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Abstract
The ultimate goal in the field of control engineering is to be able to manipulate the

behavior of various systems freely. There are many methods for manipulating the

behavior of a plant and controlling a system. One of the most sophisticated methods

is the control system design based on the mathematical model of the plant. It is

possible to achieve control performance by understanding the dynamics of a target

plant. An accurate understanding of dynamics generally requires detailed models

that reproduce various plant phenomena. However, there are cases where a detailed

model is not required in control system design. For example, in the case of control

around an equilibrium point for a nonlinear plant, a linear approximated model around

the equilibrium point is sufficient, and a detailed nonlinear model is unnecessary.

In another case, detailed models cannot be used when the cost of controller design

or computation time is constrained. In addition, even if a detailed model can be

constructed, it may be difficult to use the detailed model in control system design.

For example, Neural Network (NN) models are expected to be detailed models, but

there is no design theory for NN models in conventional linear control theory.

As described above, a detailed model is not always necessary in control system

design; it is necessary to change models according to the design intent of the control

system, such as control objectives and design specifications. To reflect the design in-

tent in the models, I attribute the control system design problem to the model search

problem, reflecting the design intent in the models. Motivated by the above back-

ground, this thesis focuses on the model-tuning approach for control system design as

an optimization problem of models. In this thesis, I address several specific problems:

problem formulation, application to the design of a dynamic quantizer in a control

system, and application to the design of a quantization process in an image and graph

signal processing system.

In Chapter 2, I formulate the problem of a model-tuning approach for control system

design. The proposed method first fixes the controller design procedure. Fixing the

design procedure means characterizing the controller by a particular model. In this

thesis, the model characterizing the controller is called the ”Design model,” and I

search for the design model to satisfy the design specifications. In other words, the

controller design problem is converted to the design model search problem. The design

procedure of the controller mathematically corresponds to the mapping from models

to controllers. Since the mapping is given in the proposed method, the search space is
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the model space, not the controller space, and the controller is automatically designed

once the model is constructed.

In Chapter 3 and Chapter 4, I formulate the design problem of a dynamic quantizer

based on my proposed method. Specifically, I deal with a sampled-data dynamic

quantizer for a linear continuous-time system in Chapter 3 and a nonlinear continuous-

time system in Chapter 4. The validity of my proposed method is demonstrated

through the numerical examples and the comparison with the method that directly

searches for the parameters of the dynamic quantizer.

In Chapter 5 and Chapter 6, I extend the problem settings to the design of a system

using Topological Data Analysis (TDA). In Chapter 5, I design a binarization process

of images in a system that segments gray-scale images using TDA of binary images.

In Chapter 6, I design a quantization process of weights of NNs in a system, which

evaluates the performance of a Quantized Neural Network (QNN). In both chapters, I

demonstrate the effectiveness of the proposed method through numerical experiments.
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1

Notation and definitions

The following notation is used in this thesis.

R Set of real number

R+ Set of positive real number

N Set of natural number

∈ Belong to

⊂ Subset of (strict or not)

∪ Union

∩ Intersection

∅ Empty set

\ Set difference

M⊤ Transpose of the matrix M

M−1 Inverse of the matrix M

M† Moore-Penrose pseudo-inverse of the matrix M

d Quantization width

Ts Sampling period

Nbit Number of quantization bits

‖x‖ Euclidean norm of the vector x

L2[0, T ] Set of the square-integrable functions on the interval [0, T ]

sgn(·) Signum function

b·c Floor function

The following notation is also defined.

• For the quantization width d and the number of quantization bits Nbit, the set

of quantization steps is denoted as V := {±d, ±2d, . . . , ±Nbitd}.
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Chapter 1

Introduction

1.1 Background

The ultimate goal in the field of control engineering is to be able to manipulate the

behavior of various systems freely. There are many methods for manipulating the

behavior of a plant and controlling a system. One of the most sophisticated methods

is the control system design based on the mathematical model of the plant. It is

possible to achieve control performance by understanding the dynamics of a target

plant.

An accurate understanding of dynamics generally requires detailed models that re-

produce various plant phenomena. However, there are cases where a detailed model

is not required in control system design. First, a detailed model may not be necessary

because the control objectives do not require it. For example, in stabilization control

near an equilibrium point for a nonlinear system, it is common to use a linear approx-

imation model near the equilibrium point. Also, a detailed model is not necessary in

some cases due to constraints on the controller, such as discrete-valued inputs and

outputs or a fixed order of the controller. Furthermore, even if a detailed model can

be constructed, it may not be helpful for control. For example, Neural Network (NN)

models have high description capability, but it is difficult to obtain the frequency

characteristics and inverse models necessary for control from the model.

As described above, a detailed model is not always necessary in control system

design; it is necessary to change models according to the design intent of the control

system, such as control objectives and design specifications. To reflect the design in-

tent in the models, I attribute the control system design problem to the model search

problem. Motivated by the above background, this thesis focuses on the model-

tuning approach for control system design as an optimization problem of models.



1.1. BACKGROUND

My proposed method first fixes the controller design procedure, converting the con-

troller design problem to a model search problem. Fixing the design procedure means

characterizing the controller by a particular model. In this thesis, the model charac-

terizing the controller is called the ”Design model,” and I search for the design model

to satisfy the design specifications. In other words, the controller design problem is

attributed to the design model search problem. The design procedure of the con-

troller mathematically corresponds to the mapping from models to controllers. Since

the mapping is given in the proposed method, the search space is the model space,

not the controller space, and the controller is automatically designed once the model

is constructed.

Here, I focus on the model matching method for the PID control system as one

of the system design methods based on constructing a model that reflects the design

intent[1]. In the model matching method, first, a transformation equation is derived to

determine the controller’s parameters from the parameters of the closed-loop system

model. Next, the desired control properties are obtained as the reference model for

the closed-loop system model. In other words, the model matching method converts

the controller search problem to the model search problem by imposing a design

procedure on the controller.

In addition to the model matching method, some studies have designed control sys-

tems using a model tuning method based on the design procedure of the controller.

For example, Shikada et al. considered the problem of designing a robust state feed-

back controller with an observer for a system with polytope-type uncertainty[2, 3].

In this case, they showed that optimizing the model and its linear transformation

performs better than the conventional nominal model. In addition to this previous

study, Okajima also confirmed that the maximum likelihood model is not always suit-

able as a nominal model for model error compensator[4]. In another related study,

Wada and Tsurushima proposed a method of adding an integrator to the model as

a servo compensator to achieve tracking to the target signal in the design of a servo

system by model predictive control[5, 6]. Minami and Kashima designed a quantizer

for non-minimum phase systems[7, 8]. This study showed that output divergence can

be prevented by designing a filter for a dynamic quantizer with a partial model ob-

tained by serial system decomposition. The partial model ignores unstable zeros in

the plant. Kusui et al. extended the study of Minami and Kashima and proposed a

dynamic quantizer design method for the MIMO non-minimum phase system using

serial system decomposition[9].

These studies do not design based on a model that mimics the characteristics of

– 3 –



1.2. GOAL OF MY STUDY

the plant but tunes the model by fixing the design procedure of the controller or

quantizer, which is different from directly tuning from data. It is interesting in that

it is positioned between model-based and data-driven methods.

1.2 Goal of my study

In this thesis, I redefine the above studies as a more generalized problem setting

and propose a system design method based on model tuning. The target plant and

the design procedure of the controller for the system are given, and the problem is

regarded as searching for a design model that reflects the design intent. The design

model does not necessarily reproduce the behavior of the plant but is necessary for

control system design and is obtained through tuning.

The proposed method has the advantage of obtaining a model suitable for the design

procedure without necessarily requiring the design model to reproduce the dynamics of

the plant. In addition, the proposed method may potentially make the search space

small by solving the model search problem. For example, in optimization, search

algorithms such as genetic algorithms, particle swarm optimization, and simulated

annealing are used, and by imposing some structure on the update rule of the design

parameters in these algorithms, fast search can be performed. Similarly, by imposing

a particular structure on the controller to reduce the search space to the model, the

proposed method has the potential to design faster than direct search of the controller.

1.3 My approach and applications

In this thesis, I propose a system design method based on model tuning. I define

the following sub-issues to clarify the basic properties and usefulness of the proposed

method in this study.

The main problem to be solved is the design of a control system with desired

control properties. In basic model-based design, to solve this problem, the design

was to construct a model first and then design a controller. The model itself was

considered to be known as the information necessary for system design, and what

was important in system design was the controller design after model construction.

The model was given, and the problem was regarded as finding the controller design

method.

On the other hand, in this study, I propose a system design method based on model

tuning. In the proposed method, the design procedure of the controller is given, and I

– 4 –



1.3. MY APPROACH AND APPLICATIONS

find the design model. It should be noted that the parameters of the controller must

change by tuning the model. Therefore, the procedure for designing the controller

from the model, which is the mapping from the model to the controller, is actually

given. In the proposed method, since the mapping from the model to the controller is

given, the search space is the model space, not the controller space. Once the model

is constructed, the controller is automatically designed.

Next, I describe how to fix the controller design procedure. One way is to use

analytical results of the fundamental control system design problem. For example,

in control theory, there are cases where analytically optimal controllers such as pole

assignment and LQR control are derived. The analytically derived equations are

fixed as the design procedure, and the model given to the equations is tuned. In

other words, it is an approach to searching for the model that uses the controller

design procedure as the designer’s knowledge. In addition to the proposed method of

model search, there is a method to search for the parameters of the system directly.

However, model search uses the structure of the controller as knowledge, so it may

be possible to find a more valid solution more efficiently. Furthermore, unlike direct

search, model search uses the structure of the system as knowledge and obtains the

design model for a control system. It is considered to have more explainability in

system design.

In Chapter 2, as an important sub-issue, I define the problem of system design

using the model tuning approach. The formulated problem is a generalization of

the problems considered in the following chapters, and by solving this problem, I

can consider the properties and characteristics of the design model. However, this

problem is very abstract, and the solution is difficult to find at this point. Therefore,

in the following chapters, I will reduce each problem to a specific problem setting,

propose a method to solve the problem and evaluate the solution.

In Chapter 3 and Chapter 4, I formulate the problem of system design using the

model tuning approach and describe the design of a dynamic quantizer as a specific ex-

ample. A quantizer is a device that converts a continuous signal into a discrete signal.

A dynamic quantizer is a device that makes the output of the discrete-valued input

system close to the output of the continuous-valued input system by feeding back the

quantization errors. In the design of conventional dynamic quantizers, discrete-time

and continuous-time quantizers have been proposed for discrete-time and continuous-

time systems, respectively. In Chapters 3 and Chapter 4, I propose the problem of

designing a discrete-time quantizer for a continuous-time system and demonstrate the

effectiveness of system design using model search. The controller design procedure to

– 5 –
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be fixed here is the design formula for the discrete-time optimal dynamic quantizer

for the discrete-time plant. In the design of dynamic quantizers, I fix the procedure

for the optimal dynamic quantizer for the discrete-time plant and search for models

that fill the gap between continuous and discrete time.

In Chapter 5 and Chapter 6, I extend the problem setting of the proposed method

and consider the application to a system using Topological Data Analysis (TDA).

In Chapter 5, I use a system that segments gray-scale images using TDA of binary

images. The signal of this system is an image signal, the design procedure of the

binarization process is fixed, and I search for the binarization algorithm that works

well for segmentation with TDA. In Chapter 6, I use a system that evaluates the

quantization performance of Neural Networks (NNs). The signal of this system is a

graph signal of NN, the design procedure of a quantization process of NN weights is

fixed, and I search for the error diffusion filter that keeps the performance of QNN

high. The proposed method can be applied to various system design problems, not

just control system design.

1.4 Contributions

In this thesis, the contributions of this study are as follows.

• I proposed a method to solve the system design problem using model tuning.

• I defined the problem of system design using model search and formulated it

as an optimization problem

• I solved various examples by the proposed method and demonstrated the effec-

tiveness of the proposed method through numerical experiments.

This study contributes by proposing a model-tuning solution for a general problem,

though related work exists[1, 2, 3, 4, 5, 6, 7, 8, 9]. Based on these related works, I

define a more general problem and consider searching for a model for the problem.

Furthermore, I apply the proposed method to various specific problem settings and

demonstrate its effectiveness.
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Chapter 2

Tuning of design models for control

system design

2.1 Previous studies of model-tuning method for control

system

As described in the previous chapter, my proposed design method differs from the con-

ventional model-based system design method. I show the positioning of the proposed

method in the design method of the control system in Fig. 2.1.
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Fig. 2.1: Positioning of the proposed method in the design methods of control system.

Here, I introduce various design methods for conventional model-based design.

First, in modern control theory, state feedback control and optimal control are major

model-based methods[10, 11, 12]. In these control system designs, the system is mod-

eled as a State Space Model (SSM), and the controller is designed using the SSM. In

robust control, a single model is determined for the system (nominal model) in the

presence of uncertainty, and a controller that conservatively acts on the uncertainty is

designed for the model[13, 14]. In system identification, the system is identified and
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expressed as a model, and the identified model is used for control[15, 16, 17]. In dis-

turbance observer, the value of the disturbance is estimated using the inverse model

of the system, and the estimated disturbance and the true disturbance are canceled

out to achieve the desired control performance[18, 19, 20]. These methods assume

that the model of the plant is known in advance or can be obtained. Moreover, the

model must sufficiently reflect the characteristics of the plant.

The simultaneous design of structural system and control systems is a method

similar to the model-based system design method[21, 22, 23, 24]. In this method, the

controller and some parameters of the plant model are designed simultaneously with

the structure of the model fixed. Thus, simultaneous design assumes that some plant

parameters are tunable but are based on the structure of the plant model. In that

sense, this method is similar to model-based design.

The quality of the model greatly influences the performance of the control system

in model-based methods. If the model accurately reflects the characteristics of the

plant and can be used for controller design, the desired control performance can be

achieved. On the other hand, when the system is complex, or there are constraints on

the control system design, it is difficult to construct the model and design the control

system.

In contrast, data-driven methods that design systems directly from data without

relying on models are also known. For example, classical PID controller design meth-

ods are known, such as the Ziegler-Nichols method[25, 26, 27]. The method tunes

the parameters of the PID controller through trial and error, using empirical rules

and data such as step responses. One-shot data-driven methods such as Fictitious

Reference Iterative Tuning (FRIT) are also known[28, 29, 30, 31]. FRIT is a method

that determines the parameters of the controller to approach the response of the con-

trol system to the response of the ideal system using the obtained input-output data.

Furthermore, some studies design learning-based controllers[32, 33, 34, 35]. These

methods do not require a model, so it is possible to design a controller based only

on data without the need to know the model of the plant in advance. However, it

is necessary to obtain sufficient data to design the controller from experiments or

simulations.

Adaptive control is another known method[36, 37, 38]. Adaptive control is a method

of designing a controller that adjusts its parameters online to respond to the uncer-

tainties of the plant. Adaptive control requires information on the relative degree of

the plant to construct a stable adaptive control system. However, adaptive control

needs data about the control system, adjusts the parameters of the controller online,

– 8 –
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and is similar to data-driven methods.

Data-driven methods do not explicitly use models, and compared to model-based

methods, it is not necessary to know the plant model in advance. However, since

data-driven methods design controllers based only on data, it is difficult to design a

controller when sufficient data is unavailable. Moreover, data-driven methods may be

limited in the class of systems to which they can be applied.

