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1

第 1章

序論

1.1 研究背景

現代社会を支える基盤技術の一つが，トランジスタである．通信機器，家電製品，自動車，医療

機器など，身の回りのあらゆる分野にトランジスタ技術は応用されている．これまでの絶え間ない

トランジスタ技術の発展は，エレクトロニクスの進化を牽引してきた．

1947年，W.Shockley，J. Bardeen，W.H.Brattainらが米国ベル研究所で発明したトランジス

タは，真空管に代わる画期的な固体素子として誕生した．この発明は後に，1枚の基板上に多数のト

ランジスタを集積した大規模集積回路 (VLSI: Very Large Scale Integration)の発明へとつながっ

た [1]．VLSIは中央処理装置 (CPU: Central Processing Unit)などに不可欠な技術として，現代

の情報社会を強力に支えている．

VLSI はトランジスタの中でも MOSFET (Metal-Oxide-Semiconductor Field-Effect Transis-

tor)によって主に構成されている．最新のVLSIでは，一つのチップあたり数百億個ものMOSFET

が集積されており，各トランジスタの寸法はナノメートルスケールにまで微細化されている．これ

ほどまでに MOSFET が微細化されてきた理由は，単に VLSI の集積度を高めるためだけではな

い．MOSFETを微細化すると，高速化と低消費電力化が同時に達成されるからである [2]．この比

例縮小則という考え方を旗印に，微細加工技術が進化するたびMOSFETはさらに微細化され，そ

の性能は飛躍的に向上してきた．

しかし，MOSFETの寸法を縮小しても，熱エネルギーやバンドギャップなどの物理量は不変で

ある．これらの要因などから，微細化にともないチャネル内部の電位分布がしだいに歪み，ゲート

電極による電位制御性の低下やリーク電流の増加などの問題が発生した [3]．このような短チャネ

ル効果と呼ばれる問題を克服するために登場したのが，従来の平面型MOSFETに代わる FinFET

である．2011年に実用化された FinFET は，トライゲート構造と呼ばれるチャネルを三方向から

囲む立体的なゲート構造を採用している．この構造を用いることで，チャネル内電位の制御性が向

上し，短チャネル効果を効果的に抑制できる [4]．

しかし，スケーリングがさらに進み，5 nm 世代のチップが量産されるようになった 2020 年

代に入ると，FinFET でもチャネル内電位を正常に制御し切れなくなってきた．さらなる微細

化を進めるためには新たな構造が求められるようになり，こうして開発が進められているのが，
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GAAFET (Gate-All-Around FET)の一つであるナノシートトランジスタである [5]．ナノシート

トランジスタは，半導体材料からなる極めて微細なシート状のチャネルに対して，その周囲をゲー

ト電極で取り囲んだ構造をもつ．そのため，短いゲート長でも良好な電位制御性を維持できること

から，次世代先端ロジック半導体デバイスへの応用が期待されている．

2020年代後半にかけて，ナノシートトランジスタの一種であるナノシート FETが実用化される

と予想されている [5]．一方，ナノシート FET が実用化された後も，次の世代ではフォークシー

ト FET [6] や CFET [7] (Complementary FET) などの新しいトランジスタ構造の導入がすでに

検討されている．図 1.1 は，これらの次世代半導体デバイスの構造を模式的に表す．ナノシート

FET では，nFET と pFET を個別のデバイスとして作製した後，両者を配線で接続することに

より CMOS 回路を作製する [8]．それに対してフォークシート FET は，nFET と pFET を絶縁

体の壁を挟んで同一デバイス上に作製した構造をもつ．これは，MOSFETのさらなる微細化では

なく，CMOS という基本回路自体のさらなる小型化を目指した技術である．さらに，CFET は，

nFETと pFETを立体的に積層し一体化させた構造をもつ．nFETと pFETを 2次元的に配置す

るのではなく 3 次元的に積み重ねることで，接続に必要な配線などの付加的な構造を最小限に抑

え，CMOS回路単位でさらなる高性能化を達成できると考えられている [9]．

以上のような次世代半導体デバイスの設計には，チャネル材料，デバイス幾何構造，デバイス結

晶方位など多くの設計自由度がある．これらの要素を多角的に考慮し，3次元的に作り込まれた微

細デバイスを作製することは容易ではない．そのため，実用化に向けた最適なデバイス設計指針を

早期に確立するためには，デバイスシミュレーションによる性能解析と予測が不可欠である．これ

まで，トランジスタの設計や解析において，TCAD(Technology Computer-Aided Design)シミュ

レータが広く活用されてきた．しかし，トランジスタの微細化が進むにつれ，従来のドリフト拡散

輸送モデルに基づく TCADシミュレータでは正確に取り扱えない課題が顕在化している．

極めて微細な次世代デバイスでは，量子力学的効果や原子論的効果がデバイス特性に影響を及ぼ

す．しかし，従来のドリフト拡散輸送モデルでは，これらの現象を十分にモデル化することが難し

い [10]．例えば，数 nm程度の厚さをもつ薄いナノシートでは，閉じ込め方向の運動が量子化され，

サブバンド構造が形成される．それにともないバンド端のエネルギーが増加するため，ゲート電圧

に対する反転キャリア密度が減少し，しきい値電圧が変化する [3]．また，サブバンド構造の形成

Nanosheet FET Forksheet FET Complementary FET

nFETnFETpFETpFET

図 1.1: ナノシート FET，フォークシート FET，CFETの模式図．
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は，エネルギー準位だけでなく波動関数をも変調し，キャリアの散乱過程に影響を与え，低電界お

よび高電界輸送特性の両方に顕著な影響を及ぼす [11]．さらに，極めて微細な構造では，バルクの

バンド端付近の状態に加え，高エネルギーの状態もサブバンド形成に影響を及ぼす [12]．これらの

ナノスケールで発現する物理現象を，従来の古典的なドリフト拡散輸送モデルの枠組みで十分にモ

デル化することは困難である．したがって，ナノシートトランジスタの性能解析と設計を行うには，

量子論・原子論に基づく電子輸送理論および計算技術の開発が重要な課題である．

1.2 ナノシートの電子輸送解析

ナノシート内の電子は，幅方向と厚さ方向の 2つの空間方向において量子閉じ込め効果を受け，

電子の運動方向は 1次元に制限される．ナノシートの電子輸送解析では，この次元性低下を考慮す

る必要がある．すなわち，電子状態を 1 次元電子ガス (1DEG: One-Dimensional Electron Gas)

として適切に扱う必要がある．なぜなら，電子状態の 1 次元への量子化は，バンド構造および波

動関数の両方をバルクの場合から変調し，輸送特性を左右する散乱過程や遮蔽効果などの様相を

変化させるためである．例えば，2次元から 1次元への次元性低下により，長距離相互作用に起因

する散乱過程の散乱確率が低下し，移動度が向上することが量子極限下で理論的に示唆されてい

る [13, 14]．また，2次元から 1次元への次元性低下は，分極関数の解析的性質を変化させる [15]．

これらの現象は，3次元あるいは 2次元の電子状態には表れない，本質的に 1次元の電子状態特有

の物理現象である．したがって，ナノシートの理論的な電子輸送解析では，電子状態を 1次元電子

ガスとして適切に扱う必要がある．

ナノシートの理論的な電子輸送解析の実現には様々な課題があるが，本研究では主に，以下で述

べる 3つの課題に関する研究を行った．

ナノシートの量子輸送シミュレーションにおける計算量に関する課題

近年，1次元電子ガスの電子状態を第一原理・原子論的に記述した非平衡グリーン関数 (NEGF:

Non-Equilibrium Green Function)法に基づく量子輸送デバイスシミュレーションの報告が増えて

いる [16–19]．しかし，これらのデバイスシミュレータを次世代デバイスの開発に利用するために

は，いまだ多くの課題が残されている．とくに，多くの計算資源と計算時間を必要とする点が課題

として挙げられる．NEGFデバイスシミュレーションでは，次の式で与えられる遅延グリーン関数

G(E)が中心的な役割を果たす．

G(E) = [E −H − Σ(E)]
−1

(1.1)

ここで，E は電子のエネルギー，H はチャネル領域のハミルトニアン，Σ(E) は遅延自己エネル

ギーを表す．NEGFデバイスシミュレーションでは，適当な電子状態モデルを導入し，ハミルトニ

アン H を行列表示することで，逆行列演算から G(E)を計算する [20]．用いる電子状態モデルお

よびデバイス幾何構造に応じて，ハミルトニアン行列 H のサイズは異なる．一般には，行列 H の

サイズが大きくなるため逆行列演算の計算負荷が増大し，これが NEGFデバイスシミュレーショ

ン全体のボトルネックとなる．そのため，高効率な NEGFデバイスシミュレーションを実現する
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には，高速計算手法の導入が必須である．

逆行列演算を高速に実行する再帰的アルゴリズムとして，再帰グリーン関数法 [21, 22]や R行列

法 [23, 24]などが提案されている．一方，ハミルトニアン行列 H のサイズそのものを物理的・数

学的な考察に基づいて削減し，逆行列演算を高速化する方法もある．このような行列次元削減法に

基づく高速計算手法には，モード空間展開法 [25, 26]，モデル低次元化法 [27, 28]，接触ブロック還

元法 [29, 30]，等価モデル [31, 32]などがある．近年では，機械学習を利用した高速計算手法も開

発されている [33–35]．

多数ある高速計算手法の中でも，行列次元削減法を用いてハミルトニアン行列サイズを削減でき

た場合には，大幅にシミュレーションを高速化できる．逆行列演算の計算量は行列サイズの 3乗に

およそ比例するためである．

従来の行列次元削減法では，サイズの大きなハミルトニアン行列から，サイズの小さなハミルト

ニアン行列を構築する．すなわち，削減する元のハミルトニアン行列を最初に用意する必要がある．

しかし，輸送特性をシミュレーションしたいデバイスのハミルトニアン行列が必ずしも明らかであ

るとは限らない．例えば，デバイスのバンド構造を実験*1などにより決定できたとしても，ハミル

トニアン行列を決定することは困難である．したがって，より柔軟に等価モデルを構築し，高効率

な量子輸送シミュレーションを実現するには，元のハミルトニアン行列を用いることなく，バンド

構造から等価モデルを構築する手法の開発が望まれる．

ナノシートにおけるラフネス散乱の特性抽出に関する課題

ナノシートの定量的なデバイスシミュレーションを実現するには，量子論・原子論に基づく散乱

過程のモデル化も重要な課題である．とくに，半導体/酸化膜界面位置の乱れに起因する界面ラフ

ネス散乱が電子輸送へ与える影響を定量的に理解することが重要である．なぜなら，ラフネス散乱

はナノシートの厚みが薄くなるにつれて散乱強度が急激に増加し，デバイス特性に支配的な影響を

与えるためである [36]．ナノシートの厚みを薄くするほど，反転電子が分布する体積に対してゲー

ト電極の面積が増加するため，電位制御性は向上する．このことから，電位制御性の向上には薄膜

化が有力な方針となるが，それにともない移動度などの輸送特性が劣化するため，どこまで薄膜化

すべきかを定量的に明らかにすることが重要である．

これまで，有効質量近似のもとでラフネス散乱を摂動として扱い，摂動行列要素を計算する手

法が多数検討されてきた [14, 37–44]．摂動行列要素を界面位置の変動に対して線形化して扱う

Prange-Neeモデル [45]や一般化 Prange-Neeモデル [42]は，計算の簡便さからモンテカルロデバ

イスシミュレーションなどと組み合わせて広く用いられている [10, 46]．しかし，ラフネス散乱は

界面位置変動に関して非線形な現象であるため，線形化したモデルではその効果を正しく考慮でき

ないと指摘されている [43, 44]．この課題を解決するため，従来の線形モデルを改良した非線形モ

デルが提案されている [43, 44]．

これらのモデルは半古典論・摂動論に基づくものであり，量子論に基づき摂動論によらない手法

による計算結果との比較が望まれる．しかし，従来の量子論に基づくラフネス散乱の数値解析手法

*1 例えば，角度分解光電子分光 (ARPES: Angle-resolved Photoemission Spectroscopy)．
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には課題がある．従来法では，適当なバンド構造と散乱過程を仮定した量子輸送シミュレーション

から抵抗 Rのチャネル長 L依存性を求める．R-Lグラフが線形に増加する場合，その傾きから移

動度などの輸送特性を抽出できる．しかし，ラフネス散乱のみを選択的に考慮した場合，チャネル

長 Lが局在長 ξ を超えると抵抗 Rは指数関数的に増加する．そのため，L < ξ の範囲で R-Lグラ

フの傾きを求める必要がある．しかし，微細なナノシートでは ξ が極めて短くなるため，従来法で

ラフネス散乱に起因する輸送特性を精度良く抽出することは難しい．したがって，チャネル長 Lの

長短によらず，ナノシートにおけるラフネス散乱に起因する輸送特性を抽出する手法の開発が必要

である．

ナノシート内の電子の自由走行に関する課題

前述したように，極微細なナノシート構造の電子輸送解析に向けて，量子論・原子論に基づく量

子輸送シミュレーション環境の構築が重要である．一方，量子輸送シミュレーションの結果は，適

切にデバイス寸法を大きくする極限のもとで，半古典的な輸送シミュレーションの結果に一致する

と期待される．そのため，すべてのスケールのデバイスを量子輸送シミュレーションで解析するこ

とは非効率的であり，スケールに応じた輸送モデルを用いることが重要である．着目している系あ

るいは領域のサイズが，電子が可干渉性を維持しながら移動する距離よりも十分長ければ，量子

論的な輸送モデルではなく半古典的な輸送モデルを適用できる [47, 48]．したがって，適切な条件

のもとでは，輸送方向の量子力学的効果を無視できる．しかし，このような場合においても，ナ

ノシートの断面方向の寸法が小さい場合，電子状態は 1 次元電子ガスとして適切に扱う必要があ

る [47, 48]．

ナノシート構造のような量子閉じ込め構造をもつ微細なデバイスでは，移動度はデバイスの結晶

方位に依存して変化する [10, 49]．ナノシートの結晶方位を適切に選択することで，移動度を高め，

デバイス性能を向上させることができると期待されている [50–53]．結晶方位に関する様々な選択

肢を比較・検討するためには，任意の結晶方位のデバイスを扱えるモデルに基づくシミュレーショ

ンが必要である．しかし，従来の半古典的な電子輸送モデルには結晶方位の取り扱いに不十分な点

があり，量子論に基づく修正が必要である．そこで，従来の半古典的な電子輸送シミュレーション

の手順を概説し，その問題点を指摘する．

従来の手法では，輸送方向とそれに垂直なナノシート断面方向にシュレディンガー方程式を分

離する．任意の結晶方位を考慮したシュレディンガー方程式の分離方法は，2次元電子ガスについ

て F. SternとW.E.Howardによって提案され [54]，1次元電子ガスについてはM.Bescondらに

よって示されている [55]．この分離により，各電子が加速定理に基づく自由走行とフェルミの黄金

則に基づく散乱を繰り返し，電子系全体の振る舞いを決定するという半古典的な輸送シミュレー

ションが可能となる [47, 48]．そのさい，絶縁破壊が生じるような非常に高い電界が印加された場

合 [56–58]などの例外的な状況をのぞき，自由走行時に電子のサブバンド指数は変化しないと仮定

される．

しかし，2次元電子ガスにおいて逆有効質量テンソルに非対角成分がある場合，自由走行時にサ

ブバンド指数が確率的に変化し，サブバンド間遷移が生じると指摘されている [59]．そのため，1
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次元電子ガスの場合でも同様に，逆有効質量テンソルに非対角成分がある場合，自由走行時のサブ

バンド間遷移を考慮する必要があると考えられる．しかし，1次元電子ガスにおいて，自由走行時

のサブバンド間遷移が移動度などの輸送特性に与える影響を定量的に解析した報告はこれまでな

い．したがって，結晶方位や断面形状などの設計自由度を最大限に活用し，最適なナノシート構造

の設計指針を提案するためには，1次元電子ガスにおける自由走行時サブバンド間遷移の効果を定

量的に明らかにする必要がある．

1.3 研究目的および論文構成

本研究の目的は，次世代半導体デバイスの早期開発に向けて，半導体ナノシートにおける電子輸

送理論および計算技術を開発することである．前述した３つの課題と対応して，具体的には以下の

(1)～(3)に関する研究を行う．

(1) ナノシートの高効率な量子輸送デバイスシミュレーションを実現するため，ハミルトニアン

行列サイズを削減する等価モデルの新規開発．

(2) ナノシートにおいてラフネス散乱で決まる平均自由行程を，摂動論によらない量子輸送シ

ミュレーション結果から抽出する数値計算手法の新規開発．

(3) 自由走行時サブバンド間遷移確率の量子論に基づく計算と，これを反映したモンテカルロ法

に基づく 1次元電子ガスの輸送理論の新規開発．

本論文は本章を含め全 6章から構成されている．第 2章では，本研究の基礎である電子状態と輸

送理論について概説する．まず，強結合近似モデルおよび有効質量近似モデルを用いて電子状態を

記述する方法を述べる．つぎに，加速定理，群速度といった電子の動力学に関する概念を説明する．

つづいて，フェルミの黄金則に基づく散乱過程の記述方法を概説する．さらに，本研究で用いた半

古典的な輸送モデルおよび量子論的な輸送モデルについて説明する．

第 3章では，(1)に関する研究について述べる．ここで提案する新規手法は，従来手法とは異な

り，バンド構造のみからサイズの小さなハミルトニアン行列を構築できるという特徴をもつ．

第 4章では，(2)に関する研究について述べる．本研究で開発した手法は，従来手法とは異なり，

非弾性散乱を追加で考慮することなく，いかなるチャネル長の系に対する量子輸送シミュレーショ

ン結果からでも，ラフネス散乱で決まる平均自由行程を高速に抽出可能であるという特徴をもつ．

第 5章では，(3)に関する研究について述べる．本研究で新規に開発した 1次元電子ガスの輸送

理論では，自由走行時サブバンド間遷移を考慮することで，従来法が抱える巨視的な系への漸近性

に関する問題点を改善しているという特徴をもつ．

第 6章では，本研究を通して得られた成果・知見を総括し，本論文の結論を述べる．
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第 2章

電子状態と輸送理論

2.1 はじめに

ナノスケールMOSFETのチャネルは，薄膜状に形成された結晶材料から構成される．チャネル

内の電子は，内蔵電位あるいは外場により，少なくとも 1つの空間方向に量子閉じ込め効果を受け

る．これにより，電子状態はバルク結晶の場合から変調され，散乱確率や遮蔽効果，電子の動力学

が変化する．閉じ込められた電子状態を議論するには，まずバルク結晶における電子の基本的な性

質を確認する必要がある．その自然な拡張として，量子閉じ込め効果をともなう低次元系における

電子状態および輸送理論が展開される．したがって，本章では主にバルク結晶内の電子状態を記述

する方法および輸送理論について概説する．低次元系への拡張については，該当する章で詳述する．

2.2 結晶

結晶とは，規則的に配置された多数の原子からなる固体である．結晶を結晶たらしめる重要な規

則性として，並進対称性が挙げられる．これは，結晶をある方向に並進させたとき，結晶は並進前

と同一のままであり並進の前後を区別できないという性質である．そのため，理想的には結晶は全

方向へ無限に広がっているべきである．実際には，巨視的な大きさをもつ結晶は非常に多くの原子

から構成され，その内部の性質は理想的な結晶で期待されるものに等しい．一方，表面付近では，

理想的な結晶から性質が変化する．結晶には，並進以外の対称操作として，回転，鏡映，反転，回

反，らせん操作，映進操作がある．これらの対称操作は群論によって数学的に整理されている．群

論に基づき，固有状態の分類，縮退度の評価，状態遷移の選択則の決定が可能である [1]．本章では

結晶について，固体物理学において基礎的かつ重要な内容を概説する．

2.2.1節では，格子および逆格子を中心に，結晶構造を記述する方法について記す．2.2.2節では，

理想的な結晶における一電子ハミルトニアンの固有関数がブロッホ関数となることとその性質につ

いて概説する．2.2.3 節では，周期境界条件に起因して固体物理学でよく用いられる計算技法を説

明する．最後に，2.2.4節では，一粒子状態から多粒子状態を簡単に構成し，熱平衡状態を記述する

方法について概説する．
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2.2.1 格子および逆格子

結晶内から任意の空間点を１つ選び，これを R∗ とする．結晶内には，R∗ と周辺の原子配置が

全く同一の空間点 Rn が無数に存在する．Rn と R∗ とは，Rn = R∗ +
∑d

i=1 niai なる関係で結

ばれている．ここで，d (= 1, 2, 3) は格子の次元を表す．本節では d = 3 とする．d ̸= 3 の場合

は 2.3.3節に記す．ai は基本並進ベクトルと呼ばれ，ni は整数である．一般性を失うことなくR∗

を原点にとることができるため，以後R∗ = 0とする．すなわち，

Rn =

d∑
i=1

niai (2.1)

とする．Rn は格子ベクトルと呼ばれ，格子ベクトルRn が指す実空間上の点は格子点と呼ばれる．

R∗ = 0としたので原点は格子点である．一般に，基本並進ベクトルの組は一意に決まらない．

単位胞とは，Rn による並進により，隙間や重なりなしに全空間を埋める空間として定義される．

そのため，単位胞の体積 Ωcell は基本並進ベクトルが作る平行六面体の体積と等しい．

Ωcell = a1 · (a2 × a3) (2.2)

基本並進ベクトルの組を１つ決めたとしても，単位胞は一意に決まらない点に注意が必要である．

定義より，単位胞には格子点が１つだけ含まれる．

１つの格子点には，１つの原子あるいは複数の原子からなる原子団が付随する．この１つの格子

点に付随する構造を基本構造と呼ぶ*1．結晶の全体構造は，基本構造を格子ベクトルによって繰り

返すことで得られる．基本構造をなす各原子への位置ベクトル全体からなる集合を B と表す．

B = {τ1, τ2, . . . , τNa
} (2.3)

