytical and numerical
solutions of the argument of latitude are almost the same. Therefore, considering the time
longer than several orbits, analytical solutions of the orbital element trajectories shown
in Eqs. (2.24) - (2.26) are helpful. From now on, the circular orbit (e = 0) is assumed in
this chapter. In addition, a, e, i are assumed to be constant, and Eqs. (2.24) - (2.26) are
used to calculate the time-varying orbital elements Ω, ω, and M .
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Figure 2.2: θ trajectories (analytical and numerical solution).

Figure 2.3: Ω trajectories (analytical and numerical solution).
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2.2 Orbit conditions for Earth observation missions

Sun-synchronous orbit is a commonly used orbit for Earth observation missions. Earth
rotates on average 360/365.2422 = 0.9856◦ per day around the Sun. Consider setting
orbital elements so that the orbital plane perturbation ∆Ω obtained from Eq. (2.5) will
be equal to 0.9856◦. Then, the angle between the orbital plane and the direction of
the Sun does not fluctuate considerably. Such an orbit is called a Sun-synchronous orbit,
which allows satellites to pass through their descending nodes at the same local solar time
[45]. Therefore, Sun-synchronous orbit is widely used for LEO satellite missions such as
positioning systems and Earth observations [46, 47], including InSAR observation missions
[48]. Moreover, orbits whose ground track repeats after rotating m times around the
Earth per N days are called repeating orbits. Repeating orbits are adequate for InSAR’s
repeated observation from the same point because they are guaranteed to return to the
initial point. In this section, orbital elements conditions for repeating Sun-synchronous
orbit are introduced.

2.2.1 Sun-synchronous orbit

The orbital elements condition to become a Sun-synchronous orbit is introduced. The
time derivative of the orbital plane’s drift caused by the perturbation, in other words,
the time derivative of Ω can be described as shown in Eq. (2.5). In addition, the time
variation of the direction of the Sun seen from the Earth can be expressed as follows:

Ω̇s =
360

365.2421897
[deg/day]

= 1.991663853× 10−7[rad/sec]. (2.27)

When ¯̇Ω = Ω̇s holds, the orientation of the orbital plane with respect to the Sun is
permanently fixed. Such orbits are called Sun-synchronous orbits. Therefore, comparing
Eqs. (2.5) and (2.27) under the condition of the circular orbit (e = 0), the condition for
a and i to achieve the Sun-synchronous orbit is expressed in the following manner:

cos i = −2× 1.991663853× 10−7

3J2R2
E

√
µ

a
7
2 . (2.28)

2.2.2 Repeating orbit

The orbital element condition is introduced to become a repeating orbit. The time for
a satellite to complete one orbit around the Earth is called nodal period TN , and the
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following relation holds:

TN =
2π

n+ ¯̇M + ¯̇ω
. (2.29)

Substituting e = 0 in Eqs. (2.22) and (2.23), TN can be calculated in a following manner:

TN = 2π

{
n− 3

2
nJ2

(
RE

a

)2

(1− 4 cos2 i)

}−1

≈ 2π

n

(
1 +

3

2
J2

(
RE

a

)2

(1− 4 cos2 i)

)
, (2.30)

where J2 = 1.08263×10−3 and the relation 1 >> 3/2nJ2(RE/a)
2(1−4 cos2 i) is considered.

The orbit condition for a satellite to return to the initial position in N days after m orbits
is that the drift of the descending node in m orbits is equal to 2πN . This condition can
be formulated in the following manner:

mTN(ωe − ¯̇Ω) = 2πN. (2.31)

By substituting Eqs. (2.6), (2.7), and (2.30) into Eq. (2.31), the condition for orbital
elements a and i and repeating conditions N and m to become a repeating orbit is
formulated as shown in Eq. (2.32) [49]

N

m
=

√
a3

µ

{
1 +

3

2
J2

(
RE

a

)2

(1− 4 cos2 i)

}{
ωe +

3

2
J2

(
RE

a

)2√
µ

a3
cos i

}
. (2.32)

The repeating orbit can be achieved by setting proper a and i that satisfy Eq. (2.32) for
the desired N and m. Generally, smaller N and m enable high-frequency observations,
whereas the imageable area is limited, and vice versa. This is the trade-off of the satellite
constellation for Earth observation missions.

2.2.3 Orbit design of repeating Sun-synchronous circular orbit

By substituting Eq. (2.28) to Eq. (2.32), the equation for a is obtained. From this equation
and Eq. (2.28), the settings of a and i to achieve the repeating Sun-synchronous circular
orbit for given N and m can be obtained. However, it is impossible to solve that equation
analytically. Therefore, numerical calculation is performed in the following way:

1. Set desired values of N and m.
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2. By substituting Eq. (2.28) into Eq. (2.32), the equation f(a) = 0 is obtained.

3. Calculate the approximated value of a from N/m =
√

a3/µωe, which is obtained
from Eq. (2.32) when the J2 perturbation is ignored.

4. Using the approximated a as an initial value, f(a) = 0 is solved with Newton’s
method.

5. Obtained a is substituted to Eq. (2.28) to obtain the orbital inclination i.

By performing the calculations in the above steps, orbital elements a and i such that the
orit is a repeating Sun-synchronous circular orbit can be obtained.

2.2.4 Derivation of satellite ground tracks

In this section, the satellite ground track is determined. When satellite orbital elements
(a, e(= 0), i, Ω, ω, M) at time t are given, The unit vector of the satellite direction
[r̂s]I and the position vector of the satellite [rs]I in the inertial frame FI can be expressed
as follows:

[r̂s]I =

 r̂x
r̂y
r̂z

 =

 cosΩ cos θ − sinΩ sin θ cos i
sinΩ cos θ + cosΩ sin θ cos i

sin θ sin i

 , (2.33)

[rs]I =

 rx
ry
rz

 = a[r̂s]I . (2.34)

The latitude and longitude of the nadir point of the satellite are denoted as θel and
θaz. Then, the unit vector of the satellite direction in FE can be expressed as follows:

[r̂s]E =

 cos θaz cos θel
sin θaz cos θel

sin θel

 , (2.35)

where north latitude and east longitude are described as positive values, respectively.
When the angle between FE and FI at time t is defined as λ, the relation λ = λ0 + ωEt
holds. λ0 is the value of λ at the initial time t=0. How to calculate λ0 is explained later.
Then, the unit vector of the satellite direction in FI can be expressed as follows:

[r̂]I =

 cosλ − sinλ 0
sinλ cosλ 0
0 0 1

 cos θaz cos θel
sin θaz cos θel

sin θel

 . (2.36)
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Both Eqs. (2.33) and (2.36) mean the unit vector of the satellite direction in the inertial
system FI . Since they must be equal, we can calculate the latitude and longitude of the
satellite nadir point by comparing their components. From the third component of both
vectors, the following relation holds:

r̂z = sin θel. (2.37)

Since the range of the longitude of the satellite θel is −π/2 ≦ θel ≦ π/2, θel can be
calculated as follows:

θel = arcsin(r̂z). (2.38)

From above, the latitude of the satellite nadir point can be determined without using λ.
On the other hand, the value of λ at time t is needed when we calculate the longitude.
Since λ = λ0 + ωEt, when λ0 is determined, the value of λ at any time can be calculated.
Thus, the longitude can also be calculated. As mentioned in Eq. (2.33), the unit vector
of the satellite direction at the initial time (t = 0) is determined from the initial values
of orbital elements and can be described as follows:

[r̂s0]I =

 cosΩ0 cos θ0 − sinΩ0 sin θ0 cos i0
sinΩ0 cos θ0 + cosΩ0 sin θ0 cos i0

sin θ0 sin i0

 , (2.39)

where the subscript 0 means the value at the initial time. The satellite is assumed to be
the ascending node (the latitude is zero) at t = 0, and the longitude of the initial position
is described as θaz0. Since the satellite orbit is a repeating Sun-synchronous orbit, the
initial position of the satellite can be assumed to be the ascending node without loss of
generality. Then, by comparing the first and the second components of Eqs. (2.36) and
(2.39), λ0 can be calculated in the following equation:

λ0 = Ω0 − θaz0. (2.40)

From the obtained λ0, λ = λ0 + ωEt in any time t can be determined. Also, the satellite
longitude and latitude trajectories can be calculated using the following procedure. First,
the latitude θel obtained from Eq. (2.38) and λ are substituted into Eq. (2.36). Then, by
comparing the first and the second components of Eqs. (2.33) and (2.36), the longitude
of the satellite nadir point θaz at any time t can be determined. In this way, the satel-
lite ground track can be determined from the nadir longitude and latitude of the initial
position and satellite position vector in the inertial systems.
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2.3 Ground track following

2.3.1 Necessity of ground track following

To perform InSAR observations, it is necessary to image the target points multiple times
at different times from the same location. Therefore, in the case of a satellite moving
in a repeating orbit, images can be taken from the same point at different times with
only one satellite because it will return to the same point every N days. If multiple
satellites in a constellation move along the same ground track, the imaging interval can
be shortened. Thus, faster and more accurate observations can be achieved. This section
describes setting up orbital elements so that multiple satellites follow the same ground
track. The chief determines the reference ground track, and deputies follow it. The chief
and deputies take the same orbit semi-major axis a and orbital inclination i; in other
words, they take repeating Sun-synchronous orbits with the same N and m. On the other
hand, RAAN Ω and the argument of latitude θ at the initial time can be different. In
this section, in-plane placement of the satellite (with the same Ω) to all satellites taking
the same ground track is considered first. Out-plane placement is considered next. In
this section, averaged analytical solutions shown in Eqs. (2.21) - (2.23) are used as time
derivatives of Ω, ω, and M .

2.3.2 Ground track following of satellites in the same orbital
plane

The number of satellites placed in one orbital plane is denoted as S. Satellite 1 is the
chief of the ground track, and satellites 2 to S are the deputies that take the same ground
track as satellite 1. The difference in the argument of latitude between satellite 1 and
satellite j (2 ≦ j ≦ S) is denoted as ∆Mj. A configuration example for S = 3 is shown
in Fig. 2.4.

From Eq. (2.34), the position vector rSj(t,∆Mj) of deputy j at time t is described as
follows:

rSj(t,∆Mj) = a

 cosΩ cosΘ(t)− sinΩ sinΘ(t) cos i
sinΩ cosΘ(t) + cosΩ sinΘ(t) cos i

sinΘ(t) sin i

 , (2.41)

Θ(t) = θ0 +∆Mj + θ̇t.
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Δ𝑀3

Δ𝑀2

Sat.1 (Chief)

Sat.2 (Deputy)

Sat.3 (Deputy)

Figure 2.4: Example of satellite in-plane configuration (S = 3).

From Eq. (2.36), the position vector of the observation target point rC(t, θel, θaz), with
latitude θel and longitude θaz at time t, is described in the following manner:

rC(t, θel, θaz) = RE

 cos(θaz + λ0 + ωet) cos θel
sin(θaz + λ0 + ωet) cos θel

sin θel

 . (2.42)

For the ground tracks of satellite 1 and j to coincide, satellite j should fly over the
initial position of satellite 1 at time t. In other words, the location of satellite 1 and the
observation target at the initial time should coincide with the location of satellite j and
the observation target at time t. This relation can be formulated as follows:

rS1(0, 0)− rC(0, θel, θaz) = rSj(t,∆Mj)− rC(t, θel, θaz). (2.43)

By substituting Eqs. (2.41) and (2.42) into Eq. (2.43), the condition for ground tracks of
satellites in the same orbital plane to coincide is expressed as follows:{

ωet = 2πk

∆Mj + θ̇t = 2πl
(k, l are integer variables). (2.44)

The first equation of Eq. (2.44) holds only when t = 24× 60× 60× d = 86400d [s] (d is
an integer). Taking this into account and transforming the second equation, the following
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equation is obtained:

∆Mj = 2π
{
ceil
(
D
m

N

)
−D

m

N

}
(D = 1, 2, · · · , N − 1[day]), (2.45)

where ceil(p) means the integer rounded up to the real number p. From Eq. (2.45), up to
N satellites in one orbital plane can track the same ground track. When N satellites are
placed so that all satellites track the same ground track, the imaging frequency of the same
point is 1 day. This is the minimum imaging interval of the single-plane constellation.

2.3.3 Ground track following of satellite in other orbital planes

From Eq. (2.45), when all satellites in the same orbital plane have the same ground track,
the maximum number of satellites that can be placed is N , and the minimum time to
revisit the same point is one day. In other words, we cannot shorten the revisit time to
less than one day by placing all satellites in the same orbital plane. Here, it is possible
to observe the same targets more frequently by placing deputies correctly in other orbital
planes. If all satellites in P orbital planes take the same ground track at equal intervals,
revisit time can be shortened to 1/P days. Consider orbital plane 1 as the reference
orbital plane and another orbital plane k (2 ≦ k ≦ P ) as the dependent orbital plane.
Satellite 1 in the orbital plane k is the chief of the orbital plane k. The phase difference
between orbital plane 1 and orbital plane k is ∆Ωk, and the difference in the argument of
latitude between the reference satellite of plane 1 and the reference satellite of plane k is
described ∆mk,1. An example of satellite configuration is shown in Figs. 2.5 and 2.6.

Settings of ∆Ωk and ∆mk for satellite k to pass over the initial nadia point of the chief
(descending node) at time ta is introduced here. Due to the effect of the Earth’s rotation
and perturbation of Ω, the longitude of the nadir point changes −(ωE − Ω̇)ta during time
ta. Therefore, to follow the ground track, the following relation should hold:

∆Ω = (ωE − Ω̇)ta. (2.46)

In addition, the chief’s argument of latitude changes from 0 to (Ṁ + ω̇)ta during time ta.
Therefore, for the deputy to pass over the chief’s initial position at time ta, ∆mk should
meet the following condition:

∆mk = −(Ṁ + ω̇)ta. (2.47)

By setting the orbital element of the chief of the orbital plane k from Eqs. (2.46) and
(2.47), the chief of plane k follows the same ground track as the chief of plane 1. Here,
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ΔΩ𝑘

Equatorial 
Plane

Orbital Plane 1
(Reference plane)

Orbital Plane 𝑘

Chief(plane 1)
Chief(plane 𝑘)

Figure 2.5: Example of the orbital plane placement.

plane 1(Reference plane)
𝑎, 𝑒, 𝑖, Ω 𝑡

plane 𝑘
𝑎, 𝑒, 𝑖, Ω 𝑡 + ΔΩ𝑘

Δ𝑚𝑘

*chief of plane 1

Sat.2

Sat.1

Δ𝑀2

Sat.3

Δ𝑀3

Sat.2

Sat.3

Δ𝑀2

Sat.1

*chief of plane 𝑘

Figure 2.6: Example of satellite configuration (S = 3).
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we consider the P orbital planes constellation with N satellites in one plane. When all
satellites evenly follow the same ground track, the imaging interval of a target can be
shortened to 1/P days. Set ta = k/P × 86400 [s] (k = 1, 2, · · · , P ) in Eqs. (2.46) and
(2.47). Then, ∆Ωk and ∆mk for orbital plane k is expressed as follows [6, 7]:

∆Ωk = (ωe − Ω̇)

(
mTN

N
× k − 1

P

)
, (2.48)

∆mk = −(Ṁ + ω̇)

(
mTN

N
× k − 1

P

)
. (2.49)

2.4 Summary of orbital element conditions

From section 2 and 2.3, conditions for the InSAR observation constellation using the
repeating Sun-synchronous circular orbit are summarized as follows:

• The ground track can be determined from N,m, and the chief’s initial descending
node θaz.

• Up to N satellites in one orbital plane can follow the same ground track.

• When satellites with the same ground track are placed on one orbital plane to the
maximum extent, the revisit frequency to the same point (i.e., the InSAR imaging
frequency) is 1 day.

• If P orbital planes are evenly placed, the InSAR imaging frequency of the constel-
lation system can be shortened to 1/P days.
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2.5 Optimal constellation design

A multi-satellite constellation enables an InSAR observation mission to observe more ac-
curately than a single satellite mission. As the number of satellites following the same
ground track increases, the observation from the same point can be more frequent, and
the observation data can be more accurate. On the other hand, expanding constellation
coverage by increasing the number of ground tracks helps observe more targets. However,
when the maximum number of satellites placed in the constellation is limited, increasing
the number of ground tracks will reduce the number of satellites that can follow each
ground track, decreasing the imaging frequency for each target. From the above, to carry
out the Earth observation mission with a satellite constellation, it is essential to properly
design design parameters such as the number of ground tracks, repeat cycle N , and the
number of orbits to repeat m, for a given maximum number of satellites. In this sec-
tion, the optimal constellation design problem is formulated as a nonlinear mixed-integer
programming problem and describes how to find the optimal satellite configuration.

