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1.1 77 BEORTNER
111 CHERORIK &L FE

R oHELGEE TIE, SBFEMICEIML - BREML - M TE2Ed c & T, SHRERICEZ
TERGPREI NG, —HOMLEM O b, BRI M o—fe U<, EMHE %2 5
T LA AR SRt 5, IAEERTIE. Wk RRER. R, TAAF -2 I U LT BIRIAVEESET
TiHEMA SN, BRoE(E0H R LT, o HEAEOREEZ X 2 28T e L T LT 5,

BRI A S I b 72 2 FEEN PP OO S 2 B 3, EY) 7 2R & MPRMILG TR 2089 2 2 & T,
LIk BEMEPIEICNIGTE 2 /UCH 5, HAERERE (JISZ3001-1) T, #&EE 2 U Eo
R % B SN BIMIENICERER S 2 X i, B, EHIXIEZ MG IC X > T—RIcT 28(F] &
EFRLTWB[1], FriC, BEWAEOSGS, BAHEZARIRE L 72720037 =% (10°~10" W/m?
FREE[2]) % FroBR . HEICS U CHM B O [HBR Z e 3 % 72 © o) 7o B &I A6 IE < 5 2 St
BRDLND, —MiC, BJHE LT, BRT —727 - HRAL - L—F - EBEL v — 420, MEMEGEE L <.
TAY - BRBEAINS, 2o OFMIERZEYNGERT 2 2 & T, SRRRERERSMACIGL <.
B 2 OB O E OCIREER S D,

BdpiRERgfiohch, 7—27EER, BECDOEZ > CTENRMZE L TEREZT TR,
BITE S Bl iEA T b . FEkicim g 2 EBRICHR R o Tnd, 7—27ERIE. E7 —7
FEJRICRM 2 IREN L . MEMEGTRE LT A Y 25 L CAEZERT 5, BERT7T -7k, L—¥®
BTE—L LT, HEaX P2 OOMEICRETE 2720, 7 — 7B I L BFEEZ
el 2 -k LOURCFIHE NG, X LIGRETIE, 7 — 2 B oM 2 & m &
Fefiic o v, WAAM  (Wire Arc Additive Manufacturing) Fiffi & L CREZER BRI ED ST 3
[3-5]. WAAM Hiffiid, EN2EBAMEZED L, R TE CldBLE R v RE R HHEIR o @SS %
AHEIC LT3, T — 27 IBEEORMER 3, SERIcB T2 a2 v i BEE L LT, 5%
¥TE T X 0HERENEEEITTHS I,

T — 7 ERICNTE T BICH OFTREE 2 IRKBRICH] & 3 7201, LM s X ORE 2y 7o 3508 1 0L
T5ZEDRBEARRRTH S, LANERELE LTEFON 0L, BENERITEOMETH 5, ARl
BT, RN ZR2AMIC ko T, ML 3R 2 B L R T EESE AT 5 & & b ic,
BEECERBICNIBEL 5, EHIC, Fuv T4 - EFEEN - T v & h v F e BERIRKIGIZ.
BRSSO WETEN e B i & 72 B, ANEY) RS HE T IC X 0 . AEEY o B CfEEEEE L <
BhIBNEH 2, —T, HENRHELE LT, PRAEBRES OFL R R EHEENR L TH Y [6].
FRERI B REICHE D  BEBRAI 2 LA L. BFAR R BfRCE B 7 7 — 2 IC OB ~L g 5 2 &
BRABL o T\ 5, T — 7 IFEEDEIES) % e KIRICTHH U | FrftnTRE Bl Fe g 2 I F 5 72012t
NS OB L AR BWTERFED 2 T ITHETH 2,



112 7—7BEORHE

T — 7. BRESEE KRR O RET L FRICE S THEHI NS, vV F AR ERE AT T
BREleE 2 KD OIRET 2 FEE N AL — IV N T — 7 R LR, Mo EmE L Moty —2
TR wmFE I, MEEME FEICIE S NZTRA ) A6y =V FARABR G EINE, TR
V=)V N T = 7B, BEEEICE T 2E MRS T, ARX VY IR T v T —2 (Gas Tungsten
Arc: GTA) &L A X Z LT — 7 (Gas Metal Arc: GMA) RIEICKAIE NG, ThZhoFikoHE
k% ¥ & oK% Fig. 1.1 ITRT,

GTA i&¥e12, —f%127 4 27 (Tungsten Inert Gas: TIG) & & FEIEN, SRS ESRCHL L2V I RT v
T3 x v IR T vEeIREmAEmE LT 2, IEEMA L 12, EMERIZE A SHFEL 20w
WEAXEIETHETH 2, 2 v 7 A7 VIdE 5 3400°C & BB O T d i\ Ol 2 150 23[7]. &1k
T2 & THE CREICE TR ZEITET 358l L7dso T, 2 v 7R T v EMOHFEZ M 2
72OIiE, Y=V FHRE L THBIEA R ZEHCTE 2w, TArT v~ v Lar bl s Atk
H AR AIEMEH ZNTIKFEZ TN L 7238 e 7 A D A3 GTA {82 ICHEHA T % %, Fig. 1.1(a) IR 338 D |
7 — 7 8 R BRI IIMRHEAG O MED > T O 3, WINBEZEERN L CASRZ T 2 L35
BdHb, £z, T— 7 ROLZEHNT 2B RO T L 2 WEB 23 2 720, B EER
fiHE N2,

GMA BHETIZ. M LR —H0® 2 Wiz Z L e FAFEOLEMLZ BT 28B4 ¥ 2 il Ek &
LTS 2, i & i3, EMAEmIICHES 2IERTH 2, 7—2 77 X< L oEfilfEEIC
BWTERET A VIIERL ., ST - B L. 23 TRt IciT3 2, GMA IE2lE. AiGtEr <
KA ST A=A FHRE LT 2223 TE %, Fig. LI(b)ICRIEY, 7T—27ERIC
7 A YiEmAEPHZATNTE Y, HECTHEMHS G2 TDN 5, B O EBIEFEZ IIH 3 2 LI 72\
72, V=N FEHRAE L TAEEAR - EEST R L D ICEHARETH 5, MEETAZFEHT 256%
17" (Metal Inert Gas: MIG) &2, &M R 2T 286 %~ 7 (Metal Active Gas: MAG) &2 & Xl
T2, $72, EMOBEREFEIC L 27— 27 ROZEZIFH T 2720, 7— 7 Ko A CHIEER ZRo%E
BHEREERZEN S 5,

GTA #BH: & GMA B DK DE W T, MIEEMOHHEEOAERICH Y, T— 7T 20 ME
ERIROMITICRE R e 525, £3. WEMEOBATIZ. EMOMEMEIIEMICNT 2T —72
7T X~ DR L FEACBE L T b, GTA WAEI X EARSERR & RSB OMEIRR. GMA #
TRAERE 5 L OREHRICHEIND, EMPIRIET — 27 77 X~ DRECENFHEICHEL 5 2,
BMRDTZARZALDIN S VIE &, T — 27 77 X~ DIERM~ DB RS —E L CLET 5, L7zdio T,
GTA ##e 1. GMA B L R TR E BB AR TH 5, —J7. BN OB ATl EMRDOIHFE
k. MBS R Ic G L, —E ORISR R T 2 EEI R, GMA BE TR, 7 4 YiRGaEE %
BWNX€2Z L CHAEREZIMTE, GTABR LKL CAEBEMFRICENS, 20X Hic, 7275
TueADNE ENEITI L — FA 7 OBRICH Y, WE % [FRHICER LIS 2 7' 1 & AT ICEK
INd,



] o @ =

Power source ' Power source
- (Constant current) .@. (Constant voltage)
©

)

Tungsten electrode 4= |_ Wire electrode -
(Non-consumable) o (Consumable)

Shielding gas -1 Shielding gas -4~
\l
f’% .~ Arc plasma .~ Arc plasma
Filler rod Molten droplet = /f=®«
Base metal Molten pool Weld bead Base metal Molte:n pool Weld bead
(a) Gas tungsten arc welding (GTAW) (b) Gas metal arc welding (GMAW)

Fig. 1.1 Schematic of gas-shielded arc welding.

1.2 HRAZNT—VBEICE T 2MEBERERE | BEBTREK

ATRITHR T, BT A4 Y 02 O IREEE A T L. Wikt~ ik S h 28R %1 L. GMA
BB IR OM BRI ©H 5. C oBIfIE. BRAVEAHRICIERN T S, BRRY: - ik -
BN ORBRPMEHCHEAEG D, 9. ERGHR L LT, BN 2 BB, Z0BRAS
DERT 5 A OB E AR L <. WHICERI2MERT 2, KXo, R U<, Eic
Mz, KERNSCEN 2 ETHREN ) AEEER L, AR Z eI T 2, &kic, B3R L LT, BiR
7 AYIXE A mm® OEFTHERLE KR L W AWMAHELEREL, WEIErL T -2 T I X~
ICEBRAEREAT L, RELEZSGBRSAIIY VR TIZX2LRAL, T—2 77 A<DELMN
P& LS ELE 2 3[9]. 2D X9 iC, AERMBITHROVENARY % R 3 51013, B-Iik-ES
IR 2 L E L 5,

REITIE, T TEWEBITIERO M EZIT V. Fiw CEREBSITBIR OFIlHI T 1B 3 2 SefTi ot & %
T 5, SO ABINICGEDRTIC, RRSCCHERAT 2 HREOME RER L, FABICOWTHETRE
MERY B2, @E, AR & v ) HEEE, EM7 4 Y oeipic BET 2L, 2 2008 d 5
FOM S EET, L, WEE, PHENICIE Ba %5828 2L Cs 0, BECKAL R TE
BHRv, BET WL, 7 — 7 EICE O CHROKE % Rz U, iR C Rk T e 2
LoD, 7T—7HEDHFFCTHS LT\, —/7., BEbEIZ, 7— 27 &% R d oo, KEEM
DEE B2 70, BlZIE, BEREA RSy 2L LTT — 2 79 A=A REL T b 7 — 27 B 13 B
T 5, [VAR] X, EREBTHR IR IS L. SRR < I3ENE 2 15 7856 23% v, KX
3. BT REIZNRE LT, BT 0 28572 WR Y | TR & v 5 FEEREMm Y 4 v Jeiiic
BETIREZIETDOL LTI,



1.21 BEBITEREOSE

WS ITIZHE X, GMA BEIC B W TBIER I N2 EM T 4 ¥ 2 b IERIME~ DIERIS & Ok~ % — v
EERRICLIZDFETH Y, —MICIXERAREY 2 (International Institute of Welding: ITW) 7257 % 7z 4 FRIC
Fo 10,11, T OTEREIL. i D TRV AT OAMB R 2 O OBl b I N 5,
YT =V T — VIRERPWE T — 7 BRI OBITIVEE R R E . GMA A TIE. ¥ TOE & AR
Mo Bl 2 LRI I N B, Fig 1.2 IR I IRTHBITIZRD 38 7 v — it - ¢, FgHIT L HIH
BATICKAE NS,

BTREAT I A 7 VHic B0 2 7 & it o Sl A i
VA D ST R D IREF L

VA DT ) D IREF L

ETREAT A 2 v h D IER PR 26 E)

® © O 6

TREASAT & 13, TSI RCI I AR & B L. BRI X o TR X 1 2 18 2 2 L CiERlS R
I ORI~ X 3 S TERETH 5, IR, EXEEKIIEEREL 2D, T—2 T 7 X wp
—REICTHINT 5, FMBITORAEICIE, IR & REHOTEK & W T — 7 ROMER A B &
20, FIKER - KEEOLKIF T CBIEI NG,

HEBITE E. T—2 75 A BIEHBIT YA 7 V%8 U ClEBRIC S & HEEE L. AT iRt Ic
B L s WIBREO 2 A IS, BT A YIEhi ICREE L 22N Y 4 Yo S L. ARl 5 <
MITT 5 2 &, BRlSEIEEI NS, MELEEET T — 27 RAEYNICHER S 256, [LHHO
B CHBEBITOERLT 2, BEBITEEILX. OERHORTMOIRFEEICESEX, Zuea—0
BATL A7 L —BfTIcE bt s,

7o — VBT, 74 YERLYKERBEEIBITT 2 EE T, ORFEOIERNREE) ICHK O X
My TBATE BT S 5, Fay 7T Cld. ST A4 Vil m -~k 2 & U<
T30, KRBT T, WRAREANCH L BT o noo8ili+ 2, v o — A B{Tics T 2 IEH
SMBEBEOH L, WHICNT 27 =27 77 X~ EREBICER L TE Y. ¥ —n P ZHB S EE
T3, Foy 7BiTi. WHONEICT —2 79 X850 EA2BAICBEI N, TArav ) vFk
¥ =L PR CHMBIRICRAET 5, 72720, SRR T 2 IC O TARORIZIED L, 22T
ATL =BT~ BB T 5, Lo T, BAER (Fava—ABiT0bRA 7L —BiT~LEET 2
B AT OMEBEIIBICRY . Foy 7BITRBIEIND, T, KEBITIR. 7—7 77 X030
TEICEAE» OB T 2B ICBIRI N, KIEARY v F DY — L FEHKTIE. A 7L —BTICER
3, P~mEROILH A HETHRET S,

ATV =BT i, VA VERLRASE»ZNI VNS REHEPERERUL L BTS2 EETH 5,
ZOBREICIE, ey 22 PBEfT. AMD =3IV IBIT, u—T—T 1 VIRBITBEEN, ZhZT O
VT O T ) O TR 72 R & @ O FEEN R BB IS WXl b, TrY 2 7 FREIT T,
B ESL U, ANEDSEIAICEIT T 5, A MY — I v BT TR, VA YETRICETESHE L,
L O/NEBABANCEHEN ST 2, v —7—7 4 v I7BITCik, ELZEMES IR ICRE L, B
ST X o TURIRIERIC R L 22 23 O A RE ICATH 2 M 8D 37 SBITIRRSBIR X 1 5 i,
TaY e PBIT. AP Y= I VIR, e—T =T 4 VIBITOIHCE L 5,

4



Classification of Metal Transfer Modes in GMAW

Droplet-Pool
Contact
Yes No

Short-Circuiting Transfer

FreEF"ghtTransfer

Radial Size

> Wire < Wire

___ GlobularTransfer il sSprayTransfer

Axisymmetric

Behavior Axial Elongation

No Yes No

Axisymmetric
Behavior

No Yes

 Drop i Repelled || Projected i Streaming | Rotating

Fig. 1.2 Flowchart of metal transfer mode classification.



ITATIZRE ORFED GMA HEHE 7' 1 v RIS RIS T8, WEWH L AR omifilimic b7z %,
Bz X, FAETEATIC BT BT DA RIE i, KFEBIT - v —T — T 4 v IRBATIC BT 2 D
JEHNFR R 2B 3, S BDO RSy 2 FEERPL, T HiC, & ABRERERR—TH-> T, AMNEP
AT R 7 2 556, RIS 3 2 A O M2t 3 5 2 & <, RS o i v T it
BEEEFR IR 2 RIT T, TNEEMNT 28E L LT, EHBTIZEE D& W A3 ERA Y 2 IS O BRI
FRUICHEET 2 C L BRI LT 5[12,13]), —77 T, BIMSGEL Y — v F AR OEE L, B
ME a2 b 2E0RFEEZRE LS 2EELRERTH 5, TR N2 AWE & RFMEZ T 21213,
BT AR T 2 E ST T, GEBIRCEE D BE L 2 BN RIEESI TR 2 B L AR
BT 22 L BN ETH B,

1.2.2 BREBTRKROFHT7O0—F

GMA BREICE VT, KW ARNE PR\ LR, 7o 2ef 2K+ 2 8EEL s bIHIC
sl LIS 5 2 & T GER I N D, R TOMRERO T Cix LiftIChiiE 3 2 D23, EREITEHR
TH Y., BT OEY R EIE2 72 T E, GMA BEEOEENE & REEERTER T 2 2 L3 TR
L%, ZOflHlo BRYIE, EHEBITORENMICTE L. MEBR L L CATRBITER 2 0 L 72555
) 7 IR T % 201 3 2 & CIER I NS,

BTHATHROGIEHRE 11X, 7' 72 AETHOZLERE 72 b ISR TERE) )11 3 2 TEEAFH O
AL WS “ooBlR kRO, 3. ek AE TR oLE OB M T, fIEKT LT e AF T
MEIRTFIcaE NG, e ARTIE, e AFETHICEERRECTH O, EEER. 7— 78T,
T AXEREE, A P A RRAR NGNS T S, Kxfic, MEIERTIE, TeeRficAE xS
U= KA T A YO X 5 ICHNGRE SN ZHER D 5, RIC, WHBITIREI I3 5
FHOEEE 0Bl b IR X EERIEA 1 & MERER B s, EERERT LT,
FIEHIN 7 H S 23858 & LCEEI NS, H5WIZHIFFCHE T oK E X 2 ke 2 %8 %2 52721,
AEERR. HHBTABECST2 74 YOBEEC 74 ¥ - Bl OHIR, MBS AZ YT 5, — /T,
MR 712 BRE ) L E RN T 2 Wi 2 2 L ic X o €, MHENICEFBEITOLE 2T,
HARYT A Y. &R EIC BT 2 7 4 Y IESER A% 4T 5,

WHBATORE L 1E, ANy ZREB R L, BHBATORZRIFHZ S — LT 2 22155,
RFZERE D 5 B, ZERIRFEIC XA Y 4 X i O IF PR B O G 235 v, R RFEIC 127
AT BB & E 5. ISR 22 08— I <173 2 IREB DS, =D RIE L 2 AT
REEL Sz, Fric, BRBITSEAECTE, A7 —BfTohcd Tu vz 7 FBITRREIREDEE]
AIREMED E N C &2 o, T BEESERFRBITO R 7L —LICRE I NS T — A D%\,

BT DB THRIE <X, R O FIEIR 772 & ICREE O TERICHE S %2 1 < SR I 7 o
fE3TONTE e, Z ORGETIHESAOWRKR T, R 2R IR 37 Sk LR~ iR
ISR DR 5 o ] 21X GMA 15z & WAAM HAl i3, IR T R 2 MORHHERBEE & L <RI 3 2,
L2s L, WA & 402 201 - BEMNHIKI 0B A 6 . GMA 758 T D Foll il 51 % WAAM Hififfic
T2 &, AMBECAEROBAEZH, 5B IO A2 LEFOLRKIATFHIN LT T, EiE
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Table 1.1  Control strategies for metal transfer phenomenon.

