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1.1.2  

Gas Tungsten 

Arc: GTA Gas Metal Arc: GMA

Fig. 1.1  
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(a) Gas tungsten arc welding (GTAW) (b) Gas metal arc welding (GMAW) 

Fig. 1.1 Schematic of gas-shielded arc welding. 

1.2  
GMA

mm3
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1.2.1  
GMA

International Institute of Welding: IIW

[10, 11]

GMA

Fig. 1.2
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Fig. 1.2 Flowchart of metal transfer mode classification. 
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GMA

[12, 13]
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GMA WAAM
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Table 1.1

 

Table 1.1 Control strategies for metal transfer phenomenon. 

Control target Parameters Resulting changes Benefits 

Adjustable during process   

 

Welding current 
DC: peak/base current 

AC: EP/EN current 
Lorentz force 

Transition to spray transfer 

Uniform metal transfer period 

Spatter reduction 

 
Wire feeding Wire feed/retraction rate 

Distance to pool 

Wire attachment 

Uniform metal transfer period 

Spatter reduction 

 Shielding gas Mixing ratio Arc attachment Transition to spray transfer 

 External magnetic field Application direction Lorentz force Change in transfer orientation 

Non-adjustable during process (material specific)   

 

Wire electrode 

Chemical composition 
Arc attachment 

Element gasification 

Transition to spray transfer 

Prevention of explosive transfer 

 Composite structure Physical property Increased melting rate 

 Diameter Spatial scaling Decreased droplet size 

 

(i)  

 

[14–16]

1 1 1 1

[17, 18]  
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[19]

[20–23]  

 

(ii)  

 

[24, 25]

 

[26–28] 1 1 1 1

[29]

[30]

50 A  

 

(iii)  

[31–33]

[34, 35]
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(iv) [36] 

GMA

 

 

(v)  

 

[34, 37, 38]

[39]

[40, 41]

[42]  

[43–46] [47–49]

[8]

[43, 44]

1.14 mm 0.41 mm

[47]  

 

1.3  

GMA  
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3

 

Table 1.2

 

Table 1.2 Data classification by experimental, theoretical and numerical approaches. 

Approach 
 Classification  

Fluid Electromagnetic Thermal 

Experimental 

High-speed imaging 

Acoustic signal analysis 

Surface velocimetry* 

Volumetric velocimetry* 

*Applicable for pool 

Oscillography 

Electrical resistance* 

Arc pressure** 

Current density** 

*Applicable for droplet 

**Applicable for pool 

Calorimetry 

Spectroscopy 

Wire melting rate 

Theoretical 

Oscillation model Pinch instability theory 

Static force balance theory 

Maecker’s plasma jet model 

Halmøy’s wire melting model 

Rosenthal equation 

Numerical 

Mass continuity 

Momentum conservation 

Interface transport 

Current continuity 

Ampere Maxwell law 

Ohm’s law 

Energy conservation 

 

1.3.1  

 

 

(i)  
[50] [51, 52]

[11] [53] [54]
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[2]

[55]

[37] [34]

[53]

[56] [57]  

[58] [59, 60]

X

[61–64] [65–67]

[68, 69]  

 

(ii)  

[70, 71]

[43, 

72]  

 

(iii)  
GMA 2

GMA

 

GMA

[70, 71]

[73]

[74]
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GMA

[75]

[76, 77]

 

GMA

[78] [79]

[80]  

 

1.3.2  

 

 

(i)  

[81] [29, 82, 83]

[82]

1

[29]  

 

(ii)  

 

Static Force Balance 

Theory: SFBT [84, 85] Pinch Instability Theory: PIT [2, 86] SFBT

PIT [87]

 

[2, 88]
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(iii)  

1

[2, 89]

3 Rosenthal

[90]  

1.3.3  

 

GMA 3

GMA

 

 

 

(i)  
Table 1.3

[91]

[29]
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Table 1.3 Classification and features of numerical models for metal transfer. 

Numerical model Features Interface Current Energy Refs. 

Interfacial tension theory Static equilibrium geometry    [92] 

Fixed interface model Fixed droplet geometry   [93] 

Non-conductive liquid model 
Liquid phase only 

Lorentz forces neglected 
   [29, 91] 

Conductive liquid model 
Liquid phase only 

No mass supply 
 [94, 95] 

Fixed arc interaction model 
Constant mass supply 

Static arc attachment 
   [96–100] 

Unified arc-droplet model 
Mass supply by wire fusion 

Dynamic arc attachment 
   [101–105] 

Table 1.4 Classification and features of numerical models for molten pool convection. 

Numerical model Features Interface Current Energy Refs. 

Interfacial tension theory Static equilibrium geometry    [106] 

Fixed interface model Fixed pool geometry 
   [107] 

   [108] 

Non-conductive liquid model Lorentz forces neglected    [109] 

Conductive liquid model 
Liquid phase only 

No mass supply 
  [94, 95] 

Simplified pool model 
Simplified arc interaction 

(Constant droplet source) 

  [110, 111] 

  [112–114] 

Pool-arc coupled model 

Fixed flat free surface 

No mass supply 
( )   [115, 116] 

Dynamic free surface 

No mass supply 
 [117] 

Pool-droplet coupled model 
Mass supply by wire fusion 

Static arc attachment 
[118] 

Unified arc-electrode model 
Mass supply by wire fusion 

Dynamic arc attachment 
   [104, 105, 119] 
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(ii)  
Table 1.3 Table 1.4

[109] [94, 95]

[110, 111]

 

[115, 116]

[95] GMA

 

 

1.3.4  

4  

 

  

  

  

  

 

10-3 m 10-2 s

10-2 m 10-1 s
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1.5  
Fig. 1.3 5  

1

GMA

 

2

 

3 X

 

4

3

2  

5  
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Fig. 1.3 Flow chart of this study. 
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(a) Front view illustrating preset parameters 

(b) Top view 

Fig. 2.1 Configuration of non-transferred arc discharge system with multiple non-consumable cathodes. 
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Table 2.1 Technical specifications for non-transferred arc discharge system. 

Element Specifications  

Cathode Electrode type W 2wt.% La2O3 

 Diameter 1.6 mm 

 Tip angle 30 deg. 

Shielding gas Composition Ar 

 Flow rate 25 L/min 

Base metal Material Mild steel 

 Dimension 35 mm (width) × 4.5 mm (height) × 75 mm (depth) 
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Contact-tip-to-cathode distance Inter-cathode distance
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2 Fig. 1.1(b)

GMA Contact-Tip-to-Work Distance: CTWD

GMA

ୟ୰ୡܮ ≈ 0 ୟ୰ୡܮ ≈ 0

 

Table 2.2

 

 

Table 2.2 Definitions of experimental parameters specific to non-transferred arc discharge system. 

Parameter name Symbol Category Definition 

Independent 

Welding current ܫ Process Electric current applied to maintain arc discharge. 

Wire feed rate ݒ୤ୣୣୢ Process Length of welding wire fed per unit time. 

Wire material N/A Material Primary element or alloy composition of wire. 

Contact-tip-to-cathode 

distance 
 ୲ୡ Processܦ

Vertical distance from contact tip end to tungsten 

rod axis. 

Inter-cathode distance ܦ୧ୡ Process Horizontal distance between tungsten rod tips. 

