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1.1 TxILF¥F—FE LTDHRFAA

RIRFT AL, A2 v ETERGE Lz, 22 veTuxvihEe2E&0allo—o2oTh 5.
IALF—JRE L CORBT ADFITTICRO = ORHFbNE, —DiF, TxLr¥—2L
LCHIRNZ ) — v diTd 5, RET A THRSLAH L X CTRBER O Lk R, £
B, TSR oA B vz, HWERBECIE IcH S5 & % (Fig. 1.1). b
=D, HBHE Y R 7 BMRCRTH 5. HRDEA T 2 A ORI ITHFICEFR L T
2729, FHOEHIC X VA>T LE S VA2 BBRINTwE, chicxfL T, K
R A TG HIE YL Ak T T O U, RRUICHE S R WA ATRE & 7o T % (Fig.
1.2). HARENTD, HHEE, THEE, JmEs S cCENEERD 2% % (5 3 KA AN
AEINTHS, DLED XS BFE &, RATRZEHNO Rz A0 F— iR F T H
HHEATI ALY L R> T332 (Fig. 1.3).
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Fig. 1.1 Comparison of the amount of substances generated by environmental pollution!!!

BMH-0>7-
1By #FBEE
10,209 @«

~ 1% |-
6,866 i 11,099 @i |

= l { 7o7-
7IUN KM
2,313a0 6,521

u
¢ﬁ*j
1,529 @i

[ RxAH 2 EERAH 38,537 x|

Fig. 1.2 Global natural gas production!!]
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BRA XV DBAPREINT WD, Axx—v 3 v, KEE BIUKRELZKIES -,
KARHNADEBRBITTH LA X v 2 EHT 28T TH 5. KEEZFHENED ALF —HEK
DENC X 2KOBLRG > HBIE L, 72, ZELRFEZ TE-CHKEN D OB L THK
T, h—FRv=oa—bInhrrvPilEcs 20 (Fig.1.4). AT, A&4—v =
VICK W ERI NI AL L, HHANABEEEOEA v 7 T - FiieANEHNTE 2729,
Haethkof v 7 7HEax b OWFIBAEETH 5. TD X ST, GEA X IXEhER 7B
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Fig. 1.3 Primary energy supply ratio in Japan?)
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Fig. 1.4 How to produce carbon-neutral synthetic methanel®!
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5N, AARTIE, WID»SKRRS A% LNG & LTHIALTW2 79, LNG i3
MU I X A, 4 7T 4 VI3 LNG Helh & FEMH A o7 CEEE % H 5 Twv 34 (Fig.
1.5). RARFZAOFEEICHIET 2L L b, R ERom L2285 5, LNG 5
HuRE e s o 7 R B 2 0 R B CBRIRICGER L, MiaE Ny 27 v I 2 HGH b o
DOENTEY, EBNOELEN AL T T4 vORIERITE X % 2500 km 1T 2.5,
EWNOEEHN 2L 754 viE, #lificlzkans e, g hzEE+s e, &
Wo 2B S, IO T T4 v EHIRL TR RSk b s, Table 1.1 12,
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Fig. 1.5 High pressure gas pipeline network in Japan(4



Table 1.1 Concept of the Safety of High-Pressure Gas Pipelines
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1.3 BEH AR T Z 4 v ORI E M S

KHBHERFICAHE TR ESN o —o b LT, HBRLic X 205 K#»BH T o 3.
1964 FOFHHIESL T 7 A A HE CHIBE OWIRILITER T2 L ZEZ bW 2 BEYOKE &
WENFAEL, 0% ZRITRIMEICBE T 283D ST 2. RARLICHE 5 2SR,
5 58 X, MR AHEL 0 IR L T 2 MR R U 2 0 2T, Bhio 4 — X —
B m OIS B X RGEH 5. 1995 £ o Se IR IC 3 C S T REI SRR & 1L
72, EINTIE, T oRERmTHIEORB A £ 2, IRLRFO [T RE N L CREAD 2
NATTA Y OREWETERT 270, EFEN ZEBERRNERGHEHT (WA, ik
58t BEE I N

HORALIRSH T, WRALBTRENCH LT, #AEOWEIC X > THRFHICEDL v
TEERINT WS, HEZRE~DI I E LTI, Fig. 1.6 1R d X 5 il iENIC X 2%
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~ Ground displacement
(several meters)

Buried pipeline

Fig. 1.6 Schematic diagram of ground flow due to soil-liquefaction

PR O —HFRMEFAM I N D Z L 2 HET 5. O ATITHICX Y, 4 77
A I EETE~DFIER, EMED 2 T & o 2B E U, W A8 2 28R
BN ELES. 200, BIRMUIEHTCE, BIRMEFEORMZPTILS 2 7201, 7R
BICXoTHALZEDOE LY S, HEoIWBMRAZEEL L LR kR 2 & 2%
RKLUTw3, o bR R T, fERDISTIR—RFHIICld7a <, BHEEHTOBELE D
ERL-OTAR—ZFHIEH X N5, kb, RO ABBHER I, HEDIC X 24
R LR & 32 7280, ORI B X 2 — TR E 2% 5 2 Lk %08, KT
1%, TEREM L <V THEE) X 0 D RIRMLRITIRBI O T 3K E W2 &b, HIEE)IC X 24
BRLAMOHEIIEZ b DL L7,

1.4 734 75 4 V EBESDO HAZ AL A M FEE IC B LTI &

HERE MG B & Z T - 5y, B ICIZBRIRIE ) & 1[0 2 i B ASE i T 1A E 3 %
TEBREI NG, N T T A VAR R I KR IR AR E T B L, BITRE T DR
IARTRE I IC AT L C, T2k e L COMUIDERRENE T+ 5 720, 7k
AT REVERE 2 R CE B WH[REMED B 5. 2 D72, KIREOFE % E[E L TR
Gk O - AT RE & Rl 3 5 Z & T, #ESIRIR L ICN T 5 84 T 54 v oret R
EFzzepnFaIns.

R C IR 2 KRR A U 2 BRI D —2 & L T, iR B 255 (HAZ: Heat affected
zone) ICBT 2 LB T oND. HAEMCTH L 74 v 54 THlEEET L, ABuC k-
T HAZ 2874b 3 2 2 & 23% 0 8121, )L HAZ 23 2#kF (LU#%, Mk HAZ #EF & A5
T2) OX5 RFEMNETAEE G 3 % EERTE O L Z TR ZEALE R ik fg 5
2 13161 S 2R LI & G 3 2 IR R IC s IRERMT 2 N 2 % &, WAL o 2R 23 s
B M 2 DR X, bW 2R %2 T 2R L 7 207 (Fig. 1.7). #HHHR)
RofER e LT, BTN RRIEZ A 3 2 EERF 05 1RE & 3L A A o5 RE & X
D EAT2. O MFOGIRBI BZHMOGIRIBE EFEL {72, WMALED B L
mbE, BMoEWEREREEZREE X 5. —J7C, HAZ T3 256, fMF oM
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Fig. 1.7 Tensile deformation behavior and plastic constraint of welded joint with low strength zonel!6]
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Fig. 1.8 Schematic diagram of failure mode of girth weld with softened HAZ

DEFT B b NS 720, MTFREROEFMERENMET T2 (Fig. 1.8). 7277 L, RKICHK
i HAZ T3 28546 b, MTFo5RE X 13 HAZ HROBE XY b ER L Tw3 /-
W, HWFE LT TCOENREZRET 2 LM TE 3.

1.5 Bt HAZ A7AZERF ORI ITR RIS XS % BRE

WAL HAZ JV T O WOR (IR M & BFA S 5 7200 10 1, O 8 % — APl 28 5
57 Tu—FnELLND. B, WIRMERRBIC X ) (FRT 2 B0 2 X
b, WL HAZ FVEHESF OFFE O 00k & UL, (LB 2 2 7= Bic v
SRR IS BORIC R S 750 LRI C X 2. (RIC AR IC HAZ H5-CRENT 2 VT <
HoTh, *OFFEVT B AWM BT QM S N2 EHOF 5% LEAE, Kkt
L REETE 2. o0 BEREMET 21ch> TR, KELHTTUTOS
HOBEYD 5.



—OHo#EIX, Wt HAZ FEEATF O - o FEICRT 20 TH 5. K
L HAZ #F-D X 5 7z, JHFTH K8 % B 3 2 IS EET o T2 28 8ic o v T, e
T (AR OB M OIS X W IRWHkF) 20 RICE DA RIS TEH I
I, HREERTTE O SAT A - GBI AN A A U 2R E R b R R S hTn B,
BT & TR - A OFEEL T2 2 & 20, TEHTF S 5 N2 H AN
Tt HAZMFICd 20T FWHTE 52 & 2R TIHREHIPES 5 5. LA Lass, ik HAZ
T cix, WAL OMbICEE D R 2R (B, SRR BiET5 Cenb, B
SBDA — N —~ v FEPKMTIREICH /- 2 5 FEL2Y ERTZLEERH 2 L LIE
fighTnsd, 6, o oMFEMRIE, AERFELA - HRARMEZZ T 258%EL
Tk, WAL TT v X ICHNEIC X BEGRIGT L ESN I X 285 G %%
J 5, Wb 3 RIS RRERS 2R AHE L T,

b5 0D, WRLEITREN % 52 24 77 4 v OEO§ A0 M T ik
BT 2bDTH 5. HRAEN 2% T 28E A 7T 4 v ORBES % iHli 3 2 B id, H
BN X o THFFINTAA T T4 VO ET A EHEI NS, T FiED DL L
T, FPREEREMENTE O BAE R B % 36 U IR AR 20k BUEM I fiE < kRS 261535
T o s, BEFT CRERECHEIEO N2 DD, %IKICh T 5 A5O3 E S EH
RIRNTE T N OREERVE L 725 T L h s, BB oS MHE T oAb A% Tlik
W, ZHRISH LT, BUERETICK S v, RKEHO T A0 5 5 REXNEMET L D
THICIEAHTH 5. Lo Lans, HEEMRIRMLAT i# 2 Z T 7= 5608 0340
AT S T,

I O EZ AT E L, WEERRZT 281L HAZ 7 4 v o3 A4 T JREEA T O #ikL
itEMEfE 2 —HEOBSAFHEIC L > CHMiT 2 2 &8 TE S, 5L, 20— HOFHiFiE%
TR L, WU % fREE < ¥ 278 HAZ A LIEIR 2 5Hili4 5 2 & <, #RLiZE %
A9 2 BEHM T OBEERG DIEIE 2 IR T % 2.

1.6 R DB & BHY

KT, OFR—AFHBOE 2 5 2 EAL, WAL HAZ AT o iok Lt
DG FERIRET 2. UT I, AFEOMEL L5 L & bic, 2o % Fig. 1.9
e

W2ECIE, A DT A Y TR R R L, 2 0% HAZ LR 2 i3 5.
72, WERZV 2 H(L HAZ [HEET 0 e rIIc e b, EREAmat & LT, it
HAZ %3 5 AT 5B 0 5 IR BRI FEM AT 2 20 L 72255, T I
WEE 52 3 HET 2R 2 L tic, (L HAZ $kF 0 M iR % B 3 2.

