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el EIEOT Byl BEBMEOT AR PORM Y OMTES D,

deyj = def; + deff + def! + deff + deitjp (2. 6)
ZOLIEVEIEHOHOZNENOOT A D defiil K> TTRO LIRS

no,

N
def = Zl_lgl def; (2.7)

o defy. def. defl defiE. TRTHFRO LS ICHE Lk,

(2. 8)
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oF,

P _y
wm_zmmj (2.9)
deff! = a;6;dT (2. 10)
deff; = 16;;dé; (2. 11)

CITVEIBIEROHOY Y 7R viildBIEHOMHORT YV b oyld s 7
TYIN SET ARy D= OTIVE AT HETE B OO TS T A —
A FUTHEIE R OMOBIERT v b, aldBEIE D OMOBRIEER, BITH
IHHOMOEREEERTH D,

F—=ATFTA FPEMENO_XA T A FEM 723 —AT7 74 FEMEANDL <
VT YA NHRIICERET 258 ICBT 2EEBEOT AL, X (1.5)

zHWTENENTROEIIICHEZAOND,

dggi)j = 3Kpd$p(1 — $p)Sij (2.12. 1)
deyp; = 3Kudém(1 — &)S; (2.12.2)

A

i

ZIT, degy B E Qdeyp i3 A F A FPEEBB LB LT U A FEABOLE

&
S
RS

PEOT B  KsBE R KuIENA T A FEBBILO~ LT %A AR
MM S, S RESHT YV TH D,

— . A—AT T A FPEENPLORXAS T A P~ T VA FD 2 FHIZETRE
T o850 OERBRBMEDT HH 51X, Yanagisawa? DO EZ B BT H L U

TokrolcREND,

de;” = 3Kpdépé, Sij + 3KmdEmé, Sy

= 3KgdSp(1 —$p)Sij + 3KmdSm(1 — &g — $m)Sij (2.13)
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ZIT. {EAAT A MO ERTH DS, k. X (2.13) 1 FA S A ME
BEe~LT U A NEROEBRBBPMEOTHICHAEEAN RO LE LT
W5,

V7 by =7 OHAE, X (2.13) 2T Y 7 NU 2 TICHAAT Z & BN
HThoTeled AMRICBWTIEINA T A NEENRET LRI LT U
A NERRNEAEL, o, MEARBIIFRBICEALRVEDE L, Kv IS IEMRA
WowRUIEbOx AN T EOEBBIEFRE Ku & LT, RAD XS ICHEA
THZETRALE,

de;l = 3Kpdép(1 — &p)Sy; + 3Kmdém (1 — &5 — &Sy

= 3Kgdég(1 — &B)Sij + 3K mdém(1 — Em)Sij (2. 14. 1)
K'y = aky (2. 14.2)
a=l%a;@ (2. 14. 3)

— &M

UEDHETHRELESOT B ORMEZRE Lz b 00 Ik & a9IZ#

DEFEELTHND,
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B3E
FHROBANICKIEREMR FBOFEE LR

3.1 #8

A OBEANICE O TR, BEARICER LZBUS D2 T, MEREICX
HRFEE DO RE—ICEHRK LI ERIE DR MMICER T2, 612, &
DIRE & SRMMICISC TEEDBERIC N ZBZ 2 EBWEENAL 208 4
BREOETHIZE W TIIHMHOEEBIZRICE > TAEL DGR ZEOEEOR
BREOFMIIMD D 722, HHEOEBEIAS LT BT LT, BHEEER
ELRT KDY, ZOBRGIIEREBIELIFIINTEY, BANEFRICEZ D
HEBRREWZDY, ZOEEE THT L5 ECEETHD, BEBHEREIL—
RlZ A —ATF A M LeRBAICHEI OS8R & 2 VIXERE R 1 &2 A Lo
OHERIELEREZITV . RBRAOMONLHE S NIZERBBEOTH LA
Wi 1) ORI ENF RO E 5 A E S b, Nakajimab 9lX, Mn-Cr-Mofi &
A F A NERROERERBIEOT A2 HE L, SRR O AMIESA50 MPai x
L EMEEBNOEN L CEEBBHEOTAREMT 22 2HELTNS, Z
DL XD MMICEEERESE DAL TEEWVISIBERT 5 72
O, ERBIEOTHLIEN L OBRBRMNIERIE L D EHEINDZ Lnb |
KOFFEZEVIKIENICE T HI60 EEERBHEOTHOBBEGE, S FE S
NI ZERBRMMEREIT, ANERO FHICIZHE S 2 NWEB I LN,
RETIE, FROMBPBEANERE B I 2 —va v a T2 &
LD EIENCBT DYV T A NEROERPEREEFRET D HiE%
Bt L7z, 2O FIEIZ LY Cr-Mo#f] (JIS SCM420FHY) O~/ T ¥ A MR
DEREBVERE AR E L, BB ELEE LI SEROBEAN BTV, FE S
TeERBMREZ WY O PRIKEZBRIEST 22 LICk) v~ T oA
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ez 9 BEANLTE O TR L ) B4 2 AFIE DA B VE 2 8 L7z,