Dependent 

Wire extension ୣܮ୶ Process 

Vertical distance from contact tip end to solid-

liquid interface of welding wire; a dependent 

parameter determined by ݒ ,ܫ୤ୣୣୢ and ܦ୲ୡ. 
Arc length ܮୟ୰ୡ Process 

Vertical distance from solid-liquid interface of 

welding wire to tungsten rod axis; a dependent 

parameter determined by ݒ ,ܫ୤ୣୣୢ and ܦ୲ୡ. 
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Eq. 2.1

[4] 1

1

2  

୫ୣ୪୲ݒ  = ܫଵܥ +  ଶ (2.1)ܫ୶ୣܮଶܥ

୫ୣ୪୲ݒ ଵܥ ଵܥଶܥ
[5, 6]

 

100 Eq. 2.2

 

 
୯ଷୣܴߨ43 ⋅ ݂ = ୵୧୰ୣଶܴߨ ⋅ ୤ୣୣୢݒ ൬݂ = 1ܶ൰ (2.2) 

ܴୣ୯ ݂ ܴ୵୧୰ୣ ୤ୣୣୢܶݒ

Fig. 2.2
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ୟ୰ୡܮ ≈ 0
 

Fig. 2.3

2

Fig. 2.3

Fig. 1.2

 

NAC Image 

Technology Inc. Memrecam HX-7 8000 fps

976 nm 45 W  

 

 

 

 
Fig. 2.2 Definition of droplet breakup length along with its measurement reference position: ܮୟ୰ୡ ≈ 0 mm (left) 

and ܮୟ୰ୡ > 0 mm (right). 
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Fig. 2.3 Flowchart of metal transfer mode classification in this study. 
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Fig. 2.4

10 mm

24 mm

2 mm  

 

Table 2.3 Three experimental groups based on process-specific parameters. 

Group A B C 

Wire extension [mm] Fixed Fixed Varies 

Arc length [mm] Varies Fixed Fixed 

Inter-cathode distance [mm] 4 4, 8, 10 4 

Contact-tip-to-cathode distance [mm] 10, 15, 20 15 10, 20, 30 

Welding current [A] 270 270 210 

Wire feed rate [mm/s] 110 110 90, 105, 120 

 

 

 

Fig. 2.4 Gas nozzle extended with an acrylic pipe component. 
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2.4.2 A  
A 0 mm 5 mm 10 mm

Fig. 2.5
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5 mm 10 mm

GMA

 

Fig. 2.6(a)
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Fig. 2.6(b)
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Fig. 2.5 Metal transfer modes for Group A with arc length ܮୟ୰ୡ of 0, 5, and 10 mm. 

(a) Droplet breakup length and metal transfer frequency (b) Equivalent droplet radius 

Fig. 2.6 Impact of arc length on metal transfer characteristics in Group A, highlighting transition from 

streaming- first to projected-spray transfer at ܮୟ୰ୡ = 5 mm, and subsequently to drop transfer at ܮୟ୰ୡ = 10 mm. 
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2.4.3 B  
B 4 mm 8 mm 10 mm

4 mm A 5 mm

Fig. 2.7

10 mm

 

Fig. 2.8(a)
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10 mm 2
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10 mm  

Fig. 2.8(b)

4 mm
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4 mm 8 mm

10 mm

2

 

 
Fig. 2.7 Metal transfer modes for Group B with inter-cathode distance ܦ୧ୡ of 4, 8, and 10 mm. 
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(a) Droplet breakup length and metal transfer frequency (b) Equivalent droplet radius 

Fig. 2.8 Impact of inter-cathode distance on metal transfer characteristics in Group B, highlighting transition 

from projected- to streaming-spray transfer at ܦ୧ୡ = 10 mm. 

 

2.4.4 C  
C 10 mm 20 mm 30 mm

Fig. 2.9

0 mm A 0 mm

 

Fig. 2.10(a)
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2.14 mm 20 mm 2

31 Hz 36 Hz 51 Hz  

Fig. 2.10(b)

10 mm 0.93 mm 20 mm 0.92 mm 30 mm 0.86 mm
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Fig. 2.9 Metal transfer modes for Group C with wire extension ୣܮ୶ of 10, 20, and 30 mm. 

(a) Droplet breakup length and metal transfer frequency (b) Equivalent droplet radius 

Fig. 2.10 Impact of wire extension ୣܮ୶ on metal transfer characteristics in Group C, highlighting consistent drop 

transfer within the tested ୣܮ୶ range from 10 to 30 mm. 
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2.4.5  
A B

A B

 

Eq. 2.3

3  

ߠ   = tanିଵ ୧ୡܦ − ୟ୰ୡܮ୵୧୰ୣ2ܦ ୟ୰ୡܮ) > 0) (2.3) 

A B

Fig. 2.11

ୟ୰ୡܮ ≈ 0 Eq. 2.3 ୟ୰ୡܮ ≈ 0
 

 

 
Fig. 2.11 Definition of arc spread angle (left) and droplet breakup length against arc spread angle (right). 
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Fig. 2.12

 

 

 

Fig. 2.12 Arc plasma expansion and current flow shift from axial to radial. 
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Table 2.4

1.0 mm 1.2 mm 1.0 mm 210–270 A 1.2 mm

250–390 A 20 A 15 mm

8 mm

1

1  

Table 2.4 Five experimental groups based on material-specific parameters. 

Material Diameter Welding current Wire feed rate 

Al 1.0 mm 210 270 A (20 A increments) 190.0 280.0 mm/s 

Cu 1.0 mm 210 270 A (20 A increments) 135.0 180.0 mm/s 

Fe 1.2 mm 250 390 A (20 A increments) 95.0 155.0 mm/s 

Ni 1.2 mm 250 390 A (20 A increments) 80.0 125.0 mm/s 

Ti 1.0 mm 210 270 A (20 A increments) 210.0 310.0 mm/s 

 

2.5.2  
Figs. 2.13 17

Fig. 2.18

 

Fig. 2.13
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Fig. 2.14



45 
 

1.0 mm 210 A

0.99 mm 270 A 0.53 mm

210 A 250 A

270 A  

Fig. 2.15
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Fig. 2.13 Consistent projected-spray transfer for Al wire within the tested current range from 210 to 270 A. 

 
Fig. 2.14 Transition from drop to projected-spray transfer at 250 A for Cu wire. 

 
Fig. 2.15 Transition from drop first to projected-spray transfer at 270 A, and subsequently to streaming-spray 

transfer at 290 A for Fe wire. 
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Fig. 2.16 Transition from drop first to projected-spray transfer at 330 A, and subsequently to streaming-spray 

transfer at 350 A for Ni wire. 

 
Fig. 2.17 Transition from drop to streaming-spray transfer at 230 A for Ti wire. 
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(a) Droplet breakup length (b) Metal transfer frequency 

(c) Equivalent droplet radius 

Fig. 2.18 Material-dependent characteristics of metal transfer. Error bars represent the standard error of the mean. 

2.5.3  

Table 2.5
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Table 2.5 Material properties of Al, Cu, Fe, Ni, and Ti in molten state around their melting points [9]. 