03 E T, Bt HAZ kT omEaHi=icn L CHNED#FEZHIET 5 2 & T, NE%
Z\F 2800 HAZ AR OMIE L RO FAOIER 2 IRE T 5. S oic, JIEmE %
HAROF R & o e BT 0 JE I 2 WIE D E L RT3,
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Fig. 1.9 Structure of this paper
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FE2E T A /A THD HAZ 8L IR & &k HAZ ffF D
GE4E

21 %S

KBTI, ARG E LT, 74 v o4 THOWL HAZ MR 2 FHEST 3 & & b,
Wit HAZ %6 3 % Pkl h o 5 lIREER LB FEM fiffr 2 B L 722086, fkFim
JEIC R S B T THERT 2R T 2 & & bic, )L HAZ #F oss 3l = ic o v st
3 5.

BRI e A 2 3 2 i F O BEICBI L Tk K 22 SN ED ST 5.
FERE ORI SN % BT 2 20 IR S W 2, IEMT (RESRE OB E
L0 HIRCEEMT) ZxfgRic, S - BEERI 2 BEIS0, Ch b Mgt & B L 72 s
TR DIRR T T BB S B1E, TMCP B HT50 i~ D K A BEHER o iikfl HAZ
T 23t Ric, Bt HAZ 2 EER & A7 2 & T, WEMT OB M2t HAZ
F~HATEZZERRLTWS., HE O8I, HEAEABD 7 — 7 B CIRAESE
DIEEEHAHAL HAZ OMTEEICHEL RITT L 2L TwS,. LarLads, FFic,
At HAZ T 0 iR 8 0 BE M THRE IC 5 XIS T IcET 2 RETHEGIZ V2 L, *
DB PVRESIROME % B L 7234 37 L DI S N Tundn v,

2T, KETIE, 74 v 4 FHonEE HAZ AR, 3 X OG- TER o #k1l
HAZ #F 05 L Z o FHIFERICOWTHETT 5. 22IHTIE, it D74 v o34 TJREE:
R L, 2 oEEaREim o X HERCHBIE 2 b & i HAZ bk 2 &5 5. 2.3
EHTIE, ¥t HAZ #kF o5 ERER & 2 © FEM M % i L, #FFiREE L5 liRam b ok
{t HAZ D28 VMR % i 2. 2.4 T3, FEMfHTIc X - C, #FBEZ ik
KIE TR T OB A FHE 3 % & g, RS, BSR4 — -~y FEOFEICEHL
B G, W HAZ T omE Tl TE 2 IRE T 5.

2.2 7 A VA TREBEZRD HAZ FRALIEIR

2.2.1 EBRAE

Tl DA T FA4 Vil RIC, FEEEN L OSHFE I CEAREM T 2 FR L, HAZ
WAL MR & U CALIE & TRALEE I oW CFE L 72, Table 2.1 icfitik L 72 4 FEE O 0 &
Wi ~Fak, BT R O ERE, (LB %R 3. Table 2.2 1C, #HEEIE I3 2 48
IR 2 R 3, W IR, BB T — 7 i (SMAW), 2B~ 77 E:(GMAW), TIG
B (TIG) D =fEH L L, 60V RIFAEOEEHE 2 FR L7, &l WIho@EEhiEkcs
WTh, BREEINENIET 27201, PIE~2/EH F TIHEAZD TIG A% £t L 7-.
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EBLL 7- VAT T D S 2 o 3B 201V I L, =2 v - 327 B s LU

B Em L7 —fHle LT, TestNo.l oilEEfERE4»Rd. =20 -

17 m ISR % Fig.

2.1\ T, SRR 2 X 5 o HAZ #23, RPN (3 HERRL 72 HAZ ¥
DO L T3, S HBROME% Fig. 2.2 1Iond. X, EHREH 2 S 2mm ©
74 v ET, BESEHTIEHVI0O Tl mm ¥y F, HAZ </ HV0.5 T 0.3 mm &' v 7,

fA i HV0.5 ©1 mm ¥ v 5T

R L 72, S lmiaeiss & il X B R & 2 A b b

TEET 3L, BB OZEN MR T % 2 HAZ fHIE T L2534 U T 7=,

Table 2.1 Mechanical properties and chemical compositions of test pipes

Pipe dimension Longitudinal tensile properties Chemlc(erwrljscs)sm%p))osmon
Pipe No. Diameter | Thickness Yield Tensile Unifor!'n .
(mm) (mm) strength strength | elongation C Si Mn Cep
(MPa) (MPa) (%)
A 323.9 9.3 461 533 10.0 0.07 0.27 1.28 0.33
B 323.9 9.5 443 549 11.6 0.12 0.23 1.11 0.32
C 3239 11.9 461 533 10.0 0.07 0.27 1.28 0.33
D 323.9 11.9 537 586 10.7 0.07 0.24 1.33 0.31
E 610 17.5 499 567 9.3 0.05 0.15 1.51 0.34

Ceq(=C +Mn/6+Si/24 + Ni/40 + Cr/5+ Mo/4 +V /4)

Table 2.2 Welding conditions and properties of softened HAZ

. . . Property
Welding condition Properties of softened HAZ of WM
Test | Pipe Relativ
No. Nz. Welding .Heat Number w(ied?c:l tz Ave. Strgngth Stre.ngth
method input of layer wall Hardness | ratioto | ratioto
(kJ/cm) thickness (Hv) BM BM
1 A SMAW 23.8 4 0.55 138 0.82 1.06
2 SMAW 23.8 4 0.54 151 0.83 1.21
3 B GMAW 18.9 4 0.22 155 0.91 1.08
4 TIG 23.0 8 0.49 155 0.82 1.24
5 C SMAW 26.4 5 0.29 143 0.93 1.33
6 b GMAW 16.2 5 0.17 183 0.98 1.01
7 TIG 22.2 8 0.24 193 0.96 1.02
8 E GMAW 13.9 7 0.09 192 0.89 1.08
9 TIG 26.4 12 0.17 192 0.94 1.20

14




Fig. 2.1 Microstructure of welded joint (Test No.1)
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Fig. 2.2 Hardness distribution of cross section of girth weld at 2 mm outer from external pipe
surface (Test No.1)

15



2.2.2 EERIER

MR & AR L o B/ A R ICNT 3, HAZ I3 X O HAZ 8L % Table 2.2 I27R
T, 22T, HAZ IR AR ERED X DX MK T3 25k & L <, HAZ ©1LE 1%,
i X B D% b LI, HAZ OV X Z R o P X T3 % 2 & <, HAZ DR
P AELE LTRT. £72, BESEOA — N —~ v FEIL, 2RESEOTRRX
M ORIRME T35 2 L TR,

HAZ IEIZEED 0.1~05 [ERETH o 72. »wIFnd PipeNo icxfLTh, FiRETH 2
SMAW & X U TIG i3 HENABE D GMAW X Y 3 HAZ B2 IR K & WEHAZ RS, i
13, FARBECIIHBIAREI Y D ABNESKE Wz, BVYREIC X 5T Acl (NBuCEEL, 7
2TA M+ RAVEAL MDA —RTFA P ~DOERENBIET 2IRE) U LEoREL 3
HiPA A AFIPIC RO, M AZERE L CL 3 2 HiPANIAL o dbDeEZ LN S,

ABMC X o TEREL 728 IC B W T HAZ 288k{b 2, L wHEzIKEITIE, AZED
b HAZ WEFIH T 20, o<, KB CcRLEBREELHVTW b 00, BEER
HO(ANBVEQ) ICX ) 1 A CREELZRETEZ2DDLRET 5. REFIERED Aa L
oS LU T O IC B W TIIL HAZ 234 % & hiE, BB R E2 ML 2 & T,
QCURICk > TCHAZEH%3HET% 3,

1 1 \0p 1
H=< - ) : (2.1)
Oaci — 00 O — 6o/ cpt 2me

TTT, O 3D, Oacy i3 A DILE, 0o FZM, nIZBEIE, clZHEL, pld %,
tIXEECTH L., M ARKEMOT —7#HEEL LT, 0,% 1500 °C, 6,% 20 °C, Opc %
700°C, n% 0.7, c¢% 0.88]/(g-°C), p% 7.58x 1073 g/mm® & RETHIE, (2.1)FHiF(2.2)
ADX I ICHMCTE 3.

X= o.oth—2 (2.2)
CZCXIZHAZHWEZ TH Y, HEt TR L ZERIT T A —2TH 5. QD H{LIZ J/mm,
tDOHALIE mm TH S, Fig. 2.3 12, 22)XDFHHEAER L FEM L KD 72X DFER % 3
2. BEERIIAEE LTl R—BL T3 2 Lhd, ABMEESEROEMIC LY HAZ
EAHEECTE 32 LR CE B, 72, Fig.241cit, BEL ARBOKL Rilaa b
N L CXZRRE LR E TR, ARRERRZ WIRE, EEMEHWIZLE, XITKEL 725,

HAZ DAL 2 68 L 7= f5 58 % Fig. 2.5 1O 3. BEMBREE 1S3 2 HAZ 58 ((ST)ygaz)
ZFH LT 09 ERETH Y, HAZ HNEIXAKE WIZE, (Sr)uaz2ME T3 2 [ %R
L7z, Zoffmid, XAKREL %2 K57%, BRICNL TABRENRE WEFIZY, B
BREN A, BUYETROMENET T2 eE 2615, Table 2.2 OEBIEROX &
(S yaz PBRICH 2 TIREMIRIZQI)A KTz encE, AX2Hw3 2 L oxicn
T2 (Sr)paz T RFIVICHIED 2 Z &3 TE 3.

(Sr)yaz = —0.175 - X + 0.905 (2.3)
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Fig. 2.3 Comparison of HAZ relative thickness obtained by estimation and experimental result
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Fig. 2.4 Estimation of HAZ relative thickness for several welding heat input conditions
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Fig. 2.5 Relationship between HAZ relative thickness and HAZ strength ratio
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2.3 81t HAZ #F 0 5| sRAZ AT EER

2.3.1 EEHE

A HAZ fkTF o 51 5R B i R o ik -5 B -C TR T 28 8 % FEAl 3~ 2 7201, JESREEM T2 5 1)
D H L 2 TR R o BRI % St L 7. 513RAERR ok % Fig. 2.6 1<~ 3. ok
FRIEIZEREDE £ & L, BB AT o 722 X5 L, R 3HHM
TIC X O YIHIL 7=, B8 % 0 & 3 2R FEREZ 300 mm & L CfOMZGHAIL, o
OV EHT20FA%E, REHF D7 a— L OFaE Lz, 5IRBEWTER T Table 2.2
® Test No.2 5 L U Test No.3 ZXTRICHEE L 72. Test No.2 I X U Test No.3 1&[6] U &
MRl IR IC, TestNo.2 Tt 7 — 27 ¥%H: (SMAW), Test No.3 Tl HE~ 7145 (GMAW)
EENTNE A FEBEEAET LA TH 2. 20w, chb ok, BEEE
G U T, AESEREL, HAZ L, B X OHAZIESELR > T3, &k, Thbo
AERAD RSB OIEPIZRIE, FUREMLZHL T2 L blE—L Akt s,

2.3.2 BRERBETET IV

FETR b Wik HAZ #kF 0 51IRIEWi 28 % £ 52 3 2 7201, 55RERRE o 5B A N
HDIGT) + OF RIREEZ WY FEM fi#fric X WS 2 ic 3.

fEtre F A% Fig. 2.7 1R T, T 703, BIRB X OWEONHIEEZ ZEL T 1/2 4
Fre L7z, e s A O~HERIZEREFIL & Lz, BELA 71T 8 fii—REHEZH W
7o, RN OEME BN 135 e T A TR L 2. BRI, ARSI IC 3
L MEHRFESEI I, B, AM, BB o 3sEEIC A EIL, T MR —
CEE L7z, E 7z, WEER &M - HkIEBRERICEDE, »—FF vy 7350
mm & L, HAZ gl Table2.2 L [FEIUfEE L, BAZEkIE 60V BIREE L7, Al FER
D RERAILIARIEAR T B % 28, T E T VTR E L7z, ZOROE O HTEEICE X
ITT BT L A &7\ T & Z A& FEM f#fTic X D R L T\ 5.