ここで，Na は基本構造をなす原子の数を表し，τα (α = 1, 2, . . . , Na)は各原子の位置ベクトルを

表す．

本研究では主に，Siおよび III-V族化合物半導体を扱った．これらの半導体のバルク結晶は，面

心立方 (fcc: Face-centered Cubic)格子から構成される．具体的に fcc格子について考察する．デ

カルト座標に沿ってそれぞれの辺が a0x̂，a0ŷ，および a0ẑ から作られる立方体を考える．x̂，ŷ，

ẑ はデカルト座標の単位ベクトルであり，a0 は格子定数である．この立方体の角と面の中央とに格

子点がある場合，これを fcc格子と呼ぶ．fcc格子の基本並進ベクトルは，例えば，

a1 =
a0
2
(ŷ + ẑ), a2 =

a0
2
(ẑ + x̂), a3 =

a0
2
(x̂+ ŷ) (2.4)

と表せる．式 (2.2)より，fcc格子の単位胞の体積は Ωcell = a30/4である．Siでは，基本構造 Bの位
数は Na = 2である．具体的には，例えば，B = {0, a0(x̂+ ŷ + ẑ)/4}である．また，格子定数は
a0 = 0.54309 nm，原子間距離は a0

√
3/4 = 0.2352 nm，数密度は Na/Ωcell = 4.994× 1022 cm−3

である．

*1 基本構造は基底 (basis)とも呼ばれる．
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格子には必ず対応する逆格子が存在する．すなわち，集合 {Rn}には対応する集合 {Gm} が存
在していて，Gm は，

Gm =

3∑
i=1

mibi (2.5)

である．ここで，mi は整数であり，

b1 =
2π

Ωcell
(a2 × a3), b2 =

2π

Ωcell
(a3 × a1), b3 =

2π

Ωcell
(a1 × a2) (2.6)

である．Gm は逆格子ベクトルと呼ばれ，逆格子ベクトルGm が指す波数空間上の点は逆格子点と

呼ばれる．bi · aj = 2πδij であることに注意すると，Rn およびGm に対して，

exp(iGm ·Rn) = 1 (2.7)

が成り立つ．基本並進ベクトルが式 (2.4)で与えられている場合，

b1 =
2π

a0
(ŷ + ẑ − x̂), b2 =

2π

a0
(ẑ + x̂− ŷ), b3 =

2π

a0
(x̂+ ŷ − ẑ) (2.8)

となる．

逆格子における単位胞を，格子の場合と同様に定義する．すなわち，Gm による並進によって，

隙間や重なりなしに全波数空間を埋める空間を逆格子の単位胞とする．その体積 ΩBZ は，

ΩBZ = b1 · (b2 × b3) =
(2π)3

Ωcell
(2.9)

となる．格子の場合と同様，逆格子における単位胞は一意に決まらない点に注意が必要である．一

般的には，逆格子における単位胞としてウィグナー・ザイツセルがよく採用される．これは，原点

と逆格子点を直線で結び，その線を垂直に二等分する平面によって囲まれた空間である．とくに，

逆格子におけるウィグナー・ザイツセルは第一ブリルアンゾーンと呼ばれる．定義より，逆格子に

おける単位胞には逆格子点が 1つだけ含まれる．

逆格子の有用性は，exp(ik · r)なる平面波が kが逆格子ベクトルである場合にのみ，実空間上で
格子ベクトルRn の周期性をもつことにある．すなわち，

exp(iGm · (r +Rn)) = exp(iGm · r) (2.10)

が，すべてのGm およびRn に対して成り立つ．したがって，実空間上で格子ベクトルRn の周期

性をもつ関数 f(r)，すなわち，任意のRn に対して f(r+Rn) = f(r)となる関数は，つぎのよう

にフーリエ級数展開できる．

f(r) =
∑
G

fGeiG·r, fG =
1

Ωcell

∫
Ωcell

f(r)e−iG·rdr (2.11)

つまり，逆格子ベクトルGは，実空間上で格子の周期性をもつ関数をフーリエ級数展開するさいに

必要なすべての平面波の波数ベクトルである．
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2.2.2 ブロッホ関数

結晶のような複雑な系の場合，ハミルトニアン演算子には，個々の粒子 (原子核および電子)の運

動エネルギーに加えて，原子核間，電子間，さらに原子核と電子間の相互作用による相互作用項が

含まれる．原子の数密度は 1立方センチメートルあたり約 1023 個程度であり，すべての相互作用

項を直接的に取り入れて扱うことは困難である．そのため，電子が原子核および他の電子から受け

る相互作用を，実効的な一粒子ポテンシャルを用いて近似的に記述する．この手法は，一粒子近似

あるいは独立粒子近似と呼ばれる．幸いなことに，関心のある多くの状況ではこの近似を採用でき

ると考えられている [2]．

実効的な一粒子ポテンシャル U(r, t)は，原子核が作るポテンシャル U (lat)(r)とそれ以外のポテ

ンシャル U (ext)(r, t)との和で与えられる．本節では，U (ext)(r, t) = 0として，

U(r, t) = U (lat)(r) (2.12)

と表せる場合を考える．U (lat)(r)は格子と同じ周期性をもつ (すなわち，U (lat)(r+R) = U (lat)(r))

ため，格子ポテンシャルと呼ばれる．一般に，U (lat)(r)の具体的な形を決定することは難しい．し

かし，以下で示すように，結晶内の電子の基本的な性質を調べるために U (lat)(r)の具体的な表現

をつねに知る必要はない．

一粒子近似に従うと，一粒子波動関数の時間に依存しないシュレーディンガー方程式は，

Ĥ0ψ(r) =

[
− ℏ2

2m0
∇2 + U (lat)(r)

]
ψ(r) = Eψ(r) (2.13)

となる．ここで，E と ψ(r)はそれぞれハミルトニアン演算子 Ĥ0 の固有値および固有関数を表す．

いま，表面によらない，十分に大きな結晶のバルク的な性質を考えたい．このような場合，

式 (2.13)の境界条件として，周期境界条件を課すことが有効である*2．具体的には，単位胞を a1

方向，a2 方向，a3 方向にそれぞれ N1 個，N2 個，N3 個組み合わせた領域で，ψ(r)は周期的であ

るとする．すなわち，

ψ(r +N1a1) = ψ(r +N2a2) = ψ(r +N3a3) = ψ(r) (2.14)

とする．このとき，系の体積は Ω = N1N2N3Ωcell = NcellΩcell となる．単位胞には格子点が１つ

含まれるため，Ncell は系に含まれる格子点の数と等しい．

ブロッホの定理によると，ハミルトニアン Ĥ0 の固有関数はバンド指数 n (= 1, 2, . . . )と波数ベ

クトル kによってラベルされ，格子の周期性をもつ関数 unk(r) (すなわち，unk(r+R) = unk(r))

を用いてつぎの形に書ける．
ψnk(r) = eik·runk(r) (2.15)

*2 周期境界条件は，理想的な結晶が全方向へ無限に広がっていることを，数学的に扱いやすい形で表現したものであり，
最終的な計算結果の表式からその影響は取り除かれる．
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ただし，式 (2.14)の周期境界条件より，kは，

k =

3∑
i=1

mi
bi
Ni
, mi = 0,±1,±2, . . . (2.16)

なる離散的な値をとる．また，kと k+Gの状態は物理的に等価であるため，第一ブリルアンゾー

ン内の kを考えればよい．これらの性質より，物理的に独立な k点の数は有限個となるが，その個

数などの詳細は 2.2.3節に記す．

ψnk(r)はブロッホ関数と呼ばれる．ブロッホ関数は系の体積 Ωで規格化されているとする．∫
Ω

|ψnk(r)|2dr =

∫
Ω

|unk(r)|2dr = 1 (2.17)

すなわち，unk(r+R) = unk(r)であることから
∫
Ωcell

|unk(r)|2dr = 1/Ncell となり，ブロッホ関

数の周期関数部分は，単位胞内で積分すると 1/Ncell となるように規格化されている．ブロッホ関

数は完全系であり，直交性， ∫
Ω

ψ∗
n′k′(r)ψnk(r)dr = δn′,nδk′,k (2.18)

を満たす．直交性は，式 (2.18)の左辺に式 (2.15)を代入して計算することで直接示せる．

ブロッホの定理によると，各 kに対して固有値問題が定まり，その固有関数 ψnk には固有値 Enk

が対応する．この波数と固有エネルギーの関係 Enk は，分散関係あるいはバンド構造と呼ばれる．

バンド構造の具体的な計算方法として，強結合近似モデルを用いた方法を 2.3節に記す．

式 (2.13)の固有状態は，結晶のすべての対称性を反映している．そのため，第一ブリルアンゾー

ン内のすべての k点について固有状態を計算する必要はない．つまり，結晶のすべての対称操作に

関して等価ではない限られた k 点でのみ固有状態を計算すればよい．具体的には fcc 格子には 48

の対称操作があり，図 2.1(b)に示す既約ブリルアンゾーン内の k 点で固有状態を計算すれば十分

である [1]．

2.2.3 状態密度

式 (2.16) は，k 点が bi 方向に沿って，bi/Ni 間隔で均等に配列していることを表している．そ

のため，１つの k点が占める波数空間上での体積 (∆k)3 は，

(∆k)3 =
b1
N1

·
(
b2
N2

× b3
N3

)
=

ΩBZ

Ncell
(2.19)

となる．つまり，波数空間上である領域内部に含まれる k 点の数は，その領域の体積を (∆k)3 で

割ると求まる．そのため，第一ブリルアンゾーンに含まれる k点の数は，

ΩBZ

(∆k)3
= Ncell (2.20)

となる．すなわち，第一ブリルアンゾーンに含まれる k 点の数は，系の体積 Ωの中に含まれる単

位胞 Ωcell の数あるいは格子点の数と等しい．したがって，第一ブリルアンゾーン内に含まれる k

点の数は，系の体積 Ωに比例して増加する．
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あるエネルギー E よりも低いエネルギーをもつ固有状態の総数について考える．より正確には，

E > Enk を満たす (n,k)の組の総数を数える．上述したように状態数は体積 Ωに比例して増加す

るため，体積あたりの総数がわかれば十分である．これは，

N(E) =
1

Ω

∑
nk

Θ(E − Enk) (2.21)

と計算できる．ここで，Θ(x)はヘヴィサイドの階段関数であり，x > 0のとき 1，x ≤ 0のとき 0

を返す．そのため，N(E)は文字通り固有エネルギーが E よりも低い固有状態の体積あたりの数を

表す．両辺を微分すると，
dN(E)

dE
=

1

Ω

∑
nk

δ(E − Enk) (2.22)

となる．ここで，dΘ(x)/dx = δ(x)なる関係を用いた．言い換えれば，エネルギーが E と E+dE

との間にある体積あたりの固有状態の数は，

D(E) =
1

Ω

∑
nk

δ(E − Enk) (2.23)

と定義すると，D(E)dE と表される．ここで，D(E)は状態密度と呼ばれる．

kに関する総和について考える．すなわち，kを引数とする任意の関数 f(k)について，∑
k

f(k) (2.24)

を計算する一般的な方法を考える．総和は物理的に独立な k 点全体に関してとる．１つの k 点が

占める波数空間上での体積 (∆k)3 は，系の体積 Ωの増加とともに小さくなっていく．したがって，

体積 Ωが十分に大きい場合，式 (2.24)はつぎのように積分に書き換えられる．∑
k

f(k) =
Ω

(2π)3

∑
k

f(k)(∆k)3 −→ Ω

(2π)3

∫
f(k)dk (2.25)

ここで，矢印の左側の変形では，式 (2.9)，式 (2.19)，Ω = NcellΩcell などを用いた．

2.2.4 熱平衡状態

式 (2.13)の固有状態として，バンド指数 nと波数 k で指定される状態をブロッホ状態あるいは

電子状態という．異なるスピン状態を区別する場合には，スピン状態を指定するラベル σ を追加

し，状態を (n,k, σ)と指定する．ここで，略記のため添字 i → (ni,ki, σi)を導入し，状態を iで

指定する．iで指定される状態の状態ベクトルを |ψi⟩，エネルギーを ϵi と表すことにする．この一

粒子状態 |ψi⟩に基づいてつぎのように多粒子状態が構成される．
多粒子状態を記述するためのヒルベルト空間の基底ベクトルとして，一粒子状態 |ψ1⟩ , |ψ2⟩ , . . .
がそれぞれ n1, n2, . . . 個の粒子に占有されているという状態を採用する．この数 ni は，一粒子状

態 |ψi⟩の占有数と呼ばれる．ただし，パウリのスピン統計定理より，フェルミ粒子である電子は占
有数 ni = 0または 1のみをとることができる．
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占有数の組を n = (n1, n2, . . . )と略記すると，多粒子状態を記述するためのヒルベルト空間の基

底ベクトルは |n⟩ = |n1, n2, . . .⟩ と表せる．多粒子状態 |n⟩の粒子数は Nn =
∑

i ni，エネルギー

は En =
∑

i ϵini となる．任意の多粒子状態の状態ベクトル |Ψ⟩は，

|Ψ⟩ =
∑
n

Cn |n⟩ (2.26)

と展開できる．

電子系が温度 T，化学ポテンシャル µ で指定される熱平衡状態であるとする．このとき，熱平

衡状態に対応する様々なミクロ状態の一つとして，グランドカノニカル集団を考えることができ

る [3]．グランドカノニカル集団は，多粒子状態 |n⟩を e−β(En−µNn)/Ξの割合で古典的に混合した

状態である．すなわち，密度演算子が，

ρ̂ =
1

Ξ

∑
n

e−β(En−µNn) |n⟩⟨n| (2.27)

と与えられる状態である．ここで，β は逆温度を表す．Ξ は大分配関数であり，Ξ =∑
n e−β(En−µNn) と与えられる．このグランドカノニカル集団において，占有数 ni の期待値 ⟨ni⟩

はつぎのように計算される．

⟨ni⟩ =
1

Ξ

∑
n

nie
−β(En−µNn) =

1

eβ(ϵi−µ) + 1
= f0(ϵi) (2.28)

この式の右辺の関数，

f0(ϵ) =
1

eβ(ϵ−µ) + 1
(2.29)

はフェルミ分布関数と呼ばれる．これを用いると，電子密度 N は，

N =
1

Ω

∑
i

⟨ni⟩ =
1

Ω

∑
i

f0(ϵi) =
1

Ω

∑
n,k,σ

f0(Enk) =
nsp
Ω

∑
nk

f0(Enk)

=
nsp
Ω

∑
nk

∫
dEδ(E − Enk)f0(E) =

∫
dE

nsp
Ω

∑
nk

δ(E − Enk)f0(E)

=

∫
nspD(E)f0(E)dE

(2.30)

と表せる．ここで，nsp = 2はスピンの縮退度，D(E)は式 (2.23)の状態密度である．

最後に，１つのバンドに占有されうる最大電子数について考察する．ブロッホ状態は (n,k)でラ

ベルされる．nを固定したとき，2.2.3節のとおり kは Ncell 個の異なる値をとることができる．こ

れを体積あたりに換算すると，Ncell/Ω = Ncell/ΩcellNcell = 1/Ωcell となる．すなわち，スピンを

合わせて考慮すると，１つのバンドが占有できる電子数は最大で，単位胞１つあたり２電子となる．

2.3 強結合近似モデル

前節では結晶内のハミルトニアンを一粒子問題として定式化し，ポテンシャルが格子の周期性を

もつ場合に固有関数がブロッホ関数となること，さらにその一般的な性質について確認した．一粒
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子問題に簡略化したとはいえ，一般に固有状態を第一原理的に求めることは困難である．なぜなら，

一粒子ポテンシャルには多数の電子や原子核のクーロン相互作用，あるいは交換相関相互作用など

の多体効果を実効的に含める必要があるためである．これを実行する方法は固体物理学の初期から

現在にわたって研究されており，とくに，W.Kohnと L.J. Sham の研究に端を発する密度汎関数

法は，結晶の固有状態を第一原理的に決定する手法として有力視されている [4, 5]．しかし，完全な

結果そのものではなく，物理的な直感を与える簡便な手法が，しばしば求められる．J.C. Slaterと

G.F.Kosterによって定式化された強結合近似モデル [6]は，考察したい結晶やデバイスの原子的な

表現が可能であり，さらに第一原理モデルよりも少ない基底で第一ブリルアンゾーン全域の現実的

なバンド構造を扱えるため，デバイスシミュレーションの分野などでよく用いられている [7, 8]．

2.3.1節では，強結合近似モデルに基づくハミルトニアン行列の構成方法を，とくに，位相因子の

設定方法に関して，ブロッホ関数およびその周期関数部分との関連がわかるように記述する．また，

ブロッホ和の表式をはじめに仮定することなく，第一ブリルアンゾーン内の波数 kによって，固有

値問題が分割されることを説明する．2.3.2節では，強結合パラメータについて概説する．強結合パ

ラメータに基づく行列要素の具体的なモデル式は，すでに包括的にまとめられた文献 [6, 9, 10]が

あるため省略する．2.3.3 節には，強結合近似モデルを量子井戸構造あるいは量子細線構造に応用

する方法を簡単に記す．最後に，2.3.4節では具体的な計算結果を示す．

2.3.1 ハミルトニアン

3次元格子を考える．2.2.1節に記したように，結晶は基本構造 B を格子ベクトルRによって繰

り返すことで得られる．いま，基本構造には Na 個の原子が含まれており，それぞれの原子位置を

τα (α = 1, 2, . . . , Na) と表す．強結合近似モデルでは，各原子位置に局在した原子軌道様の基底

を考える．そのため，同じ原子位置に局在した基底を区別する添字 µを導入する．

位置R + τα に局在する基底のうち µ番目の基底を |R, τα, µ⟩と表す．結晶には 2.2.2節と同様

に周期境界条件を課す．

|R, τα, µ⟩を，添字 i → {αi, µi}を用いて，|R, i ⟩と略記する．また，基底に正規直交完全性を
仮定する．すなわち，

⟨R′, i|R, j⟩ = δR′Rδij (2.31)

Î =
∑
R,i

|R, i ⟩⟨R, i| (2.32)

を仮定する [11]．ハミルトニアン行列要素 ⟨R′, i|H |R, j ⟩は，i，j を固定したとき，並進対称性
より，R′ と Rとの差にのみ依存する．そのため，つぎのように，行列要素は R′ = 0とした場合

のみを考えておけば十分である．
Hij(R) = ⟨0, i|H|R, j⟩ (2.33)

Hij(R)は，位置R+ ταj
にある軌道 µj から，位置 ταi

にある軌道 µi へのホッピングエネルギー

を表す．ただし，対角成分Hii(0)は，位置 ταi にある軌道 µi のオンサイトエネルギーと解釈する．

つぎに，ハミルトニアン行列をブロック対角化する方法を説明する．それぞれのブロックは波数

k でラベルされる．これには一見類似した２つの導入方法がある．しかし，すぐ後で説明するよう
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に２つの方法には明確な違いがある．

方法１

|R, i ⟩を離散フーリエ変換すると，

|k, i ⟩ = 1√
Ncell

∑
R

eik·R |R, i ⟩ (2.34)

となる．ここで，1/
√
Ncell の因子は，⟨k′, j|k, i⟩ = δk′kδij となるように付した．離散フーリエ変

換の性質あるいは式 (2.7)より，|k, i ⟩ = |k +G, i ⟩である．そのため，独立な波数ベクトルとし
て，第一ブリルアンゾーンに含まれる k 点を考えればよい．2.2.3節に記したように，この独立な

波数ベクトル kの数は，格子ベクトルRの数と等しい．

|k, i ⟩を基底とするハミルトニアン行列要素は，

⟨k′, i|H |k, j⟩ = 1

Ncell

∑
R

∑
R′

e−ik′·R′+ik·R ⟨R′, i|H|R, j⟩

=
1

Ncell

∑
R

∑
R′

e−ik′·R′+ik·(R′+R) ⟨R′, i|H|R′ +R, j⟩

= δk,k′

∑
R

eik·RHij(R) (2.35)

となる．ここで，
∑

R′ ei(k−k′)·R′
= Ncell

∑
G δk,k′+G および ⟨R′, i|H|R′ +R, j⟩ = ⟨0, i|H|R, j⟩

を用いた．式 (2.35) より，|k, i ⟩ を基底としてハミルトニアンを行列表示すると，行列はブロッ
ク対角化されていることがわかる．また，それぞれのブロックは波数 k で指定される．したがっ

て，結晶内の電子の固有状態を求めるには，ハミルトニアン行列全体を対角化するかわりに，k ご

とに定まるブロック行列を独立なすべての k 点にわたって対角化すれば十分である．具体的には，

式 (2.35)の最後の表式から，
Hij(k) =

∑
R

eik·RHij(R) (2.36)

とおいて，i行 j 列成分を Hij(k)とする行列を Hk とし，つぎの固有値問題を解けばよい．

HkCnk = EnkCnk (2.37)

行列 Hk は，大きさが (Ntbm × Ntbm) のエルミート行列，Cnk は大きさが Ntbm のベクトル

である．ただし，位置ベクトル τα で指定される原子に局在する軌道の総数を Nb(τα) として，

Ntbm =
∑Na

α Nb(τα)である．以上より，固有値・固有ベクトルの組は Ntbm 個存在するため，そ

れを識別する添字 nを導入した．また，式 (2.36)および式 (2.7)より，Hk+G = Hk である．

方法２

式 (2.34)で定義される |k, i ⟩を，つぎのように変換する．

|k, i ⟩′ = eik·ταi |k, i ⟩ = 1√
Ncell

∑
R

eik·(R+ταi
) |R, i ⟩ (2.38)
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この式はブロッホ和と呼ばれる．式 (2.38)は，ユニタリ行列 T，

T =


eik·τα1

eik·τα2

. . .

e
ik·ταNtbm

 (2.39)

を用いて，
[
|k, 1⟩′ |k, 2⟩′ · · · |k, Ntbm⟩′

]
= [|k, 1⟩ |k, 2⟩ · · · |k, Ntbm⟩]T と変換したことに他なら

ない．したがって，この変換のもと行列 Hk は，

H ′
k = T †HkT (2.40)

と変換され，行列 H ′
k の i行 j 列成分は，

H ′
ij(k) =

∑
R

eik·(R+ταj
−ταi

)Hij(R) (2.41)

となる．また，固有値問題は，
H ′

kC
′
nk = EnkC

′
nk (2.42)