Material Melting point Density Surface tension Electrical conductivity 

Al 660.1  2385 kg/m3 0.914 N/m 4.12×106 S/m 

Cu 1083.4  8000 kg/m3 1.285 N/m 5.00×106 S/m 

Fe 1536  7015 kg/m3 1.872 N/m 7.22×105 S/m 

Ni 1455  7905 kg/m3 1.778 N/m 1.18×106 S/m 

Ti 1667  4110 kg/m3 1.650 N/m 5.81×105 S/m 

 

(i)  
Fig. 2.18(a)

 

Fig. 2.19

 

2

 

 

 

Fig. 2.19 Role of electrical conductivity in molten droplet elongation based on current distribution patterns. 
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(ii)  
Fig. 2.18(c)

Table 2.5

 

Eq. 2.4 Eq. 2.5  

ୋܨ   = ܸߩ ≈ ߩ ⋅ ୵୧୰ୣଷܴߨ43  (2.4) 

ୗܨ   ≈  (2.5) ߛ୵୧୰ୣܴߨ2

ୋܨ ୗܨ ߩ ܸ ߛ 1 mm

10-5 N 10-4 N

 

2.5.4  

 

 

Table 2.6

Table 2.4

280.0 mm/s 300.0 mm/s 180.0 mm/s

185.0 mm/s ୟ୰ୡܮ ≈ 0 Fig. 2.20
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Table 2.6 Conditions for arc expansion on high-electrical-conductivity wires. 

Material Diameter Welding current Wire feed rate 

Al 1.0 mm 270 A 300.0 mm/s 

Cu 1.0 mm 270 A 185.0 mm/s 

 

 

 

 

Fig. 2.20 Impact of arc length minimization on droplet elongation in high-electrical-conductivity wire materials: 

rotating-spray transfer for Al wire (left) and streaming-spray transfer for Cu wire (right). 
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Fig. 2.20
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2 PTV
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3

3  

 

 

Fig. 3.1 Principle of X-ray particle tracking velocimetry (PTV) in metal transfer. 

 

PTV

Eq. 3.1

[9]  

୮ݒ   − ୤ݒ = ୮ߩ୮ଶ൫ܦ118 − ߟ୤൯ߩ dݒ୮dݐ  (3.1) 

୮ݒ ୤ݒ ୮ܦ ୮ߩ ୤ߩ ݐߟ
 

X X X

X ଴ܰ X݀ Fig. 3.2 X ଵܰ
Eq. 3.2 [10, 11]  

  ଵܰ = ଴ܰ exp(−݀ߤ) (3.2) 

ߤ X
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ߩ/ߤ
Eq. 3.3

[11]  

  ଵܰ = ଴ܰ exp ൬−ߩߤ  ൰ (3.3)݀ߩ

 

 

Fig. 3.2 Attenuation of X-ray by matter. 

 

X PTV X

X

Eq. 3.4 xz

x z  

୤௧ା୼௧ݒ⃗   ≈ ୮௧ା୼௧ݒ⃗ = ୮௧ା୼௧ݔ⃗ − ݐ୮௧Δݔ⃗  (3.4) 

ݒ⃗ ݔ⃗ Δݐ
f p ݐ + Δݐ ݐ  

 

3.2.3  
X PTV

 

A1070 Table 3.1

X

X  
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X

[12–16]

X

X

X 53 m

53 m  

PTV

Eq. 3.5 St

[9]   

  St = ߬୮߬୤  (3.5) 

  ߬୮ = ୮ߩ୮ଶ൫ܦ118 − ߟ୤൯ߩ   

  ߬୤ = ܮܸ
  

߬୮ ߬୮ ܸܮ Eq. 3.1 Table 3.2

St  1.7

 

 

Table 3.1 Chemical composition of A1070 aluminum alloy wire sheath. 

Element (wt.%) Si Fe Cu Mn Zn V Al 

A1070 0.029 0.039 0.001 0.025 0.040 0.018 Balance 

 

Table 3.2 Calculation parameters for evaluating particle fidelity. 

Element Specification  

W Density 1.93 × 104 kg/m3 

 Diameter 53 m 

Al Viscosity 1.30 × 10-3 Pa∙s 

Characteristic scale Velocity 1 m/s 

 Length 1.2 mm 
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1.2 mm

0.1 mm

Table 3.3

X PTV X Fig. 3.3

 

[17]

 

 

 

Fig. 3.3 Specification of seamless metal-cored wire with aluminum sheath and tungsten powder core. 

 

 

Table 3.3 Mixing condition for metallic powder. 

Element Al W 

Powder type Atomized Mechanically milled 

Purity 99.9% 99.8% 

Size Around 3 m 53 m mesh pass 

Mixing mass ratio 9 1 
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3.2.4 X PTV  
X PTV X PTV

X

X

 

X PTV SPring-8

BL22XU [18] 30 keV X

Si(111) X

CsI X

NAC Image Technology Inc. 3000 fps  

X

NAC Image 

Technology Inc. Memrecam HX-7 5000 fps  

Fig. 3.4(a) X PTV

X X y

X

x z

X Fig. 3.4(b)

X PTV Table 3.4

2.2

X  

 



61 
 

 
(a) (b) 

Fig. 3.4 X-ray imaging setup: (a) Annotated general view of X-ray PTV system and (b) Enlarged schematic of 

the welding torch vicinity with specific measurements, highlighting the X-ray target area. 

 

 

Table 3.4 Technical specifications for X-ray PTV using non-transferred arc discharge system. 

Element Specifications  

Cathode Electrode type W 2wt.% La2O3 

 Diameter 1.6 mm 

 Tip angle 30 deg. 

 Inter-cathode distance 4 mm 

 Contact-tip-to-cathode distance 10 mm 

Shielding gas Composition Ar 

 Flow rate 20 L/min 

Base metal Material A5052 alloy 

 Dimension 40 mm (width) × 5 mm (height) × 62.5 mm (depth) 

X-ray Energy 30 keV 
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3.2.5 X PTV  
X PTV

X PTV

PTV

X PTV

2

 

1.2 mm A1070 3.2.3

200 A 270 A

0 mm 5 mm

Table 3.5

 

 

 

Table 3.5 Welding conditions for X-ray PTV. 

Condition Name Wire type Welding current Wire feed rate Arc length 

Tracer-free  Tracer-free 150 A 110.0 mm/s Short (~0 mm) 

Tracer-containing  Tracer-containing 150 A 110.0 mm/s Short (~0 mm) 

200 A/5 mm  Tracer-containing 200 A 126.0 mm/s Long (~5 mm) 

200 A/0 mm  Tracer-containing 200 A 150.0 mm/s Short (~0 mm) 

270 A/5 mm  Tracer-containing 270 A 189.3 mm/s Long (~5 mm) 

270 A/0 mm  Tracer-containing 270 A 205.0 mm/s Short (~0 mm) 
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X

 

X PTV Table 3.6

3 1

95

1

9

 

 

 

Table 3.6 Summary of repetition counts and tracked particle trajectories. 