The proposed method aims to design control systems through model tuning. Com-

pared to model-based methods, the proposed method fixes the controller design pro-

cedure and searches for the model. In the actual construction of the model, I search

for the model so that the model satisfies the performance using the input-output and

state data of the system. Moreover, the model may not sufficiently reflect the charac-

teristics of the plant. The proposed method does not incorporate detailed information

about the system into the model compared to model-based methods.

Unlike data-driven methods that adjust the parameters of the controller directly,

the system is constructed through the model. The proposed method fixes the design

procedure and searches the model. Therefore, the proposed method is positioned

between conventional model-based methods and data-driven methods.

As a method for designing systems focusing on the model, Ikezaki et al. proposed

Virtual Internal Model Tuning (VIMT)[39, 40, 41]. VIMT is a data-driven controller

design method for closed-loop systems. First, the ideal response of the closed-loop

system is fixed, and the plant model is virtually obtained using the ideal response and

the controller that realizes the ideal response. Next, the target response is represented

using the virtual plant model and the initial response. Finally, the virtual model is

replaced by a parameterized controller, and an optimization is performed to close the

predicted response of the output data represented by the controller and the target

response. VIMT fixes the ideal response, and a controller that reflects the designer’s

intention can be designed. However, in VIMT, the virtual model of the plant is

replaced by a parameterized controller at the end, and the parameters of the controller

are directly tuned. In that sense, it differs from the proposed method, which tunes

the model.

In addition, the study by Fujimoto et al. designs a dynamic quantizer from input-

output data by fixing the structure of the quantizer and searching for parameters[42].

A quantizer is a device that converts a continuous signal into a discrete signal, and

a dynamic quantizer is a quantizer that minimizes output error by feeding back the

input quantization error. As a previous study, it is known that the inverse model of the

plant is required to design the optimal dynamic quantizer[43]. Using this knowledge,

– 9 –
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Fujimoto et al. proposed a data-driven method for designing a dynamic quantizer by

setting the evaluation function so that the input-output data satisfies the relationship

of the inverse model of the system.

These two studies use only the information of the model when learning the param-

eters and do not tune the parameters of the model. However, it is shown that the

parameters can be efficiently learned by fixing the structure of the system from the

desired input-output characteristics and knowledge of previous studies.

Similar to the method I propose, there are previous studies that directly search for

models. As one of the model-tuning methods, Kitamori proposed a model-matching

method for designing a PID controller[1]. Also, there is a study that satisfies the

control performance by searching for a mathematical model for uncertainty[2, 3]. For

example, Shikada et al. proposed a method of searching for a model while fixing the

structure of a controller with an observer for uncertainty. Specifically, they considered

the problem of designing a robust controller that estimates the states using a linear

observer for a system with polytope-type uncertainty. In the conventional method,

the center of uncertainty is regarded as the nominal model, and a controller is designed

for the nominal model. However, Shikada et al. introduced the degree of freedom of

linear transformation of the model and searched for the model with the highest control

performance among the linearly transformed models. As a result, they searched for

the model using numerical optimization and achieved higher control performance than

the conventional method. In addition to the related work, Okajima also confirmed

that the maximum likelihood model is not suitable as a nominal model for model error

compensator[4]. In another related study, Wada and Tsurushima proposed a method

of adding an integrator to the model as a servo compensator to achieve tracking to

the target signal in the design of a servo system by model predictive control[5, 6].

There is also another related work that designs a control system using a model that

does not accurately reflect the characteristics of the non-minimum phase plant[7, 8]. It

is known that a quantizer that minimizes the output error can be designed by using

the inverse model of the control system. However, since the non-minimum phase

system has unstable zeros, the quantizer becomes unstable when the inverse model is

used, and the output diverges. Therefore, for the non-minimum phase system, it has

been proposed that a high-performance quantizer be designed using a partial model

obtained by serial system decomposition, which ignores the unstable zeros. Kusui et

al. extended the study of Minami et al. and proposed a method using serial system

decomposition of MIMO non-minimum phase systems[9].

The above studies show the possibility of a model-tuning design method for the

– 10 –
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various control system design problems. Based on these previous studies, I define a

more general problem of using a model-tuning method for control system design.

2.2 General problem formulation for tuning of design models

Fig. 2.2: General block diagrams for the problem formulation of the proposed method.

(a) Chapter 3 (b) Chapter 4

Sampler
Holder

Multiplexer

(d) Chapter 6

Quantized
NN

EvaluationOriginal
NN

TDA
Binary
image

Gray-scale
image

TDA

(c) Chapter 5

Segmentation

Sampler Holder

Fig. 2.3: Each block diagrams of following chapters.

Based on the above positioning, I describe the general problem formulation of this

study. Here, I consider the system Σ1,Σ2, as shown in the Fig. 2.2. The system Σ1 is

the system to be controlled, and the system Σ2 is the system to be designed, such as

a controller and a quantizer. The other parameters are defined as follows: the model
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to be tuned is P , the mapping from the model to the system is M : P 7→ Σ2, the

hyperparameters such as data are θ, and the evaluation function is J . I fix the system

design procedure M, search for the model P according to a specific evaluation index

J , and construct the system Σ2 in the proposed method. In summary, I aim to obtain

P ⋆ and design the system Σ2 by tuning the model P based on the evaluation function

J as follows:

P ⋆ = argmin
P

J(M(P ); Σ1, θ). (2.1)

In the following chapter, I will consider the specific problem formulation of the

proposed method for the control system. The specific problem formulation is shown

in Fig. 2.3. In Chapter 3 and Chapter 4, I apply my proposed method to design of

a discrete-time quantizer for a continuous-time system. The subsystem Σ1 comprises

the continuous-time system G, holderH, and sampler; the subsystem Σ2 is a quantizer

Q. The mapping M is the design procedure for the dynamic quantizer, composed of

zero-order hold and the equation of the optimal dynamic quantizer for a discrete-time

system. I fix the design procedure M and find the continuous-time design model P .

In Chapter 3, the continuous-time system G is linear, and quantizer Q is a dynamic

quantizer with a linear filter. In Chapter 4, the continuous-time system G is nonlinear,

and the quantizer Q is a switching-type dynamic quantizer, which is composed of a

linear quantizerQ1, Q2, . . . , QN . Each design model P1, P2, . . . , PN is obtained for

each sub-quantizer Q1, Q2, . . . , QN .

In Chapter 5 and Chapter 6, I apply my proposed method to the system composed

of TDA and quantization process. The subsystem Σ1 comprises the TDA process, and

the subsystem Σ2 is a quantization process. I aim to design a quantization process Σ2

under the constraint that the procedure of designing the quantization process is fixed.

In Chapter 5, the whole system is the segmentation process for gray-scale images, Σ1

is the TDA process for the segmentation of binary images, and Σ2 is the binarization

process Q, which transform a gray-scale image to a binary image. I fix the design

procedure M for the binarization process and find the binarization algorithm P , such

as Otsu’s method, random dithering, etc. In Chapter 6, the whole system is the

evaluation process of quantized NNs, Σ1 is the TDA process for quantized NNs, and

Σ2 is the quantization process Q, which quantizes the weights of an original real-

valued NNs. I fix the design procedure M for the quantization process and find the

error-diffusion filter P .
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Chapter 3

Model-tuning approach to

sampled-data dynamic quantizer

design

In this chapter, I confirm the usefulness of the proposed method by designing a

sampled-data dynamic quantizer for a continuous-time plant. Compared to Fig. 2.2,

the subsystem Σ1 is composed of the continuous-time system G, holder H, and sam-

pler, and the subsystem Σ2 is a discrete-time dynamic quantizer Q. In this chapter,

the continuous-time system G and quantizer Q are linear.

A dynamic quantizer converts a continuous-valued signal into a discrete-valued

signal. In the real world, there are some systems controlled by discrete-valued signals,

such as systems with built-in ON/OFF actuators[44, 45, 46] and network systems

that include digital communication channels[47, 48, 49]. In addition, there are cases

where discrete-valued signals are used to compensate for nonlinear elements, such as

stick-slip compensation[50, 51, 52]. It is generally difficult to design a control system

that includes discrete-valued signals. However, by incorporating a quantizer into the

control system, it can be designed like the control system designed for systems without

discrete-valued signals. One of these quantizers is a dynamic quantizer that consists

of a uniform static quantizer and a linear filter, which has been proposed in many

previous studies[43, 53, 54, 55, 56, 57, 58].

In previous studies[54, 56], discrete-time dynamic quantizers for discrete-time plants

were designed. These studies analytically derived optimal dynamic quantizers that

minimize the maximum value of the output difference between a discrete-valued input

system, including dynamic quantizers, and an ideal continuous-valued input system.
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On the other hand, the previous works[59, 60, 61] target continuous-time dynamic

quantizers consisting of a static quantizer, a continuous-time linear filter, and a sam-

pler and a holder. In one of the previous studies[59], a method for designing dynamic

quantizers using invariant set analysis is proposed. In the other studies[60, 61], a

dynamic quantizer called Feedback Modulator is proposed based on a Delta-Sigma

modulator.

Previous studies have attributed the problem of designing a dynamic quantizer to

the problem of designing a discrete-time linear filter when the plant is a discrete-

time system and to the problem of designing a continuous-time linear filter when the

plant is a continuous-time system. However, the problem of designing a discrete-time

linear filter for a continuous-time system has not been adequately discussed. It is

important to formulate the problem settings of digital device controls. For example,

when implemented within the framework of sampled-data control, “continuous-time

dynamic quantizer” would be replaced by “discrete-time dynamic quantizer + sampler

and holder.” This study examines the problem of designing a discrete-time linear filter

for a continuous-time system in the above setting.

In this chapter, I employ a method of discretizing the continuous-time design model

and constructing an optimal dynamic quantizer[54] based on the obtained discrete-

time model. Therefore, I attribute the problem of designing the linear filter of the

dynamic quantizer to the problem of selecting a continuous-time model by giving

the design procedure of the dynamic quantizer as a mapping from the design model

to a linear filter. The goal is to find a design model such that the behavior of the

discrete-valued input system, including the dynamic quantizer, is close to that of an

ideal continuous-valued input system.

3.1 Design problem of a sampled-data dynamic quantizer

Figure 3.1 shows the continuous-valued input ideal system and the discrete-valued

input system Σ composed of the plant G and the sampled-data quantizer Qs.

The plant G is a continuous-time system given by the following equations:

G :

{
ẋ(t) = AGx(t) +BGu(t),

y(t) = CGx(t),
(3.1)

where x ∈ Rn is tha state (the initial state is x0), u ∈ Rm is the input，y ∈ Rp the

output AG ∈ Rn×n，BG ∈ Rn×m，CG ∈ Rp×n are the coefficient matrices, and AG is

Hurwitz.
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Fig. 3.1: The discrete-valued input system Σ, which is composed of the plant G and

the sampled-data quantizer Qs, and the ideal system.

The sampled-data dynamic quantizer Qs in the discrete-valued input system Σ

consists of a discrete-time dynamic quantizer Q, a sampler, and a holder H. The

discrete-time dynamic quantizer Q is represented by the following equations:

Q :

{
ξ[k + 1] = Aξ[k] + B(v[k]− u[k]),

v[k] = q(Cξ[k] + u[k]),
(3.2)

where k ∈ {0} ∪ N is the discrete time, ξ ∈ RN is the state of Q (the initial state is

ξ[0] = 0), u ∈ Rm is the continuous-valued signal, v ∈ Vm is the discrete-valued signal,

A ∈ RN×N，B ∈ RN×m，C ∈ Rm×N are the coefficient matrices, q : Rm → Vm is the

static uniform quantizer. Note that the number of quantization bits is Nbit = ∞ in

this chapter. When I represent the quantization error caused by the static quantizer

q as w[k] := v[k]− u[k], the discrete-valued signal v[k] can be calculated by

v(z) = L(z)w(z) + u(z), (3.3)

L(z) = C{zI − (A+ BC)}−1B + 1, (3.4)

where L(z) is the discrete-time linear filter. The stability of the linear filter L(z) is

equivalent to the Schur of A+ BC [62, 63].

The continuous-valued signal u(t) is converted to the discrete-valued signal u[k] =

u(kTs) with the sampling period Ts ∈ R+ by the sampler. The input of the continuous-

time system G is converted to the continuous-valued signal v(t) = v(kTs) (kTs ≤
t < (k + 1)Ts) by the holder H.

I consider the design of the quantizer Q, which minimizes the error e = y − yref

between the output y of the system Σ in Fig. 3.1 and the output yref of the ideal
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system in this chapter. To evaluate the performance of the quantizer Q, I define the

evaluation function J as

J(Q;u(t), x0) :=

∫ T

0

‖y(t)− yref(t)‖2 dt =
∫ T

0

‖e(t)‖2 dt, (3.5)

where T ∈ R+ ∪ {∞} is the evaluation interval. The evaluation function J is the

function that depends on the dynamic quantizer Q, the input u(t) ∈ L2[0, T ], and

the initial state x0. I can make the output of the system Σ closer to the output of

the ideal continuous-valued input system by using the optimal dynamic quantizer,

which minimizes the evaluation function J . Note that this paper uses the L2 norm

to evaluate the impact of small quantization errors on the output over the entire

evaluation interval. However, other norms, such as the L∞ norm, can also be used.

The design problem for the quantizer Q is formulated as follows:

[Problem 3.1]

Suppose that the continuous-time plant G, the quantization width d ∈ R+, the sam-

pling period Ts ∈ R+, the holder H, the input siglnal u(t), and the initial state x0

are given in the discrete-valued input system Σ. Then, find the stable discrete-time

dynamic quantizer Q minimizing the evaluation function J(Q;u(t), x0).

3.2 Model-tuning approach to design a dynamic quantizer

3.2.1 Design of a quantizer using a discretized model for a linear system

I design a discrete-time dynamic quantizer Q for the continuous-time plant G using

the same method as in the previous study[54]. First, the continuous-time plant G is

converted to the discrete-time plant Gd by Zero Order Hold (ZOH), which is expressed

as

Gd :

x[k + 1] = eAGTsx[k] +

∫ Ts

0

eAGt dtBGu[k],

y[k] = CGx[k].

(3.6)

Then, combining ZOH and Equation (23) in the previous study [54], which converts

a discrete-time model Gd to an optimal dynamic quantizer, the equation to convert
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a continuous-time model to a dynamic quantizer is expressed as

Q :



A = eAG ,

B =

∫ Ts

0

eAGt dtBG,

C = −

(
CG

∫ Ts

0

eAGt dtBG

)−1

CGe
AG .

(3.7)

As an example, I designed a dynamic quantizer Q for the continuous-time plant G

(the true plant) expressed as

G : AG =

[
0 1

−2 −3

]
, BG =

[
0

1

]
, CG =

[
1 0

]
, (3.8)

by Equation (3.7). The input and output in the case that the quantization width is

d = 5 [-], the sampling period is Ts = 0.2[s], and the input is u(t) = 6 sin(0.5πt +

0.4π)+4 cosπt, which are shown in Fig. 3.2(a). The solid light blue line in Fig. 3.2(a)

represents the signal of the discrete-value input system in the upper part of Fig. 3.1.

The dotted blue line represents the signal of the continuous-value input system con-

sisting only of G in the lower part of Fig. 3.1 (hereafter, I call the system an ideal

system). The upper and lower figures show the time evolution of the inputs and out-

puts, respectively. Comparing the respective lines, the value of the output y(t) and

the output of the ideal system yref(t) are close. The value of the evaluation function

J represented by the expression (3.5) is 1.61 when the evaluation interval is T = 10.