2.5.1 Problem definition

This research focuses on a mission to image a predetermined target cities. Assuming
that each ground track has the same N and m, the maximum number of satellites in the
constellation is denoted as Nsat,max, and the number of ground tracks is denoted as τ .
Then, from Eq. (2.45), up to N satellites with the same ground track can be placed in
the same orbital plane. Therefore, under N repeat cycles and τ ground tracks, up to τN
satellites can be placed in one orbital plane. Define the number of orbital planes as P and
assume that τN satellites, the maximum number of satellites per one plane, are placed in
each orbital plane. From this setting, satellites pass over the same point at least once a
day in all τ ground tracks. The number of satellites placed in the whole constellation is
denoted as Nsat and can be calculated as follows:

Nsat = PτN. (2.50)

P satisfies the following relationship:

Nsat = PτN ≦ Nsat,max < (P + 1)τN. (2.51)

This means, for given N and τ , the number of orbital planes P is maximized so that
the total number of satellites Nsat does not exceed Nsat,max under the condition that
τN satellites are placed in one orbital plane. Each ground track is described as ground
track l (1 ≦ l ≦ τ), and ground track 1 is defined as the reference ground track of
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the constellation. The chief of ground track 1 is the reference satellite of the entire
constellation and is assumed to be placed at the descending node at the initial time. The
chief of ground track l (l ≧ 2) is the satellite placed in the same orbital plane as the
chief of ground track 1 and follows ground track l. The example of N = 3 and τ = 3 is
shown in Fig. 2.7. Then, the difference in the argument of latitude between the reference
satellite of ground track 1 and the reference satellite of ground track l is ∆fl, and the
satellites are placed so that the following relationship holds:

∆fl =
2π(l − 1)

Nτ
. (2.52)

From Eq. (2.52), descending nodes of τ ground tracks are evenly distributed on the equa-
tor. For ground track l, the difference in the argument of latitude between the chief and
deputy in the reference orbital plane can be obtained from Eq. (2.45). In addition, the
inter-orbital phase difference and the intra-orbital phase difference when placed in other
orbital planes can be obtained from Eqs. (2.48) and (2.49).

Plane 1(Reference plane)
𝑎, 𝑒, 𝑖, Ω 𝑡

Plane 𝑘
𝑎, 𝑒, 𝑖, Ω 𝑡 + ΔΩ𝑘

Δ𝑚𝑘
chief(track1)

chief(track2)

chief(track3)
deputy(track1)

deputy(track2)

deputy(track3)

chief (plane 𝑘 ,track 1)

chief (plane 𝑘 ,track 2)chief (plane 𝑘 ,track 3)

Δ𝑓2

Δ𝑓3
2𝜋

𝑁

𝑁 = 3
𝜏 = 3

Δ𝑓2

Δ𝑓3

Figure 2.7: Example of satellite configuration for multiple planes.
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2.5.2 Design parameters

In this research, the constellation design problem is formulated as the design problem of
the satellite ground track’s shape, number, and placement. Design parameters for the
optimization are defined as

x = [N, τ, γ, m̄], (2.53)

where repeat cycle N and the number of ground tracks τ are integer variables, and the
others are continuous variables. γ is the longitude parameter, and m̄ is the repeating
orbit parameter. They determine the longitude of reference descending node θaz and m,
respectively. N and m̄ determine the shape, τ determines the number, and γ determines
the placement of satellite ground tracks. The meaning of two continuous parameters, γ
and m̄, is described in the following section.

Longitude parameter γ

Since all τ ground tracks take the same N and m and are evenly distributed in this
research, all ground track configurations can be determined automatically by only set-
ting the longitude of one descending node of ground track 1 (chief ground track of
the whole constellation), θaz, which is called the reference longitude. Figure 2.8 shows
an example of the configuration of each ground track and its descending nodes when
τ = 3. Considering that orbits are repeating Sun-synchronous orbits and each ground
track is evenly distributed, the range of reference longitude θaz can be narrowed down to
−360/(2mτ) ≦ θaz ≦ 360/(2mτ) without the loss of generality. However, because the up-
per and lower bounds of reference longitude ±360/(2mτ) depend on design parameters m
and τ , a range of θaz cannot be set correctly in optimization tools. To solve this problem,
a longitude parameter γ is introduced as an alternative design variable to θaz. Using γ,
the reference longitude can be described as follows:

θaz =
360

mτ
γ

(
−1

2
≦ γ ≦ 1

2

)
. (2.54)

Using a variable γ with a fixed range as the design variable, optimization can be performed
with a minimum search range.

Repeating orbit parameter m̄

The relations among N,m, and the satellite altitude can be obtained from Eqs. (2.28) and
(2.32). Thus, the satellite altitude depends on m, and there exist upper and lower limits of
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：ground track 1
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：ground track 3

Figure 2.8: Example of ground track configuration (τ = 3).

the altitude depending on the mission constraints, for example, observation instruments
and communication requirements. Therefore, m must be limited in some range for a given
repeat cycle N . For example, when the upper bound of the satellite altitude is 700 km and
the lower bound is 400 km, 44 ≦ m ≦ 46 for N = 3 and 146 ≦ m ≦ 155 for N = 10. In
this way, the range of m greatly changes according to the design parameter N . Therefore,
the proper range of m cannot be directly set in the optimization algorithm. To solve this
problem, a repeating orbit parameter m̄ is introduced as an alternative design variable to
m. Using m̄ and N , m can be described as follows:

m = [Nm̄], (2.55)

where [x] is the floor function, which means the maximum integer number is less than
or equal to a real number x. The parameter m can be designed with a constant de-
sign parameter range by giving upper and lower bounds of m̄ according to the altitude
constraints.
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2.5.3 Objective functions

To evaluate constellation performance, it is necessary to consider mission requirements
from multiple aspects, such as the number of imaging opportunities for each target, revisit
time, fuel consumption, and so on. In this section, the four objective functions are
described to evaluate constellation performance.

Number of orbital planes

When there are P orbital planes that contain τN satellites that meet the ground track
tracking conditions, satellites pass over the same spot P times a day. Multiple observations
from the same position are needed for InSAR observation, and a larger P enables a
higher frequency of InSAR observations, which provides more accurate and more useful
observation data. Therefore, by setting the first objective function f1 as

f1 = −P, (2.56)

−P is minimized, in other words, P is maximized in the optimization process to achieve
high-frequency InSAR observations.

Number of observation windows

We describe a method for determining coverage, which indicates how many cities can
be imaged from a given set of candidate cities by a satellite moving in a given orbit.
When satellites conduct SAR observations, they mainly take images in the left-right
direction and cannot take images in the nadir or front-back directions due to instrumental
limitations [21]. Therefore, when angles α and β are represented as shown in Fig. 2.9
for given positions of satellites and target cities at a certain time, the target city can be
imaged from the satellite at that time if the following conditions hold:

30◦ ≦ |α| ≦ 40◦, (2.57)

|β| ≦ 5◦. (2.58)

From Eqs. (2.5) - (2.7), the position vector of the satellite can be obtained. Therefore,
from its position vector and Eq. (2.36), we can calculate the location of the satellite and
candidate cities and obtain α and β at each time for each candidate city. If a satellite
in the constellation satisfies Eqs. (2.57) and (2.58) at least once for a candidate city, the
city is imageable in the constellation.
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Figure 2.9: Coverage model for SAR observation.

Due to the effect of maneuver time and imaging time, not all candidate cities that
satisfy Eqs. (2.57) and (2.58) cannot be imaged in the actual imaging missions [48].
To properly evaluate the number of observation opportunities by considering these con-
straints, an idea of ”observation windows” is proposed. The mission period (N days) is
separated into fixed time intervals, which are called observation windows. It is assumed
that attitude maneuvers and imaging operations are performed within a single observa-
tion window and that only one target can be imaged in one observation window. Then,
the number of observation windows in which there is at least one imageable target can be
used as an indicator of the number of SAR observations that can actually be performed
in the designed constellation. In this research, the length of a single observation window
is set to 20 seconds, taking into account attitude maneuver scheduling results shown in
Chapter 4. Suppose that the number of observation windows with at least one imageable
target in a grand track l (1 ≦ l ≦ τ) is wl. Then, the objective function f2 is formulated
as follows:

f2 =
τ∑

l=1

wl, (2.59)

where f2 represents the sum of the number of imageable observation windows over all
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ground tracks. Since a larger f2 results in a greater number of SAR observation opportu-
nities in the constellation, the optimization aims to maximize f2.

Maximum waiting time

In Earth observation, there may be a situation where it is suddenly necessary to carry
out an imaging mission to a specific city, for example, when a disaster occurs. To design
a constellation that can respond quickly to such a situation, it is necessary to minimize
the waiting time until each city becomes available for imaging. In this research, we define
Xrev as a vector of the maximum waiting time between the time when each city is ready
to be imaged and the time when it is ready to be imaged again, for all candidate cities as

Xrev = [t1,max, t2,max, · · · , tC,max]. (2.60)

The mean value of Xrev is denoted as X̄rev, and the standard deviation of t1,max to tC,max

is denoted as Irev. Then, the maximum waiting time for each city should be small, and
the bias of the values among all candidate cities should be also small. Therefore, the
objective function f3 for the maximum waiting time can be expressed as follows:

f3 = X̄rev + Irev, (2.61)

and f3 is minimized in the optimization.

Fuel consumption

In a low Earth orbit, altitude maintenance control by consuming fuel is needed because
satellite altitude decreases due to atmospheric drag. Since atmospheric density exponen-
tially decreases with increasing altitude, the lower the altitude of satellites is, the more
fuel is needed to keep the altitude. Reducing fuel consumption is an important issue in
the satellite constellation design. Here, we present a method to estimate fuel consump-
tion for altitude maintenance with enough small computation costs to be included in the
optimization algorithm. From Gauss’s planetary equations, the time derivative of the
semi-major axis a is described as follows [44]:

ȧ =
2

nη

(
Fre sin f + Fs

p

r

)
. (2.62)

Using cross-section A, velocity vector v(|v| = v), drag coefficient Cd, and satellite mass
msat, atmospheric drag Fdrag is formulated as follows:

Fdrag = − 1

2msat

ρCdAv
2v

v
. (2.63)
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When atmospheric drag is given as an external force in the direction of the velocity vector
of Eq. (2.62), the time derivative of a is described as follows [9]:

ȧ =
2a

3
2

√
µ

(
−ρCdA

2msat

v2
)

= −ρCdA

msat

√
µa, (2.64)

where a circular orbit (e = 0) is assumed. For simplicity, we assume that the atmospheric
density ρ is a constant which is determined only by the initial altitude of the satellite
and is not affected by altitude decrease. Then, if the initial semi-major axis is set to
a0 = hsat + RE, from Eq. (2.64), the value of the semi-major axis a at time t can be
expressed analytically as follows:

a(t) =

(
√
a0 −

ρCdA

2msat

√
µt

)2

. (2.65)

From Eq. (2.62), the amount of velocity increase ∆V required to raise the altitude of the
satellite by ∆a with one impulse can be expressed as follows:

∆V =
n

2
∆a. (2.66)

From Eqs. (2.65) and (2.66), ∆V (hsat, T ), the estimated fuel consumption per time T of
a satellite moving at an altitude hsat, can be described as follows:

∆V (hsat, T ) =
n

2
(hsat +RE − a(T )). (2.67)

In this research, the estimated fuel consumption of one satellite per 1 day (86400 s) is
used as the objective function. Therefore, the objective functionf4 is expressed as follows:

f4 = ∆V (hsat, 86400), (2.68)

and f4 is minimized in the optimization.

Evaluation of the objective function f4

In calculating the fuel consumption index f4, approximations to atmospheric density and
orbital angular velocity are incorporated to reduce calculation costs, and the approxi-
mated analytical solution of the orbit semi-major axis trajectory is obtained. Here, this
analytical solution is compared with the result of the numerical simulation considering
the atmospheric drag to verify the validity of the objective function f4. When the position
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vector of the satellite is r, the equations of motion for the two-body problem considering
the perturbation forces acting on the satellite are as follows:

r̈ = −µ
r

r3
+ FJ2 + Fdrag, (2.69)

where FJ2 and Fdrag can be calculated from Eqs. (2.11) - (2.13) and (2.63), respectively.
The simulation result of the 10-day altitude trajectory is compared with the approx-
imated analytical solution calculated from Eq. (2.65). The value of a shows periodic
oscillation due to the effect of J2 perturbation. Since this oscillation is eliminated af-
ter one cycle from Eq. (2.14), the numerical solution for a is expressed by integrating
the value over time and recording the average value for each cycle. In this research,
three conditions, (N,m) = (2, 29) (altitude 720.0 km), (N,m) = (1, 15) (altitude 561.0
km), (N,m) = (2, 31) (altitude 410.6 km) are considered. Comparisons of a’s trajec-
tories between simulation results and analytical solutions for each condition are shown
in Figs. 2.10 - 2.12. Comparisons of the final semi-major axis and calculation time are
shown in Tables 2.1-2.3. Simulations were performed using MATLAB®R2021a on an
IntelCore(TM)i7-1165G7-based computer. The Runge-Kutta-Gill method is used for the
numerical simulations, and the time step is set to 1 second.

Table 2.1: a after 10 days and computation time (altitude 720.0 km).

a after 10 days [km] Computation time [s]
numerical solution 7098.059 80.7
analytical solution 7098.061 2.76× 10−3

Table 2.2: a after 10 days and computation time (altitude 561.0 km).

a after 10 days [km] Computation time [s]
numerical solution 6938.738 75.0
analytical solution 6938.754 2.30× 10−3

Table 2.3: a after 10 days and computation time (altitude 410.6 km).

a after 10 days [km] Computation time [s]
numerical solution 6783.915 74.9
analytical solution 6784.095 3.39× 10−3
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Figure 2.10: Altitude decrease caused by the atmospheric drag (altitude 720.0km).

Figure 2.11: Altitude decrease caused by the atmospheric drag (altitude 561.0km).
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Figure 2.12: a decrease caused by the atmospheric drag (altitude 410.6km).
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From Figs. 2.10 - 2.12 and Tables 2.1 - 2.3, altitude decrease error depends on the
initial altitude. Even at the lowest altitude case, the error of the analytical solution is
only 0.180 [km] over 10 days, which is 2.7×10−3% of the numerical solution. The accuracy
of the numerical solution is sufficient as an evaluation index for optimization calculations.
In addition, the analytical solution reduces computation time by more than 99.99 % for
all altitude conditions. Since thousands of calculations are performed in the optimization
process, the computation time of objective functions should be reduced. From the above,
we can conclude that f4 is appropriate as an indicator of fuel consumption in terms of
accuracy and computational cost.

2.5.4 Optimization conditions

We set constraints for optimization in the following ways:

• 500 [km] ≦ h ≦ 700 [km]

• N and m are coprime each other

• All candidate cities are imageable

• τN ≦ Nsat,max

The upper and lower bounds of the altitude are determined by the conditions of the
observation instruments. In addition, because the constellation design assumes global
coverage, the constellations with candidate cities that cannot be imaged are not focused.
The upper and lower limits of the design variables and various parameters are shown in
Tables 2.4 and 3.1.

The range of the repeating orbit parameter m̄ is set so that all pairs of (N,m) that satisfy
the altitude constraint condition are included. For given ranges of altitudes and repeat
cycles, all possible (N,m) pairs in the given altitude range and N range are examined,
and the possible altitudes for each N value are plotted in Fig. 2.13. The top twelve
results from Fig. 2.13, sorted by altitude, are shown in Table 2.6. We set observation
target cities as big cities with a population of more than one million, and the analysis is
conducted by considering two mission patterns with different observation areas. In the
first analysis, 292 cities all over the world are set as the candidate cities to be imaged.
The second analysis considers satellite missions that observe dense target cities within a
specific area. In this research, as the case study of the second analysis, 99 cities in Asia
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Table 2.4: Range of design parameters.

Design parameters Symbol Min Max
Repeat cycle N 1 30

Number of ground track τ 1 30
Longitude parameter γ -0.5 0.5

Repeating orbit parameter m̄ 14.5 15.5

Table 2.5: Various constellation conditions.

Parameter Symbol Value Unit
Maximum number of satellites Nsat,max 30 -

Satellite mass msat 100 kg
Satellite cross-section A 2 m2

Drag coefficient Cd 2.2 -

Figure 2.13: Relation between repeat cycle N and possible altitudes.
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Table 2.6: Pair of (N,m) (top 12 highest altitude).

Repeat cycles N Repeating orbits m altitude [km]
16 233 699.6
23 335 698.7
30 437 698.2
7 102 696.7
26 379 694.9
19 277 694.3
12 175 692.8
29 423 691.9
17 248 691.2
22 321 690.4
27 394 689.8
5 73 687.4

are regarded as the candidate cities. Fig. 2.14 shows the distribution of candidate cities.
The list of candidate cities is shown in the appendix. Meta-heuristic methods such as
genetic algorithms are commonly used for the optimization problem, and in this research,
ant colony optimization [50] is used as the optimization method. In the next section, we
show the results of the optimal constellation design for the above two patterns.
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Figure 2.14: Candidate cities.

2.6 Optimization results

The optimization results for 292 cities in the entire world are shown in Table 2.7, and
those for 99 Asian cities are shown in Table 2.8. The satellite altitude of each optimal con-
stellation is obtained from N,m, and Eq. (2.32). Consider Sols. 1, 4, and 5 of Table. 2.7,

Table 2.7: Pareto-optimal solutions (World).