Control target Parameters Resulting changes Benefits

Adjustable during process

Transition to spray transfer
) DC: peak/base current ) )
Welding current Lorentz force Uniform metal transfer period
AC: EP/EN current )
Spatter reduction

] ) ] ) Distance to pool Uniform metal transfer period
Wire feeding Wire feed/retraction rate ) )
Wire attachment Spatter reduction
Shielding gas Mixing ratio Arc attachment Transition to spray transfer
External magnetic field ~Application direction Lorentz force Change in transfer orientation
Non-adjustable during process (material specific)
Arc attachment Transition to spray transfer

Chemical composition o ' .
Element gasification  Prevention of explosive transfer

Wire electrode - ) .
Composite structure Physical property Increased melting rate

Diameter Spatial scaling Decreased droplet size
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Table 1.2 Data classification by experimental, theoretical and numerical approaches.

Classification
Approach
Fluid Electromagnetic Thermal
High-speed imaging Oscillography Calorimetry
Acoustic signal analysis Electrical resistance* Spectroscopy
] Surface velocimetry* Arc pressure®* Wire melting rate
Experimental ) ) )
Volumetric velocimetry* Current density**
* Applicable for pool * Applicable for droplet
**Applicable for pool
Oscillation model Pinch instability theory Halmey’s wire melting model
Theoretical Static force balance theory Rosenthal equation
Maecker’s plasma jet model
Mass continuity Current continuity Energy conservation
Numerical Momentum conservation Ampere—Maxwell law
Interface transport Ohm’s law
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Table 1.3

Classification and features of numerical models for metal transfer.

Numerical model Features Interface  Current  Energy Refs.
Interfacial tension theory Static equilibrium geometry X X X [92]
Fixed interface model Fixed droplet geometry X v X [93]
o Liquid phase only
Non-conductive liquid model v X X [29, 91]
Lorentz forces neglected
o Liquid phase only
Conductive liquid model v v X [94, 95]
No mass supply
Constant mass supply
Fixed arc interaction model ) v v X [96-100]
Static arc attachment
) Mass supply by wire fusion
Unified arc-droplet model v v [101-105]

Dynamic arc attachment

Table 1.4  Classification and features of numerical models for molten pool convection.

Numerical model Features Interface Current  Energy Refs.
Interfacial tension theory Static equilibrium geometry X X X [106]
X 4 X [107]
Fixed interface model Fixed pool geometry
X X v [108]
Non-conductive liquid model Lorentz forces neglected v X X [109]
o Liquid phase only
Conductive liquid model v v X [94, 95]
No mass supply
Simplified arc interaction v v [110, 111]
Simplified pool model
(Constant droplet source) v v v [112-114]
Fixed flat free surface
(V) v v [115, 116]
No mass supply
Pool-arc coupled model :
Dynamic free surface
v v v [117]
No mass supply
Mass supply by wire fusion
Pool-droplet coupled model ) v v v [118]
Static arc attachment
) Mass supply by wire fusion
Unified arc-electrode model v v [104, 105, 119]

Dynamic arc attachment
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Fig. 2.1 Configuration of non-transferred arc discharge system with multiple non-consumable cathodes.
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Table 2.1  Technical specifications for non-transferred arc discharge system.

Element Specifications

Cathode Electrode type W-2wt.% La,O3
Diameter 1.6 mm
Tip angle 30 deg.

Shielding gas Composition Ar
Flow rate 25 L/min

Base metal Material Mild steel
Dimension 35 mm (width) x 4.5 mm (height) x 75 mm (depth)
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Table 2.2  Definitions of experimental parameters specific to non-transferred arc discharge system.

Parameter name Symbol Category Definition
Welding current I Process  Electric current applied to maintain arc discharge.
Wire feed rate Vfeed Process  Length of welding wire fed per unit time.
Wire material N/A Material ~ Primary element or alloy composition of wire.
Independent - : - -
Contact-tip-to-cathode Vertical distance from contact tip end to tungsten
) Dy Process )
distance rod axis.
Inter-cathode distance Djc Process  Horizontal distance between tungsten rod tips.

Vertical distance from contact tip end to solid-
Wire extension Lex Process liquid interface of welding wire; a dependent

parameter determined by I, Vfeeq and Dic.

Dependent e .
Vertical distance from solid-liquid interface of

Arc length Lare Process  welding wire to tungsten rod axis; a dependent

parameter determined by I, Vfeeq and Dic.
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ARG BT 2R BATEEDO S 7 v —% Fig. 2.3 1R, 9. BRMIENE X 2 5@ o fRIREE
ZEHEL, A MY =V IIBATE R IIMhOBRITIREBICHET 5, KX Tld, WHOMEREZ, AWM
WWR IR 7 A VERD 25 2HMA 2IRELERE Lz, RiC, Zava—ABiTe A7 L —B{TOnH
7a =Tk, EHEA A TR E FMATFE RO T — 2 2R L, SR 7 4 YR LKL 72, i
BHRPERTA Y ERELOVRZVEAZ 7o o — BT, VA VERLAZEDLZVIZZNL /NI 0
Bk 7wy =7 PBTE ML 72, Fig. 23 IO 7 v — I3, WO OTREHEE X Y jkic
il 75 16 D F R A e % BP9 3 S CL Fig. 1.2 WOR L2k N7 0 — b B3 2 LIS T 3 HE
BB b, ZOREELZRMAL BB, KRB BEHOMEA =X LOMBHICERZYTTn5728
TH 5,

AR, BTN 7 X — 2 ORUFICH S - fsgatil2= = v b 23T 2, @A A 7 (NAC Image
Technology Inc.#, Memrecam HX-7) % ffiff] L CIAEIT 7 0 & 2 % 8000 fps THiz L. R IR
DERT —2ZWF LTz AATZIE2 Y 7 AT VEMEY ¥ v 7OohbzHoT, av 227+ F v 7D
T b X v F AT VEMBEE COMFBEZRE TE 2 X HOBBEINL, I, WHZMH L., X
T — 7 DB EMZ 5720, FR 976 nm - e K1 45 W D8R L — IR % 3K L 72,

REIARE, 7TuwZ2T 2= 2B X UOMEAT A — 202 2 NWHBEFET OB, FRCEREO
fRMEIC T T2 THEST 5,

Larc > 0

Lbreak

Lbreak

Loreak: Droplet breakup length

Fig. 2.2 Definition of droplet breakup length along with its measurement reference position: L,.. = 0 mm (left)

and L, > 0 mm (right).
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Classification of Metal Transfer Modes in This Study

Lbreak < 2Dwire?
Yes No
Req > Rwire?
Yes No
Y
Globular (Drop) Transfer Projected-Spray Transfer Streaming-Spray Transfer
Fig. 2.3 Flowchart of metal transfer mode classification in this study.

24 TAERNRFIA-ZDBEBITRHIEICRIZTTEE
241 EBREG

FBATRT — 7 MEEECEEST 2IRMENTA =2 Db, T reR T X — X PAEFHOMERRIC
PAES s x o ricd 2 2 L2 HWIC, 7— 27 K - F2MREEE - 74 v RE LR JICGEHL T W8
FEER A E L 72, RIETIE, EBRT P4 v EE&H2H5HT 5, Table2.3 ICRdHY, x—7 v T3
7u@xﬂ7x~ﬂ:%d% 8 DI A = oD R 7N —TICHE L /-, K&l
3EFTORTEI T, BONLEROBIMZHERL 72,

IN—T ALV —=TBiE, T—2EX Yy 7OFERMNRILAY Z#afERCHEL, Zr—7 A
FEX v v Z7OMESNEIC, Z =7 BIIKPEHECERZYTTw5, BEMICZ, 27 v—7A D
R=Ty pRFGRA=2FT—7RTHY, 7T—7FEIZ0mm. Smm, 10 mm ICFXE X 31, M ERHE L
Amm ICEE SN, b, T— 27 RIZEHEER - 7 4 YEGEE - 7 v FIemBE RS icikE 3 2 720,
BT 72 A 2B CRAR Ilmm T — 7 RE#F 2oz, JV—TBOX—=F vy b XF7 X =23
MR FEEECH 0 . FEMRREEEEIE 4 mm. 8 mm. 10 mm ICEKE X, 7T — 7K E 0 mm ICHEE X 7z,
7N —7 1B LT, VA YR LE S A 10 mm, BB 270 A, 7 A YiEfEHE D 110 mm/s I

iénto~ﬁf IN—T CTlE, T—27NEX v v 7OEMMRIES Y ZHEFFL, 74 VYRHEL
RIOEZTE L 72, 7 A4 YIiEMHREE % 90 mm/s, 105 mm/s, 120 mm/s & B & & 72 2 L IC#H) LT,
7AYZEHELEZIZ 10mm, 20 mm, 30 mm & BE S N7z, FEMRRIEEEE X 4 mm ICEE Sz, b,
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TAXYERHLEISWEMLCb 7%y —V FE2ERT 2729, Fig. 2.4 ICRTILEEA R 7 A% HiH
LT/ AVARY FF 7 (HR ) AV TFD S & v 727 vEmE COMREREE % 10mm & —EC
fRoTze RN A AN, BN —FICEHET 272008 =Y LHEYAE I I ) I - EE
HoT7 72 VAN A TR I Nz, ®F N—V i, BEZ#E T2 720ICNEERHI b, JME 24 mm,
BEE 2mm DT 7 VANA TRFEATE 2MEE o T3,

Table 2.3  Three experimental groups based on process-specific parameters.

Group A B C
Wire extension [mm] Fixed Fixed Varies
Arc length [mm] Varies Fixed Fixed
Inter-cathode distance [mm] 4 4,8,10 4
Contact-tip-to-cathode distance [mm] 10, 15, 20 15 10, 20, 30
Welding current [A] 270 270 210
Wire feed rate [mm/s] 110 110 90, 105, 120

Metal torch attachment

Acrylic pipe

Fig. 2.4 Gas nozzle extended with an acrylic pipe component.
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IN—T AT, FERTe2ARNTA—2L L CT—7RICELAZ YT, 1 0mm. 5mm. 10 mm
ICEGE L CIET AT O B IE 2 310 L 72, Fig. 2.5 IR @A X SHifRic k 2 L. 7 — 7 BN
I, T — 2 7T X~ DT 1A O /A B X AT T RE I WRE R VBRI 2 B A0 b Ts,
T — 27K 0mm DG T — 2 7T X< DR o & O BHE RSB I Lz, 2 Ko
BV TATVEBRP LR ENZT =2 77 X<t 7TAYOBEWRFEFE LB, ELE
BIHORMANCIR > CENENFINZM X ICofiL7z, fitln T, THUHDT =27 77 X=E, ©0C
THwMlcAy 7Y v Lz, —J, Smm BLY 10mm T, $IFROT -2 77X~ b BAE 594X
DERRBET AT L7z T—2 77 X< 3, ERESNECHICA Yy 7Y v 7 LTE D, kD GMA
VR I 2 $YBETIR & R L 72

Fig. 2.6(a)lZ. 7 — 7 RT3 2 AT R & LIS HBATRIEEOMEZ (L ZR"d L e dic, T—7 K
DER/NGAFCBISE S N2 B O R & SRR 2 B IC K L T 5, 7 — 27 K28 0mm OB, A
TR & 35 X ONRTERATRIEBUI S WEUEZ R L, 22 442 mm & 812Hz ICEL 72, — /T, 5Smm
F0310mm DT — 7 RKEHT T, 20 DEIZKRIEICICT L, AWHEEFE X 11X 0 mm O5H D5
LUN . AT RBEUE 5 00 1 ICE TRAD L7z, s, b7 —— 33 [HOITICE T 2 /&K
fifl + B/MBEICHIGT 5, ZOESLD XX, 7 A -V EWRETSTE o IR 288 S VAR W 25 8) o AN E 1 %
BUBRMBAT 70 2 A0BNAEEICER L Tz, FRic, 7—2RE28¥ v X 0 K& ALk, Bl
BROFMEZENC L T, 7T— 27 RIERAK | mm O LB L7, LAL., TOLBETT -7 R
REMEICR L TR TR 2REICNE RETH o 7,

Fig. 2.6(b)IC T RATJEIRE D MIE #5 R I D THEE S W2 SliAR PR 2 R, ho T — 27 K
ST B G TIRMEBATREES Z T v 7RIS L2 2 Sicihic LT, 7 — 7 Bioxt U C &AL
IEIMER Z R L7z, 7 — 27 K23 0mm O, GMARE R L 033 mm T, 7 4 YEEUT OffiiciHY
L7z Smm £7213 10mm O 7 — 7 K5 Tik, 7 4 viEe FEOFEMEmEEEs A D b v,

BT, EEES A T HE - TERETR & - FMEREE R RA LT &7 — 7 RECEgE I
FERIEHEAITIVEEZRE L2 0mm O 7 — 27 BEMIE. 74 YEZEUE LR 2 AR < & Mk
TR ICRET T o A ) =L v BT OADPBIE I N2, Smm BL P 10mm O 7 — 7 K& I1L,
SRR S BT o, Fay 78T 7ay =2 FEBITHMREL CTBEI N, 2770,
5mm DEEIE N u Yy TRATABKICHEE L7-DI1Ici LT, 10 mm DIGA 1L EH) 22 & AR i F4E
L7z, TOEEICEIEZ, 5mm &£FETid 7 ey =7 FE(T. 10mm S&FE Tl e v 77080 72
ETRBATIVEE & Hlbr & iz,
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.
I 270 A T 270 A I 270 A
Vieeda 110 mm/s Vieea 110 mm/s Vieeda 110 mm/s
D« 10 mm D« 15 mm D« 20 mm
Dic 4 mm Dic 4 mm Dic 4 mm

Fig. 2.5 Metal transfer modes for Group A with arc length L,.. of 0, 5, and 10 mm.
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Fig. 2.6 Impact of arc length on metal transfer characteristics in Group A, highlighting transition from

streaming- first to projected-spray transfer at L,.. =5 mm, and subsequently to drop transfer at L,.. =10 mm.
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SN —7 B Tld, MR ZBEE ST 2 -2 LCERAL, 4mm. 8mm. 10 mm ICFE S iz,
ZDEMEREICE T, EEREHE 4 mm OF&MHE, V=7 ADT =27 K S5mm OFFEEHEL T
WL RICHERPSHETH S, Fig. 2.7 WORTERED X FJEIRTIZ, 7T — 72 7 7 X~ O [ D %M 53 1h
LI O EEEICOVEN AR I Nz, RCof&icibBL T, FERoHy TV v T — 258
BEIN, 2 v 7 RAT VEBRLESEN S ICONT, FIFEIRO THEA S O Ik L 72, ATHBITEE)
ICOWVTIE, WTFNROEMATH MR RIRHESTER & Nz, BT, 10 mm &0 Cld. AT O BT ALIE 23t
DXL L TOTLICTH~BE L 72,

Fig. 2.8(a)iC X % & | [2fREFEAEOHMNICKT L C, EREKTR & & SR IT BB EC HE I B L 72,
ETEE TR X1, 4 mm ST 1.91 mm, 8 mm §fC 2.16 mm, 10 mm Z&fF T 2.99 mm & HIE & L7z,
B, FEMRREIEEEEDS 10 mm OB A, RIHIENIHE X137 4 YEED 2 5% LAl Y | AR HEIRRE I E]E
L7 EDEDPD LT, — ., IWTBATEEENX, 4 mm 55T 160 Hz, 8 mm 55fFC 212 Hz, 10 mm
FMFC37THz TH o7z MHFICRT T T —N—(F, 3EORIT TR OLNZRAM - /IMEZ R L. FFiC
10 mm 5&fFC. 2T M O FARFFEAMER: L o D I ICHEr L 72 2 & 2R T,

Fig. 2.8(b) T3, AR RO FHIFE R BB X iz, OB L 72 7 4 YakiEelE & IS TR o
B2 A Tt AR R D Rk o RAE 2R L7z, BRI X, RS 4 mm 054
IC 0.58 mm, 8 mm DA 0.53 mm, 10 mm DEAIC 0.43 mm & L&D iz,

BRI, AT R X & SME LR oFHIR R A2 Hic, 22 oS B 1 2 ZEHY
RIRTRSATIERE Z [FIE L 720 4 mm 35 X O 8 mm DR IE, B WA R X & 7 4 Y& X /N E ik
IO CcH V., Yoy 7 PBITE A I N, Tk L <, BRERFEEAE 10 mm D5
TlE, WHEHREI B 7 A YEFEO 2 522, WHEPHERMRIREZ RLEZD, APV =3IV

BiTe I N,
ZFm I

I 270 A T 270 A I 270 A
Vieeda 110 mm/s Vieea 110 mm/s Vieeda 110 mm/s
De 15 mm De 15 mm Dt 15 mm
Dic 4 mm Dic 8 mm Dic 10 mm

Fig. 2.7 Metal transfer modes for Group B with inter-cathode distance D;. of'4, 8, and 10 mm.
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Fig. 2.8 Impact of inter-cathode distance on metal transfer characteristics in Group B, highlighting transition

from projected- to streaming-spray transfer at D;. = 10 mm.