T IC O 7o R D IG 1 — O F B BRI, FEM R O 5 IIREER DT £ T O AFRIGTT - 28
MOFRBERIC T 2 L5 2B —BOT %%, 55RO H FEM @i 2> &
fETIC X O FE L7z, HAZ i3 X 0EES R O I6 1 — 03 AR 12 (2.4) ~(2.6) X1 %

Wall thickness

/ R15 Gin‘}h weld
N —\/ 4 6 mm
38 mm
6 mm
400 mm
600 mm

Fig. 2.6 Geometry and dimension of tensile test specimen



WTHfGF L7z, 2o DAA~AN T 3RRICH 3 L FIRB T ICOWTIiE, HAZ TREES
ABRCRHHIL 72 HAZ S8 2 R ORERIC T 3 K N5 RIB S icih I 2 fH e L, BESET
RV R O 2R EZEOERIC)) XL UFIRRE OfEZ v 7z,

1
0; 0 nro
Etrue = tlr?ue + (I-;;uoe) RO (24>
2 3
1+ 1.3495 (g—‘Tf) — 53117 (g—‘T{) +2.9643 (g—‘T{) (2.5)
Npo = 2
9y _ 9y
112494—110097(0T) 1L7464(0T)

or exp(ngo) (2.6)

HRO = nRo
NRo

TTT, erueldBEOTR, opye BEILT, EZY Vv 7K, o ZBRIET, oplZ5IEIRE, ngo
L UPHgol3 2.5) K2 2.6) Xtk 2HTH 5. FKEREAEUIT Mises D /RELAT& L 72,
B A CHFRAREENE L 20 %8 5 720, BEESEEZRA LS OMERE
(HAZ L H) 12 £0.5% D582 WA g & UCBA L 72, @b Id, AER & BB
WCHERGIZENL 2 G- 2 B 2 & CNTE T MV ICERINE IIRFTE 2 BT L 72, T I XL A IREE R

fiitht = — ¥ ¢ % ABAQUS ver.6.13 % il 7=,

1/2 model Symmetry surface

W/2 (W: Width)

Q \;H\AZ
BM

t (Wall thickness)

|

Fig. 2.7 FE model
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2.3.3 5| ARARHTEER DFER

Rk ORER O~ 7 n 5 E% Fig. 2.8 1733, Test No.2 Tit, HAZ Tl U TE Y,
HAZ #8-CREVER: T L 72 (Fig. 2.8(a)). —J7, TestNo.2 TlZ, #ft HAZ TKZ 2ZEIZR
ST, BEMERCL Tl L 7= (Fig. 2.8(b)). Fig. 2.9 1 515k ERI o faf B — 25 fiz ph i
Z s, BT L 72 Test No.2 @ 53R & 3R L BERlE—TH % 235, HAZ BT L 7= Test
No.1 TIIEM D F[5RIE X ICE 2 FijIC i K8 %2 W 2 THEWICE > T 5. Test No.1 T3,
R o 513k & % 549 MPa ©, HAZ ORI 2 A 0.83 TH o722 & 2 EET
X, HAZ o 5[5R58 X 1% 456 MPa fEE & B¢ 2 2. it L <, 515RaEE <o RKiE
J£1x 531 MPa TH % k25, HAZ OISERBEHERFRIC X o> TR REmL 7z &
Ezbip, Test No.2 IZ2WThH, HAZ iZ#ILL T2 b 0o, HEMHEZIFEIC X 5T
HAZ DRI T OBRERHM LD b KEL o722 & T, R CHIIL-EE2D
ns.

Fig. 2.9 iZ, TestNo.2 ¥ X U No.3 #4HE L 72 #i¥31: FEM fi#f ©fF & v 7= ff EE—2 {7 i
Mz TSR & I U COR g, TR SR I BB R R R —& L Tk b, FEM fi#fro
ZUEPERTE 5. E 72, Fig.2.10 1T, fENT CROARMIEREICE 7 AN O R A Y 8O
TAHAR 1.0 o7& TR ZRTH, FEM il © < UNEHRE L 3 &Eiikiis
BRCHMT L 2B & —BL T3, ZhHDFIR2L, ZJEiRiEic X VIFR L 2 F o5k
S 3 X OBEIMTALIE (BT EAIRR) %, SR 2 A ic i B e L 7z figbre 7 <
BT PRI N

515R A i O kT D T2 E B X Ok HAZ DYBTEHIHUIRRE % £ 583 % 729, Test No.2
XU No3 It WT, HAZ L M ORFTOT A% ik L 724538 % Fig. 2.11 19, 2 Z
T, RO TAOHINIR, HAZ 3 XM N EFNDON TR S HY O AR ENE
FOMYBPEVT AL Lz, ks, HAZ TOTABEGT 2858, M ORTO$ 2 I3HE
B OFHIVEOEEZEI Y I L7, Test No.2 B L U No.3 DWTFNDFERICHEWTY,
RKMTEICET 211 TlE, HAZ ORFTOT ADH AR X 0 &<, HAZ 0L 236
MICHAT L CGEATW S, F7z, RAMEMMIL, HAZ 3 L IAMHowTFr i
DIHE o 2R EMHMICETERET L, b ) —HoREMfkTi, 2 IRICETIET L %k
{75, LizndoT, ®28BMAMONME TS ONEAEL T, OTABAMWT L, %
DA E CIEMEIMTICE 3 L E 2 55, Fig.2.121c, BRI L L <, BAMERD
JE =B (= PG 0, /MM G 0,y) OOfiETRT. WTFNOMFICE TS, &4
B X ORERE OIS ZME IR ARRoIC ) ZiEch 5 033 BETH LT,
HAZ # DG ) Z8hEE 1L 0.5 B & @RIk I B 5. 34 b b, #{k HAZ fkF s
&3 X 0% OIMIE L, )L HAZ O BYRIRICH: S BT 0l R O E 2% 5
EERHL I L T2,
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(a) Test No.2: Fracture location: HAZ

(b) Test No.3: Fracture location: BM

Fig. 2.8 Fracture appearance of welded joint tensile test
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Fig. 2.9 Experimental results of welded joint tensile test

(a) Test No.2: Fractured in HAZ
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Fig. 2.10 Deformation behavior of welded joint tensile tests in FEA
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Fig. 2.11 Local strain under welded joint tension test
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Fig. 2.12 Plastic constraint in HAZ at maximum load during tensile test in FEM
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2.4 Bt HAZ fkF 0B E ([T Ed 5 RAFDIBE

AT, WOBYE FEM MATREIC D & | TABEI ORI - M0 IR R 70 B
WEIEEE &\ o N A RET RIS IC 5 2 2 B EL 72 LT, ChbD 7 2A—Z %A
Ile L7z, ST x PHIcE 292 8T 2. 2 2T, BHERIR ©H 5 IEHET G&
B 8 D MRS ASRERE X U b (AR 72 25 e VABEHET) AR & L 7 B A =X o i P 4
%, Wt HAZ kT 1CHEES 5 © & 2 iEt T 3.

241 RBMF OBEFMEICE S 2 BRFENER

WCE M T OIS EERIEET M~ 5 R AR 2 N2 5 &, BWE R DI D AT 25 i 7
RMIc X > CHESIN S, £ D720, PUHHINRIC X - T, #FO515RM S ZWHEE B A
DEIREEE I Vb FRT 2, MEMTOMEICOWTIE, KD 3 DORTI T ICH
Brhzpla

WHAMENE 2 X (=E IR /T RE )
WEF DIRELW /¢ (“HRIEW / #EFHR)F L)
WE AR DB LL(S,)s (=IRE BRI IR & of /BIF 5 5RIR & ofM)

WCEM T O A ERE (L HAZ fRF L H0S 5 2 & 25, WAL HAZ ik F 0551k
FiRE I e KT T RT3 Fig. 2.13 @ X 5 iIc#HCc ¥ 3. KL HAZ #fF<i3, WH
T L B b, WEEICHY T 28 HAZ B3 2 BMf L iaas (LU, HAZ Wi
MRS 2) DREARZL Z25AICE, BIESEOBEI(S, ) wr b MTME I E 2 X
X368, AR ORI I L TRk iC i< 72 5 &, AR DR b T O
EBIET S, AETCNRE T2 74 v o34 T JREHRR O B4 8 O 1M 18 < 7w
728, ZOFEIFERCTE 20N ks, EEEENICIIAEEREIC S EH 3 % 28, RME
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Fig. 2.13 Parameters affecting joint tensile strength
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IERREL 7 %,

(ST)y = (ST)paz X Flz : ﬁ + 0.976] (2.7)
_ { X (Xx>2xEM) (2.8)
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xp = | 1 }“ - (2.9)
13.2(1/(S,)uaz — 0.976)
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1 1
= a- o o8 T 1.0] (2.10)
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Fig. 2.14 Schematic diagram of tensile strength equation for softened HAZ joint
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v = { X (x>2xgM) (2.11)
L 05X + XEM (X < 2XEM)
1/0.8
XBM = { 1 } (2.12)
3.86(1/(Sr)uaz — 1.0)
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968 5 AT =X oD 8 FH L P AT 72 D Wi D iR HAZ ik F D SR LRI ~HE5R 5 5.

2.4.2 ¥t HAZ #tF D FBE FRID 7= 8 D FEM BT
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0 30 60 a0 120
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Fig. 2.15 Effect of goove angle on joint tensile strength
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REJ %, Fig. 2.171c, FEM @t X Y BUS L7z, W/t #{t HAZ 4 — 7 v~ v FHTFD
HEFREE & DRAR A4 D XOHEIT DWW TORT. W/tDBENNC X > THEFMED B L,
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W/ts 7 BREM Rk 2 & HAZ WALV O3 AREICHHE T 2720 2 E 2 615,
Fig.2.18 i%, Fig.2.17 ofE %, EFEMEHIFRW = 02> 5W /t DA 5 #EF5REE D
W%, JAMEWRTETZR (W = 10t% AW & 472 3) & IEATEREIZIR (W = t) o it Fii
FEoEcERIT LT, EHLZ D THE. KNI Y, EFLL ZMFEEIZS, ) uazs
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BRELEDIZEMEEAINI LAY, BRINC 1.0 ICHDET 2T k2. Zofhfiz RS
% 7-00, EBEIBE OB E W CR/AN ZIREIC X o TR S 2 2 & T, IETERIRIE

W =1t) B X CRIEHTHETZR W > ¢) QSR o, FEOW /tDMkFIRE I HiIE S
% (2.13) X %&E 7=,

1.00
3 Egs. (2.7)-(2.9)
095 [ Q
B 090 | °
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L | O (Sr)naz: 0.90 (Sr)wwm = 1.0
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Fig. 2.16 Effect of properties of softened material on joint tensile strength
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o = (1 -0.7250W/t-D)
(D)t = (D] + (1),
Fig.2.17 12 (2.13) X X Y sk 7= ik T o 5t ERE R 2R 37, (2.13) b o IE/T W IR
DT DL (0}),,_, B & CINMEWTE R O #F DI (), 2, CD-CIORB LT
(2.10)-CA2)XEZHTCENZENGIH LD D TH 5. 2 b OFREFHIZN & FEM figfr o
RIS —ELTEY, W/t EE L 7=W(L HAZ 4 — 7 v = v FilkF O mERHii o %
LR TE 5.