Condition Repetition counts Number of tracked trajectories 

Tracer-free 1 N/A 

Tracer-containing 3 N/A 

200 A/5 mm 7 12 

200 A/0 mm 3 9 

270 A/5 mm 8 48 

270 A/0 mm 3 28 

  



64 
 

3.2.6 X  
PTV

Fiji [19]

X

 

X

Eq. 3.6  

୮୰୭ୡܫ   = ୰ୟ୵ܫ − ܫୢ ୟ୰୩ܫୠୟୡ୩ − ܫୢ ୟ୰୩ (3.6) 

୮୰୭ୡܫ ୰ୟ୵ܫ ܫୠୟୡ୩ୢܫ ୟ୰୩
 

12 bit 32 bit

100

448 × 296 60

Fig. 3.5

X

X X

X

 

X

11.59 m/pixel

X 4.02 mm 2.19 mm  

Fiji

Manual Tracking [20]

Eq. 3.4  
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Fig. 3.5 Background removal to improve contrast between molten aluminum droplet and tungsten tracer 

particles. 
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Fig. 3.6 1

X

 

Fig. 3.7

1

0 mm

 

Fig. 3.8(a) Fig. 3.8(b)

11 ms

0.7 mm
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(a) Tracer-free wire (solid wire) 

 
(b) Tracer-containing wire (metal-cored wire) 

Fig. 3.6 Time evolution of molten aluminum droplet cross-section in a single metal transfer cycle using (a) 

tracer-free and (b) tracer-containing wires. ݐ଴ represents the time elapsed from the start of recording to the initiation 

of surface tracking. 
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(a) Tracer-free wire (solid wire) 

 
(b) Tracer-containing wire (metal-cored wire) 

Fig. 3.7 Surface texture differences of the molten aluminum droplet in a single metal transfer cycle using (a) 

tracer-free and (b) tracer-containing wires. ݐ଴  represents the time elapsed from the start of recording to the 

beginning of the metal transfer cycle, just before the molten droplet detached. 
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(a) Metal transfer period 

 
(b) Equivalent droplet radius 

Fig. 3.8 Bar graph quantifying (a) metal transfer periods and (b) equivalent droplet radii for tracer-free and 

tracer-containing wire conditions. 
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3.3.2  
(i)  

X

 

Fig. 3.9 200 A/5 mm X 12.0 ms

2

5.7 ms 11.3 ms

 

Fig. 3.10 200 A/0 mm X 11.3 ms

3

2.3 ms 6.0 ms 10.3 ms

 

Fig. 3.11 270 A/5 mm X 6.7 ms

3

1.3 ms 3.7 ms 6.0 ms

 

Fig. 3.12 270 A/0 mm X 11.0 ms

z
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Fig. 3.9 Time evolution of molten aluminum droplet cross-section under 200 A/5 mm condition during two 

metal transfer cycles: (a) Start metal transfer cycle, (b) start particle tracking, and (r) end particle tracking. ݐ଴ 

represents the time elapsed from the start of recording to the beginning of the metal transfer cycle. 
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Fig. 3.10 Time evolution of molten aluminum droplet cross-section under 200 A/0 mm condition during three 

metal transfer cycles: (a) Start of metal transfer cycle, (b) start of particle tracking, and (r) end of particle tracking. ݐ଴ represents the time elapsed from the start of recording to the beginning of the metal transfer cycle. 
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Fig. 3.11 Time evolution of molten aluminum droplet cross-section under 270 A/5 mm condition during three 

metal transfer cycles: (a) Start of metal transfer cycle, (b) start of particle tracking, and (r) end of particle tracking. ݐ଴ represents the time elapsed from the start of recording to the beginning of the metal transfer cycle. 
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Fig. 3.12 Time evolution of molten aluminum droplet cross-section under 270 A/0 mm condition: (a) Start of 

metal transfer cycle and (l) end of particle tracking. ݐ଴ represents the time elapsed from the start of recording to 

the beginning of the metal transfer cycle. 
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Fig. 3.13(a) 200 A/5 mm 200 A/0 mm 270 A/5 mm

270 A/0 mm

200 A/5 mm 6.4 ms 200 A/5 mm

200 A/0 mm 270 A/5 mm

3.9 ms 2.0 ms  

Fig. 3.13(b) 200 A/5 mm 200 A/0 mm 270 A/5 mm

200 A/5 mm 0.60 mm

200 A/0 mm

270 A/5 mm 0.54 mm 0.47 mm  

200 A/5 mm 200 A/0 mm

270 A/5 mm

270 A/0 mm

 

200 A/5 mm 200 A/0 mm

270 A/5 mm

5 mm 200 A/5 mm 270 A/5 mm

0 mm 200 A/0 mm 270 A/0 mm
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(a) Metal transfer period 

 
(b) Equivalent droplet radius 

Fig. 3.13 Bar graph quantifying (a) metal transfer periods and (b) equivalent droplet radii across three welding 

conditions. Bars with a white background and black dot pattern indicate an anode-cathode distance of 5 mm, while 

bars filled with red indicate an anode-cathode distance of 0 mm. Error bars represent the standard deviation. 
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(ii)  

X

 

200 A/5 mm Fig. 3.14

x z Fig. 3.15

0.3 ms 2.7 ms

5.7 ms x

8.3 ms 11.3 ms

z 2.3 ms

7.3 ms 0.28 m/s 0.31 m/s 4.3 ms -0.21 m/s  

200 A/0 mm Fig. 3.16 Fig. 3.17

z

4.3 ms 0.14 m/s 0.38 m/s

6.0 ms 0.10 m/s 8.0 ms 0.31 m/s

8.3 ms 0.07 m/s

0.31 m/s  

270 A/5 mm Fig. 3.18 Fig. 3.19

200 A/0 mm x

x z

3.3 ms

0.17 m/s 5.0 ms 0.31 m/s

6.0 ms 0.56 m/s  

270 A/0 mm Fig. 3.20 Fig. 3.21

270 A/5 mm x z

2.3 ms 0.17 m/s 3.7 ms

1.15 m/s 4.0 ms  
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Fig. 3.14 Tracer particle trajectory under 200 A/5 mm condition: (a) Start metal transfer cycle (b) start particle 

tracking, and (r) end particle tracking. ݐ଴ follows the same definition as in Fig. 3.9. 
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Fig. 3.15 Time-course graph depicting particle velocity components under 200 A/5 mm condition. 
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Fig. 3.16 Tracer particle trajectory under 200 A/0 mm condition: (a) Start metal transfer cycle (b) start particle 

tracking, and (r) end particle tracking. ݐ଴ follows the same definition as in Fig. 3.10. 
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Fig. 3.17 Time-course graph depicting particle velocity components under 200 A/0 mm condition. 
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Fig. 3.18 Tracer particle trajectory under 270 A/5 mm condition: (a) Start metal transfer cycle (b) start particle 

tracking, and (r) end particle tracking. ݐ଴ follows the same definition as in Fig. 3.11. 
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Fig. 3.19 Time-course graph depicting particle velocity components under 270 A/5 mm condition. 
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Fig. 3.20 Tracer particle trajectory under 270 A/0 mm condition: (a) Start metal transfer cycle (b) start particle 

tracking, and (m) end particle tracking. ݐ଴ follows the same definition as in Fig. 3.12. 
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Fig. 3.21 Time-course graph depicting particle velocity components under 270 A/0 mm condition. 

 

 

 
(a) x direction (b) z direction 

Fig. 3.22 Comparison of mean maximum velocity components obtained over droplet formation across current-

specific variables. 
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0.7%

Bruggeman

Eq. 3.7 [25]  

  ݂ୢ ୢߪ − ୢߪ୤୤ୣߪ + ୤୤ୣߪ2 + ୡ݂ ୡߪ − ୡߪ୤୤ୣߪ + ୤୤ୣߪ2 = 0, (݂ୢ + ୡ݂ = 1) (3.7) 

୤୤ୣߪ   = ߙ + ඥߙଶ + ୡ4ߪୢߪ8 , ߙ = (3݂ୢ − ୢߪ(1 + (3 ୡ݂ −   ୡߪ(1

݂ ߪ d c

eff Table 3.3 ݂ୢ ≪ 1
X PTV

 

X PTV

 

 

3.4.2  
(i)  

Fig. 3.22(a) x

 

270 A/5 mm 2.0 ms x

0.6 m/s Fig. 3.23

X PTV

X y  
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Fig. 3.23 Comparison of x-component velocity against estimated limit for triggering non-axisymmetric behavior. 