となる．ただし，C ′
nk = T †Cnk である．方法１の場合とは異なり，一般にはH ′

k+G ̸= H ′
k である．

方法１と方法２の違い

まず，Hk と H ′
k の固有値は等しい．一方で固有ベクトルは，行列 T で互いに変換される．

成分で書き表すと，Cnk の i 番目の成分を Cnk(i)，C ′
nk の i 番目の成分を C ′

nk(i) として，

C ′
nk(i) = e−ik·ταiCnk(i)である．それゆえ，|C ′

nk(i)| = |Cnk(i)|となる．このように，方法１と
方法２は変換行列 T で関連づけられており，両者は類似している．

２つの方法の違いの一つは，ブロッホ関数 ψnk(r) と Cnk(i) とが対応しており，ブロッホ関

数の周期関数部分 unk(r) と C ′
nk(i) とが対応していることである [12]．まず，ブロッホ関数を，

⟨r|r′⟩ = δ(r − r′)あるいは Î =
∫
dr |r⟩⟨r|に注意して，

|ψnk⟩ =
∫

d3r′ψnk(r
′) |r′⟩ =

∑
R

∫
Ωcell

d3r′ψnk(R+ r′) |R+ r′⟩

=
∑
R

∫
Ωcell

d3r′ ψnk(r
′) eik·R |R+ r′⟩ (2.43)

=
∑
R

∫
Ωcell

d3r′ unk(r
′) eik·(R+r′) |R+ r′⟩ (2.44)

と表す．つぎに，式 (2.37)の固有ベクトルが，基底 |k, i ⟩の展開係数であることに注意して，

|ψnk⟩ =
∑
R

∑
i

Cnk(i) eik·R |R, i ⟩ (2.45)

と表す．同様に，式 (2.42)の固有ベクトルが，基底 |k, i ⟩′ の展開係数であることに注意して，

|ψnk⟩ =
∑
R

∑
i

C ′
nk(i) eik·(R+ταi

) |R, i ⟩ (2.46)



2.3 強結合近似モデル 23

と表す．ここで，1/
√
Ncell の因子は，固有ベクトル Cnk または C ′

nk の規格化に含めた．

式 (2.43)と式 (2.45)とを比べると，ブロッホ関数 ψnk(r)と Cnk(i)とが対応していることがわ

かる．一方，式 (2.44)と式 (2.46)とを比べると，ブロッホ関数の周期関数部分 unk(r)と C ′
nk(i)

とが対応していることがわかる．

方法１は，式 (2.34)の変換が離散フーリエ変換であるため，数学的意味が明確である．一方，方

法２は，一見すると数学的意味は見えづらい．しかし，上述したように，方法２の固有値問題の固

有ベクトルはブロッホ関数の周期関数部分 unk(r)と対応しており，これは目的によっては良い性

質である．なぜなら，固体物理では unk(r) に関する積分を計算する必要がよくあるためである．

もちろん，どちらの方法も相互に変換できるため，目的に合わせて適切な方法を使い分ければよい．

2.3.2 強結合パラメータ

前節の議論では，基底 |R, τα, µ⟩の具体的な表現を決める必要はなかった．しかし，実際に固有
値問題を解き固有状態を求めるには，行列要素，

Hij(R) = ⟨0, i|H|R, j⟩ = ⟨0, ταi
, µi|H|R, ταj

, µj⟩ (2.47)

の具体的な値が必要であるため，|R, ταi
, µi⟩の具体的な表現が必要に思える．しかし，必ずしもそ

うではない．

経験的強結合近似モデルでは，関心のある系の価電子帯および伝導帯を記述するために必要な原

子軌道にのみ着目する．これらの原子軌道は一般に非直交であるが，原子軌道の空間対称性を保存

しつつ直交系へと変換する方法が知られている [13]．そのため，経験的強結合近似モデルでは，こ

の直交系の軌道を基底にとると考える．しかし，これらの軌道を明示的に構築する必要はない．そ

のかわりに，式 (2.47) のハミルトニアン行列要素を，少数のパラメータでモデル化する．このパ

ラメータは強結合パラメータと呼ばれ，第一原理計算や測定結果と一致するよう経験的に与えられ

る．したがって，固有状態 |ψnk⟩は直接的には構築されず，Cnk あるいは C ′
nk が固有状態の役割

を果たす [12]．

典型的なモデルでは，行列要素は最近接原子間のみ非ゼロとする．このモデルは最近接強結合近

似モデルと呼ばれる．また，半導体を扱う一般的なモデルでは，軌道として s 軌道および p 軌道

を考える．さらに，高エネルギーの軌道の効果を補うため，s∗ 軌道または d 軌道を追加で考慮す

る [14, 15]．このような sp3s∗モデルや sp3d5s∗モデルにおける行列要素のモデル式は，J.C. Slater

と G.F.Kosterによって包括的に与えられている [6]．

本論文では，IV族および III-V族半導体について，最近接 sp3d5s∗ 強結合近似モデルを用いた電

子状態および量子輸送計算を行った．そのさい，強結合パラメータは J.M. Jancuらによって与え

られたものを用いた [16]．
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2.3.3 水素終端モデル

2.3.1節では，３次元格子について強結合ハミルトニアンを示したが，２次元格子あるいは１次元

格子の場合も同様の結果が成り立つ．例えば，１次元の格子を考える．格子ベクトルRn が，

Rn = na1 = nax̂ (2.48)

であるとする．ここで，a1 は基本並進ベクトル，x̂はデカルト座標の x軸方向の単位ベクトル，a

は格子の周期を表す．逆格子ベクトルは，

Gm = mb1 = m
2π

a
x̂ (2.49)

となる．第一ブリルアンゾーンは k = kxx̂として，−π/a ≤ kx ≤ π/aである．１次元格子の基本

構造 Bも 2.2.1節と同様に定義する．以上の設定のもと 2.3.1節の内容を繰り返すと，式 (2.36)は，

Hij(k) =
∑
n

eikxanHij(Rn) (2.50)

となる．行列要素 Hij(R)の意味も前節までと同じであり，位置R+ ταj にある軌道 µj から，位

置 ταi
にある軌道 µi へのホッピングエネルギー，あるいはオンサイトエネルギーを表す．これら

の値は強結合パラメータを用いて，バルク結晶の場合同様に計算すればよい．なお，２次元格子の

場合も同様である．

Siの場合，3次元格子を用いた場合と，1次元，あるいは 2次元格子を用いた場合の違いは，界

面の有無である．3次元格子の場合は，端がないため，すべての原子は周りの 4つの原子と共有結

合を形成している．しかし，1次元格子あるいは 2次元格子の場合，ŷ 方向または ẑ 方向の周期性

がないため，界面が存在し未結合手が現れる．未結合手に由来する界面準位はバンドギャップ付近

に現れる．したがって，界面準位の影響を取り除くため，水素終端と同様の効果をもたらす水素終

端モデルを用いる必要がある [17, 18]．

基本構造 B の中で，α 番目の原子に未結合手が存在するとする．ハミルトニアン行列の対角ブ
ロック，⟨0, τα, µ|H|0, τα, µ′⟩ (µ, µ′ ∈ {s, px, py, pz})を並べると，

|s⟩ |px⟩ |py⟩ |pz⟩


⟨s| ϵs 0 0 0
⟨px| 0 ϵp 0 0
⟨py| 0 0 ϵp 0
⟨pz| 0 0 0 ϵp

(2.51)

となっている．ここに，未結合手に相当する sp3 混成軌道のエネルギーをシフトさせるエネル

ギー δH を加えればよい．α 番目の原子から見て未結合手の方向を dH = lx̂ + mŷ + nẑ とす

る．ただし，l2 +m2 + n2 = 1 と dH は規格化しておく．基底 {|s⟩ , |px⟩ , |py⟩ , |pz⟩} から基底
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{|sp3⟩ , |sp3⟩′ , |sp3⟩′′ , |sp3⟩′′′}への変換行列 TH は，

[
|sp3⟩ |sp3⟩′ |sp3⟩′′ |sp3⟩′′′

]
=
[
|s⟩ |px⟩ |py⟩ |pz⟩

] 
1/2 ∗ ∗ ∗
l ∗ ∗ ∗
m ∗ ∗ ∗
n ∗ ∗ ∗


︸ ︷︷ ︸

TH

(2.52)

と与えられる．あとの計算からわかるように，行列 TH の成分のうち，∗で記した部分の具体的な
値は必要ない．基底 {|sp3⟩ , |sp3⟩′ , |sp3⟩′′ , |sp3⟩′′′} における行列要素を，⟨sp3|H|sp3⟩ = δH，そ

の他をゼロとする．δH は未結合手となっている sp3 混成軌道のエネルギーをバンドギャップ付近

からシフトさせる．⟨sp3|H|sp3⟩を基底 {|s⟩ , |px⟩ , |py⟩ , |pz⟩}で表示すると，

TH


δH 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

T †
H = δH


1/4 l/2 m/2 n/2
l/2 l2 lm ln
m/2 ml m2 mn
n/2 nl nm n2

 (2.53)

となる．この行列を，もとの水素終端を施していないハミルトニアン行列の未結合手が存在するブ

ロックに足すことで，未結合手に由来する界面準位を取り除くことができる．

2.3.4 バンド構造

図 2.1(a)に，sp3d5s∗ 強結合近似モデルを用いて計算したバルク Siのバンド構造を示す．基本構

造 B の位数は 2である．1原子あたり 10個の軌道を考慮するため，ハミルトニアン行列 Hk のサ

イズは 20 × 20となる．図 2.1(b)に，バルク Siの第一ブリルアンゾーンを示す．赤線で囲まれた

領域は既約ブリルアンゾーンを表す．対称性の高い k点は，2π/a0 を１単位として，Γ = (0, 0, 0)，

X = (0, 1, 0)，L = (1/2, 1/2, 1/2)，W = (1/2, 1, 0)，K = (3/4, 3/4, 0)，U = (1/4, 1, 1/4) であ

る．図には示していないが，例えば，k = (0,−1, 0)は X点と等価である．

2.4 包絡関数近似モデル

2.2節および 2.3節では，実効的な一粒子ポテンシャルが式 (2.12)のように，格子ポテンシャル

U (lat)(r)のみで表される場合を考察してきた．しかし，実際には外部から印加された電界やイオン

化不純物などが作る外部ポテンシャルが存在する．本節では，これらの外部ポテンシャルが一定の

条件を満たす場合，問題が著しく簡略化されることを示す．J.M. LuttingerとW.Kohnによって

最初に導出されたいわゆる包絡関数近似または有効質量近似 [19]は，半導体デバイスの登場から現

在に至るまで，その動作原理を理解するためにもっとも重要な理論の一つである [20]．このモデル

は，半導体中のキャリアの振る舞いを，複雑な結晶ポテンシャルを考慮しつつも著しく単純化され

た方程式で記述する．すなわち，いくつかの条件のもとで，真空中の電子に対するシュレーディン

ガー方程式によく似た方程式を得ることができる．

2.4.1 節では，外部ポテンシャルをブロッホ関数を基底関数として行列表示した結果を一般的に

記述する．この節では近似を施しておらず結果は厳密に成り立つ．2.4.2 節では，外部ポテンシャ
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(a) (b)

図 2.1: (a) sp3d5s∗ 強結合近似モデルを用いて計算したバルク Siのバンド構造．(b)バルク Siの
第一ブリルアンゾーン．赤線で囲まれた領域は既約ブリルアンゾーンを表す．対称性の高い k 点
は，2π/a0 を１単位として，Γ = (0, 0, 0)，X = (0, 1, 0)，L = (1/2, 1/2, 1/2)，W = (1/2, 1, 0)，
K = (3/4, 3/4, 0)，U = (1/4, 1, 1/4) である．

ルの空間変化がゆるやかであることを仮定し，また，解析対象の電子が特定の波数近傍の状態から

構成されることを仮定し，包絡関数方程式を導出する．最後に，2.4.3節では，包絡関数方程式の特

別な場合として単一バンド有効質量方程式を示す．

2.4.1 行列要素 ⟨n′k′|U |nk⟩

格子ポテンシャル U (lat)(r) に加えて，外部ポテンシャル U(r) を含むシュレーディンガー方程

式は， [
Ĥ0 + U(r)

]
ψ(r) = Eψ(r), Ĥ0 = − ℏ2

2m
∇2 + U (lat)(r) (2.54)

である．波動関数 ψ をブロッホ関数 ψnk で展開すると，

ψ(r) =
∑
nk

cnkψnk(r) =
∑
nk

cnke
ik·runk(r) (2.55)

となる．Ĥ0ψnk = Enkψnk に注意して，式 (2.55)を式 (2.54)に代入すると，∑
nk

cnk [Enkψnk(r) + U(r)ψnk(r)] = E
∑
nk

cnkψnk(r) (2.56)

となる．この方程式の両辺に ψ∗
n′k′(r)を乗じて，全空間にわたって積分すると，

En′k′cn′k′ +
∑
nk

cnk

∫
ψ∗
n′k′(r)U(r)ψnk(r)dr = Ecn′k′ (2.57)
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が得られる．ここで，式 (2.18)のブロッホ関数の直交性を利用した．つぎに，行列要素，

⟨n′k′|U |nk⟩ =
∫
ψ∗
n′k′(r)U(r)ψnk(r)dr (2.58)

について考える．まず，外部ポテンシャルをフーリエ級数展開する．

U(r) =
∑
q

Uqe
iq·r, Uq =

1

Ω

∫
U(r)e−iq·rdr (2.59)

これを式 (2.58)に代入すると，

⟨n′k′|U |nk⟩ =
∑
q

Uq

∫
Ω

u∗n′k′(r)unk(r)e
−i(k′−k−q)·rdr (2.60)

となる．ここで，右辺の系全体にわたる積分と，「l番目の単位胞Ωcell での積分」を l = 1, 2, . . . , Ncell

の場合それぞれで計算して足し合わせた値とが等しいことを利用する．すなわち，l 番目の単位胞

への格子ベクトルをRl としたとき，r = Rl + r
′ として，式 (2.60)は，

⟨n′k′|U |nk⟩ =
∑
q

Uq

∑
l

e−i(k′−k−q)·Rl

∫
Ωcell

u∗n′k′(r′)unk(r
′)e−i(k′−k−q)·r′

dr′ (2.61)

と書き換えられる．ここで，unk(r + R) = unk(r) を用いた．さらに，
∑

l e
−i(k′−k−q)·Rl =

Ncell

∑
G δk′−k−q,G であることを用いると，

⟨n′k′|U |nk⟩ =
∑
G

∑
q

Uqδk′−k−q,GNcell

∫
Ωcell

u∗n′k′(r′)unk(r
′)e−i(k′−k−q)·r′

dr′

=
∑
G

Uk′−k−GNcell

∫
Ωcell

u∗n′k′(r′)unk(r
′)e−iG·r′

dr′

=
∑
G

U(k′−G)−kNcell

∫
Ωcell

u∗n′,k′−G(r′)unk(r
′)dr′

=
∑
G

U(k′−G)−k ⟨un′,k′−G|unk⟩ (2.62)

となる．ここで，

⟨un′,k′−G|unk⟩ = Ncell

∫
Ωcell

u∗n′,k′−G(r)unk(r)dr (2.63)

と，ブロッホ関数の周期関数部分に関する重なり積分を定義した．ブロッホ関数は式 (2.17)によっ

て規格化されているため，⟨unk|unk⟩ = 1である．

以上のように，ブロッホ関数を基底とした場合における外部ポテンシャルの行列要素 ⟨n′k′|U |nk⟩
は，最初の式 (2.58)から式 (2.62)まで，近似を導入することなく変形できる．

2.4.2 包絡関数

式 (2.62)を基に，ここから近似を導入する．まず，外部ポテンシャル U(r)は，格子定数程度の

空間スケールでは変化が小さいと仮定する．より正確には，式 (2.62)の逆格子ベクトル Gに関す
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る総和の中で，G = 0のみが非ゼロとなる程度に外部ポテンシャルはゆるやかに変化すると仮定す

る．すなわち，
U(k′−G)−k ≈ U(k′−G)−kδG,0 (2.64)

と表されると仮定する．これにより，式 (2.62) は，

⟨n′k′|U |nk⟩ = Uk′−k ⟨un′k′ |unk⟩ (2.65)

となる．

つぎに，解析したい電子状態が，ある波数 k0 近傍の状態から構成されていると仮定する．より

正確には，式 (2.55)の展開で，ある波数 k0 近傍の波数 k の成分のみが非ゼロであると仮定する．

つまり，ブロッホ関数の重ね合わせで構成される波束について考え，波束の実空間上での広がりは，

格子定数程度の空間スケールよりも大きいと仮定する．これにより，式 (2.65)の左辺の kと k′ は

k0 に近い値だけを考えればよい．より正確には，

⟨un′k′ |unk⟩ ≈ δn′n (2.66)

としてよい程度に k と k′ が近接したブロッホ関数の線形結合で記述される電子状態を解析対象と

仮定する．

以上の近似を導入することで，式 (2.62)は，

⟨n′k′|U |nk⟩ ≈ Uk′−kδn′n (2.67)

となる．これを式 (2.57)に代入すると，つぎの式が得られる．

En′k′cn′k′ +
∑
k

cn′kUk′−k = Ecn′k′ (2.68)

この式は，異なるバンド指数の展開係数は互いに混じり合わないことを表す．そのため，以下では

あるバンドにのみ着目し，バンド指数を省略する．

式 (2.68)を逆フーリエ変換する．すなわち，両辺に eik
′·r を乗じ，k′ に関して総和をとる．∑

k′

E(k′x, k
′
y, k

′
z)ck′eik

′·r +
∑
k′

∑
k

ckUk′−ke
ik′·r = E

∑
k′

ck′eik
′·r (2.69)

ここでは，着目しているバンドの分散関係 Ek′ を E(k′x, k
′
y, k

′
z) と表した．式 (2.69) の左辺第一

項は， ∑
k′

E(k′x, k
′
y, k

′
z)ck′eik

′·r = Ê

(
−i ∂
∂x
,−i ∂

∂y
,−i ∂

∂z

)∑
k′

ck′eik
′·r (2.70)

となる．ただし，Ê (−i(∂/∂x),−i(∂/∂y),−i(∂/∂z)) は，エネルギーの波数依存性 E(k′x, k
′
y, k

′
z)

の式に含まれる k′x，k
′
y，k

′
z を，

k′x → −i ∂
∂x
, k′y → −i ∂

∂y
, k′z → −i ∂

∂z
(2.71)
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と形式的に置きかえて作った演算子である．式 (2.69)の左辺第２項は，∑
k′

∑
k

ckUk′−ke
ik′·r =

∑
k

cke
ik·r

∑
k′

Uk′−ke
i(k′−k)·r = U(r)

∑
k

cke
ik·r (2.72)

となる．これらを式 (2.69)に代入すると，[
Ê

(
−i ∂
∂x
,−i ∂

∂y
,−i ∂

∂z

)
+ U(r)

]
φ(r) = Eφ(r) (2.73)

φ(r) =
∑
k

cke
ik·r (2.74)

が得られる．

式 (2.74) の φ(r) は包絡関数と呼ばれる．なぜなら，式 (2.55) の展開は包絡関数 φn(r) を用

いて，
ψ(r) =

∑
nk

cnke
ik·runk(r) ≈

∑
nk

cnke
ik·runk0

(r) =
∑
n

φn(r)unk0
(r) (2.75)

と近似できるためである．ここでは，バンド指数を陽に書いた．この式の右辺から，φn(r)が包絡

関数と呼ばれる意味がわかる．仮定より k0 近くの狭い波数範囲でのみ cnk が非ゼロであるため，

φn(r)は格子定数程度の空間スケールよりも広い空間スケールで変化する．これに対して unk0
(r)

は，格子定数程度の空間スケールで変化する．これらの積が ψ(r)である．なお，ブロッホ関数の

周期関数部分の波数 k 依存性は小さいという仮定を用いて，unk ≈ unk0
とした．これは，展開係

数 cnk が非ゼロとなる k0 近くの波数で，ブロッホ関数の周期関数部分の波数 k依存性が小さけれ

ば妥当である．

2.4.3 有効質量方程式

Ek に具体的な関数形を仮定し，式 (2.73) から単一バンド有効質量方程式を導く．格子ポテン

シャルのみが存在する場合の分散関係として，つぎの等方的な放物線を考える．

E(kx, ky, kz) =
ℏ2

2m∗

(
k2x + k2y + k2z

)
+ Ev0 (2.76)

m∗ は有効質量，Ev0 は k = 0 のときのエネルギーである．GaAs などの伝導帯谷は Γ 点に存在

し，分散関係はこのような放物線の式で書ける．単一のバンドのみを考えるため，バンドを区別す

る添字は省略する．

式 (2.76)から kx → −i(∂/∂x)，ky → −i(∂/∂y)，kz → −i(∂/∂z) と置きかえると，

Ê

(
−i ∂
∂x
,−i ∂

∂y
,−i ∂

∂z

)
= − ℏ2

2m∗∇
2 + Ev0 (2.77)

となる．したがって，式 (2.73)から，つぎの有効質量方程式が得られる．[
− ℏ2

2m∗∇
2 + U(r) + Ev0

]
φ(r) = Eφ(r) (2.78)
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有効質量方程式は，真空中の電子に外部ポテンシャル U(r) が印加された場合のシュレディン

ガー方程式と類似している．違いは，電子の質量m0 が有効質量m∗ に変更されていることが一見

してわかる．さらに，固有関数の意味も異なる．有効質量方程式の固有関数は，式 (2.55)の展開で

定義された波動関数 ψ の包絡関数である．つまり，式 (2.75)より，

ψ(r) ≈ φ(r)u0(r) (2.79)

と近似的に表現できる．ここで，u0(r)は，谷底でのブロッホ関数の周期関数部分である．

より一般的な例として，

E(kx, ky, kz) =
ℏ2

2

[
(kx − k0x)

2

mx
+

(ky − k0y)
2

my
+

(kz − k0z)
2

mz

]
+ Ev0 (2.80)