3.2 ZREMBREBORAELRIADEL

FPUEREAKEICEE L CAESICE 0 AR EZHE L o>omEANE
19, 22T, EWREKFIZEAND Z 2L, RLKEB RO T HEIZHE
LEGHEIE D Z L COERO ETFICACERERZICE VR BNAEL D, 0.
PRRIL R — Wrf A O SR R TH T EMME RS NS N2 e b KD RERKY
BNAET D, WIS, JIE L@ AR S W RENTIEIC L0 | PR B O B
EREERET D, T LT, RAESNEZBREEEEZBERSMFICHN T, fx
DN T A NEROEBRBHARBIIB T LZ2FEHRORKY ZTFHIL . KY DT
WE A EREIC A BT 5 ERBIERBERET 5., S I, BB A ZEE L
TERDOBEANZAT VB2 D W SIS BT 2 RO K 0 O F K FE % Bk
T 5,

AREIZHB W TIL, Table 3-11X RT3 DD FRMICTEBREIT -7, Case 11T T,
FAZERE LR WA — AT F A R AT L A8 (JISSUS316FHY) A xf 4% & L T,
PR OAIMAL (L g, T, bEAS, TEAm) oA O
WHMEHEZRE L., ZORERN O WMHATEICL Y BVEEREERE L, £ L
T, AESNEBAREREEHEMRITICH T, MERZEDRVWE AT
LHBRORY NELLS FRHISH D ZMGEL 72, Case 212T, Cr-Modll 2 i\
TEBREZIT o7z, Case | TRIE SN oBURERE A AW CmAN#R % T8 L.
EERAER LT D 2 LT R AR A E D H) R A EE AR AT IS KV IE
L TFHIENDEMIELE, £ LT, FROR YV b~V T % A FERED
ZREVAMERR B % A L 7=, Case 312 T, Case 212 Kf L CEVULER 2 & H L 7= £
BR&ZA1T -7, Case l L HERD HIETRBEREEZFRTE L., 21D OB ERHE
& Case 2CRIE SN LRRMMEARE Z AWV CTERIEMIT 247\, Case2& Bie b

MAFMFIZB O THEROR Y O FHIKEE 2 BaE L7z,
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Table 3-1 Experimental conditions for oil quenching of sheets.

Experimental ) Quenching conditions
Specimens
No. Coolant Coolant temperature
Case 1 Austenitic stainless steel Cold quenching oil 353 K
Case 2 Cr-Mo steel Cold quenching oil 353 K
Case 3 Cr-Mo steel Semi-hot quenching oil 383 K

3.3 ERBIUBIEMRT L &
3.3.1 EBA &

HEE A I 13, Table 3-212 R AL # LR O 8K &2 V. FEBRIC X Fig. 3-112 7~ T
WEDE AW, o, HEE O E Table 3-31C 73, 2 O3 & XHIEA . N
BUR, WS 0  WIE RS L 7R D A SRR SR IS U T InBVA I T
FTEDOREICH RS, XFEZ TRIEMBE TEH O MmN THBEANEIT I,

]

Z OB, HMICEVER A BT T D 2 XD A O BE AL O & E R A R
ETHIENTE D,
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Table 3-2 Chemical compositions of specimens. (mass %)

C Si Mn P S Ni Cr Mo
Austenitic stainless steel 0.05 0.50 1.12 0.04 0.03 10.19 | 16.25 2.04
Cr-Mo steel 0.23 0.29 0.81 0.01 0.01 0.07 1.08 0.15

Fig. 3-1 (a) Overview and (b) schematic diagram of test equipment.

(b) —Thermocouple

Jig Specimen
| Heating
furnace
By
Heating Quenching

Table 3-3 Specifications of test equipment.

Specimen shape

¢ 150 mm x 300 mm

(Maximum)

(Maximum)
Heating furnace atmosphere Ar:H2=9:1
Heating temperature R.T.~1373 K
Oil temperature
(Maximum) 413 K
Agitating speed 0 ~ 35 L-min’!
Temperature measurement points 12
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FT. SHEROBEICAKFICRFELIZEE, RIEET 2O T VI LKFE
DIRAH A THi 72 L7 IMEFE N T 1123K £ T L 30 min fRFF L 7216, #hiE
JiT T A TR 300 mmes CHULHE FIRIE Lz, BT =
— IV RIZTFAFAN (NAAE—=RTZ U FF AL C-2000Y, HRZ Y — R

(BR)) LEIFy b= FAA NV (FAy b7 F A4 A0 No.300, HAZ
U—2 (BR) ) 2V, Z0b 2 DO IT Table 3-4 12739 X 912,
FlLKEOBENI I HERE S LR ERFAN R0 (FIRIE EREITIR< 2
) MEAKOMELRRDZ NG BEANT OIHEEE OENIZ LY mA

FENNRIR D,

Table 3-4 Flash point and kinematic viscosity of heat treat oil.

. Flash point Kinematic viscosity
Oil )
(K) (mm-s)
Cold quenching oil 449 K 16.9 (at 313 K)
Semi-hot quenching oil 503 K 7.8 (at 373 K)
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AR AL Fig. 3-2 12T X 9 2k (B E 5mmxii 20 mmx& & 100 mm) &
LT, KAEE (B 1.0mm) AT 57202, EE 1L.Imm O U LR
MLZEAT o7, 7ok, REH 2 BEANL P ICHREBR A R ARKT 2 7&K D R
AT HES DT L AR D70 O T ISR (#100) (2 XD
T OO EEDRKEEALZIT o7z, £ MR OB AR FEITHRE LR E.
RIEWET AT NI EKFBORA N AT L2 MEVFNT 1123K £ Tl
Bl 30 min PREF U728, VLB ISR E 7 M) R &2 N R E 300 mm-s!
TRIE L, WA TH., FEBEMK =R IRNER ©2 H T ARIE 5k
mORKZRE Lic, ZOREMENS . Fifi 1 IER & b o 8h B 7 m) R O 2
B R, REPREE T TR E OSE G MEEOEEREE L TRD I,
2RF . BRIE R IE S RO ERE & L BEAFLRTR D FEN D RE DB E R
HL 7=,

Length
100

49

Top corner, Bottom corner /Top center, Bottom center

20

Width

Top corner Top center
Bottom corner Bottom center

o ix & 1w | Thickness

Fig. 3-2 Temperature measurement points in specimen.