 

(ii)  

Fig. 3.22(b) z

 

z 2 3

 

270 A/0 mm

Eq. 3.8 Taylor–Culick [26–28]  

 Taylor–Culick ୡୟ୮୧ݒ  = ඥ(3.8) ܴߩ/ߛ 

ߛ ߩ ܴ Table 3.7

0.9 N/m 0.79 m/s

1600 K 2360 K 0.7–0.8 N/m
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[29] 0.7 N/m 0.70 m/s

Fig. 3.24 0.7–0.9 N/m Fig. 3.22(b) z

270 A/0 mm

 

Fig. 3.25ݒ୧୬ Taylor–Culick ୧୬ݒୡୟ୮୧ݒ − ୡୟ୮୧ݒ
Fig. 3.25(a)

Fig. 3.25(b)

Fig. 3.25(c)  

 

 

Table 3.7 Calculation condition for capillary velocity. 

Density Surface tension Wire radius 

2385 kg/m3 0.7–0.9 N/m 0.6 mm 

 

 

 
Fig. 3.24 Comparison of z-component velocity against capillary velocity. 
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(a) Drop transfer mode 

 
(b) Projected-spray transfer mode 

 
(c) Streaming-spray transfer 

Fig. 3.25 Directional movement of molten droplet bottom based on relative velocity of internal velocity ݒ୧୬ and 
capillary velocity ݒୡୟ୮୧. 
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3.4.3  
X PTV

 

X PTV

Eq. 3.9 ܵ
 

~ୢݔߜ   2ܵ (3.9) 

Eq. 3.10

 

୮2ܦ~୮ݔߜ    (3.10) 

Eq. 3.11 Table 3.8

27 m

ଶ(ୢݔߜ)ට~ݔߜ   + ൫ݔߜ୮൯ଶ (3.11) 

Eq. 3.12

0.08 m/s  

ݒߜ   =  (3.12) ݐΔݔߜ

 

Table 3.8 Error estimation parameters originating from image analysis. 

Parameter Symbol Value 

Pixel size ܵ 11.59 m/mm 

Particle diameter ܦ୮ 53 m 

Frame interval Δ0.33 ݐ ms 
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Eq. 3.13 [30]  

୲ݒ   = ൫ߩ୮ − ߟ୮ଶ18ܦ୤൯݃ߩ  (3.13) 

୮ߩ ୤ߩ ݃ ୮ܦ ߟ

Fig. 3.26

Fig. 3.26

Table 3.9 0.02 m/s  

z

z

X PTV

 

 

 

Fig. 3.26 Evaluation of gravitational effect: problem setting and key assumptions. 
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Table 3.9 Error estimation parameters originating from particle fidelity. 

Parameter  Symbol Value 

Fluid (Al) Density ߩ୤ 2.385 × 103 kg/m3 

 Viscosity 10-3 × 1.30 ߟ Pa∙s 

Particle (W) Density ߩ୮ 1.93 × 104 kg/m3 

 Diameter ܦ୮ 53 m 

 

3.5  

X PTV

 

 

1) X PTV

 

2) 

 

3) 

270 A/0 mm

 

4) 

z

z 2–3

z Taylor–Culick  

5) 

x

 

6) 
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Table 4.1

 

 

 

 
Fig. 4.1 Breakup regimes observed in liquid jet [4–6]. 

 

Table 4.1 Mathematical models for jet breakup phenomenon classified by diving factor and fluid conductivity. 

Driving factor 
 Liquid jet breakup Metal transfer 

 Non-conductive fluid Conductive fluid 

Gravity-driven  Tate’s lawa Static force balance theoryb 

Capillary-driven 
Without inertial force Plateau–Rayleigh instabilityc Pinch instabilityd 

With inertial force Absolute/convective instabilitye Not applicable 
a Ref. [7]; b Refs. [8, 9]; c Refs. [10, 11]; d Refs. [2, 12]; e Ref. [13]. 
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(i)  

Fig. 4.2

Eq. 4.1 Tate

[7] [14, 15]  

 Tate  ݉݃ =  (4.1) ߛܴߨ2

݉ ݃ ܴ ߛ  

 

 

Fig. 4.2 Liquid droplet geometry assumed in Tate’s law. 

 

[8, 9]

GMA Eq. 4.2

 

ୗܨ   + ܨୣ = ୋܨ + ୈܨ +  ୫ (4.2)ܨ

ୗܨ ୋܨܨୣ ୫ܨୈܨ
Fig. 4.3 Greene

Eq. 4.3  

୫ܨ = ߨଶ4ܫ଴ߤ ൤ln ܽ sin߶ܾ − 14 − 11 − cos߶ + 2(1 − cos߶)ଶ ln 21 + cos߶൨ (4.3) 
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଴ߤ ܫ ܽ ܾ ߶ ܽ sin߶ > ܾ
ܽ sin߶ < ܾ

[16]  

Tate

 

 

 

Fig. 4.3 Molten droplet geometry assumed in static force balance theory. 

 

(ii)  

Plateau–Rayleigh P-R

 

Plateau–Rayleigh 2

Eq. 4.4  

ୡୟ୮୧݌   = ߢߛ = ߛ ൬ 1ܴଵ + 1ܴଶ൰ (4.4) 

ୡୟ୮୧݌ ߛ ߢ ܴଵ ܴଶ
Fig. 4.4 Eq. 4.5 [17]  
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௥ߢ   = 1ܴଵ = 1ℎ(1 + ℎᇱଶ)ଵ/ଶ (4.5) 

௭ߢ   = 1ܴଶ = − ℎᇱᇱ(1 + ℎᇱଶ)ଷ/ଶ  

௥ߢ ௭ߢ ℎ(ݖ) z

ℎᇱ ≪ 1 Eq. 4.5 Eq. 4.6݌୲୰୭୳୥୦ > ୡ୰ୣୱ୲݌
 

ୡୟ୮୧݌   ≈ (ݖ)ℎߛ ൬∵ ௥ߢ ≈ 1ℎ(ݖ) , ௭ߢ ≈ 0൰ (4.6) 

 

 

Fig. 4.4 Liquid jet geometry assumed in Plateau Rayleigh instability. 

 

Fig. 4.5

Eq. 4.7 [2]  

 z ୫ୣ݌  =  ଶܴଶ (4.7)ߨଶ4ܫ଴ߤ

୫ୣ݌ ଴ߤ ܫ Plateau–Rayleigh
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Fig. 4.5 Molten metal jet geometry assumed in pinch instability. 