θaz
[deg]

N m τ Nsat
Altitude
[km]

−f1 = P
f2

(observation windows)
f3 (Maximum waiting time)

[h]
f4 (∆V )
[10−3m/s]

Sol. 1 -0.183 5 73 6 30 687.44 1 3689 12.037 4.004
Sol. 2 0.136 7 102 4 28 696.69 1 3530 12.029 3.475
Sol. 3 -0.663 5 73 3 30 687.44 2 1847 11.141 4.004
Sol. 4 0.0330 7 102 2 28 696.69 2 1772 11.135 3.475
Sol. 5 0.882 7 102 2 28 696.69 2 1765 11.128 3.475
Sol. 6 -0.944 5 73 2 30 687.44 3 1271 4.961 4.004
Sol. 7 -1.019 5 73 2 30 687.44 3 1253 4.995 4.004

solutions with different numbers of the orbital plane. The orbital plane configuration and
histograms of the maximum waiting time, mean waiting time, and number of observation
windows for each candidate city are shown in Figs. 2.15(a) - 2.17(d).

Consider Sol. 1, 4, 5, and 7 of Table. 2.8, solutions with different numbers of the
orbital plane. The orbital plane configuration and histograms of the maximum waiting
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θaz
[deg]

N m τ Nsat
Altitude
[km]

−f1 = P
f2

(observation windows)
f3 (Maximum waiting time)

[h]
f4 (∆V )
[10−3m/s]

Sol. 1 -0.183 5 73 6 30 687.44 1 3689 12.037 4.004

(a)Orbital plane configuration (b)The number of observation windows

(c)Maximum waiting time (d)Mean waiting time

Figure 2.15: The detail of the optimization result(World, P = 1).

44



θaz
[deg]

N m τ Nsat
Altitude
[km]

−f1 = P
f2

(observation windows)
f3 (Maximum waiting time)

[h]
f4 (∆V )
[10−3m/s]

Sol. 3 -0.663 5 73 3 30 687.44 2 1847 11.141 4.004

(a)Orbital plane configuration (b)The number of observation windows

(c)Maximum waiting time (d)Mean waiting time

Figure 2.16: The detail of the optimization result(World, P = 2).
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θaz
[deg]

N m τ Nsat
Altitude
[km]

−f1 = P
f2

(observation windows)
f3 (Maximum waiting time)

[h]
f4 (∆V )
[10−3m/s]

Sol. 6 -0.944 5 73 2 30 687.44 3 1271 4.961 4.004

(a)Orbital plane configuration (b)The number of observation windows

(c)Maximum waiting time (d)Mean waiting time

Figure 2.17: The detail of the optimization result(World, P = 3).
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Table 2.8: Pareto-optimal solutions (Asia).

θaz
[deg]

N m τ Nsat
Altitude
[km]

−f1 = P
f2

(observation windows)
f3 (Maximum waiting time)

[h]
f4 (∆V )
[10−3m/s]

Sol. 1 0.380 30 437 1 30 698.24 1 1280 11.985 3.387
Sol. 2 -0.103 16 233 1 16 699.60 1 693 12.024 3.310
Sol. 3 0.205 5 73 3 30 687.44 2 626 10.912 4.004
Sol. 4 -0.749 7 102 2 28 696.69 2 604 10.915 3.475
Sol. 5 -1.233 5 73 2 30 687.44 3 439 5.288 4.004
Sol. 6 -1.191 5 73 2 30 687.44 3 436 5.197 4.004
Sol. 7 -1.083 5 73 2 30 687.44 3 434 4.864 4.004
Sol. 8 -0.913 5 73 2 30 687.44 3 425 4.740 4.004
Sol. 9 0.355 5 73 2 30 687.44 3 413 4.653 4.004
Sol. 10 0.461 7 103 1 28 650.73 4 262 5.741 6.116

time, mean waiting time, and number of the observation windows for each candidate city
are shown in Figs. 2.18(a) - 2.21(d).
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θaz
[deg]

N m τ Nsat
Altitude
[km]

−f1 = P
f2

(observation windows)
f3 (Maximum waiting time)

[h]
f4 (∆V )
[10−3m/s]

Sol. 1 0.380 30 437 1 30 698.24 1 1280 11.985 3.387

(a)Orbital plane configuration (b)The number of observation windows

(c)Maximum waiting time (d)Mean waiting time

Figure 2.18: The detail of the optimization result(Asia, P = 1).
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θaz
[deg]

N m τ Nsat
Altitude
[km]

−f1 = P
f2

(observation windows)
f3 (Maximum waiting time)

[h]
f4 (∆V )
[10−3m/s]

Sol. 4 -0.749 7 102 2 28 696.69 2 604 10.915 3.475

(a)Orbital plane configuration (b)The number of observation windows

(c)Maximum waiting time (d)Mean waiting time

Figure 2.19: The detail of the optimization result(Asia, P = 2).
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θaz
[deg]

N m τ Nsat
Altitude
[km]

−f1 = P
f2

(observation windows)
f3 (Maximum waiting time)

[h]
f4 (∆V )
[10−3m/s]

Sol. 5 -1.233 5 73 2 30 687.44 3 439 5.288 4.004

(a)Orbital plane configuration (b)The number of observation windows

(c)Maximum waiting time (d)Mean waiting time

Figure 2.20: The detail of the optimization result(Asia, P = 3).
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θaz
[deg]

N m τ Nsat
Altitude
[km]

−f1 = P
f2

(observation windows)
f3 (Maximum waiting time)

[h]
f4 (∆V )
[10−3m/s]

Sol. 10 0.461 7 103 1 28 650.73 4 262 5.741 6.116

(a)Orbital plane configuration (b)The number of observation windows

(c)Maximum waiting time (d)Mean waiting time

Figure 2.21: The detail of the optimization result(Asia, P = 4).
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2.7 Discussion

Tables 2.7 and 2.8 show that the maximum waiting time and the number of observation
windows tend to decrease as the number of orbital planes increases. In other words, there
is generally a trade-off relation between the number of InSAR imaging opportunities and
the InSAR observation frequency or the required waiting time. However, as an exception,
only in the case of P = 4 for Asia, the values of all the objective functions except the
number of orbital planes are worse than in the case of P = 3. This is because, from Eq.
(2.50), achieving global coverage with a smaller number of ground tracks and repeat cycles
is needed when the number of orbital planes is set as four. Therefore, there is no room to
improve other objective functions in such a narrow possible range of design parameters.
From above, the frequency of InSAR imaging and mission robustness, i.e., short imaging
latency, are not always compatible. Next, the histograms of the maximum waiting time
and the mean waiting time are compared. They show almost the same trend in some
conditions like Fig. 2.17. On the contrary, there are some conditions in which the shape
of the historam does not coincide, such as Figs. 2.15 and 2.21. These facts show that
the trend of the maximum waiting time does not entirely coincide with the trend in the
mean waiting time and the number of observation windows. We can say that increasing
the number of observation windows alone is not enough to improve mission robustness.
Therefore, the robustness of the constellation for the emergency mission and the mission
scheduling flexibility for regular missions must be evaluated separately. This result shows
the necessity of the objective function f2 that evaluates the robustness of the mission.

Comparing Sols. 1 and 2 for both conditions and Sols. 3 and 4 for the World, the
number of the observation windows tends to be larger when τ and N are large. There are
two possible approaches to increasing the number of observation windows.

• Increasing P to improve the revisit frequency to the same position

• Increasing N and τ to expand the coverage area of the ground track

P , N , and τ are constrained by the relation NτP ≦ Nsat,max. Therefore, the optimal
combination of these three elements must be considered. The solution with N = 5 and
τ = 6 takes the best value of f2 when the entire World is observed. Therefore, increasing τ
effectively expands the coverage area in this condition. On the contrary, since the solution
with N = 30 and τ = 1 takes the best f2 in the case of Asia, taking the larger value of
N is effective in expanding the imaging possibilities of the target cities in Asia. As these
results show, the factors that strongly affect the imageability depend on the distribution
of observation targets of the mission. It is shown that the proposed method can be used
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to obtain optimal constellation configurations that reflect the different mission settings
and requirements.

In addition, when observation targets are limited to Asia, P = 4 can be achieved, and
4 InSAR imaging in one day is possible. However, in the case of the entire world, the
solution with P = 4 cannot be achieved. This difference can be attributed to the difficulty
of global coverage. When the entire world is observed, it is more difficult to ensure global
coverage than in the case of Asia. Therefore, the larger N and τ are needed to expand the
coverage area. Then, P is strongly constrained by NτP ≦ Nsat,max and P = 4 becomes
impossible.

For both target conditions, most of the Pareto-optimal orbits are set at the higher
600 km altitude, near the upper bounds of the altitude. There are two possible reasons
for this. The first reason is the effect of minimizing fuel consumption as the objective
function f4. The other reason is that the high altitude expand the field of view [12, 21].
Therefore, the high altitude is also adequate for increasing the number of observation
windows. Moreover, especially in the case of Asia, the solutions with fewer orbital planes
tend to have a higher altitude, and those with more orbital planes tend to have a lower
altitude. This is likely due to the relationship between the distribution of possible (N,m)
values and altitudes. Figure 2.13 shows that the larger the value of N , the larger the
number of possible altitudes, and it becomes easier to obtain a high-altitude solution.
However, since N and m must be prime to each other in the constraint condition, there
are some exceptions. For example, (N,m) = (14, 204) (altitude: 696.7 km) can be treated
as the same orbit as (N,m) = (7, 102). Then it is omitted from the N = 14 column in Fig.
2.13. In the case of Asia, the first and third orbital conditions of Table 2.6 are used in the
solution of P = 1. Since Nsat,max = 30 in this research, from Eq. (2.51), it is impossible
to take more than one orbital plane for the top three constellation configurations of Table
2.6. The pair of (N,m) with the largest altitude that can take more than one orbital
plane is (N,m) = (7, 102), which is adopted in many solutions with two orbital planes in
both conditions. The solution with (N,m) = (5, 73), which is adopted in the solutions
with three orbital planes, takes the second-highest altitude among the solutions with less
than ten repeat cycles; that is, solutions with at least three orbital planes are possible.
Thus, it is implied that the Pareto-optimal solutions mainly select the pair of (N,m)
with the highest altitude to the extent that the global coverage constraint and Eq. (2.51)
are satisfied, while also taking into account the impact of τ on the number of imageable
observation windows.
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2.8 Conclusion to Chapter 2

In this research, an optimal constellation design method for Earth observation missions
using InSAR is proposed. First, the analytical orbit model was constructed to calculate
the time variation of orbital elements at a low computational cost. The validity of that
model is demonstrated by comparing it with the numerical simulation. First, requirements
for satellite orbital elements to carry out observation missions properly and effectively,
i.e., repeating Sun-synchronous orbit, have been formulated. Next, the method for the
satellite’s ground track has been described. Then, the conditions for multiple satellites
to follow the same ground track to improve the InSAR observation frequency have been
formulated. They are formulated separately for satellites in one orbital plane and different
orbital planes. Then, the optimal constellation design problem has been mathematically
formulated as a nonlinear mixed-integer programming problem. This problem has been
solved using ant colony optimization, a multi-objective optimization method, from the
perspective of the number of orbital planes, the number of observation windows, maximum
waiting time, and fuel consumption. The optimization calculation has been conducted
under two mission conditions; observing cities all over the world or cities only in Asia.
As a result of the optimization, a set of Pareto-optimal solutions consisting of multiple
constellation configurations with trade-off relations have been obtained for both mission
conditions.

From the Pareto-optimal solutions, it has been found that the best solution is to
obtain as high an altitude as possible while satisfying the number of orbital planes and
coverage constraints. The comparison of the two observation conditions has shown several
differences in trends. First, the Asian case has provided solutions with better mission
robustness and design flexibility. Furthermore, only in the case of Asia, a solution with
four orbital planes has been obtained, which means that four InSAR observations can
be achieved in one day. The reason for these trends is thought to be the difference
in difficulty in achieving global coverage between observing the entire world and only
Asia. These results confirm that the proposed method can provide optimal constellation
configurations adapted to the given mission conditions. The proposed method can be
applied to various observation requirements and mission settings by giving a different list
of candidate cities.
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Chapter 3

Constellation deployment control
with atmospheric drag

3.1 Satellite Orbit Dynamics

This chapter focuses on the in-plane deployment of launched satellites. The effect of atmo-
spheric drag can be adjusted by moving the attitude of the satellite or rotating the solar
panel. From Gauss’s planetary equations, if the altitude decrease caused by the atmo-
spheric drag can be properly controlled, in-plane constellation deployment can be achieved
only by atmospheric drag without fuel. Therefore, this research proposes an atmospheric
drag-based feedback control law for constellation in-plane deployment. From the simpli-
fied orbit dynamics, optimal cross-section trajectories of satellites for the constellation
deployment is calculated by the nonlinear optimization. Using obtained trajectories as
reference trajectories, cross-section trajectories and resulting orbit trajectories are ana-
lytically formulated. Then, a feedback control law with regular updates of analytical
solutions is constructed and the efficiency is verified by the numerical simulation.

3.1.1 Problem settings

To express the satellite dynamics, Gauss’s planetary equations shown in Chapter 2 is
used. From Eqs. (2.2) - (2.8), the time derivative of each orbital element is affected by
some of the other orbital elements. Therefore, if the transitions of these orbital elements
are designed appropriately, the desired constellation configuration can be achieved. From
Gauss’s planetary equations (Eqs. (2.2) - (2.8)) and Eqs. (2.11) - (2.13), the effect of J2
perturbation on a, e, and i is canceled in one orbit cycle. Therefore, it is assumed that a,
e, and i do not change with the effect of the J2 perturbation. In addition, from Eqs. (2.5)
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- (2.8), the time derivative of Ω is much smaller than that of θ = f + ω [51, 52]. Since
satellite constellation deployment in one orbital plane is considered in this chapter, Ω is
assumed to be constant. Then, the trajectory of one satellite in the constellation can be
determined from two orbital elements, a and θ.

Next, let Fdrag be the external force due to the atmospheric drag. When v is the
velocity vector of the satellite and v = |v|, Fdrag is formulated as follows:

Fdrag = −ρCdAv
2

2msat

ŝ, (3.1)

where ρ is assumed to be constant in this research. Although the effect of the J2 on the
semi-major axis a is neglected, the effect of the atmospheric drag on a is considered in this
research. When the effect of the atmospheric drag is considered, r̂, ŝ, and ĥ components
of Fdrag are used as Fr, Fs, and Fh in Eqs. (2.2) - (2.8).

3.1.2 Simplified orbit dynamics

When assumptions shown in the previous section are applied to Eqs. (2.2), (2.6), and
(2.8), the simplified satellite orbit dynamics considering the effect of the J2 perturbation
and atmospheric drag is expressed as follows:

ȧ =
CdρA

√
µ

msat

, (3.2)

θ̇ =
√
µa−

3
2 − 3πJ2Re

2

2
(1− 4 cos2 i)

√
µa−

7
2 , (3.3)

where the circular orbit (e = 0) is assumed. In actual operation, A in Eq. (3.2) is
manipulated by the satellite attitude maneuver, a and θ change accordingly. In this way,
the atmospheric drag can be used to change satellite orbits without fuel consumption.
The optimal A transitions to achieve the desired in-plane constellation configuration are
discussed in the next section.
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Figure 3.1: Constellation configuration for N = 5.

3.2 Maneuver Optimization

3.2.1 Problem definition

In this research, N satellites are assumed to be launched at the same position in a circular
orbit. The orbit of each satellite is changed through its attitude maneuver. Finally,
all satellites are evenly distributed in one orbital plane with the same semi-major axis.
Among N satellites of a constellation in one orbital plane, one satellite is designated as
Sat. 1, which is the reference satellite. Then, starting from the satellite with the smallest
in-plane phase difference to Sat. 1, Sat. 2 to Sat. N are defined. Figure 3.1 shows the
final constellation configuration for N = 5, where ∆θj in the figure is the desired in-
plane phase difference of satellite j from the reference satellite. The orbit semi-major axis
and the argument of latitude at time t of the satellite j are described as aj(t) and θj(t),
respectively. Then, the requirements on aj and θj at the deployment ending time tf are
expressed as follows:

a1(tf ) = a2(tf ) = · · · = aN(tf ), (3.4)

θj+1(tf )− θj(tf ) =
2π

N
(j = 1, 2, · · · , N − 1). (3.5)
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3.2.2 Normalized dynamics

To accelerate the convergence of the nonlinear maneuver optimization, semi-major axis a
and time t are normalized. Normalized parameters ā and τ are expressed in the following
manner:

ā =
a

a0
, (3.6)

τ =

√
µ

a03
t, (3.7)

where a0 is the semi-major axis of the desired constellation. Then, using normalized
parameters, Eqs. (3.2) and (3.3) can be rewritten in the following way:

dā

dτ
= −β

√
ā, (3.8)

dθ

dτ
= ā−

3
2 + P̄ ā−

7
2 , (3.9)

where β = Cda0ρA/msat and P̄ = −3πJ2Re
2(1 − 4 cos2 i)/(2a0

2). In addition, the nor-
malized parameter α (−1 ≦ α ≦ 1) is introduced instead of A. Between α and A, the
following relation holds:

A =
(Amax + Amin)

2
+ α

(Amax − Amin)

2
, (3.10)

where Amax and Amin are the maximum and minimum values of A, respectively.