Now, the design specification is to make the output of the discrete-valued input

system closer to the output of the ideal system G, and the design model is selected.

As an example of the design models, the design model P

P : A =

[
0 1

−80 −10

]
, B =

[
0

1

]
, C =

[
−50 1

]
, (3.9)

differed from the plant G is used to design the quantizer. The solid red line in

Fig. 3.2(b) represents the signal of the discrete-value input system, and the dotted

blue line represents the signal of the ideal system, and the value of the evaluation

function J represented by the expression (3.5) is 0.851. As a result, I can see that the

value of the evaluation function J using the design model P is smaller than that using

the true plant G. One reason is that the sampler and the holder are in the control

system, which differs from the design of the dynamic quantizer for the discrete-time
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(a) In the case of the quantizer designed using

the model G.
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(b) In the case of the quantizer designed using

the model P

Fig. 3.2: The input and the output of the ideal system and the system with the

quantizer under the condition that the sampling period Ts is 0.2[s].

system. This result implies that when designing a dynamic quantizer for a continuous-

time plant, a design model P different from the plant G can be used as a model for

designing the dynamic quantizer, which can make the difference between the output

of the ideal system and the output of the system with a dynamic quantizer smaller.

I consider a method to design a dynamic quantizer by tuning the continuous-time

design model.

3.2.2 Problem formulation of model-tuning approach to quantizer design

In this chapter, I design a dynamic quantizer by discretizing the continuous-time

design model and constructing an optimal dynamic quantizer from the discrete-time

model. In other words, I design a dynamic quantizer by substituting a continuous-time

design model P(A,B,C) into the following equation

Q :



A = eATs ,

B =

∫ Ts

0

eAt dtB,

C = −

(
C

∫ Ts

0

eAt dtB

)−1

CeATs .

(3.10)

The design model P is determined as the continuous-time model minimizing the eval-

uation function J represented by Equation (3.5).

[Problem 3.2]
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Suppose that the plant G and the design procedure M : P 7→ Q for a dynamic

quantizer are given. Find the design model P ⋆ minimizing the evaluation function

J(Q;u(t), x0) = J(M(P);u(t), x0) expressed as Equation (3.5) to make the output of

the ideal system close to the output of the system Σ including the dynamic quantizer.

By minimizing the evaluation function in Equation (3.5), I can obtain a dynamic

quantizer that makes the output of the system Σ close to that of the ideal system,

including the behavior between sample points. A candidate solution to [Problem

3.2] is the plant model G, but it is possible to obtain a different model from G by

optimizing the evaluation function J . In addition, various dynamic quantizers in a

broader class can be designed by fixing the order and structure of design model P

differed from those of the plant model G and optimizing it.

3.3 Illustrative example

In this section, an illustrative example of finding the design model for the [Problem

3.2] in the section 3.2.2 by numerical optimization.

The plant G is given by Equation (3.8) in the same way as the subsection 3.2.1. The

structure of a design model is set as a second-order system expressed in the following

equation

P : A =

[
0 1

−a0 −a1

]
, B =

[
0

1

]
, C =

[
c0 c1

]
, (3.11)

like the plant G. The design parameters for the optimization are [a0, a1, c0, c1]
⊤.

In this example, the quantization width, the sampling period, the initial state of the

plant, and the evaluation time of the simulation are set as d = 5 [-], Ts = 0.2 [s], x0 =

[1.0 1.0]⊤, and T = 10.0 [s], respectively. To design a stable dynamic quantizer Q, I

modify the evaluation function J as

J̄(Q) :=

 tan−1 J(Q)− π

2
if |p1|, . . . , |pN | < 1,

max(|p1|, . . . , |pN |)− 1 otherwise,
(3.12)

where p1, . . . , pN are the eigenvalues of the matrix A + BC. The dynamic quantizer

Q minimizing the evaluation function J in Equation (3.5) must be selected from the

class of stable dynamic quantizers. Thus, I optimize the evaluation function J̄ in

Equation (3.12) to fulfill the conditions that all absolute values of the eigenvalues

p1, . . . , pN of A + BC are less than 1 because the eigenvalues determine the stability
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of the dynamic quantizer Q. In this chapter, I use the modified evaluation func-

tion J̄ in Equation (3.12) to convert the constrained optimization problem into an

unconstrained optimization problem.

Covariance Matrix Adaption Evolution Strategy (CMA-ES)[64, 65], a stochastic

and heuristic method, is used as the optimization method, and the hyperparameters

of optimization were set as the Table 2 in the paper [65]. As a result, the optimal

design model P ⋆ parameters are

a⋆0 = 71.9, a⋆1 = 18.0, c⋆0 = −34.5, c⋆1 = 1.60. (3.13)

The light blue and red lines in Fig. 3.3 represent the error between the output of

the ideal system and the system with the quantizer designed using the plant G and

the optimal design model P ⋆, respectively, and the error is smaller when the optimal

design model is used. The input and output of the system with the quantizer designed

using the plant G are shown in Fig. 3.2(a), and the input and output of the system

with the quantizer designed using the optimal design model P ⋆ are shown in Fig. 3.4.

The value of the evaluation function J using the optimal design model P ⋆ is 0.273, and

the value using the model (3.9) is 0.851 (Fig. 3.2(b)). I can see that the performance of

the dynamic quantizer is improved compared to the design example in the subsection

3.2.1.

0 2 4 6 8 10
t [s]

−0.25

0.00

0.25

e
[-

]

Fig. 3.3: The error e(t) between the output y(t) and the reference output yref(t) under

the condition that the sampling period Ts is 0.2[s].

In addition, when I change the sampling period to Ts = 0.02 [s] and optimize a

design model, the parameters of the optimal design model P ⋆ are

a⋆0 = 35.8, a⋆1 = 9.89, c⋆0 = −42.2, c⋆1 = −31.0. (3.14)

The input and output of the system with the quantizer designed using the plant G and

the optimal design model P ⋆ are shown in Fig. 3.5(a) and Fig. 3.5(b), respectively.

The error between the output of the ideal system and the system with the quantizer

is shown in Fig. 3.6. I can also see that the output of the system with the quantizer

designed using the optimal design model P ⋆ is close to the output of the ideal system.
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Fig. 3.4: The input and the output of the ideal system and the system with the

quantizer designed using the model P ⋆ under the condition that the sampling period

Ts is 0.2[s].
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(a) In the case of the quantizer designed using

the model G.
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(b) In the case of the quantizer designed using

the model P ⋆

Fig. 3.5: The input and the output of the ideal system and the system with the

quantizer under the condition that the sampling period Ts is 0.02[s].
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Fig. 3.6: The error e(t) between the output y(t) and the reference output yref(t) under

the condition that the sampling period Ts is 0.02[s].
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Finally, I summarize the Bode diagrams, poles, and zeros for the numerical ex-

amples. The Bode plots of the plant G expressed by Equation (3.8) and the design

models P expressed by Equation (3.9), (3.13), and (3.14) are shown in Fig. 3.7. In

Fig. 3.7, the gain and phase diagrams of Equation (3.9) and (3.13) with the same

sampling period 0.2[s] are similar. In the Bode plot of the design model expressed

by Equation (3.14) with the sampling period 0.02[s], the DC gain and bandwidth

are larger in the gain plot, and the phase lag is smaller mainly in the high-frequency

region in the phase plot compared to the case with the sampling period 0.2[s]. In

summary, the sampling period changes the DC gain of the design model and phase

lag in the high-frequency region.
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Fig. 3.7: The bode plot of the plant G and design models P.

3.4 Discussion of the model-tuning approach

3.4.1 Relationship between the sampling period Ts and the design model

P ⋆

In the previous section, I simulate the illustrative example where the sampling period

Ts is fixed as 0.2 [s] and 0.02 [s]. Note that the performance of the quantizer also

depends significantly on the sampling period. To evaluate the performance of the
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(d) ∆ = 0.20 [s]
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Fig. 3.8: The bode plot of the transfer function L(z) from w to y in case of quantization

width d = 5 under changing the sampling period Ts.

quantizer, the frequency-domain properties of the transfer function L from the quan-

tization error w to the discrete input v expressed by Equation (3.3) are essential. In

this subsection, I compare the frequency-domain properties of the transfer function

L for various sampling periods Ts.

The bode plot is shown in the Fig. 3.8 when the quantization width is fixed as

d = 5 [-] and the sampling period is changed to Ts = 0.02, 0.05, 0.10, 0.20 [s]. The

blue dotted line represents the Bode plot when the dynamic quantizer is designed

using the plant G, the red solid line represents the Bode plot when the dynamic

quantizer is designed using the design model obtained by optimization, and the black

dashed line represents the Nyquist frequency corresponding to each sampling period

Ts. In Fig. 3.8, the gain plot of the linear filter L(z) shows that the gain of the

optimal design model is larger in the low-frequency region, and the difference in gain

between the design model and the plant is smaller in the high-frequency region. On

the other hand, the phase plot shows that the phase of the design model and the plant

generally match in the low-frequency region, but the difference in phase between the

design model and the plant is larger in the high-frequency region. The Bode plots

of the design model differ depending on the sampling period Ts, and in particular,

the difference of DC gain decreases in the gain plot, and the position of the phase

maximum shifts in the high-frequency region as the sampling period increases. Thus,

I found that the difference between the design model and the plant is significant in

the low-frequency region of the gain plot and the high-frequency region of the phase

plot for each sampling period Ts.
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3.4.2 Comparison of the proposed method and the direct search of the

parameters of the dynamic quantizer

In this section, I propose the model-tuning method, but it is also possible to search the

parameters of the dynamic quantizer directly. Here, I compare the search performance

of the solutions in the proposed method and the direct search method. In addition

to the minimum phase system expressed in Equation (3.8), I also adopt the non-

minimum phase system as a plant expressed in the following equation

G : AG =

[
0 1

−2 −3

]
, BG =

[
0

1

]
, CG =

[
−1 1

]
. (3.15)

If the design model for the dynamic quantizer is a non-minimum phase system, the

dynamic quantizer designed by the procedure in Equation (3.7) becomes unstable.

In general, the design problem of the dynamic quantizer for the non-minimum phase

system is more difficult than that for the minimum phase system. Therefore, I verify

that a stable dynamic quantizer can be designed by the proposed method.

I fix the quantization width as d = 5 [-] and the sampling period as Ts = 0.2 [s],

and I perform optimization 50 times using CMA-ES for the minimum phase sys-

tem expressed in Equation (3.8) and the non-minimum phase system expressed in

Equation (3.15) to search the design model. In the case of each optimization for the

minimum phase system and the non-minimum phase system by the proposed method,

the minimum value of the evaluation function J̄ and the number of trials are plotted

in Fig. 3.9(a) and Fig. 3.9(b) as red circles, respectively. The upper row of Table 3.1

shows the statistical data of the value of the evaluation function J̄ obtained as a result

of the optimization by the proposed method.

In the direct search, I set the parameters aQ0, aQ1, cQ0, cQ1 as optimization param-

eters, and the following equation

A =

[
0 1

−aQ0 −aQ1

]
, B =

[
0

1

]
, C =

[
cQ0 cQ1

]
, (3.16)

represents A,B, C as the coefficient matrices of the dynamic quantizer. I fix the

quantization width as d = 5 [-] and the sampling period as Ts = 0.2 [s], and I per-

form optimization 50 times using the direct search method for the minimum phase

system expressed in Equation (3.8) and the non-minimum phase system expressed

in Equation (3.15), respectively. In the case of each optimization for the minimum
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(a) In the case of the minimum phase system.

0 250 500 750 1000
Iteration

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

M
im

in
um

va
lu

e
of
J̄

Proposed method

Direct search

(b) In the case of the non-minimum phase

system.

Fig. 3.9: Minimum value of the Evaluation function J̄ and iteration.

phase system and the non-minimum phase system by the direct search method, the

minimum value of the evaluation function J̄ and the number of trials are plotted in

Fig. 3.9(a) and Fig. 3.9(b) as blue triangles, respectively. The lower row of Table 3.1

shows the statistical data of the value of the evaluation function J̄ obtained as a result

of the optimization by the proposed method. When I compare the Fig. 3.9(a) and

3.9(b), the value of the evaluation function is smaller in the proposed method, and

the convergence to the optimal parameters is faster in both the minimum phase sys-

tem and the non-minimum phase system. One of the reasons for this is the following

discussion. In the direct search method, it is necessary to search the vast parameter

space of R4. However, the proposed method may limits the parameter space by the

mapping in Equation (3.7), and the efficient search can be performed.

3.5 Summary

In this chapter, I proposed a method for designing a discrete-time dynamic quantizer

for a continuous-time system by extending the optimal dynamic quantizer design

method for discrete-time systems in the previous study [56]. Specifically, I fixed the

design method for the optimal dynamic quantizer for discrete-time systems and the

method for converting continuous-time models to discrete-time models. I also tuned

the continuous-time model to design a dynamic quantizer for continuous-time systems.

Here, I give a supplementary explanation about the benefits of reducing the design
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Table 3.1: Settings and values of the evaluation function.

Method Plant
Values of the evaluation function (3.12)

Best Worst Mean St.

dev.

Proposed
method

Minimum phase system −1.30 −0.750 −1.04 0.135

Non-minimum phase sys-

tem

−0.629 −0.331 −0.520 0.089

Direct
search

Minimum phase system −0.677 0.00 −0.260 0.249

Non-minimum phase sys-

tem

−0.505 0.00 −0.194 0.208

problem of the dynamic quantizer to the design model search problem. One benefit is

that the characteristics of the design model that determines the filter of the optimal

dynamic quantizer can be understood. Moreover, it is possible that searching for

the design model is more efficient than directly searching for the dynamic quantizer

to find the optimal solution. Furthermore, the method proposed in this study can

be applied to a closed-loop system, including a continuous-time controller. In the

previous study [56], the optimal dynamic quantizer was designed for the expanded

system of the discrete-time plant and the discrete-time controller. Therefore, by

applying the proposed method to the design model of the continuous-time expanded

system and designing the dynamic quantizer from the obtained design model, it is

possible to design the dynamic quantizer in the closed-loop system.

One of the future works is to attribute the design problem of the nominal model to

the design model search problem for a system with uncertainty. In the previous works

[66, 67], an approach to control system design by selecting the design model is being

considered. This study proposed the controller design method for the system with

polytope-type uncertainty. The method fixes the controller design method and design

the controller by searching for the model. By considering the design of the dynamic

quantizer when there is uncertainty in the plant, it is possible to utilize the knowledge

of the previous studies [66, 67]. Another prospect is to challenge optimization with

an analytical approach and design the dynamic quantizer for practical problems.
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Chapter 4

Model-tuning approach to

switching-type dynamic quantizer

design

In this chapter, I confirm the usefulness of the proposed method by designing a

continuous-time plant and a discrete-time dynamic quantizer. Compared to Fig. 2.2,

the subsystem Σ1 is composed of the continuous-time system G, holder H, and sam-

pler, and the subsystem Σ2 is a discrete-time quantizer Q. The continuous-time

system G is nonlinear, and the quantizer Q is a switching-type quantizer, which is

composed of a linear quantizerQ1, Q2, . . . , QN in this chapter.