244 IN—TC:T7AYRHELRSIOEE

IN—7C T, 7TAVYREHLEEIA X7 v b 37 A—2 L LC&EL, 10mm, 20 mm, 30 mm
D 5N F TR AT D BRI % FE L 72, Fig. 2.9 IR EHEE A X THi{ER2 5, 2TOEMFICE T
T — 7 77 X< DZEMIIAN L TR B O R B I e, ZOEBI VT TR, T—7
R omm ICEE SNz, V=T ADT =27 K 0mm & LFElkic, 7—72 77 X<27 4 VER
BEFURGE CIRFTRIC D BEL 72121, TRICBWCTH Yy 7Y v 2 LTz, ¥ 72, BRIR AT A E I < bk
T AT B I Nz,

Fig. 2.10(a) Tl¥, 7 4 Y2 L& 3 1o 3~ 2 MR X & AT B O BER R BB S iz,
TR TR X 2B L C IR AR ER 2SR b e o 72— T, IRTEBATRIEBIZ 7 A Y RHLEZ D
JERTHE > THFHICHN L 72, WEEBEHTE < 13, 10 mm 4T 2.08 mm., 20 mm 554 C 2.42 mm. 30 mm
T 214 mm LEHAE L7z, FRIC, 20 mm o CIIATEEWIR S 287 4 YIEROM 2 fFIEL., T4
B RIRE~NTER L khr oz b 0D, HTOMREMAZR L7, ZHICH LT, ST RIBEIL.
TAXYEHLEIOEME &b, IR JERBEHIFE < 31 Hz, 36 Hz, 51 Hz &H{INL 7=,

KIT, Fig. 2.100) IRy . 74 VYRHLEXDIERICIH U T, SMERE-ERIZED Lz, BARR
IiE, VA Y RELEZ 2 10 mm DA 0.93 mm, 20 mm DA 1C 0.92 mm, 30 mm D 1C 0.86 mm
CEB I, WITNOE T EAR R Y 4 YRR B o 7,

BB, IATIENTR X & E MRS T — 2 25, AWMBITELZSELZ, 2ToT4Y
ZEH LEMFIC BT, AT IZIAME R RIRBICET 2 2 & . 7 A4 YREZE A 2 BRIRVAT A3 AR I
MWL 72 SO OFER2 L. Fuy TBRITHXENTH Y, EHBITIVEROES IIFRAE L 5d o T,
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Fig. 2.9
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Fig. 2.10

transfer within the tested Lo, range from 10 to 30 mm.
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Metal transfer modes for Group C with wire extension Lgy of 10, 20, and 30 mm.
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(b) Equivalent droplet radius

Impact of wire extension L., onmetal transfer characteristics in Group C, highlighting consistent drop

40



245 T 77 AEMSERENBRERFEICRIZTEE

IN—7 ABLUNB T, 7T—7 77 XA~DEMOHEESEROMERMICS 2 28 L 2K

CHE L7z, 7T—2R1E7 4 Yih/gm, EMREREEEZY A YEARICE T 2T — 27 77 X~ & R
fHF 2, B> L, 2 —7 A BT 37— B0 ML 7 v—7 B ICE ) % [ iR
D37 A YET M O R EZ R T MR I N, ZofEmiE, JiofEsmL )b L A
MM EfAE LT — 77717WWAE£%#\ﬁﬁ@§ CAREM 2 % ISl REE 2 RIR 3 %,
AKIFHTIE, HEIN—T I8 T 27 — 27 77 A~ ORE RIS 2720, 7 — 7 K L 2RO
R 75 22 T B i ¢ ’ﬁErﬁ%éf\ VT (R R AR o FERTAN % SEHE S 5,

PR E B35 7 — 2 77 A~ ORFHEIC IE, TRIREHRO T 2~ 2 b H-C BRI O FRYL KRR
BEEINDE, TN OWIREMARANICEHET 2 201k, 7— 27K - [ - Ei7 4 vERE
@1°E?\TE’*J72F%E]M%%T§T6M\;<7§>Z’D% AIATIE, Eq 23 CERINDT—2ABVAZEAT LI L
i 3HHDOIIR AT A =2 BT — 2 77 X~ Hiic 5 2 % HilfHN R % WG 5 L 72,

T —ZIRH Y 0= tan‘lw (Lare > 0) (2.3)
IN—T ABLUPIV—7 B OfEREIIC, 77— 27 EdH 5\ IS 2 & 2 7= FREREM
BT — VIR Y I L 72, Fig. 211 IR Y | IRTEIRMTR X 2 i L 22858, T — 2 IR0 0 A
DN, MR X 383 2 & L A ER S iz, b, VA YEMRR X v 727 v &R
IR DT 256 (Lype = 0). EqQ23 D7 —ZIAR ) OERXZHEHATER\\W720, IARBLHT
RIZ2Romfte LCHHPICR Lz, foSMFL HIRL T, Ly = 01T 2 BHENTRE X 3w KiE%
AeER L 72,
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Fig. 2.11  Definition of arc spread angle (left) and droplet breakup length against arc spread angle (right).
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T =077 X2 DEMSAREL, T2 77 AR RMNLEIRRTZ PLORE I BL T E O
CHEEIIET . £3. 7280 A, EREFICE T 2T -7 77 XA~ ~O&EMMIEZIRE L
%%, Fig 2. 12 R T@EY, T—2ROWAICEX Y T —2 77 X~ 37 A4 YHJTIANCIEN & 41, BEHRR
PEEEOHIMIC X 0 7 A YRR I N D IEHHEFICEREZRK 2 & T—Z L0 ) fORIIC X Y |
T =277 AR AICER L, BEE X VEWT -2 77 X~@cE b, I, RIETE
CBWCT =27 77 XRS5 DIk, EHEBRO —H3EH» IR L, 7—72 77 X<
T220TH5, LEzdo>T, BLECETET —2 77 A~EKloMNZ, 7—7 77 X<icifiA
THOREERONREOMMEZL SR T LRSI 5,

KIT, T—2IEA Y OB, EEEROME 2 EMS ¢ 2EHE AR5, EBTXT — 27 KE
E T, AEERIIES Y A YRS RICHERS ., 2y SR T vEME T A YERARICHELS,
L7izdoCT, 7T —2 77 A2l CIEEEETIT T M2 5 BT IR X v, 7 — 27 K530 Ao
I X 0 BIROBRI A AN 2 ATREME A & o,

Welding
current

Radial arc expansion Dic

Axial arc expansion

] Larc

Fig.2.12  Arc plasma expansion and current flow shift from axial to radial.
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T =27 K0 Mk, BEBEROT — 2 77 X ~DiIREE R X O 1A~ DR FHRFE % [FlRF ic 228 (L
X9 5 EEN RO, BROMPIRE & 2RI ICBIE L . BT ~DRIANET — 2 77 Xw~D
Sk L CEIERNICEREMERE~TET 2, 7L, =7 AL BOERICRL S, Zv—7C
DFFE GBI CTHK T 2 L, BHAOREOATRARMBESHKE LSRRV EAERINLT S,
Lae = 0DEMET T, 20 —7 A REEI270A) & 70— 7 C GAEE 210 A) I8 2 L
RI%WT 2L, RERFMFEDO I NV—T A TOREHIIMEREBIES L, CofBRLY. B0
FEM 72 o AR BB R AP R 2 PUE L. MEMIRIGEHELE O T — 27 77 X~ DI KIREESL L O
BB KT 3 LT o n s,
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TN—7 CTlE, 7 A4 ViEMEE S R AR O M EREIC G 2 2B 2 P& L 72, Z © FEH 1.
AT T — 7 UL E (CRPE ORI L 7 A Yk o ST HIEE I X 0 IR L 72, BARMITIE,
7 — 7 R LMY B, X OICHEEERRY 210A KEE L LT, BREEfFIcE T3
T — 2 77 X2 DRI AERIRIER MR L 72, WIS T 27 —2 77 X~~~ 27 n it EIRE% [EE
L72REET. 7 4 YakiGs AL O A 2 BEh X &7z,

Fig.2.10 T/R L7280 | 7 A Vikiad & O BNt - TEHMATE IR Lz, ZO@y 4 X0
WA BBATIRIBEL D 2B BN 2 SO L C 3 0 | iR O mnEilic X 2 B AR R o AR E
DOHIC X 2508 % ERlo7- 2 L 2 EWT 5, —Ji. VA VEBEEZHEME ¢ CTh . BT RIRA
~EH Loz, TOMBIT. VA YEGEEIEMEHARREZRET 2 ETHER I AW L ERER
T 5,

RIS, 7V —7 C OEBAAZBfEOMA L Wik 2 2 & C. Aoz AAOEHARR 232,
T, FlARERICBE L T, REHIP A B X 2 M E T A YIERHE RIS e Z itk b,
ToRBZWEYBRATNG, ZONEEEZ BT 2BEFMA & LT, Lesnewich ¥, 74 YEHLEZ
DIERATFEN, Fay T2 0 AT L =BT ~E BT 2R ERPMET 35 < & 2 EBRITR L 727,
BonzEEH T — 2 LhiE, FMEFEERRIKALE LT7AYERL YRS, 63D oM
DD Z DD, T AYERBEEDWEMIC X o TRMRD R TV —BT~DBE S FAET 2 RS H 5,
—Ji. TR S ICBIL T, BEHEIPZ 2 2 7 4 VIiEEE I IR R 2 S & B AT REME
H2b, ORI, ETHEBTHR EIBEEWA O FRRICE T 2 HHEED S8, HADEA
HERD 2HIEEZEZ 2 LREDPABICHET 2 LI BAIOMAICHK S8, LarL, 74 ¥ZEHEL
F&A 15mm UTOEMANRZEHICRY . 7 4 VikiGsE ol N2 S o ik % #7552 nlgert
3D TR W & R b B,

Cor

25 MRS A—2HFBRBITHEICRIZTTEE
251 EBREH

BHOMENZIET 2 FEAEREZHL 2T 5720, Fifli CIEENNI A —20f T v
NT A= ZICHERE LT TRET L7z, ZRISHIRL C, RETCRMEL YT A — 2 2 ESICIY BT 2,
TAIZTL-l-$k-=v 7L - FRVyORL2 STHEOMBIEY 41 ¥ % v CORREITRM: % ik -
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7 A X MENZ, AERBATRHESERICKET 2 2 & RRHRIGER S iz, SERBICE T, B
¥ v V7 OGEEICERZBE T 3 EXULEE D ZBEBEFBITREO L L L CHEE/ T 5 "REM: 28
E, — L RERIIC B W T, EIRIURE L 2 WE0 2R 7 4 Y HRHENIC 31 2 B TRE
OEE LTI 2 LHAFE D, Fric, BRI A A 6 KERIE CIIRmELEN 2 ERHO
ERICBE S 3 % LnanNTE D, RIEIR)SLCEEPBEHBITREOZ M 25 &k o R EAaYPEEN &
mVR5, oo E 2. BEXUSER - RERS - BELH H I ICHMT 27 4 YR
ZIER L 72,

BT AXYFHICHNT 2 70225 A — 2 OFEHFA% Table 2.4 1T L 72, REFRTIX, EREH
1.0mm £7213 12mm O 7 4 Y EMFHH L, B 1.0 mm D& IZAEEERE 210270 A, EE 1.2 mm D
Bl 250-390 A OHIFAT, 20 A TOWME L7z, £72. F v IRBEEREEZ 15 mm ICEE L 72 K&
T, 8mm D7 — 7 KXW RMERI N2 X5 Ic, 74 v EREE 2R EBRICIO . CHEI N, Ab,
ETOEETIRMEEATIA 2 APEMKTLEL TH Y, 37T | B cHRAM ORI+ T — 2 8%
S CE =720, &L <1 Bl iT2FEEL 7=,

Table 2.4  Five experimental groups based on material-specific parameters.

Material Diameter Welding current Wire feed rate

Al 1.0 mm 210-270 A (20 A increments) 190.0-280.0 mm/s

Cu 1.0 mm 210-270 A (20 A increments) 135.0-180.0 mm/s

Fe 1.2 mm 250-390 A (20 A increments) 95.0-155.0 mm/s

Ni 1.2 mm 250-390 A (20 A increments) 80.0—125.0 mm/s

Ti 1.0 mm 210-270 A (20 A increments) 210.0-310.0 mm/s
252 EEBER

ATl BEERORCHIICES T 2 WHEBITRMEZ R 3 5, Figs. 2.13-17 IR @l EH X 7
{5 & . Fig. 2.18 I8 SRR X - ARSI TRIBEL - S MiEHE R0 7 — 2 ickonwc, £74%
MBS CBIE S N IRHATIVEZ L. Ch o OBTIREOEBRMHA Z LT T2, e, &
LA A 7R OBRGREICOWT, BEBROFELC T A YMREMFCIELTT =2 77 XA~ 0¥k
BREEDNEAL L 72720, &MFEC L ICRE AT NEIR S Nz, 72, K277 7D T — =13 8T
HEIE A KT,

TAI=ZY LT AYEMECTHG SN ERE A X ZWR%E Fig. 2.13 10T, & DEMClk, AL
RaIvE ., Mk 2EHs BRI NS AP TREERECTH o7, IWEBEROBEHRPICD o CT, i
BEWTR X127 A4 YIEFEMH Y O 1.0 mm /it T, FMERF PRI 051 mm AT CTHER L7, 2hb ok
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Fig. 2.13
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250 A
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250 A
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290 A
105 mm/s
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S——

Transition from drop first to projected-spray transfer at 270 A, and subsequently to streaming-spray

Fig. 2.15

transfer at 290 A for Fe wire.
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270 A
280 mm/s
tex =10 NS -

Consistent projected-spray transfer for Al wire within the tested current range from 210 to 270 A.

270 A
180 mm/s
tex =10 MS

Transition from drop to projected-spray transfer at 250 A for Cu wire.

390 A
155 mm/s
lex=5 MS




250 A 330 A . 3 390 A
80 mm/s °¢ 110 mm/s : 3 125 mm/s
tex =10 MS tex=10 MS £ tex'—-SHS

{

A

Fig. 2.16  Transition from drop first to projected-spray transfer at 330 A, and subsequently to streaming-spray

transfer at 350 A for Ni wire.

210 A 230 A : 250 A 270 A
210 mm/s 250 mm/s 285 mm/s 310 mm/s
fex = 3 Us fex =3 us fex = 3 Us fex =3 us

Fig. 2.17  Transition from drop to streaming-spray transfer at 230 A for Ti wire.
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Fig.2.18  Material-dependent characteristics of metal transfer. Error bars represent the standard error of the mean.
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Table 2.5 Material properties of Al, Cu, Fe, Ni, and Ti in molten state around their melting points [9].

Material Melting point Density Surface tension Electrical conductivity
Al 660.1°C 2385 kg/m’ 0.914 N/m 4.12x10° S/m
Cu 1083.4°C 8000 kg/m® 1.285 N/m 5.00x10° S/m
Fe 1536 °C 7015 kg/m® 1.872 N/m 7.22x10° S/m
Ni 1455 °C 7905 kg/m? 1.778 N/m 1.18x10° S/m
Ti 1667 °C 4110 kg/m® 1.650 N/m 5.81x10° S/m

() =SERE : ERGCEROXLE
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BT BRIER I L 72,
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MBS L T WA R T, ARoMEMER oM 5 e, RV (Triz=vai -
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DTREEZ L TV 3 & W RGBS EI NS,

Ti Fe Ni Al Cu o [S/m]
L FanY =X L £y [N ]

T N h— T S SN L
1x10° 1x108 1x107
Low electrical conductivity High electrical conductivity
v Current diverted to arc plasma v Current concentrated in droplet
v Streaming-spray transfer v Drop/Projected-spray transfer

Welding
current ||

Fig. 2.19  Role of electrical conductivity in molten droplet elongation based on current distribution patterns.
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Table 2.6  Conditions for arc expansion on high-electrical-conductivity wires.

Material Diameter Welding current Wire feed rate
Al 1.0 mm 270 A 300.0 mm/s
Cu 1.0 mm 270 A 185.0 mm/s

Al wire Cu wire
270 A 270 A

300 mm/s 185 mm/s °
tex=10pS tex=10HS

Fig. 2.20  Impact of arc length minimization on droplet elongation in high-electrical-conductivity wire materials:

rotating-spray transfer for Al wire (left) and streaming-spray transfer for Cu wire (right).
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ICAFT 5, 7272 L. B—Jinh o oz oBa. BiS <% 2 3EHHR 2 ot o, BT mo
HEEOTEEHIICE v, Lo L, EEITMD b S h 2 56, B mig % 5 3 Zook iz /i
WS 5 2 LT, 3R OFHIAFETRTE 5,

Wire electrode _'I
(Consumable)

-
1

A\

Tracer particle —

[

e

Time [ms] t=to
(At: Frame interval) oees t=to+ At

X-ray Particle trajectory vector

Fig. 3.1 Principle of X-ray particle tracking velocimetry (PTV) in metal transfer.