(2.13)

100 [ :
B N
i b

s 095 ¢

mg [

—& e Eq. (2.13) FEM

© 090 | 0 X=0.18
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I (S )uaz =0.85 | © X=0.55
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Fig. 2.17 Effect of width-thickness ratio on joint tensile strength

1.50

- (S-)wwm = 1.00
g L (S;)naz = 0.85
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Fig. 2.18 Increase in joint tensile strength due to width-thickness ratio
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245 REERB DA — N —< v FEIMFRE IC RITTHE

Wl HAZ kT 01, BHESBOF — " —~ v FES)wnPHES 21T 682 &
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FeA—Tv=y FHFOX DR T Tnd. TNOLDFERES, A—~—=y
F i F B2, (2.14)XBXTQIHRKD X HIcKE S 2 & 2Bz,
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[(ST)]]OM = of'* x 132 ()()—13 +0.976 (2.14)
€d/om
(Xeq) opy = (Xeq)EM - (Xeq)EM—WM (2.15)
eaJom ~ 2
ZZT, (Xeq)EMi’o’ X U“(Xeq)EM_WM X, FNFNA — T vy FHER L CREEES)EA

— 7=y FHkF D HAZ EENE X Th 3.

Fig.2.19 ic, Q.14 XoAd ——~< v FHFOEEFMN L 0 5HHE L 2 FmE o R %
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Fig. 2.19 Effect of overmatching ratio on joint tensile strength
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Fig. 2.20 HAZ equivalent relative thickness to each joint model

29



2.5 Bt HAZ ik F D8 E IR DI E
2.5.1 8t HAZ ¢t F s E MmO EFIE

cETcIcl{Eonz@7)-(216)XEHW5 2 & T, Fig. 221 ofHiiv e —1c X - T, T

BOW/tDWA HAZ T OMTHMELFRTZ 5. KXFHl 7 v —D ANfEIR, EFEE
or®™, HAZ #INE XX, kTR OWEELW /t, wHEREMEL (S wr, HAZ 8
(SPuaz TH 5. KFHfi 7 v — COFEFIEZ LT IR,

1)

2)

3)

4)

HEeEOBELZ M OBE LIRE L ZIRKEBDA -7 =y FHkFE2RIC,
Q2N~212)XEHwCFRELZHRES 2. 22, HRIEEHKIZ 1.0 260ET 5.
2.13) Xz HwT, 1) TR L 2T oo U Tkl h o HiE S b o 52%8 % #l 1k
5.

(214)~(2.16) N2 T, 2) TR L ZZMFBEICN L TH—~—~v v FEOPE
filEs 5.

3)TEE I N MFRE D AR % RH 2355001, MM AMmE & 35, K
WitZE (X, MEFIRE SRR X 0 D/ X T E HAZ BElbr, BMBRE & 7o U SRR
W & G5 % .

2.5.2 Bt HAZ ¢ F 08 E IR D FSERREE

fe % L 7z ik TR el X O R EEMGE D 72 0, Mk TR LR D AR & FEM T X 0

G L 7=/ F90EE & D ik % Fig. 2.22 1083, K O REFOHIP T, WEOHEIZR

Input parameters
o™ (Suaz (Sdwm X W/t

I

v

1) EM equation

Egs. (2.7)~(2.12)

!
2) Correction of W /t Eq. (2.13)

!

3) Correction of (S7)wm

Eqgs. (2.14)~(2.16)

No | Joint strength: gEM
Fracture location: BM

Yes

Joint strength: 0'1[
Fracture location: HAZ

Fig. 2.21 Flow of estimation of joint strength and fracture location
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Fig. 2.22 Validation of proposed formula by FEA

Table 2.3 Validation of proposed formula by joint tensile test

Input condition Experiment Calculation
Test No. Fracture Fracture
w/t X (Srlwm (Srnaz (57 location (S location
2 4.0 0.54 1.21 0.83 0.97 HAZ 0.97 HAZ
3 4.0 0.22 1.08 0.91 1.00 BM 1.00 BM
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b, ZECEML %2 2 FEEOMTF oL RIEWER O TR B X OB AIE I 0w
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DRETFHIE % G T 2 720 IR & e HAZ FiHE S Th 5. B.1D)RTXeq =X T
M, HAZ B GAZSE, BM) 2RItk & 0 L5 Eatiit e 2 5. (3.2)23, )l
P2 AGE L 72 3R EERHIIC 3T L €, HAZ BEEM O MRV O 8 & Z 185 5 720 OffIER
TH5.

AR BBE DM IEE X VA — =y FHF TR, A =7 v~y FEF & R
LT, BRIV &0 b @R A A S8 o P8 (L HAZ O 2w < %2 2 729, kT o5l
BRIBE D3E C B0l A ===y FHTFOFIRIBE 1, G DK TXeq = (Xeq) ,, & TN
AHRECE, A—ov =<y FHET O HAZ FflHHIE S (Xeq) TG X TRE 3.

(he gy = e (ZXeq)EM‘WM (3.4)

22T, (Keq) gy, (REHEBIBIEL 2 B L IR L 7o 4 — 7' v~ v FREF 0 HAZ Ffifitf]
MIEE, (Xeq) pyy_yypy FEMIRIE & LSRRI & (AL LI ERIRA — 7 v~ v FHlEFO
HAZ i /Ex TH 5. (Xeq)EM_WM 1Z(B3)X~NANT 5 (S)naz% (Suaz/ Swm & L
T, B2k vkwonzg, cokiric, 4 =7 v~y FikFo HAZ FiitHNE S X%
w3 ZeT, A==y FHFo5RME bEHICKkO LR TE D, kb, FHEX
N-MF oG RE S IRMO5RME % ERE U, ERICET 2 56 BB, LRRIcE
L2543 HAZ Bt & HlE 5 5.

— rF s

© @Eq. (3.1): Xeq = X
= BM

b Or @kEgs. (3.1)-(3.3)
o *e,

= & QEgs. (3.1)-(3.4)
i" .."o

7 e

8 gfiaz =

€

o >

HAZ relative thickness, X (= H/t)

Fig. 3.1 Schematic diagram of tensile strength for softened HAZ joint
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33 AMREZMBT AW -NEE2 T 38t HAZ BESHERFD5|R

5 FE S

Wit HAZ JEEHM T 0 51IRIE X 5 X ORI T T NIEORE % i 3§ 2 729,
WA FEM i@t % £ L 7z, f#T€ 7 v % Fig. 3.2 1< 3, MRNTIC XL BRELR T =
— FT® 2% ABAQUSver. 6. 13 &\ 7z, TR IZIMED, 2% 323.9 mm, EE¢A% 11.0 mm
O & L7z, T E T V3R E X ORI EONH M2 FE L i e L7z, BEa A7
(EPET RN REGR & L. B O FRSEIEIRIE 60°V BUBHSE & L 72, BN I B T
2APRHERIEREIR L, AR 2 S e T R L, WAESE, M, BVEER O 358
HicaEI L7, &SEMAMROIST) 03 ABRIZ(3.5)-(3.7) X % v THfS L 7200,

1

_ 35 (5 \m®o (3.5)
€ E+Gh9
oy _ oy’ oy)? (3.6)
. 1+ 1.3495 (UT) 53117 (GT) +2.9643 (GT)
2
112494-110097(91)—-117464(92)
or or
Hon = 0T exp(ngo) (3.7)
RO = Tmg
RO

TTT, elZEVT A, sREINS, EdY v 7K, o3& RIGH, opld5IRRE, ngeB L O
Hrol3 B.6) X2 B 7R ckE2fich 2. chooXo AJMEE LT, BT, BRIGH
% 415 MPa, BRIt D5I5REX % 520 MPa & L7-. HAZ T, B ORRIGH & 5I5RE X
DENENIC(SIuaz X E LML L7z, WERECTE, BMoRRIST LElRRE 0Zh
ZNIC(SHwmE LML L7z, MEIORERBI%NT Mises D&/FRELAI L L7z, BE %
A CTHFRBETEE L 2 DRET 57280, BESEZERA LA OMERE (HAZ L#
M) 12 £0.5% D BEAEEZYIRAE L L TEAL -

BEEE OTEARY - SEEERAE O T N REI 1%, AL & [k, —MI 7R84 754 v
JARE#EEL, X <055, 08<(S)uaz <10, 1.0<(S)wm <12& L7z, NED AT
Lt BR)RICEERT 2 NEMREU, (NEIC X 2 BTG 0y B4 O BERIG T 0EM)
ZHWT, 0%, 20%, 40%, 72%® 4 &F& L 7=,
o,  (PD,/2t)
oeM - oM

fEpTClx, WHEZ AR L 72821, WEEZ —EICRD 220, EihamcmtilZir x5 2 %
T & CHIG R E % B L 72, 5 o ARG I, REIZLLIC X o TAT X 3 51RR
HICN L CHEIC X 28002 MK L, 2 0GFHTEZ MR CH S 2 & cko ., #HF0T
IR X T RAMERFO NI & LR 72, Bl Ao O3 A, FEEDS L 0 7 mic £
150 mm BN 7= ATEIC B T 2 M OETT 0T e LTRD 7.

Fig. 3.3 IC FEM T X V18 o7, JERAESET O I KT ERE £ CO QMG —&ET O
FTHREFREZRT. WTFNONEL ~ALTH, HAZ BEDFEMR X X v kT o5 E® X 1%
EV, S, L HAZ ~BERRSR s E %, BES LA LEZb0LFEZLNSE. NE
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BEREING L, MFORKMELEILFEL 22—/ T, RAMERO VT AIIMET T 5. £,
BArhic i, BEWTAE & L C, T B CRERIIC A v F v O ETESER L - &E MM b R T,
Fig. 3.4 i FEM i X Y 5 o =LK R Pl 2/~ d. WIEMECIEAICEEM T v F v
LD LT, HEXEWEAICIE HAZ Ty v 723407 o ki, ik
HAZ BT O PRI R IINIE D& 2 KT 2 2 Lo e o 7z,

(o R Cap
] {HAZ width, H
—>s Remote strain L2zt L
— ) f
| 150 mm
3D, Internal l; f 5mm }
pressure .

150 mm

»' Remote'strain

Pipe
Y v v Thickness, t

() Axisymmetry

Fig. 3.2 FE model

800
oy Necked in HAZ Necked in BM
o
S 600 /_\__ /‘
v ,‘;".;'.-."_;" __________
R P
% 400 1 p—
E‘ X =0.36 —-Ip=20%
2 200 (S )naz = 085 | = Ip = 40%
£ (SPwm = 1.20 | e Ip = 72%
= 0 1 1 ] ]

0.0 2.0 4.0 6.0 8.0 10.0
Remote axial strain (%)

Fig. 3.3 Effect of internal pressure on tensile strength and deformability of girth weld joint with
softened HAZ
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Diameter Thickness Diameter
e — ‘ » -
Cap [

Necked in BM
S
o Thickness
Thifﬂess Necked in
/ HAZ
(a) Necked in BM (Ip = 0%) (b) Necked in HAZ (Ip = 72%)

Fig. 3.4 Necking behavior of girth weld pipe in FEM results
(X = 0.36,(5:)uaz = 0.85,(Sr)wm = 1.2)

3.4 Bt HAZ [Nt F 0@ EFHm= IS 2 NEDFZEDMIE

AT, NIE AR O HAZ BE ST O MM 2 M3~ <, A oL
7= 84t HAZ [ Rk T o0 s A 21 0 3 2 PUE OB D IE A iR I B L C B8 %2175, %
3, FEM iR X 0 5o =T oRRm & &, AERT o mEFEMm= X b 55 -k
FORRE®RS R T 2. 0T, ZOHBEREE D &2, Bk HAZ #F 0 S I i
N 2 NEOHEORHIE R £5E3 2. MHIECIE, PIEEREDMEME O B O,
B X OBIRAR R OIS B ORI 2 N ENEHT 2. 2T, 4 —7 v~y Filk
T (RBELIROMEESE &5 L WHET) 2R RICHIIE AL RS 5.