25



3.3.2 BERWAHE
BT TIEIC OV T, F2EICHEMAZ R L TWA -0 TEET 5,

3.3.3 BtHEH

O RS L OEFHRRETm AR E L TCl/4y 2 €7 b L,
TR DAY T AN E O SISO W THRIE FMAEMERR LI, A v 2y
FX, HE2H1.00mmES £ TIELOOmm, £ X1.00mm, F X025mm, i
LIAMZHE1.00 mm, £ £1.00mm, /& £0.50 mm®D A HE A & L4 EHESH A, 2
FENT9,646 & U To, BEATICH W T2 M BEHRR 1 % Table 3-512 747, M EFRE X O
ERERE 1T, MiettinenDHEEX)NC LV RDTA—ATFH A NOEE L |
Okamura® #EE XN LV RO~ AT VA NOBEENGHAE L, /-,
<~V T U A N AR AR X Kung S O #R BRI A RE I 20X Tajima @ 5
E2)N D ZENEH, 672K, 422 J-g'd LTz, ZALLIA O Wy PEAE 13 I o 44 8t
WIVEMEFE S Y 7 b 7 = 7 IMatProx W CHE L7z, 723, HiRiECase 1B L O
Case 213353 K— &, Case 313383 K— & L. & VA o Bz #=R LT, M

E L 7o m H 2 b AT i£ I L0 RIE LT,
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Table 3-5 Steel properties used in FEM. (y: Austenite, M: Martensite)

. Temperature (K)
Steel Properties
373 473 573 673 773 873 973 1073
Young's modulus
173 180 173 166 158 150 143 135
(GPa)
Poisson's ratio
o 0.31 | 0.31 | 0.31 | 0.32 | 0.32 | 0.32 | 0.33 0.33
. Thermal
Austenitic L.
. conductivity 15.5 16.8 18.1 19.5 20.8 | 22.1 23.4 24.7
stainless Y
(W-m!-K
steel —
Specific heat
475 493 508 522 535 548 561 577
(J-kg'-K")
Thermal
expansion ratio 1.82 | 1.82 | 1.83 | 1.85 | 1.87 | 1.88 | 1.90 1.96
(x10-K 1
Young's modulus Y 192 183 174 165 156 146 137 127
(GPa) M 207 201 193 183 171 158 143 128
Poisson's ratio Y 0.30 | 0.30 | 0.31 | 0.32 | 0.32 | 0.33 | 0.33 0.33
() M 0.29 | 0.30 | 0.30 | 0.30 | 0.31 | 0.31 | 0.32 0.32
Thermal Y 18.1 | 19.3 | 20.5 | 21.7 | 22.9 | 24.1 | 25.3 26.5
conductivity
I M 36.4 | 37.9 | 38.1 | 37.2 | 35.5 | 33.5 | 31.6 30.3
(W-m ' -K")
Cr-Mo
steel Specific heat Y 485 504 519 532 544 556 567 578
J-kg'-K" M 473 511 553 605 671 764 913 786
Thermal Y 2.08 | 2.09 | 2.10 | 2.11 2.12 | 2.13 | 2.14 2.15
expansion ratio
M 1.30 1.32 1.35 1.38 1.41 1.44 1.47 1.50
(x105K")
Transformation
dilatation y->M | 8.83 | 8.07 | 7.35 | 6.68 | 6.05 | 5.45 | 4.91 4.40
(x1073K")
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3.4 EBBRBIUEER

T BE A Ut o 2 A o vy AR o I E 5 R & Fig. 3-33 X O'Fig. 3-4127" 77,
Case 1.3V TFHNICBEWVWTH, FHEHATNBSIOTHABITEL IZMA S, AR
BRI ZIZ E A ER BN oz, £, ElmHREICHE T mfREomA
WEL, SREFHMO ETTHAENELD Z L 2MR L, KIZ, Case 1&
Case 2& b 92 &, 673 KELFOMEH THAIEN RO, T ITLBER
ICEDbDTHDLEEZBIND, £/, Case2& Case3Z T 5 & 700 KLL
TOREHRTHAEN RO BLBEMOENC LV GHRIEHNEZRD Z &0
R T X 70,
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Temperature, K

Temperature, K

Fig. 3-3 Experimental results of cooling curve during oil quenching at(a) case 1,
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(b) case 2 and (c) case 3.
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1200 1200
1100 1100
1000 1000
X 900 X 900
o e
5 5 800
2 800 2
2 700 g 700
I 1S
© 600 = 600
500 500
B 300 b e
300 1 L1 1 L1 1 L1 Ll 1 Ll 1 L1 1 1
0 10 20 30 0 50 0 10 20 30 40 50
Time, s Time, s
1200 1200
1100 1100
1000 1000
X900 ¥ 900
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g 700 2 700
S S
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300 [N TN TN Y NN TN WO NN TN NN SN NN SN NN SN N S 1 300 TR T T T SR TR TN [N T SR T WU S T T R T T
0 10 20 30 40 50 0 10 20 30 40 50
Time, s Time, s