Quantizers are classified into two types: static and dynamic. Dynamic quantizers

are generally able to achieve higher performance than static quantizers. There are

two types of dynamic quantizers: (a) the case that the quantization width is changed,

(b) the case that the quantizer have memory and feedback structure. In the case of

(a), zooming-in and zooming-out as time-varying dynamic quantizers, in which the

quantization width varies with time, are known in network control[68, 69, 70]. In

the case of (b), the quantization errors are fed back and converted to discrete values

by filtering them. There is much research on dynamic quantizers with memory and

feedback structure[47, 43, 54, 56, 58, 61, 71, 72]. In this chapter, I call the quantizer

of the case (b) as a dynamic quantizer.

Many studies have been made of dynamic quantizer design for linear systems. One

of the studies for the dynamic quantizer is using time-invariant linear filters[43, 54,

56, 58, 47, 61, 71].

On the other hand, there have also been studies of dynamic quantizers for nonlinear
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systems. One dynamic quantizer design for nonlinear systems uses a time-invariant

nonlinear filter. Azuma and Sugie have addressed the problem of designing a dynamic

quantizer for a nonlinear system in case the output signal set is fixed[72]. The key

idea of this quantizer design is to copy the model information of a system to dynamic

quantizers. Thus, I need to implement the nonlinear function, which precisely captures

the dynamics of systems, in a computer. In addition, the quantizer proposed in the

previous study[72] is optimized for a given discrete-time nonlinear system, and it is

not directly applied to continuous-time nonlinear systems.

For nonlinear systems, this chapter designs a dynamic quantizer with a linear filter

rather than a nonlinear filter that reflects the properties of the system. However, ap-

plying a single linear model to complex nonlinear systems may degrade performance.

In the design of controllers, many nonlinear systems cannot be stabilized with a state

feedback controller but can be stabilized with switching control schemes[73, 74]. My

approach is to prepare multiple linear models for nonlinear systems and design a

dynamic quantizer that switches between these models appropriately.

The previous works[43, 54, 56] have shown that the inverse model of a discrete-

time linear system gives the optimal filter for a dynamic quantizer. According to

these points, some linear models can characterize the dynamic quantizer for nonlinear

systems. In summary, if I use the results of previous studies and assume that the

dynamic quantizer is constructed from linear models, the quantizer design problem

is attributed to the problem of searching for multiple linear models. The design

approach of this study is based on this concept. In this problem, the gap between

nonlinear and linear, as well as between continuous time and discrete time, must be

considered in the design. The interesting aspect of this approach is to fill these gaps

with linear models.

4.1 Design problem of a switching-type dynamic quantizer

Consider the two general nonlinear feedback systems illustrated in Fig. 4.1: (a) is a

feedback system composed of a continuous-time nonlinear system G and a switching-

type dynamic quantizer Q and (b) is a feedback system without quantization, called

ideal system.
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(a) The feedback system

composed of the nonlin-

ear system G and the

switching-type quantizer Q.

(b) The feedback system

without a quantizer.

Fig. 4.1: Two feedback systems.

The continuous-time nonlinear system G is given by

G :



ẋ(t) = f(x(t), r(t), v(t)),

z(t) = g(x(t), r(t)),

σ(t) = ϕ(x(t), r(t), v(t)),

u(t) = h(x(t), r(t), σ(t)),

(4.1)

where x ∈ Rn is the state, r ∈ Rp is the reference input, v ∈ Vm are the control input,

σ ∈ S is the output for switching, z ∈ Rl is the control output, and u ∈ Rm is the

observation output. Note that the number of quantization bits is Nbit = ∞ in this

chapter. The set S is assumed to be the subset of the s-dimensional Euclidean space

Rs. The functions f : Rn ×Rp ×Rm → Rn, g : Rn ×Rp → Rl, h : Rn ×Rp × S → Rm

are assumed to be smooth. ϕ : Rn ×Rp ×Rm → S is a mapping. The characteristics

of the system G determine the mapping ϕ. I consider a swing-up and stabilization

control system of a cart-type inverted pendulum as an example. To switch between

swing-up controller and stabilizing controller depending on the angle, the output of

the switching σ is in the interval S := [−π, π]. In this case, the mapping ϕ is the

function that round the values of the angle of the pendulum to the set S.
On the other hand, the sampled-data and switching-type dynamic quantizer Q

(hereinafter referred to as the switching-type quantizer) is depicted in Fig. 4.2. In

Fig. 4.2, the subsystem Σ1 is composed of the continuous-time system G, holder H,

and sampler, the subsystem Σ2 is a quantizer Q. The switching-type quantizer Q is

composed of a sampler, a holder H, and N ∈ N dynamic quantizers Qi, i ∈ I :=
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Multiplexer

SamplerHolder

Fig. 4.2: The sampled-data and switching-type dynamic quantizer.

{1, 2, . . . , N}. The each sub-quantizer Qi is denoted as

Qi :

{
ξi[k + 1] = Aiξi[k] + Bi(vi[k]− u[k]),

vi[k] = q(Ciξi[k] + u[k]),
(4.2)

where k ∈ 0∪N is the discrete time, ξi ∈ RNi is the state, the initial state is ξi[0] = 0,

and the function q(·) is the static uniform quantizer with quantization width d. The

coefficient matrices, which determine the performance of each sub-quantizer Qi, Ai ∈
RNi×Ni ,Bi ∈ RNi×m, Ci ∈ Rm×Ni , i ∈ I are design parameters. The quantization

error ϵi[k] generated in Qi is denoted as

ϵi[k] = q(Ciξi[k] + u[k])− (Ciξi[k] + u[k])

= vi[k]− (Ciξi[k] + u[k]).

If the quantization error ϵi[k] and the continuous-valued signal u[k] are regarded as

inputs, the discrete-valued signal vi[k] is represented as

vi(z) = Li(z)ϵi(z) + u(z), (4.3)

using a linear filter Li(z) := Ci{zI − (Ai + BiCi)}−1Bi + I. Note that z ∈ C is the

complex number for z-transformation and different for the control output z of system

G. The linear filter Li in state-space representation is given by

Li :

{
ξi[k + 1] = (Ai + BiCi)ξi[k] + Biϵi[k],

vi[k] = Ciξi[k] + ϵi[k].
(4.4)
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I can see that the linear filter Li is stable if the matrix Ai + BiCi is Schur.
The input u is sampled every Ts seconds by the sampler such as u[k] = u(kTs). The

sampling period Ts is given in advance. The zero-order holder H is

H : v(t) = v[k] kTs ≤ t < (k + 1)Ts. (4.5)

The multiplexer is expressed as

v[k] =
N∑
i=1

1Wi
(σ[k])vi[k], (4.6)

where 1Wi
(·) is the indicator function expressed as

1Wi
(σ) =

{
1 if σ ∈ Wi,

0 otherwise,
(4.7)

for the sets Wi, i ∈ I. The set Wi is the switching condition for the sub-quantizer Qi

and defined using the functions wi, i ∈ I \ {N}. The input for functions of switching

conditions wi(σ) is the output for switching σ ∈ S ⊂ Rs. The sets Wi derived from

the functions of switching conditions wi satisfy the following conditions:

Wi := {σ ∈ S | wi(σ) > 0} (i = 1, . . . , N − 1),

WN :=
N−1⋂
i=1

S \Wi,

Wi ∩Wj = ∅ (i 6= j),

N⋃
i=1

Wi = S ⊂ Rs.

(4.8)

The meaning of Equation (4.6), . . ., (4.8) is as follows:

• Each value of the signal σ ∈ S determines the only one set Wi.

• Each set Wi corresponds to the sub-quantizer Qi.

I suppose that the nonlinear system G, the sampling period Ts, the zero-order

holder H, the quantization width d, the initial value x0, reference input r are given.

Then, I design the switching-type dynamic quantizer Q that minimizes the evaluation

function:

J(Q) =

∫ T

0

‖z(t)− zref(t)‖2 dt, (4.9)
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Fig. 4.3: The error system composed of discrete-valued and continuous-valued input

systems.

where T > 0 is the evaluation time and zref is the output of the ideal system, i.e., of

the system without the dynamic quantizer in Fig. 4.3. Also, I denote the eigenvalues

of the matrices Ai +BiCi as λQi

1 , . . . , λQi

Ni
, and all absolute values of eigenvalues must

be less than 1 to satisfy the stability of the sub-quantizer Qi. I can formulate the

above as the optimization problem.

[Problem 4.1]

Suppose that G,Ts,H, d, x0, r are given.

Then, find the parameters Ai,Bi, Ci, i ∈ I of Qi and wi, i ∈ I \ {N} which satisfy

(C1) max
j∈{1,...,Ni}

∣∣∣λQi

j

∣∣∣ < 1 i ∈ I,

and minimize the evaluation function

J(Q(Q1(A1,B1, C1), . . . , QN (AN ,BN , CN ), w1, . . . , wN−1)),

in Equation (4.9).

The evaluation function J calculates the gap between z and zref . If the evaluation

function J is minimized, the output of the discrete-valued input system with the

optimal switching-type quantizer will be similar to that of the ideal system.
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4.2 Model-tuning approach to design a dynamic quantizer

4.2.1 Dynamic quantizer for a discrete-time linear system

In this section, I design the switching-type quantizer Q for a given nonlinear system

G. In previous research on the design of dynamic quantizers [54], it was shown that,

for a discrete-time linear system

Pdi :

{
xP [k + 1] = AdxP [k] +Bdv[k],

zP [k] = CdxP [k],
(4.10)

the optimal quantizer Q⋆ is given by

Q⋆ :



N = nP ,

A = Ad,

B = Bd,

C = −(CdBd)
−1CdAd.

(4.11)

Here, the parameter nP is the dimension of the state xP of Pd. The optimal quantizer

Q⋆ minimizes the gap between the outputs of the discrete-valued input system with

Q⋆
i and the continuous-valued input system in terms of the ∞-norm. If I apply

this method to [Problem 4.1], I must linearize and discretize the continuous-time

nonlinear system G to obtain the discrete-time linear model. However, the model

obtained by linearization and discretization is not optimal for the dynamic quantizer

and affect the performance of the quantizer.

4.2.2 Problem formulation of model-tuning approach to quantizer design

In this section, I propose a design method of the switching-type dynamic quantizer Q

for a nonlinear system G based on Equation (4.11). The key idea is to attribute the

design problem of the switching-type dynamic quantizer Q to the search problem of

design models, which are continuous-time and linear models. Specifically, the design

procedure M(·), in which Qi is designed based on the design model Pi, is expressed
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as

Qi = M(Pi(Ai, Bi, Ci))

Qi :



Ni = nPi,

Ai = eTsAi ,

Bi =

∫ Ts

0

eTsAi dtBi

Ci = −

(
Ci

∫ Ts

0

eTsAi dtBi

)−1

Cie
TsAi .

(4.12)

I explain the derivation of the conversion equation, which is Equation (4.12), from

the design model Pi to the sub-quantizer Qi below.

First, I consider N design models Pi:

Pi :

{
ẋPi(t) = AixPi(t) +Biv(t),

zPi(t) = CixPi(t),
(4.13)

where xPi ∈ RnPi is the state, and Ai ∈ RnPi×nPi , Bi ∈ RnPi×m, Ci ∈ Rl×nPi are

constant matrices.

Then, I derive discrete-time design models Pdi in Equation (4.10) by discretizing the

continuous-time design models Pi in Equation (4.13). I apply a mapping D : Pi 7→ Pdi

such as the zero-order holder expressed by

D :


Adi = eTsAi ,

Bdi =

∫ Ts

0

eTsAi dtBi,

Cdi = Ci.

(4.14)

Finally, I substitute Equation (4.14) into Equation (4.11) to obtain the design

procedure (4.12). I search for the design model Pi to design the sub-quantizer Qi

based on the design procedure (4.12).

In summary, if there are the design procedure for the design models Pi and the

evaluation function expressed as Equation (4.9), I can select the design models and

design the switching-type dynamic quantizer Q.

Based on this procedure, [Problem 4.1] can be rewritten as [Problem 4.2].

[Problem 4.2]

Suppose that G,Ts,H, d, x0, r are given.
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Then, find the parameters Ai, Bi, Ci, i ∈ I of Qi = M(Pi(Ai, Bi, Ci)) and wi, i ∈
I \ {N} which satisfy

(C1) max
j∈{1,...,Ni}

∣∣∣λPi
j

∣∣∣ < 1 i ∈ I,

and minimize

J(Q(M(Pi(A1, B1, C1)), . . . ,M(Pi(AN , BN , CN )), w1, . . . , wN−1)),

Note that λPi
1 , . . . , λPi

Ni
are the eigenvalues of the matrix

eTsAi −
∫ Ts

0

eTsAi dtBi

(
Ci

∫ Ts

0

eTsAi dtBi

)−1

Cie
TsAi .

These eigenvalues corresponds to 0 and zeros of the discrete-time linear system Pdi

in Equation (4.10) and the poles of the system Li in Equation (4.4).

The advantages and characteristics of my proposed method are as follows.

• Although direct tuning of the parameters of the sub-quantizers Qi is possible,

the design model tuning approach allows us to discuss nonlinear system G as

linear systems Pi.

• I can fix several linear design models if there are reasonable models obtained

from the plant and explore the remaining design models. For example, if some

sub-quantizers are used around the equilibrium points of the nonlinear system

G, I can fix the counterpart design models as the linear approximate models

around the equilibrium points.

• I can target a broader class of linear models that are not linear approximations

of a given nonlinear system. For example, I can accept the cases nPi < n and

nPi > n.

• This approach can fill the gap between nonlinear and linear, as well as between

continuous time and discrete time with linear models.

• My proposed method generalizeds the target system and optimization problems

fo the previous works [75, 76]

I also define [Problem 4.3], in which the switching conditions wi is fixed.

[Problem 4.3]

Suppose that G,Ts,H, d, x0, r, wii ∈ I \ {N} are given.

Then, find the parameters Ai, Bi, Ci, i ∈ I of Qi = M(Pi(Ai, Bi, Ci)) which satisfy

(C1) max
j∈{1,...,Ni}

∣∣∣λPi
j

∣∣∣ < 1 i ∈ I,
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and minimize

J(Q(M(Pi(A1, B1, C1)), . . . ,M(Pi(AN , BN , CN )))),

I verify the effectiveness of my proposed method through a control system for the

swing-up and stabilization of a cart-type inverted pendulum depicted as Fig. 4.4.

[Remark] [Problem 4.1] represents the problem of designing a discrete-time

switching-type dynamic quantizer for a continuous-time nonlinear system. [Problem

4.2] is an optimization problem incorporating my proposed model-tuning method

into [Problem 4.1]. [Problem 4.3] is a derivative of [Problem 4.2] and is the

optimization problem, where switching conditions are fixed. Note that [Problem 4.3]

is a relaxation problem of [Problem 4.2]; I focus on the equivalence of [Problem

4.1] and [Problem 4.2] in Subsection 4.4.