PTV OFHAEE 13, P L —H R T O it 3 2806 ITIKTES 2 . ORI T 23Rk & HtF 32 %
ICHEWT, M IFEHOFMAIC L C ¥ 288 CEBT 2, JEFHOFMAICHT 3 2 R oA 1
B EE LT, ZOEMANE I ER T IIRAVCIEREICBRET 2, 0 3#EIX, Eq. 3.1 IckEonT
RED 545[9].

0 vy — v = %Mddi; G.1)
KB DFEFICOWT, v, [ TRFHEL, vl X RAEEE, D IR IERE, pp IR HEE, peld AT, nid
TR, 3R 2R T, coRXiF. b L —RT L RGO FEERE L RF RO ICHES T, KT
DB BT 5 & ERIRT,

RIT, X A A=YV 7O E AT 5, X yWHE @B T 5 & &, X IIWE EHAEFER L.
WET 2, AS X RO —EIEEEL L. — e IR, —EIEET 5, ASETERN,D X #
BIRXdOYE #3556 (Fig. 3.2). WMEEZOFEER X fE TN, (X, 7 v~ b« =ikl
> T, Eq.3.2 £FRINB[10,11],

PRI (R AL D TE N; = N, exp(—pud) (3.2)

KPP DOLFICOWT, pldMERFEZR L, XROERAIEDOIEEE & 72 2, BUREREIE TR - BE
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L DICHINT 5, k. MINERE L EE CHlo 72 E R Bu/pr BERERBK L EXT 52 & T,
BB E BRI CEEE L Eq.33 b LIFLITHVYO NS, HREFEEREIIEE ICKEF L
211,

FR MR O T My = Noexp (~7 pd) (33)
i, d
Incident X-rays Transmitted X-rays
No N1

Fig. 3.2 Attenuation of X-ray by matter.

RIS, X AR PTV OFHAEFLZ 463 2, b L — VR 308 L = AEARRIC X AR 35 &
TR L RLTF O X BHEEREICIE U RS Z 24 L 2, CoMEDa v F 72 P 2FIF L T, NEHRGE
FD L =R DS & — v FdflG e LTS L, R AiE 2 5l %, kT 5 7 L — A
DR T IET — 213, Eq.3.4 ZHWTHREEE 7T — 2 cEfian s, iz, xz FHEicEs 254,
x JilA e z TR O RAEE K 2 IiGTE %,

. . )_C) t+At _ )_C) t

VALY 3 TRV R % (3.4)
KPP DOFLFICDONT, BITHER 7 P, XIIBESRZ P, At 7 L — LR EIET. 72, BAFD
fIRFRIAR, p IR T t+ AtIIRR 7 L — L DIRGEREL. t13 % DERTD 7 L — L DIRGERZL % £ 1,

3.23 #HE7 A Yotk

X ## PTV %AW AR % SR EICa gt 32 Lo, #5374 v 0@ E I3EHIRE 2 0E LS 2
BEATHRETH S, ATk, 74 v e L <, 7TAriov rBloffkEEe 2 v 727 vRiT%
EUMRIaTTHREINE L —LLAAZAL AT — NI AYERHA L, AETIR, ZnoMEOZEE
TR T 4 Yo EFHIHT 5,

M7 4 Yol EeEIE, TERMT LI =Y 264 (A1070) TIEKINTH Y, Table3.1 ICRT
Ll B L7z, BBETHDZT A I =T Lk, JHT A YHEC® 2 180 & ik L < X fld@ikic
BN, miEEtto 7L =y aic, BibT 2 EERED X v IR T v EAGDESL I LITL 5T,
X BUEERICE W TR R T O R 2 v b 7 X P BFECTE 2,
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b L —HRFOFEIC T, @A - X BEEYE - R TFRO=Z00ERBIER I N, mElEO L —3
K23 2 2 L id, AN L REI$ 2 IR 723 E AR R 2 HERE 3~ 2 720 o B TH 2,
WL 7 A YR Ol 2 5 RIS 2 T CIRHEIPHIC D 72 2 IR EE SR & IR 3T [12-16], VA O 4 Hi P
T ML =R AERREZ RO 201X, RFORSA T A YHRlO#A% El2 2 &2k b g,
L7250 C, mbAEAEVHEESBTH 2 2 v VAT Y RNRIRI N, $7-. X EBMEOBIE D S
b, BV AT VIFEEET X AEBEEIMR W20, FET A YHECcH BT I = 4L OfRICHARE
may b7 ANERRT 5, RIC, RPEROZREMELE LT, B EChFiE 2R T 572010,
X BOEBROMGRE® L2 R H 5, REETIE, S3um Xy v a XA, ThbbRARTES
53 um Y] W Fr 2 A L 72,

BEELETAYIEE P L =R FOfAADEICH LT PTV OHAINEE %39l 2512 & L <.
b L — R DRI 2 B0 R REES 5, KT OB, KT o8N & AR O KPS o
HORE 72X IC X VIRE D, Eq. 3.5 IR T A b — 27 2B St #HICHHT 2, 2 b — 27 28k i3, KiTo
WA 3 2 I0ERE & G o FrtERfl ot & L TER I N 5[9],

" Tp
A+ =27 2 $=? (3.9)
f

2(p —
K7 DG~ DIeERE ¢ =iw

P18 n
. L
Iﬁﬁ/bi%@ﬁ‘l‘i H#Fﬁﬁ Tr = V

AP DEFICOWT, 1,0 b L —F T DG IS 2 ICE R 7, (3TN OFFIERE, Lidifiihg
DREKR T, VIIRFEE L KT, A TIL. Eq. 3.1 ICED ZFRERE Z BAED V. Table 3.2 DSMFIC
AR =7 2B EFHI L 72, St= 1.7 LR INE Lh o, BB TIEER L. D 0FHIERE
EEESTIRLERDH 2D DD, L —VRFIIAERT VI =Y LN DERICEN T 5 2 & e Y]
ICIBRET B Z e MR S LT,

Table 3.1  Chemical composition of A1070 aluminum alloy wire sheath.

Element (wt.%) Si Fe Cu Mn Zn \Y Al

A1070 0.029 0.039 0.001 0.025 0.040 0.018 Balance

Table 3.2 Calculation parameters for evaluating particle fidelity.

Element Specification

W Density 1.93 x 10* kg/m*
Diameter 53 um

Al Viscosity 1.30 x 107 Pa's

Characteristic scale Velocity 1 m/s
Length 1.2 mm
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WY 4 PEEEZEICOWCEHHT 2, v — AL R AZLaT— P74 YO ESEIFER 1.2 mm
Thb, R LY )y P A VERCHGLTwS, SMNEESEO T, EE 0.1 mm O E@ENAH
Ffff LicilE S h, 2 v 727 VR EMT A I =7 A RORGEMARDSTHEE W, 37 4 vER
I S W= EM RO b ICiRASM % Table 3.3 103, 72, k7 4 Y& o & |
XA PTV BTNz ey DT A4 Y2 L RO X FEBER% Fig. 3.3 ICR7,
B DFEE R O X v 7 AT VR BAR 2 T NETHEH—IC 9 L T 5 2 L MR X iz, —fRIC,
MRz 7IcEs 5 b L —FRTFOBEENBEICH WEECAE—ICHam T 256, BEERICE VT
BT 5 © 2 ER T o EI G SRR L, K ToRESHEEE %, KTo¥—FHE
I, PL—HR T OB EC L L b, BERE AR XS5,

ARIECTHHL 7257 4 YEGEHT X o T b L =3 R % EHARICATICE A L, AR I o jiEh
Ptk % T I R 3 2 5101 7 4 v SR S o, ARGHElO R Ix, BREN 7/ 3 BR B 3 2 A N R
DRBFECTH %, B IIET DINEER 2> & FhIEIC 2 1 TN ZBR B 3 2 & & 235KEF & o BT
KX VMEINTEI[17]. VA4 Vil bo¥—722 b L —3 R FECE X, BREIC K > THR S N3 HE
FREARIICIRZ 5 2 L IC3 5 LT,

i 12mm i i 500 mm i
r——————— - -
5 S S % !
(A) Outer sheath — \ )) /
o D A A 0
(B) Inner core / (( \
~— ' \Y , \
0.1 mm

(A) A1070 aluminum alloy

(B) Pure tungsten particles + Pure aluminum powder
Mass mixing ratio AW = 9:1

Tungsten particle

Fig. 3.3 Specification of seamless metal-cored wire with aluminum sheath and tungsten powder core.

Table 3.3  Mixing condition for metallic powder.

Element Al W

Powder type Atomized Mechanically milled
Purity 99.9% 99.8%

Size Around 3 pm 53 pum mesh pass
Mixing mass ratio 9 1
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3.24 X#PTVRTLODESE

KRIHTE, X#RPTV ¥ A7 LOHHICOWTHMT 5, X#PTV ¥ X7 Ll IEBITAT — 7 &
BB XA X — 2 v VR REOBEHAOEEREI A TD =20 FEa vy K—F v F oI N,
AT T — 7 ELEE X, B TR L 28Y ., 7T—2 77 X~ ZEMaHmfik % HlfE L o oiik %
LEEWR L 720 X M4 A=V v 73BT WHENEICE T2 b L —3RFORH0N % — v 2HS L 72,
EOREE A A T, AT OB R RAATE & ik L 7.

EEEE N X M2 7z PTV EBRIZ, RIUBUEHERR SPring-8 o H AR ¥ 15t fl S & A
v — L7 A4 v BL22XU TENE X 1172[18], 30 keV D T AN F—Z O AG X iz, FHRIT v a2l —&
oHFREINSE, SII) ST/ 7a X —2ic kX hEEfbahnsz, Ly IFEHGEE X it s 2 7 4
DB FRICERE SN, Csl v v FL—ZICX»>T X B #RGD> LA I N[ R A EEEH £ T

(NAC Image Technology Inc.®) % FH\>C 3000 fps Tl X 417z,

KEBEHAOEEEH A 713, XA A=Y v 7 DiRE 7 L — LRI A LE 2 Enl 2 o BN 72 K i
BREWITCT 272DICHKEI N, NV FXR T4 vZE~wy v b LZEREHN AT (NAC Image
Technology Inc.#, Memrecam HX-7) % {HF L. 5000 fps CTHxi L 7z,

RZIC, FEFEa VY R—3 v FOREEICO VTR, Fig. 3.40)IC/RT X PTV ¥ 2 7 LHMIG E
BuC, WA X o LRTch b, XfiEy AR (BEEROF 2 S IE~HD 5 Fia) ~EE S s,
ERE A A Z1E, XRONEEZES X D IC, Az TREI N, 227 FF v 7T Timrb
BV IATVERE COMERKE x Hr b Lz, -, EBTRT7 — 7 EEE I, 27—
KIICHAE SN, X MBEMY A4 Y OREPEIEAEZIH S X 91 (Fig. 3.4(b). FEEREM IO U CHES X
DSEYNCHEE T Nz, X HR PTV EEUTHR 2 M DILE AR T Table 3.4 ISR I NT W5, FERBATHT — 2
JEZEEOEF7 v —Z 22 fiL FHEECTH Y, HHE LV AES LFEIAL <. REEEIZEIEZ A L.
XA A= v 7Es L RO EEE S A 713 - ieskz A L 7=,
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Wire feeder l

Argon gas supply nozzle
(20 L/min)

_

(a)
Fig. 3.4 X-ray imaging setup: (a) Annotated general view of X-ray PTV system and (b) Enlarged schematic of

X-ray
incident diection

' X-ray target area

I

(b)

the welding torch vicinity with specific measurements, highlighting the X-ray target area.

Table 3.4  Technical specifications for X-ray PTV using non-transferred arc discharge system.

Element Specifications

Cathode Electrode type W=2wt.% LaxO3
Diameter 1.6 mm
Tip angle 30 deg.
Inter-cathode distance 4 mm
Contact-tip-to-cathode distance 10 mm

Shielding gas Composition Ar
Flow rate 20 L/min

Base metal Material A5052 alloy
Dimension 40 mm (width) x 5 mm (height) x 62.5 mm (depth)

X-ray Energy 30 keV

61



325 X#RPTVERTHRASINABRENIA-ZBELIUVBRNNIA—42

X # PTV EEROBWIZ, 7— 2 77 X~ LIFICE T 2 imEB IR O 53 TR BB 3 PN ER O s i
CH X2 ELTARDL L THDL, COT—AVEFERT L2010, KERT A VICiZZoDHEARN
ave 7 PR ANS Nz, —2HIX, XHPTV EEROBHEMEEZ AT 2 2 &, o HIIF, BEER
DIy FIRRE % I AT RE A WY R RIE N T A =2 % BEFT 22 TH D, —D2HDOavET MITDWT,
FL—HRiFEHVS PTV OHHlFEH L, {74 v LTy —L2LAAZLaT—F T 4 VYDEA
BRETH o7z, L L, BRI T DEEIHED 74 YMEOARE 03, BT OB RFE-C N
TEFFEICN L CPIIL A WHER 52 22 H 5, V) v F 7 A YR L 25H#EN R 7 — X1
X9 5 X #% PTV fi R D@ alREME 2 MGk L. AGHHlofEHEE 2 S 2, ~oHOoav 27 i, &
2 BECEINA-RIBIGEIEIRCE S, METHL» IR/ Y ., WP T — 27 77 X~ B!
BRODFIREEIL, BFLFEICETET — 2 77 A~ KIKEL X OBEERMEcREI NS, B
TR IE RS NER R BRI MUS T E AR T 21013, CThoMifOERLEETILERD B,
TOo0FEFa v T My, RERTIE, FERREFEANT A2 LT, VA YR - BEER -
T ROERIN, PV RTFEREALHELTET 5720, BEHRY A YR LT, R
ZERE 1.2mm D AI070 MY Uy F7AYE 323 HTHHLAZA XAV T —F7 A4 ¥R FH L, X
I, REEETIE, BN PVOREIERET 2T A—ZTH Y, 200A 7213 270 A ITFX
AN, T2, T—7RIF. ERXZ PromEICEEL, T—7 77 X~DZEMSAARED 5 B ER
FEFE DI KRR Z M T2 T X=X TH 5, REBHEEIICIC U TT A Yikfad i 2@y c s 3 5
Z&T, omm 723K S mm ICERE X Nz, EERSEMFICIIERNNIC T _AZ BTN TED, AE
DFHIIL NG DT XNAEMHEHT 25, EESIFOFEMZR o ICSEME T <413, Table3.5 i T—EAl
INTW3,

Table 3.5  Welding conditions for X-ray PTV.

Condition Name Wire type Welding current Wire feed rate Arc length

Tracer-free Tracer-free 150 A 110.0 mm/s Short (~0 mm)
Tracer-containing Tracer-containing 150 A 110.0 mm/s Short (~0 mm)
200 A/5 mm Tracer-containing 200 A 126.0 mm/s Long (~5 mm)
200 A/0 mm Tracer-containing 200 A 150.0 mm/s Short (~0 mm)
270 A/5 mm Tracer-containing 270 A 189.3 mm/s Long (~5 mm)
270 A/0 mm Tracer-containing 270 A 205.0 mm/s Short (~0 mm)
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ST OB RE 2 3l 3~ 2 720 DRI & L <. 2 CoOFEBRSEMICHE L <. BWHMEITIVE, B
FATIE. AR LR HUS X iz, AT L, X ARE @GN 2 <. RmBIEEH O EEE
B AT CHRE I NERICE D E, BRAETNICHINT S iz, ARBITRENL. AR 2 DI L 7=
FHRE e EEE N, T — 27 77 X~ o sl & i 5 @ % R 2 ¥EE HE R Ic B v»wC, Kl
BIM OERE A X FHRD 5 bR 7 L — L 0B e 83t 2 2 L CEH L, 251, Bk
BES 285 2 — 2 W51 2 EERSAEClR, b L — 3R BPMENT 2B CHEM L. NETRENEE %
GHEIL 72,

&EIC, X # PTV EFROHBEICOWTHEHAT 5, SEBRIMFICNT 24 0K L A% Table 3.6 1
BHT L, FPL—YEAFMHFCLTE, PL—PRNTOREICIELDERECAREEEZER L T,
3MEEHIZREYIRL 72, —H. P L —HFIEEESRMECH L TiE, 1 RoRTOABEEE N, FL—H
IEEHEM I, BRBITYA 2 AP TREL TE Y, ZoRfTT 95 HOBERHBITEIT — 4
ERRCTERZ L0, | HOFEITTH T alBMESHER I T, R BB %2 Fh L 72 5:0F
Tld, EEOERIC XY, BIFCE R THIFORBFMICIG L TR o7z, TRLDERICIE, A
INZ L —=HRTOI 4 XA+ Ta v b 7R PRI HE R 72 IS EREAARETH D L
. T — 7 ROWFMZAENICE WIERBIT O R A S & G RBIEHIPH 2 & T2 2 L8 &k, Lo L,
WITNDOEETDH, A7l &b 9L EORI TS T — X 23HUS & 4. BB O fFREE I+ 1
MRIN TV,

Table 3.6  Summary of repetition counts and tracked particle trajectories.

