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1. Introduction. In this paper we continue our investigation on bound-
ary value problems for elliptic and parabolic equations in singular domains.
The problem is thoroughly investigated if the boundary is smooth. See [1]
for general boundary value problems for elliptic equations and [8] and [11]
for the parabolic case.

Elliptic boundary value problems in singular domains have been studied by
many authors using different approaches. See [10], [12]-[15]. Compara-
tively little is known in the case of parabolic equations. One of the reasons
for that is the fact that the methods used in the elliptic case do not extend com-
pletely to the parabolic case. In [3] we have introduced a method for investi-
gating the Dirichlet problem for elliptic equations in plane domains with corners.
This method was then modified to study different boundary value problems for
elliptic equations in #-dimensional domains with edges (cf. [4], [5]) and initial-
Dirichlet problem for parabolic equations (cf. [6]). The method is based on
obtaining a bound for the solution near the singular part of the boundary. This
is done by constructing a suitable barrier function. Then using a Schauder-
type estimate we obtain bounds for the derivatives of the solution and then
its smoothness properties. In [7], we applied this method to investigate the
smoothness properties of solutions of initial-mixed boundary value problems
for parabolic equations and obtained C" statements for these solutions, 1<<v
<2. In this paper, we study the same problem, and give conditions sufficient
for the solution to belong to C**2** m>0, 0<a<1.

2. The problem. Consider a simply connected bounded domain GC R?
with boundary consisting of finite number of C****® curves I, ---, T,. Here
m>0 is an integer and a&(0, 1). T, T'4y; meet at the point x®=(x{", x{")
forming there an interior angle v,; 0<v,<2z, k=1, -+, ¢, [',1,=T,. In Q=
GxJ where J={t: 0<t<T} consider the parabolic operator Lu=a,;(x, t)u;;+
ou, _ Ou
ox;” 7 Ox;0x;

use the summation convention. Consider in € the initial mixed boundary value

al(x, tyu;4-a(x, yu—u, Here x=(x,, x,), u;,= , 4, j=1, 2 and we
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problem
Lu =f(x: £, (x)EQ (1)
u(x,0)=0 onG (2)
m+(1—7) S =0 onTyx] 3)

The coefficients on L and f belong to C™** (Q2) and %, in (3) is either 0 or 1 and
mtmn+0, k=1, -+, ¢; p,.a=mn. Under these assumptions, it is known [9]
that

ue Cm ()N C° (D) (4)

where 0,=G,xJ and G, is any compact subregion of G with positive dis-
tance from the corner points. To investigate the smoothness of the solutions
near the edges, consider a fixed point (x®, %), on the edge; x®=T, N T}y,
t,J. Transforming the equation a;;(x®, %) u;;=0 to canonical form, the
angle v, at (x®, #,) will be transformed to the angle w,, where w,=w(x®, £, v,)
is defined by

[, 2) an(, )—abs(,

(%, t,7Y) = arctan
(. 2,) ay(x, t) cot ¥ —ay(x, t)

We also introduce the following notations

By = 2‘”k/("]k+77k+1): k=1, ., q
B = SUP Bk )

where the Sup is taken over k=1, -+, ¢ and £, .
We now state our main result

Theorem 1. Any bounded solution of (1)~(3) belongs to C*(Q), where,

v = min (m+2+a, z[B—E),
&>0 is arbitrarily small.

From (4) it follows that it is sufficient to investigate the smoothness of u
in a neighborhood of the edge point (x®, #). As a matter of fact, we shall
prove that

ueC*(N), (5)

where v,=min (m+42+4a, z/B,—E), €>0 is arbitrarily small and N is the
intersection of © with a small ball centered at (x®, #,). Finally, we remark
that it is sufficient to prove (5) in the case of a cylindrical sector. This is true
since the general case may be transformed to the cylindrical sector case using
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a locally injective C™*%+* transformation, cf. [5].

3. The cylindrical sector case. Let #,&] be fixed, Q,=G,X1I,
where

G, = {(r, 0); 0<r<o, 0<b<w}
I, = {t; t€], |t—1t| <o}
and let
Ty = {{ 0), <o, =0}
T, = A{r, 0), 7<o, 0=w}
We now state a theorem equivalent to Theorem 1 but in the cylindrical
sector case.