Fig. 3-4 Experimental results of cooling curve during oil quenching at(a) top
center, (b) bottom center, (c) top corner and (d) bottom corner.
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Case 28 & UCase 3I2B VT, BEANBDO VRO E » U — A & 2 JIE L 7z
R b, o, FTHEIICEBWVT460~466 HVTH » 7= (Table 3-6), Z LI %
LT, [A—fpk o #ip o THARREB A (3 mmx10mm) #{ER L, v~ L7~
YA NEROZBNEZ BZHHEE (100K/s) I THEL7Z/ER, BE% O S
13467 HV T &H o 7o, £ 7 3k O L2 B 2> 5 IMatProZ fl W THEZE L 72 CCT
AR & v B R 2 bRl L 72 R (Fig. 3-5) . IO W EIA BV R FLIcEB N T
b T A FEFEELRY, UEDOHRR LD | Case 23 L UCase 31281 5 bt
ANBOEBHEBKIL., v VT oA FERTHLIEEZONS,

Table 3-6 Vickers hardness of sheets after oil quenching in case 2 and case 3.

Top Midplane Bottom

Case 2 | 466 HV 466 HV 460 HV

Case 3 463 HV 461 HV 460 HV
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X 900 | N _
o) N\ Ferrite
% 800
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s 700 alnlte
€ 600 F \
500 | _ N
H ----- Cooling curve (case 2) N
400 g ------- Cooling curve (case 3)
[ CCT curve
300 ]
1 10
Time, s

Fig. 3-5 CCT curves for Cr-Mo steel predicted by JMatPro and experimental
results of cooling curves during oil quenching at the midplane of sheet
in case 2 and case 3.

MBEANTE DA DOME L, Case TIF & A EEALR 2V D2k L T, Case?2
L Case 3 THEM L 72 (Fig.3-6), Z 4k, Case2, Case3lZHB W TIE~ /LT
A MNERBIZEDDWERELTETLD THLEBZ XN D, MHEANEDFEROK
D IEFig. 3-712R" 9 &K 912 Case X L1 & D63 um®D X Y [ Case 213 F [A] & D288
um?® Y . Case 31X FA & D66 umD LY Td o7z, Case & Case 2 T[] X D
Y ELlgolzmid, Case IO VIZBIYS HIZ XD WMETR O H THE Lz DITxt
LT, Case2lZ Z OEFICMZ TEEMWKR EERBBPENE LD THLIE X

Hivh, WIT, Case 212X TCase 3O D BN/ EIMmo=Dl, Aidkd X 91z
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Fig. 3-6 Experimental and FEM results of thickness change of sheet after oil
quenching.
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Fig. 3-7 Experimental results of sheet deflection with the center of the
top surface as the origin after oil quenching.

3.5 REMMBERBIUER
3.5.1 BEMMERDIRE

kA LmE. FTE. EEAE. FTEHMABICHOE L, £ EEIZ SV TCase 112
THIE L7 E R 2 & WA I K 0 . BUR MR E L Fig. 3-80 Xk 9 ([ZFE
Ehiz, Fig. 3-85 0., THEHZREAMAICHOWTIEL, BEIIC XV BV EREK
DZEAE L, 1050 K& D WO i B B s 2K SUBE B B . 600~ 1050K 28 il il B . =

UTOREBNATEE D LHES N, —FH, THIZOWTIZIZEF—E
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DE &R, 2, BEBANFICHEALLAXREO FTr~OH»ED Ik vm
HANLEFEINTZ-OEHEEIND, £, Fig. 3-8OBEEFRTEZ H W THEA
AU DR FE 43 A 14 Fig. 3-90 X 9 i PRI & 4v, AL 0 m Al #i% . Fig. 3-101
AT EIICEMEE MR -T2 2R LT, ZOMBEREEZH W THEK
EREHT 21T o Tofi R BEA N R OBRELL o 7 REITFERE (Fig. 3-6) &
R—=FL, BIENICE UL OHERRER Y THL I L2 HA L, £
7oy BANZORER REmO EmoR Y O FRMEIX, ER&E 068 umd KD
720 ERME (Fig. 3-11) & OREEII8% EMN —EH Lz, Lin- T,
FENTIC KV BEANF OB NI L2 WMHEREZRKE LS PRI TE 22 L 2

WL,

10.0
(%
[ [t-----4
Length

Top Top corner

Thickness

Bottom corner

~
o

Top corner

Botto Bottom corner

Heat transfer coeff., KW- m2- K1
N [6)]
ol o

Bottom

OO 1 1 1 1 1 1 1 1 1 1 1 1
300 500 700 900 1100
Temperature, K

Fig. 3-8 Heat transfer coefficients determined from cooling curves during oil
quenching in case 1.

35



Time Temperature (K)
: Top center  Top corner
Os
Bottom center Bottom comer 1100
: 1000 I
> | 900
| 800 I
, 700
5s 600
é 500
. 400
10s

Fig. 3-9 FEM results of temperature distribution during oil quenching in case 1.
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Fig. 3-10 Experimental and FEM results of cooling curve during oil quenching at
(a) top center, (b) bottom center (c) top corner and (d) bottom corner in
case 1.