3418t HAZ BB F DR I ICX T 52 NEDFEDIEE

3.3 fiic/n L7z FEM TSR X VB o N NERZ T 28k HAZ FEEMRTF o 515k
XL, AIEHF MBI X Vo hznlERImE ((3.1)-(3.3)) % ik L 724558 % Fig.
3.5, WEAARMINTHARWEAICIE, MEOKERRL —KT 5. LIEH#T R
JE R I ARIE 23 5 ~ 7 LA Lo B R Bk Z xRk e LCs Y, BRI L TE D4t
JARE (AMERER A COMRICHY) 2o RVESEMRF IO L b, mEFHGRILZ o
TEEHCTE 20, —77, NEARMKICIImEE ORI BT, NEARMFREOFIRE X X
WEBENEE XY &L RoTE Y, JATRMKT ORI U CHIEARE L 72 5.

342 NEERBOMEMEIO RN TOBEEEE L /-fH1E

Mt HAZ [RERE T 0 38 M 2 M 15 2 720, WIE AR SE MR O [ ol 7
AR CE B 5. bR oSS 2P B Ic il oW E 2 20 2 54 2 ETh
iE, WHEATIC X > THEL 2 —EDRJT RIS OFE-C, EME o R ol 5] iEiR
ERERTLELZONE Z DD, ZORELBEFRICHAAL T EERETT 5.
19, WEME R, NIEAREOHTRO5RRE (RAFRER O AIGH) O
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650

—_ X =036

(1]

% 600 (S-)uaz = 0.85 /Eq. b1y
< (Sr)wm = 1.00 I

E 550 e

5 ""/e Eq. (3.13)

2 P

@ 500 | A

*GC')‘ Egs. (3.1)-(3.3) OFEM

% 450 1 | |

) ° 20 40 60 80

Internal pressure, I, (%)

Fig. 3.5 Comparison of tensile strength between the calculation results and FEM results

FHARXZREST 2. BTG L8770 © ZHhISIREEIC B 1T 2 MG a1k, Mises
DRI ZIE TIEB.9NTEE D, b, G0 XA 77 4 VIO RERERIE X Mises
DFRBEIECRIATE R LREH2BIHHEINTVWE 2 ehb, 2D X ) aEEE, T
REFT AT T4 VORI Z FHRCZ 2B REBEZENT 2 2 E08EE L.

G = \/%{(aa — op)? + 0,2 + 0,2} (3.9)

o X IS, oy ZETEIGICH 5. 2 2T, WEIC X 2—ED R HIG T Clilifh
JEN %I 72 EF OMMIES A, HHHE R CORIRE X op s OMSIGH EH L o 7z
EEIC, THUCHEHET T RARGIRIGH (BIRME) K725 FEZ2 5. TOFZICHE T
X, B9 5, & 2RETEICT 0, TORITIADFIHRIRE (o7)y, 12 (3.10) X THE 5. B
DHD O I BHEMEI 2R E L 72560 (3.10) et B H % Fig. 3.6 iIcRd. PEIC X
% AT RIGT A3 51 5RIE X @ 0.6 F2EE £ COHiPH <X, NEDHMIC >N CTlTmo B2 13 o
FlERm X b LR 3.

(o, = % [Uh + 012 — 4(op? — O'TZ)] (3.10)
B, 3.10)XDBEHICH > T, 85 MICFREIEICHIIRIE S O LNFMEEZ AT L TWw 5
2, B FUBT IS L Z2 I AV Th, (o), DATFHRERICIE L A EHEED N C
L AR LT\ 5. Fig.3.712, (3.10)2%% X ONFEM X b {3 bise, &R OME
PRI O O RAZIRIE S (R 03IME) 25d. ST FEM MR e &
=KL ThY, AHFEOZYMEIHEETE S,

e, W b HAZ fF oM ic v T, PIFE AR O SEM B D JL2s 1 F OiREE %
FE L - IE TR ARG 5. sERHE N ((3.1)-(3.3)F) ~D ATHETH 2 (S,)yazic 2\
T, 77 TH 2 HAZ DFERE L R TH 2 B 05 [EM &S Ao WED 2%
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Apparent axial tensile strength,
(UT)IP/UT

0.6 | | | |

0.0 0.2 0.4 0.6 0.8 1.0
Hoop stress,on/ ot

Fig. 3.6 Apparent axial tensile strength of pipe material under internal pressure

650
E 600
=3
<
E.o 550
g
E ¢ —CAL (Pipe material)
= 500
EJ O FEM (Pipe material)
450 : : '
0 20 40 60 80

Internal pressure, I, (%)

Fig. 3.7 Tensile strength of pipe material under internal pressure

ZV, T OERGTLORTHIbIHEINS 720, NEOHELHIEST 208 3L, 20D
729, (3.1)-(3.3): TR F 2MFHELL(S, ) INHEDHEELZ T x\v., DL & OMFEE
(4%@,@Jnﬁmﬁfiam,eimﬁm;OTWE@%%%WELkﬂMﬁEQPQP
L(S) PR bRkDLND.
(o1),, = Sy (of™),, (3.11)
Fig. 3.5 ICB W T, NEARREORMIEE % Z R L ko 7255RE S (3.1 1, FEM
fETRE R e —E L Tk Y, WIEAFEOZRLYERHERTE 2. 2L, GIDKTRES
BT 13 FEM &S SR LT, HR I RS WP T ik ic RS 22 S 3.
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343 NEERFKFOMEMKEIDER - EEAMOINKEL DR EEEE L /-f1E

W% 221 28t HAZ R BT 05 IIRIE & o FRREE 217 E X 2 2 720, NIE AT
DHEM IO IWGEFEBNCE B L 22 fiEic oW TiEtd 4. Fig. 3.8 1c, ST ICH 2 8%E
MR OIGEZRB) 2 R 3. WA ERNCiEy, PERE L, BARENI7IREL RS
13 L, W51 D PR TZ O U C R T A D UNAEZE T A3 & 4, B ETT 18 D INHEZ T A3 g it
INBBL ZokHic, NEICISU TEDIMEIEEEI Rk 5 Z &0, (L HAZ 236k
MH o2 2 MERHRD Z 08 R T2 E2bNE. 22T, WEMFOZERNRS
Vv, (32)RX TR an b HAZ SFHMADNE S & H L7z, HAZ SFflfINE X 1E, HAZ & ol
REC BT 2 8MOMUETR O E L ERT 2720 BAINZbDOTHY, EFHERE
Flf3 2 2 & TRbNTw 5, REETClk, NEAMKEO HAZ FfifHxE < X%, FEM
RN R Z mIES 5 2 & TRk 5.

Fig. 3.9 1c, WH DAL ~VICIG U7z HAZ i E & X 2" 3. 22T, FEM fig
W& RSN Xqld, FEM RN TR LN T 03RRI 2 B.DHD(S,),Dap~UA L
TXegICPWTCRN D DTH L. RFOXDHEPAIL, MWETIRELA R O WIAIY O %
2135 B2 TEROFMHICEENS. Fig.3.9 ® FEM AR L Vb7, Xeq& XDBIR
CEHTIE, WESE RBIEE, Xeq L XPMEEFSRE R 2MEAERT. 22T, &
N5 D FEM TR & —23 % X 5 Iclllfd 5 & & T, WEAMFFOX Dt IZEL
iz (3.12) o L 5 ek 3.

X (X >2xEM)

(Xeq),, = {[0.5 +4.45 (J:]*;M)] X+ XBM (X < 2XBM)

22T, XBMIZB3)R L W RE R TH 5.

MEM RO IGFEE DR EE 3.12) A THIEL TR O N7 (Xeg), %, B.DHADXeq It A
ﬁ?%Ck@,WE%%%@%%@ERM&hﬁ%ﬁ@?%.:@&%@%%ﬁﬁﬁ,%
EMElo R uomEiE (3.100R) d&EEThIE, G13)Xckes. B.13)XoFEM/E
% Fig. 3.5 1wnd. QI)RoFHEERIL, #HEMEO R, FOMEDAZHHIEL TR
NBEHEAER (BI1DR) L <, FEMAERE XV R—FEL b ehrs, HER
MO UUHZEE) b #IE L 72 8RR ((3.13)R) 02Ut R TE 5.

(o1),, =[], - (of™),, (3.13)

(3.12)
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Nondimensional strain

0 20 40 60 80
Internal pressure, 1, (%)

Fig. 3.8 Effect of internal pressure on shrinkage behavior of base metal at maximum axial load
&,: Axial strain, &,: Hoop strain, &;: Thickness strain

_ 80 !
><u (Sr)WM = 1.00 @] IP = 0% (FEM)
g A I = 72% (FEM)
%
2 40
kC
b
€ 2.0
o
©
2 Eq. (3.12)
g 0-0 | | |
N
< 0.0 0.2 0.4 0.6 0.8

HAZ relative thickness, X

Fig. 3.9 Comparison of HAZ equivalent relative thickness between the calculation results and FEM results

42



3.5 NEEX T 28 HAZ BaERFORE AR DiRE
3.5.1 sBEFHEX DETEFIE

SAETOEREZEE AT, RET 2 NILAMKF O HAZ EIEZEMRT O 5 Rl D

7o —% Fig. 3.10 ISR T, #HE 7o — 0z U TIORT.

1)

2)

3)

4)

R IRIRIE X MR & 2R L7 0U8A — 7 v =y FRTFORBEEF L, BLUR
MBI & AR R A7 L 2 (BERER A — 7 Y~y FRFOFHEEF L0z h
ZFhicx LT, GLXEHAWT, NEOFELEEL - HAZ %mﬁ*ﬁﬂ@é(xeq)lp%
ZRTNEHT 5.

EAREMT, (U4 =7~y FHFO HAZ ST E|(xey), | & D0k
BRI A =7 < v T HFO HAZ FIHANES [(Xeg), |~ oFEME 2 2,
H—ri= Ty FREFO HAZ ST [(Xe), | 27T 5.
@@ﬁ@&m=K&%JWkLf%%ﬁﬁwﬁxmbéﬁﬁia

[(Sry], 13 1.0 & ERRE L, 1.0 DB E AT, 1.0 % Tl 2 5613 HAZ BT & e
T 5. MkFojlRmES (01].)IP i, HAZ TS 2 B8 2[(S,)], & PIE AR O
DBIHRI E (orBM), ORETHD bt B TS 2 B AIC (0P, & L TR b
5. 22T, (p"™),13E)HX LYV k5N 2.

