

Title	Microstructure control of high-temperature resistant metal materials using powder bed fusion process
Author(s)	吳, 鍾泳
Citation	大阪大学, 2025, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/101656
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (呉 鍾 泳)	
Title	Microstructure control of high-temperature resistant metal materials using powder bed fusion process (粉末床溶融結合法による耐熱金属材料の微細組織制御)
<p>Abstract of Thesis</p> <p>This research explores the relationships between microstructure and additive manufacturing (AM) processes for high-temperature resistant materials, specifically titanium aluminide (TiAl), pure tungsten (W), and pure tantalum (Ta). By leveraging thermal flow simulations and process optimization, the research aims to address challenges in fabricating these materials and achieve controlled crystallographic textures critical for their mechanical and thermal properties.</p> <p>In Chapter 1, the background and challenges of additive manufacturing (AM) are discussed. Powder Bed Fusion (PBF), which includes Laser Powder Bed Fusion (L-PBF) and Electron Beam Powder Bed Fusion (EB-PBF), offers enhanced design flexibility and the ability to produce complex shapes. This chapter also outlines the significance and objectives of this research.</p> <p>In Chapter 2, the research investigates the Ti-48Al-2Cr-2Nb (at.%) alloy using EB-PBF to address challenges related to oxidation and poor room-temperature ductility. A unique alternating band structure, comprising lamellar γ/α_2 grains and equiaxed γ grains, was identified. Through partial heat treatment, localized microstructural variations were observed, enabling control over the crystallographic texture by adjusting process parameters. This banded structure exhibited significant mechanical anisotropy, leading to an improvement in room-temperature ductility to over 2.5%.</p> <p>In Chapter 3, the research focuses on pure W and its crystallographic texture control using L-PBF. Residual stress-induced cracking was addressed through thermal flow simulations that identified optimal conditions for dense body formation and microstructural evolution management. The research highlights how powder shape influences densification, achieving a 99.1% density using plasma-atomized spherical powders. Furthermore, process optimization led to the formation of a single-crystal-like texture in the fabricated W components.</p> <p>In Chapter 4, the research examines pure Ta, focusing on achieving high densification and texture control despite its high melting point and thermal conductivity. By adjusting L-PBF parameters such as laser power, scanning speed, and hatch spacing, controlled crystallographic textures were obtained. Unlike other cubic metals, the fabricated tantalum structures displayed unique texture orientations, demonstrating distinct grain alignment mechanisms. Simulation-assisted analysis provided deeper insights into the formation of these textures.</p> <p>In Chapter 5, a finite element method (FEM) was employed to simulate thermal gradients, cooling rates, and melt pool dynamics. The simulations enabled the optimization of process parameters such as beam power, scanning speed, and preheating temperature. These insights clarified the crystallographic texture formation mechanisms and defect suppression in high-temperature materials. In particular, the research revealed how the $\langle 100 \rangle$ crystallographic orientation preferentially aligned along heat flow directions at the melt pool boundaries, though W and Ta exhibited different thermal diffusion behavior due to intrinsic material properties.</p> <p>In Chapter 6, the novel findings were summarized. Based on the insights gained herein, the expected contributions to the advancement of high-temperature resistant metal materials and future work are presented.</p>	

論文審査の結果の要旨及び担当者

氏名 (呉 鍾泳)			
論文審査担当者	主査	(職) 教授	氏名 中野 貴由
	副査	教授	安田 弘行
	副査	教授	多根 正和
	副査	准教授	松垣 あいら

論文審査の結果の要旨

本論文では、高温耐熱材料であるチタンアルミニウム (TiAl) 合金、純タングステン、純タンタルについて、創製プロセスとしての電子ビーム粉末床溶融結合 (Electron Beam-Powder Bed Fusion: EB-PBF) 法とレーザ粉末床溶融結合 (Laser-Powder Bed Fusion: L-PBF) 法による微細組織の制御とそれに基づく機械的性質の向上に取り組んでいる。具体的には、EB-PBF 法と L-PBF 法により材料に生じる温度場が、各材料の微細組織形成挙動に及ぼす影響について系統的に研究し、高温耐熱材料の高機能化に必須の組織制御を実現するための新たな指針を得ている。

第 1 章では、TiAl 合金、純タングステン、純タンタルに関する構造材料としての現在までの知見をまとめ、種々の AM (Additive Manufacturing) プロセスの活用例について述べている。特に、EB-PBF 法と L-PBF 法による高温耐熱材料の新たな微細組織制御に向けたアプローチを中心に説明し、本研究の意義と目的を明確化している。

第 2 章では、TiAl 合金の一種である Ti-48Al-2Cr-2Nb 合金 (at.%) に EB-PBF 法を適用することで、形成された微細組織とその形成機構について検討している。得られた造形体では、(A) γ 相と α_2 相からなるラメラ粒と γ 粒の微細混合組織、(B) 等軸 γ 粒とが、造形方向に沿って交互に積層した特異なバンド状組織を形成することを見出している。さらに、当該造形体は、バンド状組織の配列方向に依存して顕著な力学的異方性を発現することを明らかにしている。低い室温延性が課題である TiAl 合金において 2.5%程度の伸びを示すことに成功している。

第 3 章では、純タングステン造形体を L-PBF 法により高密度で獲得することを目指し、粉末性状が造形体の密度に及ぼす影響について議論している。プラズマアトマイズ法で作製した、球形度の高い粉末を原料として用いた場合には、99.1%もの高い密度を達成することに成功している。加えて、スキャンストラテジーおよびプロセスパラメータを探索することにより単結晶様組織を獲得している。

第 4 章では、純タンタルの結晶集合組織制御を目指し、L-PBF 法のプロセスパラメータが結晶集合組織に及ぼす影響について検討している。結晶集合組織はレーザ出力、走査速度、ハッチ間隔などのプロセスパラメータに依存して変化し、特定の条件において配向組織を獲得することに成功している。得られた純タンタル造形体は、立方晶系に属する結晶構造を示す他金属種とは異なる、特異な配向組織を形成することを明らかにしている。

第 5 章では、第 3 章および第 4 章で得られた純タングステンと純タンタルの結晶集合組織の形成機序を、溶融金属の凝固時における熱拡散挙動の観点から考察している。いずれの金属種においても、<100>が溶融池縁に対して法線方向に生じる熱流に沿って優先成長する様子を組織観察により明らかにしている。一方で、熱拡散シミュレーションにより、純タングステンと純タンタルは熱物性の違いに起因して凝固時の温度勾配方向、すなわち熱流束方向が異なることを見出している。その結果として、純タングステンと純タンタルは配向状態の異なる結晶集合組織を形成することを示している。

第 6 章では、本論文で得られた知見を総括している。

以上、本論文は、EB-PBF 法と L-PBF 法により生じる温度場と凝固プロセスに由來した高温耐熱材料の微細組織制御、さらにそれに基づく新たな機械的性質向上への方法論を提唱するものであり、材料工学の発展に寄与するところが大きい。

よって本論文は博士論文として価値あるものと認める。