37



200

150 | e FExp.
FEM

100 |

50 M
e F Y

Top

-100 i ?ﬂ

R Bottom

wn
=
T

Deflection, |m
=

20 b i v v v
50 40 30 20 -10 0 10 20 30 40 50

Position, mm

Fig. 3-11 Experimental and FEM results of sheet deflection with the center of
the top surface as the origin after oil quenching in case 1.

Fig. 3-8DOBVR R 5k 2 I\ CCase 2& X G & L - BMEMENT 21T o TR %
H AR O FRE X EBE & da B L7z (Fig. 3-12), Case IO L REEHAEZ &
R AT AR 2 B R E S T BB AR 2 VT, Case 20 BB VA & Lo iy
HfiMEABE LS PHICE LD, ZREREBAO PHKREIRZYTH O |
A GACBV TCHBEMTICL Y BHREEZRBE LIS BH TE 5 L f
WriL7-, "B, A—ATF A FZAT L ZH L Cr-Modll TlE A & — VA Rk %
AR ERN A 52010, —RICITBRER KL RRD EEX LN DD,
Case 1 & Case 2 TR ERBDFFTH o 72D, NIEWEHT X TOIBIZ
DA —LBIEEAEERLAED T2 R0 AN A ER I T T LA
REDOREN NI Do ENFERELTELLND,
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Fig. 3-12 Experimental and FEM results of cooling curve during oil quenching at
(a) top center, (b) bottom center (c) top corner and (d) bottom corner in

case 2.
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3.5.2 RREEMRBOARE
Fig. 3-131C/R T K 10, Fix O~ VT U3 A A HE O 4 HE W VE AR 3 % B i iR

BriZH5BZ CTEROBEANZLOR Y Z3HE Lz, KO O FRIE & ZREBEMEREO
B4R (X Fig. 3-140 L 2 ickd b, ZOBEN LK Y O T HMEN EHJME & A

T 5 AR EIL21x10° MPa & [FlE & Tz,
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Fig. 3-13 Experimental and FEM results of sheet deflection with the center of the top
surface as the origin after oil quenching in case 2. (K: transformation
plasticity coefficient (MPa™!))
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Fig. 3-14 Effect of transformation plasticity coefficient on the difference
between experimental and FEM results for sheet deflection after oil
quenching in case 2.
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Fig. 3-16 FEM results of equivalent stress during oil quenching at (a) top center,
(b) bottom center (c) top corner and (d) bottom corner in case 2
(K=21x103 MPa™).
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Fig. 3-17 Heat transfer coefficients determined from cooling curves during oil
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Fig. 3-18 Experimental and FEM results of sheet deflection with the center of
the top surface as the origin after oil quenching in case 3. (K:
transformation plasticity coefficient (MPa™'))
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ERERPEICEET DA T A NERROEERBEEGREEZRET 5, 512, 2
R Z R L CHEROBEANZIT WD R DWEAIRFITBNTNA F A ME
e~ T YA PERBICHEI XY O TFHREZRIET 5,

Table 4-11Z 78T 2O D5 (Case 1, Case2) ICTHEANEZIT-TZ, B, &
FiE~T oA PERBROERBBMERBUIFEIE CHE SN ZREEL ik

W, FHEWROBEANITERK L TRV, £9. Case l. Case 2ZF1NLEFNITHOWN
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T, BEAIUH O 5 H AR 0 E KRS SER A AL O BUR R A FE LT,
Wi, RESNEBRERKEFI3BICTRESRE~ALT VYA FEREOE
REVMELR B &2 FH VT Case IOSEARD LY 72 H XA F A FNERR O EREBE MR
Z[FE L7z, Case 212 TCase 1TX L CEULER 2 Z T L 72 AR D BE AN EZAT
W, RIESNTEEPEEEEZHA VI O TR ESBRAE L, £7-. 4.4
Hilc#%R+ 5 K Hic, Case 1 & Case 20 & BMARICE T DA F A b OEKRES

1L, 8~16 %, 27~42 % Td > 7,

#

Table 4-1 Conditions for oil quenching.

Experimental Quenching conditions
No. Coolant Coolant temperature
Case 1 Cold quenching oil 353 K
Case 2 Semi-hot quenching oil 383 K
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4.3 ERBIUBERTAE
4.3. 1 EBAE

3 H X, Table 4-212 R TAL MK DO Cr-Modli TH 0 . H33E L [FEE O ES
RO TIHMBEANFER AT 72, £72, Case 1 & Case 20 FEAALITIZZ N E d,
a— )V RIZZUFA AN (N A= RKT FFAILC-2000Y, HAZJ —
A () EeIFxy NI TF A AN (KAy M= F 4 A No.300, HAR
7V —2 () #HWE, 2520 0EMEE X Table 4-312 789 X 912, 5l
KEDENZ L VRSN D EHRERENEZR Y (HIEIEERE IR 2
5), MBEROKELRZLZ 200, BANLTOWRBEETHOEWIZL Y HH
FEPRLDLENBEEIND, B, BB XFig. 4-1IZR-T X O IZEX10
mm X 20 mm X & & 100 mm® FA4 T, 4 H AR 2 0 E 9 5 72 0 (KA BV &
(BE£1.0mm) AT H7-00, BEELImmOREZMTLE, ok, Kl
ERFWEANFICHBR A BEICERT 2EKJEORBEEGH~HEST D 2 L& 2l
D 7o BRI T AR ICHFEERE (#100) (X0 3+ _XTomOEE DR ELEZIT

> 7,

Table 4-2 Chemical compositions of specimens. (mass %)

C Si Mn P S Ni Cr Mo
0.23 0.29 0.81 0.01 0.01 0.07 1.08 0.15

52



Table 4-3 Flash point and kinematic viscosity of heat treat oil.