3.2.3 Optimization using DCNLP

Direct collocation with nonlinear programming (DCNLP) [53] is used as a trajectory
optimization method. DCNLP is an optimization method that designs time transitions of
inputs and state variables using the equations of motion and initial and terminal conditions
as constraints. In this research, the input is the cross-section for each satellite and each
time. Moreover, the state variables are a and θ. In addition to the input and state
variables, normalized total deployment time τf is also optimized as a design parameter.
When the deployment time is divided equally into T time steps and the number of satellites
is N , state yj,k and input uj,k for Sat. j (1 ≦ j ≦ N) at the kth time step (1 ≦ k ≦ T )
are described in the following manner:

yj,k = [āj,k, θj,k], (3.11)

uj,k = αj,k. (3.12)
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Using the above yj,k and uj,k, Eqs. (3.8) and (3.9) can be rewritten as shown in Eq. (3.13)

ẏj,k = f(yj,k, uj,k). (3.13)

The design parameter x of the DCNLP has the 3NT + 1 variables shown below:

x = [z1, · · · , zT , τf ], (3.14)

zk = [y1,k, u1,k, · · · yN,k, uN,k].

As the constraint condition, a and θ in each j and k must satisfy Eq. (3.13). To adopt
equations of motion in the constraints of DCNLP, the equations are discretized using
the Hermite-Simpson Collocation [54]. When Eqs. (3.8) and (3.9) are discretized with
Hermite- Simpson Collocation, constraints of equations of motion are described as the
following equations for 1 ≦ j ≦ N and 1 ≦ k ≦ T − 1:

yj,k+1 − yj,k =
f(yj,k+1, uj,k+1) + 4f̄j,k + f(yj,k, uj,k)

6
dτ, (3.15)

f̄j,k = f

(
yj,k + yj,k+1

2
− ∆fj,k

8
dτ,

uj,k+1 + uj,k

2

)
,

∆fj,k = f(yj,k+1, uj,k+1)− f(yj,k, uj,k),

dτ =
τf
T

=
x(3NT + 1)

T
.

In addition, the initial and final constraints are expressed as follows:

ā1,1 = ā2,1 = · · · = āN,1, θj,1 = 0, (3.16)

āj,T = 1, θj,T − θ1,T − 2π(j − 1)

N
= 0, (3.17)

where values of ā and θ of Sat. j in time step k are denoted as āj,k and θj,k, respectively. In
this research, the objective function of DCNLP is the minimization of the altitude decrease
during the deployment. Since the final altitude is fixed, it can be achieved by minimizing
the initial altitude, which requires less fuel for launch. Therefore, this objective function
is reasonable to improve the launch efficiency. Considering Eqs. (3.16) and (3.17), the
objective function of DCNLP fobj,opt is described as follows:

fobj,opt = ā1(0)− ā1(τf ) = ā1(0)− 1. (3.18)

The optimization is performed using the orbit and satellite conditions shown in Table 3.1.
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Table 3.1: Optimization conditions.

Parameter Symbol Value Unit
Initial semi-major axis a0 6788.8 km
Orbial inclination angle i 97.07 deg
Number of satellites N 10 -

Satellite mass msat 4.9 kg
Maximum cross-section Amax 2.25× 10−1 m2

Minimum cross-section Amin 3.71× 10−2 m2

Drag coefficient Cd 2.2 -
Atmospheric density ρ 2.459× 10−3 kg/km3

Number of time step T 500 -
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Figure 3.2: Optimal trajectories of cross-section A.
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Figure 3.4: Optimal trajectories of the constellation deployment maneuver.
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Optimal trajectories of cross-section A, semi-major axis a, and in-plane phase difference
from Sat. 1 are shown in Figs. 3.2 - 3.4.

From Fig. 3.2, it can be seen that Sat. 1 and Sat. N switches the maximum and
minimum cross-section during the deployment. In addition, other satellites also perform
a switch from the small A to the large A, or vice versa. Moreover, Fig. 3.3 shows that all
satellites take the same a at final time tf , and Fig. 3.4 shows that the phase difference of
each satellite from Sat. 1 is increasing evenly. Therefore, it can be said that the optimal
attitude maneuver and trajectories of a and θ have been obtained from DCNLP.
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3.3 Analytical Formulation of the In-Plane Constel-

lation Deployment Maneuver

In the optimal design of the satellite constellation, thousands of calculations must be per-
formed to evaluate the cost and performance of the constellation [13, 55]. In addition, for
real-time orbit control, orbit transitions must be calculated at a low computational cost
because of the limited performance of on-board satellite computers. Therefore, analytical
solutions of the normalized deployment time τf and the trajectories of a, θ, and A are
needed. Thus, in this section, a simplified satellite maneuver to achieve the desired con-
stellation configuration is modeled. First, from the tendency of the obtained analytical
maneuver, analytical trajectory models of A, a, and θ are formulated. From the analyt-
ical models for Sat. 1 and Sat. N , the total deployment time τf is obtained. Using τf ,
parameters to determine other satellites’ trajectories of A, a, and θ are calculated.

3.3.1 Cross-section trajectory model

Based on the tendency of optimal trajectories of the cross-section shown in the previous
section, the optimal cross-section trajectory of the satellite j is formulated as the two-
phase maneuver model shown in Eq. (3.19) and Fig. 3.5:

β =

{
β2 (0 ≦ τ ≦ (1− γ)τf )

β1 ((1− γ)τf < τ ≦ τf )
(0 ≦ ∆θj < π) ,

β =

{
β1 (0 ≦ τ ≦ γτf )

β2 (γτf < τ ≦ τf )
(π ≦ ∆θj < 2π) , (3.19)

β1 =
βmax + βmin

2
+ α1

βmax − βmin

2
, β2 =

βmax + βmin

2
− α2

βmax − βmin

2
,

where β1 and β2 take different values for each satellite. The trajectory model of the
cross-section depends on the desired in-plane phase difference ∆θj. α1 and α2 determine
the cross-section that each satellite takes. The switching timing of the cross-section is
determined by γ, which is common to all satellites.

3.3.2 Analytical formulation of the orbit trajectories

Trajectories of ā and θ when the satellite takes the cross-section transition shown in Eq.
(3.19) are formulated here. At the initial time τ = 0, θ’s of all satellites are assumed to
be 0. In addition, at the final time τ = τf , ā’s of all satellites are assumed to be 1. Then,
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Figure 3.5: Two-phase cross-section trajectory model.
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from Eq. (3.8), the trajectory of ā is analytically formulated as shown in Eqs. (3.20) and
(3.21):

√
ā(τ) =

1 + β2

2
(τf − τ) + β1−β2

2
γτf (0 ≦ τ ≦ (1− γ)τf )

1 + β1

2
(τf − τ) ((1− γ)τf < τ ≦ τf )

(0 ≦ ∆θj < π) , (3.20)

√
ā(τ) =

1 + β1

2
(γτf − τ) + β2

2
(1− γ)τf (0 ≦ τ ≦ γτf )

1 + β2

2
(τf − τ) (γτf < τ ≦ τf )

(π ≦ ∆θj < 2π) . (3.21)

From the obtained ā trajectories and Eq. (3.9), the trajectory of the argument of latitude
θ for satellite j (0 ≦ ∆θj < π) can be formulated as follows:

θ(τ) =


1
β2

(
1− β2

2
τ
)−2

+ P̄
3β2

(
M̄ − β2

2
τ
)−6 − M̄−2

β2
− P̄ M̄−6

3β2
(0 ≦ τ ≦ (1− γ)τf )

1
β1

{(
L̄− β1

2
τ
)−2 −

(
1− γβ1

2
τf
)−2
}

+ P̄
3β1

{(
L̄− β1

2
τ
)−6 −

(
1− γβ1

2
τf
)−6
}
+ θ1 ((1− γ)τf ) ((1− γ)τf < τ ≦ τf )

,

(3.22)

where M̄ = 1 + β2/2τf + (β1 − β2)/2γτf and L̄ = 1 + β1/2τf . Similarly, the trajectory of
the argument of latitude θ for satellite j (π ≦ ∆θj < 2π) can be formulated as follows:

θ(τ) =



1
β1

(
Q̄− β1

2
τ
)−2

+ P̄
3β1

(
Q̄− β1

2
τ
)−6 − Q̄−2

β1
− P̄ Q̄−6

3β1
(0 ≦ τ ≦ γτf )

1
β2

{(
R̄− β2

2
τ
)−2 −

(
1 + (1−γ)β2

2
τf

)−2
}

+ P̄
3β2

{(
R̄− β2

2
τ
)−6 −

(
1 + (1−γ)β2

2
τf

)−6
}
+ θ (γτf ) (γτf < τ ≦ τf )

, (3.23)

where Q̄ = 1 + β2/2τf + (β1 − β2)/2γτf and R̄ = 1 + β2/2τf .

3.3.3 Parameter derivation

In this section, values of τf , α1, α2, and γ to achieve the desired constellation configuration
are obtained using the analytical solutions of ā and θ shown in Eqs. (3.20) - (3.23). First,
the normalized deployment time τf is obtained from the required relation between satellite
1 (reference satellite) and satellite N (the satellite with the largest θ). ā, θ, and the
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required phase difference from satellite 1 of satellite j are denoted as āj, θj, and ∆θj,
respectively. Then, for Sat. 1 and Sat. N , the following equations must be satisfied:

ā1(τf ) = āN(τf ), (3.24)

θN(τf )− θ1(τf ) = ∆θN . (3.25)

In this research, all satellites in the constellation are assumed to be placed equally. There-
fore, for satellite j, ∆θj = 2π× (j− 1)/N holds. Substituting τ = τf into Eqs. (3.20) and
(3.21), Eq. (3.24) always holds. In addition, from Fig. 3.2 (a), satellites 1 and N take
the maximum or minimum cross-section value. Thus, for satellites 1 and N , α1 = α2 = 1
holds. Then, by substituting Eqs. (3.22) and (3.23) into Eq. (3.25), an eighteenth-order
equation of τf can be obtained. However, it is impossible to solve the eighteenth-order
equation analytically. Since nano or micro-satellites are assumed, the order of each pa-
rameter is as follows:

βmax ∼ 10−6, βmin ∼ 10−7, P̄ ∼ 10−3. (3.26)

By considering Eq. (3.26), terms of higher order than the square of βmax or βmin can be
ignored. Then, τf can be obtained as the positive real solution of the quadratic equation
shown below:

pfτ
2
f + qfτf + rf = 0, (3.27)

pf = 3γ(1− γ)(βmax − βmin), qf = −12∆θN(βmax + (1− γ)βmin), rf = −2∆θN .

Here, pf > 0, qf < 0, and rf < 0 hold because 0 ≤ γ ≤ 1 and βmax > βmin. Then,
considering τf must be larger than 0, τf can be calculated in the following manner:

τf =
−qf +

√
q2f − 4pfrf

2pf
. (3.28)

From Eq. (3.26) and 0 < γ < 1, q2f ≪ −4pfrf holds. Therefore, the numerator of

Eq. (3.28) can be approximated as
√
−4pfrf . Then, τf can be simplified as follows:

τf ≈
√
24γ(1− γ)(βmax − βmin)∆θ

6γ(1− γ)(βmax − βmin)
=

√
2∆θ

3γ(1− γ)(βmax − βmin)
. (3.29)

Next, γ that determines the switching timing is obtained from the optimal condition.
In this research, the objective is the minimization of the altitude decrease during the
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deployment. Therefore, since the final value of ā is fixed to 1, the initial semi-major axis
should be minimized. Thus, the following equation must hold:

∂
√

ā1(0)

∂γ
= 0. (3.30)

Considering that α1 = α2 = 1 for Sat. 1, using Eqs. (3.20) and (3.30), γ for the altitude
decrease minimization case can be obtained as in Eq. (3.31):

γ =
βmin

βmax + βmin

. (3.31)

From now, α1, α2, β1, and β2 for Sat. j are denoted as α1,j, α2,j, β1,j, and β2,j,
respectively. The required cross-section parameters α1,j and α2,j to achieve the desired
constellation are calculated from the obtained τf and γ. Here, α1,1 = α2,1 = α1,N =
α2,N = 1, β1,1 = β1,N = βmax, and β2,1 = β2,N = βmin hold. From the initial condition of
Sat. 1 and j for the semi-major axis and Eq. (3.20) or (3.21), the following relation holds:

1 +
βmin

2
τf +

βmax − βmin

2
γτf = 1 +

β2,j

2
τf +

β1,j − β2,j

2
γτf . (3.32)

By substituting Eq. (3.19) into Eq. (3.32), α2,j can be described using α1,j as follows:

α2,j =
γ

1− γ
α1,j +

1− 2γ

1− γ
. (3.33)

Here, from either Eq. (3.22) or (3.23) at time τf (the choice of the equation depends on
the desired phase difference ∆θ), Sat. j’s argument of latitude must satisfy the following
condition:

θj(τf , α1,j)− θ1(τf , α1,1) = ∆θj. (3.34)

As mentioned earlier, α1,1 = 1. If an appropriate α1,j such that Eq. (3.34) holds for a given
∆θj is obtained, the analytical formulation of the constellation deployment maneuver
using the proposed cross-section trajectory model can be achieved. Substituting either
Eq. (3.22) or (3.23) into Eq. (3.34), it can be formulated as the sixth-order equation of
α1,j. Due to space limitations, the details of the sixth-order equation will be omitted.
In the same way as the derivation of Eq. (3.29), minor terms can be ignored considering
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Eq. (3.26). Therefore, the following quadratic equation of α1,j can be approximated:

paα
2
1,j + qaα1,j + ra = 0, (3.35)

pa = −γ2τ 3f (βmax − βmin)
2,

qa =

−6γτ 2f (βmax − βmin) (0 ≦ ∆θj < π)

6γτ 2f (βmax − βmin) (π ≦ ∆θj < 2π)
,

ra =

6γτ 2f (βmax − βmin)− 16∆θj (0 ≦ ∆θj < π)

−6γτ 2f (βmax − βmin)(4γ − 3)− 16∆θn (π ≦ ∆θj < 2π)
.

Considering Eq. (3.26), 1 ≫ 4para/q
2
a holds. Therefore, Eq. (3.35) can be solved as follows:

α1,j =
−qa + qa

√
1− 4para

q2a

2pa
≈

−qa + qa(1− 2para
q2a

)

2pa
= −ra

qa
. (3.36)

From Eqs. (3.29) and (3.36), α1,j can be obtained in a following manner:

α1,j =

−4(1−γ)
∆θN

∆θj + 1 (0 ≦ ∆θj < π)

4(1−γ)
∆θN

∆θj + 4γ − 3 (π ≦ ∆θj < 2π)
. (3.37)

From the above, the analytical maneuver model of the constellation deployment ma-
neuver is formulated. Orbit and cross-section trajectories to achieve the desired constel-
lation are calculated in the following manner:

1. Determine the value of γ using Eq. (3.31).

2. Calculate the deployment time τf using Eq. (3.29).

3. Cross-section parameters α1, and α2 are calculated using Eqs. (3.33) and (3.37).

4. Trajectories of ā, and θ are obtained from Eqs. (3.20) - (3.23).

3.3.4 Evaluation of Analytical Solution with Numerical Simula-
tion

In Section 3.3, the analytical solution of the deployment time, cross-section trajectories,
and the resulting transition of the semi-major axis and the argument of latitude have been
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Figure 3.6: Relation between α1 and ∆θj (N = 10).

formulated. Here, the accuracy of the analytical solution is verified. First, the analytical
solution of α1 shown in Eq. (3.37) is verified. Analytical solutions are compared with
numerical solutions of the original sixth-order equation (Eq. (3.34)) for N = 10. In the
case of N = 10, ∆θj = 2π× (j− 1)/10 holds. The comparison is shown in Fig. 3.6. From
the figure, the analytical solution of α1 coincides with the numerical solution. Therefore,
Fig. 3.6 shows the validity of approximating the sixth-order equation shown in Eq. (3.34)
to a quadratic equation shown in Eq. (3.35) when determining α1,j.

Next, to verify the validity of obtained analytical solutions of a and θ, they are com-
pared with the results of direct integration of Gauss’s planetary equations. Orbit trajecto-
ries when cross-section trajectories in Eqs. (3.33) and (3.37) are performed are considered.
Then, the mean orbital elements a and θ obtained by integrating Eqs. (2.2) - (2.8) are
compared with the analytical solution obtained in Section 3.3. Results are shown in
Figs. 3.7 (a) and (b). From these figures, the simulation result and the analytical solution
show the same behavior and achieve the desired constellation configuration after time tf .
Therefore, it can be said that the analytical maneuver model proposed in Section 3.3 is
sufficiently accurate as a model for the constellation deployment operation.
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Figure 3.7: Comparisons of simulation results and analytical solutions.
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3.4 Analytical Model Considering the Initial Condi-

tion

3.4.1 Overview of the orbit control using maneuver redesign

In Chapter 3.3, assuming that the initial state is immediately after launch, the deploy-
ment time τf and trajectories of a, θ, and A are analytically formulated. In the analysis,
mean J2 perturbation and constant atmospheric density are assumed. However, in actual
operations, the effect of the J2 perturbation varies dynamically, and atmospheric density
changes continuously with altitude. Therefore, satellites are expected to take different or-
bit transitions from originally planned ones. Thus, it is necessary to compensate for these
errors through orbital control. In this research, since constellation deployment using only
atmospheric drag is considered, the orbit control is achieved by varying the cross-section.
A drag-based orbit control method using the analytical maneuver model is proposed in
this section. The cross-section transition is performed following the designed analytical
maneuvers. To deal with the current state including errors, the maneuver is redesigned
at regular intervals. The control flow is illustrated in Fig. 3.8. To execute the feedback
control phase shown in Fig. 3.8, an analytical maneuver redesign considering the current
state is needed. The basis of the analytical maneuver design is established in Section 3.3.
However, since the state after launch is assumed as the initial condition, the analytical
model needs to be extended to consider the arbitrary current state. The deployment
time τf and target value of a and θ are fixed to the value obtained in Section 3.3. Then,
trajectories of A, a, and θ for the given current time and conditions can be formulated.
In this section, the cross-section trajectory model from the initial state and the resulting
orbit trajectories are mathematically formulated for given τf and given target values of a
and θ.