なる分散関係を考える．ここで，mx,my,mz はそれぞれ x, y, z 方向の有効質量である．k0 =

(k0x, k0y, k0z) は伝導帯谷の底の波数であり，Ev0 はその波数でのエネルギーである．この式の

kx, ky, kz をそのまま微分演算子に置きかえるのは得策ではない．そのまま置きかえてしまうと，

１次の空間微分が表れてしまい，数学的に扱いづらいためである．そこで，式 (2.69) の左辺第一

項を，∑
k

E(kx, ky, kz)cke
ik·r =

∑
k

E(kx + k0x, ky + k0y, kz + k0z)ck+k0
ei(k+k0)·r

=
∑
k

[
ℏ2

2

(
k2x
mx

+
k2y
my

+
k2z
mz

)
+ Ev0

]
ck+k0

ei(k+k0)·r

= eik0·r
∑
k

[
ℏ2

2

(
k2x
mx

+
k2y
my

+
k2z
mz

)
+ Ev0

]
ck+k0

eik·r

= eik0·r
[
−ℏ2

2

(
1

mx

∂2

∂x2
+

1

my

∂2

∂y2
+

1

mz

∂2

∂z2

)
+ Ev0

]∑
k

ck+k0
eik·r

(2.81)

とする．式 (2.69)の左辺第２項と右辺についても同様に計算すると，有効質量方程式，[
−ℏ2

2

(
1

mx

∂2

∂x2
+

1

my

∂2

∂y2
+

1

mz

∂2

∂z2

)
+ U(r) + Ev0

]
φ(r) = Eφ(r) (2.82)

φ(r) =
∑
k

ck+k0e
ik·r (2.83)

が得られる．式 (2.83)の右辺の波数に関する総和の中で，展開係数と平面波の波数が k0 だけずれ

ていることに注意すると，式 (2.75)より，

ψ(r) ≈ φ(r)eik0·ruk0(r) = φ(r)ψk0(r) (2.84)

と近似的に表現できる．ここで，ψk0
(r) = eik0·ruk0

(r) は，着目しているバンドにおいて波数が

k0 のブロッホ関数を表す．
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最後に，包絡関数 φ(r)の規格化について検討する．式 (2.17)と同様に，|ψ(r)|2 を全体積で積分
した値を 1とすると，

1 =

∫
Ω

|ψ(r)|2dr =

∫
Ω

|φ(r)|2|uk0
(r)|2dr ≈

∑
l

|φ(Rl)|2
∫
Ωcell

|uk0
(r)|2dr

=
∑
l

|φ(Rl)|2
1

Ncell
=
∑
l

|φ(Rl)|2
Ωcell

Ω
≈ 1

Ω

∫
Ω

|φ(r)|2dr
(2.85)

となる．ここで，包絡関数 φ(r)は，単位胞 Ωcell の空間スケールよりも，ゆるやかに変化すること

を用いた．

2.5 電子の動力学

これまで，時間に依存しないシュレディンガー方程式の定常的な解について考察してきた．つぎ

に，波動関数の時間発展について考える．波動関数の時間発展は，時間に依存するシュレディン

ガー方程式，

iℏ
∂Ψ(r, t)

∂t
= ĤΨ(r, t) (2.86)

で決まる．基本的な方針は，この式の一般解 Ψ(r, t)をブロッホ関数 ψnk(r)で展開し，展開係数の

時間変化を調べることである．すなわち，波動関数の時間発展を調べるさい，ブロッホ関数および

バンド構造は考察を進めるための土台となる．

2.5.1節では，C.Kittelの方法 [21]に従い，加速定理をベクトルポテンシャルを用いて示す．こ

こで導入した記法は，つぎの節でも用いる．2.5.2節では，Krieger-Iafrate (KI)方程式を導出する．

記法による混乱を避けるため，時間に依存する波数 k(t) の導入を，KI 方程式導出の後半に行う．

2.5.3節では，群速度について説明する．これは，多くの教科書で詳細に述べられているため，本論

文ではその定義を記法の確認のために簡潔に示す．最後に，2.5.4節では，波束の概念を概説し，こ

れが，電子の古典的な粒子的描像と量子力学的な波動的描像とを結びつけることを示す．さらに，

波束の時間発展が，古典的なハミルトンの正準方程式と同一の表式で記述されることを説明する．

このことは，電子を波束と考える限り古典的な力学で培われた結論の多くを，電子の動力学に適用

できることを意味する．

2.5.1 加速定理

空間的に一様で時間変化しない電界 F を，つぎのようにベクトルポテンシャルで表現する．

A = −F t (2.87)

このとき，ハミルトニアンは，

Ĥ(t) =
1

2m0
(p̂+ eA)2 + U (lat)(r) =

1

2m0
(p̂− eF t)2 + U (lat)(r) (2.88)
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となる．ここで，p̂は運動量演算子である．このハミルトニアン Ĥ(t)は格子の周期性をもつため，

周期境界条件のもと固有関数はつぎのブロッホ関数となる．

Ĥ(t)ψnk(r, t) = Enk(t)ψnk(r, t), ψnk(r, t) = eik·runk(r, t) (2.89)

ここで，時刻 t はパラメータとみなす．つまり，時間依存の項を陽に含むハミルトニアンに対し

て，各時刻における固有関数が式 (2.89) で表せると考える．すなわち，すべての時刻において，

ψnk(r, t)は格子ベクトル分の並進演算子 T̂R の固有関数であり，その固有値は eik·R である．この

とき，kは良い量子数であり，外場に影響されない [21]．式 (2.89)を整理すると，[
1

2m0
(p̂+ ℏk − eF t)

2
+ U (lat)(r)

]
unk(r, t) = Enk(t)unk(r, t) (2.90)

となる．運動エネルギー項 p̂+ ℏk − eF tの部分に注意すると，時刻 tと量子数 kに，

ℏk − eF t = ℏk′ − eF t′ (2.91)

なる関係があるとき，式 (2.90)の左辺の演算子部分が等しいことがわかる．したがって，式 (2.91)

を満たす t，t′，k，k′ を用いて，

unk(r, t) = unk′(r, t′), Enk(t) = Enk′(t′) (2.92)

と表せる．ここで，t′ = 0とすると，

unk(r, t) = un,k−eF t/ℏ(r, 0), Enk(t) = En,k−eF t/ℏ(0) (2.93)

となる．したがって，

ψnk(r, t) = eik·runk(r, t) = eik·run,k−eF t/ℏ(r, 0) (2.94)

Enk(t) = En,k−eF t/ℏ(0) (2.95)

と表すことができる．つまり，任意の時刻における量子数 (n,k) の状態は，時刻 t = 0 のエネル

ギーおよび波動関数を用いて記述できることがわかる．例えば，電子が時刻 t = 0で量子数 (n,k)

にあったとする．このとき，並進演算子 T̂R の固有関数をラベルする量子数である kは運動の定数

であるため，t 秒後でも電子は同じ k に留まる．バンド指数 n は変化する可能性があるが，ここ

では変化せずに最初の n に留まると仮定する．バンド指数の変化を考慮した一般の場合は，つぎ

の 2.5.2節で扱う．このように，量子数 (n,k) が時間経過で変化しない一方，エネルギーおよび波

動関数は，式 (2.94)および式 (2.95)のとおりに時間変化する．

以上をまとめると，時刻 t = 0で量子数 (n,k)にあった電子は，t ̸= 0でも同じ量子数 (n,k)に

留まるが，そのエネルギーおよび波動関数は t = 0で量子数 (n,k− eF t/ℏ)であったものに変化す
る．すなわち，バンド構造が時間経過とともに波数空間を eF t/ℏだけ平行移動する．これを逆に見
ると，電子は時間が経過するにつれて，固定されたバンド構造の中を −eF t/ℏだけ平行移動する．
したがって，時間に依存する波数 k(t)を定義することができ，その時間変化は，

dk(t)

dt
= −eF

ℏ
(2.96)

と与えられる．すなわち，時間に依存する結晶運動量 ℏk(t)の時間変化は，古典的なニュートンの
運動方程式と同様の表式で記述される．この法則は加速定理として知られている [21]．
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2.5.2 Krieger-Iafrate方程式

時間に依存するシュレディンガー方程式の一般解 Ψ(r, t)を，各時刻での固有関数 ψnk(r, t)を用

いて，つぎのように展開する．

Ψ(r, t) =
∑
nk

Cnk(t)ψnk(r, t) =
∑
nk

Cnk(t)e
ik·run,k−eF t/ℏ(r, 0) (2.97)

時間に依存するシュレディンガー方程式 iℏ(∂/∂t)Ψ = Ĥ(t)Ψの左辺に，式 (2.97)を代入すると，

(左辺) = iℏ
∑
nk

[
dCnk(t)

dt
ψnk(r, t) + Cnk(t)e

ik·r
(
−eF
ℏ

)
· ∇k′′un,k′′(r, 0)|k′′=k−eF t/ℏ

]
(2.98)

となる．この式に，ψ∗
n′k′(r, t) = e−ik′·ru∗n′,k′−eF t/ℏ(r, 0)を乗じて積分すると，

(左辺) = iℏ
dCn′k′(t)

dt
− ieF ·

∑
nk

Cnk(t)

∫
drei(k−k′)·ru∗n′,k′−eF t/ℏ(r, 0) ∇k′′un,k′′(r, 0)|k′′=k−eF t/ℏ

= iℏ
dCn′k′(t)

dt
− ieF ·

∑
n

Cnk′(t)

∫
dru∗n′,k′−eF t/ℏ(r, 0) ∇k′′un,k′′(r, 0)|k′′=k′−eF t/ℏ

= iℏ
dCn′k′(t)

dt
+ eF ·

∑
n

Cnk′(t)Xn′,n(k
′ − eF t/ℏ)

(2.99)

となる．ここで，

Xn′,n(k
′ − eF t/ℏ) = −i

∫
dru∗n′,k′−eF t/ℏ(r, 0) ∇k′′un,k′′(r, 0)|k′′=k′−eF t/ℏ (2.100)

とおいた．一方，時間に依存するシュレディンガー方程式 iℏ(∂/∂t)Ψ = Ĥ(t)Ψの右辺に，式 (2.97)

を代入し，ψ∗
n′k′(r, t)を乗じて積分すると，

(右辺) = Cn′k′(t)En′,k′−eF t/ℏ(0) (2.101)

となる．以上より，時間に依存するシュレディンガー方程式は，

iℏ
dCn′k′(t)

dt
+ eF ·

∑
n

Cnk′(t)Xn′,n(k
′ − eF t/ℏ) = Cn′k′(t)En′,k′−eF t/ℏ(0) (2.102)

となる．この式は，異なる量子数 kの状態は互いに混じり合わないことを表している．

式 (2.96)より，つぎの時間に依存する波数を導入する*3．

k(t) = k − eF

ℏ
t (2.103)

*3 exp [ik(t) · r]ではなく，exp (ik · r)が周期境界条件を満たすことに注意．
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式 (2.103)を用いると，式 (2.102)は，

iℏ
dCnk(0)(t)

dt
+ eF ·

∑
n′

Cn′k(0)(t)Xn,n′(k(t)) = Cnk(0)(t)Enk(t)(0) (2.104)

と表せる．ここで，式 (2.103)より，量子数 kは k(0) と書けることを用いた．さらに，

Cnk(0)(t) = an(t) exp

[
− i

ℏ

∫ t

0

Enk(t′)(0)dt
′
]

(2.105)

とおいて，これを式 (2.104)に代入し整理すると，Krieger-Iafrate 方程式 [22]，

dan(t)

dt
= −eF

iℏ
·
∑
n′

an′(t)Xn,n′(k(t)) exp

[
i

ℏ

∫ t

0

(
Enk(t′) − En′k(t′)

)
dt′
]

(2.106)

が得られる．ここで，Enk(t)(0)を Enk(t) と略記した．|an(t)|2 は電子を n番目のバンドに見出す

確率を表す．

2.5.3 群速度

ブロッホ状態 (n,k)の速度期待値は，

⟨v⟩ = i

ℏ
⟨nk|[Ĥ(r̂, p̂), r̂]|nk⟩ (2.107)

と定義される．この式の行列要素の部分は，

⟨nk|[Ĥ(r̂, p̂), r̂]|nk⟩ = −i
∫
u∗nk(r)∇k

(
e−ik·rĤ(r̂, p̂)eik·r

)
unk(r)dr

= −i
∫
u∗nk(r)∇k

(
Ĥ(r̂, p̂+ k)

)
unk(r)dr

= −i∇k

∫
u∗nk(r)Ĥ(r̂, p̂+ k)unk(r)dr

= −i∇kEnk

(2.108)

となる．ここで，Ĥ(r̂, p̂)eik·r = eik·rĤ(r̂, p̂+ k)やヘルマン・ファインマンの定理などを用いた．

以上より，ブロッホ状態 (n,k)の速度期待値は，分散関係の波数微分を用いて，

⟨v⟩ = 1

ℏ
∇kEnk (2.109)

となる．これは，古典的な波動理論における群速度の表式と一致している．

2.5.4 波束および運動方程式

古典力学および古典電磁気学では，電子を質量m0 をもつ点電荷として表現する．この場合，電

子の初期位置と初期速度が与えられると，その後の電子の時間発展はニュートンの運動方程式に

よって一意に決定される．このような電子に対する古典的な粒子的描像は，巨視的スケールにおけ
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る多くの観測事実の説明に成功している．したがって，量子力学はその極限において，このような

古典的なモデルと整合している必要がある．しかし，単一のブロッホ状態では，電子の確率密度は

|ψnk(r)|2 = |unk(r)|2 となり，格子間隔程度では変化する一方，巨視的には全空間で一様となり，
粒子的描像とは相容れない．この問題は波束を導入することで解決できる．

バンド指数 n，波数 k0 の単一のブロッホ関数を考える．単一のブロッホ関数は全空間に確率

密度が広がっているが，波数 k0 近傍の ∆k の範囲にあるブロッホ関数の線形結合を考えること

で，波束を構成できる．すなわち，|k − k0| < ∆k を満たす k でのみ値をもつ係数 Ck を用いて，∑
k Ckψk(r)なる波束を構成する．ここで，波束は単一のバンドから構成されると仮定し，バンド

指数を省略した．Ck の位相を適切に選ぶことで，波束の確率密度を任意の位置 r0 の近傍に集中

させることができる．また，実空間上での波束の広がり ∆r と波束を構成するブロッホ関数の範囲

∆k には，|∆r| ≈ 1/|∆k|という関係がある．これは，粒子の位置と運動量の不確定性関係を表し
ている．

第一ブリルアンゾーンの広さに対して ∆kが小さいと仮定すれば，波束の波数ベクトルはおよそ

k0 で代表できる．この場合，不確定性関係より波束は実空間上でいくつかの単位胞にわたって広が

る．これとは逆に，実空間上で単位胞程度のスケールに局在した波束を構成するには，第一ブリル

アンゾーン全体にわたるブロッホ関数を重ね合わせる必要がある．

古典力学や古典電磁気学のように電子の巨視的な振る舞いを考える場合，単位胞のスケールは

1 nmよりも小さいため，実空間上でいくつかの単位胞程度にわたる電子位置の不確定性 ∆r は無

視できる．したがって，波束の中心を位置 r0 で代表できると同時に，波数も k0 で代表できる．こ

のように，波束は，単位胞スケールでの波動関数に関心がない限り，位置と運動量が明確に定義さ

れた点電荷としてモデル化することができる．

n番目のバンドから構成される波束について，その代表点をあらためて r，k と表す．代表点の

時間発展には，2.5.1節と 2.5.3節の結果を適用できる．結果をまとめると，

dr

dt
= +

1

ℏ
∇kEn(r,k),

dk

dt
= −1

ℏ
∇rEn(r,k) (2.110)

となる．ここで，En(r,k) = Enk + U(r)とおいた．式 (2.110)は，古典的なハミルトン力学の正

準方程式と同一の表式であることがわかる．

2.6 散乱

バンド構造および電子の動力学と合わせて，散乱は結晶の電気的性質を理解するために重要な現

象である．系が非平衡状態から熱平衡状態あるいは非平衡定常状態へどのように緩和するかは，散

乱によって説明される．散乱は，状態 (n0,k0)から状態 (n,k)近傍への単位時間あたりの遷移確率

によって記述される．このような散乱の取り扱いは，外部電界に由来するポテンシャルの空間変化

スケールが，連続する散乱間に電子が移動する平均距離よりも十分大きく，一方，散乱を引き起こ

す相互作用が空間的に局在し，過去に起こった他の散乱との量子干渉効果が無視できる場合に正当

化される [23]．散乱を引き起こす相互作用は様々であるが，通常これらの相互作用は互いに独立と

みなされ，対応する遷移確率はフェルミの黄金則に基づいて計算される．
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Siデバイスにおける主要な散乱過程として，フォノン散乱，不純物散乱，界面ラフネス散乱が知

られている．これらの散乱過程の記述には共通する部分もある一方，個別に議論すべき点もある．

例えば，一電子状態に基づいて電子とフォノンとの相互作用を正しく記述することは困難であり，

この場合，多粒子状態を扱うモデルが必要である．それでも，散乱過程の記述には共通する部分が

存在するため，本節ではバルク結晶における遷移確率の一般的な表式を考察する．個別に考慮すべ

き内容は次章以降に記す．

2.6.1節では，相互作用が 1体のポテンシャルエネルギーで表現されると仮定し，フェルミの黄

金則の表式を導く．2.6.2節では，フェルミの黄金則の物理的意味について考察し，加速と散乱に基

づく半古典的な輸送モデルの大枠を示す．最後に，2.6.3節では，遷移確率から散乱確率を計算する

方針を簡単に示す．

2.6.1 フェルミの黄金則

時間に依存するシュレディンガー方程式の一般解 Ψ(r, t)を，ブロッホ関数 ψnk(r)を用いて，つ

ぎのように展開する．
Ψ(r, t) =

∑
nk

Bnk(t)ψnk(r) (2.111)

Bnk(t) = Cnk(t) exp

(
− iEnkt

ℏ

)
(2.112)

ハミルトニアン Ĥ には，格子ポテンシャルに加えて，時間に依存する散乱ポテンシャル U(r, t)が

含まれているとする．
Ĥ = Ĥ0 + U(r, t) (2.113)

時間に依存するシュレディンガー方程式は，

iℏ
∂Ψ(r, t)

∂t
= ĤΨ(r, t) (2.114)

である．これに，式 (2.111)を代入し，両辺に ψ∗
n′k′(r)を乗じて全空間で積分すると，

∂Bn′k′(t)

∂t
=

1

iℏ
∑
nk

⟨n′k′|U |nk⟩Bnk(t) +
1

iℏ
En′k′Bn′k′(t) (2.115)

となる．ここで，式 (2.18) で表されるブロッホ関数の直交性を用いた．式 (2.115) は，展開係数

Bnk(t) に対する連立微分方程式を表している．行列要素 ⟨n′k′|U |nk⟩ が与えられれば，初期時刻
t = 0における展開係数 Bnk(0)の値を決めると，それ以降の時間発展はこの連立微分方程式から

数値的に求めることができる．

0次近似として，散乱ポテンシャルが U(r, t) = 0の場合を考えると，

Bnk(t) = Bnk(0) exp

(
− iEnkt

ℏ

)
(2.116)

となる．すなわち，時間とともに展開係数の位相のみが，各々のブロッホ関数の固有エネルギーに

よって決まる時間スケールで変化する．
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時刻 t = 0 において状態 (n0,k0) にいる電子の時間発展を考える．すなわち，初期条件を

Bnk(0) = δn0,nδk0,k として，式 (2.115)を解く．ここで，散乱が弱いと仮定し，遷移中に Bn0k0
(t)

の大きさがほとんど減少しないとして，Bn0k0
(t)の時間発展を式 (2.116)を用いて近似する．

Bn0k0
(t) ≈ Bn0k0

(0) exp

(
− iEn0k0

t

ℏ

)
(2.117)

仮定より，すべての (n,k) ̸= (n0,k0)に対して，|Bnk| ≪ |Bn0k0
|である．したがって，式 (2.115)

は，その総和において (n0,k0)以外の項を無視すると，

∂Bn′k′(t)

∂t
≈ 1

iℏ
⟨n′k′|U |n0k0⟩ exp

(
− iEn0k0

t

ℏ

)
+

1

iℏ
En′k′Bn′k′(t) (2.118)

と近似できる．この式に，式 (2.112)を代入し整理すると，

∂Cn′k′(t)

∂t
=

1

iℏ
⟨n′k′|U |n0k0⟩ exp

[
i

ℏ
(En′k′ − En0k0) t

]
(2.119)

となる．ここで，散乱ポテンシャル U(r, t)の時間依存性を，U(r, t) = U(r, ω)e−iωt と表す．これ

を式 (2.119)に代入して微分方程式を解くと，

Cn′k′(t) =
1

iℏ
⟨n′k′|U(r, ω)|n0k0⟩

∫ t

0

dt′ exp

[
i

ℏ
(En′k′ − En0k0

− ℏω)t′
]

=
1

iℏ
⟨n′k′|U(r, ω)|n0k0⟩ eiΛt/2sinc(Λt/2)t

(2.120)

となる．ここで，Λ = [En′k′ − En0k0
− ℏω] /ℏとおいた．

時刻 tに電子を状態 (n′,k′)に見いだす確率は，|Cn′k′(t)|2 であるため，単位時間あたりに電子
が初期状態 (n0,k0)から状態 (n′,k′) に遷移する割合は，

Sn0,n′(k0,k
′) =

|Cn′k′(t)|2

t
=

1

ℏ2
| ⟨n′k′|U(r, ω)|n0k0⟩ |2sinc2(Λt/2)t (2.121)

である．t≫ 1/Λとなる程度に十分に時間が経過した場合には，sinc2(Λt/2)t→ 2πδ(Λ)と近似で

きる．したがって，散乱が弱いという仮定のもと，式 (2.121)は，

Sn0,n′(k0,k
′) =

2π

ℏ
| ⟨n′k′|U(r, ω)|n0k0⟩ |2δ(En′k′ − En0k0 − ℏω) (2.122)

となる．この式はフェルミの黄金則として知られている．

2.6.2 半古典電子輸送

式 (2.122)より，電子が始状態 (n0,k0)から終状態 (n′,k′)へ単位時間あたりに遷移する割合は，

ディラックのデルタ関数と行列要素 | ⟨n′k′|U(r, ω)|n0k0⟩ |2 によって決まることがわかる．フェル
ミの黄金則は，具体的な遷移確率の計算方法を提供するだけでなく，散乱によって引き起こされる

