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1. Introduction. In this paper we continue our investigation on bound-
ary value problems for elliptic and parabolic equations in singular domains.
The problem is thoroughly investigated if the boundary is smooth. See [1]
for general boundary value problems for elliptic equations and [8] and [11]
for the parabolic case.

Elliptic boundary value problems in singular domains have been studied by
many authors using different approaches. See [10], [12]-[15]. Compara-
tively little is known in the case of parabolic equations. One of the reasons
for that is the fact that the methods used in the elliptic case do not extend com-
pletely to the parabolic case. In [3] we have introduced a method for investi-
gating the Dirichlet problem for elliptic equations in plane domains with corners.
This method was then modified to study different boundary value problems for
elliptic equations in ^-dimensional domains with edges (cf. [4], [5]) and initial-
Dirichlet problem for parabolic equations (cf. [6]). The method is based on
obtaining a bound for the solution near the singular part of the boundary. This
is done by constructing a suitable barrier function. Then using a Schauder-
type estimate we obtain bounds for the derivatives of the solution and then
its smoothness properties. In [7], we applied this method to investigate the
smoothness properties of solutions of initial-mixed boundary value problems
for parabolic equations and obtained Cv statements for these solutions, l<z>
<2. In this paper, we study the same problem, and give conditions sufficient
for the solution to belong to Cm+2+a

y w>0, 0<α<l.

2. The problem. Consider a simply connected bounded domain GdR2

with boundary consisting of finite number of Cm+2+(* curves Γ\, •••, Γ9. Here
m>0 is an integer and αe(0, 1). I\, Γk+1 meet at the point xw=(x{*\ xφ)
forming there an interior angle γA; Q<γk<2π, k=l, •••, q, Γ9+1=Γα. In Ω=
GxJ where J={t: 0<t<T} consider the parabolic operator Lw=0iV(#, £)%+

ai(x, ttyt+afa ΐ)u—ut Here x=(xl9 x2), Ui=-^y u{j= " , ί,y=.l, 2 and we
OX ',• OXfOXj

use the summation convention. Consider in Ω the initial mixed boundary value
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problem

Lu=f(x,ί), (x,t)<=Ω (1)

u(x, 0) = 0 onG (2)

-%)|̂  = 0 onΓ4x/ (3)

The coefficients on L and / belong to Cm+" (Ω) and ηk in (3) is either 0 or 1 and

^A+^+iΦO, Λ=l, •••, #; ί̂+ι=?7ι. Under these assumptions, it is known [9]

that

where Ω,1=G1Xj and Gj is any compact subregion of G with positive dis-

tance from the corner points. To investigate the smoothness of the solutions

near the edges, consider a fixed point (x(k\ £0), on the edge; x(k)=ΓkΓ[Γk+ι>
t0^J. Transforming the equation ajj(x(k\ t0) Uj—Q to canonical form, the

angle 7k at (x(k\ ΐQ) will be transformed to the angle ωk, where ωk=ω(x(k\ tQ> γΛ)

is defined by

«(*f ί, 7) = arctan ^a22(x, t) cot γ— a12(x, t)

We also introduce the following notations

βk = Zcoklbk+Vk+i), k = 1, •••, 9

/8 - Sup ft ,

where the Sup is taken over A=l, •••, q and ί0

e/
We now state our main result

Theorem I. Any bounded solution of (l)-(3) belongs to CV(Ω), where,

v = min (w+2+α, π/β—6) ,

£>0 is arbitrarily small.

From (4) it follows that it is sufficient to investigate the smoothness of u

in a neighborhood of the edge point (x(k\ tQ). As a matter of fact, we shall
prove that

«<ΞCV*(ΛO, (5)

where pΛ=min (w+2+α, π/βk—£), £>0 is arbitrarily small and N is the

intersection of Ω with a small ball centered at (x(k\ tQ). Finally, we remark

that it is sufficient to prove (5) in the case of a cylindrical sector. This is true

since the general case may be transformed to the cylindrical sector case using
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a locally injective Cm+2+* transformation, cf. [5],

3. The cylindrical sector case. Let t^J be fixed, Ω9=G9xI9

where

GV = {(r, 0); 0<r<σ, 0<(9<ω}

^σ = {t\ t&J, \t—tQ\ <<r}

and let

A = {(r, θ), r<σ, θ=0}

Γ2={(r,5;

We now state a theorem equivalent to Theorem 1 but in the cylindrical
sector case.