0il Flash point Kinematic viscosity
(K) (mm-s")
Cold quenching oil 449 16.9 (at 313 K)
Semi-hot quenching oil 503 7.8 (at 373 K)
100
49 !
1
!
Top corner, Bottom corner Top center, Bottom center
/ / o
P A I
E
1
i
!
Top corner Top center
/Bottom corner |/ Bottom center
= _3 Z = /
o F
1

Fig. 4-1 Temperature measurement points in specimen.
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#iX, RE2SH I mmiE S £ THE1.00mm, £ 31.00mm, & X0.25mm, £ il
AT IE1.00 mm, & S1.00 mm, £ X0.50 mmD S HEE E LS ERSHI N, 2EH
Bixne,536 L Uiz, BUEMEATIC W 7o b B R M & Table 4-412 7797, MIZRFR B
K OVERERZ 3R R 1T MiettinenD HEE R DNIC L VRO A=A T F A FOEE L
Okamura® i ERXIC LV RDTm~AT WA VOBENSFHE L, 272 L,
RAFA MZOWTER=F A FOBEELZRA L, 2SO MEMEIZ, T
RO EDMEEFH Y 7 b7 = 7 IMatProz AW CEE Lz, £/, XA T A
FERBOTTTHREKIZ DUV T b IMatPro® & HAE ) B Fig. 420 K 91252, v /b
TUY A NEROEREBMEREIL, FEIECHEINZME (21x10° MPa'!) %
MWiz, Zed. MiRkiECase 113353 K— &, Case 21£383 K—i&E & L. H & FAR

[H] D B AR B O AR, WE L7z AN 2> & AT 51 L0 [WE L7z,
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Table 4-4 Steel properties used in FEM. (y: Austenite, B: Bainite, M: Martensite)

Temperature (K)

Properties
373 473 573 673 773 873 973 1073
Young's Y 191.7 182.9 173.9 164.8 155.5 146.1 136.6 126.9
modulus B 207.3 201.5 193.7 183.8 172.1 158.8 144.3 129.1
(GPa) M 206.8 200.9 193.0 183.0 171.1 157.7 143.2 127.9
. . Y 0.30 0.30 0.31 0.32 0.32 0.33 0.33 0.33
Poisson's ratio
o B 0.29 0.30 0.30 0.30 0.31 0.31 0.32 0.32
M 0.29 0.30 0.30 0.30 0.31 0.31 0.32 0.32
Thermal Y 18.1 19.3 20.5 21.7 22.9 24.1 25.3 26.5
conductivity B 45.1 44.1 42.3 39.9 37.2 34.3 31.8 30.2
(W-m'-K") M 36.4 37.9 38.1 37.2 35.5 33.5 31.6 30.3
. Y 485 504 519 532 544 556 567 578
Specific heat
kg K1) B 478 514 555 604 668 781 927 816
M 473 511 553 605 671 764 913 786
Thermal Y 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15
expansion ratio B 1.26 1.29 1.33 1.36 1.39 1.42 1.45 1.49
(x107°K™") M 1.30 1.32 1.35 1.38 1.41 1.44 1.47 1.50
Transformation y->B 6.52 5.74 5.00 4.32 3.68 3.09 2.55 2.06
dilatation
. y->M 8.83 8.07 7.35 6.68 6.05 5.45 4.91 4.40
(x107°K™")
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Fig. 4-2 TTT diagram predicted by JMatPro.
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Fig. 4-3 Experimental results of cooling curve during oil quenching at (a) top
center, (b) bottom center (c¢) top corner and (d) bottom corner.
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Fig. 4-4 SEM photos and hardness after oil quenching.
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Fig. 4-5 CCT diagram predicted by JMatPro.
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Fig. 4-6 Relationship between hardness reduction from martensite single phase
and volume fraction of bainite predicted by JMatPro.

Table 4-5 Volume fraction of bainite after oil quenching estimated by Vickers
hardness.

Top Midplane Bottom
Case 1 8% 10% 16%
Case 2 27% 37% 42%
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Fig. 4-7 Experimental and FEM results of thickness change after oil quenching.
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Fig. 4-8 Experimental results of deflection after oil quenching.
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Fig. 4-9 Heat transfer coefficients determined from cooling curves during oil
quenching in (a) case 1 and (b) case 2.
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Fig. 4-10 Experimental and FEM results of cooling curve during oil quenching at
(a) top center, (b) bottom center (c) top corner and (d) bottom corner.
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Fig. 4-11 FEM results for volume fraction at (a) top center, (b) bottom center (c)
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Fig. 4-12 Correction factor @ calculated by FEM results of volume fraction
during oil quenching.
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Fig. 4-13 Experimental and FEM results of deflection after oil quenching in case
1. (K: transformation plasticity coefficient (MPa'!))
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Fig. 4-14 Effect of transformation plasticity coefficient on the difference

between experimental and FEM results for deflection after oil
quenching in case 1.
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Fig. 4-15 Dependence of transformation plastic strain on equivalent stress of
bainite transformation.
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Fig. 4-16 FEM results of equivalent stress during oil quenching at (a) top center,
(b) bottom center (c¢) top corner and (d) bottom corner in case 1
(K=11x10"% MPa'!).
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Fig. 5-1 Mesh conditions used in FEM.
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Fig. 5-2 Effect of transformation plasticity coefficient on the difference between
experimental and FEM results for sheet deflection after oil quenching in
case 2.
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Fig. 5-3 Effect of transformation plasticity coefficient on the difference between
experimental and FEM results for sheet deflection after oil quenching in
case 3.
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Equivalent stress, MPa