電子状態間の遷移にいくつかの制約を与える．
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式 (2.122)の δ(En′k′ −En0k0 − ℏω)によって，始状態のエネルギー En0k0 に，散乱ポテンシャ

ルの調和振動的な時間依存性に由来するエネルギー ℏω を加えたエネルギーを終状態とする場合に
のみ，遷移確率が非ゼロとなる．このエネルギーに関する制約は，フェルミの黄金則の導出におけ

る長時間極限から生じるため，散乱強度が弱い，すなわち，散乱確率が低い場合に正当化される．

つまり，いくつかの連続した散乱を受ける電子について，散乱間の平均的な時間間隔が比較的長い

場合，デルタ関数を用いたエネルギーの制約が正当化される．具体的には，T を散乱間の平均的な

時間間隔とすると，∆E = 2πℏ/T がエネルギー軸上で無視できるほど，T は十分に長くなければ
ならない．例えば，|∆E| < 1 meV を得たい場合，T はおよそ 4 psよりも大きい必要がある．明

らかに高散乱領域では，このエネルギー保存に至る近似は厳密には成り立たない．この高い散乱確

率によるエネルギーの不確定性は，衝突広がり (Collisional Broadening) として知られているが，

半古典的なキャリア輸送の取り扱いにおいてはほとんど無視されている．ホットキャリア輸送にお

いて衝突広がりが果たす役割に関する研究が報告されている [24]．

つぎに，式 (2.122)の行列要素を，2.4.1節と同じ手順で，

⟨n′k′|U(r, ω)|n0k0⟩ =
∑
G

U
(ω)
(k′−G)−k0

⟨un′,k′−G|un0k0⟩ (2.123)

と変形する．この式より，電子が始状態 (n0,k0)から終状態 (n′,k′) へ遷移するには，フーリエ係

数 U
(ω)
(k′−G)−k0

と，ブロッホ関数の周期関数部分の重なり積分 ⟨un′k′−G|un0k0
⟩が非ゼロである必

要があることがわかる．このうち，G = 0に由来する散乱過程はノーマル過程，G ̸= 0に由来す

る散乱過程はウムクラップ過程と呼ばれる．例えば，バルク Siにおける谷内遷移はノーマル過程が

支配的であり，谷間遷移はウムクラップ過程が支配的であると理解できる [25]．

フェルミの黄金則は，式 (2.110)では記述できない実空間上で急峻に変動する散乱ポテンシャル

の影響を，輸送モデルに含めることを可能にする．具体的には，散乱確率が低い場合，実空間上で

ゆるやかに変動する外場下における粒子の運動 (自由走行)の持続時間は長くなる．一方，散乱ポテ

ンシャルの影響は，自由走行の時間スケールから見ると瞬時に発生する散乱過程としてモデル化で

きる．結果として，散乱は電子の実空間上での位置を変更せず，波数ベクトルおよびバンド指数を

瞬時に変化させる．したがって，有限の持続時間をもつ自由走行と瞬時の衝突とが交互に繰り返さ

れるとして，電子の輸送現象は半古典的に記述される [26]．

この半古典輸送モデルでは，ある散乱とそれ以前に起こった他の散乱とに由来する波動関数の干

渉効果は無視される．位相緩和はフォノン散乱などの非弾性散乱によって生じるため，室温では量

子干渉の効果を観測することは難しい．一方，ラフネス散乱や不純物散乱などの弾性散乱では位相

緩和が起こらないため，フォノン数密度が小さくなる低温下では量子干渉の効果が観測される．こ

のような状況では，電子の輸送現象を半古典的に記述することはできない．

2.6.3 散乱確率

状態 (n0,k0)の量子緩和時間 τqn0k0
は，

1

τqn0k0

=
∑
nk

Sn0,n(k0,k) (2.124)
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と表せる．ここで，終状態 (n,k)が空いていることを仮定した．τqn0k0
は単一粒子寿命とも呼ばれ

る．また，量子緩和時間の逆数 1/τqn0k0
は散乱確率と呼ばれる．

ノーマル過程のみを考えると，式 (2.122)は，

Sn0,n(k0,k) =
2π

ℏ
|Uk−k0

|2δ(Enk − En0k0
− ℏω) (2.125)

となる．ここで，散乱ポテンシャルの上付き添字 ω を省略した．また，ブロッホ関数の周期関数部

分に関する重なり積分を，⟨unk|un0k0
⟩ ≈ 1と近似した．この近似がよく施されるが，無視された

重なり積分の効果は散乱ポテンシャル部分に実効的に含められると考えられる [27]．式 (2.125)を

式 (2.124)に代入すると，

1

τqn0k0

=
2π

ℏ
∑
nk

|Uk−k0
|2δ(Enk − En0k0

− ℏω) (2.126)

となる．ここで，Ω → ∞とすると，上式の k に関する和は積分に変換される (2.2.3節参照)．一

方，Uq はフーリエ係数でありフーリエ変換 U(q)とは，Ω → ∞のもと，

Uq =
U(q)

Ω
(2.127)

なる関係がある．この式を，式 (2.126)に代入すると，

1

τqn0k0

=
2π

ℏ
1

Ω

∑
nk

S(k − k0)δ(Enk − En0k0
− ℏω) (2.128)

となる．ここで，パワースペクトル密度を S(q) = |U(q)|2/Ωとおいた．さらに計算を進めるには，
分散関係 Enk の具体的な表式が必要である．

特別な場合として，S(q) ≈ C と定数に近似できる場合を考える．このとき，式 (2.128)は，

1

τqn0k0

=
2πC

ℏ
1

Ω

∑
nk

δ(Enk − En0k0
− ℏω) =

2πC

ℏ
D(En0k0

+ ℏω) (2.129)

となる．ここで，D(En0k0
+ ℏω) は終状態のエネルギーにおける状態密度を表す．2.2.3 節より，

状態密度の具体的な表式はバンド構造に依存する．

2.7 電子輸送モデル

2.6.2 節では，有限の持続時間をもつ自由走行とフェルミの黄金則に基づく瞬時の散乱とが交互

に繰り返されるという半古典的な電子輸送モデルについて，その成立条件も含めて記した．これに

従うと，2.7.1節に記載のとおり，半古典的な電子輸送現象の支配方程式であるボルツマン輸送方程

式を自然に理解できる．しかしながら，ボルツマン輸送方程式をシュレディンガー方程式などに基

づくミクロな理論から厳密に導くことはいまだ達成されていない [23]．ミクロな理論が記述する運

動は時間反転に対して対称である一方，L.E.Boltzmannが H 定理を証明したように，ボルツマン

輸送方程式は不可逆な現象を記述できる．この両者の質的な差異に関する問題を一般的に解決する
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方法はまだ見つかっていない．それにもかかわらず，ボルツマン輸送方程式は，半導体デバイスの

キャリア輸送解析において直感的かつ多くの情報を提供し，今日のデバイスシミュレーションの基

礎となっている．一方，電子の可干渉性が重要な役割を果たす場合や，外場による空間的不均一が

大きい場合には，ボルツマン輸送方程式を用いることはできないことに注意が必要である．この場

合には，いわゆる量子輸送シミュレーションを用いる必要がある．

2.7.1 節では，位相空間における連続の式から，ボルツマン輸送方程式を直感的に導入する．

2.7.2 節では，モンテカルロシミュレーションについて概要を記す．モンテカルロシミュレーショ

ンはボルツマン輸送方程式の厳密解を提供する強力な手法である．最後に，2.7.3節では，量子輸送

シミュレーションについて概説する．

2.7.1 ボルツマン輸送方程式

位置に関する 3次元と波数に関する 3次元とを合わせた，6次元の位相空間を考える．電子は波

束として，その位置と波数とが明確に定義されていると仮定する．このとき，位相空間上で r から

r + dr，kから k + dkの範囲で指定される微小体積に含まれる電子のうち，バンド指数 nのバン

ドから構成される波束で表される電子数を fn(r,k, t)drdkと表す．

電子は位相空間上を速度 v = (ṙ, k̇)で移動すると考えられる．ここで，ṙ および k̇ は式 (2.110)

で与えられる．自由走行時にバンド指数が変化しないと仮定すると，位相空間上で電子が突然消え

たり現れたりしないため，つぎの連続の方程式が成り立つ [28]．

∂fn
∂t

+∇ · (fnv) = 0 (2.130)

ここで，∇ = (∇r,∇k)である．左辺第２項は，∇fn · v + fn∇ · v = ∇fn · v となる．なぜなら，
式 (2.110)より，∇ · v = ∇r · ṙ +∇k · k̇ = 0 が成り立つためである．したがって，式 (2.130)は，

∂fn(r,k, t)

∂t
−∇kfn(r,k, t) ·

1

ℏ
∇rEn(r,k) +∇rfn(r,k, t) ·

1

ℏ
∇kEn(r,k) = 0 (2.131)

となる．この式は，位相空間上のある閉領域内に含まれる電子数は，その境界から出入りする電子

数によって変化することを表す．

この変化に加えて，散乱による電子数変化を合わせて考慮する．散乱は瞬時に発生するため，電

子の実空間上の位置を変化させないと考えられる．したがって，r と kを中心とした位相空間要素

からその外部への単位時間あたりの電子流出量 Sout
n (r,k, t)は，

Sout
n (r,k, t) = fn(r,k, t)

∑
n′k′

Sn,n′(k,k′) [1− fn′(r,k′, t)] (2.132)

と表せる．ここで，Sn,n′(k,k′)は始状態 (n,k)から終状態 (n′,k′)への遷移確率で，フェルミの黄

金則から計算される．同様にして，r と kを中心とした位相空間要素へのその外部から単位時間あ

たりの電子流入量 Sin
n (r,k, t)は，

Sin
n (r,k, t) = [1− fn(r,k, t)]

∑
n′k′

Sn′,n(k
′,k)fn′(r,k′, t) (2.133)
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と表せる．連続の方程式に加えて，散乱による電子流出と電子流入を考慮すると，式 (2.131)は，

∂fn(r,k, t)

∂t
−∇kfn(r,k, t) ·

1

ℏ
∇rEn(r,k) +∇rfn(r,k, t) ·

1

ℏ
∇kEn(r,k)

= Sin
n (r,k, t)− Sout

n (r,k, t)
(2.134)

と書き換えられる．この式はボルツマン輸送方程式として知られている．

ボルツマン輸送方程式の近似解は，いわゆるモーメント法を用いて得ることができる．これは，

ボルツマン輸送方程式から適切な積分や kについての平均をとることで得られるバランス方程式を

解くことで，ボルツマン輸送方程式の解を近似的に得る手法である．したがって，この手法では，

分布関数 f について波数方向の情報は得られない．このバランス方程式は TCADシミュレータで

広く用いられている．バランス方程式の詳細な議論と導出は文献 [29, 30]に記載されている．

本論文では，第 5 章において，緩和時間近似を施したボルツマン輸送方程式を用いて，Si ナノ

シート構造における電子移動度の結晶方位依存性をシミュレーションした結果を示す．

2.7.2 モンテカルロシミュレーション

ボルツマン輸送方程式は，最大 7つの独立変数 (実空間座標，波数空間座標および時間)に依存す

る未知の分布関数 f に関する積分微分方程式である．散乱項における (1− f)の因子によって非線

形でもある．シミュレーションするデバイス構造の対称性を利用することで変数の数を減らすこと

は可能であるが，それでも標準的な数値計算手法を用いて厳密に解くことは困難である [31]．

モンテカルロ法は，分布関数 f に関する事前の仮定なしに，ボルツマン輸送方程式を厳密に解く

強力なシミュレーション手法である [32, 33]．この手法は乱数に基づく統計的な手法であり，サン

プル粒子の実空間および波数空間における軌道のシミュレーションに基づいている．

モンテカルロ法は，電子輸送の分野では 1966年に T.Kurosawaによって最初に導入された [34]．

その後，W.Fawcettらによって，ボルツマン輸送方程式の厳密解と等価であることが示された [35]．

1970年代後半以降，キャリア輸送の研究に広く利用されてきた [25]．これまで，様々な数値的およ

び物理的な改良がモンテカルロデバイスシミュレーションに導入されてきた．例えば，フルバンド

構造の考慮 [36]，ポアソン方程式とのカップリングにおける効率的な数値計算手法 [37]，ホットエ

レクトロン効果 (インパクトイオン化，ゲート絶縁膜への電子注入など)のシミュレーション [38]，

あるいはトラップ準位への電子捕獲放出過程を考慮したシミュレーション [39]などが挙げられる．

モンテカルロシミュレーションでは，ボルツマン輸送方程式の場合と同様に，位置と波数とが

明確に定義された電子の軌道を，自由走行と瞬時の散乱とが繰り返すという半古典的な枠組みの

もとシミュレーションする．モンテカルロシミュレーションのアルゴリズムの包括的な解説は文

献 [23, 25–27, 29, 32, 33] に記載されている．このアルゴリズムの概要を簡単に理解するために，

ボルツマン輸送方程式を位相空間上における電子の軌道に沿って積分した式を考えるとよい．これ

は Chamberの式として知られている [40]．簡単のため，空間的に一様な系を仮定すると，

fn(k, t) =

∫ ∞

0

ds exp

[
−
∫ 0

−s

ds′

τqnk(t+s′)

]
Sin
n (k(t− s), t− s) (2.135)
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となる．ここで，k(t) = k − eF t/ℏ であり，τqnk は 2.6.3 節で導入した量子緩和時間である．

式 (2.135)は，つぎのように解釈できる．時刻 t，波数 kにおける分布関数 fn(k, t)を求めるために

は，過去のすべての時刻 t− s (s > 0)において，その時刻に状態 (n,k(t− s))に流入してきた電子

のうち，その後時刻 tまで散乱されずに時間発展した電子を数えればよい，ということである．こ

の一連の過程をシミュレーションするため，モンテカルロシミュレーションは以下の手続きに従う．

1. 系の初期条件を反映して，位相空間上における電子の初期位置を決める．

2. すべての散乱過程に関して，量子緩和時間をそれぞれ計算する．そして，すべての量子緩和

時間の逆数の総和を計算し，これを全散乱確率Wn(k) とする．ここで，n はバンド指数で

ある．

3. 全散乱確率に基づいて，電子の自由走行時間 tFF を計算する．これを確率的に行うため，0

から 1の一様乱数 r を用いて，

r = 1− exp

[
−
∫ tFF

0

Wn(k(t
′))dt′

]
(2.136)

とする．これは，一般に tFF について解析的に解くことはできず，数値的に評価するにして

も指数部の数値積分が煩雑である．そこで，H.D.Reesによって導入された自己散乱アルゴ

リズム [41]がよく用いられる．

4. 自由走行時間 tFF だけ電子の運動方程式 [式 (2.110)]を解き，位相空間上の位置を更新する．

5. 更新後の位相空間上での位置から，遷移確率に基づき，散乱後の終状態を確率的に決定する．

6. 以下同様に，自由走行と散乱とを繰り返しシミュレーションする．

本論文では，第 5章において，Krieger-Iafrate方程式とマルチサブバンドモンテカルロ法とを組

み合わせることで，自由走行時サブバンド間遷移が輸送特性に与える影響について解析した結果を

述べる．

2.7.3 量子輸送シミュレーション

着目している系あるいは領域のサイズが，電子が可干渉性を維持しながら移動する距離と同程

度である場合，電子の運動はシュレディンガー方程式によって記述される．このような状況では，

2.6.2 節で記した，有限の持続時間をもつ自由走行とフェルミの黄金則に基づく瞬時の散乱とが交

互に繰り返されるという半古典的な輸送モデルを適用することはできない．

半古典的な枠組みを超え，量子論的な効果を取り入れた輸送計算手法として，非平衡グリーン関

数 (NEGF: Non-Equilibrium Green Function) 法が知られている．NEGF 法の先駆的な研究は，

1960年代初頭の L.V.Keldysh [42] や L.P.Kadanoffと G.Baym [43]にまでさかのぼることがで

きる．その後，メゾスコピック系における電子輸送現象への適用が，S.Datta [44]によって行われ，

現代の微細電子デバイスの解析に広く利用されるようになった．NEGF法は，非平衡多体系におい

て可観測量を計算するための一般的な枠組みを提供する．例えば，強結合近似モデル [45]や擬ポテ

ンシャル法 [46]など，任意の電子状態モデルに基づく定式化が可能であり，さらに様々な散乱モデ

ルを幅広く扱うことができる．これは，自己エネルギーを用いた散乱の自然な取り扱いによるもの
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Left Electrode Right ElectrodeChannel

図 2.2: NEGF法に基づき透過関数をシミュレーションする系の模式図．µL および µR は左電極
および右電極の化学ポテンシャルを表す．

であり，NEGF法の利点の一つである．NEGF法に関する包括的な解説は文献 [44, 47–49]に記載

されている．

本論文では，チャネル内において位相緩和過程をともなわない，弾道的な NEGF法に基づくシ

ミュレーションを行った．この手法では，計算したい系をチャネル領域と電極領域とに分割する

(図 2.2参照)．電極はつねに熱平衡状態であると仮定され，電極間の化学ポテンシャル差は外部電

源から印加された電圧と等しいと考える．したがって，外部電圧に由来し，電子は化学ポテンシャ

ルが高い電極からチャネル領域に流入し，化学ポテンシャルが低い電極へと流出する [47]．このよ

うな過程はランダウアー理論 [50]と密接に関連している．実際，ランダウアー理論によると，チャ

ネルを流れる電流 I は，

I =
nspe

2πℏ

∫
T (E) [fL(E)− fR(E)] dE (2.137)

と与えられる．ここで，fα(E) =
(
eβ(E−µα) + 1

)−1
(α = L,R)であり，µα は α電極領域の化学

ポテンシャルである．また，E は電子のエネルギー，T (E)は透過関数である．この透過関数 T (E)

が，弾道的な NEGF法における主要な計算対象の一つである．

NEGF 法に基づく量子輸送シミュレーションでは，つぎの式で与えられる遅延グリーン関数

G(E)が中心的な役割を果たす．

G(E) = [E −H − Σ(E)]
−1

(2.138)

ここで，H はチャネル領域のハミルトニアンを表す．Σ(E)は遅延自己エネルギーであり，チャネ

ルが電極と接続していること，および電子が散乱体と相互作用していることを表している．数値計

算では，適当な基底系を導入し H および Σ(E)を行列表示することで，逆行列演算から G(E)を

計算する．用いる基底系やデバイスの幾何構造に応じてこれらの行列サイズは異なるが，一般に

行列サイズは大きくなるため，逆行列演算の計算量は大きくなる．そのため，再帰グリーン関数

法 [45, 51]や等価モデル [52, 53]などの高速計算手法が用いられる．本論文で用いた NEGF法に

基づく透過関数の具体的な計算方法は，3.4節に記す．

第 3章では，本研究で新規に開発した高速計算手法である 1次元等価モデルを説明する．1次元

等価モデルでは，波動関数を用いることなくバンド構造の情報のみから，１次元系の等価モデルを

構築できる．第 4章では，単一モードナノシートにおいてラフネス散乱で決まる平均自由行程を，

透過関数 T (E)から抽出するために，本研究で新規に開発した手法を述べる．
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2.8 まとめ

本章では，電子状態と輸送理論について概説した．まず，格子および逆格子に基づく結晶の記述

方法およびブロッホ状態の一般的な性質を述べ，その後，強結合近似モデルおよび有効質量近似モ

デルについて説明した．つぎに，加速定理，群速度といった電子の動力学に関する概念を述べた．

つづいて，散乱過程のフェルミの黄金則に基づく記述方法を述べた．最後に，ボルツマン輸送方程

式，モンテカルロシミュレーション，および量子輸送シミュレーションについて概説した．

参考文献

[1] G. Burns and J.L. Birman, Introduction to group theory with applications, Academic

Press (1977).

[2] S. Datta, Quantum Phenomena, Addison-Wesley (1989).

[3] 清水 明，統計力学の基礎，東京大学出版会 (2024).

[4] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136, B864

(1964).

[5] W. Kohn and L.J. Sham, “Self-Consistent Equations Including Exchange and Correlation

Effects,” Phys. Rev., 140, A1133 (1965).

[6] J.C. Slater and G.F. Koster, “Simplified LCAO Method for the Periodic Potential Prob-

lem,” Phys. Rev., 94, 1498 (1954).

[7] M. Luisier, A. Schenk, W. Fichtner, and G. Klimeck, “Atomistic simulation of nanowires

in the sp3d5s∗ tight-binding formalism: From boundary conditions to strain calculations,”

Phys. Rev. B, 74, 205323 (2006).

[8] D. Vasileska, S.M. Goodnick, and G. Klimeck, Computational Electronics: Semiclassical

and Quantum Device Modeling and Simulation, CRC Press (2010).

[9] 三好 旦六, 小川 真人, 土屋 英昭，ナノエレクトロニクスの基礎，培風館 (2007).

[10] W.A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the

Chemical Bond, Dover Publications (2012).

[11] J.J. Sakurai and J. Napolitano, Modern Quantum Mechanics, Cambridge University Press

(2020).