 

݉ = 0
Eq. 4.8  

  ℎ(ݖ) = ܴ +  (4.8) (ݐ)ߝ

 ݉ = 0 (ݐ)ߝ  = ଴ߝ cos݇ݖ exp(−݅߱ݐ)  

  ݇ = ߣߨ2   

ܴ ߝ ݇ ߱ ߣ
Eq. 4.9

Plateau–Rayleigh Rayleigh [11, 18] Eq. 4.10

Murty [12]  

 Plateau–Rayleigh  ߱ଶ = ଷܴߩߛ (ݔ)଴ܫ(ݔ)ଵܫݔ ଶݔ) − 1) (4.9)

  ߱ଶ = ଷܴߩߛ ቊܫݔଵ(ݔ)ܫ଴(ݔ) ଶݔ) − 1) − ߛଶܴߨଶ2ܫ଴ߤ ቈ2 + ݔ ቆܫଵ(ݔ)ܫ଴(ݔ) − ቇ቉ቋ (4.10)(ݔ)ଵܫ(ݔ)଴ܫ

ݔ   = ܴ݇ 
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ߛ ߩ ݔ (ݔ)௠ܫ 1 ݉߱ଶߣୡ Plateau–Rayleigh Eq. 4.11

Eq. 4.12 [2]  

 Plateau–Rayleigh ୡ,୔ୖߣ  >  (4.11) ܴߨ2

ୡ,୔୍୘ߣ   > ඥ1ܴߨ2 +  (4.12) ߛଶܴߨଶ/2ܫ଴ߤ

Eq. 4.13 Eq. 4.14 ߬  

 Plateau–Rayleigh  ߬୔ୖ ≈ ඥܴߩଷ/(4.13) ߛ 

  ߬ ୔୍୘ ≈ ඥܴߩଷ/1ߛ + ߛଶܴߨଶ/2ܫ଴ߤ = ߬୔ୖ1 +  (4.14) ߛଶܴߨଶ/2ܫ଴ߤ

Eq. 4.10 ܫ = 0 Eq. 4.9

Plateau–Rayleigh  

 

(iii)  

Table 4.1

Plateau–Rayleigh Absolute/Convective: AC

 

 

 
(a) Absolute instability (b) Convective instability 

Fig. 4.6 Concept of absolute/convective instability: different types of wave-packet time evolution from a single 

initial impulse. 
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Fig. 4.6

Fig. 4.6(a)

Fig. 4.6(b)

Briggs [19]

[20–22]  

Briggs–Bers criterion [19, 23, 24] Eq. 4.15

Table 4.2 Plateau–Rayleigh

Briggs–Bers 

criterion  

 Briggs Bers criterion ߱୧(݇଴) > 0, ∂߱୧∂݇୧ (݇଴) = ߲߱୧߲݇୰ (݇଴) = 0 (4.15) 

  ݇ = ݇୰ + ݅݇୧  

  ߱ = ߱୰ + ݅߱୧  

 

Table 4.2 Three analysis types of dispersion relation [25]. 

 Type of analysis 

 Temporal Spatial Spatio-temporal 

Wavenumber ℝ ℂ ℂ 

Frequency ℂ ℝ ℂ 

Instability condition ߱୧ > 0 −݇୧ > 0, d݇୰d߱ > 0 
߱୧(݇଴) > 0,∂߱୧∂݇୧ (݇଴) = ߲߱୧߲݇௥ (݇଴) = 0 

(Briggs–Bers criterion) 

Example 
 P-R instability 

 Pinch instability 
N/A  AC instability 

 

 

Briggs–Bers criterion Plateau–Rayleigh

Fig. 4.7 ܸ
Plateau–Rayleigh
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Eq. 4.9 ߱ ߱ − ܸ݇ Eq. 4.16

[26]  

  (߱ − ܸ݇)ଶ = ଷܴߩߛ (ݔ)଴ܫ(ݔ)ଵܫݔ ଶݔ) − 1) (4.16) 

 

 

Fig. 4.7 Schematic of semi-infinite non-conductive fluid jet model. The steady flow ܸ passes through the fluid 

cylinder with radius ܴ. 

 

Eq. 4.16 Briggs–Bers criterion

Gallaire

[25] Eq. 4.16 ݔ ≪ 1
Eq. 4.17 Eq. 4.17

Eq. 4.18  

  ( ഥ߱ − ଶ(ݔߚ = 12 ଶݔ)ଶݔ − 1) ቆ∵ (ݔ)଴ܫ(ݔ)ଵܫ ≈  2ቇ (4.17)ݔ

  ഥ߱ = ߱ ⋅ ߬୔ୖ  

  We = ଶߚ = Inertial forceSurface tension = ߛଶܸܴߩ  (4.18) 

ഥ߱ ߚ We Gallaire

Eq. 4.15 Briggs–Bers criterion Eq. 4.17

Eq. 4.19 [25]  

  We > 4, i. e. , ܸ୅/େ > 2ඨ  (4.19) ܴߩߛ

ܸ୅/େ   
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(iv)  
Table 4.1

Tate

Plateau–Rayleigh

Plateau–Rayleigh

 

 

4.2.2  

 

Fig. 4.8

 

 

 

  

  

  

  

  

 

  

  

 

Fig. 4.8 Schematic of semi-infinite current-carrying jet model. The constant current ܫ passes through the fluid 

cylinder with steady flow ܸ of radius ܴ. 
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Briggs–Bers criterion Eq. 4.10߱ ߱ − ܸ݇ Eq. 4.20  

(߱ − ܸ݇)ଶ = ଷܴߩߛ ቊܫݔଵ(ݔ)ܫ଴(ݔ) ଶݔ) − 1) − ߛଶܴߨଶ2ܫ଴ߤ ቈ2 + ݔ ቆܫଵ(ݔ)ܫ଴(ݔ) −  ቇ቉ቋ (4.20)(ݔ)ଵܫ(ݔ)଴ܫ

4.2.1(iii) Briggs–Bers criterion

Eq. 4.21  

  ( ഥ߱ − ଶ(ݔߚ = 12 ଶݔ)ଶݔ − 1 − Bo୫) (4.21) 

Bo୫ Eq. 4.22Bo୫  

  Bo୫ = Electromagnetic forceSurface tension =  (4.22) ߛଶܴߨଶ2ܫ଴ߤ

Eq. 4.21  

  (߱∗ − ଶ(∗ݔ∗ߚ = 12 ଶ∗ݔଶ൫∗ݔ − 1൯ (4.23) 

  ߱∗ = ഥ߱1 + Bo୫ = ߱ ⋅ ߬୔୍୘  

∗ݔ   = ඥ1ݔ + Bo୫  

∗ߚ   = ඥ1ߚ + Bo୫  

Eq. 4.23 Eq. 4.17 Eq. 4.19 Briggs–Bers criterion

Eq. 4.24  

  We > 4(1 + Bo୫), i. e. , ܸ୅/େ > 2ඨ(1 + Bo୫) ⋅  (4.24) ܴߩߛ
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4.2.3  

 

 

Eq. 4.18

Eq. 2.1

Table 4.3

[27]

2

[28]

 

Fig. 4.9

Eq. 4.24

3

2 Fig. 2.9 3

Fig. 3.22(b)  
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Table 4.3 Experimental constants in the empirical formula for wire melting rate [29]. 