4.3 Illustrative Example

4.3.1 Swing-up and stabilization control of inverted pendulum

I consider the cart-type inverted pendulum system such as Fig. 4.4 to evaluate the

proposed method. The system G consists of the inverted pendulum S and the con-

troller K including the stabilization controller K1 and the swing-up controller K2, and

the switching-type quantizer Q is composed of Q1 and Q2. The inverted pendulum

is shown in Fig. 4.5, where x1 is the displacement of the cart, x2 is the angle of the

pendulum, mc is the mass of the cart, mp is the mass of the pendulum, v is the force

on the cart, µB is the friction coefficient between the cart and the floor, and µC is

the friction coefficient between the cart and the pendulum. I define the state vector

by x = [x1, x2, x3, x4]
⊤
= [x1, x2, ẋ1, ẋ2]

⊤
. Then, the nonlinear state equations of the

inverted pendulum are

S :



ẋ = f(x, v) =


x3

x4

f1(x)

f2(x)

+


0

0

g1(x)

g2(x)

 v,

σ = ϕ(x2),

z =
[
0 1 0 0

]
x,

(4.15)
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with

f1(x) =
1

6
m2

pl
3x4

2 sinx2 −
1

4
m2

pl
2g sinx2 cosx2

− 1

3
mpl

2µBx3 +
1

2
mplµCx4 cosx2/D(x2),

f2(x) = −1

4
m2

pl
2x4

2 sinx2 cosx2 +
1

2
mp(mp +mc)lg sinx2

+
1

2
mplµBx3 cosx2 − (mp +mc)µCx4/D(x2),

g1(x) =
1

3
mpl

2/D(x2),

g2(x) = −1

2
mpl cosx2/D(x2),

D(x2) =
1

3
mp(mp +mc)l

2 − 1

4
m2

pl
2 cos2 x2,

ϕ(x) = (x+ π) + 2πsgn(x+ π)

(
1

2
+

⌊
|x+ π|
2π

⌋)
.

(4.16)

Note that the set S ∈ Rs, in which the output for switching is, the closed interval

[−π, π] and the function ϕ is to round the angle x2 into the set S. By Taylor ex-

pansion around the origin x = [0, 0, 0, 0]⊤ of the function f(x, v), I obtain a linear

approximation model S̄0 of S:

Ā0 =


0 0 1 0

0 0 0 1

0 a32 a33 a34

0 a42 a43 a44

 , B̄0 =


0

0

b13

b14

 , C̄0 =
[
0 1 0 0

]
,

a32 = −mp
2l2g

4D(0)
, a33 = − (4I +mpl

2)µB

4D(0)
, a34 =

mplµC

2D(0)
,

a42 =
mpl(mp +mc)g

2D(0)
, a43 =

mplµB

2D(0)
, a44 = − (mp +mc)µC

D(0)
,

b13 =
(4I +mpl

2)

4D(0)
, b14 = − mpl

2D(0)
.

(4.17)

The switching-type controller K is defined as

K : u(t) =

{
K1(x(t)) if |σ| − θK > 0,

K2(x(t)) otherwise,
(4.18)

where θK = π/6 is a threshold value for the switching condition. I design the state
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Multiplexer

SamplerHolder

Multiplexer

Fig. 4.4: The swing-up and stabilization control system for cart-type inverted pendu-

lum.

feedback controller K1 and the energy method controller K2 as

K1(x) = Fx, (4.19)

K2(x) =
1

4l
− 2mpl

2x4 sinx2 + 3mplg sinx2 cosx2 + 4µBlx3

− 6µCx4 cosx2 − kelx4 cosx2

{
4(mp +mc)− 3mp cos

2 x2

}
.

(4.20)

The linear state feedback gain F is determined to stabilize the linear approximated

model S̄0 around the origin in Equation (4.17). Note that the controller K2 is based

on an energy method[77], and ke > 0 is an energy control gain.

Table 4.1 summarizes the parameters used in this numerical example.

4.3.2 Design of dynamic quantizer Q

In this simulation, I are considering two-stage control, with a swing-up phase and

a stabilization phase. Therefore, I also switch the two dynamic quantizers Q1 and

Q2 in two steps, as same as the controllers. The quantizer Q1 = M(P1) is for the

stabilization phase, and the quantizer Q2 = M(P2) is for the swing-up phase in

Fig. 4.4. I define the switching conditions of multiplexer of the quantizer Q as

w1(σ) = |σ| − θQ, (4.21)
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Fig. 4.5: Cart-type inverted pendulum.

and set the switching angle θQ = π/6, which is the same as the threshold of the

controller θK in Equation (4.18). Under this condition, I solve the [Problem 4.3].

First, the sub-quantizer Q1 is the quantizer for the dynamics of the cart-type in-

verted pendulum around the origin. Thus, I set the design model P ⋆
1 as P ⋆

1 = S̄0 in

Equation (4.17). Then, Q1 is given by

N1 = 4,

A1 =


1.0 −0.00416 0.0194 0.0

0.0 1.05 0.00424 0.0203

0.0 −0.415 0.944 −0.00411

0.0 4.60 0.423 1.05

 ,

B1 =


0.001

−0.00424

0.0561

−0.423

 ,

C1 =
[
0.0 123 0.500 2.40

]
,

(4.22)

from the model P ⋆
c1 = S̄0 and Equation (4.12). Note that I multiply the matrix C1 by

the coefficient γ = 0.5 to prevent the inputs from being too large. For the quantizer

Q1 that works for the stabilization, it is reasonable to use the linear approximation

model S̄0 near the origin, which is fixed to reduce the design parameters.

Next, I design Q2 by finding the linear model P2. I assume a fourth-order control-
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Table 4.1: Parameters of the optimization, controller and dynamic quantizer.

Parameter Values

mc : Mass of the cart 0.1 [kg]

mp : Mass of the pendulum 1.0 [kg]

l : Length of the pendulum 0.2 [m]

g : Acceleration of gravity 9.80665 [m/s2]

I : Moment of inertia mpl
2/12 [kgm2]

µB :
Friction coefficient

(cart and floor)
0.1 [kg/s]

µC :
Friction coefficient

(cart and pendulum)
0.0001 [kgm2/s]

F : State feedback gain [0.385, 13.4, 1.51, 0.627]

ke : Energy control gain 0.2 [m/s]

d : Quantization width 5.0 [N]

Ts : Sampling period 0.02 [s]

x0 : Initial state of x [0, (4/3)π, 0, 0]⊤

T : Simulation time 10 [s]

lable canonical-form model P2 expressed as

nP2 = 4,

A2 =


0 1 0 0

0 0 1 0

0 0 0 1

−a0 −a1 −a2 −a3

 ,

B2 =


0

0

0

1

 ,

C2 =
[
b0 b1 b2 b3

]
.

(4.23)

I set the design parameters a0, a1, a2, a3, b0, b1, b2, b3. I use the evaluation function in

Equation (4.9) and determine the parameters of the design model that minimizes the

evaluation function.

Using Particle Swarm Optimization (PSO) [78], I found the optimal design model
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Fig. 4.6: The input v and states x1, x2 of the system with the optimal quantizers

Q1 = M(P ⋆
c1) and Q2 = M(P ⋆

c2), compared to those of the ideal system.

P ⋆
c2 to be

A⋆
c2 =


0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

7.64 −17.6 −25.2 −36.8

 ,

B⋆
c2 =


0

0

0

1

 ,

C⋆
c2 =

[
2.67 15.4 8.17 6.17

]
.

(4.24)

Note that the number of particles and iterations are both set to 100, all the initial

design parameters are set by random numbers following a uniform distribution from

−10 to 10, and the simulation is implemented by Julia 1.10.4. Therefore, the dynamic
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Fig. 4.7: The input v and states x1, x2 of the system with the quantizers Q1 = S̄π

and Q2 = M(P ⋆
c2), compared to those of the ideal system.

quantizer Q2 is

N2 = 4

A2 =


1.0 0.020 0.0 0.0

0.0 1.0 0.020 0.0

0.0012 −0.0028 0.996 0.014

0.108 −0.248 −0.359 0.476

 ,

B2 =


0.0

0.0

0.0

0.014

 ,

C2 =
[
−37.8 −156.8 −70.5 −34.5

]
,

(4.25)

from Equation (4.12).

The simulation results are shown in Fig. 4.6. Figure 4.6 displays the inputs and
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(a) x0 = [0, π/6, 0,−0.2]⊤
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(b) x0 = [0, π, 0,−10]⊤
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(c) x0 = [0, π/2, 0.1,−0.1]⊤

Fig. 4.8: In case initial condition changes.

states of the ideal system and the discrete-valued input system, in which the coefficient

matrices of the sub-quantizers Q1, Q2 are denoted as (4.22) and (4.25). In the figure,

the red curve indicates the time response of the discrete-valued input system, and the

blue one indicates that of the ideal system. I can see that the angle of the pendulum

with the designed dynamic quantizer is closer to that of the ideal system from Fig. 4.6.

For comparison, I change the linear filter P2 for the sub-quantizer Q2. I use the

linear approximation model S̄π which is obtained by Taylor expansion around the

equilibrium point x = [0, π, 0, 0]⊤ and expressed as

Āπ =


0 0 1 0

0 0 0 1

0 a32 a33 a34

0 a42 a43 a44

 , B̄π =


0

0

b13

b14

 , C̄π =
[
0 1 0 0

]
,

a32 = −mp
2l2g

4D(π)
, a33 = − (4I +mpl

2)µB

4D(π)
, a34 = −mplµC

2D(π)
,

a42 = −mpl(mp +mc)g

2D(π)
, a43 = −mplµB

2D(π)
, a44 = − (mp +mc)µC

D(π)
,

b13 =
(4I +mpl

2)

4D(π)
, b14 =

mpl

2D(π)
,

(4.26)

for the sub-quantizer Q2. The simulation result is displayed in Fig. 4.7. Fig. 4.7 shows

that the controller K and the quantizer Q2 = M(S̄π) cannot achieve the swing-up

and stabilization of the inverted pendulum. From the result, I find that the proposed

method can design the satisfactory dynamic quantizer.
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4.4 Discussion of the model-tuning approach

4.4.1 Results of the simulation on various initial conditions

The Equation (4.24) is designed by minimizing the evaluation function in Equa-

tion (4.9), which depends on initial values. Thus I should check whether it can be

stabilized with other initial values. I show the results of three different initial condi-

tions x0 = [0, π/6, 0,−0.2]⊤, [0, π, 0,−10]⊤, [0, π/2, 0.1, 0]⊤ in Fig. 4.8. Note that the

dynamic quantizers in Fig. 4.8 is the same as the dynamic quantizer in Fig. 4.6. The

figures show that the system with the dynamic quantizer designed from the design

model can be stabilized for three initial values. In Fig. 4.8(a) and Fig. 4.8(b), the red

curve and blue curve are almost the same, and the system can be stabilized. However,

in Fig. 4.8(c), the red and blue curves are different, but the states of the system with

the dynamic quantizer Q converge more quickly than the ideal system. This indicates

that the value of the evaluation function J increases but the dynamic quantizer Q

contributes the stability of the system. Moreover, the dynamic quantizer possibly

extends the range of initial values where I can swing up and stabilize.

4.4.2 Results of the simulation with different design models

Then, I show the case in which the dimension of the dynamic quantizer Q2 is less than

that of the system. In this simulation, I fixed the design model P2 as a second-order

controllable canonical form and optimized it. I obtained the design model P2 with

the reduced order as

nP2 = 2,

A⋆
c2 =

[
0.0 1.0

−14.8 −38.3

]
,

B⋆
c2 =

[
0

1

]
,

C⋆
c2 =

[
12.4 6.81

]
.

(4.27)

The input and states of the discrete-valued input system with the dynamic quantizer

Q2, which is designed by the model P2, is shown the red curve in Fig. 4.9. The result

shows that a satisfactory second-order quantizer can be designed. I stress that my

approach is not only a method for designing fixed-order quantizers but also allows us
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Fig. 4.9: The input v and states x1, x2 of the system with the fourth-order quantizer

Q1 = M(P ⋆
c1) and the second-order quantizer Q2 = M(P ⋆

c2), compared to those of

the ideal system.

to consider what type of linear model should be used.

In addition, I consider the case that not only the design model but also switching

conditions for the dynamic quantizer are optimization parameters, which is formulated

as [Problem 4.2]. The switching conditions for the multiplexer is

w1(σ) = |σ| − θQ, (4.28)

and optimize the parameter θQ. Figure 4.10 shows the simulation results when the

switching conditions are also optimized. In Fig. 4.10, I can swing up and stabilize

the pendulum like Fig. 4.6. In this case, the optimal design model is expressed as

Equation (4.29) and the switching angle is 2.37[rad] and this value is bigger than
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Fig. 4.10: Switching-condition is one of the optimization parameters.

π/6[rad], which is the controller switching condition.

nP2 = 4,

A⋆
c2 =


0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

23.8 −1.22 2.75 −31.4

 ,

B⋆
c2 =


0

0

0

1

 ,

C⋆
c2 =

[
13.9 29.9 30.4 12.5

]
.

(4.29)
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Table 4.2: Comparison of the efficiency in solving [Problem 4.1] and [Problem 4.2].

Method
Statistic values of Equation (4.9)

Best Worst Mean St. dev.

[Problem 4.1] 0.318 56.6 9.32 13.3

[Problem 4.2] 0.212 3.24 1.09 1.26

4.4.3 Comparison of the proposed method and the direct search of the

parameters of the dynamic quantizer

Finally, I compare the efficiency in solving [Problem 4.1] and [Problem 4.2]. [Prob-

lem 4.1] and [Problem 4.2] are solved by a direct search method and my proposed

method, respectively. The direct search method is a method to search for the pa-

rameters of the sub-quantizer Q2. Specifically, I search for the parameters of the

coefficient matrices A2,B2, C2 of the sub-quantizer Q2 and the switching threshold θQ

of the sub-quantizers, and the number of the design parameters are same as that in

case of the proposed method. The statistical values of 20 trials for the optimization

solved by each method are shown in Table 4.2. Table 4.2 shows that [Problem 4.2]

has a smaller evaluation function value, indicating that the search is more efficient.

One of the reasons for this is the following consideration. In [Problem 4.1], it is nec-

essary to search the vast parameter space of R8. However, [Problem 4.2] may limits

the parameter space by the mapping in Equation (4.12), and the efficient search can

be performed.

4.5 Summary

This study addressed the design problem of the sampled-data and switching-type dy-

namic quantizers for continuous-time nonlinear systems. In the proposed approach,

N linear design models were designed to minimize the value of the evaluation function

and make the performance of the dynamic quantizer better. A numerical example us-

ing a cart-type inverted pendulum was used to verify the effectiveness of the proposed

method.

There are several future research directions. First, although I dealt with numerical

optimization in this chapter, I should find an analytical method. Especially, I should

investigate the relationship between the nonlinear system and the optimal linear de-

sign models. Second, I hope to use this method on more practical problems with
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complex systems in the future. In addition, it would also be an intriguing approach

to replace the controller with one based on model predictive control or reinforcement

learning[79, 80, 81] and then design the dynamic quantizer. I plan to explore this

direction in future work.
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Chapter 5

Model-tuning approach to

quantization process in TDA-based

segmentation system

In this chapter, I apply my proposed method to the system composed of TDA and

the quantization process. The whole system is the segmentation process for gray-

scale images, Σ1 is the TDA process for binary image segmentation, and Σ2 is the

binarization process Q, which transforms a gray-scale image to a binary image. I

fix the design procedure M of the binarization process and design the binarization

process Σ2 by tuning the binarization algorithm P .

TDA is a method to analyze topological structures in a dataset. For example,

it can evaluate the robustness of the topological feature persistency and topological

invariants, such as the presence or absence of holes. Recently, TDA has been used

in various fields [82, 83, 84, 85], and applications include the analysis of molecular

structures of materials [82] and the analysis of tree structures of gene evolution [84].

TDA can analyze topological structures; I consider it possible to apply it to image

processing, such as image segmentation. Segmentation is the process of dividing an

image into meaningful regions, and it is used in various fields such as medical care and

autonomous driving [86]. For example, by associating the size of connected compo-

nents (clusters of pixels) in an image with the size of holes in TDA, the area occupied

by objects in the image may be extracted. Moreover, since TDA can distinguish dif-

ferences in topological structures (hole sizes), it can likely separate signals such as

high-spatial-frequency noise from low-spatial-frequency textures. In this chapter, I

propose a segmentation method for gray-scale images, which combines quantization



processing and TDA for binary images. In this method, there is a degree of freedom

in the choice of the quantization process. Therefore, it is essential to select an appro-

priate quantization method so that the information necessary for segmentation can

be obtained with TDA.