[12] D. Vanderbilt, Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital

Magnetization and Topological Insulators, Cambridge University Press (2018).
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第 3章

半導体 1次元構造の 1次元等価モデル

3.1 はじめに

間断なく微細化が進められてきたトランジスタは，その寸法がナノメートルオーダーに達してい

る．このような極微細なスケールのデバイスでは，量子力学的効果や原子論的効果がデバイス特性

に表れる．したがって，これらの効果を取り入れたデバイスシミュレータの開発が，次世代トラン

ジスタの性能予測のために必要である．

非平衡グリーン関数 (NEGF: Non-Equilibrium Green Function)法は，ナノスケールデバイス

の量子輸送特性を解析するためのもっとも信頼できるシミュレーション手法の一つである [1–5]．

近年，第一原理に基づく NEGFシミュレーションの報告 [6–9]が増えている．しかし，これらのシ

ミュレータを次世代デバイスの開発に利用するためには，多くの課題が残されている．とくに，多

くの計算資源を要する点が課題である．NEGFシミュレーションでは，「チャネル領域を記述する

ハミルトニアン行列」と同じサイズの行列に対して逆行列演算を実行する必要がある．ハミルトニ

アン行列サイズは，電子状態モデルやデバイス幾何構造によって異なるが，一般に大きくなる．逆

行列演算の計算量は行列サイズの約 3乗に比例して増加するため，これが NEGFシミュレーショ

ン全体のボトルネックとなる．

とくに，密度汎関数理論 (DFT: Density Functional Theory)などの第一原理的な電子状態モデ

ルでは，電子状態計算の精度は高いものの，価電子帯下部から伝導帯上部までの広いエネルギー範

囲の状態を含むため，ハミルトニアン行列サイズが大きくなる．通常，デバイスの輸送特性を担う

のはバンドギャップ付近の電子のみであり，DFTモデルが含む広いエネルギー範囲の状態は必要

ない．このことを利用して，広いエネルギー範囲の情報を含む電子状態モデルから，バンドギャッ

プ付近の狭いエネルギー範囲の情報のみを抽出することで，ハミルトニアン行列サイズの小さな等

価モデルを構築する手法が提案されている [10]．

等価モデルは，はじめに Siナノワイヤ FETのシミュレーションに応用された [10]．その後，非

直交基底系への拡張 [6]，ヘテロ接合や欠陥を含むデバイスへの応用 [11]，チャネル領域と電極領域

で第一原理モデルと等価モデルを使い分けるハイブリッド法 [7]などが報告されている．これらの

等価モデルでは，元のハミルトニアン行列を対角化して得られる波動関数を利用して，サイズの小

さなハミルトニアン行列を構築する．これに対して本研究では，波動関数を利用することなく，バ
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ンド構造のみから等価モデルを構築する手法を新規に開発した [12, 13]．本章では，開発した等価

モデルとその性能について議論する．

3.2 バンド内輸送

本節では，開発した 1次元等価モデル (1DEM: One-Dimensional Equivalent Model)について

述べる．3.2.1節では，1DEMの表現行列について説明する．3.2.2節では，表現行列のパラメータ

を決定する方法を述べる．

1DEMでは数学的に可能な最大限の自由度を利用するため，素朴にパラメータを決定すると非物

理的な状態を含む可能性がある．そのため，3.2.3節では，高効率なバンド内輸送シミュレーション

を目的に，非物理的な状態を除去する手順について説明する．

3.2.1 １次元等価モデルの表現行列

1DEM の表現行列について説明する [12]．図 3.1 に示すような，格子定数 a の擬 1 次元鎖を

1DEMとして考える．このとき，最近接サイト間にのみ相互作用が存在すると仮定すると，系全体

のハミルトニアン行列は，

H =



. . .
. . .

. . .

ST D S
ST D S

ST D S

.. .
. . .

. . .


(3.1)

と表される．ここで，各サイトに N 個軌道が存在すると仮定すると，D は N ×N の実対称行列

であり，同一サイトに含まれる軌道間の相互作用を格納した行列と対応する．一方，S は N ×N

の実行列であり，異なる最近接サイトにそれぞれ含まれる軌道間の相互作用を格納した行列に対応

する．この擬 1次元鎖のバンド構造は，最近接サイト間にのみ相互作用があることに注意すると，

2.3節より，固有値問題，

[STe−ika +D + S eika]ψnk = En(k)ψnk (3.2)

S

D
a

図 3.1: 格子定数 a の擬 1 次元鎖. 同一サイト (黒丸) に含まれる軌道間の相互作用は行列 D に
よって記述され，最近接サイトにそれぞれ含まれる軌道間の相互作用は行列 S によって記述され
る．
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を解くことで求められる．ここで，k は波数，nは同一波数の固有状態を区別するバンド指数であ

る．上付きの Tは行列の転置を表す．D は実対称行列であるため，直交行列 U を用いて，

D′ = UTDU (3.3)

と対角化できる．S についても同じ U を用いて，

S′ = UTSU (3.4)

と表せる．ただし，S′ は一般に対角行列ではなく通常の実行列である．式 (3.2)の左から UT を乗

じて，UUT = I であることを用いると，

[UTSTUe−ika + UTDU + UTSU eika]UTψnk = En(k)U
Tψnk (3.5)

となり，式 (3.3)，式 (3.4)を用いると，

[S′Te−ika +D′ + S′ eika]ψnk = En(k)ψnk (3.6)

となる．ここで，UTψnk をあらためて ψnk とした．以上より，式 (3.1)のようにハミルトニアン

行列が，最近接サイト間でのみ相互作用が存在する形式で与えられる場合，バンド構造 En(k)を変

化させることなく D を対角表示できる．したがって，任意の擬 1次元鎖状の系について，行列 D

を，

D =


d1

d2
. . .

dN

 (3.7)

と N 個のパラメータで表し，行列 S を，

S =


s11 s12 . . . s1N

s21 s22 . . .
...

...
...

. . .
...

sN1 . . . . . . sNN

 (3.8)

と N2 個のパラメータで表すことができる．この N + N2 個のモデルパラメータ {θj} =

{d1, d2, · · · , dN , s11, s12, · · · , sNN} を適切に設定することで，任意の擬 1 次元鎖のバンド構造

En(k)を表現できる．

一般に DFT や強結合近似モデル (TBM: Tight-Binding Model) などの原子論モデルを用いる

と，価電子帯深くの低いエネルギーから伝導帯上部の高いエネルギーにわたる広い範囲のバンド構

造を計算できる．しかし，輸送計算に関与するのはバンドギャップ付近の電子状態のみであり，広

いエネルギー範囲のバンド構造は必要ない．1DEMでは N +N2 個のパラメータ {θj}を適切に設
定することで，与えられた広いエネルギー範囲にわたるバンド構造の中から，輸送に関与するバン

ドギャップ付近のバンド構造のみを表現する行列Dと行列 S を構成する．つぎの 3.2.2節で，モデ

ルパラメータ {θj}を決定する方法を述べる．
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3.2.2 モデルパラメータの決定方法

1DEMの適切なモデルパラメータは，目標とするバンド構造へのフィッティングを通して決定す

る．具体的には，以下で定式化するような，目標バンド構造と 1DEMのバンド構造との二乗誤差

を最小化することで {θj}を決定する．ただし，目標バンド構造 Ên(k)は，DFTや TBM，あるい

は実験などによって事前に明らかにしておく必要がある．

バンド構造に関する損失関数 L({θj})をつぎのように定義する．

L({θj}) =
1

2

∑
n

∑
k

[
Ên(k)− En(k)

]2
(3.9)

ここで，波数 k とバンド指数 nの総和をとる範囲は任意である．例えば，ka = 0 ∼ π/4の範囲で

バンド構造を再現したい場合には，その部分のみ評価すればよい．

式 (3.9)を効率よく最小化するには，モデルパラメータを微小変化させたときのバンド構造の微

小変化 ∂En(k)/∂θj を求める必要がある．一般に，固有値問題のパラメータ依存性は複雑な問題で

ある．本研究では ∂En(k)/∂θj を求めるために，ヘルマン・ファインマンの定理 [14]を用いた．

∂En(k)

∂θj
=

〈
ψnk

∣∣∣∣ ∂H(k)

∂θj

∣∣∣∣ψnk

〉
(3.10)

∂En(k)/∂θj の数値的な計算には TensorFlow [15] を用いた．TensorFlow は，機械学習に基づ

くアプリケーションを容易に開発できるよう設計された，柔軟かつ包括的なモジュール群を提供す

るライブラリである．このライブラリには自動微分機能が備わっており，勾配法に基づく様々な関

数最小化アルゴリズムを容易に利用できる．本研究では，損失関数の最小化アルゴリズムとして適

応モーメント推定 (ADAM: Adaptive Moment Estimation) [16] を採用した．ADAMは，過去の

勾配情報の 1 次および 2 次のモーメントを用いて学習率を適応的に調整することで，パラメータ

空間内の鞍点や局所最小値に留まることなく，大域的な最小値を効率よく探索するアルゴリズムで

ある．

図 3.2 に，式 (3.10) の損失関数を最小化するために繰り返す 3 つの手続きを示す．最初の手順

は試行ハミルトニアン H0 を用意することである．H0 は，適当に初期化されたパラメータ {θ0j}
から構成される D0 と S0 によって与えられる．つぎに，H0 を対角化することで，試行バンド構

造 E0
n(k) を計算する．その後，試行バンド構造 E0

n(k) と目標バンド構造 Ên(k) との二乗誤差を

計算し，損失関数 Lを得る．さらに，各手順ごとに微分係数 ∂En(k)/∂θj と ∂L/∂En(k)を求め，

ADAMアルゴリズムを適用し，Lを小さくする方向にモデルパラメータを {θ0j}から {θ1j}に更新
する．

以上の手順を，損失関数 Lが十分に小さい値となるまで繰り返すことで，目標バンド構造を再現

するモデルパラメータ {θj}を決定する．
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図 3.2: 損失関数 Lを最小化する計算の流れ．赤線は自動微分を表す．

3.2.3 バンド交差・反交差

3.2.1節で述べた 1DEMの表現行列では，バンドの交差を正確に表現できない場合がある．これ

は，系全体のハミルトニアンの副対角ブロック行列である S が，相互作用しないはずのバンド間の

行列要素に対して有限の値をとる可能性があるためである．したがって，3.2.1節で述べた 1DEM

の表現行列では，本来交差すべきバンド構造が反交差してしまう可能性がある．

このような問題は，元のハミルトニアン行列からブロッホ状態を直接抽出する行列次元削減

法 [10, 17–23] では起こらない．しかし，本研究で開発した 1DEMでは，バンド構造の情報のみか

らハミルトニアン行列を構築するため，3.2.1節で述べた行列Dと S に物理的な制限をほとんど設

けていない．その結果モデルパラメータの自由度が大きく，素朴にパラメータの最適化を実行する

と，非物理的な状態を含む可能性がある．

本研究では，1DEM がこのような非物理的な状態を含まないように，モード分割法およびバン

ド折返し・位相シフトによる方法を開発した [12]．まず，k ̸= 0 におけるバンド交差は，S の一部

の要素を事前にゼロに固定することで表現できる．この方法をモード分割法と呼び，詳細は後述す

る．一方，モード分割法を用いても，k = 0 におけるバンドの交差を表現することはできない．S

の値を実数に制限したまま k = 0 におけるバンド交差を表現するため，バンドの折返しと位相シフ

トを用いた解決方法を導入した．これらの手法は，第一に非物理的なバンド構造を取り除くことを

目的として導入されたものであるが，後述するように，結果的に計算量のさらなる削減につながる．

モード分割法

k ̸= 0におけるバンド交差を表現する手法であるモード分割法について述べる．まず，バンド構

造をいくつかのグループに分ける．このとき，各グループに属するバンドは，他のグループに属す

るいかなるバンドとも相互作用 (反交差)しないようにする．
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グループが全部で M 個ある場合，j 番目のグループに含まれるバンドの本数を mj とすると，

1DEMのハミルトニアンの大きさ N はつぎの式で与えられる．

N =

M∑
j=1

mj (3.11)

異なるグループは互いに相互作用していないので，系全体のハミルトニアンの対角ブロック行列 D

は，

D =


D(1)

D(2)

. . .

D(M)

 (3.12)

と与えられる．また，副対角行列 S は，

S =


S(1)

S(2)

. . .

S(M)

 (3.13)

と与えられる．ここで，D(j) は大きさが mj ×mj の実対角行列，S(j) は大きさが mj ×mj の実

行列である．それぞれのグループのバンド構造は，

[S(j) Te−ika +D(j) + S(j)eika]ψ
(j)
njk

= E(j)
nj

(k)ψ
(j)
njk

(3.14)

と与えられる．1DEMのバンド構造 En(k)は各グループのバンド構造の和集合となる．

En(k) =

M⋃
j=1

E(j)
nj

(k) (3.15)

3.2.1節で述べた 1DEMの表現行列では，パラメータの総数は N +N2 個である．一方，モード

分割法を用いた場合，パラメータの総数は
∑M

j=1(mj +m2
j )個となり，設定すべきパラメータの数

が減少する．そのため，最適なパラメータの探索をより高速に行うことができる．さらに，以下で

述べるように，量子輸送シミュレーションもより高速に実行できる．

NEGF 法では，ハミルトニアンと同じサイズの行列に対する逆行列演算がシミュレーション全

体の計算量の大部分を占める．モード分割法を用いない場合，逆行列演算の計算量は N3 に比例す

る．一方，モード分割法を用いると，逆行列演算の計算量は
∑

j m
3
j に比例する．そのため，逆行

列演算の計算量を削減でき，量子輸送シミュレーションを高速に行うことができる．

バンドの折返しおよび位相シフト

k = 0におけるバンドの交差を表現する手法であるバンドの折返しおよび位相シフトについて説

明する．図 3.3に示すように，1次元の系において波数空間における格子定数は，実空間における

格子定数に反比例する．系の実空間における格子定数を図 3.3(b)のように 2aと仮定した場合，実
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図 3.3: 1 次元モデルにおけるバンドの折返し．(a) 格子定数が a の 1 次元系のバンド構造．(b)

(a)と同じ系において，格子定数を 2aと仮定した場合のバンド構造．破線と赤矢印で示すように，
第一ブリルアンゾーンの長さが半分になるようにバンド構造が折り返す．

空間における格子定数が aのときのバンド構造 [図 3.3(a)]をちょうど折返したバンド構造が得られ

る．つづいて位相を π だけシフトさせることで，バンドの交差点を第一ブリルアンゾーンの端から

中心 (k = 0)に移動させることができる．

バンドの折返しおよび位相シフトは，対角行列 D(j) と副対角行列 S(j) とを，折り返す前のバン

ド構造に関する行列 D
(j)
o , S

(j)
o を用いて，

D(j) =

[
D

(j)
o S

(j)
o

S
(j) T
o D

(j)
o

]
(3.16)

S(j) = −

[
0 0

S
(j)
o 0

]
(3.17)

とそれぞれ定義することで実現できる．この方法を用いることで，k = 0 におけるバンド交差を

1DEMで表現できる．

3.3 バンド間輸送

3.2.1節では，1DEMの表現行列を定義し，そのバンド構造がモデルパラメータによって一意に

定まることを示した．3.2.2 節では，モデルパラメータを目標バンド構造へのフィッティングを通

して得る方法と，その最適化アルゴリズムとして ADAMを利用したことを記した．3.2.3 節では，

モード分割法とバンド折返しおよび位相シフトを用いて，モデルパラメータの探索範囲を狭め，非

物理的な状態を取り除く方法を述べた．

これらの手法を用いることで，バンド内輸送シミュレーションを精度良く実行するために十分な

情報を含んだ 1DEMを構築できる．しかし，この 1DEMではバンド間輸送シミュレーションを精

度良く実行することが難しい．その理由は主に以下の 3点にある．
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1つ目の理由は，減衰状態に関する情報をこれまでの 1DEMでは十分に表現できていない点にあ

る．一般にバンド間トンネルは，伝搬状態から減衰状態を経由して別の伝搬状態に接続する様子か

ら理解される [24–27]．したがって，減衰状態に関する分散関係を表す複素バンド構造も含めてモ

デルパラメータをフィッティングすることで，減衰状態の情報を含んだ 1DEMを構築することが

できる．この方法を 3.3.1節で述べる．

2 つ目の理由は，デバイスの実空間上の対称性をこれまでの 1DEM では考慮できていない点に

ある．本研究では計算例として，閃亜鉛鉱からなる量子細線構造を扱う．この半導体 1次元構造で

は，チャネルに導入するポテンシャルを左右反転させても透過関数は変化しない．しかし，対称性

を考慮していない 1DEMでは，チャネルに導入するポテンシャルを左右反転させると透過関数が

異なる値を取ってしまう．この問題を解決するため，1DEMのハミルトニアン行列に実空間上のパ

リティ変換に対する対称性を導入する必要がある．この方法を 3.3.2節で述べる．

3つ目の理由は，1DEMでは輸送方向に関する軌道の位置の分解能が，再現を目指す 1次元構造

が本来もつ分解能より低い点にある．1DEMでは行列 D に含まれる軌道が空間上のどの位置に局

在しているかを特定できない．この問題を解決するため，複数の単位胞をまとめて 1つの単位胞と

みなすことで位置の分解能を向上させる方法を開発した．この方法を 3.3.3節で述べる．

3.3.1 複素バンド構造に対するフィッティング

系全体のハミルトニアンが 1DEMを用いて，

H =



. . .
. . .

. . .

ST D S
ST D S

ST D S

.. .
. . .

. . .


(3.18)

と表されているとき，一般化固有値問題 Aχn(E) = zn(E)Bχn(E)，[
ST 0
0 1

]
︸ ︷︷ ︸

A

χn(E) = z

[
EI −D −S

1 0

]
︸ ︷︷ ︸

B

χn(E) (3.19)

の固有値 zn(E)を用いて，減衰定数 κn(E)は，

κn(E) = −Re [logz] /a (3.20)

と与えられる [5, 28]．ここで，aは格子定数，E はエネルギー，nは同一エネルギーの固有状態を

区別する添字である．以上より，系の減衰状態を特徴づける減衰定数 κn(E)は，モデルパラメータ

{θj}によって一意に定まることがわかる．
本研究では，固有値問題に関する摂動理論の式 (3.10)を用いるために式 (3.19)の一般化固有値
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問題をM = A−1B として，行列M に対する固有値問題に帰着した [13]．[
(ST)−1(EI −D) −(ST)−1S

1 0

]
︸ ︷︷ ︸

M

χn(E) = λn(E)χn(E) (3.21)

λn(E) = zn(E)−1 (3.22)

ここで，行列 S は 1DEMの行列であるため，つねに正則にとることができる．

モデルパラメータは，目標とする複素バンド構造へのフィッティングを通して決定する．すなわ

ち，目標の減衰定数 κ̂n(E)と，1DEMの減衰定数 κn(E) との 2乗誤差を最小化することで，モデ

ルパラメータを決定する．複素バンド構造に関する損失関数 L({θj})を，

L({θj}) =
1

2

∑
E

∑
n

[κ̂n(E)− κn(E)]
2

(3.23)

と定義する．ここで，エネルギー E と添字 nの総和をとる範囲は任意である．例えば，特定のエ

ネルギー範囲で複素バンド構造を再現したい場合には，その部分のみを評価すればよい．

式 (3.23)を効率よく最小化するには，モデルパラメータを微小変化させたときの複素バンド構造

の微小変化 ∂κn(E)/∂θj を求める必要がある．これは，式 (3.21)を用いることで，3.2.2 節で説明

した方法と同様に求められる．ADAMアルゴリズムを用いたパラメータ探索も同様に実行するこ

とができる．

3.3.2 空間反転対称性の導入

1DEMがパリティ変換に対して不変になる条件は，{
D = PDP (3.24)

S = PSTP (3.25)

を満たす行列 P が存在することである．ただし，P は T (i, j)を用いて，

P = T (i1, j1)T (i2, j2) · · ·T (il, jl) (3.26)

と表される．ここで，T (i, j)は単位行列の (i, i)成分および (j, j)成分を 0とし，かわりに (i, j)成

分および (j, i) 成分を 1 にした行列である．l は任意の自然数を表す．以下，この条件が，1DEM

がパリティ変換に対して不変となる十分条件である理由を説明する．

左右に電極をとりつけた 1次元の系において，遅延グリーン関数は，

GR(E) = [EI −HC − ΣL(E)− ΣR(E)]−1 (3.27)
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と表される (3.4節参照)．ただし，

HC =


D S

ST D
.. .

. . .
. . . S

ST D


︸ ︷︷ ︸

Ho

+


U1I

U2I
. . .

UnI


︸ ︷︷ ︸

UC

(3.28)

であり，Ho は電極を取り除いた場合の一様なチャネル領域のハミルトニアンで，UC はチャネル領

域において i 番目の単位胞のポテンシャルエネルギー Ui を格納した行列である．ΣL(E), ΣR(E)

はそれぞれ左電極，右電極の自己エネルギーを表す行列である．パリティ変換とはすなわち，

UC −→ UCP =


UnI

Un−1I
. . .

U1I

 (3.29)

と置きかえることを意味する．そのため，この系におけるパリティ演算子 Πは，

Π =


P

P

. .
.

P

 (3.30)

と表せる．したがって，Π = Π−1 = Π†に注意して，式 (3.24)，式 (3.25)が成り立っているならば，

ΠHoΠ
−1 = ΠHoΠ =


PDP PSTP

PSP PDP
.. .

. . .
. . . PSTP

PSP PDP

 = Ho (3.31)

となり，ハミルトニアンは空間反転操作に対して不変となる．例えば，S が対称行列ならば，明ら

かに 1DEMは空間反転操作に対して不変となる．

本研究では対称性を導入した 1DEMとして，

D =

[
C Q
Q C

]
(3.32)

S =

[
W M
V W

]
(3.33)

を用いた．ただし，行列 C は実対角行列で，行列 Q，V，W，M は実対称行列である．このとき，

式 (3.24)，式 (3.25)を満たす P は，

P =

[
0 I
I 0

]
(3.34)

である．
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3.3.3 拡張された単位胞による位置情報の追加

3.2.1節で述べた 1DEMでは，サイト 1つあたりの実空間上での長さが目標とする系の格子定数

aと等しいと仮定していた．ここで，任意の整数mを用い，サイト 1つあたりの長さが a/mであ

ると仮定すると，ハミルトニアンをつぎのように表すことができる．

H =



. . .
. . .

. . .

ST
(m) D(m) S(m)

ST
(m) D(m) S(m)

ST
(m) D(m) S(m)

. . .
. . .

. . .


(3.35)

D(m) =


1 2 · · · m

D S

ST D
.. .