Condition Repetition counts Number of tracked trajectories
Tracer-free 1 N/A
Tracer-containing 3 N/A

200 A/5 mm 7 12

200 A/0 mm 3 9

270 A/5 mm 8 48

270 A/0 mm 3 28
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3.26 XiREBEGOETFIE

BRI 2 N — 2 & L7z b L —H R OENIT PTV 02X 2 2 EETHY, ZOWKE
EFEENE DR ICERE 3 5, AT, —E LT, Fiji ¥ 7 b v = 7[19)% i H L CHEi{RAT 25 £ G
INTe, RIETIH, X AHEBBRT — 2 ORTUIRITIEZ B L, A7 BRI o 22 [H 5 fRGe % 29 5
Z & T, b L —HR BN ORI % 24t 3 2,

KL BIMARNT ICFHC EHRICH LT, AL L O REREBRET 2200y 2 770 v FIRE
DI, WRERE X, MEPFEEL R VIRECRE I N AL 2B Th H ., HED
PRI B 2 WL U 72 RS 0 % & e 2 DR & HEHEIC X BUEE IR 2> & 1 S lE %2 @) iR 2%
T LT, BENRICHELAVEEOL S 2D B E ., AHOWHERE XL NEHO b L —3 kT
ISR — v BHRTE B, ABETIE, Eq.3.6 ICHDOWT, Ny 27y MU A EEL 72,

Ny y 7T LR %w=#ﬂ%%ﬁ- (3.6)
back dark
AP DFE R Lol Ny 777 7 v FIREILGE DL, [y ERILIRE R DIEEE Tpep (3T TR
DIEFE . Igandd X — 7 R OMEE A KT, X — 7 BRI, A AT D v FICHI Y)Y 72 5 7 kg
TIREINZEBRTH Y, L FEEGD ) A XFREE T,

Ny 775y v FEBRBFLEICH W 2 B{R T — 2 © BARE 2R ic 0w T 5, RULEE{R 13,
R2bit 77— & LTHYGE N, Ny 2759 v FERENBEZFET 32bit 7 — X ~EH I N7z, HRERE
LT, BMY A Y& &y 72T vEBEIRIY BRI 72 REE Y S -l © 100 SO % {4 H
L7z, X— 7R3, EER (F 448 © 27 L@ X 296 &7 2 L) PURED 60 & 7 2 P OFEIKD
IR i 1 HE D\ 72, Fig. 3.5 1T, B SRR, RIS, v 7 75 7 v FEREZWUEE O iR % 7R,
FREVMEOFTZR CHEMT AV I =V L - 2V 7 AT VRO a vy P 72 AR ELTED, FRENHE
DENED MR S iz, ATLERZR OEROFHE & L <, (KRR E AR 2 v 727 VA, A e
ZEERE 72 BT L I =Y A, EHEEESIE T AV T T c TAITVH R - RADH A
MG L Tw 3, £z, REMRTHEE N XKRHFRON T, TEHEROFTEOAHAE X — v
BRI Nz, TDOT VX LN 2 — i3, ik & Z BRI A B 2 R - v 2 4 XIETH 5,
KEGLAREIL, Ny 7 75T v FRELIEZ O X EEETRO A %2 T 5, & 5ic, X MRS EES 0
AEAN T ) 4 X2 — v RETERN R HBEE 2187 5 o 2T 2 729, X BIRSHEENEZ P Y 2 v 7L,
A A RICECB Y ORLERE R T S,

RIT, v 7w VERIEREZ FEMICE T 5 BIEERICEI T 270D A7 — VERGEZHIHT 5, HE
SHRREZ UGS 5720, RBIUREHOFIEY 4 ¥ X fuEEEREY kL, 74 YEEEIE L 25,
WE D RAE R 11.59 um/pixel & BUS L7z, & DHEFESFRER FIC, ATALELTE O 15 SR % Ak i< —fifk
L. XHRE =234 XHMH 4.02 mm, & 2,19 mm & HIE S 7z,

RiRIC, BB O TEE2FAT 2, REBRTIE, Fiji ¥ 7 b v = 7 ICEH#EREEE L TSR
T\»% Manual Tracking 7" 7 7' 4 V[201% i H L CT& v 727 VRO EBEESTSE S Wiz, fHFohiz
JEAEIE 4R % Eq. 3.4 ITIRA L, BELT v 3 =0 L OFRKHEE~Ef X hiz,
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0—[ Dark image (Iuark) l

H Background image (Iback) ]

Condition name: 200 A/5 mm Condition name: 200 A/0 mm

Raw image (Iraw)

Sy

(A) X-ray beam area (D) Tungsten particle
(B) Solid-liquid interface (E) Bubbles

[ Background-divided image (Ioroc) K—[

(C) Molten aluminum droplet  (F) Tungsten cathode tip

Fig. 3.5 Background removal to improve contrast between molten aluminum droplet and tungsten tracer

particles.
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3.3 XRBBHROEBR
331 FL—HIEEXHLEERHFICHITIAEBITIHE

FU—HIEERSEL LV ERRMICE T 2 EEN RE N & IR - B35, Fig. 3.6 12, 1[ED
BRBATY A 7 VIS d 2 X SEEEGR 2R3, IR MR L V. =20 FER LR R
ENTz, HDFII L v IR T VNTOFEETH D, L —HIEEEEETIX, BET A Y L AR
e W THED LW — A BENMAE LN, — T, PL—BE&E&ETIR, 2 v 72TV
KT AMEHERE OFEI & L CRBIE I N, BIRY 4 Y TIZ7 A Yllicih > TRURICEF LT, @i
TIRARICHEL TOM LTz, AR E LT, MUNRIEoREFESEHE SN, FL—H3IE
EE M TIRIBHENERICBUNSIER R L o 72205, b L — 3 &8 &M CIMUNRIE A E i 5 FL i i
o THRIEEL Tz, BOREL L <. Wil oREELE o5, L —HIEEESM T,
TAI=y LA ABO AN ZAMOEFRICH S AR v F 7R FPEBI NN L, PL—FEH
Sk, WO SEN NSRBI T 5 72,

Fig. 3.7 1<, REBIEEERERT, ZORICIK, 7—7 8il#MD 5 b 7 — 7 EAREA T 2@ ERE I
B LERETO 134 2 A 3MGH I T 5l JE AR O B 23R & 7B 13, 488 IR < i,
T— 7 KA 0omm CHEF X 22 & T, 2 v 22T vERIBICES ., AR O KBRS NEEC
HolledThb, FL—VIEEREIETIE. REDOHEL L RIBEMPTER I N T, PL—¥ER
ZMEClE. IAIERAICHUNR MBS BIER I N, 7 L — AR O AT R X 0 & 5 MY
WEUNCEEEN L Tz,

TRTERAAT D BIY R 0 E Bl TS S & L T, Fig. 3.8(a) I AT TR, Fig. 3.8(b) I ZflivAm e
EEMT L, PO — N — 3 FEEY KT, PL—PRTOEAGEICBEGRR . AREITEY
F I ms BBET—HL T, 07 4 ViEGHEEORE & —8H L ARMBITRHO 20 migkific
Bl CHFARE IR 0.7 mm SHEE S N7, JRENRZEBI 25 2 &< VA4 YEZ bEl 2 EE
R ZEER I N 72D, BRI NBHBITRERIZ. F ey BT LRESI N,
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t=tb+11.0ms

(a) Tracer-free wire (solid wire)

foe %

t=t+0

t=t+6.3ms t=t+80ms t=t+10.0 ms
(b) Tracer-containing wire (metal-cored wire)

Fig. 3.6 Time evolution of molten aluminum droplet cross-section in a single metal transfer cycle using (a)
tracer-free and (b) tracer-containing wires. t, represents the time elapsed from the start of recording to the initiation

of surface tracking.
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t=t+0.0ms t=tb+2.0ms t=t+8.0ms t=t+16.0 ms t=t+19.4 ms

Tungsten cathode

(a) Tracer-free wire (solid wire)

t=t+0.0ms t=tb+2.0ms t=t+8.0ms t=t+14.0 ms t=t+19.6 ms

(b) Tracer-containing wire (metal-cored wire)

Tungsten cathode

Fig. 3.7 Surface texture differences of the molten aluminum droplet in a single metal transfer cycle using (a)
tracer-free and (b) tracer-containing wires. t, represents the time elapsed from the start of recording to the

beginning of the metal transfer cycle, just before the molten droplet detached.
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--------- Wire radius

Fig. 3.8 Bar graph quantifying (a) metal transfer periods and (b) equivalent droplet radii for tracer-free and

tracer-containing wire conditions.
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3.3.2 BREBRICEAETBRENFA—2DEE
(i) HTEZERSHE

BB L 7 — 7 RORBIICERE S 280 0 BRI W T, Bk IcHE O & X fuEimEis
FEREREHT 5, AHMEHEROME LY. o0 FELFHAHE S Lz, F— 0k, EiBEIE
HHICE T 2 L CUNEROEEE, F_0RIT7 4 YEREEROBIRTH 5,

Fig. 3.9 12, 200 A/5 mm fFIC B0 2 X #LEEBIR %2R 97, 12.0 ms O WrRIBIEE I 5% 08 5 IR

TR - BiERE 32 94 7 v 03 2 BIRERR S 7, EBBIEHEHIPANIC B VT, < s, T M7 T
ANz, REEOETE & HICUE L. 5.7 ms. 11.3 ms OREENCHEWI L 72, F 7=, 7 4 YERER T,
BEORPFHEEBRE R L 72,

Fig. 3.10 1T, 200 A/0 mm §fFIC 1) 2 X #EEER Z 7R3, 11.3 ms MO WrHEIg . JEHAR 72 50
BT A4 2028 3 MR E -, ERBIRHEFANICE LT, < O, ARG CRE v, BERhEST
& DICUE L. 2.3 ms, 6.0ms, 10.3 ms DRFZNCHEMT L 72, MRAT 5 ICH ICAIE L 7z B o = A58
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HomEAEEE N TE Y, MHRO 7 A4 Y EREEFIZIRZ R L 72,

Fig.3.11 i2, 270 A/5 mm S&fFiC B 1 2 X #RERETR %783, 6.7 ms MO WIS I, AW 72 im0
BATH 4 24283 BIEE S iz, SBEBRHFANICE T, < NS, WS CERK & v, BEEEST
& DITIHE L. 1.3 ms, 3.7ms. 6.0 ms DIRFZNCHENT L 72, 7 A VERIEF L. RIS FHE IR %2
w~ L7,

Fig. 3.12 1T, 270 A/0 mm F&fFIC BT % X #EEEER 2R3, 11.0 ms MO WrHBIZIARIC D72 - T
VTR O T Ui |37 B B A I L ﬁ%@lmfi<Uﬂ@%ﬁnﬂ%ﬁﬁﬂﬁ$én&#oto
¥ 7o, IO WG 1L 2 7R ~HEICEAD U, el IR s s T e, BRI ICH IChE L 7
B0 =ML, 2 v 7R 7 VEBROLHRTH D, BRT A Yk, PRIV D, 2 v 72T VEMK
IFEOMGE MR E S N TE Y, MR 7 4 YEREREK 2R L 72,
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(d) t=t+3.0ms (e) t=tb+4.0ms (f) t=to+5.0ms

e s
=t+7.0ms

(k) t=to+9 () t=t+10.0

Tliroan,

gl s

(m) t=t+11.0ms (n) t=tH+11.3ms (0) t=t+12.0 ms

Fig. 3.9 Time evolution of molten aluminum droplet cross-section under 200 A/5 mm condition during two
metal transfer cycles: (a) Start metal transfer cycle, (b) start particle tracking, and (r) end particle tracking. t,

represents the time elapsed from the start of recording to the beginning of the metal transfer cycle.
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(e) t=t+2.7ms

o

TR ke o
(k) t=1f+6.7ms

(n) t=t+8.7

T-.-r-‘-.. e

(p) t=1+10.3 ms (q) t=t+10.7 ms () t=tH+11.3ms

Fig.3.10  Time evolution of molten aluminum droplet cross-section under 200 A/0 mm condition during three

metal transfer cycles: (a) Start of metal transfer cycle, (b) start of particle tracking, and (r) end of particle tracking.

ty represents the time elapsed from the start of recording to the beginning of the metal transfer cycle.
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() t=to+3.7ms (h) t=to+4.0ms (i) t=to+4.7ms

(i) t=t+53ms (k) t=f+6.0ms () t=t+6.7ms

Fig.3.11  Time evolution of molten aluminum droplet cross-section under 270 A/5 mm condition during three
metal transfer cycles: (a) Start of metal transfer cycle, (b) start of particle tracking, and (r) end of particle tracking.

to represents the time elapsed from the start of recording to the beginning of the metal transfer cycle.
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Lo SO

(h) t=t+7.0ms (i) t=t+8.0ms

(g) t=t+6.0ms

= T—
, AR

Fig.3.12  Time evolution of molten aluminum droplet cross-section under 270 A/0 mm condition: (a) Start of

metal transfer cycle and (1) end of particle tracking. t, represents the time elapsed from the start of recording to

the beginning of the metal transfer cycle.
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Fig. 3.13(a)lC. 200 A/5 mm, 200 A/0 mm, 270 A/5 mm cfF T3 U CPEATERA TR 2 H5E L 7265581
Rt KBTI —oN— i3, fEHERZEZ T, 270 A/0 mm SIS L CTid, BEAEICX v 72T v
B ICE S L, R L 2AMERORMBIRSHECH o /2720, EHEN 7 L — 2085t 2 FEii L
o7z, 200 A/5 mm ST RTEAATRIMI 6.4 ms & FAMEEZ R L7z, 200 A/5 mm S & FLHE I
T =27 B A L7z 200 A0 mm S&ff, BRI L 72 270 A/5S mm SefFo I, SHHT RS I
3.9ms, 2.0ms & fEiH X N7z,

Fig. 3.13(b)IC BT, 200 A/5 mm. 200 A/0 mm, 270 A/5 mm &I 3 2 SHiiAR LR 2 B L /2,
b o x T — o3 — 3 ARHERZE 2 K 97,200 A/5 mm S50 Tl S AMAm B 1L, 7 A Y L A% D 0.60 mm
Thotze TOFMEEHEMEL LT, T—27EMHEAD L7 200 A0 mm SfF. BEEBBREML 72
270 A/5 mm SefFECiE, AR ERIZZ N Z 4 0.54 mm, 047 mm E/NMEE L 72,

L ONDIZHA & SRR RIS W TR B I TIEE D [FE 21T 9 . 200 A/5S mm, 200 A/0 mm,
270 A/5 mm RIS B0 T, AT ILE @B RPN T  OUNETER L. FHlAR LRI 7 4 YR & FRE
DENLYVNE oz, TNHDEGTHBRINZARMBITIVER, 7oy o7 FETERE SN,
—7Ji. 270 A0 mm FHFICHE VT, K CNWERBBIER I N ad o7 2 L, BHOMEZBEMICER L,
ALY = IV IIRBTBRAE L LRE S Nz,

Fe. A ONOEE S, VA YEEIER OB OBISR D b P> DRERSMIC BT 2 Wi Bl
il G % Hi - B 5,200 A/5 mm SefF D AR & BRI DT & 122 TRET S 5,200 A/0 mm
ETlE, VA YEEESR 2 O LB 720 E 10 S U S v, RS BN T o 72 Bl %
VL IR L 720 270 A/S mm SfFC i, BEREESFUC HREYIE W ALE IS < AU TR & v, i 1%
TN T35 C & FEIH TSI E Z MERE L 72 £ ST L 720 7 4 YEIREER ORI & L <,
7 — 27 RK%K) Smm ICEE L7z 200 A/5mm & 270 A/5 mm SefF i, FHEARIRERLZOIH LT,
7 — 7K 0mm IZFE L 72 200 A/0 mm & 270 A/0 mm §fETiE, MHRT, 7 A4 vl e g L <
HMEER TV A YIRRMRE T Tz,
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vl Arelength ~ 5 mm

- Arc length ~ 0 mm

Average metal transfer period [ms]
oS

0
200 270
Welding current [A]
(a) Metal transfer period
0.8

o
o

oo Arclength ~ 5 mm

- Arc length ~ 0 mm

s I (et Wire radius

o
[

Equivalent droplet radius [mm]
o
i

200 270
Welding current [A]

(b) Equivalent droplet radius

Fig. 3.13  Bar graph quantifying (a) metal transfer periods and (b) equivalent droplet radii across three welding
conditions. Bars with a white background and black dot pattern indicate an anode-cathode distance of 5 mm, while

bars filled with red indicate an anode-cathode distance of 0 mm. Error bars represent the standard deviation.
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MCC, BN ARKFoBEs 2 SAT 2, 3. K. 74 YERBICEo TURITEEIC FREL,
RF4] 4.3 ms IC 0.14 m/s TARANTT~EA I 7z,  CWEBARICEITT %2 &, 0.38m/s T THIEL
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R3S S CNALEBE X 0 b FIHRICALE L. 031 m/s FCTHIE L 72 2% & S MBI fi s ~BH L /-,

270 A/5 mm S BT, KT OBEIEI% Fig. 3.18 10, R 18 A5y 0 FEHF 2 % Fig. 3.19 1T
Y. L —HRITFIE, 200 A/0 mm &L FBRIC, B A@E C C TR 72, 0 TiE, x
FHIa~DWEE B8 % b3, x ST OEE KD 138 0l CHUMNCE BT 2 7 0 Il £ o7, —H. 2
FA~O TR L CTlid, ke U CTIEMER 2B S 7z, Wil 3.3 ms 127 A4 ViXia B2 T L
0.17 m/s T DO NE~EA S N7z, KRR T 3 2K40 5.0ms I 031 m/s LT L, { Uh
TR O REZ] 6.0 ms THRAAE 0.56 m/s %7~ L 72,