3.5.2 FEM 817 (C & 2 @ M= o0 Z L 4R EE

Fig. 3.11 12, KhofEc OEHMIEIROSMED b & T, K L 7 ELRH X o SRR

& FEM ftrft i & o i 2 m 3. SREREIL 098 TH Y, —fRicBEI NG 4 77
A VIsETEIR TR LT, REAIMFO5IRME 2R FHITE TR 3,
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Input parameters

X, (S)uaz, (S )wm o Oy

I
:

1) Correction of internal pressure on
HAZ equivalent relative thickness Eq. (3.12)

11
v

2) Correction of (S, )y ONn
HAZ equivalent relative thickness Eq. (3.4)

il I

I
3) Joint tensile strength ratio [(ST)]]I Eq.(3.1): Xeq = [(Xeq)l ]
P P OM

Joint strength: (J%‘M)]
P

4) [(57‘)1]1P < 1.0

Fracture location: BM

Yes

Joint strength: (J%)IP (JTBM) . Eq. (3.13)
Fracture location: HAZ I

Fig. 3.10 Flow of estimation of girth weld joint strength considering effect of internal pressure

= 650
< 1.0 < (S)wm < 1.2
T 0.8 < (5 )yaz < 1.0
600 F X <055
St
™ Pipe test
" < (L=72%)
E‘ 550 - R2=0.98
i’ O Ip == 0%
T ° o Ip = 20%
§ 500 - 1 / S
o CWP test
@ (/,=0%) Olp=72%
g 450 1 1 1 |
5 450 500 550 600 650

Joint tensile strength (Cal), (U%)IP (MPa)

Fig. 3.11 Validation of proposed joint strength formula by FEM results
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3.5.3 EEMBRIC & 2 @E = D 2 L HEAREE
3531 EEHRDO AL

b HAZ JEAE T 2 WV 2 FE S R 2 1TV, 2K T 2 58 BTl = o 22 2414 % ik
3 2%. Table 2.2 ® No.l DJEEHEMFEEH VT, NWEMELOEFELIRABICHY T 2
CWP(Curved wide plate) 5liRikER &, WIE% Aff L 72 RETOEET R EZ Z Lt hE
fiL7-. Fig. 3.12 ZfkF5IRRABRORAEF OBkE L OTETH 5. WInoiREkD JE
B ORKIZRE L. NEIX 14.8MPa & L, WERKL, (WEIC X 3G EEH /B
MORRIGTT) DIFEEZFWT, 72% LICHYT2AMHL Ve L b, LOGHEICH
W 72 RV O RERIS I I3RS R/ IME & U 7=, NIEIKIC X 0 &L, 5RRER I —E D NIE
L ko IcHIBL 7. RERRRICIE, B — PR X WElfREY, O0OFAS— VI X ) R
OB H O[T OT A% Z N ZNEHII L 72,

L Girth weld J - N
200
N S S (] 274
N4
I RN _ v
L 600 !
P 850 -
~ -~
(a) CWP specimen
Girth weld
900

(b) Full-scale pipe

Fig. 3.12 Geometry and dimension of tension test specimens
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3532 EEHRBROER

Fig. 3.13 12, BlikikBEZOMaBAEOFEH LR T, NWER /o wFhoilifikd HAZ
T UNEPIE LT, HAZ S S L 72, %7z, Fig. 3.13 ICOFRICT] & R ER D=
T OF A %R d. DNPRIGHIE, FHl L 7= filif] 8 % 36 & s o WA < bR L 720601, ;W
JEIC X 2807 MRS 2 N L TR 72, &5 O F AL, FEE 2 S £150 mm OfZE ICE
W 900 vy F TR L 72 AR D AT O3 A D51 8 s FHfE L L7, NHEAAR I L
2L EAERT ORI\ 283N L, NTEEDSADLIEMRX X 513 MPa T® - 72D Ik
LT, NEHDHADEIRIEE 13564 MPa TH - 7-. %72, PIEARKHIREKTO5
IR X X, HAZ THMI L Cw2ichhb b3, AMo5EREE (5633 MPa) % LAl 2 45
Relrot., 7z, NEMPAM I NS LRAMEROET VT HIIET L, NEROE&IX
57%TH o7zt LT, NEFOHAIX21%TH 5 7.

(a) CWP specimen

(b) Full-scale pipe

Fig. 3.13 Photographs of pipe specimens after tension tests
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Fig. 3.15 1, SEEEREHR L T 2 CcfRE T 2 RHliztic X 2 5HRF R 2R3, R
i Fig. 3.10 O 7 v —icfit o7z, KHicid, MR X YRk 72, NECIS L Z#Fo55R
X L RMOBIRBE EZNEIURT. Fig 3.11 1 AEBER BT 5. MTmED
AHERER & FEM #RIGNEARFFcd B —&L Tk Y, MmEFHio 2 Yol c X
5. A<, WEFGX Tk, #Foo5iRE X 23R O 55RIE & KT H X HAZ #ico
W L HIES 2 C &2 b, FHEMBRTIIWThoREE D HAZ & FHliL TH Y0, FEh
fike —8$ 5. 2ok, MEFHMIA XV EonMFO5IRE S I X OIEMIAIE 35
B RL—HBLTWwBEZERb, FiBRICEWTY, LT 5 Al 2 4 A3 HER
T& 7.

600
—_ O'TBM)—V jommmmmTT
© i
a g HAZ "
S T
< 400
(%]
(]
7
% 200
< —CWP
----Pipe
O 1 1 1
0.0 2.0 4.0 6.0 8.0
Remote axial strain (%)
Fig. 3.14 Experimental results of full-scale tension tests
650
X =0.55
E ($)naz =082  ____----
= 600 F(s)wm =106 e
-
5
o 550
i
= O —Joint (CAL)
© 500 Fracture zone: HAZ X .
k] - --Pipe material (CAL)
O Joint (EXP)
450 | 1 1 |
0 20 40 60 80

Internal pressure, I, (%)

Fig. 3.15 Validation of proposed tensile strength evaluation formula by experimental results
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3.6 NEZ R 2L HAZ FIAHERF OV T ATHERDIRE

3.6.1 EX1L HAZ FREMF OFA O T H5HilE

AT CIRAE T OFFAMETH 2 1R S 2 ko 2 FHlI B RE L 7228, 74 v 4 72
RE %52 BEROETANERETH 25FR V0T & (53R O BAMERE OB EST O3 &)
b EEL RS, 22T, ROFIETe 2 HET 5 FEAIRET 5. L5, WEM ROy
[ DEEMRHEC & 2 I6-0F 2B %2, WNIEAMKRE Q@B M O#; 7 OIS -03 # B
RICEIES 5. ZOILTI-0F 2BR 5, AIEICHRE L 2R X 0 508 T 2T
DRI E L[ LAWIEN &R T L E DAV FABHFROS he b LTRkDOND,

3.6.2 NEEMEOMEMBOLN-0T ABROFEFE

WEAEOIES- 0T RBIRIC BT 2 KI5 - OF ROl % PIE AT OEIC 2 W2
M 2R TR RET 5. UUF, K2 XA 3 720, MG m o) & 03
BEZNZN(0)ok (8)ok L, N5 EMIGT 2 WIEATR O H OGN & 0Fh% 2
NZ (o), & (e, & T 2.

EH %I, 3.4.2 T (3.10)30 & FRRIC, Sl ARAKAE & PIFE BRSO 5 | SRk e
MG DA & 72 2 X 5 12T 5. (3.10) 3 T IR G IR O 53R X o B O 4 I
NICHEHL TV B2, ChELEOMIGHICHIGL 2B LT 5. (3100 Top%k (0,), & & ¥
oz UL, W RIG ) 022 (3.14) X tHKe 5.

(O-a)lp = 1[Uh + Jth - 4(0-h2 - (O-a)oz) (314>

2
OFHRDLEMTIE, PO T ABIEMIC 2 % X 5 & 5. PIE AR Iy @5
IREZT 2EEMET 5 L, BRIk epl & JEA RIS &7 iG] o d—iE)
CHRERITE R Z D, 2 OMNEHII SO TAERANETE 3. 20 FRERICHE
DX, ISR EERT 0B L, HYBEEO T ARePiZ(3.15) T2 5. &b, &
zciafiiic, Ko FADEIIAMOLEVT AL T 5,

&= J%{(sa)z + (en)? + (207} (3.15)

2T, JKEERGEDOT A (= g, /e,)F L WEESTR LT RO 0T ALE(= & /e,)
X, BT TR OIE T a(= o /o) % VT, BRI (3.16) TR B LIRET .
(3.16)X T, WMHEFEAE —EMEZEL, a2’ 0 D5E @0 AAR XN 25E) 11,
en/ea B X W/, 25— 1728 720, a?d 1.0 4 @7 RICHT & EHRIE83% LwEE)
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Fig. 3.16 Validation of the calculated axial stress-strain relationship of pipe material under
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Fig. 3.17 Examples of the calculation results of remote strain of girth weld joint at maximum load
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Fig. 3.18 Effect of internal pressure on tensile strength ratio of girth weld joint
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Fig. 3.19 Effect of internal pressure on remote strain of girth weld joint at maximum load

38%EE
KECI, WLHAZ #6354 75 4 v EEERTFOBRES X OFF0 T4 (RAN

Hlkf

HCORME DT O3 4H) OFHlliz, X, b OEEEMT O )RR o

TENEDHEICOWTHE L7, BonMAZ U TITRT.

(1)

(2)

(3)

BEEEN R CH 2 ){t HAZ JANERETF o 5@ i = 1ok L <, AR OB Mo &
2 ORIRIE X B X CIUEEE 2 ERE L CHiES 5 2 & T, NEARMFOIRI HAZ J&
AT iR X 2 PR L 7=,

WIE AR O B DIG T O3 ABROFEA L IRE ST 2 L & bic, A= & H A
Hbe s LT, NEARKOWIL HAZ #F 0RO A (A ERF O R 7T
O3 H) OFHli Z KL 7=,

REL 72BEFMX 2GR T 2 2 &<, NWEMEBERFOLIE®BRI 3 X OHFRVT
BICRITTHERZH LI LTz, WESEWIZY, Fo5RME 13 BRI 323, B
D B OBRESMTIEE % L0 2 X 5127 % 720, BEWiLE SR 2> 5 HAZ 124k
3 %. HAZ i3 2 55 id, SEMR L3 8M O — kR IcEST 2 ENICIT B Y 5
N2, FLLTOFROTARIETL, NESEHWIZE, FROTAIEFE LI
DR

52



[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

SE Xk

K. Satoh and M. Toyoda: Effect of Mechanical Heterogeneity on the Static Tensile
Strength of Welded Joints, Journal of the Japan Welding Society, 40-9 (1971), 885-900,
https://doi.org/10.2207/qjjws1943.40.885.

K. Satoh and M. Toyoda and E. Fugii: Tensile Behaviors and Strength of Soft Welded
Joints, Journal of the Society of Naval Architects of Japan, 132 (1972), 381-393,
https://doi.org/10.2534/jjasnaoe1968.1972.132_381.

M. Toyoda: Ph.D. thesis, Osaka University, (1973).

HABE S Sl e S] ZE S « SHBEMT O 212 E) & R Ic B3 2 W,
S] ZE&KAWMEE (1975) .

T. Sakimoto, S. Igi, S. Endo, M. Ohata and F. Minami: The Influence of Internal Pressure
on Ductile Fracture from a Circumferential Surface Defect on a Pipe, Journal of Japan
High Pressure Institute, 49-4 (2011), 157-164, https://doi.org/10.11181/hpi.49.157.