. . .
. . . S
ST D

 (3.36)

S(m) =


1 2 · · · m

S

 (3.37)

この系では，図 3.4に示すように，サイトが m個並んで合計の長さが aになる．すなわち，行列

D(m) および S(m) は，単位胞を m個まとめて新しく構成した単位胞のハミルトニアンを表してい

る．この新しく構成した単位胞を，本研究では拡張された単位胞と呼ぶことにする．

拡張された単位胞から得られるバンド構造は，元の単位胞のバンド構造を，対応するより小さな

ブリルアンゾーンに折りたたむことで得られる．この点に注意して，拡張された単位胞のバンド

構造 E
(m)
n (k)が目標のバンド構造と一致するようにモデルパラメータを調整すればよい．ただし，

E
(m)
n (k)は，つぎの固有値問題によって定まる．

[ST
(m)e

−ika +D(m) + S(m) e
ika]ψ

(m)
nk = E(m)

n (k)ψ
(m)
nk (3.38)

一方，複素バンド構造についてはバンドの折返しが発生しないため，3.3.1節の方法で複素バンド構

造に対するフィッティングを行うことができる．

以上のように行列 D(m)，S(m) を構成することで，D(m) に含まれる軌道の位置を特定できる．

これは，図 3.4に示すように単位胞が等間隔で配置されているため，軌道がどの単位胞に含まれて

いるかを確認することで，軌道の位置がわかるためである．したがって，輸送方向に関する軌道の

位置の分解能が低いという 1DEMの問題は，拡張された単位胞を用いることで解決できる．
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図 3.4: サイト (黒丸)がm個並んで合計の長さが aになると考えた場合の 1次元系．それぞれの
サイトは行列D によって記述され，最近接のサイト同士の相互作用は行列 S によって与えられる．
行列 D(m)，S(m) は拡張された単位胞のハミルトニアンを表す．

3.4 1次元等価モデルに基づく非平衡グリーン関数法

NEGF 法は量子力学的効果を本質的に取り入れることが可能な計算手法の一つである．本節で

は，1DEM のような擬 1 次元モデルにおけるコヒーレントな透過関数の計算方法について説明す

る [2, 29–31]．

3.4.1 開いた系の取り扱い

輸送問題を扱うため，図 3.5に示すように，n個の単位胞からなるチャネル領域の左右に，半無

限の単位胞が連なる電極が接続された系を考える．ここで，最近接単位胞間にのみ相互作用がある

と仮定する．このとき，チャネル領域に加えて電極領域も含んだ系全体のハミルトニアンは，各領

域ごとのハミルトニアンを用いて， HL HLC 0

H†
LC HC HCR

0 H†
CR HR


︸ ︷︷ ︸

H

ΦL

ΦC

ΦR

 = E

ΦL

ΦC

ΦR

 (3.39)

図 3.5: N 個の単位胞からなるチャネル領域 (C)の左右に半無限の周期的で一様な電極 (L, R)が
接続された系．
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と表せる．ここで，各領域のハミルトニアン行列は以下の式で与えられる．

HL =


. . .

DL S

S† DL

，HLC =


S

 (3.40)

HC =



D1 S

S† D2 S

S† D3
. . .

. . .
. . . S

S† Dn


，HCR =


S

 (3.41)

HR =


DR S

S† DR

. . .

 (3.42)

Di は，孤立した単位胞のハミルトニアン D，i番目の単位胞におけるポテンシャルエネルギー Ui，

単位行列 I を用いて，
Di = D + UiI (3.43)

と表され，DL，DR も同様に電極におけるポテンシャルエネルギー UL，UR を用いて，

DL = D + ULI, DR = D + URI (3.44)

と表される．

全系の遅延グリーン関数行列 (以下，誤解のない場合は，単にグリーン関数と呼ぶ)Gr(E)は，

Gr(E) = [EI −H+ i0]−1 =

EI −HL + i0 −HLC 0

−H†
LC EI −HC + i0 −HCR

0 −H†
CR EI −HR + i0

−1

(3.45)

と表せる．ここで，ブロックごとにグリーン関数を定義する． GL GLC GLR

GCL G GCR

GRL GRC GR

 =

EI −HL + i0 −HLC 0

−H†
LC EI −HC + i0 −HCR

0 −H†
CR EI −HR + i0

−1

(3.46)

この式より，チャネル領域のグリーン関数 G(E)は，つぎのように表せる．

G(E) = [EI −HC − ΣL(E)− ΣR(E)]−1 (3.47)

ここで，ΣL(E)および ΣR(E)は，左電極および右電極の効果を表す自己エネルギーであり，孤立

した電極のグリーン関数 gL(E) = [EI −HL + i0]−1，gR(E) = [EI −HR + i0]−1 を用いて，

ΣL(E) = H†
LC gL(E)HLC, ΣR(E) = HCR gR(E)H†

CR (3.48)
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と与えられる．

チャネルが電極から孤立している場合，チャネルのグリーン関数は g(E) = [EI − HC + i0]−1

で与えられる．一方，チャネルが左右の電極に接続された場合，式 (3.47) を見ると，HC →
HC +ΣL(E) + ΣR(E)となることがわかる．すなわち，ΣL/R(E)は，チャネルが電極に接続され

た効果を表す．

後述するように，半無限の孤立した電極のグリーン関数 gL(E)，gR(E)から，式 (3.48)を用いて

ΣL/R(E)を求めることができる．さらに，自己エネルギー ΣL/R(E)から，式 (3.47)を用いて，電

極に接続されたチャネルのグリーン関数 G(E)が計算できる．

なお，式 (3.46)から式 (3.47)への変形は，以下のとおりである．式 (3.46)は，EI −HL + i0 −HLC 0

−H†
LC EI −HC + i0 −HCR

0 −H†
CR EI −HR + i0

 GL GLC GLR

GCL G GCR

GRL GRC GR

 = 1 (3.49)

と表される．この式において，左行列の 2行目と右行列の 2列目の積より，

−H†
LCGLC + [EI −HC + i0]G−HCRGRC = 1 (3.50)

が得られる．同様に 1行目と 2列目および 3行目と 2列目の積より，

[EI −HL + i0]︸ ︷︷ ︸
g−1
L

GLC −HLCG = 0, −H†
CRG+ [EI −HR + i0]︸ ︷︷ ︸

g−1
R

GRC = 0 (3.51)

が得られる．これらの式より GLC = gLHLCG，GRC = gRH
†
CRGと表されるため，式 (3.50)に代

入すると，
−H†

LCgLHLCG+ [EI −HC + i0]G−HCRgRH
†
CRG = 1 (3.52)

すなわち，
[E −HC −H†

LCgLHLC︸ ︷︷ ︸
ΣL

−HCRgRH
†
CR︸ ︷︷ ︸

ΣR

]G = 1 (3.53)

となり，式 (3.47)が得られる．ここで，自己エネルギー ΣL/R(E)が複素行列となることから，微

小量 +i0を省略した．

3.4.2 電極の自己エネルギー

電極の効果を表す自己エネルギー ΣL/R(E)が求まると，式 (3.47) よりチャネルのグリーン関数

G(E)を求めることができる．行列 ΣL/R(E)のサイズは，チャネルのハミルトニアン HC と同じ

サイズであるため，式 (3.47)は有限サイズの逆行列演算となり数値計算可能である．

しかし，式 (3.48)を用いて自己エネルギーを求めるためには，無限次元の行列を扱わなくてはな

らず，数値計算にあたり工夫が必要となる．以下で述べるように，電極部分が一様・周期的である

ことを利用することにより，数値計算が可能となる．
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右側電極に関するグリーン関数 gR(E) = [E −HR + i0]−1 について考える．gR(E)を，

gR =

gn+1,n+1 gn+1,n+2 · · ·
gn+2,n+1 gn+2,n+2 · · ·

...
...

. . .

 (3.54)

と表す．ここで，gi,j は，DR，S と同じサイズの行列である．以下，gi,j，DR，S のサイズを，一

般的に，M ×M と表す．式 (3.41)で示したように，HCR は左下のブロックにのみ値があるため，

ΣR = HCRgR(E)H†
CR =


Sgn+1,n+1S

†

 (3.55)

となり，ΣR は右下のブロックにのみ値があることがわかる．また，gi,j (i, j ≥ n + 1) のうち，

gn+1,n+1 のみが ΣR の計算に必要であることもわかる．一方，HR は式 (3.42)で与えられるため，EI −DR + i0 −S · · ·
−S† EI −DR + i0 · · ·
...

...
. . .


gn+1,n+1 gn+1,n+2 · · ·
gn+2,n+1 gn+2,n+2 · · ·

...
...

. . .

 = 1 (3.56)

が得られる．この式から gn+1,n+1 に関係する部分を取り出す．

[EI −DR + i0]gn+1,n+1 − Sgn+2,n+1 = 1 (3.57)

−S†gn+1,n+1 + [EI −DR + i0]gn+2,n+1 − Sgn+3,n+1 = 0 (3.58)

下側の式 (3.58)は，右電極における波動方程式，

−S†Φl−1 + [EI −DR]Φl − SΦl+1 = 0 (3.59)

と同じ形をしている．このことを利用して式 (3.58)を解く．

電極領域は一様・周期的であるため，位相因子 z を用いて波動関数は，

Φl+1 = zΦl (3.60)

と表せる．この式を利用して，式 (3.59)から Φl−1 を消去すると，

−z−1S†Φl + [E −H]Φl − SΦl+1 = 0 (3.61)

が得られる．この式と式 (3.60)をまとめると，[
S† 0
0 1

]
︸ ︷︷ ︸

A

[
Φl

Φl+1

]
︸ ︷︷ ︸
χ

= z

[
EI −DR −S

1 0

]
︸ ︷︷ ︸

B

[
Φl

Φl+1

]
︸ ︷︷ ︸
χ

(3.62)

となり，一般化固有値問題 Aχ = zBχが得られる．この一般化固有値問題を解くと，固有値 zi と

固有ベクトル χi の組 (zi, χi)が最大 2M 組得られる．ここでは，ちょうど 2M 個の組が得られた

場合について考える．それら 2M 個の組のうち，半分のM 個は電極内を右向きに進む波，残り半

分は左向きに進む波を表す．
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右電極の遅延グリーン関数は，チャネルから外へ流れ出る状態から構成されるべきである．そこ

で，右向きに進行する波のみを取り出し (左右の判定方法は次節で述べる)，それらの固有値と固有

ベクトルとを，

zi, χi =

[
ψi

ziψi

]
(i = 1, 2, . . . ,M) (3.63)

と表す．式 (3.59) で表した電極内の波動方程式の右向き解 Φl は，一般的に ψi の線形結合で表

せる．
Φl =

∑
i

ci(zi)
lψi (3.64)

ここで，ci は Φl の展開係数である．いま，

ΨR =

ψ1 ψ2 · · · ψM

，ZR =


z1

z2
. . .

zM

，C =


c1

c2
. . .

cM

 (3.65)

なる正方行列 ΨR, ZR, C を導入する (zi, ψi が右向きの波であることを示すため添字 Rを追加し

た)．すると，式 (3.64)は，Φl = ΨRZ
l
RC と表せる．同様にして，Φl+1 = ΨRZ

l+1
R C であるため，

これら 2つの式から C を消去し，
Φl+1 = ΨRZRΨ

−1
R Φl (3.66)

が得られる．この式に現れる ΨRZRΨ
−1
R のように隣同士の波動関数を結ぶ因子をブロッホ因子と

呼ぶ．

式 (3.59)を満たす右向きブロッホ解 Φl が，式 (3.66)を満たすことから，式 (3.58)を満たす gi,j

は，
gn+2,n+1 = ΨRZRΨ

−1
R gn+1,n+1, gn+3,n+1 = [ΨRZRΨ

−1
R ]2gn+1,n+1 (3.67)

を満たすことがわかる．これらの式を，式 (3.57)と式 (3.58)に代入すると，

[E −H − SΨRZRΨ
−1
R ]gn+1,n+1 = 1 (3.68)

{−S† + [E −H − SΨRZRΨ
−1
R ]ΨRZRΨ

−1
R }gn+1,n+1 = 0 (3.69)

となり，
gn+1,n+1 = ΨRZRΨ

−1
R S†−1

(3.70)

が得られる．この式より，gn+1,n+1 を有限サイズの行列演算で求めることができる．すなわち，自

己エネルギー ΣR の右下ブロック成分 σR は，

σR = Sgn+1,n+1S
† = SΨRZRΨ

−1
R (3.71)

と計算できる．

同様に，左側電極の効果を表す自己エネルギー ΣL の左上ブロック成分 σL は，

σL = S†g0,0S = S†ΨLZ
−1
L Ψ−1

L (3.72)

と与えられる．ここで，ZL, ΨL は左電極内で左向きに進むブロッホ波に関する固有値，固有ベク

トルから構成される行列を表す．
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3.4.3 ブロッホ波の進行方向の判定方法

式 (3.62)の一般化固有値問題を解くと，固有値 zi と固有ベクトル χi の組 (zi, χi)が最大 2M 組

得られる．そのうち，右向きに進む波はM 個，左向きに進む波はM 個である．このブロッホ波の

進行方向の判定方法について述べる [32]．

ブロッホ波は，伝搬状態と減衰状態の２つに大きく分けることができる．伝搬状態では，位相因

子が |z| = 1となり，減衰状態では，位相因子が |z| ̸= 1となる．伝搬状態と減衰状態では進行方向

の判定方法が異なる．

減衰状態の場合

減衰状態は |z| < 1と |z| > 1の状態が同数存在し，それぞれ，正方向と負方向に進行しながら減

衰していく状態である．

伝搬状態の場合

伝搬状態についても正方向と負方向に進行する状態が同数存在する．しかし，減衰状態の場合の

ように，位相因子の絶対値では判定することができない．固有ベクトル ψi と固有値 zi を用いて固

有状態の速度を求めることで，進行方向を判定することができる [32]．

固有ベクトル ψi と固有値 zi は，式 (3.59)を満たす．

S†z−1
i ψi +Dψi + Sziψi = Eψi (3.73)

この式の両辺に，左から ψ†
i をかけると，

z−1
i ψ†

iS
†ψi + ψ†

iDψi + ziψ
†
iSψi = E|ψi|2 (3.74)

が得られる．すなわち，

E =
1

|ψi|2
[
z−1
i ψ†

iS
†ψi + ψ†

iDψi + ziψ
†
iSψi

]
(3.75)

が得られる．この式の右辺で k に依存するのは，位相因子 zi = exp(ika)のみであるため，速度 v

は，

v =
1

ℏ
∂E

∂k
=

ia

ℏ|ψi|2
[
−z−1

i ψ†
iS

†ψi + ziψ
†
iSψi

]
(3.76)

となる．ここで z−1
i ψ†

iS
†ψi = (ziψ

†
iSψi)

∗ であるため，括弧内は i2Im[ziψ
†
iSψi]となり，

v = − 2a

ℏ|ψi|2
Im[ziψ

†
iSψi] (3.77)

が得られる．この式より，v の正負がわかり進行方向を判定することができる．
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3.4.4 透過関数

チャネルのグリーン関数 G(E)と電極の自己エネルギー ΣL/R(E)とを用いて以下のように透過

関数 T (E)を計算することができる [2]．

T (E) = Tr
[
ΓL(E)G(E)ΓR(E)G†(E)

]
(3.78)

ここで，ΓR(E)および ΓL(E)は，

ΓR(E) = i
[
ΣR(E)− Σ†

R(E)
]
， ΓL(E) = i

[
ΣL(E)− Σ†

L(E)
]

(3.79)

と与えられる．式 (3.55)および式 (3.71)で与えられるように，ΣR(E)は右下ブロックにのみ値が

ある．同様に ΣL(E)は左上ブロックにのみ値がある．したがって，ΓR(E)，ΓL(E)はそれぞれ右

下ブロック，左上ブロックにのみ値があり，これらを γR(E)，γL(E)とおくと，式 (3.78)を以下の

ように式変形することができる．

T (E) = Tr


γL 

G1,1 · · · G1,n

...
. . .

...
Gn,1 · · · Gn,n




γR


G

†
1,1 · · · G†

n,1
...

. . .
...

G†
1,n · · · G†

n,n




= Tr
[
γL(E)G1,n(E)γR(E)G†

1,n(E)
]

(3.80)

ここで，γL(E)および γR(E)は，

γR(E) = i
[
σR(E)− σ†

R(E)
]
， γL(E) = i

[
σL(E)− σ†

L(E)
]

(3.81)

である．以上より，透過関数 T (E) を計算するのに必要となるのは，G(E) の右上ブロック成分

G1,n(E)のみであり，グリーン関数 G(E)の全要素を計算する必要はないことがわかる．

NEGF法では，グリーン関数 G(E)を求める式 (3.47)の逆行列演算がシミュレーションのボト

ルネックとなる．そのため，逆行列を計算する行列がブロック三重対角であることを利用した高

速計算手法である再帰グリーン関数法 [33, 34] がよく用いられる．この方法では，グリーン関数

G(E)の全要素を計算することなく，右上のブロック成分 G1,N を効率的に計算することができる．

本研究では，高速計算手法として再帰グリーン関数法を採用した．

3.5 シミュレーション結果

本節では，開発した 1DEMを様々な半導体 1次元構造に適用した結果を述べる．具体的に想定

した半導体 1次元構造は，アームチェア端グラフェンナノリボンに加え，Si，GaAs，InAs，AlAs

量子細線である．

はじめに，TBMに基づいてバンド構造を計算した．Si，GaAs，InAs，AlAs量子細線の計算に

は，スピン軌道相互作用を無視した最近接 sp3d5s∗TBMを用いた．このモデルでは，各原子にそれ

ぞれ 10個の基底が存在する．そのため，単位胞に含まれる原子数を Na とすると，TBMの行列サ
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(c) (d)

図 3.6: (a)リボン幅 wのアームチェア端グラフェンナノリボン．青矩形は単位胞を表し，単位胞に
は炭素原子が 2w 個含まれる．(b)対角行列 D と対称行列 S で表現された 1DEM．(c)(d)w = 4

および w = 13におけるバンド構造．黒実線は TBMから計算したバンド構造，破線は 1DEMか
ら計算したバンド構造を表す．エネルギーは最近接炭素原子間のホッピングエネルギー tによって
規格化されている．

イズは NTBM = 10Na となる．強結合パラメータは，J.M. Jancuらによって報告されたパラメー

タ [35]を用いた．

つぎに，TBMから計算したバンド構造を再現するように，1DEMを構築した．さらに，TBM

に基づく NEGF 法 (TBM-NEGF) [36] から計算した輸送特性と，1DEM に基づく NEGF 法

(1DEM-NEGF)から計算した輸送特性を比較した．

3.5.1 バンド構造

図 3.6(a)に示すようなリボン幅が w のアームチェア端グラフェンナノリボンを考えた．青色の

矩形は単位胞を表し，その中には炭素原子が 2w個含まれる．TBMによるバンド構造計算では，最

近接原子の pz 軌道間にのみホッピングエネルギー tが存在すると仮定した．そのため，TBMの行

列サイズは NTBM = 2wとなる．

このリボン幅 w のアームチェア端グラフェンナノリボンに対して 1DEMを構築した．図 3.6(b)

は，擬 1次元鎖で表される 1DEMを表している．

図 3.6(c) は，w = 4 のアームチェア端グラフェンナノリボンのバンド構造を表す．黒実線は

NTBM = 8の TBMから計算したバンド構造である．このうち，バンド端から約 0.6tの範囲を再

現するように 1DEMを構築した．このようなバンド端付近のエネルギー範囲を，輸送エネルギー

窓 (Transport Window)と呼ぶ．図 3.6(c)の赤破線は，N = 4の 1DEMから計算したバンド構造

であり，1DEMが輸送エネルギー窓内のバンド構造を精度良く表現していることがわかる．TBM

に対するサイズ削減比は，N/NTBM = 4/8である．
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図 3.7: Si 量子細線の模式図．(a)x，y，z 軸方向の結晶方位はいずれも ⟨100⟩．(b) 断面形状は
h× hの正方形を仮定．(c) Si量子細線のバンド端付近のバンド構造を再現する 1DEM．

1DEMのサイズ N をどの程度に設定すれば，輸送エネルギー窓内のバンド構造を精度良く表現

できるかを，事前に知ることは難しい．より効果的なサイズ削減比を達成するには，必要十分な N

を設定することが重要である．本研究では，徐々に N を大きくしていき，目標のバンド構造を表

現できたときの 1DEMを用いて，バンド計算や量子輸送計算を行った．この例では，N = 4とす

ることで，TBMのバンド構造を精度良く表現できた．なお，N に対するモデルパラメータ数はお

よそ N2 に比例して増加するため，N を増やすとバンド構造の表現力が急激に向上すると考えら

れる．

図 3.6(d) は，w = 13 のアームチェア端グラフェンナノリボンのバンド構造を表す．黒実線は

NTBM = 26 の TBM から計算したバンド構造である．赤破線と緑破線は，それぞれ m1 = 10，

m2 = 10とするモード分割法を用いて構築した N = 20の 1DEMを表している．1DEMのバンド

構造は，TBMのバンド構造と精度良く一致していることがわかる．TBMに対するサイズ削減比

は，N/NTBM = 20/26である．これらの例では，もとから TBMのサイズがある程度小さいため，

サイズ削減の効果はそれほど大きくない．

図 3.7(a)(b)は，正方形断面の Si量子細線を表す．輸送方向 (x軸方向)と断面方向 (y 軸および

z 軸方向)の結晶方位はいずれも ⟨100⟩とした．1辺が hの正方形に原子を敷き詰めることで，断面

の原子配置を決定した．この 1次元構造に対して 1DEMを構築した．図 3.7(c)は，擬 1次元鎖で

表される 1DEMを表す．

図 3.8は，h = 2 nmの Si量子細線の正孔に関するバンド構造を表す．図 3.8(a)は，NTBM = 1120

の TBM から計算したバンド構造である．一方，図 3.8(b) は，m1 = 10 (赤破線)，m2 = 20 (青

破線) とするモード分割法を用いて構築した N = 30 の 1DEM を表す．k = 0 でのバンド交差

を表現するために，バンドの折返しおよび位相シフトを用いた．TBM に対するサイズ削減比は，

N/NTBM = 30/1120である．1DEMが，バンド端から約 0.22 eVの輸送エネルギー窓内のバンド
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図 3.8: h = 2 nm の Si 量子細線の正孔に関するバンド構造．(a)NTBM = 1120 の TBM．
(b)m1 = 10 (赤破線)，m2 = 20 (青破線) とするモード分割法を用いて構築した N = 30 の
1DEM．(c)m1 = 10 (赤破線)，m2 = 20 (青破線)，m3 = 5 (緑破線)とするモード分割法を用い
て構築した N = 35の 1DEM．