270 A/0 mm §fFIC BT, KT OBEIEI% Fig. 3.20 12, FRL 18 A5 o REEI S % Fig. 3.21 1<
AT 270 A/S mm ZefF & FIRRIC, x TH~OKIERZM IR S T, 2z Ha~o—H L 7= TR 8%
INTz. Wi 23 ms 17 A4 PREMHBBARISHE T L. 0.17 m/s TEF O NEE~E A S L7-t%, Fi% 3.7 ms I
BRAME 115 m/s T TAME L, Ht < B4l 4.0 ms TiEBEIEEHAN~ES Il S Nz,
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(@) t=t+37

5‘("8*

RN 0T 74

(M) t=to+7.7 t=t+8.3ms

(p) t=t+9.7ms (q) t=t+10.3 ms () t=tb+11.0ms

Fig.3.14  Tracer particle trajectory under 200 A/5 mm condition: (a) Start metal transfer cycle (b) start particle

tracking, and (r) end particle tracking. t, follows the same definition as in Fig. 3.9.
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Time-course graph depicting particle velocity components under 200 A/5 mm condition.
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(d) t=t+4.3ms (e) t=to+4.7ms (f) t=t+5.0ms

R e i 2

; f,:{#«;" %

(h) t=t+5.7ms

HSTRE A 2 Lot S
() t=t+6.3ms (k) t=to+6.7ms

T

2y

(p) t=f+8.3ms () t=t6+9.0ms

Fig.3.16  Tracer particle trajectory under 200 A/0 mm condition: (a) Start metal transfer cycle (b) start particle

tracking, and (r) end particle tracking. t, follows the same definition as in Fig. 3.10.
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Fig.3.17  Time-course graph depicting particle velocity components under 200 A/0 mm condition.
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(d) t= to+13ms (e) t=t+1.7ms f) t= to+20ms

(p) t—to+53ms (q) t—o+57ms (n t—to+60ms

Fig. 3.18  Tracer particle trajectory under 270 A/5 mm condition: (a) Start metal transfer cycle (b) start particle

tracking, and (r) end particle tracking. t, follows the same definition as in Fig. 3.11.
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Fig.3.19  Time-course graph depicting particle velocity components under 270 A/5 mm condition.
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() t=to+3.0ms

—— =

Fig. 3.20  Tracer particle trajectory under 270 A/0 mm condition: (a) Start metal transfer cycle (b) start particle

tracking, and (m) end particle tracking. t, follows the same definition as in Fig. 3.12.
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Fig.3.21  Time-course graph depicting particle velocity components under 270 A/0 mm condition.
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Fig.3.22  Comparison of mean maximum velocity components obtained over droplet formation across current-

specific variables.
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RRIC, NI D BEEYIIER & MEHEALIC X 2 M2 b L — 3R PR EC RIS T E R RE
IR 3 2 . ERER CHUNSIED BEE T 2 &, S EZE A DR RS RATIIC R L. SUarEE
DREMA T =T L—HRTOBERKZGIRT 28N H 5, LrLars, 74 VEREDZEM
A — TR TR ICIARE R B 20558 b T FBEIVRBE UL FE 2 Wil L 72 B o R BB i i L <
BUNTI DB TR Th 2 L E 2005, TUHLDREITX Y, K X PTV £ H5on7
MR, V)Y 7 A Y 2T 288727 — 2t LCHEAARETH 5 C LIRS iz,

342 AERHSFEAHMEERSFEICRIZTEE
(i) 74YEAAREOLE

BTHATIC BT 5 8710 0 NEBIRENC 1. 2R O IERN I8 35 X Rt 72 < ORI 238
T %, FRIC, FEMoRI FRZEEN X, AT B 7 & Tl T O TR DI T 2 BN D b, RIHTIL,
7 RITREN I HEIN 3 2 VAT O FElR B 1 £ 50 & 2 C LRI COR Sl MR ED O AT IR DT MR E
DB W T 5 JREME % HATICHERE T 5, ZOME2 5. Fig 3.22(a)lcn L 72 x J7 MTHE 5 O HIE
X AR IAENICRE L CHEE S ., < CHERIC X 2 FPTN 2 28110 72 RIEATE O & % PR L 72,

BRI DTS % . NERB OBZER A7 — Vic S CHEE L. IERE O Y2 BT 2,
Z OHEE TlE. WEBRENDSEN A 2 M+ 2 20 O BEM L LT, b L — 3R TSR T R O
KR 7 — AN CTT7 A YERICHY T 2EEA T — A E2BHI L& &, RRKOBEHAEMBEL S L
ZIRGET 5, 270 A/S mm ST DG E . RFOETHEHATIY 2.0 ms Z T, x 7R OFEIT 1T HRAK T
0.6 m/s &HEE T 4172, Fig. 3.23 13, HIEAR 2 HEE M %2 HB U 7= At 5. WO PRI 2 HERF AT AE 70 4 72 i P
ICHIEMED BB TRBEL TS 2L end, b, FROHEETEILZ. X PTV OFHUFEE Ol <
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Fig. 3.23  Comparison of x-component velocity against estimated limit for triggering non-axisymmetric behavior.

(i) 74 vE#ARRESDOZE

iy 77 18] O NEB TR EN 2 AT 2R O R 28I B A 5. 215 5 —F . R < CRJERIC X > Tl )
M EEZ T 2550 H %, Fig. 3.22(b)TlE. ARBEIHRNICERE L CHIE X iz 2 i sy
BRENTEY, MEME~DEEL NN T 2720 0T — 2 23R i, RETIE, ZoHlERRSE
DY AR A MEE L. Bl FREN SIS o RN I RIS E R T %,

BHMET z TTAFOEK 237 A Y EAEEEE D 2-3 fFICHI L 72 & & 2o, INERURE) I BHRE 2 IS bE A
DBENTV 2 LHENIE NS, F7o, MR IEERICB T 28F 7 A — 2 G U TEB L, EEER
D5 TR RE DS NEMERE D T A EH % H > T3 LRI NG, WIEERMEII T —27 77 X~ L iR %

HOEROBREBZRET 5, — i, T—27RBM/NT B &, WHEHETT —2 77 A= E IR
L. BIRAWICE T 2 ZEMN aME 2 IRET 2, L72d o T, BB IRO BN~ D 53t 23 IER D
- "

BIIERD R & PLE 5 ATREME 2SR & 7z,

WNERTREN R 2 RINATEREICH S LE bR 2 &L W7 mynES D 23800 L 72 F 2L icrbio L <.
B OMREVBBIE I Nz D 270 A0 mm FAFICR O N7, 2 OfEFRIE. §il7 MRS o 8 A3 7w &
DREFZMTHL L ERTELDIC, MESKRET ZICRMERNOEEG I HETH D & ERBT S,
B OMEAL - B ictb il oMEr REd A2 b 2T 2 2L, HxF5AMREME L L <Rl
BRABET b5, —MIc, Bl FFOME L2280k 13, KRR OIEHIC X D Il 0UE L. ik
BHEEINS, Z OUHEE DA — X —1, Eq.3.8 I/~ T Taylor—Culick i# & CTHEH T & 2 [26-28],

%} I

=

Taylor—Culick 1 Veapi = \/Y/PR (3.8)

RPDOLFICONT, yIZERHIES . pl 3B, RIZWADEEH® KT, Table 3.7 DetHESMEEH VT,
M7=y Lot b IGERE % BfED 2 &, 0.9 N/m ORMERIICH L CIUGEEE X 0.79 m/s &
HH S W, BEWEE OB <. Al EolE EF A RA T, BE ERUHEE KT %
B WREED B 5 o RIATEMTTHE OIS 370 W56, AR O KRR TR E EA IC >N TRT 3 2,
FRic, 73 =7 2084, 1600 K 25 2360 K O I <. RIHGR ST 1Z 0.7-0.8 N/m OHiPHCK T3 5

88



EEE TN TV A[29], 0.7 N/m DFEMEIRICH L CIPHEEE 2 FHEtE 2 L. 0.70m/s EEHE NS,
Fig. 3.24 1, 0.7-0.9 N/m D3R H 5K /) HiPH CHEE & N7z INUAEEE % . Fig. 3.22(b)IC/R L 72 z J7 AIFE )
DOHERGRICES L TR T 270 A/0 mm 5ot 0 PSR TRENHE 1 | HEE I EE & BN T—3F 5,
ZOFEFRIT. B HRIREEIC S 256, WNERTREIEE 23 E S & R ECd 5 nlRelE % R 3

AR A 7 =X 203, PETRENIC X 2 3 T & Rk X 2 WUEsh R oBia I X - Tl E 1
%2 2 LS 2T 5 72, Fig. 3.25 ORISR @Y | ETEABENT L 28, AN ICI 13 NERTRED
L vy 10 L CHDN YIS Taylor—Culick iEZED A — X — v, TIAET 5, $7ab b, KEER Tl
vy — Veapi CHRTICINAEEN T2, F oy TBTOSE, i T3 2 B INE25E P 2 1C 58 T
L. BREOBEMEIKT % (Fig. 3.25(). 70 =27 METOEAE, IHESRICT FTRIRSEY | 22
FeH B H A TR T % (Fig. 3.25(b) A b U — 3 v 2 BITOEA. W T AR S IERD o L CE# L
720 BETIE R 2 O IR 2 T 5 (Fig. 3.25(c).

Table 3.7  Calculation condition for capillary velocity.

Density Surface tension Wire radius
2385 kg/m’® 0.7-0.9 N/m 0.6 mm
1.5
Th I | Lae ~ 5 mm

Capillary velocity

05

z-component of velocity [m/s]

0.0 . . « . e o
200 270
Welding current [A]

Fig. 3.24  Comparison of z-component velocity against capillary velocity.
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Time [ms]

(a) Drop transfer mode

—— TSl

Comparable retraction

Tapered droplet

|

Time [ms]

(b) Projected-spray transfer mode

Breakup

B

Overcome retraction

Elongated droplet

|

Time [ms]
'

Fig. 3.25

capillary velocity Vcap;.

(c) Streaming-spray transfer
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3.43 UEAERE O

X #t PTV OFHAKSEE X, HHRETEANT & b v — R P EANIC B % 20T 2, BRIENTHEAN < 1. B
PIEHR O IC R L <, BEEULRRE LB RERRENEL 5, 2. L —FRFHI X, RFic
HE ORI ME) & | TR T 2B AR T & 2 2R H. BIGRES AT 2, ATHTIE, Th
b DORFEHHEFHINC G % 2% Gl L. B2 LM% EE3 5.

X #t PTV OFHAEEIE, 7 2 VERF O + L — SRR OBERENTICEE D Y s 15 R %
EHEINET 2 77 r Z5HIFE L 380 ) . AFRIER T 2 (&GS % 7 v 7 e VBRI
T 5T, FEBULEAE L P L — PRI OB REEENBTENICE L 5, 3. HERLRE L,
[ 70 PEREE % BEER I 7 & 7 2 VT RLOIAD C L THEL 2HETH 5, Eq.3.9 ISR D . RS ARES D
For & RS O, ARRE DG A A TR T 5,

HER L AR 6xd~; (3.9)
Kic, MBRTEMEEIT, FL—HR RO e VRS b RFRMNEYEET 28R TEL B,
Eq.3.10 ISR 33l O . AL TROFEDREICHYS T2, Fric, AEBROSGA, FEICR 280 L Tk,
A ORI e NG 2SR 0 — K 72 %,

VLI PR E AR Sxp~ 7" (3.10)

HEBULRAE & AIEPRIE R 2RI, RN RERERRIE Bq. 3.11 ZHVCRHliE L5, Table 3.8 ISR
FHIMEHR L 0 . FZEHERREIRRATH 27um EHEESI NS,

Rl b1~ |(6x)% + (65,)° (3.11)

Eq.3.12 iICfE\v, S OfLEBEAZIC 7 L — LR E KRS 2 2 & CHEBZPSIE TE 3, KEBROGA.
BT ISR 3~ 2 AR 22 1349 0.08 m/s TH 5,

ox

o JEE I R b=

(3.12)

Table 3.8  Error estimation parameters originating from image analysis.

Parameter Symbol Value

Pixel size S 11.59 pm/mm
Particle diameter D, 53 pm
Frame interval At 0.33 ms
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BRERRAE L X, b L — R LRI < BRED ) o RN L <. RiF s Skl 3 2 5
ICAEL, WY EEICTIGT 5, REBRTIX, GEEMEICcH L2V AT v & P L—HRT L& L TRA
L7270, FRCENPBMREEZFTT2AREELRH 2, 2 b — 27 Z0kANICHE S & | B ANBHEEE
ICRIE TR S 2, A P — 27 ZDFEAICIEE, FibAh o2 EFICHEE T T 2560% T
W (RUEE) % Eq.3.13 &5 2 3[30],

ST vt:pgﬁlilﬁlggﬁ (3.13)
18n

KB DEFICOWT, p FRLTDEEL, peld A DERL, glZENNERL, D, iK1 DIERE. 03D

Wi #ie3, AFHIOFIRE LT, BENOFER L2 WRE2RET 5, ISt LT, 2v 72Ty

K LT VI =0 L3 7 4 YifaEE ciiE T X icfiiidng, zogic, WAl7rI=v 40

—EDPO—RRICT A Y EREECTHT L, 2V 727 VR RENOEM 2RI CTARMT L I =y uth

BT 5, COREICLY ., EBRERICE T, K707 A YiRaEE CHEICE T T S 5

(Fig.326 fi) & LCifbiLd, —F. VA YEHREECTEICH P T 28R ICE T, 20T
YhEL v o E%E FEE (Fig. 3.26 /) ~Efixn 2, BUHIRICE T 2 KImEEE X, EBRRIcE T3
T A XEREE D S OEE Sy EHAKT A O, EHICL 2R T OMEMEEZ RS BSEREE kb,
Table 3.9 DRI T & FARSAFICHES &, BEHIC X 2B 0.02 ms FRE L HEE T NS,

RIETIE, BRENTICER T 25828 b L — R OBMEGRRAEZ R L. z SR OFERS & T
INODHEAEF—H/NI W EBHEID LN, LA > T, z JFEDOERFMNRICES % E  ABFLic
BT, XFRPTV ICHR T 238210 X o €, WUHHE 7 — 2 2 L8 N2 R A H = X Lo 241
o 1= DA WO = AN

Free fall Vertical throw-down initiated by wire feed rate

Drag force Drag force

V = Viire
(wire feed rate)

Gravitational force Gravitational force

V=W
. . T Steady state O V = Vaire + Vi + Steady state
Q (terminal velocity) (t= o) (t= )

| Y
Time Time

Fig.3.26  Evaluation of gravitational effect: problem setting and key assumptions.
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Table 3.9  Error estimation parameters originating from particle fidelity.

Parameter Symbol Value

Fluid (Al) Density Pt 2.385 x 10° kg/m®
Viscosity n 1.30 x 107 Pa's

Particle (W) Density Pp 1.93 x 10* kg/m?
Diameter Dy 53 um

3.5 8

ARFETIE, WRNERTREIO 7 A YEl)7 FILERR 2 N R, WP HRIRE~ L BT 5 720 ONE

MBS 2 WL 72, X R PTV OIEHIC X o T, WM O WA Rt L CNERENRE 2 £ D550
FIRFICEHIT L 7245258, DUT oA 257,

1)

2)

3)

4)

5)

6)

RHEBITHRIC X PTV 28HT 2720, 2V 72T VR FA2HRaITICEL Y —LL A X)L
a7 —=F7AY AT A v e UCHERL 7, @i 3 2 &> SR 2 v 7 27 VR3S
BS X, P L —S R BT OB i3 2 LR E LT,

VIV FT7AXYEY—LLRAZLAT—F7A4AYZHAClimEs X OCRIERZ KL, 74 %
ME O — 3 IEHEAT OBIFHEIC G X 2 ENRENTH D Z LRI N, FL—0EH
iR, BRa 7ICERE T 2 BASRHENE oMUNAIE & L CEEE L, 2 oPEHERE CIATR R
CHUNEEI SR AE L7z, LA L. PL—HIEEE B X UEHE DS ©. WHE1T A S ilA
PRI 70 | BREA 22 KON TS AT O BRI -C NER R BN R IC 5 2 B Id R ch B T &
VIR Tz,

BB E T — 7 B2 BICEES 28BS X —2 & LORIRL, MEEREEZHEC, chb
DT A — X PR IC RIS R LR Lz, ERBIREHICE T 2 L CWEROEED 5,
VT D AR AR RE S E PRI IC I & v, SR 2N T — 7 B4 (270 A/0 mm) T RIETH R
DFRAENTER S NIz,

7 A YA O PERRENRFEICBI L CL ST A — 2 OB B L MRE sl EHHEIC O & |
IR DG & 1720 $RIENT A — 2 OB L L C, REBROWMND 2 V3T — 7 RoRd
ICHE z PR S 2338 U 7o AREM 7l HHE L DUIRIC X 2 &, 7 A4 Yikfaal B ICxf LT
13, 5Tz HIAFEK 28 2-3 5B L 7z, RIERIC X 2 P < L Cid, &R
SRR Y |z JFHE B > 25 Taylor—Culick 3 & & [F1 % Dk HEICIE L 72,

7 A Y BT A O NETEMRFEIC B L < Wi RRE IR AR E A 5 2 B I EH T s L
IR E Nz x TT TR (ZIEREAT O IEBON 2B 2 5] e 2 3OKHEICIZE L TH o F, WA
X7 A= ARIFED RO O N o Tz, T HIC, IWHBAT DRl A E) %2 59 5 BRI 2 2RI
BRI R A EET 2 L. PERTRENEFIE I 35\ TH OB FRIE O BT A37R 18 & 7z,

BERRL T — 7 RICIG U T, Bz N 2 BIRESHNIICRD$ 5 & WHNEREIO 7 4 ¥
BT IR A B R X 0% nJREMEDSR & e PIERIRENIC X 2 3 TR RASRIH R AT 1< X 2 IUHRRD R &
FELL EICES 256, WHPAHRRE~EE T2 A =X L3 REI N,
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& LT, Fig. 4.1 WRIHHRBEOEBEELBE T ON L, WEY = v P Z2EAT 2 HELEREMT 2 L.
Yy MIAEGRMEEREL, Vv v e =264 —%F—F (Vv T4 VITE—F) ~
NEIVEED BT 5[4-6], T ONFEIBROER L, HHBETHRICBW Ny 75X 0 70y 27 b
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Table 4.1 1 \@ﬁ@ﬁﬁ%kﬂﬁxlszﬂﬂ% XL CIRE I N EERE T VR, KECEREN ) o
ﬁ5#6 PEE - BEPR L AR AR T, MEHGICHE T 2Bk E ) L L <, ) - KRS - HIES G

) BTSN3, ﬂ%m;‘@Aﬁ@ﬁﬁ X o CHIRIIPAREIC XA L5, KLz &

#E%EOILMX%?T%E'?“5(151{2f§/1 v PR CIXEG I BEEI N —T7 T, BELRKTDH B
BRI 2 R & 2T RICB W CERN TP R 28 ch 3,

AKIECIE, AT MBS ICEET LD YT P RHHL., AEBITHR LAY = v 9%
RO EBRET 2 0, RIS IZHIRRIC BT 2 HiHmE 7 O AN AR ICBTF 2,

Dripping Rayleigh (Jetting)
axi-symmetric

Breakup length

Outlet velocity

Fig. 4.1 Breakup regimes observed in liquid jet [4—6].