Element Specification  

Wire Material Mild steel 

 Diameter 1.2 mm 

 Extension 10 mm 

 Density 7015 kg/m3 

 Surface tension 1.872 N/m 

Polarity  Direct current electrode positive 

Shielding gas  Ar 

Experimental constant ܥଵ 3.11×10-4 m/(A∙s) 

 ଶ 4.63×10-5 1/(A2∙s)ܥ 

 

 

 
Fig. 4.9 Theoretically (black solid line) and experimentally (red dashed line) estimated Weber number as a 

function of welding current. 
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4.3  
4.3.1  

 

Eq. 4.25  

ߩ   ቈ∂⃗ݐ∂ݒ + ݒ⃗) ⋅ ቉ݒ⃗(∇ = ݌∇− + ଔ⃗ × ሬ⃗ܤ  (4.25) 

ݒ⃗ ݌ ଔ⃗ ሬ⃗ܤ
Eq. 4.26 Eq. 4.25

2 Eq. 4.27  

  ∇ × ሬ⃗ܤ =  ଴ଔ⃗ (4.26)ߤ

  ଔ⃗ × ሬ⃗ܤ = ଴ߤ1 ൫∇ × ሬ⃗ܤ ൯ × ሬ⃗ܤ  (4.27) 

Eq. 4.25 2 2 Eq. 4.28 Eq. 4.29

Eq. 4.30  

  ൫∇ × ሬ⃗ܤ ൯ × ሬ⃗ܤ = − 12∇൫ܤሬ⃗ ⋅ ሬ⃗ܤ ൯ + ൫ܤሬ⃗ ⋅ ∇൯ܤሬ⃗  (4.28) 

ݒ⃗)   ⋅ ݒ⃗(∇ = ݒ⃗)∇12 ⋅ (ݒ⃗ − ݒ⃗ × (∇ ×  (4.29) (ݒ⃗

ߩ   ݐ∂ݒ⃗∂ + ∇ቆݒߩଶ2 + ݌ + ଴ቇߤଶ2ܤ = ݒ⃗ߩ × (∇ × (ݒ⃗ + ଴ߤ1 ൫ܤሬ⃗ ⋅ ∇൯ܤሬ⃗  (4.30) 

 

 

ߠ߲/߲  = 0, ఏݒ = 0, ݆ఏ = 0  

 ∂/ ݐ∂ = 0  

௥ݒ  ≈ 0  

 ∇ × ݒ⃗ = 0  

 ݆௥ ≈ 0, ௥ܤ ≈ 0, ௭ܤ ≈ 0  
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1

Eq. 4.30 Eq. 4.31 1

 

 z  
ݖ߲߲ ቆݒߩଶ2 + ݌ + ଴ቇߤଶ2ܤ = ଴ߤ1 ൬ܤ௥ ݎ௭߲ܤ߲ + ௭ܤ ݖ௭߲ܤ߲ ൰ ≈ 0 (4.31) 

Eq. 4.31 Eq. 4.32  

  
௭ଶ2ݒߩ + ݌ + ଴ߤఏଶ2ܤ = const. (4.32) 

Eq. 4.32 [30]

1 2 3

Eq. 4.4

[31] Eq. 4.32

Eq. 4.33

3

 

  
௭ଶ2ݒߩ + ߢߛ + ଴ߤఏଶ2ܤ = const. (4.33) 

Eq. 4.34  

  ܳ = (ݖ)ଶܴߨ ⋅ (ݖ)௭ݒ = const. (4.34) 

ܳ 2
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2 Eq. 4.35

 

ఏܤ   = (ݖ)ܴߨ2(ݖ)ܫ଴ߤ (ݖ)ܫ) ≤ (଴ݖ)ܫ =  ୲୭୲ୟ୪) (4.35)ܫ

 

Fig. 4.10

Eq. 4.33 1 2 3

 

 

 

Fig. 4.10 Bernoulli’s principle in metal transfer. 
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3

 

 

4.3.2  
3

 

 

 
(i)  

1

Eq. 4.36 2

 

  Bo୫∗ = ቤ Δୣ݌୫Δ݌ୡୟ୮୧ቤ (4.36) 

Δୣ݌୫ Δ݌ୡୟ୮୧
Fig. 4.10 Δୣ݌୫ < 0 Δ݌ୡୟ୮୧ > 0

 

Fig. 4.11 1 ݖ = ଴ݖ
2 ݖ = ଵݖ = ଴ݖ୵୧୰ୣܦ ≤ ݖ ≤ ଵݖ 2 ଵݖ ≤ ݖ ≤ ଵݖ + ܴ୵୧୰ୣ

2  
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Fig. 4.11 Parallel circuit model in thin layered cross-section of arc plasma and molten droplet regions. 

 

2

2

Eq. 4.35 ݖ = ଴ݖ ୲୭୲ୟ୪ܫ
Eq. 4.37  

ݖ  = ଴ݖ ୫,଴ୣ݌  = ଴ߤఏ,଴ଶ2ܤ = ଴ߤ12 ൬  ୵୧୰ୣ൰ଶ (4.37)ܴߨ୲୭୲ୟ୪2ܫ଴ߤ

ݖ = ଵݖ
Eq. 4.38

Eq. 4.39  

ߟ   = ୲୭୲ୟ୪ܫ୫ୣ୲ୟ୪ܫ = ୟ୰ୡܫ୫ୣ୲ୟ୪ܫ + ୫ୣ୲ୟ୪ܫ (0 ≤ ߟ ≤ 1) (4.38) 

ݖ  = ଵݖ ୫,ଵୣ݌  = ଴ߤఏ,ଵଶ2ܤ = ଴ߤ12 ൬ߤ଴ ⋅ ୵୧୰ୣܴߨ୲୭୲ୟ୪2ܫߟ ൰ଶ (4.39) 

ߟ ୲୭୲ୟ୪ܫ ୫ୣ୲ୟ୪ܫୟ୰ୡܫ  
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Eq. 4.40

 

  Δୣ݌୫ = ୫,ଵୣ݌ − ୫,଴ୣ݌ = − ଶߨ଴8ߤ ୲୭୲ୟ୪ଶܴܫ
୵୧୰ୣଶ (1 −  ଶ) (4.40)ߟ

ݖ = ଴ݖ Eq. 4.41

 

ݖ  = ଴ݖ ୡୟ୮୧,଴݌  =  ୵୧୰ୣ (4.41)ܴߛ

ݖ = ଵݖ Eq. 4.42  

ݖ  = ଵݖ ୡୟ୮୧,ଵ݌  =  ୵୧୰ୣ (4.42)ܴߛ2

Eq. 4.43

 

  Δ݌ୡୟ୮୧ = ୡୟ୮୧,ଵ݌ − ୡୟ୮୧,଴݌ =  ୵୧୰ୣ (4.43)ܴߛ

Eq. 4.40 Eq. 4.43 Eq. 4.44  

  Bo୫∗ = ߛଶܴ୵୧୰ୣߨ୲୭୲ୟ୪ଶ8ܫ଴ߤ (1 −  ଶ) (4.44)ߟ

Eq. 4.22

ߟ = 0 ߟ = 1
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(ii)  
Fig. 4.11ݖ = ଵݖ

Eq. 4.45 Eq. 4.46  

ݖ  = ଵݖ  ܵ୫ୣ୲ୟ୪ =  ୵୧୰ୣଶ (4.45)ܴߨ

ݖ  = ଵݖ  ܵୟ୰ୡ = ୟ୰ୡଶܴߨ − ܵ୫ୣ୲ୟ୪ (4.46) 

ܵ୫ୣ୲ୟ୪ ܵୟ୰ୡ ܴୟ୰ୡ
Fig. 4.11 dݖ

Eq. 4.47 Eq. 4.48  

ଵݖ  − dݖ ≤ ݖ ≤ ଵݖ  dߗ୫ୣ୲ୟ୪ = dߪݖ୫ୣ୲ୟ୪ܵ୫ୣ୲ୟ୪ (4.47) 

ଵݖ  − dݖ ≤ ݖ ≤ ଵݖ  dߗୟ୰ୡ = dߪݖୟ୰ୡܵୟ୰ୡ (4.48) 

dߗ୫ୣ୲ୟ୪ dߗୟ୰ୡ dݖ
Eq. 4.49  

ߟ   = dߗୟ୰ୡdߗୟ୰ୡ + dߗ୫ୣ୲ୟ୪ = ୟ୰ୡܵୟ୰ୡߪ୫ୣ୲ୟ୪ܵ୫ୣ୲ୟ୪ߪ +  ୫ୣ୲ୟ୪ܵ୫ୣ୲ୟ୪ (4.49)ߪ

ܴୟ୰ୡ
 

 

4.3.3  

 

Table 4.4

Table 2.5 Table 4.4

2
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Table 4.4 Conditions for fitting parameters used in droplet elongation coefficient Bo୫∗ . 