As a quantization method, thresholding is considered, but this method usually

requires careful threshold adjustment. As an automatic adjustment of the threshold

from image information, Otsu’s method (discriminant analysis) [87] is one of the

methods, but even if the threshold is automatically determined, it is not possible

to preserve the gray-scale information of the image. Thus, I adopt halftoning as

a quantization method and, in this chapter, specifically use the random dithering

method.

The halftone process generates a binary image that pseudo-represents the gray-scale

information by varying the density of white and black pixels. This process has the

advantage of preserving the appearance of the gray-scale image as much as possible

without the need for threshold adjustment. In general, halftoning adds high spatial

frequency noise. Thus, it is difficult to extract objects from a halftone image without

preprocessing, such as noise reduction. However, by using TDA to extract objects as

topological structures, it is expected that segmentation of objects buried in noise will

be possible.

In this chapter, I first apply TDA to halftone images generated by the random

dithering method and binary images generated by Otsu’s method. I visualize the

topological structure of the images and perform segmentation using the information

obtained. I then provide examples to explain which of Otsu’s and the random dither-

ing methods is more appropriate as a quantization method. Next, I compare the

results of applying TDA to blurred images, other standard images, and CT images

using random dithering and Otsu’s methods. Furthermore, I discuss the challenges

of further developing the proposed method by combining the error diffusion method,

another halftoning method, with TDA for segmentation.

Finally, I supplement the relationship with previous studies. The previous

studies[88, 89] proposes a gray-scale image segmentation method that combines

CNNs and TDA. This method reshapes the gray-scale image with a convolutional

neural network, then applies thresholding to perform segmentation, and the role of

TDA is to generate features used in the learning process of the NN. The proposed

method in this chapter differs from the approach in [88, 89] in that it converts

gray-scale images to halftone images and directly uses TDA without learning.
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5.1 Topological data analysis

Here, I explain the concept of topological data analysis (TDA), which is the basis of

this chapter. Then, I briefly describe the TDA algorithm for binary images used for

segmentation.

5.1.1 Basics of TDA

Birth Death

(a) Random pointcloud.

Birth Death

(b) Ring pointcloud.

Fig. 5.1: Birth and death by increasing the radii of the circles in each pointcloud.

The basic idea of TDA[90, 91, 92, 93, 94, 95, 96, 97] is to infer the structure of

pointcloud, image and graph data by measuring the gap between the radii of the

birth and death of holes. For example, given the set of points shown on the left

in Fig. 5.1(a), a circle is generated from each point, increasing its radius in TDA.

The birth radius is defined as the radius at which the circles intersect, forming a

hole, whereas the death radius is defined as the radius at which the hole collapses.

When the radii of birth and death of holes are defined in this way, the holes can be

investigated by measuring the gap between the radii of birth and death. This gap

is called persistence, and it can be used to examine the presence or absence of holes

and their size. The gap is larger for the ring pointcloud in Fig. 5.1(b) than for the
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random pointcloud in Fig. 5.1(a).

Birth

D
e
a
t
h Random

Ring

Fig. 5.2: Persistent diagram of the random and ring pointclouds, where I can see that

the hole structure of the ring pointcloud is larger than that of the random pointcloud

from the gap between the birth and death.

The gap between the radii of birth and death is shown as a persistent diagram. The

horizontal and vertical axes of this persistent diagram represent the radii of birth and

death, respectively. The further away from the diagonal, the larger the holes. For

example, the persistent diagram for the random and ring pointclouds in Fig. 5.1(a)

and Fig. 5.1(b) is shown in Fig. 5.2. Thus, the point close to the diagonal line is a

hole in the random pointcloud, and the point far from the diagonal line is a hole in

the ring pointcloud in Fig. 5.2.

5.1.2 TDA for binary images

I explain TDA for binary images using the binary image in Fig. 5.3[98]. The image of

Fig. 5.3 consists of white and black pixels, and black areas surround two white holes.

The first hole is a white area completely surrounded by black in the upper right, and

the second hole is a white area in the lower left, which is not completely surrounded

by black.

I can obtain the persistent diagram shown in Fig. 5.4 when I apply TDA to this

binary image. Among the two points in Fig. 5.4, the point far from the diagonal line

represents the largest hole completely surrounded by black in Fig. 5.3, and the point

close to the diagonal line corresponds to the small hole in the lower left that is not
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Hole 1

Hole 2

Fig. 5.3: A sample image with two holes.

Birth

Death

−1

Fig. 1

Fig. 2

1 2 3

3

2

1

Birth

Death

3

2

1

−1 1 2−2 3−3

Hole 2Hole 1

Fig. 5.4: Persistent diagram of the two-hole image (Fig. 5.3) .

completely surrounded by black in Fig. 5.3.

In the case of TDA of a binary image, as in the case of TDA for a point cloud,

the hole tends to become larger as the distance from the diagonal of the persistent

diagram, i.e., the persistence, becomes larger. Therefore, persistence is also considered

helpful in the analysis of binary images.

Note that white or black is taken as the standard depending on the part of images

when applying TDA. If black is taken as the standard, TDA is performed as if the

black pixels are expanding, and white regions are regarded as holes, such as Hole 1

and Hole 2 in Fig. 5.3.
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5.2 Segmentation of binary images using TDA

In this section, I perform segmentation using TDA on binary images obtained by

quantizing gray-scale images. To this end, I compare two methods:

• Applying TDA to binary images obtained by Otsu’s method, one of the thresh-

olding methods

• Applying TDA to binary images obtained by random dithering, one of the

halftoning methods

and confirm what information can be obtained by TDA in each case. I finally show

that random dithering is more suitable for segmentation.

The flow of the proposed method is as follows. First, I perform quantization pro-

cessing on the gray-scale image to obtain a binary image (Fig. 5.5(b), 5.8(a)). In this

study, I use random dithering as the quantization process. After this preprocessing,

I apply TDA to the binary image and draw the persistent diagram.

Next, I perform inverse analysis from the persistent diagram. Here, inverse analysis

refers to the following series of analyses:

1. Select several points with large persistence, i.e., points far from the diagonal of

the persistent diagram, to extract a large region from the image.

2. Extract the holes corresponding to the selected points.

3. Select the hole that fits the part of the image to be segmented from the extracted

holes.

Actually, I specify the radii of birth and death and display the holes corresponding

to the selected points as a red region. In the inverse analysis, I determine the region

with the smallest volume among the candidates corresponding to the holes with the

specified radii using optimization calculations[99].

5.2.1 Segmentation of binary images generated by Otsu’s method

In this subsection, I apply segmentation to binary images generated by Otsu’s

method, one of the representative thresholding methods[87] to compare to the

proposed method. Otsu’s method can automatically determine the threshold and

binarize gray-scale images.

In numerical experiments, I apply TDA to the binary image in Fig. 5.5(b) ob-

tained by binarizing the standard image (cameraman) with 256× 256 pixels shown in
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(a) Grayscale image (original) . (b) Case of Otsu’s method .

Fig. 5.5: Original image and binary image by Otsu’s method with the threshold 88.

Fig. 5.5(a) using Otsu’s method.

For the binary image in Fig. 5.5(b), when I apply TDA, I obtain the persistent

diagram shown in Fig. 5.6. The figure also shows some of the results of the inverse

analysis. In the persistent diagram, points near the diagonal line represent small

holes, while points far from the diagonal line represent large holes. The results can

be interpreted as points near the diagonal line representing are high spatial frequency

textures (e.g., noise), and points away from the diagonal line are low spatial frequency

textures.

The results can be confirmed in Fig. 5.6, where it can be seen that the high spatial

frequency part is concentrated near the diagonal line. In this segmentation, I select

the point (10, 38) farthest from the diagonal line with Persistence = 28 to extract

a large region with low spatial frequency. The region corresponding to this point is

shown in red in Fig. 5.7, corresponding to the cameraman’s body part. However, the

segmentation of the cameraman’s body parts is insufficient.

5.2.2 Segmentation of binary images generated by random dithering

In this subsection, I apply segmentation to halftone images generated by random

dithering, one of the representative halftoning methods[100]. In random dithering, the

threshold is changed for each pixel when binarizing the gray-scale image. Specifically,

an integer value between 0 and 255 is randomly selected as the threshold.

– 55 –



5.2. SEGMENTATION OF BINARY IMAGES USING TDA

Fig. 5.6: Persistent diagram of Fig. 5.5(b) and segmented images which correspond

to points on it.

When I binarize the gray-scale image in Fig. 5.5(a) using random dithering, I obtain

the image shown in Fig. 5.8(a). Applying TDA with white as the standard to this

image, I obtain the persistent diagram shown in Fig. 5.9. Compared to the results of

Otsu’s method, the points in the persistent diagram in Fig. 5.9 are scattered in the

case of random dithering, while points in the persistent diagram shown in Fig. 5.6 are

dense in the case of Otsu’s method.

In the case of Otsu’s method, when I perform inverse analysis of the hole corre-

sponding to the point with Persistency = 28 on the persistent diagram in Fig. 5.6, I

obtain the result shown in Fig. 5.7. In contrast, in the case of binarization by random

dithering, when I perform inverse analysis of the hole corresponding to the point (1,
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Fig. 5.7: Segmentation result for the Fig. 5.5(b). The red area is the area extracted

by segmentation method.

(a) Halftone image (binarized) . (b) Segmented image .

Fig. 5.8: Halftone image by random dither method and its segmented image.

9) farthest from the diagonal line on the persistent diagram in Fig. 5.9, I obtain the

result shown in Fig. 5.8(b). As can be seen from these results, random dithering is

more effective than Otsu’s method in segmenting near the boundary.

Finally, I quantitatively evaluate the segmentation results using the Dice coeffi-

cient (F-score)[101, 102]. The Dice coefficient can be calculated using the following
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Fig. 5.9: Persistent diagram of Fig. 5.8(a) and segmented images which correspond

to points on it.

equations:

Precision :=
TP

TP + FP
, (5.1)

Recall :=
TP

TP + FN
, (5.2)

Dice coefficient :=
2

1/Precision + 1/Recall
, (5.3)

where TP , FP , and FN stand for “True Positive,“, “False Positive,“ and “False Neg-

ative,“ respectively, representing the number of correct pixels recognized as correct,

the number of incorrect pixels recognized as correct, and the number of correct pixels

not recognized as correct, respectively. Precision and Recall correspond to ”lack of
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overflow” and ”lack of omission,” respectively.

Here, I calculated the Dice coefficient using Fig. 5.10 as the reference image and

Fig. 5.7 and Fig. 5.8 (b) as the segmented images. The Dice coefficients were 0.662

and 0.784, respectively, indicating that the result of Fig. 5.8 (b) was better.

Fig. 5.10: Reference image.

In the proposed method, I use random dithering, which allows me to avoid the

problem of determining the threshold that becomes a bottleneck when binarizing the

gray-scale image. Therefore, it is considered useful to combine random dithering and

TDA.

In summary, the contents of this chapter are as follows:

• Halftone images generally contain high spatial frequency noise, often near the

diagonal line on the persistent diagram. Therefore, by combining random

dithering, one of the halftoning methods, with TDA, I can segment images

with a relatively simple algorithm.

• Comparing the method combining thresholding with TDA and the proposed

method, the proposed method can segment images near the boundary. Fur-

thermore, by using random dithering in the proposed method, I can avoid the

problem of determining the threshold that becomes a bottleneck in threshold-

ing.
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5.3 Validation of the proposed method

In this section, I describe the advantages of halftoning in the proposed method. Specif-

ically, I verify the effectiveness of the proposed method from three perspectives:

• Results of applying the proposed method to blurred images

• Results of applying the proposed method to other standard images and CT

images

• Results of applying other halftoning methods

5.3.1 Results for blurred images

In this subsection, I describe the results of applying the proposed method to blurred

images. I use the gray-scale image in Fig. 5.11. The image is obtained by applying a

5×5 average filter to the image in Fig. 5.5(a). Fig. 5.12(a) shows the result of applying

the proposed method to the blurred image. Fig. 5.12(b) shows the result of applying

Otsu’s method to the blurred image and performing TDA. Comparing Fig. 5.12(a)

and (b), I can see that segmentation is also better when random dithering is used

than when Otsu’s method is used.

Fig. 5.11: Blurred image.
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(a) Case of halftone method. (b) Case of Otsu’s method.

Fig. 5.12: Comparison of segmentation results between different binarizing algorithms.

5.3.2 Results for other standard images and CT images

In this subsection, I describe the results of applying the proposed method to other

standard images with low spatial frequency textures. Figure 5.13 shows the results

of quantizing the gray-scale images of standard images and segmenting them using

random dithering. For the images in Fig. 5.13(a), I obtained the images in Fig. 5.13(b)

by extracting the parts with Persistency ≥ 4 in the persistent diagram. Similarly, for

the images in Fig. 5.13(c), I obtained the images in Fig. 5.13(d) by extracting the

parts with Persistency ≥ 4 in the persistent diagram. Thus, it can be confirmed that

segmentation is possible by drawing the persistent diagram of the binary image by

random dithering using TDA and selecting appropriate points.

In addition, I applied the proposed method to the brain CT images of a cricket

in Fig. 5.14(a), (b)[103]. The results are shown in Fig. 5.14(c), (d). In Fig. 5.14(c),

the centrosome part (inside the red circle in the center of Fig. 5.14(c)) is segmented

because it does not come into contact with the surrounding white area. However,

it was impossible to segment the centrosome when it comes into contact with the

surrounding structure, as in Fig. 5.14(d).

[Remark] As mentioned in Subsection 5.2.1, applying TDA to the image in

Fig. 5.5(b) results in Fig. 5.7. However, when I add the pre-processing of “adding

a white frame of one pixel around the image” to the image in Fig. 5.5(b) and then

apply TDA, I obtain good results as shown in Fig. 5.15(a).
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(a) (b)

(c) (d)

Fig. 5.13: Halftone images and its segmented images.

In contrast, I applied Otsu’s method to the original standard images in Fig. 5.13(a),

(c), binarized them, and then applied TDA after adding the above pre-processing. The

results are shown in Fig. 5.15(b), (c), and the expected results were not obtained. The

results are considered to be due to the inability of Otsu’s method to determine the

threshold appropriately. From these results, it can be considered that the proposed

method combining halftoning and TDA is simple in terms of:

• Avoiding the difficulty of setting the threshold during quantization
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(a) Grayscale image #1. (b) Grayscale image #2.

(c) Segmented image #1. (d) Segmented image #2.

Fig. 5.14: Experiment result with brain CT images of cricket.

• Being able to segment any image moderately without post-processing

compared to the method with the above pre-processing, although the proposed

method may be inferior in some cases.
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(a) (b) (c)

Fig. 5.15: Regions of interest segmented from binary images with white margin.

(a) Halftone image. (b) Segmented image.

Fig. 5.16: Halftone image by error diffusion method and its segmented image.

5.3.3 Comparison with other halftoning methods

I have used random dithering as the halftoning method, but in this subsection, I

consider the case of the error diffusion method (Floyd & Steinberg filter)[104], another

representative halftoning method.