Table 4.1  Mathematical models for jet breakup phenomenon classified by diving factor and fluid conductivity.
Liquid jet breakup Metal transfer
Driving factor
Non-conductive fluid Conductive fluid
Gravity-driven Tate’s law® Static force balance theory®
) . Without inertial force Plateau—Rayleigh instability® Pinch instability?
Capillary-driven — — — -
With inertial force Absolute/convective instability® Not applicable

@ Ref. [7]; ® Refs. [8, 9]; © Refs. [10, 11]; ¢ Refs. [2, 12]; ¢ Ref. [13].
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Fig. 4.2 Liquid droplet geometry assumed in Tate’s law.
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Fig. 4.3 Molten droplet geometry assumed in static force balance theory.
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Fig. 4.4 Liquid jet geometry assumed in Plateau—Rayleigh instability.
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Fig. 4.5 Molten metal jet geometry assumed in pinch instability.
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BEfR 1L Murty 1€ X » EH X 7z[12],

: e I
Plateau—Rayleigh A% 7E 14 w? = #XIOIT(;)) (x?-1) (4.9)
N T 2_ ¥V xl; (x) 21y thol? I;(x) _ Iy(x)
vV FAEEN cu—pm{%@)@ 1) zﬂ§2+x10(x) AE) (4.10)
R ITEEL x = kR
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KPP DOFLFICDOWT, yIIKIIRS . pl 3B, x IZIRICIE L, () 135 1 A~ v 2 VB (mR)
ZRT, THERDO IR T w2 B AMEE IS GG, BELITIEBBIBICKR T 2, C ORLESAH
Bz 3 % RERF R AT Plateau—Rayleigh REEM 5 L O v FALEWICH L T, 2N Z 1 Eq. 4.11
Y Eq 412 CTHZbNB[2.

Plateau-Rayleigh 4~ % 7E 1 Acpr > 27R (4.11)

S 2nR
J1+ uel?/2n%Ry

vy FALENE (RERERD Acpir (4.12)

T T, BELAEE T 2 B4 — X — 1. Eq.4.13 & Eq. 4.14 (CR TRERTIC X - CEHliT X 3,

Plateau—Rayleigh 4~ % 7E 14 Tpr = +/pR3/y (4.13)
3
By FRGIEE (RRIBER) 1y, ~ — VPRV PR (4.14)

1+ pol?/2n2Ry 1+ pol2/2m2Ry

RZIC, BT AOSEBRICESE | iRy = v P HRIAR & ETBATHRR 0K ER I RE £ 7 v
T 5, FFEETREAIE, Eq 41015 0wTI=0%fAT 2 &, Eq49ic—HFT 58 ThHd, 2D
—x, v v FALEMD Plateau-Rayleigh A L EW % CE LILRET LV TH D Z L ERT,

(iii) FTERA —1BEEREEENR

Bk, KRR —EEEEKE 7 ik, AT = v PARBRICH L ToAREINTEHEY,
Table 4.1 IC7R T HR R IC BV TETFEBITHEICNIG T 2 B E 7 VIZFTE L 2\, & DT 7 V13,
FMR S 23 B CBXEN 3 % Plateau—Rayleigh A2 E M IC, #axf - X[ (Absolute/Convective: AC) NLTE
Pz EH T 5 2 L C, BENOHFSZEML IREETATH 5,

t[s] t[s]
) A

Flow

Flow
—_—.

'
1
]
7
.
r
' .
J e
N .
1 o
i -
.

, .
g e -

Initial impulse z[m] Initial impulse z [m]

(a) Absolute instability (b) Convective instability

Fig. 4.6 Concept of absolute/convective instability: different types of wave-packet time evolution from a single

initial impulse.
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Hox « SHRALEM: & 12, Bzt 5> oL e icB s 2 HETH 5, Fig. 4.6 1, #xf « SHRALE
PEDEARN LM SN 2R3, G Tkl 3 2 BEERICE W T, /AT 2N TERLA R S 2 54,
AN ALETH 5 (Fig. 4.6(a) o WHARIC, FibBEER CIHBEELNIE T 277 C, fiihe &b
ICEENT 2 R TINS5 & X IIEELBRE T 2 56 IMAUORALE TH % (Fig. 4.6(b)) o #xf -
WRAREMNE L, M) Briggs 287 7 X~ PR CHRIE L 722 TH 2 3[19]. WAy = v b 2R
ZEDIRFREEFHRICGEN T2 2 LA TE 5, WIEY = v PARBRICTE W T, MR LIED SR
PLE~DES X, BENBRARD EFEREORE JICHEL ZGAICREL, PV vy rE—F
BHY v TAVIE—F~DERE L TEEINB20-22],

Hoxt - XSHRARE DB 1L, Briggs—Bers criterion & FEX1 5[19,23,24], & D5&AFIE. Eq.4.15 T
Gz b, BBER O %KD 2 FIHICHY 3 5, Table 4.2 2% 3 238 Y | Plateau-Rayleigh % iE
P, WREEIZEREAENTIC 0B S, R BB B R R L LTl s . —T50 Mt - SR LE T
T, REEOKRFZERIFEE X BT 2720, KEL BB oM 2 EHFEH L LT\, Briggs—Bers
criterion Z RT3 5 1%, EHMLEREITBHLEL 25,

dw; O w;
Briggs—Bers criterion wi(ky) >0, a—(;:_l(ko) = a—(:l(ko) =0 (4.15)
1 r
[CESUE k =k, + ik;
(CELNIE W = Wy + iw;

Table 4.2  Three analysis types of dispersion relation [25].

Type of analysis
Temporal Spatial Spatio-temporal
Wavenumber R C C
Frequency C R C
a(l)i a(Ui
s . dk wi(ko) > 0,2~ (ko) = == (ko) = 0

Instability condition w; >0 —k; > O'd_r >0 o ok; % T Ok, °

)

(Briggs—Bers criterion)

»  P-Rinstability
Example N/A »  AC instability
»  Pinch instability

Briggs—Bers criterion % Plateau—Rayleigh N EMEICHEH T 2 72 010 13, IR 2 AT 2 LERH 5,
Fig. 4.7 \/R 358 Y . RO NERIC—EEEV DN S 256, e & b ICBEd 2 B R
P OUAEHELZBIE T 2 L. ZOEHIINTHICHADBTFEL WA LREKRICk 2enTtE s, 2o
fRE 1. Plateau-Rayleigh A% E M D 73 B BER % Ff 1E AR R 2 O BN R IC A3 2 2 L ICHY 375,
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HBEN AR RIC BT 2 0 BEIRIZ. Eq. 4.9 A DEB oz w — VEICERLT 5 2 L T, [EHIC Eq. 4.16 &
EH X 5 [26]

S (BEIREER) (= Vk)? = #%w _ 1 .16)

74

==
| ) g v
[k —
/ Y F—
Fig. 4.7 Schematic of semi-infinite non-conductive fluid jet model. The steady flow V passes through the fluid

cylinder with radius R.

I, Eq. 4.16 ISR FEMI%# A L 7z | . Briggs—Bers criterion ICH0 B OEH 4 5T 5,
2 DFiEI, Gallaire 510 & - TIRE S v, HEINE S RN 28 U CGER R ZEHTE 5720,
M PR A | % 00 2 T2 &0 L 7 7 — R ICHRAIC & B[25], Eq.4.16 ICRIERIEEL (x « 1)
B L 70 BIR % Bq. 417 IR T, b, Eq 417 R & ¥ = — B0 I ERTTAL S 1
THEY ., EEr O TWBICEH I N T WS, 7 — "=k, EHRENICHT 3 HEAOENH
DHHRERTIERITMCTH Y | Eq. 418 TEXS N2,

SISO (@ — px)? = 2x?(x2 — 1) < L) f) “.17)
2 I(x) 2
TR B A @ =w-TpR
; 2
R We = 7 = Inertial force  pRV @.18)

 Surface tension ¥

HFDFLFICDWT, @l FERITHBREL, pITIERTCHEE, Weld v = — N —HZEK T %, Gallaire D
fERTIC X 5 & Eq.4.15 IC/R L 7z Briggs—Bers criterion % Eq. 4.17 IC#EH 3 26558, #axf - MHRALE D
B L LT Eq. 4.19 288 5 5 [25],

SR 2o 6 4 We>4, ie, VAC>? le (4.19)

VACIE, HERNARZRIE 2 O RA L E~ES T 5 720 DR/NEE 45T,
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(iv) REERHD BN — BN EKFEEET IV OBEGENE

Table 4.1 ISR T MHEZRIET 2 &, WHBATHR 2B T 2 HIE T A3, WY = v P RERD
ETNVICBRNOFGZBIML ZIERE T V&S B O AIHRIL T 2 2 & 23RS 7z, BART
Iix, FHYO D A VHEER X, Tate OB C L-EAREIE T L ChH S, FERIC, ¥V FALRENE
IZ Plateau—Rayleigh ANZEWZILIR L 2 REIRNWHET L L LRI T eHBTE S, I HIC, WE
Vv FRBRICE T, Plateau-Rayleigh AZE MWK - MRA L EMEZ#EH S 5 2 LT, KAl
RN N ZER L 2T ANLERES Nz, INODETAORMEAEZIEE X 5 &, ¥V FARE
PRI U TRt - R EE 2 M 52 2 LT, RER - 1BYS) - B 2 AR 5 PG
ETNEREECTE SRS RE NG,

422 X - WRALREEOHBERAIC & 5 £y FARER DR

RIETIH, v v FARLEEICHN - SRAREEZ @A L, WRE TR 2 BRI L EEDD
BEZBETT 5, WiEY = v P RBRICE T, #00 - WRALEEIMHRZMHE ) pRE— FOER
AT 2 HERNER TH 2 L b, ¥V FAREROIRIC XY | AERBTHR TSR S 5 IETH
RIS L CHi =A% 2o N2 AR S 5,

Fig. 4.8 ICAIHTHET 3 2 £ 7 L OB X %2 7R 3, KT TV OMGERHIRSEMFICIE, vy FARLEMEL
it - MRAREWICZN T NI CIKENEEN D,

Y FARENITHD RGE
AR IZIER D DIRIERITH B,
LT, BROBLAIRERZHFO,
RIS & BWABRABC/ER L, EHREEL 2\,
MAMEREZERICEES NS,
BT — L CHARMENER 2 it PSR~ L 72 v,
AR - AR E M I 5D ARGE
© WAEMENEORILIE—EDrO>— kTS 2,
@ RN REERE TS 2,

@6 0|~

o/ |

r "l‘ —
a — I
! z
| 1 - =
{ : %
/ R —
I/r ) ’,,l -
Fig. 4.8 Schematic of semi-infinite current-carrying jet model. The constant current I passes through the fluid

cylinder with steady flow V of radius R.
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Briggs—Bers criterion % i 3" 2 BTERE & L €. BRI R 2 O BEIEEE R ~DEH % 1T 5 . Eq. 4.10 I
ML Y FALERDOTBERICE T, i oZo — VEICEET 2 2 & TEq.420 2155,

v (xh () Hol? L) Ih(x)
(w—Vk)? = /ﬁ{lo(—x) x2-1) - 272Ry [2 +x <Io(x) — Il(x)>]} (4.20)

4.2.1(iii) & [k, C BB ICKFERE I %2 L 72 EC., Briggs—Bers criterion 1230  BH5&MFD
BHAMRHNT 5, CoEMPOEANT, EF L EENPEFEETRRC T T 2R 2 2 itE T 2
ZexHME LTS, BRI D> RIEREM 28 L 7208 Bf% X, Eq. 421 TH2 b5,

SHERBAE (BB R) (@ — px)? = %xz(xz —1-Bo,) (4.21)

R DR T Bog it KRN ICX T 2B O RTIRITETH Y, BEq. 422 LERIND, KiaX
Tlt. Boy, AR v FE L WFET 5,

__ Electromagnetic force _ Uol?

SRR Y F R Bop, = = 422
- " fm Surface tension 2m2Ry (4.22)
Fon T, ARAEZ{T\ v, Eq.421 % X Y fl#EroR e T BB+ 2,
1
SHEBER (BBEh R R ) (w* = B*x*)? = Ex*z(x*2 -1) (4.23)
45T P 0 = — & Ty
1+ Bop,
45 Y S K * —x
RITH % X" =
R TCIR L m
T pr=—o”t
J 1+ Boy,

Eq.4.23 1385 221C Eq. 4.17 & —3(L Tk Y., Eq.4.19 #FHIC, Briggs—Bers criterion Di#fHAEF & L T
Eq. 424 IO TR ZED IG5,

R 4L We > 4(1 + Boy,), lLe, VA/C>2 /(1 +Boy,) ~le (4.24)
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423 BEELYFRREUOBFHEBITRRICHNT 2 ERATTEEEDIRE

HIE T, © v FAREM IO L CHn - dRALEE 2 EA L, Rk - B - %G
MICHl > BERE T V2R L 72, RE T, BHINBEEFICEOE, BHBITHR BRI NS
TR & A - SRR EE OB MEET 5, ol RSN T, MR - WTRANRE 23
INCVYIFAREEE BEIEY v FARREMN] LR L, {ERMoRmRNEEHET L TH IV T
RLEME & KR 5,

BIEY v FARENE Z BB ATHRICEN 3 2R L L <. BEEER L B oI B cBd 2
Wi e EHROFEECEHBEICT 5, 3. BIEY v FARENE CRET 2 BIRIKIL. BHEBAT
RREEAZ, fiEHTRLAEREOIC X 3 &, BIEY v FARLEETIE, BRSEEEHED NI D 4
AL, T~ O ERIREEZE L v, Lo L, EEROERBITHER Tk, ABERIZAET > & JEH
DT =7 T TRAZ~NRELOOWND, THIC, BRIOHYTICONTHHFEELLETH 5, HiE
TR L 7 N B B O HERE RS AT T 208 0 | BT <k, BRI 037 1 O EREE E i
AT B AHEERE V. L Lad s, BIEY v FALEW T, B2 ERA AN ERGT 2 55
(Bl v FH) oAicERx Y <, BTN ZFHREST 2 2 & CEMEN 2N ¢ % A6
HEERALCTwE, fRbYic, BN UANOERCE L BT, HlIE7 4 Y& X 2@
AR RETH 5, TNIF, —EHETEMRIND T A YA T 256, RIS IR LR EE I
MU 2 EEAMERF L2 ET -7 77 XN~ FHEEINZ & v HHHRICE D, BIEY v FARENE
LITHBATHROMES ZRIET 2 &, BIEE v FALEM T, BERREEZEHRNTICREST 2 2 &
T, BUSITRLT7AYERICE > THEINEEOFELTET LR TE 3,

- SHRALE DBESM OO REEZMGET 2 720 OWIIA T v 7L LT, 74 YikiplE %
Eq.4.18 ICRALTY = —N—HEFHE L., 74 Y ERPFHET 282G L 72, #EFIRETIZ
T A Y IEMEE A T A Y IREEE IS BT % 729 Eq. 2.1 ITR L 727 A4 VAR E o skl % v C
REBHEBEBTRICH S 2 7 A VS E iR 2 B L 72, Table 4.3 IC BRI 3RS 2R, D5t
. 7 A YT ATV HREACEGEOERRT — 2 TH Y EHEHRICET 2 B0 M R 2 B
FEIREN2, W7 A VIR Y — 2 v BT~ 0BBERAS S VMR TH 527, < oFMEIZ. BER
{RIER D WKW 7 4 Y & IR EMEA 2R3 & v ) 2 EOMEL S b FHl S hz [k,
TATY ARG, RIETARC~NY T LHAEHRTRAT L —BITHE LT Wy — L FHZATH B[28],
TNDDEMERICI Y, RIREBICS 22N RIC, BRIICL 2y TR EENIC X 20T
R E T 2 LR TE B,

Fig. 4.9 #FLiC, 7 4 Yi&iGic X 288 Lt - WA RE OB S % WREE 3 % . X9 o FLHI
& LT, Eq424 OHATHE Z 5N 2465 - WAL EDES Y « — N —BUIHRoFEH T, 714 vk
HWEPODHEINZY 2 — NI ROWHCTHBE E N T WD, 2077 7R T EEARIL. EH
() 72 VAR BB IR HIPH CHEE S 72 7 = — N =503, #h) - WA REDEE Y = — =X v Db AhlLd
3HI/NI VR TH S, TOMEPL. 74 VG S BENONRALE~DER ZFHEI LISHRVwE
famft i onsd, 610, RAEGEREZEBBITHRICY IO 2 L, 74 V&A@ E oL E#hE %
YHRLFT 2 E AT AW EARBEING, TORBIE, VA ViEGEEoRINCN L CEmoIEHES
AL 2 BORE (Fig. 2.9) . 7 4 Vikiad & & #5 L0 2 AN EN o s % 7R L7255 3 & o
9 (Fig. 3.22(b) 225 b HFrah 3,
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AREICE, WHEATHR LAY = v P pREROBLEICE R 215 <. Rk - 8L - Bl
DG Z2e AR 2L 72, BRI, vy FARLEEHn - A LEttoiaz AL,
B Y FRIRE T A YERIC X 2N DEEZERBIICHIL 72, BIEY Y FARLEEICHED T
DGR, 7 A ViEGIC X 2 EMEN REFHHR 2 2R R IR VSR v 2 L B Er D DT,
BHRA 1 = X L% RS 2 70103, B 25807 17 O s ic LI 3 H P B O milisE 2 & 4.
BIEY Y FALEWE TR ENRCARMBITHRICHAEOER 2 ERET 2 LE)H 5 LRI NIz,

Table 4.3  Experimental constants in the empirical formula for wire melting rate [29].