S. Igi, T. Sakimoto and S. Endo: Effect of Internal Pressure on Tensile Strain Capacity of
X80 Pipeline, Procedia Eng., 10 (2011), 1454-1456,
https://doi.org/10.1016/j.proeng.2011.04.241.

T. Shintomi, I. Chikushi, Y. Hashimoto, M. Ohata, M. Mochizuki and M. Toyoda: Effect
of Weld HAZ Softening on Tensile Strength - Studies on Deformation and Strength in
Welded Joints of Fine Grain Steel (Report 1) -, Quarterly journal of the Japan Welding
Society, 21-3 (2003), 397-403, https://doi.org/10.2207/qjjws.21.397.

T. Shintomi, I. Chikushi, Y. Hashimoto, M. Mochizuki and M. Toyoda: Prediction of
Tensile Strength of Welded Joints for Fine Grain Steel with Softened HAZ - Studies on
Deformation and Strength in Welded Joints of Fine Grain Steel (Report 2) -, Quarterly
journal  of the Japan  Welding  Society, 21-3 (2003), 404-410,
https://doi.org/10.2207/qjjws.21.404.

T. Shintomi, Y. Hashimoto, I. Chikushi, M. Mochizuki and M. Toyoda: Deformation and
Ductile Crack Initiation in Weld HAZ Softening Joints - Studies on Deformation and
Strength in Welded Joints of Fine Grain Steel (Report 3) -, Quarterly journal of the Japan
Welding Society, 21-3 (2003), 411-418, https://doi.org/10.2207/qjjws.21.411.

[10]API 579-1/ASME FFS-1: FITNESS-FOR-SERVICE, (2016).
[11]H. Kitano, S. Okano and M. Mochizuki: Effect of Softening on Tensile Strength Limit in

Girth-Welded Pipe Joints, Proceeding of the ASME 2009 Pressure Vessels and Piping
Division Conference, PVP2009-77445 (2009), 351-395,
https://doi.org/10.1115/PVP2009-77445.

[12] M. Mitsuya: Rupture prediction for induction bend pipes under opening mode bending,

Quarterly journal of the Japan Welding Society, 34-2 (2016), 112-122,
53



https://doi.org/10.2207/qjjws.34.112.

[13]M. Mitsuya: Evaluation method with finite-element analysis for bending rupture limit
of line pipe with high design factor, Transaction of the Japanese Society of Mechanical
Engineers, 82-836 (2016), 15-00450, https://doi.org/10.1299/transjsme.15-00450.

[14]S. Onuki and Y. Seko: Effect of Internal Pressure on Ductile Fractures of Circumferential
Weld Joints of X65 Pipeline, The 27th International Ocean and Polar Engineering
Conference, ISOPE-1-17-412 (2017).

54


https://doi.org/10.2207/qjjws.34.112
https://doi.org/10.1299/transjsme.15-00450

BAE BRICAIARENC L VIERT 2 EMO T A=

4.1 %S

F2, 3FETIE, M T 74 VEABRERTFIRIL HAZ %63 2 56 0ONET TOMTF5]
RIEE S X IR OT AOFHBR A RE L 72, KETIE, 4 774 VEARERT oWkt
it B RN S B 72 - €, HRALINS R8I X - CTEICER 9 2 Bilth 03" 4 0 §Flli /7 i % i
PR E 5.

HIEEENIC X > CHUESRIRIL T 2 &, WIRIL L 2SR KT m & Vo 72d — & —T
TWARNCERL L, BN T T A VICKREREEHAEL 5 2 & »3EE S h 5 (Fig. 4.10),
BB NI D XS RHIEEN 22T 5 &, BicHFR5E - ML o 8RB 2B L
%5, Kic, Wt HAZ #kF @ X 5 I/ A KEES A FEET 2 54, 51 Mmoo
FTHIC K o TR BMERETRICEF L, FIHOWM 2 BNn2dH 5.

HARZSNL % 2T BN A4 7T 4 v OB BE % FHE T 5 BRic i, HigBIERIic X o TX
BNz 4 774 vofffie T A ERA I NS, T Fiko—2& LT, HFIREEMITE
DEAE T B %2 35 U CIRRIE TR 2 BB I i < FER S 1T o 3 24, FEfgT <
FERECHIEOND DD, SIEITh 7z 5 A5 O FE M7 fRHT & 7 0 DRELR
BRFEL Db, B0 RMEEITOMETHN O A Tldr\v., 2072, Kb
Frick o v, o3 2ofig a2 BEXZMET 2 2L b LEMICTEE N5,

HAEZE AT % 52 2 HIEE OB ERE LTid, A 794 v r—7 A Bl L C,
WEEOMOBEEN 2% T 27 —TAETARDTOLNEE0 coave Tt Lic
A oFEETALIRES I NTE Y, Fic, Karamitros 512 X 3BT 7 A01% FicF
J& X & 5 a1 23% 10131, Karamitros © OFFEE 7T VIL, B O MITZETE & R CF X,
O T DD Y Hnd bR, L EZ T 2EMEOIS T ANICERT
5L CHEOTAZEET 2 FETH 2. KFHEETVITHEERI R OB O T A 2EE
TE5H 0D, LEOEH EN R & IRGHE D R® b b 720, 3L dE50%

Width
(hundreds of meters)

N Ground displacement
(several meters)

Buried pipeline

Fig. 4.1 Schematic diagram of liquefaction-induced lateral flow(!]
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Fig. 4.2 Assumed liquefaction-induced lateral flow types

56



#HipHCc—E OB ) 2 FR X2 2 HAMEHET LV LARETE 208, KRG cNR &35
WCRACA 5 B D MBS A 135 m IC e i & 2 E B L, MNELL A U 5 &b <13 — &l
DMK N PBERT2EFAZHVE L LT 5, Cogs, Eihas X OEEA A
BT 5, BRI S0 oK IIf, qif, 2hZthXU@DABLPU@2) e LTk
nas.

f =1, 1D, (4.1)

q=o0.'D, (4.2)
TTT, t X EHMRAED - 0 ORI AWIS S CE T MO R T, o 38 AL
SR D 72 O OEWHE 7718 O e KA SR ), D (X EMETH 5. IKMLHERIC B 17 2
HHIE 4 77 ) DM ) 1%, FEHRIRAE AR & i L TN (72 5. 2 D728, M) DK
FEaZEAL, WRCHEE I B 2 EHEA T RORBER kg - ak T2
EOMEMWERR, Fig. 44 1083 X501, NIV =TETALET S, E, E, oy, o, %
NZWHMES O Y v 773, WPERURE, FeRIGT), GIRME &35, EoWEe— 2 v b
I SMIC(4.3) TR

[Do" = (Do — 26)*]

— 4.3
Mp oy 8D, (4.3)

T, tiIEETH S,

422 EAANDET AL LIBRE DL 5 E)

HEZ IR D ARG TRBN I X o CTERE M 7 M QML 2 Z T 284 754 v D
I TEfENT & 7 Vv % Fig. 4.5 IR T, WP E T L Cld, BEOLEIRDKEL &
%, R e & JERCIR LR & DBER AU 0 L ORT. ARRETCE, ekt ig s
DT, LB E T N R RET 5. MR TRENIC X 2 M7 i, Wk et o
FEIBR I 3 CEERIA A 7 1 O FEIE O MR ZE s & % . HUMEEE AT E C o ik L bR & JE
TCIRAL HUAAR 0 e M S R % 2 N E NS L6, & T 5. b EHliE A )5 rZE b & ik
2078 & DRRIZ(4.4)R e R 2. nd, RRETCHIE T 2 RN 1L, WIRILTEEHD
ToOLRED 3m &9 3.

5 = 6+6, (4.4)
FEHCRAC AR & MR AR 1< 35 W CERNE A T MO MR N 22T 2 ERI 22 E L,
bloel 35, TNOLDOERS XY IMUoEECIE, B LB oML A0 L xbY, ~4
7T A VITHRZEAIERE T S,

WREZE RT3 U B &, HER XA 75 A4 VT I IR ZE A0 I 5 TREIZENT & Mol S 1 A3
L, BHEET 5. IRV E WS, F ik & IERR b o B R Ic 5w T E
A 2% T 5. —J<, HBBEMNAKE 2L, MITEE O TIXHIEEZNT & T
LEnAaL 2, ELE,sE e s 2o, iFERCmz ciisREER S ' L T4
Ldzlickb,

57



Te, 0 |=====

Soil reaction force

»
|

Relative pipe-soil displacement

Fig. 4.3 Soil reaction force model in pipe axial and lateral direction
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Fig. 4.5 Approximated pipeline analytical model
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Fig. 4.6 Approximated analytical model for bending deformation
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d?u

EA—— = f (4.23)

2T, AIREWIE TS 5. FRSM12(4.24) s LM (4.25) ok 3.
x=0 u(0) =0 (4.24)
x =L u(Lg) = Au (4.25)
(4.24) X5 X *4.25) AR &M% VT, 4.23) X2 13, & O 223K E 5.
u(x) = zfﬁxz + (AL—l: - ZfE_L;1>x (4.26)

(4.26) X %U(0) = 0D TETIE, LipSKE 3.

L= /ZE?M (4.27)

x = LCOEMWMNE, LOFH CENMMMEFPEAELR DS FE2NIFA28)KTRKE 5.
F,=f-Lf=\[2EAfAu (4.28)

B O M ZN AU E OB Bk £ 5. il 21X, Vazouras, Karamanos 5
08191 %, WifE 20 % 52 1 % B OB IC B W, HolhmoZaiuz, &oihiFELE
R ZIEGEIR E L TEZCEigMickobns 2L 2R LTS, KiffgEcid, Bk
VUL EE O IT AR b & I ol a2 i Au%z Kk 5. Fig. 4.10 1R T
X5, ERhE AT OHBRZEAICHT LT, b v OB COMITERIC X b L AT % T
T B2, HBSZS AR & < 72 B & HITF TS O 2 C Ik AR fr % WINL © & 3, 45 il 171 o f
OCHELZ XD, Tk Zzic, HEOMUTH 27 ML AT M TR b U

e (4.29) R°RE 3.
L
pu= (L,/2)" + 8,2 - = (4.29)

(6u/(Lp/2)) < 1EMTETHIZ, (4.29)502(4.30)RD X 5 ICEFITE 5.

/ 2 _Lp, & ' Lp 1/ 6, \ 430
(LP/Z) +6n2—7 1+<Lp7> —7<1+§<Lp/2) + - (4.30)

430X TcHE_THFTEHFEL T, 429 VRATNIE, Aulx(4.31)TERE 2.

1Ly [ 8, \*
~-p( %n_ 4.31
Au=3 (Lp/z) (4.31)
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Fig. 4.9 Pipeline analytical model with displacement and uniformly distributed load in the axial direction.