3.4.2 Formulation of the cross-section transition

Let τnow denote the current time, and let ā0 and θ0 represent the values of ā and θ at that
time. The cross-section trajectory and resulting orbit trajectories from the current state
are redesigned and updated. The parameter τ ′ = τ − τnow expresses the time from the
current moment. A two-phase maneuver, shown in Eq. (3.38) and Fig. 3.9, is performed
starting from the current time:
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Figure 3.8: Control flow with maneuver redesign.
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Figure 3.9: Cross-section trajectory model (redesign).

β =

{
β′
1 (0 ≦ τ ′ ≦ γ′τ ′f )

β′
2 (γ′τ ′f < τ ′ ≦ τ ′f )

, (3.38)

β′
1 =

βmax + βmin

2
+ α′

1

βmax − βmin

2
, β′

2 =
βmax + βmin

2
− α′

2

βmax − βmin

2
.

3.4.3 Analytical formulation of the orbit trajectory considering
initial states

The target value for the normalized semi-major axis remains unchanged at ā = 1. The tar-
get value for the argument of latitude, which is derived by substituting τ = τf in Eq. (3.22)
or (3.23), also remains unchanged. Assuming the transition of β follows Eq. (3.38), and
considering initial values ā0 and θ0, Eqs. (3.8) and (3.9) are integrated over the range
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τ = 0 to τ ′f . Then, orbit parameters ā and θ at time τ ′ are expressed as follows:

√
ā(τ ′) =


√
ā0 − β′

1

2
τ ′ (0 ≦ τ ′ ≦ γ′τ ′f )√

ā(γ′τ ′f ) +
β′
2

2
γ′τ ′f −

β′
2

2
τ ′ (γ′τ ′f < τ ′ ≦ τ ′f )

, (3.39)

θ(τ ′) =


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−
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− P̄
√
ā0

−6

3β′
2

(0 ≦ τ ′ ≦ γ′τ ′f )

1
β′
1

{(
S̄ − β1

2
τ ′
)−2 −

(
S̄ − (1−γ′)β′

1

2
τ ′f

)−2
}
+

P̄
3β′

1

{(
S̄ − β′

1

2
τ ′
)−6

−
(
S̄ +

(1−γ′)β′
1

2
τ ′f

)−6
}
+ θ

(
(1− γ′)τ ′f

)
(γ′τ ′f < τ ′ ≦ τ ′f )

,

(3.40)

where S̄ =
√

ā((1− γ′)τ ′f ) + β′
1/2(1− γ′)τ ′f .

3.4.4 Parameter derivation

In this section, the values for α′
1, α

′
2, and γ′ necessary to achieve the desired constella-

tion configuration are determined. The target value for ā at time τ ′f is calculated from
Eq. (3.39). It should match ā(τf ) derived in Section 3.3. In this research, its value is fixed
at 1. Therefore, the following relationship must be satisfied:√

ā(γ′τ ′f ) +
β′
2

2
γ′τ ′f −

β′
2

2
τ ′ = 1. (3.41)

By substituting Eqs. (3.38) and (3.39) into Eq. (3.41), the new cross-section parameter
α′
2 can be expressed in terms of α′

1 and γ′ in the following manner:

α′
2 =

γ′

1− γ′α
′
1 +

1

1− γ′
βmax + βmin

βmax − βmin

− 4(
√
ā0 − 1)

(1− γ′)(βmax − βmin)τ ′f
. (3.42)

Let θref be the argument of latitude that the satellite should take at the final time τ = τf .
It is calculated from Eq. (3.22) or (3.23). Here, the value of θ at τ ′ = τ ′f given by
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Eq. (3.40), must coincide with θref . Hence, the following relation must be satisfied:

θref =
1

β′
1

{(
S̄ − β1

2
τ ′f

)−2

−
(
S̄ − (1− γ′)β′

1

2
τ ′f

)−2
}

(3.43)

+
P̄

3β′
1

{(
S̄ − β′

1

2
τ ′f

)−6

−
(
S̄ +

(1− γ′)β′
1

2
τ ′f

)−6
}

+ θ
(
(1− γ′)τ ′f

)
.

From here, α′
1 and α′

2 for satellite j are denoted as α′
1,j and α2,j, respectively. Simplifying

Eq. (3.43) results in a sixth-order equation of α′
1,j. Then, similar to the derivation of α1,j

in Section 3.3, major terms can be extracted using Eq. (3.26). From this simplification,
Eq. (3.43) can be approximated as a quadratic equation:

p′aα
2
1,j + q′aα1,j + r′a = 0, (3.44)

where p′a, q
′
a, and r′a are expressed in terms of βmax, βmin, τ

′
f , θref , θ0, and ā0. Due to their

complexity, detailed expressions are omitted. In this context, α′
1,j is expressed as follows:

α′
1,j =

−q′a +
√

q′2a − 4p′ar
′
a

2p′a
. (3.45)

Hence, cross-section parameters α′
1,j and α′

2,j that the satellite should take after the re-
design can be expressed using the parameter γ′, which determines the switching timing of
the satellite cross-section. Therefore, by determining γ′, the maneuver that each satellite
should take from the current time can be designed. There are two types of constraints:
One is that the cross-section value must be within the designated range (Eqs. (3.46)
and (3.47)), and the other is that switching must occur correctly during deployment
(Eq (3.48)):

Amin ≤ A′
1 ≤ Amax, (3.46)

Amin ≤ A′
2 ≤ Amax, (3.47)

0 ≤ γ′ ≤ 1, (3.48)

where A′
1 and A′

2 are cross-section values calculated from β′
1 and β′

2, respectively. In
the initial calculation phase, since the initial conditions of all satellites are the same, all
parameters can be calculated analytically using the other satellites’ information. However,
in the middle of the deployment, the maneuver redesign without the other satellites’
current information is required. In other words, only two final conditions Eqs. (3.41)
and (3.43) can be used. Therefore, to deal with the lack of condition expressions and
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obtain the value of γ′, optimization using an interior-point method is used. The objective
function fint for the interior-point method is expressed as follows:

fint = k1(β
′
1 − βnow)

2 + k2(β
′
2 − βhalf)

2, (3.49)

where βnow is the current cross-section value before the maneuver redesign and βhalf =
(βmax + βmin)/2. The first term of the objective function fint represents the minimization
of the attitude change during maneuver updates, contributing to the reduction of power
consumption during the attitude maneuver. The second term aims to increase control
flexibility during the late stages of deployment by avoiding the cross-section value to
approach its lower limit. Without this term, there may be cases where the interior-point
method fails to converge during the late stages of deployment. Since all calculations
of the objective function and constraint conditions can be performed analytically, the
computational cost of this optimization is low. Therefore, it is feasible for on-board
calculations.
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3.5 Simulation

In this section, the simulation results of the proposed orbit control shown in the previous
section are conducted. To increase the control flexibility, Amax,init and Amin,init, the maxi-
mum and minimum cross-section with margin, are used in the initial calculation phase. In
the feedback control phase, actual Amax and Amin are used as the upper and lower limits
for the cross-section. In other words, |α′

1| and |α′
2| can be slightly larger than 1. Table

3.2 outlines the numerical settings for the simulation.

Table 3.2: Simulation conditions.

Maximum cross-section(initial calculation) Amax,init 2.02× 10−1 m2

Minimum cross-section(initial calculation) Amin,init 6.06× 10−2 m2

Maximum cross-section(real) Amax 2.25× 10−1 m2

Minimum cross-section(real) Amin 3.71× 10−2 m2

Objective function gain1 k1 4× 1012 -
Objective function gain2 k2 1× 1012 -

Number of maneuver recalculation - 15 -

Other satellite and orbital conditions, aside from those mentioned above, are based on
Table 3.1.

3.5.1 Case A. With available actual atmospheric density

Real-time altitude information is assumed to be available to the satellite. In each maneu-
ver redesign process, the value of atmospheric density is fixed. However, the atmospheric
density value used in the maneuver calculation is updated according to the current alti-
tude. In this case, it is assumed that an accurate value of atmospheric density is available.
As the atmospheric density model, the U.S. Standard Atmosphere 1976 [56] is used. The
results of the control simulation are illustrated in Figs. 3.10 - 3.12. The vertical dashed
line represents the maneuver redesign time. From Figs. 3.10 - 3.12, it is evident that
satellites achieved the desired constellation configuration at the terminal time. The error
of the final semi-major axis from the target value remains less than 60 m. Additionally,
the error of the final in-plane phase difference from the target value remains less than
0.05 deg. Furthermore, during the maneuver redesign in the feedback control phase, only
analytical calculations and optimization using an interior-point method are performed.
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Figure 3.10: Orbit control result (cross-section A, case A).
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Figure 3.11: Orbit control result (semi-major axis a, case A).

78



0 10 20 30 40 50
t[day]

-50

0

50

100

150

200

250

300

350
[d

eg
]

Figure 3.12: Orbit control result (in-plane phase differece ∆θ, case A).

Since the interior-point method requires low computational cost [57], it is evident that
the proposed method can achieve the proper constellation deployment control on small
satellites with significant constraints on on-board computer performance.

3.5.2 Case B. With atmospheric density estimation error

In case A, the correct value of the atmospheric density is assumed to be known in the ma-
neuver redesign. However, in actual operations, the atmospheric density takes a different
value from the standard atmosphere model. Therefore, the robustness of the proposed
control method to the atmospheric density is verified. In the next simulation, as the actual
value of the atmospheric density, the atmospheric density model based on Jacchia’s model
[58] is used, whereas the standard atmospheric model is used in the control calculations.
In this case, there is about a 10% error between the actual value and the model of the at-
mospheric density. The details of these atmospheric density values are shown in Fig. 3.13.
Results of the simulation with the atmospheric density error are shown in Figs. 3.14 (a)
- (c). From these figures, it can be said that the required constellation configuration
is properly achieved. Therefore, the robustness of the proposed control method to the
atmospheric density error is verified.
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Figure 3.13: The atmospheric density model used in the simulation and control calcula-
tion.
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Figure 3.14: Orbit control result (cross-section A, case B).
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Figure 3.15: Orbit control result (semi-major axis a, case B).
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Figure 3.16: Orbit control result (in-plane phase differece ∆θ, case B).
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3.6 Conclusion to Chapter 3

In this chapter, the drag-based in-plane constellation deployment control method with-
out fuel consumption for small satellites, which has strong performance limitations on
on-board computers, has been proposed. Initially, considering the effects of atmospheric
drag and mean J2 perturbations, the simplified orbit dynamics model using two param-
eters, orbit semi-major axis a and the argument of latitude θ, has been proposed. Then,
optimal cross-section trajectories and the resulting trajectories of a and θ to minimize
the altitude decrease during the deployment have been determined using DCNLP. Next,
trajectories of a and θ during the deployment maneuver based on the proposed simpli-
fied dynamics and optimization results have been analytically formulated. From them,
normalized deployment time τf and the required cross-section trajectory to achieve the
desired constellation have been obtained. Additionally, considering operational scenar-
ios, orbital transitions for the case with initial values for a and θ have been formulated.
Using these formulations, the desired cross-section trajectory to reach the target constel-
lation configuration from the current state has been analytically derived. By utilizing
obtained analytical models, the orbit control law that redesigns and updates orbit and
cross-section maneuvers based on the current state at regular intervals has been proposed.
The effectiveness of the proposed orbit control method has been demonstrated through
the numerical simulation. The robustness of the proposed control method in terms of the
atmospheric density estimation error has also been verified.

82



Chapter 4

Optimal mission scheduling

4.1 Formulation of the optimization problem

In this chapter, an optimal Earth observation mission scheduling method for a single
satellite with CMGs is developed. To image more targets from a given list of candidates
with higher accuracy, we solve an optimization problem to determine the imaging tar-
get and timing for each path. First, constraint conditions and an objective function are
designed considering the observation requirements, and an optimal mission scheduling
problem is formulated as the mixed-integer programming problem. In the computation
of the constraint conditions, a practical maneuver time calculation method considering
the motion of the actuator is required. Therefore, a fast approximation method of the
CMG’s gimbal angle trajectory and the attitude maneuver time is developed. The use-
fulness of the proposed mission scheduling method is verified based on the trend of the
obtained optimal solutions. Then, from the computation of rigorous attitude maneuvers
and numerical simulations, we show that the proposed fast calculation method for CMG
maneuvers has both high computational accuracy and low computational load.

4.1.1 Problem settings

Observation target cities are selected from the candidate list, and the imaging is per-
formed on a north-to-south flight path. Observations are performed in order from north
to south, and a stripmap method[59] is adopted in the observation process; the satellite’s
attitude is fixed during the imaging period. Under these conditions, optimal scheduling
aims to find the appropriate city selection and imaging time to image more cities with
higher accuracy. Target cities are numbered from north to south and can be selected
by designating integer parameters in the optimization algorithm. Therefore, the optimal
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mission scheduling problem can be formulated as the mixed-integer programming prob-
lem that designs city numbers and their imaging times. The details of the constraint
conditions and the objective function are shown below.

4.1.2 Constraint conditions

　 In this section, constraint conditions for the optimal mission scheduling problem are
introduced.

Position constraint

Assume that the Earth is a sphere of radius RE. Let γ be the angle between the position
vector of the target city rc and satellite position vector rs at the imaging time (see
Fig. 4.1). Let γmax be the maximum value of γ within the range that the target can be
imaged. Then, the following relation holds:

γ ≦ γmax. (4.1)

The imaging accuracy of the satellite’s onboard instruments is inversely proportional to
the distance between the satellite and the target. The distance between the satellite and
the target city is |rs − rc|, and the following relation holds when the circular orbit is
assumed:

|rs − rc| = R2
E + (RE + hsat)

2 − 2RE(RE + hsat) cos γ, (4.2)

where hsat is the satellite altitude. Since the distance |rs − rc| becomes smaller as γ
becomes smaller, the value of γ affects the imaging accuracy. Therefore, the following
constraint conditions for γ are given:

γ ≦ γa, (4.3)

where γa is a constant that can be set arbitrarily less than γmax. The maximum distance
between the satellite and the target city is determined by restricting the upper bound of
γ. Therefore, the position constraint shown in Eq. (4.3) defines the minimum imaging
accuracy that should be guaranteed.

Time constraint

Find the direction that the z-axis of the satellite should take when observing the target
city j (latitude θelj and longitude θazj) at time tj. A satellite’s position vector in an
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Figure 4.1: Location of satellite and target city.

85



inertial coordinate [rs]I can be calculated from Eq. (2.34). The position of the target city
j, [rj]I , at time tj can be calculated as follows:

[rj]I = RE

 cos (θazj + λj) cos θelj
sin (θazj + λj) cos θelj

sin θelj

 , (4.4)

where λj = λ0 + ωe(tj − t0), λ0 is obtained from Eq. (2.40), and t0 is the initial time.
Using Eqs. (2.34) and (4.4), The direction the satellite’s z-axis required to image the city
j at time tj is expressed as follows:

[ẑj]I =
[rj]I − [rs]I
|[rj]I − [rs]I |

. (4.5)

Denote Tj as the time required for the satellite’s z-axis orientation to rotate from ẑj−1 to
ẑj. A detail of the calculation of Tj is shown in the next section. The satellite is assumed
to be pointing its nadir point at the initial time (j = 0). Observation period is 2ε, and
the satellite’s attitude must be fixed for imaging for ε before and after time tj. Under the
above conditions, the following relationship must hold for the satellite to perform imaging
correctly.

tj − tj−1 ≧ Tj + 2ε. (4.6)

Eq. (4.6) is the maneuver time constraint in the optimization algorithm.

Target selection constraint

This research assumes that the cities are imaged in order of latitude in a single path. All
candidate cities are given city numbers in descending order of latitude. The city numbers
selected in a path must increase monotonically to image the cities in order of latitude.
From above, when Nj is the selected city number for the jth imaging in a path at time
tj, the following relation should hold:

Nj −Nj−1 ≧ 1. (4.7)

Eq. (4.7) is the target selection constraint.