Element Specification
Wire Material Mild steel
Diameter 1.2 mm
Extension 10 mm
Density 7015 kg/m?
Surface tension 1.872 N/m
Polarity Direct current electrode positive
Shielding gas Ar
Experimental constant Ci 3.11x10™ m/(A-s)
C, 4.63x10° 1/(A*s)
1E+02 Convective instability
TE+ _/ Absolute instability
1E+00 : } :
=
kil — Critical We
1E02 | P B We estimated using wire feed rate
1E-03
0 100 200 300 400

Welding current [A]

Fig. 4.9 Theoretically (black solid line) and experimentally (red dashed line) estimated Weber number as a

function of welding current.
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43 T—VT77XTHBERICETIBAMESERIDRROBEN

431 BRORRBEZEH S ERREICHITIZ2BCEEMEAA=X L

HTE . BT R 2T 2 BB Rm OB L 2 NRIC, T—72 77 X~ OHANEH
I 25T cigam BRI L 72 S oRGEE T, R 2 WET 2 F8 )& LRk - HIED -
B ZEANCEY B, 2o BB ) BHAZ T 5 2 & 7n ML ICER ICER 3 2 & TR %
fTo7ze L2 L. TOMILZZED T Cld, FEHR ORI S 12 AT MR % 3 3 2 BEmEN 0
R LIITERD o, COMBIR., BMEEL T — 2 77 X~ T 2 R ICREA 0BRSS
EXER T O A A R & FRREERIFE LD IC L7,

ARIETIE, BB ITRRICREOERSGHEEZ AT 2 FA2V L LT WL 7 —27 77 X< D
DHAMERIC X > CEFRE I N2 NENRNIREHG T 5, —Mkic, EBRIRAEBIEN M2 2 IEEM O Bt
EENRIRTFHNL Eq. 425 T 26N 5,

v -

A4 7 =ik [m+0’W4=—W+fxB (4.25)
KPP OILFICOWT, P, plIEE. JIXEREE. BRIMIEE 25T, BREE L ML oM
ICIE. BEq.426 TRINDET v _—VDFEHDBKTI T 5, CoEZ@EAT 5 2 L T, Eq. 425 DA%
QIHICEEN2ERS OHE %, MKRFEE D HBIHKfET 2T UL, Bq.427 L LCHERLTE 2,

T v 2= VDR (W) VX B = (4.26)

.. L= 1 S
E ]xB=;ﬁVXMXB (4.27)

Eq.4.25 DS 2 T TH I & AU 2 THTH 2 8B 1THIC, ZNZ 1L Eq. 428 3 X N Eq. 429 T
R XN DR PRI O N A @A T 5 Z & T, Eq. 430 38N 5,

<7 b AR OAAD (v B)x B =—2v(5-B)+(B-v)B (4.28)
<7 F RO ARE V)P = %vw B) =B x (VX ) (4.29)
. 0 B? 1 & o
A4 7 —FifE pl+VGi+p+—J pB x (Vx %) +—(B-V)B (4.30)
ot 2 M() Ho

AEICCIRTFERNOEHBIEGFE LRI T2 LT 7T— 7 77 X=iD ¢ AW RO RIIC X 2iES)
BAW AL, T—2 77 X< I3BRIRHOBEEO A 2R T L RET 2, X HIC, WHBITHRD
KEZWHEICIRZ 2720, FEAYHENERICESZKY . UTCRTREZEMTEAT S,

BT AT L3 cd 2 (/060 =0, vg =0, jg=0),

EHFIRETHZ (9/at=0),

il /5 1 OEE L LENTH D (v, = 0)

M@ ELThs (Vxv=0),

JETT 1 OWEREE L TH 5 (j. ~0, B, =0, B,=0),
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I, BN E IR, Py TE X R T L =BT T 7 A Yl U -C IRl 72 258)
HIZEALRIBWERARZ KL Tw2, R, MhOEFEES X1 ZouEoRE X, MERE
ISR OIRTHZEENC O EEA I Nz, HRIREBICH 2R X, 7 4 YEREFLEF ICE W TR O
KAEFSHFEICLE LT3, $7-, BTMOREEHOMHENZ, FBIA T Il I RE X 3
TEERRBT S, O, BT ARNASERBTEICDZY) ~HTH A MR LORNERETE 5,
BRI, B O E & B L €. ST M O B E S TR R TH 5720, s X ORI
RO DT E B, Lo T, BRVHET 2MEHREE IIE TR LI & Ak b, ThbHD
RE % Bq. 4.30 I[C#EA T 5 2 & ©, PR L 2EHNFH MBI % Eq. 431 IO/RT 1 RILET L& LTHLY
WozenTES,

_ . d (pv? B? 1 0B 0B
e o (PY- Z V- (p 2= Z)
* A 7= ) aZ<2 +p+w) MA’Y% Z&) 0 (4.31)
Eq. 431 %A%k $ 52 & T, Eq 4205 oNn 3,
2 BZ
R R — 4 DEH Pz | p + —2 = const. (4.32)
2 210

Eq. 432 3. BRETRA D~ X — 4 OEH & MZN[30]. il L CHOLT 2 =4 v F—{RTF 2 Bk T 5,
7272 L, Ktk Y 2 — A FEN R SRR T 2 IESN A BEGRIIEE I N T r v, EHOR L X — A
BB B, 5B 1 BUSENE, 55 2 BUXERE. 58 3 HIXERIT ) 2483, RIARIT IImE I B R 4L
LT bNZLERH L, LI L, EqddDY v - 777 20X %Hic, BEENZBIEEE LT
AU R — A BEPNCESE A FIESIREINTWB[31], 20T Fu—F %M T 5 L, Eq 432 1%
Eq. 433 KA E NG, BIE_V X — 4 oFEH T, Jift EcBiE, BETE. BT HEIER L.
ZNHOMMPMRET %, HidmmTld. X —ABEHICE T 2 KHOFS 2 AL, F3ET
R NTIBTENERREN D IE A 1 = X et 252 &85 5,

. v2 Bj
BEIE_V X — A4 OEH pZZ +yK + ﬁ = const. (4.33)
0

W ANERIRENIC BT, B L BEEIE. WRE OB R 7 — v &EE) L < Rfk o Z2 LM %2 783,
AP T E 254, BREMEFEINC X Y 7 4 YN ic 17 2 B o AR I —E s h s
(Eq. 4.34),

HERTH] Q = nR?*(2) - v,(z) = const. (4.34)

P DT IEOWT, QEIAFREREZRS, FREREL RS 2 &F T T3, WEIIMmEED 2 Fic
SHBIS 5, FUEDHEINCHE BT IZ B L. EENEREB IR S NS, [k, Yy 777X
DT L, iR KBS 2 iR ORI B EIEIE EA LIS 5,
Tabb, WA T - OZICIE U CEIE & BEENIF—E L Z2HEER 2R U, NETRE) o Ik X
VAT DS BUL & LIRRIITHE S .
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BHEN X, BRI ST 2 FHE KT & LCHAES 2, WIRBITEIRCIX, AL 7 —7
77X D 2 JEREEICERL T, 74 YT RNICH > THREEREE 238 3 % alREE 2 . Eq. 4.35 1
R T V= A DFEANCHS b MERBEOKE X 2T 2883 2 BRICKET 3,

_ tol (2)

72— LDl (BESE) 9~ 2nR(2)

(1(2) < 1(20) = Lotal) (4.35)
WEERIIARE DL O T — 27 77 A= ~0iid % 70, i 2l 3 2 WER I M- TEY 3 5.
RIS 2 MR O T IChE v, ARNENIC (X7 M O B ARATER I N E, 7 A4 YRR
B FOEGS TR R S IR <L AT FEICH 2 2 IS ONTEREIENME T I %, 2 0BT
HEE. BEE 2 FBEEDCHAFEMR L, e RmAE 208 L5 5.

BT NFRTRE) DR A 77 = X L3, EWENHRABTES X OCBEENICAINE e XL LT
PMATE 2, COBEMIER A =X L OBE % Fig. 4.10 IS8T, IEHEE T O IS % £ 5 735 © N
Tld. WIS o CEBEMET U, SR QAR E 15, BRI <L X — 4 OjEH
ICHDE COHRLDOKRE XTI LT, Wi FEECEIES X BELEN A ISES) L 7228 58NS %,
Eq.4.33 O 1 HAEMT) . 6 2 HARMERS) ., 5 3 HAEMISNICT 2 2 &b, BRIENHED
ZHOERR L. BN MO RENNITHE- S 52 ek X & LCHERATEETH 5,

i Bernoulli's principle
Qo E I ----------
| LI T pen
Arc plasma
¢ Molten metal
P e e ———— i ——————
s Peapi
Volumetric flow rate e
------- > \‘
zi T [ Electric current \\
7//
Q1 I1.metal I1,arc / q
H
Yz ¥ 2o
Charge conservation Io = It (To.metal = I1metal + I1.arc) pem: Electromagnetic pressure
Mass conservation Qo= Q Peapi: Capillary pressure
Momentum conservation Apem + Apcapi + Ag =0 % g: Dynamic pressure

Fig.4.10  Bernoulli’s principle in metal transfer.
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RIETIE, BWESI DT A Ylly7 %) BB 2 HhN & € 2 RN ERRE D IR X 7 = X 1120w T
fRE L 7o I A FERREMNE & © O B THRICEEONRKI XV FHE T h, B OHKEI
RREN DR Z 51 FAE Z 3, AWIFECIE, BRI 2@ 2 ERER 2. H s & oM AEM
2l U, BTN 2 IR S 2 R 2 B CERINE & RS 5, EREHE A ICBIfR 2 < NERTRE
DINEAHER X 725 3 HOFEFER 1T, HOBWINEA = X LOFEEZRMN T 2 FB T e T v R
TH Y, HCEMIED R OE R IC D 2 mEfhR G 2 PHlC 2 258 224t L 7z, RIA T,
KA =X L ig e L, HCERINER R OEEEHETEIC O W TBRETT 5,

432 BEBRENTETMZEEL-BCERMNEET L OHEE

B3 Tl PIERENC X 25 PR & RER A IC X 3 IUEME OIS 3 2 & ©, RiHhREORE
% THICE ZAREME 2R L7z, BIEOMICHED &, W TR B, IUHES R A EE IR
T2, AHTE, REI N X BERWICKRIET 2720, 2R E LCOBIE & [UEHE &
L CoOEFEFEI ZBYNICE RIS 2 5l Fik o2 4 5,

BE & EEENOHEIC I, BRENAROZER 7 v % 212 B\F 5 ME O LEB)EZ ZE$ 5 45
D5, BIE L BET OMIN 2RI, BRI IAROKE X chlifEng, —H. Zhb oMk
W75 tb L, WHoEicREI 2 L AT 5, BRINICIR, BIEIRAMOEE, BEITENIZ
RIMRNBBIAKITFT 2, Ledi-> T, BEE BEEN 2 KT 2 20 ic, BRUEN AR ZHAEL L /-
FHliAR 2R S 5 2 LT, MFDOHRLZHARICEHECE 5,

(i) BARBRRFEHROESR
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Fig. 4.11  Parallel circuit model in thin layered cross-section of arc plasma and molten droplet regions.
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Table 4.4  Conditions for fitting parameters used in droplet elongation coefficient Bop,.

Region Fitting parameters Symbol Specifications
Electrical conductivity Ometal Values at Tpepe used
Molten droplet -
Surface tension y Values at Tpepr used
Radius Rarc Gaussian fitting with D;. and L,

Argon arc plasma : —
Electrical conductivity Oarc
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T — 7k Z = Lapc — Larc €Xp {— [ (Rare = Rwire) }

CB (Dic - Dwire)]2

Dic=8mm: C;=2/5

{Dic =4mm: (C;=1
Dic =10 mm: C3 = 1/3

Dic =4 mm Dic = 8 mm Dic =10 mm

Fig. 4.12  Visual comparison of arc plasma geometry with gaussian fitting across three inter-cathode distances.
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----Al - Cu —A—Fe (variable current) —a&— Fe (variable arc geometry) --%--Ni --<--Ti
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Fig. 4.13  Dimensionless evaluation of droplet breakup length against droplet elongation coefficient Boy,.
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Dic = 4 mm Dic = 8 mm Dic =10 mm
Elliptical fitting Linear fitting

Fig. 4.14  Visual comparison of arc plasma geometry fitting: elliptical (D;. =4 mm) and linear (D;. >4 mm).

i Dyire  Dic — Dy
T—7 EET% (Dic = 4’) Rarc = v;re + 1c2L uSs \/Dwire (ZLarc - Dwire) (4~51)
arc
i Dyire = Dic — Dy
> 7¥{% (Dic > 4> Rype = wire + ic wire Duire (4'52)

2 2L ¢

Fig. 415 1C, HEMBXOBIE T 4 v 7 4 v 7% Fl v CATRMRREZ 34 L 72/ R 2R3, AR
TRELD MO 7 R o — VIS REHE T L RIS T H - 72— 7, BEHIPHI20.07 < Boj, < 0.12~b 3 22 12§l
L7z, ERNRESLGEVSEZHLZEEEZ, ChoD 74 v T4 VI TR AU T Y I749 T4V
LWL CT —2 77 A<l E %8 04mm K B o0 TH D, 7—27 7 7 X~ illfER
DN F, 77w RN T X — X DEAITHIIG T B IR R ORI IC BEE ISR A 5 X 72, — .
7 — 7 RO % 35 X 2 —E ICHERE L 72RO A =2 BB L e, 74 v T4 v 7
FEH—INTWBIRY, RWEHERE D O ER I KIS T HERRENTH > 72,

TaxANTA=ZOECER L, 74 v T4 v RROMERERT S, T—7E%K) Smm I
W L, RS Z 4 mm 225 8 mm ~HMX ¥ 7284, O YT v 74 v T 4 v 7 TIRIATN
BT R X DN R W IAT R RO ML 72, LA L AEMERREIE 7 4 v 74 v 27 2T 5 &
[ — D G2 I L T RAREDS A 3 2 HIA MR S L7z, S o#ifiRid, EHEHSIC BT %
T =2 77 X~ ORI RIREE % EYNICFEM S 2 LT M - IE 7 4 v T4 v S DIRFEIERIL 72,

T =2 77 XA L T, IREEETANEIR T B R AWTH ORRTH Y | BIREESE L AREM I
ARGy Ch b, BRFEED 2 WIIETHEEORMOMN T — 2 ICEDK T — 7 77 X< ER D E v
HAAKCH 5, AL TlE, SO RMAN R FIcCE S w71 v Tr v 73528 T, T—7
77 X R EHE L, RIEROETARBEZMER Lz, L L, EBREESGT -2 00T —7
77 R R RIS T 5 2 LT X0 IEMERIEFE R OHL B X CEB S O REE I o3
FiAENn s,

119



----Al - Cu —A—Fe (variable current) —a&— Fe (variable arc geometry) --%--Ni --<--Ti
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Fig. 4.15  Evaluation of droplet elongation coefficient Boy, using elliptical and linear fitting.
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----Al - Cu —A—Fe (variable current) —a&— Fe (variable arc geometry) --%--Ni --<--Ti
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Fig. 4.16  Evaluation of droplet elongation coefficient Boy, with decreased electrical conductivity.
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Fig. 4.17  Evaluation of droplet elongation coefficient Boy, with decreased surface tension y = yyere/2.
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Table 4.5 Droplet elongation coefficient for arc length minimization conditions.

Material Diameter Welding current Bop,
Al 1.0 mm 270 A 0.11
Cu 1.0 mm 270 A 0.06
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Fig. 4.18  Dimensionless comparison of electromagnetic and gravitational acceleration effects.
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