The error diffusion method and TDA can also segment the image, as shown in

Fig. 5.16. These results confirm that the proposed method yields similar results

regardless of the halftoning method used. However, when comparing Fig. 5.8(b) and

Fig. 5.16(b), I can see that they are slightly different. In other words, changing

the halftoning method affects the features extracted by TDA and, thus, the results

of the proposed method. In particular, when performing inverse analysis from the
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persistent diagram, it was sufficient to select one point in the case of random dithering.

In contrast, in the case of error diffusion, it was necessary to choose points that

satisfy Persistency ≥ 3. This point is a challenge when advancing the automation

of the method, but on the other hand, the following can be considered: I confirmed

that segmentation is possible by applying TDA to halftone images and drawing the

persistent diagram. However, the results were influenced by the choice of halftoning

method. Therefore, the development of a customized segmentation method tailored

to the image by customizing the halftoning process can be expected. I would like to

continue my research in this direction.

5.4 Summary

In this chapter, I confirm the effectiveness of the segmentation method that combines

halftoning and TDA. As a result, I can segment standard images roughly with a

simple algorithm. Future tasks include improving the accuracy of segmentation and

designing halftone processing filters tailored to images. In the future, I would like to

research to improve these aspects. As existing methods[86], there are segmentation

methods, such as the method using TDA combined with deep learning[88], that use

snakes[105], and that using level sets[106]. It is important to compare the proposed

method with these methods for performance evaluation. Furthermore, I perform a

quantitative evaluation in this chapter using manually cropped images and the Dice

coefficient. However, the reference images and evaluation criteria vary depending on

users and problem settings. Therefore, it is also a task to establish evaluation criteria

tailored to users and problem settings.

Finally, the approach of combining halftoning with TDA is the first of its kind in this

paper, and discussing the effectiveness of this combination is valuable for expanding

the application range of TDA.
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Chapter 6

Model-tuning approach to

quantization process in TDA-based

QNN evaluation system

In this chapter, I apply our proposed method to the system, which is composed of TDA

and quantization process. The whole system is the evaluation process of quantized

NNs, Σ1 is the TDA process for quantized NNs, and Σ2 is the quantizer Q, which

quantize the weights of a original real-valued NNs. I fix the design procedure M of

quantization process of weights and design the quantization process Σ2 by tuning the

error-diffusion filter P .

Recently, many Neural Network (NN) models and learning methods have been pro-

posed and used in various scientific and technological fields. However, if the NN model

becomes large, the number of parameters, such as weights and biases, increases. Con-

sequently, it is difficult to build NNs on computers with limited computing resources,

such as microcomputers. Thus, compression methods is needed for memory saving

and computational efficiency[107].

One way to compress NN models is to quantize the weights for connections of the

NN nodes. In quantization methods, weights with a large number of bits are converted

into weights with a smaller number of bits. Existing quantization methods for NNs

can be categorized into two approaches: Quantization-Aware Training (QAT) and

Post-Training Quantization (PTQ) [108, 109]. QAT Incorporates quantization into

the learning process to obtain low-bit weight coefficients[110]. In the QAT framework,

NN models can be quantized while their performance is evaluated. On the other hand,

PTQ degrades the performance of a QNN compared with the original NN because of



quantization of the weight coefficients of learned NNs[111, 112, 113, 114, 115, 116, 117].

In the PTQ framework, the performance degradation of QNNs is not known in advance

and must be evaluated later.

One of the evaluation criteria is the inference accuracy of NNs. However, experi-

ments with large amounts of data are needed to verify the performance of QNNs in

detail. Besides, in some studies, NNs are used as a component of a system, such as a

controller, e.g., model predictive control[118, 119]. When an NN is incorporated into

a control system, their performance must be evaluated through simulations or exper-

iments to confirm that they satisfy the control specifications. However, establishing a

simulation environment, a dataset, and appropriate experimental conditions for large

systems can be time-consuming and computationally expensive. Moreover, in the ex-

periments, the control system may be damaged if significant performance degradation

of the NN occurs, such as instability. Hence, instead of conducting experiments using

NNs, an evaluation method based on their structure is needed to assess the difference

in performance between the original and QNNs.

This paper proposes a method for evaluating the performance of QNNs using Topo-

logical Data Analysis (TDA)[90, 91, 92, 93, 94, 95, 96, 97]. TDA is a topology-based

method of analyzing data and examines the number and size of holes in the data. The

method allowed us to visually demonstrate the performance of the QNN models as

a diagram without experiments or simulations. The critical point of TDA is to infer

the spatial information and features of Big Data from the size and number of holes

in the data. TDA compresses the information on the weights of the NN model into

that on the holes of the NN model, and it is expected that the properties of the NN

model can be captured. Moreover, TDA has features such as a theoretical foundation,

practical computability, and robustness with small perturbations, as described in a

previous paper[91], which are helpful for the evaluation of not only original NNs but

also QNNs. The previous study of the TDA for NNs[95] is not directly applicable

to QNNs, because of their many zero-valued weights; thus, I modified the TDA for

QNNs. In addition, I demonstrated this method for NN models through numerical

examples using the MNIST dataset. In the examples, I applied the proposed TDA to

QNNs generated by static and dynamic quantizers [115].

In addition to evaluating QNNs, this study also aims to analyze the structure

of QNNs. Various quantization methods have been developed in previous studies of

NNs, and it is known that dynamic quantization outperforms static quantization[117].

However, the internal structure of QNNs has not yet been thoroughly investigated. If

the internal structure of QNNs can be linked to their performance using topological
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indices, topology-based optimality of quantization may be defined. This study can

be considered the beginning of the connection between the internal structure and

topology of QNNs.

6.1 Quantization of Neural Networks

An NN is a type of machine-learning model inspired by the structure and function of

the human brain. It consists of interconnected nodes organized into layers, as shown

in Fig. 6.1. Each neuron is depicted in Fig. 6.2, and the forward propagation of layer

Input layer Layer Layer  Layer 

Fig. 6.1: NN model and the input u, the state xl, the output z and parameters, such

as the weights Wl, and bl.

Fig. 6.2: Weighted linear summation and activation in the

jth node in layer l.
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l in the NN is expressed as {
yl = Wlxl−1 + bl,

xl = f
(
yl
)
,

(6.1)

where Wl =
[
wl

ji

]
∈ RN l×N l−1

is the weight matrix, bl =
[
blj
]
∈ RN l

is the bias

vector, xl =
[
xl
j

]
∈ RN l

is the state vector of layer l, and yl =
[
ylj
]
∈ RN l

is the

output vector of layer l. Note thatN l represents the number of nodes in layer l and the

activation function f is applied element-wise to the output vector yl in Equation (6.1).

In layer l, the j ∈
{
1, 2, . . . , N l

}
th neuron has state xl

j ∈ R. The state xl
j is obtained

by substituting the parameter ylj ∈ R, which is the weighted linear summation of the

states of the neurons in layer l − 1, into the activation function f : R → R, as shown
in Fig. 6.2.

I explain the quantization methods of an NN. The weight coefficients wl
ji are con-

verted from high- to low-bit values, vlji ∈ V. Note that the bias coefficients blj are

not quantized in this chapter. The equation for each layer of the NN with quantized

weights is denoted as {
yl = Vlxl−1 + bl,

xl = f
(
yl
)
,

(6.2)

where Vl =
[
vlji
]
∈ VN l×N l−1

denotes the quantized weight matrix.

There are two types of quantization methods in PTQ: static and dynamic. Static

quantization is a simple method for quantizing the NN. In this chapter, I use the

function of static quantization given by Equation (2) in the previous study[115] as

q : vlji =


sgn

(
wl

ji

) ⌊∣∣wl
ji

∣∣
d

+
1

2

⌋
d if

∣∣wl
ji

∣∣ ≤ Nbitd,

sgn
(
wl

ji

)
Nbitd otherwise,

(6.3)

which converts the original weight wji into the closest weight of all the candidate val-

ues 0,±d,±2d, . . . ,±Nbitd. In the case of static quantization, the quantized weights

vlji depend on the original weights wl
ji, quantization width d, and number of quanti-

zation bits Nbit.

Tsubone et al. (2023) proposed a dynamic quantization method for discretizing NN

weights[115]. In dynamic quantization, the filtered quantization error for each weight

is propagated to other weights to reduce the output error of each layer. Therefore, the

quantized weights vlji depend on the quantization error as well as the original weights
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wl
ji, quantization width d, and number of quantization bits Nbit. An overview of the

dynamic quantization process is described below.

1. One weight in each layer is quantized, and the quantization errors are propa-

gated to the next node in the same layer to reduce the gap between the pre-

and post-quantization outputs.

2. In each layer, the propagation route and value of the quantization error are

determined according to the 2-norm distance of the feature vectors calculated

by input data.

Layer  Layer 

Fig. 6.3: Construction method for feature vectors θl−1
i and output vectors ỹl

j from

Ndata data.

Here, I explain the algorithm for dynamic quantization in detail. I assume that

a trained NN and Ndata sets of training data are given. Here, un ∈ RNinput (n =

1, 2, . . . , Ndata) are defined as the nth input data, and Ninput represents the number

of input nodes. I call the NN with high-bit weights the original NN and the NN with

quantized weights from layer 1 to layer l the lth QNN. The output vector of the jth

node of layer l in the original NN is ŷl
j = [ŷlj(u1), ŷ

l
j(u2), . . . , ŷ

l
j(uNdata

)]⊤ ∈ RNdata ,

and that of the jth node of layer l in the l − 1th QNN is ỹl
j = [ỹlj(u1), ỹ

l
j(u2),

. . . , ỹlj(uNdata
)]⊤ ∈ RNdata . Note that ŷlj(un), ỹ

l
j(un) mean the output vectors ŷlj , ỹ

l
j

in the cases where the input data un are fed to the original NN and the l − 1 QNN,
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respectively. The feature vector θl−1
i ∈ RNdata is defined as

θl−1
i =




xl−1
i (u1)

xl−1
i (u2)

...

xl−1
i (uNdata

)

 if l ∈ {2, 3, . . . , Nlayer},


ui1

ui2

...

uiNdata

 otherwise,

(6.4)

using the input data un ∈ RNinput (n = 1, 2, . . . , Ndata), shown in Fig. 6.3. I denote

the number of layers in the NN as Nlayer. The feature vector θl−1
i ∈ RNdata of the

l − 1 QNN is the vector input to the ith node in layer l for each input data un.

Then, I define the dynamic quantizer for the NN, which is denoted as

Ql :


Ξl
k+1 = Ξl

k + θl−1
σl−1(k)

(
vl
σl−1(k) −wl

σl−1(k)

)⊤
,

vl
σl−1(k) = q

(
−
(
θl−1
σl−1(k)

)†
Ξl
k +wl

σl−1(k)

⊤
)⊤ (

k = 1, 2, . . . , N l−1
)
,

(6.5)

where σl−1(·) is the permutation of the nodes in layer l − 1; q(·) is the quantization

function defined in Equation (6.3); vl
σl−1(k),w

l
σl−1(k) ∈ RN l

are the column vectors of

Vl,Wl; and Ξk ∈ RNdata×N l

is the quantization error matrix. The jth column vector

of the quantization error matrix Ξl
1 is initialized as

ξl
1j =

{
ỹl
j − ŷl

j if l ∈ {2, 3, . . . , Nlayer},

0 otherwise,
(6.6)

where j is in the set {1, 2, . . . , N l}.
Finally, I define the permutation {σl−1(1), σl−1(2), . . . , σl−1(N l−1)}, which ex-

presses the propagation route of the quantization error. The permutation is cal-

culated as follows: First, I construct the complete graph Gl−1 =
{
V l−1, E l−1

}
, where

V0 = {1, 2, . . . , Ninput} and V l−1 = {1, 2, . . . , N l−1} (l = 2, 3, . . . , Nlayer) are the set

of vertices and E l−1 = {(i, j) | i, j ∈ V l−1} is the set of edges, using the weight

coefficients al−1
ij defined as

al−1
ij =

∥∥∥θl−1
i − θl−1

j

∥∥∥
2
. (6.7)
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Then, I determine the permutation {σl−1(1), σl−1(2), . . . , σl−1(N l−1)} of the vertices

V l−1 by solving the optimization problem formulated as Traveling Salesman Problem.

The optimal permutation {σl−1(1), σl−1(2), . . . , σl−1(N l−1)} minimizes the evalua-

tion function J , which is given by the sum of the distances between adjacent nodes:

J =
N l−1−1∑

k=1

al−1
σl−1(k)σl−1(k+1)

. (6.8)

Using the propagation route {σl−1(1), σl−1(2), . . . , σl−1(N l−1)}, I convert the high-
bit weights Wl of layer l into low-bit weights Vl using the dynamic quantizer (6.5)

along the optimal permutation {σl−1(1), σl−1(2), . . . , σl−1(N l−1)}. The first equation
of the dynamic quantizer (6.5) is the error propagation equation, and the second

equation of the dynamic quantizer (6.5) subtracts the error from the high-bit weights

and statically quantizes them by Equation (6.3).

Static quantization

Round off

Round off

Diffuse &
Round off

Error

Dynamic quantization

Original NN

Fig. 6.4: Difference in the quantization process between static and dynamic quanti-

zation.

An illustrative example of the difference between static and dynamic quantization

is shown in Fig. 6.4. If there are the original weights whose values are sufficiently

smaller than the quantization width d, all the quantized weights become 0 through

static quantization because static quantization rounds the weights independently. In

contrast, dynamic quantization quantizes weights and diffuses the quantization error

to other weights. Thus, even if the weights are sufficiently smaller than the quantiza-
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tion width d, they are not quantized to 0 by dynamic quantization, and input–output

relationships of the NN are preserved to some extent.

6.2 TDA-based Performance Analysis

6.2.1 Basics of TDA

See the Subsection 5.1.1 for the basics of TDA.

6.2.2 TDA for NN

Watanabe and Yamana[95] applied the TDA to the performance analysis of NNs. I

explain the definitions of birth and death as follows. Note that the mathematical

terms such as simplex, complex, and filtration, which are required for the definition

of TDA for NNs, were defined in Definitions 1–4 of [120].

First, I represent the NN as a finite directed-weighted graph G = {V, E ,W} with

no self-loops or double edges. The set of nodes V = {1, 2, . . . , N} corresponds to the

set of all the neurons in the NN, the set of edges E = {(i, j) | i, j ∈ V} corresponds

to the set of connections between the neurons, and the weight matrix W = {wji}
corresponds to the set of weights of the all connections. N denotes the number of all

the nodes in the NN.

In [121], the clique complex K(G) is defined from the graph G as

K(G)0 = V,

K(G)p = {(k1, k2, . . . , kp) | ki ∈ V ,

(ki, kj) ∈ E for all kj > ki},
(6.9)

where the parameter p holds p ≥ 1, and K(G)p denotes the set of p-simplexes on the

graph G. For example, 0-simplex is a connected component, 1-simplex is an edge, and

2-simplex is a triangle.

I define the relevance Rji of edge (vi, vj) as

Rji =


max (wji, 0)∑

i,i ̸=j max (wji, 0)
i 6= j,

1 otherwise.

(6.10)

The relevance represents the normalized closeness between two adjacent nodes. I

extend the definition of the relevance, and the relevance between nodes that are not
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directly connected is defined as follows:

R̃ji = max
(i,m1,m2,...,mk,j)∈Lji

Rim1Rm1m2 · · ·Rmkj , (6.11)

where Lji denotes the set of all possible paths (i,m1,m2, . . . ,mk, j) from node i

to node j. Equation (6.11) indicates that the relevance R̃ji is set as the maximum

product of the relevance between two nodes on all paths from i to j.

