

Title	Developing Sustainable Titanium Alloys for Additive Manufacturing: An In-Situ Alloying Approach
Author(s)	Huang, Jeff
Citation	大阪大学, 2025, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/101642
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (HUANG JEFF)	
Title	Developing Sustainable Titanium Alloys for Additive Manufacturing: An In-Situ Alloying Approach (持続可能な積層造形チタン合金の創製: In-Situ合金化によるアプローチ)
<p>Abstract of Thesis</p> <p>The fundamental metallurgy of titanium and its alloys has remained mostly unchanged for the past 80 years, with an unwavering dominance of the market by the ubiquitous Ti-6Al-4V alloy (ASTM Grade 5) and the “commercially pure” unalloyed grades (ASTM Grades 1-4). For much of this time, there has been little reason to question the efficacy of these proven compositions, which have served favourably across numerous advanced aerospace, biomedical and chemical applications. Nevertheless, several substantial issues have arisen in the past decade to finally challenge the control of these grades over the titanium market, including: a surge of innovation in manufacturing technology, rising demand for light alloys, supply chain stresses from global conflicts, and emergent sustainability concerns from increased environmental awareness. Combined, these novel issues demand a careful reconsideration of alloy design principles to meet contemporary requirements such as compatibility with additive manufacturing processes, cost effectiveness, supply chain security, and recyclability.</p> <p>In the context of these new challenges, this thesis reports the design and development of several new grades of sustainable titanium alloys, specifically by and for additive manufacturing via the laser-based powder bed fusion process. In particular, focus is placed on several low-alloy, high-impurity compositions which harness the conventionally deleterious impurities of iron and nitrogen for positive strengthening effects via their functionalisation towards grain refinement and solid-solution strengthening effects. These elements are of special interest because they are frequent and unavoidable contaminants in the byproducts of titanium enrichment, and end-of-life titanium scraps, thereby strongly implicating them in the development of any circular economy process. For precise compositional control, an in-situ alloying approach from elemental powders has been utilised, however the developed methods are expected to be fully compatible with feedstocks containing native impurities.</p> <p>Throughout the stages of development, new findings were recursively factored into the design and processing of the alloys. In the first stage, the fundamental in-situ alloying kinetics of titanium and iron were investigated in terms of powder morphology and fusion parameter; with relation to their effects on homogeneity and defect formation. After this, optimized Ti-1Fe alloys were systematically compared with similarly processed Ti-6Al-4V to directly assess their suitability as a cheap and sustainable substitute, with an analytical breakdown of operant microstructure formation and strengthening mechanisms. Finally, additional co-strengthening with nitrogen, and optimization of heat treatability were investigated to expand the applicability and test the limitations of the concept as a whole.</p> <p>In totality, more than five different suitable approaches were devised to obtain excellent structural properties from Ti-Fe-N based alloys. Amongst these, remarkable strengths of over 825 MPa, and satisfactory ductility of over 10% strain-to-fracture were successfully obtained in compositions containing more than double the impurity tolerance of the conventional unalloyed grades. Yet, these compositions remain substantially cheaper than Ti-6Al-4V and are free of strategically critical elements. Overall, these results reveal excellent potential in the exploitation of additive manufacturing mechanisms for development of cheap and sustainable alloys.</p>	

論文審査の結果の要旨及び担当者

氏名 (HUANG JEFF)		
	(職)	氏名
論文審査担当者	主査 教授	近藤 勝義
	副査 教授	中谷 彰宏
	副査 教授	林 高弘
	副査 教授	梅田 純子

論文審査の結果の要旨

本論文では、データ駆動型ものづくり技術として近年、急速に普及が進む金属積層造形法の一つであるレーザ粉末床溶融プロセス（以下、L-PBF 法）を基軸とし、希少金属であるバナジウム(V)を含む汎用チタン(Ti)合金に代わり、廉価な成分である鉄(Fe)と窒素(N)を用いた持続可能なチタン合金の創製を目指している。既往研究では、複数種の添加成分を含むチタン合金粉末を出発原料に使用しているが、粉末の成分調整が容易でないことや、粉末が高価であるために経済性に劣るなどの課題を有している。そこで本研究では、Ti 粉末と添加元素粉末の混合体の利用によってこれらの従来課題を解決すべく、L-PBF 製法の特徴である超急速冷凝固冷却過程での添加元素間での In-Situ Alloying（その場合合金化）プロセスといった新たな概念検証を通じて、レアメタルフリーの高強度・高韌性 Ti-Fe-N 合金の開発とその強化機構の解明を主たる目的としている。本研究で得られた主要な成果は、次の通りである。

(1) Ti-1%Fe の In-Situ Alloying プロセスの最適化に焦点を当て、Fe 粒子のサイズや粒度分布、L-PBF 法における主要な造形パラメータが添加成分である Fe の分布状態や結晶組織に対する影響を詳細に調査している。微細 Fe 粒子は、組成的均一性の向上とマクロ分離の低減を促し、その結果、相変態後の Fe 原子の過飽和固溶に起因するマルテンサイト相の微細粒化と、それによる強度特性の飛躍的向上、ならびに高い塑性変形能の維持が可能となることを明らかにしている。

(2) L-PBF 製法を用いて作製した V 成分を含む汎用チタン合金では、マルテンサイト相の底面すべりの抑制によって破断伸び値が減少するため、通常は 700°C～800°C 付近での熱処理を必須とするが、今回の Ti-1%Fe 合金では、希薄な固溶体であるために純 Ti 材と同等の活性なすべり系を有することで、熱処理を施すことなく高強度と高延性を両立できるといった優れた経済性を有することを明らかにしている。

(3) ユビキタス元素である窒素(N)は、 α -Ti 相を安定化させる侵入型固溶元素であることに着目し、その固溶強化を促進すべく、本研究では、純 Ti 粉末を窒素ガス雰囲気中で熱処理し、粉末表面を被覆するシェル構造の窒素濃化域を形成できること、また、熱処理条件（加熱温度と加熱時間）によって窒素含有量を任意に調整できることに成功している。その結果、窒素成分を導入した Ti 粉末においては、粉末の粒度分布や流動性は変化することなく、L-PBF 製法に適した原料粉末であることを明らかにしている。

(4) α 相安定化元素である窒素の微量添加は、Ti-1%Fe 合金においてマルテンサイト相の微細構造の形成に寄与し、特に多層造形過程での繰返し熱処理効果によって固溶窒素原子に由来する Ti₂N 相のナノ析出を進行することで、引張強度および破断伸び値の向上を見出している。

以上のように、本論文は、持続可能なチタン積層造形合金の創製を目的に、資源的に豊富で安価な元素である鉄と窒素に着目し、超急速冷凝固冷却過程での In-Situ 合金化を活用したマルテンサイト相の超微細粒化を基軸とした鉄と窒素の複合的な強化機構を理解すると共に、積層造形条件の適正化を通じて、希少金属を含む現行の汎用チタン合金の力

学特性を凌駕する優れた強度一延性バランスを実現し、元素戦略における地政学リスクの低減を可能とするレアメタルフリーチタン積層造形合金の創製に資する合金・プロセス設計に係る新規かつ有用な知見を明らかにしている。

よって、本論文は博士論文として価値あるものと認める。