Theorem 2. Let u be a bounded solution of the problem

Lu=f(x,t) inClσ (6)

u(x, 0) = 0

u = Q onΓ^J (7)

-17) 1̂  = 0 onΓ 2X/ (8)

where aίj9 ah a and f belong to Cm+*(Ωσ)y

a{j (0, tQ)=8ijt i,j=l, 2 and -η in (8) is either 0 or 1. Lei /3=2ω/(^+l),

(9)

z/=min(w+2+α, π/β—ε), £>0 w arbitrarily small and δ<σ.

We shall discuss only the case when v=m+2+a. The other cases can
be discussed in a similar way. The two cases 97=! and 77—0 with m=Q, β<π
were given in [6]. In proving (9) we use the method introduced in [3] to in-
vestigate smoothness properties of solutions of the Dirichlet problem for elliptic
equations in singular domains. The main step of this method consists of
deriving bounds for solutions of (6)-(8) of the form

\u(x,t)\<Mr* (10)

Using this bound, we then estimate, in the second step, the partial derivatives
of u to get bounds of the form

\Dku(X,t)\^Mtr^k, *=!,...,[*]. (11)

Then, finally, we can get the required smoothness results. The last two steps
follow from (10) almost in the same way as it was done in [5] and [6]. To
obtain estimates of the form (10) we need the right hand side of (6) to have
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enough zeros at the edge point, namely

Where Dp is any partial derivative of order p with respect to x. This will be

done by adding to u a suitable Cm+2+Λ function. This function will be con-

structed using the next two lemmas.

Lemma 1. Given a junction F(i)€ΞCk+<* defined on x=0, there exists an

extension F*(x, t)^Ck+06(R3) which coincides with F(t) when x=Q and

The proof of this lemma goes along the same lines of the proof of Lemma

1 in [5]. See also [2].

Lemma 2. There exists a function v(x, f) e Cfw+2+α>(Πσ) satisfying (7) and

(8) and

D*(Lv-f)\x=0 = Q, \p\<m.

The idea of proving this lemma is to construct first the function v as a

polynomial in x with coefficients depending on t. All the terms of this poly-

nomial are of the form x\* x*2* F(t), where F(t)<=Ck+*(J) and k1+k2+k=m+2.

Then we replace F(t) by F*(x, t) constructed in Lemma 1. See [4] and [5].

From these two lemmas, it follows that the function w=u—v satisfies

conditions (7) and (8) of Theorem 2, and in Πσ it satisfies an equation of the

form (6) with the right hand side satisfying (12). For simplicity, we shall

still use u and / in Theorem 1 with / satisfying now (12).

Proof of Theorem 2. As mentioned before, to prove the theorem it is

sufficient to show that any bounded solution of (6)-(8) with / satisfying (12),

will satisfy the estimation

\u(xy t)\<Mrv

v = m+2+a<π/β .

We shall consider first the case when 77=0. The modifications in the

proof for the case η=\ will be given in the end of the proof. Consider the

function

U(x) = -Mr* cos λ(ω—0),

where \= π~2^ >m+2+g, Δ>0. In virtue of α/y(0, ί0)=8fv and (12) it
2ω

can be easily verified that LU>f(x, t) in Gδ, provided that M is sufficiently

large and δ is sufficiently small, i.e.
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L(u-U)<0 inGs.

We aim to apply the maximum principle in Gδ. We note first that Un

=0 on Γ 2X/ (i.e.) (u— U)n=Q on Γ 2X/ and the maximum of u— U cannot
be attained on this part of the boundary of Gδ. On the rest of the boundary
of Gδ we can make u— 1/>0 by taking M sufficiently large. Finally, taking
δ sufficiently small we conclude that u — £7>0 in the interior of Gδ as well. i.e.

u>-Mrv cos λ(ω-0)>-

Similarly we can prove that in Gδ

u<Mr\

provided that M is taken sufficiently large and δ sufficiently small. This proves

the theorem in the case when 97=0. When η=l> we may take as a barrier
function

^— 0),
Zi I

where \=(π-2&)/ω>m+2+ay A>0,

and proceed as before.

This concludes the proof of the theorem.
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