4.1.3 Objective function

Let the number of cities observed during the current path n, the angle between the position
vector of the target city j (1 ≤ j ≤ n) and the satellite is γj (see Fig. 4.1). The objective
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function Fobj of the mission scheduling optimization is described in the following manner:

Fobj =
∑
j

γj. (4.8)

As mentioned above, a smaller γ leads to improvement in imaging accuracy. Therefore,
using the objective function in Eq. (4.8), the improvement of the mean observation accu-
racy is pursued.

4.1.4 Mission scheduling optimization

The refinement process and calculation order determination

When orbital elements and the initial nadir point of the satellite are given, the position of
the satellite and target cities in arbitrary time can be calculated. Therefore, the path order
in which the calculations are performed is not necessarily the same as the actual order of
the paths in flight. In this research, the trajectories of the satellite and all target cities are
calculated using Eqs. (2.2) - (2.7), (2.34), and (4.4) before the optimization process. For
all observation paths, find m cities that satisfy the conditions in Eq. (4.1) at least once
during a designated flight path, and use them as candidate cities for the optimization
calculations. In addition, target cities selected for imaging in previously computed paths
are excluded from candidates to prevent overlap of cities to be imaged. These operations
to reduce candidate cities in each path are called the ”refinement process.” The cities
removed in the refinement process cannot meet the position constraint during the flight
of the path. Therefore, no candidate optimal solution is lost in the refinement process.
After the refinement process, the optimization starts from the path with the smallest
number of candidate cities m. This prevents paths with more imageable cities from
depriving paths with fewer candidate cities of their options. Then, more candidate cities
can be imaged in total.

Mission scheduling optimization

In addition to improving the observation quality, the number of the target city to be
imaged, denoted by n, should be as large as possible. However, the value of n affects
the number of design parameters of the optimization problem. Therefore, using n as an
objective function or the design parameter is difficult. Instead, we propose an algorithm
that maximizes the number of imaging cities by iterative optimization while increasing n.
The detail of the algorithm is shown below:

1. Determine the path to be scheduled.
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2. Determine n, the number of cities to be imaged.

3. The refinement process lists m candidate cities.

4. n cities to be imaged are randomly selected from m candidates, and each city’s
imaging time is set.

5. Optimization is used to find the appropriate city selection and imaging time settings.
The optimization can be repeated up to 5 times with different initial conditions to
find a feasible solution.

6. If a solution satisfying all constraints is obtained, n is increased by 1, and the same
optimization is performed.

7. Otherwise, the result for the n− 1 cities, the feasible result of the previous roop, is
adopted as the optimal solution.

8. Move to the next path.

The flow of the mission scheduling algorithm is shown in Fig. 4.2. Since city numbers
(integer variables) and the imaging time (continuous variable) for each city are designed
in the optimization, the proposed optimization problem is classified as a mixed integer
programming problem. Ant colony optimization is known to be effective for solving mixed
integer programming problems [50]. In this research, optimization calculations are per-
formed using MIDACO, an optimization software based on ant colony optimization. The
proposed path selection concept and refinement process can be handled in the same way
when there are multiple orbits by multiple satellites. Therefore, although optimization
results presented in this chapter consider the single satellite mission, the proposed method
is applicable to the constellation mission.
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4.2 Low-cost computation method of the attitude ma-

neuver time using CMGs

4.2.1 Control Momeng Gyros (CMG)

Control Moment Gyro (CMG) is considered the attitude control actuator in this research.
CMG is an actuator that generates gyro torque by changing the gimbal angle of the
rotating wheel (see Fig. 4.3). Although CMGs require complex control, including consid-
eration of singularities, they have the advantage of high torque output compared to other
actuators such as reaction wheels. This research focuses on the system with a pyramid
configuration of four CMGs shown in Fig. 4.4. CMG1 is placed in the x-axis direction
in FB, CMG2 is in the y-axis direction, and CMG3 and CMG4 are placed every 90 deg
from there. Let θk be the gimbal angle of the CMG k (k = 1, 2, 3, 4) and hw be the wheel
angular momentum. The total angular momentum of the CMG system can be formulated
as follows:

[hc]B = hw

 − sin θ1 cos β
cos θ1

sin θ1 sin β

+ hw

 − cos θ2
− sin θ2 cos β
sin θ2 sin β


+ hw

 sin θ3 cos β
− cos θ3

sin θ3 sin β

+ hw

 cos θ4
sin θ4 cos β
sin θ4 sin β

 ,

(4.9)

where β is the skew angle of the CMG system (see Fig. 4.4).

4.2.2 Angular momentum conservation law and attitude repre-
sentation of satellite

　Let J be the moment of inertia, ωs be the angular velocity, and hs be the total angular
momentum of the satellite. hs can be described in the following manner:

hs = Jωs + hc. (4.10)

When hs is assumed to be conserved at 0, the following relation holds:

Jωs + hc = 0. (4.11)
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Then, the angular velocity of the satellite can be expressed as shown follows:

[ωs]B = −[J ]−1
B [hc]B. (4.12)

The attitude of a satellite is represented by the Euler parameter q. Using the rotation
axis [α̂]B = [α1, α2, α3]

T and the rotation angle ϕ, q is described as follows:

q =

 [α̂]B sin

(
ϕ

2

)
cos

(
ϕ

2

)
 . (4.13)

Eq. (4.14) represents the relation between the Euler parameter and the satellite angular
momentum [ωs]B = [ω1, ω2, ω3]

T:

q̇ =
1

2
q ⊗ [ω]B

=
1

2


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 q, (4.14)

where ⊗ is the quaternion product. In addition, when the first and second attitude
changes are expressed in q1 and q2, respectively, the Euper parameter representing the
attitude change from the initial attitude to the final attitude is described as follows:

q12 = q1 ⊗ q2. (4.15)

4.2.3 Maneuver time computation

Overview of the computation method

The calculation method of CMGs’ gimbal angle trajectories to execute the desired atti-
tude maneuver is introduced. The following assumptions are imposed for the attitude
maneuver:

• Set target gimbal angles δe

• Satellite executes uniform angular velocity motion by keeping the gimbal angles to
δe.
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• The gimbal angle changes at the maximum angular acceleration θ̈max until the target
gimbal angle is reached.

• The gimbal rate has a maximum value of θ̇max.

• All gimbal angles become zero at the end of the attitude maneuver.

The example of the gimbal angle trajectory is shown in Fig. 4.5. This figure shows that
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Figure 4.5: Gimbal angle trajectory.

gimbal angles change from 0 to the target value during time tacc. Then, the target gimbal
angle is kept for time tc and returns to zero over time tacc. When the norm of the total
angular momentum hc is given, the following relation is obtained from Eq. (4.11):

hc = hc
Jα̂

|Jα̂|
. (4.16)

Here, the target gimbal angles δe = (θ1, θ2, θ3, θ4) to output the desired angular momentum
hc should be obtained. When one gimbal angle out of four is given, the remaining three
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gimbal angles to output the desired angular momentum hc can be obtained by solving the
8th-order equation [60]. The gimbal angle θ4 is varied in the range of [−π, π], and the 8th-
order equation is solved each time to obtain δe. In this case, multiple δe can be obtained
for a certain hc. The satellite’s attitude maneuver time depends on the maximum target
gimbal angle of CMGs [42]. Therefore, when multiple δe are given, the solution with the
smallest maximum gimbal angle is chosen as the target gimbal angle. Once target gimbal
angles δe corresponding to the given hc are determined, the time tacc to change the gimbal
angle and the time tc to fix the gimbal angle at δe can be obtained.

Derivation of the gimbal acceleration time

Gimbal acceleration time tacc,k to achieve the target gimbal angle θk for CMGk (k =
1, 2, 3, 4) is calculated here. Gimbal angle trajectories are determined based on the
assumptions made in the previous section. Here, the gimbal rate changes as shown in
Fig. 4.6. When the target gimbal angle is small, the triangle acceleration pattern with
only uniform gimbal rate and uniform gimbal angular acceleration (see Fig. 4.6(a)) is
adopted. Otherwise, the trapezoidal acceleration pattern, which includes the constant
gimbal angle area (see Fig. 4.6(b)), is adopted. Since the area of the figure is the Gimbal

1

𝑡acc
ሷ𝜃max
2

ሶ𝜃

𝑡
0

ሷ𝜃max

𝑡accΤ𝑡acc 2
(a)When the target gimbal angle is small

𝑡1 𝑡acc-𝑡1 𝑡acc0

ሷ𝜃max

1

ሶ𝜃max

𝑡

ሶ𝜃

(b)When the target gimbal angle is large

Figure 4.6: Gimbal rate trajectory pattern.
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angle, tacc,k can be calculated as follows:

tacc,k =


2

θ̇max

θk +
2θ̇max

θ̈max

(
θ̇2max

θ̈max
≤ θk

)

4

√
θk

θ̈max

(
θk <

θ̇2max

θ̈max

) , (4.17)

tacc,k can be calculated for each of the four CMGs, and the maximum value among them
is used as the calculation result tacc in the following section.

Derivation of gimbal holding time

Here, gimbal holding time tc to fix four gimbal angles at target values is calculated. Using
the total attitude maneuver time tf , the relation between the satellite’s rotation angle ϕ
along rotation axis α̂ and angular velocity ωs can be described as follows:

ϕ =

∫ tf

0

ωs · α̂dt

=

∫ tacc

0

ωs · α̂dt+

∫ tacc+tc

tacc

ωs · α̂dt+

∫ tacc+tc+tacc

tacc+tc

ωs · α̂dt

= 2

∫ tacc

0

ωs · α̂dt+ (ωmax · α̂)tc, (4.18)

where ωmax is the angular velocity of the satellite when all CMGs take the maximum
gimbal angle. The system angular momentum when CMGs take target gimbal angle δe
can be calculated from Eq. (4.9). Therefore, using the angular momentum conservation
law shown in Eq. (4.12), ωmax in body flame can be formulated in the following manner:

[ωmax]B = −[J ]−1
B [hc(δe)]B. (4.19)

Then, tc can be calculated as follows:

tc =
ϕ− 2

∫ tacc
0

ωs · α̂dt

ωmax · α̂
. (4.20)

From the obtained tacc and tc, considering the symmetry of the gimbal angle trajectory,
attitude maneuver time can be calculated as follows:

tf = 2tacc + tc. (4.21)
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Derivation of minimum attitude maneuver time

The results above shows that the attitude maneuver time tf can be calculated when
the norm of the CMG system’s angular momentum hc is given. This calculation can be
described as a function tf = f(hc). How to find the value of hc to minimize the maneuver
time tf is introduced. In the calculation process shown above, infeasible results can be
obtained, for example, tc < 0. If such an improper result is obtained for a given hc, a
sufficiently large tf is output as a penalty value. Then, the golden section search[61] can
be applied to find the proper hc that minimizes tf = f(hc). The obtained tfmin is used
as the maneuver time and applied to calculate the time constraint shown in section 4.1.2.
The flow of the attitude maneuver time calculation mentioned above is shown in Fig. 4.7.
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Figure 4.7: Flow of the attitude maneuver time calculation.
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4.3 Optimal results of the mission scheduling

4.3.1 Verification of CMG attitude maneuver time

Attitude maneuver time tf is calculated for various rotation axes α̂ and fixed rotation
angles ϕ. The calculation result is described with an all-direction maneuver time diagram.
The all-direction maneuver time diagram graphically expresses the relation between the
rotation axis α̂ and the maneuver time tf for a fixed ϕ. As shown in Fig. 4.8, the vector
r’s direction from the origin to the figure’s surface corresponds to the rotation axis, and
the length of r represents the attitude maneuver time tf . The validity of the proposed

𝒓 = 𝑡𝑓ෝ𝜶

Figure 4.8: All-direction maneuver time diagram.

method is verified by comparing the attitude maneuver time calculated by the proposed
method with one calculated by a rigorous optimization method [42]. The parameters used
for the calculation are shown in Table 4.1. Calculation results are shown in Figs. 4.9 -
4.13 and Table 4.2. ”Approximate value” means the calculation result of the proposed
method and ”Optimal value” means the calculation result of the CPS method proposed
by Kobayashi et al. [42] The all-direction maneuver time diagram shown in the figure is
obtained by a 25×25 rotation axis; the elevation angle (0◦ - 180◦) and azimuth angles (0◦

- 360◦) are each divided into 25 equal parts.
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In a CMG system with a pyramid configuration, setting the skew angle to 54.73◦ makes
it easier to output the same magnitude of angular momentum in all directions[62]. In this
research, the optical axes of the instruments are assumed to be aligned with the z-axis.
In that case, it is expected that there will be few attitude changes around the z-axis
during observation operations, while there will be many attitude changes such as large
rotations around the x and y-axis. Therefore, the CMG configuration that can produce
large angular momentum in the x and y-axis direction is desirable. From Eq. (4.9), if β
is large, the angular momentum in the z direction becomes large, and that in the x, y
direction becomes small. For this reason, 45◦, smaller than the general value, is adopted
as a skew angle in this research.

Table 4.1: Parameters for attitude maneuver time verification.

Symbol Value Unit
J diag{40, 30, 30} kgm2

ϕ 1, 5, 10, 30, 50 deg
hw 1 Nms
β 45 deg

θ̇max 1 rad/s

θ̈max 5 rad/s2

Table 4.2: Comparison of approximate and optimal value of attitude maneuver time.

ϕ [deg] Approximate value [s] Optimal value [s]
Optimal/Approximate

Mean Maximum Minimum
1 1.347 1.358 1.009 1.037 0.934
5 2.853 2.850 1.005 1.059 0.927
10 4.074 3.924 1.039 1.168 0.898
30 7.712 7.612 1.013 1.093 0.918
50 11.45 11.46 1.000 1.055 0.911
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(a)Optimal value (b)Approximate value

Figure 4.9: All direction maneuver time diagram for ϕ = 1 [deg].

(a)Optimal value (b)Approximate value

Figure 4.10: All direction maneuver time diagram for ϕ = 5 [deg].
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(a)Optimal value (b)Approximate value

Figure 4.11: All direction maneuver time diagram for ϕ = 10 [deg].

(a)Optimal value (b)Approximate value

Figure 4.12: All direction maneuver time diagram for ϕ = 30 [deg].
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(a)Optimal value (b)Approximate value

Figure 4.13: All direction maneuver time diagram for ϕ = 50 [deg].

From Figs. 4.9 - 4.13, the surfaces of the all-direction maneuver time diagrams are
almost continuously changing. When the rotation axis direction α̂ changes slightly, the
change in attitude change time is also small. Therefore, we can say that the calculated
attitude maneuver time is not sensitive to the rotation axis change. The difference in the
shape of the diagram between the optimum value and the approximate value is small. In
addition, from Fig. 4.2, the approximated value is within the range of 0.9 to 1.1 times
the optimal value. Therefore, the proposed method can calculate a reasonable attitude
maneuver time for an arbitrary rotation axis. Next, computation time is considered. For
ϕ = 5◦, the calculation time of the optimal calculation [42] is 2.59 seconds on average,
and the calculation time of the proposed approximate calculation method is 0.14 seconds
on average (CPU: IntelCore i5-4590CPU). For both calculations, MATLAB R2019a is
used. The above proposed method can reduce calculation time for attitude maneuver
time by a factor of 20. These results confirm that the proposed method can quickly
calculate the attitude change time. From Fig. 4.2, the approximate value is not less than
the optimal value by adding a margin of 1.1 times to the approximate value. Therefore,
if the approximate value multiplied by 1.1 is used to determine the time constraint, the
mission schedule can be designed to ensure that the attitude maneuver and imaging
can be completed on schedule, even if the approximation error from the actual attitude
maneuver time is considered. The next section presents a mission scheduling process using
this method, and its effectiveness is confirmed.
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4.3.2 Optimization result of the mission scheduling

Target selection and time setting

In this section, we design an imaging plan such that the satellite will observe as many
candidate cities as possible in 10 paths flying from north to south. Candidate cities are
292 cities worldwide, and their list is shown in Appendix. Calculations are performed
under several conditions with different γa in the position constraint shown in Eq. (4.3),
and the results are compared. The settings for the maximum satellite-target distance are
shown in Table 4.5. Conditions A and E set the maximum distance to 2573 km. This
is the maximum distance between a satellite and a city when γ = γmax in Eq. (4.2).
Conditions B to D are the settings that restrict the distance between the satellite and
the target city more strictly to improve the imaging accuracy. Condition E is the same
condition as Condition A, but without refinement to confirm its usefulness. Satellite and
observation conditions are shown in Table 4.3. The satellite’s orbit is a Sun-synchronous
circular orbit, and the longitude θd of the descending node of the 10 paths is shown in
Table 4.4. The results of the calculations for each condition are shown in Figs. 4.14 - 4.18
and Tablea 4.6. Note that the ”distance” in the Table 4.6 is the distance between the
satellite and the target city when each city is imaged.

Table 4.3: Satellite and observation conditions.

Symbol Value Unit
J diag{44.57, 112.61, 81.71} kgm2

a 6878 km
e 0 -
i 97.4 deg
Ω 0 deg
hw 1 Nms
β 45 deg

θ̇max 1 rad/s

θ̈max 5 rad/s2

θlat0 75 deg
θlon0 150 deg

The number of paths 10 -
Observation time 2ε 10 s
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Table 4.4: Longitude of the descending node θd of each path.