Theorem 2. Let u be a bounded solution of the problem

Lu=f(x,t) inQ, (6)

u(x, 0) =0
u=0 onT\X]J @)
mu+(1—n)u, =0 onT,xJ 8)

where a;;, a;, a and f belong to C™**(Q,),
a;; (0, t)=38;;, 1, j=1, 2 and v in (8) is either 0 or 1. Let B=2w/(n+1), then

ueC(@y) )
where v=min(m+2+a, n/B—E), €>0 is arbitrarily small and §<go.

We shall discuss only the case when v=m-}2-+«. The other cases can
be discussed in a similar way. The two cases =1 and =0 with m=0, f<=
were given in [6]. In proving (9) we use the method introduced in [3] to in-
vestigate smoothness properties of solutions of the Dirichlet problem for elliptic
equations in singular domains. The main step of this method consists of
deriving bounds for solutions of (6)—(8) of the form

[u(x, t)| <M7r" (10)

Using this bound, we then estimate, in the second step, the partial derivatives
of u to get bounds of the form

| Dru(x, )| <My r*~*, k=1, -, [v]. (11)

Then, finally, we can get the required smoothness results. The last two steps
follow from (10) almost in the same way as it was done in [5] and [6]. To
obtain estimates of the form (10) we need the right hand side of (6) to have
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enough zeros at the edge point, namely
Df(x, t)|s0 =0, |p|<m, (12)

Where D? is any partial derivative of order p with respect to x. This will be
done by adding to u a suitable C™**** function. This function will be con-
structed using the next two lemmas.

Lemma 1. Given a function F(f)eC**® defined on x=0, there exists an
extension F*(x, t)& C***(R®) which coincides with F(t) when x=0 and

x’fl xlzez F*( X, t) = Ck+k1+kz+w( R3)

The proof of this lemma goes along the same lines of the proof of Lemma
1in [5]. See also [2].

Lemma 2. There exists a function v(x, t)EO"***%(Q,) satisfying (7) and
(8) and

DALo—f)lseo =0, |pl<m.

The idea of proving this lemma is to construct first the function v as a
polynomial in x with coefficients depending on ¢. All the terms of this poly-
nomial are of the form x}1 x5z F(£), where F(£)eC***(]) and ky+k,+k=m-2.
Then we replace F(t) by F*(x, t) constructed in Lemma 1. See [4] and [5].

From these two lemmas, it follows that the function w=u—v satisfies
conditions (7) and (8) of Theorem 2, and in &, it satisfies an equation of the
form (6) with the right hand side satisfying (12). For simplicity, we shall
still use # and f in Theorem 1 with f satisfying now (12).

Proof of Theorem 2. As mentioned before, to prove the theorem it is
sufficient to show that any bounded solution of (6)-(8) with f satisfying (12),
will satisfy the estimation

|u(x, t)| <Mr"
v =m+24a<z/B.
We shall consider first the case when 5=0. The modifications in the

proof for the case »=1 will be given in the end of the proof. Consider the
function

U(x) = —Mr® cos Mo—9),

where A= ”EZA

0]
can be easily verified that LU> f(x, t) in G, provided that M is sufficiently
large and & is sufficiently small. i.e.

>m+2+a, A>0. In virtue of 4;;(0, £)=35;; and (12) it
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Lu—U)<0 in G;.

We aim to apply the maximum principle in G;. We note first that U,
=0 on I',xJ. (ie.) (#—U),=0on I';xJ and the maximum of #— U cannot
be attained on this part of the boundary of G5. On the rest of the boundary
of G we can make u—U>0 by taking M sufficiently large. Finally, taking
& sufficiently small we conclude that #— U >0 in the interior of Gy as well. i.e.

u>—M7r" cos Mw—0)=—M1r".
Similarly we can prove that in G,
uMr’,

provided that M is taken sufficiently large and 8 sufficiently small. This proves
the theorem in the case when n=0. When n=1, we may take as a barrier
function

U= —M7r cos A <—‘;——0> ,

where A=(z—2A)/o>m-+2+a, A>0,
and proceed as before.
This concludes the proof of the theorem.
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