Region Fitting parameters Symbol Specifications 

Molten droplet 
Electrical conductivity ߪ୫ୣ୲ୟ୪ Values at ୫ܶୣ୪୲ used 

Surface tension ߛ Values at ୫ܶୣ୪୲ used 

Argon arc plasma 
Radius ܴୟ୰ୡ Gaussian fitting with ܦ୧ୡ and ܮୟ୰ୡ 
Electrical conductivity ߪୟ୰ୡ 6×103 S/m 

 

(i)  ܴୟ୰ୡ
Eq. 4.50 ଷ0ܥ ≤ ݖ ≤ ୵୧୰ୣܦ ݖ = ଵݖ Eq. 4.50

Fig. 4.12  

ݖ   = ୟ୰ୡܮ − ୟ୰ୡܮ exp ቊ− (ܴୟ୰ୡ − ܴ୵୧୰ୣ)ଶ[ܥଷ(ܦ୧ୡ −  ୵୧୰ୣ)]ଶቋ (4.50)ܦ

  ൝ܦ୧ୡ = 4 mm:    ܥଷ = ୧ୡܦ     1 = 8 mm:    ܥଷ = ୧ୡܦ2/5 = 10 mm: ܥଷ = 1/3   

 

 
Fig. 4.12 Visual comparison of arc plasma geometry with gaussian fitting across three inter-cathode distances. 
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(ii)  ߪୟ୰ୡ Eq. 4.49

 

12,000 13,000 K

[32–34] Murphy [35] 100%

6×103 S/m  

 

(iii)  

2 Table 2.3 Table 2.4

Table 2.3

Table 2.4

ୟ୰ୡܮ > 0
Fig. 4.13 2

 

Fig. 4.13

Fig. 4.13(a) Fig. 4.13(b)0.85 < Bo୫∗ < 2.54
0.06 0.06 Bo୫∗ = 0.06

 

0.06 0.12 ≤ Bo୫∗ ≤ 0.19
 

Fig. 4.13(a)

Fig. 4.13(b)

Bo୫∗ = 0.19 Bo୫∗ = 0.12
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(a) Without correction coefficient (ߟ = 0) (b) With correction coefficient (0 < ߟ < 1) 

Fig. 4.13 Dimensionless evaluation of droplet breakup length against droplet elongation coefficient Bo୫∗ . 

 

 

 

4.3.4  

 

 

(i)  

4 mm

4 mm Eq. 4.51

4 mm Eq. 4.52

Fig. 4.14  
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Fig. 4.14 Visual comparison of arc plasma geometry fitting: elliptical (ܦ୧ୡ = 4 mm) and linear (ܦ୧ୡ > 4 mm). 

 

୧ୡܦ  = 4  ܴୟ୰ୡ = ୵୧୰ୣ2ܦ + ୧ୡܦ − ୟ୰ୡܮ୵୧୰ୣ2ܦ ඥܦ୵୧୰ୣ(2ܮୟ୰ୡ −  ୵୧୰ୣ) (4.51)ܦ

୧ୡܦ  > 4  ܴୟ୰ୡ = ୵୧୰ୣ2ܦ + ୧ୡܦ − ୟ୰ୡܮ୵୧୰ୣ2ܦ  ୵୧୰ୣ (4.52)ܦ

Fig. 4.15 0.07 ≤ Bo୫∗ ≤ 0.12
0.4 mm

 

5 mm

4 mm 8 mm
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Fig. 4.15 Evaluation of droplet elongation coefficient Bo୫∗  using elliptical and linear fitting. 

 

(ii)  

 

[32–34]

[36–40]  

Table 2.5 Table 4.4 50%

Fig. 4.16

 

Fig. 4.16(a)

0.06 ≤ Bo୫∗ ≤ 0.10 Fig. 4.16(b)

0.22 ≤ Bo୫∗ ≤ 0.33 Fig. 4.16(a) (b)
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(a) ߪୟ୰ୡ = 3×103 S/m (b) ߪ୫ୣ୲ୟ୪ =  ୫ୣ୲ୟ୪,୫ୣ୪୲/2ߪ

Fig. 4.16 Evaluation of droplet elongation coefficient Bo୫∗  with decreased electrical conductivity. 

 

[41]

[42]

100%

[34]

 

 
(iii)  
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Fig. 4.17 0.24 ≤ Bo୫∗ ≤ 0.38
 

 

 
Fig. 4.17 Evaluation of droplet elongation coefficient Bo୫∗  with decreased surface tension ߛ =  .୫ୣ୪୲/2ߛ

 

(iv)  
2

 

Fig. 4.11  

Table 2.6

Table 4.5 0.12 ≤ Bo୫∗ ≤ 0.19
Fig. 4.13(b) 3  
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Table 4.5 Droplet elongation coefficient for arc length minimization conditions. 

Material Diameter Welding current Bo୫∗  

Al 1.0 mm 270 A 0.11 

Cu 1.0 mm 270 A 0.06 

 

 

[2]

Eq. 4.33

Eq. 4.53  

  
௭ଶ2ݑߩ + ߢߛ + ଴ߤఏଶ2ܤ − ݖ݃ߩ = const. (4.53) 

Eq. 4.53 Fig. 4.11 ୉ܰୋݖ଴ ≤ ݖ ≤ ଵݖ Eq. 4.40 ୵୧୰ୣܦ݃ߩ
Eq. 4.54 ୉ܰୋ  

  ୉ܰୋ = ฬΔୣ݌୫݃ߩΔݖฬ = ଶߨ଴16ߤ ୵୧୰ୣଷܴ݃ߩ୲୭୲ୟ୪ଶܫ (1 −  ଶ) (4.54)ߟ

 

 
Fig. 4.18 Dimensionless comparison of electromagnetic and gravitational acceleration effects. 
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୉ܰୋ Fig. 4.18 ୉ܰୋ > 1୉ܰୋ > 1
 

[43]

Li 1×10-4 N

1×10-3 N [44]

1×10-3 N

Eq. 4.55 [2]  

୫ܨ   ∝ ߨଶ8ܫ଴ߤ  (4.55) 

210–250 A 1×10-3 N

 

[45]

[46]

[47]

1
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(v)  

3  

 

  

  

  

 

Fig. 4.19

 

[48]  

2

[49]  

3
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Fig. 4.19 Droplet elongation mechanism driven by electromagnetic acceleration. 
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4.4  

 

 

1) 

We > 4(1 + Bo୫)
 

2) 

 

3) 

2

0.12 ≤ Bo୫∗ ≤ 0.19  

4) 
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