Path number 1 2 3 4 5
θd[deg] 115.95 92.27 68.58 44.90 21.22

Path number 6 7 8 9 10
θd[deg] -2.46 -26.14 -49.82 -73.51 -97.19

Table 4.5: Conditions of γa.

Condition γa [deg] Maximum distance [km] refinment process
A 21.99 2573 ◦
B 16.83 2000 ◦
C 12.27 1500 ◦
D 7.50 1000 ◦
E 21.99 2573 -

Table 4.6: Results of the mission scheduling.

Condition The number of the imageable cities
Distance [km]

Mean Max Min
A 180 1345 2573 500
B 153 1098 2000 500
C 147 955 1499 500
D 88 671 990 500
E 32 1451 2570 500
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Figure 4.14: Mission scheduling result (Condition A).

Figure 4.15: Mission scheduling result (Condition B).
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Figure 4.16: Mission scheduling result (Condition C).

Figure 4.17: Mission scheduling result (Condition D).
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Figure 4.18: Mission scheduling result (Condition E).

Comparison of optimization results

From Fig. 4.6, the total number of imageable cities becomes smaller as the tolerance for
position constraints becomes strict. Then, the distance between the satellite and the
target cities when the target cities are observed also becomes small. The shorter distance
improves the imaging accuracy. Thus, there is a trade-off relation between the number
of imageable target cities and the observation accuracy. Since the distance between the
city and the satellite increases when imaging with a forward or backward view, imaging
with a nadir or sideways view is preferable to improve the imaging quality. Comparison
of Figs 4.14 to 4.17 shows that the more rigorous the constraint conditions are, the more
sideways views are taken and the fewer forward and backward views are taken. Therefore,
it was confirmed that the strict constraint conditions contribute to improving the imaging
accuracy. In addition,the comparison of the conditions A and E shows that the number
of imageable cities in condition A is more than 5 times larger than those in condition
E. When the refinement process is not executed, the number of candidate cities in each
path becomes enormous. Accordingly, it becomes difficult to properly select the cities to
be imaged in the optimization calculation process. That is why the number of imageable
cities for each path in condition E is smaller than in condition A, and some paths did
not find any imageable cities or time settings. These results indicate that the proposed
method can be used to develop an imaging plan to image more cities while guaranteeing
imaging accuracy.
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4.3.3 Gimbal angle and attitude trajectory

Gimbal angle trajectories calculated from the proposed approximation method while flying
the path with the highest number of imageable cities under condition A are shown in
Fig. 4.19. In addition, the trajectories of the gimbal rate during the 5th attitude maneuver
of Fig. 4.19 are shown in Fig. 4.20. Considering CMG3 as an example, the gimbal rate
increases at a constant acceleration during the initial phase of the gimbal angle transition
(498.8 to 499.0 seconds), and the gimbal angle changes linearly after the gimbal rate
becomes constant (499.0 to 501.2 seconds). After that, the gimbal rate decreases to 0,
and the gimbal angle change stops (501.4 to 501.6 seconds). Then, the gimbal angle is
fixed at zero gimbal rate for a certain period (501.6 to 511.8 seconds). Finally, the gimbal
angle is decreased by a gimbal rate trajectory symmetrical to the angle increase phase
(511.8 to 514.6 seconds), and all gimbal angles become zero. After the attitude maneuver,
the CMG is not driven for at least 2ε seconds, which is the imaging time, to maintain the
same attitude, and the gimbal angle is driven for the next attitude maneuver.

Next, the practicality of the imaging plan designed by the proposed method in a real
mission is shown, using the imaging mission in the path shown in Fig. 4.19 as an example.
In the attitude maneuver time estimation method presented in Section 4.3.1, there are
two assumptions: a certain upper bound of the gimbal rate and the isometric acceleration
of the gimbal. If the assumptions are met during the maneuver, while the gimbal angle of
the CMG is changing, the direction of the output angular momentum changes. Then, the
direction of the angular velocity of the satellite is not constant. It causes the error between
the target attitude and the real attitude after the maneuver. Figure 4.21 shows quaternion
trajectories of the satellite when designed CMG gimbal angle trajectories are applied.
There remains some attitude error after the maneuver. Therefore, the accurate gimbal
angle trajectory to achieve the precise attitude maneuver is determined by modifying the
target gimbal angles δe = [θ1, θ2, θ3, θ4] using the interior-point method. The modified
gimbal angle trajectories are shown in Fig. 4.22. The trajectories of the satellite attitude,
when CMGs are driven along the modified gimbal angle trajectories, are shown in the solid
line of Fig. 4.21 The dashed line represents the original target attitude obtained from the
imaging plan. From Fig. 4.23, for all attitude maneuvers based on the modified gimbal
angle trajectory, tracking to the target attitude and imaging can be achieved within the
time obtained in the optimal imaging plan. Therefore, the optimal imaging plan obtained
using the proposed method with approximation can be used in the actual mission. This
result demonstrates the practicality of the proposed method.
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Figure 4.19: Gimbal angle trajectory of the CMGs (original).

Figure 4.20: Trajectories of the CMG gimbal rate during the attitude maneuver.
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Figure 4.21: Attitude trajectories based on the original gimbal angle trajectory.
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Figure 4.22: Gimbal angle trajectory of the CMGs (modified).

Figure 4.23: Attitude trajectories based on the modified gimbal angle trajectory.
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4.4 Conclusion to Chapter 4

Considering the satellite with CMGs, the mission scheduling optimization method to
image more candidate cities with higher accuracy has been proposed in this research. The
mission scheduling problem has been formulated as a mixed-integer programming problem
with an iterative loop structure. The number of the imaged cities and imaging time has
been optimized for a given number of the cities to be imaged to shorten the satellite-
target distance. By repeating the calculations while increasing the number of cities to
be imaged in the path, we have designed a mission plan to observe more target cities
more accurately. Position, time, and target selection constraints have been formulated
as constraint conditions. In addition, we have developed a target refinement method to
narrow down the candidates to make the calculation more efficient and obtain better
solutions.

Moreover, to calculate the maneuver time rapidly in the optimization process, a new
method to estimate the attitude maneuver time using CMGs at low computational cost has
been developed. The proposed method has been compared with the previous maneuver
calculation method using nonlinear optimization. The comparison has demonstrated that
the proposed method can estimate the attitude maneuver time with a computation time
of about 5 percent of the conventional method.

The optimization has been performed for multiple thresholds of the position constraint.
Results have proved that there is a trade-off relation between the number of imageable
cities and observation qualities. Then, the target gimbal angle has been modified to
achieve precise attitude maneuvers without error by using the interior point method based
on the estimated trajectories of the CMG gimbal angles. Simulation of the satellite
attitude maneuver, when the modified gimbal angle transition was applied, has confirmed
that the accuracy of the attitude maneuver was improved. Even in this situation, the
attitude maneuver and observation time have been confirmed to be within the time interval
designed in the proposed optimal scheduling method. This demonstrates the practicality
of the proposed mission scheduling method.
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Chapter 5

Conclusion and future work

5.1 Conclusion

This research has focused on the orbit design, initial operation, and actual mission op-
eration of satellite constellations for Earth observation. Specifically, the following three
main themes have been considered, and novel results have been obtained from each of
them. These results contribute to solving the technical challenges in order to achieve a
sustainable Earth management system.

First, an optimal constellation design method for Earth observation satellite constel-
lation has been proposed as a mission scheduling phase before launch. Using the Kepler
orbital elements, the orbit requirements to achieve InSAR observation, repeating Sun-
synchronous orbit, have been formulated. Then, the constellation design problem has
been constructed as a mixed integer programming problem, considering the mission re-
quirements of InSAR observation. Through the meta-heuristic optimization method, op-
timal constellation configurations have been derived for multiple mission scenarios. The
novelty of this research lies in its ability to design optimal solutions that adapt to complex
mission-specific conditions, such as non-uniform target placement.

Second, an initial operation phase of the mission has been considered. A constellation
deployment control method using atmospheric drag has been proposed to place launched
satellites into the designated orbit. In this method, an analytical maneuver model for
in-plane deployment has been proposed, and its accuracy has been verified. Furthermore,
a new control method based on this model has been proposed. This method does not
require complex optimization calculations or information from other satellites. Therefore,
it is applicable to small satellites, which are mainly used in satellite constellations.

Finally, actual mission operations have been focused on. A new optimization method
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for efficient Earth observation scheduling has been proposed. The optimization problem
has been formulated as the iterative mixed-integer programming problem to observe more
targets more precisely. Also, a low-cost maneuver calculation method for CMG-equipped
satellites has been proposed to consider the attitude maneuver time in the optimization
process. The validity of the proposed maneuver calculation method has been verified
through the numerical simulation. Using this method in the optimization process, highly
accurate and reliable mission scheduling has been achieved.

These results provide a theoretical basis for solving technical issues in all phases of
satellite constellation missions for Earth observation, from design to operation. This
research is an essential step toward realizing sustainable Earth management with constel-
lation systems.

5.2 Future work

This research consists of two aspects: dynamics and actual missions. From the dynamics
perspective, the satellite’s behavior has been mathematically modeled while considering
the effects of the dominant external forces. These insights have been applied to control
the satellite’s attitude and orbit and to formulate the optimal design problem. From the
mission perspective, methods for designing and operating large-scale space systems using
nonlinear optimization have been discussed. Both of these perspectives have potential for
future development as follows:

From the viewpoint of dynamics, it can be a research theme to elucidate the behavior
of satellites under various environments and conditions that are not limited to low Earth
orbit. The dynamics of satellites will be explored from various perspectives, including
precise prediction of satellite motion by numerical simulation and analytical modeling with
approximations to understand the characteristics of satellite behavior. Based on these
results, it is also necessary to pursue control laws to control each satellite appropriately.
From the viewpoint of actual missions, new research themes can include studying practical
mission evaluation criteria that reflect requirements and constraints, formulating optimal
mission design problems considering computational cost, and investigating appropriate
optimization methods.

As an example of specific future research, this research can be extended to lunar con-
stellations. In the lunar constellation, the influence of the Earth’s gravitational potential
should be assessed as the third body perturbation [63]. Therefore, when considering an
orbit control of a constellation using external forces, as in Chapter 3, new mathematical
models of the satellite motion must be formulated reflecting on the effects of the ma-
jor external force terms. Control methods consistent with the environment and mission
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conditions should also be constructed using these models. They are future works from
the viewpoint of dynamics. On the mission aspect, there is much room for development
in mission design and observation scheduling optimization problems. For a lunar con-
stellation, various factors must be considered that are different from those for an Earth
observation constellation, such as the cost of orbital transfer from the Earth and more se-
vere equipment constraints. Hence, it is necessary to formulate mission evaluation criteria
to evaluate these factors quantitatively. The optimization problem should be constructed
with these criteria considering the computational cost, and optimization tools to solve
this problem should also be carefully examined. As these examples show, this research
can be developed into various research for future space missions.
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Appendix

List of candidate cities

The list of the latitude, longitude, and the name of the target cities used in Chapter 2
and 3 is shown here. Cities with a ”◦” in ”Asia 99 cities” column are those used in the
case where 99 Asian cities are observed. However, Yokohama and Hiroshima are included
only in case of Asia and not included in case of the entire world.

Table 5.1: Candidate cities.

No. city latitude[deg] longitude[deg] region Asia 99 cities

1 Algiers 36.73225 3.08746 Africa

2 Rabat 34.01325 -6.83255 Africa

3 Casablanca 33.58831 -7.61138 Africa

4 Alexandria 31.20176 29.91582 Africa

5 Cairo 30.06263 31.24967 Africa

6 Giza 30.00808 31.21093 Africa

7 Omdurman 15.64453 32.47773 Africa

8 Khartoum 15.55177 32.53241 Africa

9 Dakar 14.6937 -17.44406 Africa

10 Bamako 12.65 -8 Africa

11 Kano 12.00012 8.51672 Africa

12 Kaduna 10.52641 7.43879 Africa

13 Conakry 9.53795 -13.67729 Africa

14 Camayenne 9.535 -13.68778 Africa

15 Addis Ababa 9.02497 38.74689 Africa

16 Ibadan 7.37756 3.90591 Africa

17 Kumasi 6.68848 -1.62443 Africa

18 Lagos 6.45407 3.39467 Africa
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Table 5.1: Candidate cities.

No. city latitude[deg] longitude[deg] region Asia 99 cities

19 Accra 5.55602 -0.1969 Africa

20 Abidjan 5.30966 -4.01266 Africa

21 Douala 4.04827 9.70428 Africa

22 Yaoundé 3.86667 11.51667 Africa

23 Mogadishu 2.03711 45.34375 Africa

24 Kampala 0.31628 32.58219 Africa

25 Nairobi -1.28333 36.81667 Africa

26 Brazzaville -4.26613 15.28318 Africa

27 Kinshasa -4.32758 15.31357 Africa

28 Dar es Salaam -6.82349 39.26951 Africa

29 Luanda -8.83682 13.23432 Africa

30 Lubumbashi -11.66089 27.47938 Africa

31 Lusaka -15.40669 28.28713 Africa

32 Harare -17.82772 31.05337 Africa

33 Pretoria -25.74486 28.18783 Africa

34 Johannesburg -26.20227 28.04363 Africa

35 Soweto -26.26781 27.85849 Africa

36 Durban -29.8579 31.0292 Africa

37 Cape Town -33.92584 18.42322 Africa

38 Montreal 45.50884 -73.58781 America

39 Toronto 43.70011 -79.4163 America

40 Chicago 41.85003 -87.65005 America

41 The Bronx 40.84985 -73.86641 America

42 Manhattan 40.78343 -73.96625 America

43 New York City 40.71427 -74.00597 America

44 Queens 40.68149 -73.83652 America

45 Brooklyn 40.6501 -73.94958 America

46 Philadelphia 39.95233 -75.16379 America

47 Los Angeles 34.05223 -118.24368 America

48 Phoenix 33.44838 -112.07404 America

49 Dallas 32.78306 -96.80667 America

50 San Diego 32.71533 -117.15726 America

51 Tijuana 32.5027 -117.00371 America

52 Ciudad Juárez 31.72024 -106.46084 America

53 Houston 29.76328 -95.36327 America

119



Table 5.1: Candidate cities.

No. city latitude[deg] longitude[deg] region Asia 99 cities

54 San Antonio 29.42412 -98.49363 America

55 Havana 23.13302 -82.38304 America

56 Guadalajara 20.66682 -103.39182 America

57 Ecatepec 19.60492 -99.06064 America

58 Santiago de los Caballeros 19.4517 -70.69703 America

59 Mexico City 19.42847 -99.12766 America

60 Ciudad Nezahualcoyotl 19.40061 -99.01483 America

61 Iztapalapa 19.35529 -99.06224 America

62 Puebla 19.03793 -98.20346 America

63 Port-au-Prince 18.53917 -72.335 America

64 Santo Domingo 18.50012 -69.98857 America

65 House’ s Joe Arroyo 10.98597 -74.82172 America

66 Barranquilla 10.96854 -74.78132 America

67 Maracaibo 10.66663 -71.61245 America

68 Caracas 10.48801 -66.87919 America

69 Maracay 10.23535 -67.59113 America

70 Valencia 10.16202 -68.00765 America

71 Medelĺın 6.25184 -75.56359 America

72 Bogotá 4.60971 -74.08175 America

73 Cali 3.43722 -76.5225 America

74 Quito -0.22985 -78.52495 America

75 Belém -1.45583 -48.50444 America

76 Guayaquil -2.20584 -79.90795 America

77 Manaus -3.10194 -60.025 America

78 Fortaleza -3.71722 -38.54306 America

79 Recife -8.05389 -34.88111 America

80 Lima -12.04318 -77.02824 America

81 Salvador -12.97111 -38.51083 America

82 Brasilia -15.77972 -47.92972 America

83 Santa Cruz de la Sierra -17.78629 -63.18117 America

84 Belo Horizonte -19.92083 -43.93778 America

85 Rio de Janeiro -22.90642 -43.18223 America

86 São Paulo -23.5475 -46.63611 America

87 Asunción -25.30066 -57.63591 America

88 Curitiba -25.42778 -49.27306 America
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Table 5.1: Candidate cities.