Conditions Heat treat oil Transformation plasticity coefficient
Cold_K=10 Cold quenching oil 10 x 10> MPa"!
Cold_K=30 Cold quenching oil 30 x 105 MPa"!
Semi-hot K=10 Semi-hot quenching oil 10 x 10> MPa-!
Semi-hot K=30 Semi-hot quenching oil 30 x 10° MPa!
150 0.015
r(a) - (b)
I ' r Cold_K=10
[ Cold_K=10 8 [ ---- Cold_K=30
100 | - - - - Cold_K=30 %0010 | Semr-hot K=10
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Fig. 5-4 FEM results of (a) equivalent stress and (b) transformation plastic strain
during oil quenching at top center.

Table 5-1 Maximum equivalent stress and transformation plastic strain during oil
quenching at top center.

Maximum Maximum
Conditions equivalent stress | transformation plastic strain
(MPa) )
Cold K=10 108 0.0049
Cold_K=30 103 0.0063
Semi-hot K=10 95 0.0023
Semi-hot K=30 91 0.0029
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5.1.3 RBRABROEE
5.1.3.1 REBA X

BEANLFEBRICHEBAMEERTMORRRERTHD v v 7 M EHHMAL LR
W TCERBEMERE A FE L7z, #3121, Table 5-212 78 LA EK @ Cr
g1 (JIS SCr4204HY) % M\ 7=, #BR T IEFig. 5-5IC/”R T X 9 ICEZI0 mm, £
S100mmD A& LT, KBEES (Ef1.0mm) ZH AT 572012, B
mm® NV VSN T 24T o7, 72k, REH S 23 BE AT ER R 2 m 12 ARk
TORKEORERE ~FET D 2 L 2T 570, BN T %12 BB &
(#100) 2 XV T XTOHEOEEDOKHEALZIT > 72, BEAIIZ T Table 5-31T 7R
TREWRDOITBKO T —V R = F A4 A0 (CFFkBEAHV-1900S, HARZ Y
—Z (¥K) ) 2V, EBRFIEICHOWTIE, $HB3EB L NELIEOLROEE
CFRIRTH D, MABZORBRA Z Wi XFRFICTREES S, ¥4 Y L7 —212C
BEFHBPREOKY 2RE L7,

Table 5-2 Chemical compositions of specimen. (mass %)

C Si Mn Ni Cr Mo Nb

0.21 | 0.22 | 0.82 | 0.04 | 1.16 | 0.01

Fig. 5-5 Temperature measurement points in specimen.

Length
‘ 100

44 .10 44

Bottom center \ /

Bottom corner 3 | Top center Top comner

Diameter

9.5
10

83



Table 5-3 Flash point and kinematic viscosity of heat treat oil.

Flash point Kinematic viscosity
(K) (mm-s)
481 25.3 (at 313 K)

5.1.3.2 BERWF A X
BAERRAT FIEICOWTIiE, 8 2 TICCHEMAMRBELTCWAH D 2 Tl

BT 5.

5.1.3.3 st E&H

AHBEOR B IOMENEONSHELBEL T, 14 E2ET L, A
BHDICHY T M EOH RICOWTEHEFMEM AR LT, A v =2 FE
I, BHIMIC0.5mm, B S FEICImmO ANHEEBIR & UK EEE A, REEH
138,350 & L 7z BUEFEAT (2 HI U 72 64 BEFr M % Table 5-412 779, MOBRRRMEIX, T
IR OM B IEEREHE Y 7 b T = 7 IMatProZ W CHM L F Ak L 0 FHE L
oo 2B, WMIRIZ373 K—E & L, WM& B OBz EREIL., WELZmA

iR 2 B W AEAT A KLV [FE L T2,
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Table 5-4 Steel properties used in FEM. (y: Austenite, M: Martensite)

. Temperature (K)
Properties

373 473 573 673 773 873 973 1073
Young's modulus Y 192 | 183 | 174 | 165 | 156 | 146 | 137 127
(GPa) M 207 201 193 183 171 158 143 128
Poisson's ratio Y 0.30 | 0.30 | 0.31 | 0.32 | 0.32 | 0.33 | 0.33 0.34
(-) M 0.29 | 0.30 | 0.30 | 0.30 | 0.31 | 0.31 | 0.32 0.32
Thermal conductivity Y 18.1 19.3 | 20.5 | 21.7 | 22.9 | 24.1 | 25.3 26.5
(W'm"'K'l) M 37.4 | 38.7 | 38.7 | 37.6 | 35.7 | 33.6 | 31.7 30.3
Specific heat Y 485 504 519 532 545 556 568 579
(J-kg'-K") M 473 | 511 | 554 | 605 | 672 | 765 | 913 787
Thermal expansion ratio Y 247 | 2.47 | 2.47 | 2.47 | 2.47 | 2.48 | 2.48 | 2.48
(x103K-1) M 1.27 | 1.31 | 1.34 | 1.38 | 1.41 | 1.45 | 1.49 | 1.52

Transformation dilatation
(x10'3K'1) y->M 11.1 9.9 8.8 7.9 7.0 6.1 5.4 4.7

5.1.3. 4 EBHERBIUEER

FLHE D 5 H R % Fig. 5-612" 7, EEAHBS L O TFHATICE W CARKIE
BEREIZIZE A ER b o de, Flo . FE I H S D e 23 5 v A
Y MBEICEHRESFAICIREZNAET TS Z L 2R CX 7, Nishikawa
BYDETNVICENT, WBEEZKFIEANTZSG G, ARJEE I ORE —IC X
D ESBEGHE b 2 ERUHINTEBY ERERLFAKOHN TH - 72,
Fl ATV T =V THRANEDOIBORY ZHIE LR, Lz e
T 530 umD X Y Td > 7,
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Fig. 5-6 Experimental results of cooling curve during oil quenching and CCT
curves predicted by JMatPro.