Similar to Equation (6.9), the clique complex with the threshold value and filtration

were defined in previous research[95] using the relevance R̃ji and the threshold t. The

clique complex with threshold value Kt
p is defined as follows:

Kt
p :


V if p = 0,

{(k1, k2, . . . , kp) | ki ∈ V ,

R̃kjki
≥ t for all kj > ki}

if p ≥ 1,
(6.12)

where t is restricted to 0 ≤ t ≤ 1 and the nodes are numbered in ascending order from

the output layer to the input layer. Propositions 1 and 2 in [95] show that the set

Kt =
⋃n

p=0 K
t
p is a simplicial complex and that the filtration of Kt can be formed.

The birth and death of a hole can be calculated, and a persistent diagram can be

drawn because filtration can be formed.

For example, I consider a part of the NN shown in Fig. 6.5(a). In Fig. 6.5(b), the

relevance R̃ji is defined by Equations (6.10) and (6.11). When the threshold t is 1.0,

only the edges between Nodes 1 and 3 exceed the threshold, as shown in Fig. 6.5(c).

When the threshold t is 0.2, all edges including nodes 0, 2, and 3 exceed the threshold,

and the hole is born in Fig. 6.5(e). When the threshold t is 0.1, the triangle including

nodes 0, 2, and 3 exceeds the threshold, and the hole is dead, as shown in Fig. 6.5(f).

The persistent diagram of an NN is shown in Fig. 6.6.

The intuitive process of TDA for NNs is as follows: The relevance Rji is defined

by Equation (6.10) from the weights wji ∈ R. In addition, the relevance of three

or more nodes is defined as the maximum product of the relevance of all paths by

Equation (6.11). I then define the thresholds of the edges and triangles composed of

nodes. The thresholds of the edges are defined as the relevance itself, and those of

the triangles are defined as the maximum relevance of the path containing the three

nodes of the triangle. When threshold t is varied from 1 to 0, birth is the radius at

which the hole enclosed by the edges is formed and death is the radius at which the

hole collapses.
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Fig. 6.5: Relevance in the NN and the change in the shape of the NN based on the

threshold t.

6.2.3 Simulation Example of Original NN: MNIST Classification

In this section, I use an NN to classify the MNIST dataset[122]. In this classification

problem, I classify hand-drawn numbers from zero to nine. The input of the NN

is 28 × 28 pixels of the images, and the output is the probability that corresponds

to a number from 0 to 9. The NN model consists of the input layer, two hidden

layers, and the output layer, and these layers have 28 × 28 = 784, 300, 100, and

10 nodes, respectively. The training data and test data are 60000 and 10000 images,

respectively, and I set the batch size and number of epochs to 256 and 10, respectively.

As a result, the prediction accuracy of the original NN is 89.7%.

A persistent diagram of the original NN is shown in Fig. 6.7. It is computed

using Dionysus[96, 97]. Note that the color bar is on a logarithmic scale with a

maximum value of log10(20000). Each scale of the persistent diagrams corresponds

to 64 steps of threshold t changes from 1 to 0, and these steps are as follows: 1.0 ×
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S
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Fig. 6.6: Persistent diagram of the example NN in the Fig. 6.5, where the birth and

death are defined as the number of steps.

100, 0.9 × 100, . . . , 0.2 × 100, 1.0 × 10−1, 0.9 × 10−1, . . . , 0.2 × 10−1, . . . , 1.0 ×
10−6, 0.9×10−6, . . . , 0.2×10−6, 1.0×10−7. In Fig. 6.7, I observe many holes within

approximately 10 steps in the gap between birth and death. Additionally, in Fig. 6.7,

almost all the holes exist in the ranges of 15–55 for the birth radius and 30–65 for the

death radius.

6.3 TDA-based Analysis of QNN

6.3.1 TDA for QNN

I explained the TDA for NNs in Section 6.2.2. However, it is difficult to apply TDA

to a QNN, because most of the weights become 0, and many thresholds of the edges

and the triangles are also set to 0. As a result, I lose the information of holes in the

QNN.

To avoid the loss of hole information, I add a small value to each quantized weight

and compute the relevance using the revised weights. I define the relevance Rji as

Rji =


max (vji + ε, 0)∑

i,i ̸=j max (vji + ε, 0)
i 6= j,

1 otherwise,

(6.13)

instead of using Equation (6.10). Note that I use the positive value ε = 0.01 in the
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following example.
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Fig. 6.7: Persistent diagram of the original NN for MNIST image classification

.

(a) 𝑁bit = 1 (b) 𝑁bit = 2 (c) 𝑁bit = 4 (d) 𝑁bit = 8

(a) 𝑁bit = 1, 
dynamic

(b) 𝑁bit = 2, 
dynamic

(c) 𝑁bit = 1, random (d) 𝑁bit = 2, random

Fig. 6.8: Persistent diagrams of four static QNNs with different numbers of bits

Nbit = 1, 2, 4, 8.

(a) !!"# = 1 (b) !!"# = 2 (c) !!"# = 4 (d) !!"# = 8

(a) !!"# = 1, dynamic (b) !!"# = 2, dynamic (c) !!"# = 1, random (d) !!"# = 2, random

Fig. 6.9: Persistent diagrams of two dynamically quantized and two randomly weighed

NNs with different numbers of bits Nbit = 1, 2.
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6.3.2 Evaluation of QNNs quantized by the static quantization method

In this section, I compare the performance and TDA results of QNNs quantized by

the static quantization method (hereinafter referred to as the static QNNs) with

various numbers of quantization bits Nbit. I use static QNNs with Nbit = 1, 2, 4, 8

quantization bits. The inference accuracy of these NNs is 8.92%, 68.1%, 88.5%, and

88.1%, and the settings and performance of the NNs are summarized in Table 6.1. In

the case of low-bit static quantization, many weights are rounded to zero due to rough

resolution quantization, resulting in low inference accuracy. In the case of high-bit

static quantization, the resolution is higher and closer to the original NN, resulting

in higher inference accuracy.

Table 6.1: Settings and performance of the original NN, static QNNs, dynamic QNN,

and randomly weighted NNs.

Quantizer Widnth d Bits Nbit Accuracy

Continuous - - 89.7%

Static 0.4 1 8.92%

Static 0.2 2 68.1%

Static 0.1 4 88.5%

Static 0.05 8 88.1%

Dynamic 0.4 1 85.7%

Dynamic 0.2 2 87.7%

Random 0.4 1 9.86%

Random 0.2 2 11.4%

I then apply the TDA-based method to the NNs. Persistent diagrams of the static

QNNs are shown in Fig. 6.8. I mentioned earlier that the inference accuracy of static

QNNs increases as the number of bits increases (Table 6.1). Focusing on the persistent

diagrams of static QNNs in Fig. 6.8, I can see that as the number of bits increases, the

number of holes increases in the regions where the birth radius is between 15 and 30

and the death radius is between 25 and 40. Focusing on the persistent diagram of the

original NN in Fig. 6.7, I can see that holes are also concentrated in the birth radius

(15 to 30) and death radius (25 to 40). This indicates that the resolution increases,

and the static QNNs become similar to the original NN. In addition, holes in these

regions may affect performance.
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6.3.3 Evaluation of QNNs quantized by the dynamic quantization method

In this section, I compare the performance and TDA results of QNNs quantized by

the dynamic quantization method (hereinafter referred to as the dynamic QNNs) and

static QNNs with various numbers of quantization bits. I use dynamic QNNs with

Nbit = 1, 2 quantization bits. The performance of the dynamic QNNs is 85.7% and

87.7%, and the settings and performance of the NNs are summarized in Table 6.1.

The persistent diagrams of the dynamic QNNs are shown in Fig. 6.9(a), (b). The

performance of dynamic QNNs is high even when the number of bits Nbit is small

(Table 6.1), and the holes of the dynamic QNNs exist in the regions around 15 to

30 for birth radius and 25 to 40 for death radius. Thus, the result suggests that the

performance is maintained if NNs are quantized to preserve the holes in which holes

in the persistent diagram of the original NN are concentrated. I can also explain

why the original NN has a continuous distribution of holes, whereas the QNNs have

a discrete distribution. In the original NN, the weights are conserved in 64 bits, so

each relevance has almost continuous values. On the other hand, the quantized N N

has only a limited number of weight coefficients, which limits the variety of values

of relevance. Therefore, the birth and death computed from the relevance are also

expected to be discrete.

The dynamic QNNs have higher performance, although the NNs are quantized by

small number of bits (Nbit = 1, 2) compared with static QNNs. This is because

dynamic quantization maintains the relationship between the input and output in

each layer of NNs by minimizing quantization errors and preserving the weight values

of essential nodes, as shown in Fig. 6.4.

In addition, I compare the dynamic QNNs and randomly weighed NNs. Randomly

weighted NNs have randomly selected weights of 0,±0.4 and 0,±0.2,±0.4 when the

number of bits Nbit is 1 and 2, respectively. The performance of the randomly weighed

NNs with Nbit = 1, 2 quantization bits is 9.86% and 11.4%, and the settings and

performance of the NNs are presented in Table 6.1. The persistent diagrams of the

randomly weighed NNs are shown in Fig. 6.9(c), (d). In the persistent diagrams of the

randomly weighed NNs in Fig. 6.9(c), (d), the number of holes in the region round

15 to 30 for birth radius and 25 to 40 for death radius is reduced. Detailed and

quantitative analysis will be conducted in the future.
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Fig. 6.10: Heatmaps of the weights of the original, statically quantized, dynamically

quantized, and randomly weighed NNs with Nbit = 1, 2.

6.3.4 Comparison of Persistent Diagrams and Heatmaps

Finally, I compare the heatmaps of the original NN, the static QNN, dynamic QNN,

and randomly weighed NN when the number of bits is Nbit = 1. Heatmaps are

mainly used for the visualization of convolutional neural networks[123] and show the

values of the weights of the NNs as colors. A comparison with a simple method using

heatmaps confirmed the usefulness of focusing on the structure of NNs in the proposed

TDA-based method.

The heatmaps are shown in Fig. 6.10, where the color bars indicate the weight

values of the NNs. As indicated by the weights W1 and W2 in the heatmaps, the

original NN has the most weights close to 0, all the weights of the static QNN become

0, and the dynamic QNN has some weights whose absolute values are close to 0.4.
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These heatmaps are different, and it is difficult to evaluate the performance of NNs

using heatmaps. However, in the persistent diagrams, when the performance of QNNs

is higher, the distribution of holes is closer to that of the original NN. In addition,

the randomly weighed NN exhibits worse performance similar to the static QNN

than the original NN. However, the heatmap of the randomly weighed NN in the

fourth column of Fig. 6.10 differs from that of the static QNN because the weights

are assigned randomly. In contrast, the persistent diagram of a randomly weighed or

static QNN has few holes in the region where the birth radius is between 15 and 30

and the death radius is between 25 and 40. Moreover, the heatmap shows a diagram

for each layer, whereas the persistent diagram shows the overall characteristics in a

single diagram. Thus, in contrast to heatmaps, persistent diagrams can intuitively

express performance degradation.

6.4 Summary

I proposed a TDA-based evaluation method for QNNs. I evaluated the proposed

method using QNNs for the classification of the MNIST dataset as an example, and I

succeeded in visualizing the performance of the QNNs. As the performance degrada-

tion decreased, the persistent diagrams became more similar to the original persistent

diagrams. In addition, persistent diagrams were found to be a more intuitive repre-

sentation of performance than heatmaps.

In future work, I will modify this method to evaluate QNNs quantitatively. In this

chapter, I used persistent diagrams to visualize the performance; however, the per-

sistent diagrams have various parameters, such as the number and lifetime of holes.

Therefore, if I can theoretically link these parameters to the performance of a QNN,

the proposed method will allow quantitative evaluation of QNNs. Other future re-

search direction is the design of a quantization filter or numerical optimization of the

quantization method to maintain the topological features. Additionally, the applica-

bility of the proposed method to Transformer models should be explored. Transformer

models are widely used in natural language processing, and the quantization of Trans-

former models and the performance analysis of quantization are important issues. If a

module is an NN model, the proposed method can be applied to the module; however,

there are submodules in Transformer models. Thus, I must investigate the application

of our method to multiple NN modules.

– 81 –



82

Chapter 7

Conclusion

In this thesis, I have proposed a new system design method based on model tuning.

Specifically, the plant and the structure of the controller is given, and I find a model

that reflects the designer’s intention. The model is called as ”Design Model” in this

thesis. The main contributions of the thesis are summarized as follows:

• In Chapter 2, I first discuss two types of control system design, model-based

and data-driven, as a background of conventional control system design. I show

that my research is positioned between model-based and data-driven methods.

Next, some previous studies that inspired the proposed design method are

introduced. Finally, based on the above background and previous studies, I

formulated the problem setting of the proposed method in a general way.

• In Chapter 3 and in Chapter 4, the effectiveness of the proposed method is

demonstrated by applying it to an actual control system. I reformulated the

problem as an optimization problem for the cases where the plant is linear or

nonlinear, and the dynamic quantizer is a linear or switching-type in Chapter 3

and Chapter 4, respectively. Numerical experiments show that the proposed

method can design a quantizer that satisfies the control performance and the

possibility of faster optimization by the proposed method.

• In Chapter 5 and in Chapter 6, the proposed method was redefined from the

framework of control engineering to a broader meaning and was applied to a

system with a fixed structure, TDA. In Chapter 5, I designed a quantization

process to convert a gray-scale image to a binary image when the TDA process

for a binary image is fixed as the image segmentation. Numerical experiments

confirmed that the quantization process gave better segmentation results than

the simple thresholding method. In Chapter 6, I designed a quantization pro-

cess to convert original NNs to quantized NNs when the TDA process is fixed



as an evaluation method of quantized NNs. Since I have only been able to

discuss how to fix the TDA as a numerical experiment, the actual design of the

quantization process is one of future works.

In this thesis, I have established a new system design method based on model tun-

ing. The result gives us a important insight. It is the proposal of a new model called

the design model. Some previous studies have considered models that correspond to

design models for individual problems. Based on the studies, the design model is for-

mulated as a general problem setting in this study. Unlike conventional models that

reflect the dynamics and characteristics of the object, the design model reflects the

designer’s intention in terms of fixing the structure of the controller. The new idea is

that what is needed in control is not a perfect model but only one that can be used

for control. This concept opens up new horizons in control and is an essential idea

for future research in control. In particular, large and complex systems are known to

be difficult to model, but the design model is expected to be helpful in the design of

control systems for such systems.

I conclude this thesis by indicating some open problems as follows: The first is to

propose a method for analytically constructing a design model. In Chapter 3 and in

Chapter 4, I formulated optimization problems for constructing design models and

obtained solutions by numerical optimization, but I did not show how to construct

them analytically. Therefore, showing the exact optimality and convergence of these

solutions is an essential issue for future work. By showing these analytical results,

the effectiveness of the proposed method can be more quantitatively demonstrated,

and the validity of the solutions can be guaranteed. The second is the application to

fields other than control engineering. In this study, the proposed method is presented

using control system design as an example, but it could also be applied to other fields.

For example, in meta-heuristics optimization problems, an efficient search is possible

by including a certain structure in the parameter update law. In addition, Chapter 5

and in Chapter 6 show applications to systems involving TDA, but these applications

are still elementary. Applying the design model concept to general systems is also an

important issue.
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