No. city latitude[deg] longitude[deg] region Asia 99 cities

89 Porto Alegre -30.03306 -51.23 America

90 Córdoba -31.4135 -64.18105 America

91 Santiago -33.45694 -70.64827 America

92 Buenos Aires -34.61315 -58.37723 America

93 Montevideo -34.90328 -56.18816 America

94 Yekaterinburg 56.8519 60.6122 Asia

95 Novosibirsk 55.0415 82.9346 Asia

96 Harbin 45.75 126.65 Asia

97 Changchun 43.88 125.32278 Asia

98 Jilin 43.85083 126.56028 Asia ◦
99 Ürümqi 43.80096 87.60046 Asia ◦
100 Almaty 43.25667 76.92861 Asia

101 Sapporo 43.06667 141.35 Asia ◦
102 Fushun 41.88669 123.94363 Asia ◦
103 Shenyang 41.79222 123.43278 Asia ◦
104 Tashkent 41.26465 69.21627 Asia

105 Baotou 40.65222 109.82222 Asia ◦
106 Beijing 39.9075 116.39723 Asia

107 Tangshan 39.63333 118.18333 Asia

108 Ordos 39.6086 109.78157 Asia ◦
109 Tianjin 39.14222 117.17667 Asia ◦
110 Pyongyang 39.03385 125.75432 Asia

111 Dalian 38.91222 121.60222 Asia ◦
112 Tabriz 38.08 46.2919 Asia ◦
113 Shijiazhuang 38.04139 114.47861 Asia ◦
114 Taiyuan 37.86944 112.56028 Asia

115 Seoul 37.566 126.9784 Asia ◦
116 Incheon 37.45646 126.70515 Asia ◦
117 Suwon 37.29111 127.00889 Asia ◦
118 Zibo 36.79056 118.06333 Asia ◦
119 Jinan 36.66833 116.99722 Asia

120 Handan 36.60056 114.46778 Asia ◦
121 Mosul 36.335 43.11889 Asia ◦
122 Mosul 36.33271 43.10555 Asia

123 Daejeon 36.32139 127.41972 Asia

121



Table 5.1: Candidate cities.

No. city latitude[deg] longitude[deg] region Asia 99 cities

124 Mashhad 36.31559 59.56796 Asia ◦
125 Aleppo 36.20124 37.16117 Asia

126 Tai ’an 36.18528 117.12 Asia ◦
127 Qingdao 36.06488 120.38042 Asia

128 Lanzhou 36.05701 103.83987 Asia ◦
129 Saitama 35.90807 139.65657 Asia ◦
130 Daegu 35.87028 128.59111 Asia ◦
131 Karaj 35.83266 50.99155 Asia ◦
132 Tehran 35.69439 51.42151 Asia

133 Tokyo 35.6895 139.69171 Asia ◦
134 Kawasaki 35.52056 139.71722 Asia ◦
135 Nagoya 35.18147 136.90641 Asia ◦
136 Gwangju 35.15472 126.91556 Asia ◦
137 Busan 35.10278 129.04028 Asia

138 Kyoto 35.02107 135.75385 Asia ◦
139 Zhengzhou 34.75778 113.64861 Asia ◦
140 Osaka 34.69374 135.50218 Asia ◦
141 Kobe 34.6913 135.183 Asia ◦
142 Luoyang 34.68361 112.45361 Asia ◦
143 Tianshui 34.57952 105.74238 Asia

144 Kabul 34.52813 69.17233 Asia ◦
145 Xi ’an 34.25833 108.92861 Asia ◦
146 Xuchang 34.03189 113.86299 Asia

147 Peshawar 34.008 71.57849 Asia

148 Beirut 33.9 35.48333 Asia

149 Beirut 33.89332 35.50157 Asia

150 Rawalpindi 33.6007 73.0679 Asia

151 Fukuoka 33.6 130.41667 Asia ◦
152 Damascus 33.5102 36.29128 Asia

153 Huai ’an 33.50389 119.14417 Asia ◦
154 Baghdad 33.34058 44.40088 Asia ◦
155 Isfahan 32.65246 51.67462 Asia

156 Shiyan 32.6475 110.77806 Asia ◦
157 Gujranwala 32.15567 74.18705 Asia

158 Xinyang 32.12278 114.06556 Asia
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No. city latitude[deg] longitude[deg] region Asia 99 cities

159 Nanjing 32.06167 118.77778 Asia ◦
160 Amman 31.95522 35.94503 Asia

161 Hefei 31.86389 117.28083 Asia ◦
162 Wuxi 31.56887 120.28857 Asia ◦
163 Lahore 31.558 74.35071 Asia ◦
164 Faisalabad 31.41554 73.08969 Asia ◦
165 Kunshan 31.37762 120.95431 Asia

166 Suzhou 31.30408 120.59538 Asia ◦
167 Shanghai 31.22222 121.45806 Asia ◦
168 Ludhiana 30.91204 75.85379 Asia

169 Nanchong 30.79508 106.08473 Asia ◦
170 Chengdu 30.66667 104.06667 Asia ◦
171 Wuhan 30.58333 114.26667 Asia ◦
172 Basrah 30.50852 47.7804 Asia ◦
173 al-Basrah 30.50316 47.81507 Asia ◦
174 Hangzhou 30.29365 120.16142 Asia ◦
175 Multan 30.19679 71.47824 Asia

176 Ningbo 29.87819 121.54945 Asia ◦
177 Shiraz 29.61031 52.53113 Asia

178 Chongqing 29.56278 106.55278 Asia ◦
179 Puyang 29.45679 119.88872 Asia ◦
180 Gorakhpur 29.44768 75.67206 Asia

181 Yueyang 29.37455 113.09481 Asia

182 Meerut 28.98002 77.70636 Asia

183 Nanchang 28.68396 115.85306 Asia ◦
184 Delhi 28.65195 77.23149 Asia ◦
185 Faridabad 28.41124 77.31316 Asia

186 Changsha 28.19874 112.97087 Asia ◦
187 Guankou 28.15861 113.62709 Asia

188 Kathmandu 27.70169 85.3206 Asia

189 Agra 27.18333 78.01667 Asia

190 Jaipur 26.91962 75.78781 Asia ◦
191 Lucknow 26.83928 80.92313 Asia ◦
192 Kanpur 26.46523 80.34975 Asia ◦
193 Patna 25.59408 85.13563 Asia
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194 Hyderabad 25.39242 68.37366 Asia

195 Taipei 25.04776 121.53185 Asia ◦
196 Kunming 25.03889 102.71833 Asia ◦
197 Karachi 24.8608 67.0104 Asia ◦
198 Riyadh 24.68773 46.72185 Asia ◦
199 Xiamen 24.47979 118.08187 Asia ◦
200 Medina 24.46861 39.61417 Asia

201 Dhaka 23.7104 90.40744 Asia ◦
202 Shantou 23.36814 116.71479 Asia ◦
203 Bhopal 23.25469 77.40289 Asia

204 Guangzhou 23.11667 113.25 Asia ◦
205 Foshan 23.02677 113.13148 Asia ◦
206 Ahmedabad 23.02579 72.58727 Asia ◦
207 Dongguan 23.01797 113.74866 Asia ◦
208 Yunfu 22.92833 112.03954 Asia ◦
209 Khulna 22.80979 89.56439 Asia

210 Indore 22.71792 75.8333 Asia

211 Kaohsiung 22.61626 120.31333 Asia

212 Kolkata 22.56263 88.36304 Asia ◦
213 Shenzhen 22.54554 114.0683 Asia ◦
214 Chittagong 22.3384 91.83168 Asia ◦
215 Kowloon 22.31667 114.18333 Asia ◦
216 Vadodara 22.29941 73.20812 Asia

217 Hong Kong 22.27832 114.17469 Asia ◦
218 Mandalay 21.97473 96.08359 Asia

219 Jeddah 21.54238 39.19797 Asia ◦
220 Mecca 21.42664 39.82563 Asia

221 Zhongshan 21.31992 110.5723 Asia ◦
222 Surat 21.19594 72.83023 Asia ◦
223 Nagpur 21.14631 79.08491 Asia ◦
224 Hanoi 21.0245 105.84117 Asia

225 Nashik 19.99727 73.79096 Asia

226 Kalyan-Dombivali 19.2437 73.13554 Asia

227 Nowrangapur 19.23114 82.54826 Asia

228 Thane 19.19704 72.96355 Asia
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229 Mumbai 19.07283 72.88261 Asia ◦
230 Navi Mumbai 19.03681 73.01582 Asia ◦
231 Pimpri 18.62292 73.80696 Asia

232 Pune 18.51957 73.85535 Asia ◦
233 Dadonghai 18.22056 109.51028 Asia ◦
234 Hyderabad 17.38405 78.45636 Asia ◦
235 Yangon 16.80528 96.15611 Asia ◦
236 Sanaa 15.35472 44.20667 Asia

237 Caloocan City 14.64953 120.96788 Asia

238 Quezon City 14.6488 121.0509 Asia ◦
239 Manila 14.6042 120.9822 Asia

240 Bangkok 13.75398 100.50144 Asia ◦
241 Chennai 13.08784 80.27847 Asia ◦
242 Bengaluru 12.97194 77.59369 Asia ◦
243 Phnom Penh 11.56245 104.91601 Asia

244 Ho Chi Minh City 10.82302 106.62965 Asia ◦
245 Tirunelveli 8.72742 77.6838 Asia

246 Budta 7.20417 124.43972 Asia

247 Davao 7.07306 125.61278 Asia

248 Kota Bharu 6.13328 102.2386 Asia

249 Medan 3.58333 98.66667 Asia

250 Kuala Lumpur 3.1412 101.68653 Asia

251 Singapore 1.28967 103.85007 Asia ◦
252 Palembang -2.91673 104.7458 Asia

253 Makassar -5.14861 119.43194 Asia

254 Tangerang -6.17806 106.63 Asia

255 Jakarta -6.21462 106.84513 Asia ◦
256 Bekasi -6.2349 106.9896 Asia

257 South Tangerang -6.28862 106.71789 Asia

258 Bandung -6.92222 107.60694 Asia

259 Semarang -6.99306 110.42083 Asia

260 Surabaya -7.24917 112.75083 Asia ◦
261 Brisbane -27.46794 153.02809 Australia

262 Perth -31.95224 115.8614 Australia

263 Sydney -33.86785 151.20732 Australia
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264 Adelaide -34.92866 138.59863 Australia

265 Melbourne -37.814 144.96332 Australia

266 Saint Petersburg 59.93863 30.31413 Europe

267 Stockholm 59.33258 18.0649 Europe

268 Nizhniy Novgorod 56.32867 44.00205 Europe

269 Moscow 55.75222 37.61556 Europe

270 Minsk 53.9 27.56667 Europe

271 Hamburg 53.57532 10.01534 Europe

272 Berlin 52.52437 13.41053 Europe

273 Warsaw 52.22977 21.01178 Europe

274 London 51.50853 -0.12574 Europe

275 Kyiv 50.45466 30.5238 Europe

276 Kharkiv 49.98081 36.25272 Europe

277 Paris 48.85341 2.3488 Europe

278 Vienna 48.20849 16.37208 Europe

279 Munich 48.13743 11.57549 Europe

280 Budapest 47.49801 19.03991 Europe

281 Milan 45.46427 9.18951 Europe

282 Belgrade 44.80401 20.46513 Europe

283 Bucharest 44.43225 26.10626 Europe

284 Rome 41.89193 12.51133 Europe

285 Barcelona 41.38879 2.15899 Europe

286 Istanbul 41.01384 28.94966 Europe

287 Madrid 40.4165 -3.70256 Europe

288 Bursa 40.19559 29.06013 Europe

289 Ankara 39.91987 32.85427 Europe

290 İzmir 38.41273 27.13838 Europe

291 Adana 37.00167 35.32889 Europe

292 Antananarivo -18.91368 47.53613 Indian

293 Yokohama 35.43333 139.65 Asia ◦(not applicable in World)

294 Hiroshima 34.4 132.45 Asia ◦(not applicable in World)
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Gimbal angle calculation using inverse kinmeatics

In this section, the calculation method of CMGs’ target gimbal angles δe = (θ1, θ2, θ3, θ4)
to obtain the desired angular momentum hc is introduced. By setting one gimbal angle
among four, the remaining three gimbal angles of δe can be obtained [60]. Here, the
gimbal angles θ1, θ2, and θ3 for given θ4 in the range of [−π, π] are considered. Using
gimbal angles θ1 - θ4, parameters h1, h2, and h3 are defined in the following manner:

1

hw

hc =

 h1

h2

h3

 =

 − sin θ1 cos β − cos θ2 + sin θ3 cos β + cos θ4
cos θ1 − sin θ2 cos β − cos θ3 + sin θ4 cos β

sin θ1 sin β + sin θ2 sin β + sin θ3 sin β + sin θ4 sin β

 . (5.1)

Eq. (5.1) can be rewritten as follows:

cos θ1 − cos θ3 = h20, (5.2)

sin θ1 + sin θ3 =
1

sin β
h30, (5.3)

sin θ1 − sin θ3 = − 1

cos β
h10, (5.4)

where h10, h20, and h30 are defined as shown in Eqs. (5.5) - (5.7):

h10 = h1 + cos θ2 − cos θ4, (5.5)

h20 = h2 + cos β(sin θ2 − sin θ4), (5.6)

h30 = h3 − sin β(sin θ2 + sin θ4). (5.7)

Here, for arbitrary angles ϕ1 and ϕ2, the following relation holds:

[(cosϕ1 − cosϕ2)
2 + (sinϕ1 + sinϕ2)

2][(cosϕ1 − cosϕ2)
2 + (sinϕ1 − sinϕ2)

2] (5.8)

= 4(cosϕ1 − cosϕ2)
2.

Substituting θ1 and θ3 into ϕ1 and ϕ2 in Eq. (5.8) and using Eqs. (5.2) - (5.4), the following
relation can be obtained:(

h2
20 +

h2
30

sin2 β

)(
h2
20 +

h2
10

cos2 β

)
= 4h2

20. (5.9)

When θ4 is fixed, Eq. (5.9) is a quadratic polynominal with respect to cos θ2 and quater-
nary polynomial with respect to sin θ2. Then, Eq. (5.9) can be transformed as follows to
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eliminate the second-order term for cos θ2:(
h2
20 +

h2
30

sin2 β

)
2(h1 − cos θ4) cos θ2

cos2 β
= 4h2

20 −
(
h2
20 +

h2
30

sin2 β

)
×
(
h2
20 +

(h1 − cos θ4)
2 + 1− sin2 θ2

cos2 β

)
. (5.10)

Eq. (5.10) is the fourth-order polynomial with respect to sin θ2 and first-order polynomial
with respect to cos θ2. Squaring both sides, Eq. (5.10) can be transformed into the eighth-
order polynomial with respect to sin θ2 as shown in Eq. (5.11):(

h2
20 +

h2
30

sin2 β

)2
4(h1 − cos θ4)

2(1− sin2 θ2)

cos4 β
=

[
4h2

20 −
(
h2
20 +

h2
30

sin2 β

)
×
(
h2
20 +

(h1 − cos θ4)
2 + 1− sin2 θ2

cos2 β

)]2
. (5.11)

Based on Eq. (5.11), gimbal angles θ1, θ2, and θ3 can be obtained in a following manner:

1. Solve the equation Eq. (5.11), and let real solutions whose absolute value is smaller
than 1 be candidates of sin θ2

2. cos θ2 = ±
√

1− sin2 θ2 is calculated for each candidate of sin θ2, and candidates of
θ2 are obtained

3. From the candidates of θ2, choose the θ2 that satisfies Eq. (5.10).

4. Using the chosen θ2 and Eqs. (5.3) and (5.4), candidates of sin θ1 and sin θ3 are
obtained as follows:

sin θ1 = − 1

2 cos β
h10 +

1

2 sin β
h30, (5.12)

sin θ3 =
1

2 cos β
h10 +

1

2 sin β
h30. (5.13)

5. Among the candidates, find (θ1, θ2, θ3) that satisfies Eq. (5.2) and the absolute value
of the right side of Eqs. (5.12) and (5.13) is smaller than 1

6. If multiple solutions of (θ1, θ2, θ3, θ4) are obtained, the solution with the smallest
maximum value of (θ1, θ2, θ3) is adopted.
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Golden section search

In Section 4.2, the golden section search is used to search the proper value of the angular
momentum hc that minimizes the attitude maneuver time. Golden section search is a
numerical calculation method to find the extreme value of a function [61]. In this section,
the algorithm of the golden section search is introduced. When f(x) is known to have a
minimum in the search area [a, b], the minimum value is found by the following procedure:

1. Let x1 be the point that separate the area [a, b] into 1 : ϕ, where golden ratio
ϕ = (1 +

√
5)/2.

2. Let x2 be the point that separate the area [a, b] into ϕ : 1.

3. When f(x1) > f(x2), the area smaller than x1 is removed and let x1 be the left end
a′ of the new search area [a′, b]. Previous x2 can be reused as x1 in the new search
area.

4. When f(x1) < f(x2), the area larger than x2 is removed and let x2 be the right end
b′ of the new search area [a, b′]. Previous x1 can be reused as x2 in the new search
area.

5. The same operation is executed for the new search area [a′, b] or [a, b′].

6. Repeat the abobe processes until the updated search area [a, b] becomes sufficiently
small.

7. For sufficiently small a− b, let y = f((a+ b)/2) be the minimum value.

The flow of the golden section search is shown in Fig. 5.1. The length of the search
area b − a becomes ϕ/(1 + ϕ) = 0.618 times longer in one iteration. Therefore, in ten
iterations, the search area becomes 0.61810 = 0.00813 times longer, which is less than 1
% of the initial search area length. In this case, f(x1) and f(x2) are compared, and the
outer region of the larger one is excluded in order to find the minimum value. On the
contrary, in the case of finding the maximum value, the outer region of the smaller one is
excluded. A similar method is the ternary search, which divides the search area into 1 : 2
or 2 : 1. A feature of golden section search is that either x1 or x2 can be reused in the
next step. Therefore, the computational cost of the golden section search is lower than
that of the ternary search.
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Figure 5.1: Flow of the golden section search.
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