5.1.3.5 BEMHAHERPLIUEER
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Fig. 5-7 Boundary conditions for numerical simulation.
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Fig. 5-8 Heat transfer coefficients determined from cooling curves during oil
quenching.
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ENTHRBCH L TELS LD ILEREL TR ERICAELHWZHGE,
BELRRDIERTHo72, ZOFRKE LT, BEAN T OIHEL RO KK
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BREHEV I 2L —Ta YLKV KBELISBRTE Mo ERHEES N
Do = RFRICH W FERIZ, BEAN T O b & T CARIEEER N K&
KEZVY SEFMOETFTTHHERDERXLTL ., RBEANOmHATL S 2 H

ML LIEERPITADLEZEZAON EEOMAREZ Y I 2L —a il &y
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o,

88



200

C

(]

w -

S 150 [

@ : y = 87.5 In(x) - 87.6

c &

%; 100 |

%LIJ

S t 50 [ 3x105MPa-t

°5

C

B35 0 Frmmmmmm
E E

(G'GC)

Eg. 50 F

o O

(&) L

c i

% _100 1 1 1 1 1 1 1 1 1
E 0O 1 2 3 4 5 6 7 8 9 10

Transformation plasticity coeff., 10-°"MPal

Fig. 5-9 Effect of transformation plasticity coefficient on the difference between
experimental and FEM results for deflection after oil quenching.
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52 AARDEBBUHFRRICEITHIER

3B L OHE4RE CTRIE S Lo A BBMEREIC SOV TSR & D i %217
- 72 (Fig. 5-10), & Z T, CHREIZ D W Tk, ARBFZEIC VW 72 Cr-Mo#i (0.2%C)
OFELIEAFE (0.2-0.4%COCrif 3 L OCr-Modll) 2= E L., 5l ERBRICEIT 54
s A RE SN AR TR L, Ao LR REIT, Bl
FEATIC B W CERBEMEOT R BRI FEARITHEN LY R ) TR L, £
72, Leblond® 3 (X (1.6))) & MW THEE S AL72Fig. 3-1538 X O'Fig. 4-1512 8

FL~nT oY A NEBBIORA T A NEBOERBIEOT 0D LREH
MRE L RO T, ~ VT U A PEBICEW T, K TH LA RBENE

FRET ST I b X T <, Leblond® X HHEE S LA REOMIM & bk
—H L, . AT A FEBEBIZONTIE., — 8O XEMEBAAFETH LN
AR E VB L 2o 72, RO —> & LT, ST A T b B %
BH-OICERERBIZEVRE SN TWDOIITR LT ARFZED 5% T #E 5
HERBTHY, A—ATFT A FORBIRBENEIT DI ENREZZLND,
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. . Applied st K
Transformation Material pp(i\zps)ress (10MPa!)
Tensile test 12 SCr420 10, 20, 30, 40, 50 10.8
Martensite Tensile test 2% SCM440 20, 40, 60, 80 8
Tensile test 3% SCr440 20, 40, 60, 80 7.7
Tensile test 43 SCr420 10, 20, 40, 60, 80 7
Tensile test 53 SCM420 10, 20, 40, 60, 80 11.3
Bainite
Tensile test 6°) SCr440 10, 20, 40, 60, 80 10.5
Tensile test 7°) SCM440 10, 20, 40, 60, 80 6.3
50 [ 50

_ 45 E(a) _ 45 : (b)

5‘_’ E [ ---- Leblond's equation & - Leblond’s equation

= 40 This report = 40 This report 4
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Fig. 5-10 Transformation plasticity coefficients of (a) martensite and (b) bainite.
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T A PEROLRBIERBEER YIS EORICHAIREENRD L B LD
Nlce TOZEMLISHKFEZZE L LBRBEEBEK 2RO X 52’
SR

K' = Ko(1+ Aogg) (5.3)

ZIZT, KFEREBHEOT A (X (1.5))) 0BT 2EkDERPMELSRE.
AT EEREVERBOMY TR NKFEEZ RT RT A =2 Th b, KIZ, Ko% LIk
fEY2>510.8 X 10°MPa™!, K’B LW 0eq% R LOFERNSZNE I, 21X107
MPa'', 90 MPal < &, 4150.010& 725, Alx, ZAREOMEE, AEIEE, Ak
FiEE, A — AT A VREFICEEINLILEEZZOND LD, 5%, MO
FHALFAABL DN T A= FA~DEBEZH LN T OILERDD EEZDLN
Lo Flo. KEBEMRITIZGE 252 N TEE, BEEERELL LI
WIS I DRMICER L2 ER T2 03 F LS ZILT28ARICE N TS,
LY EMRICEBRBUEOTAZHET LI ENTRERDIEZEADND,
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