Plastic hinge

Fig. 4.10 Pipeline analytical model using plastic hinge analysis method.
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i¥, Fig. 411 ICRT X5 RMTEEEZZ T 254 77 4 v OBUNMEETO DD ) Hunsl
11 (4.34) R cFR2 36,

<o, (4.33)

do
R-df-q = 2F,sin (7) (4.34)

TZT, RIZINZFPEETH . $72, MiFr,13(4.349)XX v (435) LKL 2.
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(4.36)

S dey2

. do/2

do

i
1
) -
' -
, ="
Il PPre
i -
i P
'\ -7
i -
i -
1 Pt
i -
r -
-

Fig. 4.11 Effect of the axial force on the curvature of the pipe
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Fig. 4.12 Calculation method of curvature considering bending deformation and axial load
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F A, BEERTEE WA E, T OIS D530 1% (4.37) X & GE I E T 5.
—oy + Eje, —gSg0<gon

o= -
gy + Eje, (an<p<§
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F=2JiatRmd<p (4.38)

(4.37)

> F = ZREZKRmZtZSin On + 4o Ryt
T 2T, Ry XEFH¥E(= D, —t)/2)ThH 5. (4.38)x=cH L T, sing, = ¢, DuLl%H
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Fig. 4.13 OIS /1040 % Z 3 1E, 5IRHEIcod 7zl b &R £ T o ke, 13 %M
ic(4.40) Tk 3.

(4.39)

Pn

Ce = (Rm + é) (1 +sing,) (4.40)
I, ENRMDCTORKEMOT Aepyid (44D L Rk b2,
Emax = K * Ct (4.41)

Tensile side

Compressive side Emin

Fig. 4.13 Stress and strain distribution of the pipe cross-section where it is subjected to bending
deformation and axial load.
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4.4 BRI A RB & 2T 2IBREDEMV I AFHERXDIRE

4.4.1 O HFHER DO EFIE
Fig. 4.14 &0 T AR OHETIEE RS, AT T XA —=21354 7T 4 v OHER

13 X AT EI R (D, ¢, E, Ey, 0y, 0p), B & MO EIERFHE (00, @), HIEZNL(S)

TH5. BENZREIRFEZLLTICORT.

D R —FERIRC IR TSI B 5 84 77 4 v DU AL % Ko 5 ((4.8)50).

2)  WFETER O e, ((4.22)30) % 5k 2.

3) BlEEINE((4.32)R) %2k 3.

4) W oFEEERL 25EOEK,((4.35)R) Bk - b, iFEE L AES L
725G oK ((4.36)0) 2K 3.

5 EWHCTORNOT A ERT NI A =2 L CHIEEDAE, ((4.39)0) &
K Oz EhD b BRI E TOM#Ec ((4.40)30) & ko, ®mEIC, TNHDNTA—X
2 HIRKEI O T Hena (44D R) 2 3Rk0 2.

Input parameters

Ot—0y

Pipe properties: D,,t, E,E, (= YT 005)’6y' Oy

Pipe-soil interaction properties: t., 0., @
Ground displacement: §
1)

Lateral pipeline displacement at ground boundary in non-liquefied area &,
(Eq.(4.8))

I
v v
2) 3)
Curvature k, (Eq. (4.22)) Tensile axial load F, (Eq. (4.32))
I |
v
4)

Curvature k, (Eg. (4.35)) and k (Eq. (4.36))
v
5)

Parameters which defines the stress and strain distribution of pipe cross-
section ¢,, ¢; (Egs. (4.39) and (4.40))
Maximum pipe axial strain &, (EQ. (4.41))

Fig. 4.14 Flowchart of proposed formulas to calculate Maximum pipe axial strain
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4.4.2 FEM fEHTIC & 2 BEHO 9 A EHl= 0 2 L AR EE
4.4.2.1 BRITEM

EWO T AR O Z YR WREFT 2 72010, 4 OFITCORE R 2w R, EiiEfy
7] D HIAZ AT % 52 1 % HEEEAE o FEM fi#fr % e L, Bih O3 2l o 5HE SR & g%
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(ZICRACAEE I L L 7=

Fig. 415 R d X oic, &% 1/4=71 L, HEOREX% 1000m & LT, Ho 200
m OHEPHICEE A S O MRS & (5 L7z, HRENIS 13, AIREHcE T 2 LRfE
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BOEWHEL R WIRIC O W TIRIRERTET AL LT, v o2 AV BEED X v > a3, AN
FHCE 48 3Ele L, Bl RO A vy v 2 RIFFAH ARy v a BRI D55 Lz, PEER
DEXZ1ImeL7z.

Table4.1 iz, & OWIHE RS X OMEFEZ RS, & oMEFEIL, Fig.44 1R 3 X5
i, FY Y =T oI OT ABERE AW RIS B X O0FRE & 13 APISL Grade O#
WE/MEZZIR L 2. ¥ v 7%(3 206 GPa & L7-. Mifigl¥413, Fig. 4.3 1Rl X5 i,
H LR O M ZEN R /N X WHEIP CIARE I, B LB oMW R —EELA R 7x
5L, MBBRNDB—EDEL 725 X5 ICERIE L7z, Table 4.2 1C, BHMEITIE U 7z il 4
FetE 2 n 3. Mo~ 2 REME e bR R & FECIR (L b Ak & CH7r 5,
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<«
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_______
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Fig. 4.15 FE model of the pipeline
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Table 4.1 Pipe geometrical and mechanical properties

. . . Tensile
Case Blar?n(:ti; T:'?rl;nnejs D,/t Grade Y";Id s(’:\;lepr;g)th strength
° y o; (MPa)
1 323.9 16.2 20.0 API 5L L450 (X65) 448 530
2 323.9 16.2 20.0 API 5L L360 (X52) 358 455
3 323.9 16.2 20.0 API 5L L290 (X42) 289 413
4 323.9 8.1 40.0 API 5L L450 (X65) 448 530
5 406.4 16.3 25.0 API 5L L450 (X65) 448 530
6 406.4 16.3 25.0 API 5L 1360 (X52) 358 455
7 406.4 16.3 25.0 API 5L L290 (X42) 289 413
8 406.4 9.0 45.0 API 5L L450 (X65) 448 530
9 610.0 13.6 45.0 API 5L L450 (X65) 448 530
10 610.0 13.6 45.0 API 5L L360 (X52) 358 455
11 610.0 13.6 45.0 API 5L L290 (X42) 289 413
12 610.0 10.2 45.0 API 5L L450 (X65) 448 530
13 762.0 12.7 60.0 API 5L L450 (X65) 448 530
14 762.0 12.7 60.0 API 5L L360 (X52) 358 455
15 762.0 12.7 60.0 API 5L L290 (X42) 289 413
16 762.0 9.5 80.0 API 5L L450 (X65) 448 530
Table 4.2 Pipe—soil interaction property dependent on the pipe outer diameter
(a) Non-liquefied area
Non-liquefied area
Diameter Axial direction Lateral direction
D, (mm) Yield force Yield displacement Yield force Yield displacement
7. (MPa) Sc (mm) o. (MPa) Sc (mm)
3239 0.015 2.5 0.420 27.0
406.4 0.015 2.5 0.390 28.0
610.0 0.015 2.5 0.340 29.0
762.0 0.015 2.5 0.320 30.0
(b) Liquefied area
Liquefied area
Diameter Axial direction Lateral direction
D, (mm) Yield force Yield displacement Yield force Yield displacement
7. (MPa) 6. (mm) o. (MPa) 6. (mm)
3239 0.018 2.5 0.204 27.0
406.4 0.018 2.5 0.192 28.0
610.0 0.018 2.5 0.168 29.0
762.0 0.018 2.5 0.156 30.0
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EEOF AR O TR —3$ 5. Fig.4.17 (b)ic, HMEHR oWl iF, %/~d. FEM
FRMTRE S & Bl O - A3l Tlg, s,o8hmct U<, EiciZ5IRENEAER L, §,&E,
DRI B L ZHE L RoTEY, ZOfED R —EL T3, Fig. 417 (o) IcihiFEr %R
3. FEM f@fTAs R & Bilh O3 A 3Hili=t <, ihiEIZs, ot L <, o i3fEic b
FL, PHCHIIb LAY —EMELRY, MEOMAIT KT 2. 20 k5 miliREo%EH L
B AN = AL, BEEHOT A COETATHE L 72 X 51, 8,25 X WHEL i3
FEER LB TH 5 DICK LT, §,28K & 722 &, MM 23K & 70588 < 135 | 5Rih )
DREPLIN L 725720, S ML CTHHMEIEMLAVWbDEEZ HN5, REIC,
Fig. 417 (d)ic, mAREHWHOTH%ERT. LA L FEM IR L 0 b RKEHO T 2%
LK FEI T 2 EHM 23D B b 0D, ElOF HGHM O FHERE R IL RS IC FEM AT A5
REFHlTETn 3,

Fig. 4.18 i3, Eih 0+ 23R 5 X O FEM @ 2 T, B4 BB X Ot o#c
DGR I T 2 IRKEW O T Aepa Z I L 245 R %/ R3. 2 2 Cl, Table 4.1 IC/R3
A GbEICO T, HBZMNSNRZNZEN 1.0m, 20m , 3.0m &7k o728 X Dep 0 &
WRET S, EOT AMA O EAE L FEM I RRRE B L Tw3 2 Ehb,
Bea iE B L UHBEOFETTICN L COREADBEHCTE 2 Z L MR T°X 5.
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Lateral pipeline displacement at

Curvature, x (mm'')
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Fig. 4.16 Pipeline deformation and axial strain distribution obtained by the FEM result
(Case 9: D,=610.0 mm, =13.6 mm, Grade=API 5L L450)
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Fig. 4.17 Comparison of the maximum axial strain obtained using the proposed method and FEM for
different ground displacements
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Fig. 4.18 Comparison of maximum axial strain obtained using the proposed method and FEM for
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Fig. 4.19 Applied strain for several pipe dimensions and material properties by liquefaction-induced lateral
landslides to pipe (Ground displacement § = 3.0 m)
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Fig. 4.20 Applied strain for several pipe dimensions and material properties by liquefaction-induced axial
landslides along with pipe (Ground displacement § = 3.0 m)
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Fig. 4.21 Applied strain for several pipe dimensions and material properties by liquefaction-induced lateral and
axial landslides to pipe (Ground displacement § = 3.0 m)
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Table 5.1 Geometrical and material properties of pipelines

Diameter  Thickness Yield strength Tensile
Case D, (mm) t (mm) Grade o, (MPa) strength
° y o, (MPa)
1 323.9 11.9 API5LL360 (X52) 358 455
2 323.9 11.9 API 5L 1360 (X60) 415 520
3 323.9 11.9 API5LL360 (X42) 289 413
4 168.3 11.9 API5LL360 (X52) 289 413
5 610.0 17.6 API 5L L450 (X65) 448 530
6 762.0 12.7 API 5L L450 (X42) 289 413
Table 5.2 Calculation results of applied strain
Applied strain
Case Landslide direction .
- Maximum
Parallel Perpendicular
1 0.044 0.019 0.044
2 0.019 0.018 0.019
3 0.040 0.019 0.040
4 0.044 0.010 0.044
5 0.001 0.017 0.017
6 0.038 0.031 0.038
Table 5.3 Geometrical and material properties of pipelines
Heatinput Thickness HAZ width HA; relative HAZ str.ength
Case 0 (kifem) £ (mm) H thickness ratio
(mm) X (ST)HAz
1 25.0 11.9 5.04 0.42 0.83
2 25.0 11.9 5.04 0.42 0.83
3 25.0 11.9 5.04 0.42 0.83
4 25.0 11.9 5.04 0.42 0.83
5 25.0 17.6 341 0.19 0.87
6 25.0 12.7 4.71 0.37 0.84
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Fig. 5.2 Strain capacity of girth weld joint with softened HAZ for several pipe and weld properties.
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Fig. 5.3 Minimum overmatching ratio of weld metal to ensure seismic-induced liquefaction
resistance
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