構造を精度良く表現していることがわかる．

図 3.8(c)は，m1 = 10 (赤破線)，m2 = 20 (青破線)，m3 = 5 (緑破線)とするモード分割法を用

いて構築したN = 35の 1DEMを表す．k = 0でのバンド交差を表現するため，バンドの折返しお

よび位相シフトを用いた．TBMに対するサイズ削減比は，N/NTBM = 35/1120である．1DEM

が，バンド端から約 0.58 eVの輸送エネルギー窓内のバンド構造を精度良く表現していることがわ

かる．このように，サイズ N を変えることで，1DEMはより広いエネルギー範囲のバンド構造を

表現できる．

これらの例では，元の TBMのサイズがNTBM = 1120と大きいため，1DEMを用いることで大

幅にハミルトニアン行列サイズを削減できることがわかる．

3.5.2 バンド内輸送シミュレーション

構築した 1DEMに基づく 1DEM-NEGFを用いて，透過関数をシミュレーションした．ソース，

ドレイン，チャネル領域はすべて同一の物質および構造からなると仮定した．チャネル領域には，

つぎの式で表されるエカート型ポテンシャル [37]を導入した．

V (x) =
(
√
VG +

√
VG + VSD)

2ξ

(1 + ξ)2
− VSDξ

1 + ξ
(3.82)

ここで，ξ = exp(2πx/l)である．エカート型ポテンシャルはMOSFETのポテンシャル分布を模

擬する．VG がゲートバイアス，VSD がソースドレイン間のバイアス，lがゲート長を表すパラメー

タである．

はじめに，p型デバイスへの応用を想定し，正孔の輸送シミュレーションを行った．図 3.8(b)の
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図 3.9: (a)h = 2 nmの Si量子細線の正孔に関するバンド構造．NTBM = 1120の TBMから計
算した．(b)黒実線は NTBM = 1120の TBMに基づく TBM-NEGFから計算した透過関数，赤
破線は N = 30の 1DEMに基づく 1DEM-NEGF から計算した透過関数を表す．輸送エネルギー
窓幅は約 0.22 eVである．挿入図はチャネルに導入したポテンシャル分布を表す．
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図 3.10: (a)h = 1.35 nm の Si 量子細線のバンド構造．NTBM = 600 の TBM から計算した．
(b) 黒実線は NTBM = 600 の TBM に基づく TBM-NEGF から計算した透過関数，赤破線は
N = 40の 1DEMに基づく 1DEM-NEGFから計算した透過関数を表す．輸送エネルギー窓幅は
約 0.65 eVである．挿入図はチャネルに導入したポテンシャル分布を表す．
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N = 30の 1DEMに基づき，1DEM-NEGFを用いて透過関数を計算した．これを元の NTBM =

1120の TBMに基づく TBM-NEGFを用いて計算した透過関数と比較した．シミュレーションの

さい，VG = 0.05 V，VSD = 0.05 V，l = 10.9 nm とするエカート型ポテンシャルをチャネルに

導入した．図 3.9(a) に，NTBM = 1120 の TBM から計算したバンド構造を示す．図 3.9(b) に，

1DEM-NEGF から計算した透過関数 TEM(E) を赤破線で，TBM-NEGF から計算した透過関数

TTBM(E)を黒実線で示す．1DEMは，エネルギー幅約 0.22 eVの輸送エネルギー窓内の透過関数

を再現していることがわかる．1DEM-NEGFと TBM-NEGFの誤差は，もっとも透過関数の誤差

が大きいエネルギーにおいて，maxE [TTBM(E)− TEM(E)] ≈ 0.021 (相対誤差で 1.2 %)となった．

つぎに，n型デバイスへの応用を想定し，電子の輸送シミュレーションを行った．図 3.10(a)は，

h = 1.35 nm の Si 量子細線のバンド構造である．NTBM = 600 の TBM から計算した．このう

ち，バンド端からエネルギー幅約 0.65 eV の範囲のバンド構造を表現する N = 40 の 1DEM を

構築した．構築した 1DEM に基づき，1DEM-NEGF を用いて透過関数を計算した．これを元の

NTBM = 600の TBMに基づく TBM-NEGFを用いて計算した透過関数と比較した．シミュレー

ションのさい，VG = 0.15 V，VSD = 0.15 V，l = 21.8 nmとするエカート型ポテンシャルをチャネ

ルに導入した．図 3.10(b)に，1DEM-NEGFから計算した透過関数 TEM(E)を赤破線で，TBM-

NEGFから計算した透過関数 TTBM(E)を黒実線で示す．1DEMは，エネルギー幅約 0.65 eV の

輸送エネルギー窓内の透過関数を再現していることがわかる．1DEM-NEGFと TBM-NEGFの誤

差は，もっとも誤差が大きいエネルギーにおいて，maxE [TTBM(E)− TEM(E)] ≈ 0.027 (相対誤差

で 1.0%)となった．

以上のように，電子と正孔どちらのバンド内輸送シミュレーションも，1DEMで高精度かつ高速

に行うことができる．

3.5.3 直接遷移型半導体におけるバンド間輸送シミュレーション

図 3.11(a)(b) に示すような III-V 族化合物半導体からなる量子細線に対して，1DEM を適用し

た．量子細線の輸送方向 (x軸方向)，断面方向 (y 軸および z 軸方向)の結晶方位はいずれも ⟨100⟩
とした．1辺が hの正方形に原子を敷き詰めることで，断面の原子配置を決定した．1DEMを構築

した後，1DEM-NEGFを用いてバンド間輸送シミュレーションを行った．

本節では，直接遷移型半導体である GaAs と InAs を例として扱った．どちらも TBM のサイ

ズは NTBM = 600 とし，1DEM のサイズは N = 48 とした．ただし，図 3.11(c) に示すように，

m = 4 とする拡張された単位胞を用いた．また，バンド間輸送を扱うために，パリティ対称性を

1DEMに導入した．さらに，TBMの伝導帯端および価電子帯端付近の E-k関係に加えて，バンド

ギャップ中の E-κ関係を表現するように，1DEMのモデルパラメータを調整した．

図 3.12(a)は，h = 1.41 nmの GaAs量子細線のバンド構造を表す．右側のパネルは実バンド構

造 (E-k 関係)を表し，左側のパネルは複素バンド構造 (E-κ関係)を表す．NTBM = 600の TBM

から計算した結果を黒実線で示す．また，N = 48の 1DEMから計算したバンド構造を赤破線で示

す．輸送エネルギー窓内における E-k 関係，およびもっとも内側の E-κ関係がよく一致している

ことがわかる．
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図 3.11: 閃亜鉛鉱量子細線の模式図．(a)x，y，z 軸方向の結晶方位はいずれも ⟨100⟩．(b) 断
面形状は h × h の正方形を仮定．(c) 閃亜鉛鉱量子細線のバンド端付近のバンド構造を再現する
1DEM．拡張された単位胞 (m = 4) を用いた．
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図 3.12: (a)h = 1.41 nm の GaAs 量子細線のバンド構造．黒実線は NTBM = 600 の TBM か
ら計算した．赤破線は N = 48の 1DEMから計算した．(b)h = 1.51 nmの InAs量子細線のバ
ンド構造．黒実線は NTBM = 600の TBMから計算した．赤破線は N = 48の 1DEMから計算
した．
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図 3.13: (a)h = 1.41 nmの GaAs量子細線における，バンド間トンネル透過関数 T (E)のエネ
ルギー依存性．黒実線は NTBM = 600の TBMから計算した．赤破線は N = 48の 1DEMから
計算した．(b)GaAs，InAs量子細線における，トンネル確率のトンネル距離 ℓ依存性．黒実線は
NTBM = 600 の TBM から計算した．破線はそれぞれ N = 48 の 1DEM から計算した．挿入図
は (a)(b)の計算においてチャネルに導入したエカート型ポテンシャルを表す．

つぎに，NEGF法を用いて，バンド間トンネル (BTBT: Band-to-band Tunneling)シミュレー

ションから透過関数を求めた．ソース，ドレイン，チャネル領域はすべて同一の物質および構造

からなると仮定した．チャネル領域には，式 (3.82) で与えられるエカート型ポテンシャルを導入

した．ただし，エカート型ポテンシャルがトンネル FET のポテンシャル分布を模擬するように，

VG = 0，VSD = Vg +∆E とした．ここで，Vg は，TBMから計算した系のバンドギャップ表す．

∆E はトンネル窓であり，伝導帯と価電子帯がエネルギー的にどれだけ重なっているかを表す．

図 3.13(a)に透過関数のシミュレーション結果を示す．黒実線はTBM-NEGF，赤破線は 1DEM-

NEGFを用いて計算した透過関数である．もっとも誤差が大きいエネルギーにおいて，透過関数の

相対誤差は 5.8%であった．1DEM-NEGFを用いて計算した透過関数は，TBM-NEGFの結果と

比較的よく一致していることがわかる．

図 3.13(b)は，最大トンネル確率のトンネル距離 ℓ依存性を表す．ここで，最大トンネル確率は透

過関数 T (E)の最大値maxE(T (E))とした．また，図 3.13(b)の挿入図に示すように，トンネル距

離 ℓは，トンネル窓の中央における価電子帯と伝導帯の距離を表す．図 3.13(b)には，h = 1.51 nm

の InAs量子細線の結果も合わせて示した．InAs量子細線について，TBMと 1DEMのバンド構

造を図 3.12(b)に示す．1DEM-NEGFを用いて計算した最大トンネル確率は，TBM-NEGFの結

果と比較的よく一致していることがわかる．

つぎに，最大 BTBT電流 Imax を求めた．Imax は透過関数 T (E) を用いて，つぎの式から計算

した．

Imax =
nspe

ℏ

∫
dE

2π
T (E) (3.83)
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図 3.14: (a)h = 1.41 nmの GaAs量子細線における，最大バンド間トンネル電流 Imax のトンネ
ル距離 ℓ依存性．NTBM = 600の TBMに基づく結果を実線で，N = 48の 1DEMに基づく結果
を破線で示す．トンネル窓を∆E = 0.10，0.25，1.00 eVとした結果をそれぞれ，赤線，緑線，青
線で表す．(b)h = 1.41 nmの GaAs量子細線における，最大バンド間トンネル電流 Imax のトン
ネル窓 ∆E 依存性．NTBM = 600 の TBM に基づく結果を実線で，N = 48 の 1DEM に基づく
結果を破線で示す．トンネル距離を ℓ = 3.0, 4.5, 8.0 nmとした場合の結果をそれぞれ，赤線，緑
線，青線で表す．

ここで，nsp = 2 はスピンの縮退度を表す．左側電極 (ソース電極) の状態は電子で完全に占有さ

れ，右側電極 (ドレイン電極)の状態は完全に空であると仮定した．電極の電子占有状態を考慮した

BTBT電流は，式 (3.83)よりも小さくなる．

h = 1.41 nmの GaAs量子細線の最大 BTBT電流 Imax を計算した結果を述べる．図 3.12(a)に

おいて黒実線で表される NTBM = 600の TBMと，赤破線で表される N = 48の 1DEMとを用い

て，それぞれ Imax を計算した．

図 3.14(a) に，∆E = 0.10, 0.25, 1.00 eV とした場合における Imax のトンネル距離 ℓ 依存性

を示す．TBM-NEGF の結果は実線で，1DEM-NEGF の結果は破線で示す．Imax はトンネル距

離とともに指数関数的に減少することがわかる．1DEM は TBM の結果をよく再現しており，ℓ

の増加とともに Imax の相対誤差は減少することがわかる．例えば，ℓ = 5 nm の場合，相対誤差

|IEM
max − ITBM

max |/ITBM
max は約 10%である．一方，ℓ = 15 nmの場合，約 1%まで相対誤差が減少す

ることがわかる．

この理由はつぎのように考えられる．トンネル距離 ℓが短い場合，チャネル内のポテンシャル分

布は急峻に変化する．そのため，電子がバンドギャップを通過して価電子帯から伝導帯へトンネ

ルするとき，もっとも内側の減衰状態から外側の減衰状態へ遷移する確率が高くなると考えられ

る [38]．N = 48の 1DEMはもっとも内側の減衰状態のみを考慮して構築した [図 3.12(a)参照]．

したがって，トンネル距離 ℓが短い場合には，Imax の相対誤差が大きくなると考えられる．

図 3.14(b) に，Imax の ∆E 依存性を示す．TBM-NEGF の結果は実線で，1DEM-NEGF の結
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図 3.15: (a)h = 1.35 nm の Si 量子細線のバンド構造．NTBM = 600 の TBM に基づく結果を
実線で，N = 48 の 1DEM に基づく結果を破線で示す．(b)h = 1.41 nm の AlAs 量子細線のバ
ンド構造．NTBM = 600の TBMに基づく結果を実線で，N = 48の 1DEMに基づく結果を破線
で示す．

果は破線で示す．1DEMは TBMの Imax をよく再現していることがわかる．

3.5.4 間接遷移型半導体におけるバンド間輸送シミュレーション

3.5.3節では，直接遷移型半導体である GaAsおよび InAsからなる量子細線について 1DEMを

構築し，バンド間輸送シミュレーションを行った．これに対して本節では，間接遷移型半導体であ

る Siおよび AlAsからなる量子細線について 1DEMを構築し，バンド間輸送シミュレーションを

行った結果を述べる．

図 3.15(a)に，h = 1.35 nmの Si量子細線のバンド構造を示す．黒実線はNTBM = 600の TBM

を用いて計算したバンド構造である．このバンド構造を再現するように 1DEMを構築した．構築

したN = 48の 1DEMのバンド構造を，図 3.15(a)の破線に示す．価電子帯と伝導帯をつなぐもっ

とも内側の減衰状態がよく再現できていることがわかる．

つぎに，NEGF法を用いて透過関数をシミュレーションした．図 3.16(a)に，透過関数 T (E)の

エネルギー依存性を示す．黒実線および黄破線はそれぞれ，TBM-NEGFおよび 1DEM-NEGFを

用いて計算した透過関数である．両者の値は大きく異なることがわかる．

図 3.16(b)に，トンネル確率のトンネル距離依存性を示す．図には AlAs，GaAs，InAs量子細線

の結果も合わせて示した．ただし，GaAs，InAs量子細線については 3.5.3節で構築したN = 48の

1DEMを用いた．AlAs量子細線については，TBMと 1DEMのバンド構造を図 3.15(b)に示す．

図 3.16(b)より，直接遷移型半導体 (GaAs，InAs)の場合では，1DEM-NEGFの結果は TBM-
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図 3.16: (a)h = 1.35 nm の Si 量子細線のバンド間トンネル透過関数 T (E)．NTBM = 600 の
TBMに基づく結果を実線で，N = 48の 1DEMに基づく結果を黄破線で示す．(b)GaAs，InAs，
Si，AlAs量子細線におけるトンネル確率のトンネル距離 ℓ依存性．NTBM = 600の TBMに基づ
く結果を実線で，N = 48の 1DEMに基づく結果を破線で示す．挿入図は (a)(b)の計算において
チャネルに導入したエカート型ポテンシャルを表す．

NEGFの結果と精度良く一致していることがわかる．一方，間接遷移型半導体 (Si，AlAs)の場合

では，1DEM-NEGFの結果は TBM-NEGFの結果と大きく異なることがわかる．

以上のように，直接遷移型半導体と間接遷移型半導体では，1DEM-NEGFを用いたバンド間輸

送シミュレーションの精度が大きく異なる．この理由を，バルク結晶および量子細線構造の複素バ

ンド構造から考察した．

図 3.17(a) にバルク Si のバンド構造，(b) にバルク Si の Γ-X 方向の複素バンド構造，(c) に

h = 1.31 nm の Si 量子細線の複素バンド構造を示す．図 3.17(d) にバルク GaAs のバンド構造，

(e) にバルク GaAs の Γ-X 方向の複素バンド構造，(f) に h = 1.41 nm の GaAs 量子細線の複素

バンド構造を示す．いずれも，スピン軌道相互作用を無視した最近接 sp3d5s∗TBMを用いて計算

した [35]．各電子状態に対応する固有ベクトルのうち，p軌道成分の割合をカラープロットしてい

る．すなわち，赤色のバンドは p軌道由来のバンドで，青色のバンドは主に s軌道由来のバンドで

ある*1．

まず，図 3.17(a)(d) を見ると，バルク Si とバルク GaAs の伝導帯は s 軌道由来，価電子帯

は p 軌道由来であることがわかる．これは，主要な半導体全般に見られる特徴である．つぎに，

図 3.17(b)(e)を見ると，バルク Siとバルク GaAsで複素バンド構造の性質が異なることがわかる．

バルク Siでは，Γ点にある価電子帯端から伸びる減衰状態は，価電子帯から測って約 3.5 eVほ

*1 主にと書いたのは，TBMの基底として s軌道と p軌道だけではなく，s∗ 軌道と d軌道も考慮しているためである．
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図 3.17: (a)バルク Si のバンド構造．(b)バルク Si の Γ-X 方向の複素バンド構造．(c)h =

1.31 nm の Si 量子細線の複素バンド構造．(d)バルク GaAs のバンド構造．(e)バルク GaAs の
Γ-X方向の複素バンド構造．(f)h = 1.41 nmの GaAs量子細線の複素バンド構造．線の色は p軌
道成分の割合を表す．
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ど上にある伝導帯へと繋がっていることがわかる．したがって，約 1.1 eV 付近の伝導帯端から伸

びる減衰状態とは接続していない．これは，バンドがどの軌道由来かを見ても明らかである．

一方，バルク GaAsでは様相が異なる．バルク GaAsでは，軽い正孔から伸びる減衰状態は，伝

導帯端の状態と連続的に接続していることがわかる．これは，E-κ図の線の色からも明らかである．

このようなバルク結晶における減衰状態の性質を引き継いで，１次元系である量子細線構造でも，

Si と GaAs では減衰状態の様相が異なる．図 3.17(c)(f) を見ると，Si 量子細線では，k = 0 の価

電子帯端から伸びる減衰状態は，エネルギーが 1.2 eV付近でより外側の減衰状態と反交差した後，

k = 0の伝導帯端に接続していることがわかる．一方，GaAs量子細線では，k = 0の価電子帯端

から伸びる減衰状態は k = 0の伝導帯端へと連続的に接続していることがわかる．

3.5.3 節で述べたように，直接遷移型半導体である GaAs および InAs からなる量子細線では，

1DEMを用いてバンド間輸送シミュレーションを精度良く実行できる．しかし，間接遷移型半導体

である Siおよび AlAs量子細線では，1DEM用いてバンド間輸送シミュレーションを精度良く実

行できなかった．

図 3.17(f)に示すように，GaAs量子細線では伝導帯と価電子帯が連続的に繋がっているため，こ

のもっとも内側の減衰状態のみを 1DEMで表現すれば，精度良くバンド間輸送シミュレーション

を行える．減衰状態の連続性から，トンネルしている電子は同じ減衰状態に留まると期待でき，こ

のもっとも内側の減衰状態が BTBTに支配的な影響を与えると考えられる．

一方，図 3.17(c)に示すように，Si量子細線では伝導帯と価電子帯とが連続的に繋がらず，反交

差が見られる．トンネルしている電子は同じ減衰状態に留まるわけではなく，比較的高い確率でよ

り外側の減衰状態に遷移すると考えられる．したがって，図 3.15 のように，もっとも内側の減衰

状態のみを表現した 1DEMでは，BTBTシミュレーションの誤差が大きくなると考えられる．付

録 Aに記すように，表現する減衰状態の数を増やすと，BTBTシミュレーションの精度は向上す

ると考えられる．

3.6 まとめ

本研究では，高効率な量子輸送シミュレーションを実現するため，広いエネルギー範囲にわたる

バンド構造から，バンドギャップ付近の輸送に関与するエネルギー範囲の状態を抽出する 1DEM

を新規に開発した．1DEMでは，輸送に関与しないバンド構造の情報を除くことで，ハミルトニア

ン行列サイズを小さくすることができる．そのため，1DEMを用いることでハミルトニアン行列に

基づく量子輸送シミュレーションを高効率に実行できる．

1DEMでは，サイズ N のハミルトニアン行列がもつ数学的に可能な最大の自由度 (パラメータ)

を活用して状態を抽出する．そのため，モデルパラメータの最適化には，多数のパラメータを効率

的に最適化できる ADAMアルゴリズムを用いた．さらに，この自由度の高さに起因する非物理的

な状態を除去するため，以下の 5つのスキームを導入した．

1. モード分割法

2. バンド折返しおよび位相シフト
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3. 複素バンド構造に対するフィッティング

4. 空間反転対称性の考慮

5. 拡張された単位胞による位置情報の追加

開発した 1DEMを様々な半導体 1次元構造に適用し，その性能を評価した．性能評価のリファ

レンスとして TBM を用いた．TBM から計算した広いエネルギー範囲にわたるバンド構造から，

バンドギャップ付近の輸送に関与するエネルギー範囲の状態を抽出し，1DEMを構築した．TBM

と構築した 1DEMのバンド構造を比較した結果，1DEMがバンドギャップ付近の TBMの情報を，

サイズの小さな行列で精度良く表現できることを確認した．

つぎに，TBMに基づく NEGF法から計算した透過関数と 1DEMに基づく NEGF法から計算

した透過関数を比較した．バンド内輸送シミュレーションでは，1DEM-NEGF の結果が TBM-

NEGFの結果と精度良く一致することが確認できた．具体的には，相対誤差数％の範囲で，計算量

はおよそ 1000分の 1程度に削減できた．

一方，バンド間輸送シミュレーションでは，直接遷移型半導体の場合，もっとも内側の減衰状態

をフィッティングすることで，1DEM-NEGFの結果が TBM-NEGFの結果と精度良く一致するこ

とがわかった．

しかし，間接遷移型半導体の場合，もっとも内側の減衰状態をフィッティングしても，1DEM-

NEGFの結果が TBM-NEGFの結果と精度良く一致しないことがわかった．これは，間接遷移型

半導体では，もっとも内側の減衰状態だけでなく，外側の減衰状態もバンド間輸送現象に関与する

ためであると考えられる．
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第 4章

半導体ナノシートにおける表面ラフネ
ス散乱

4.1 はじめに

半導体ナノシート構造は，平面型MOSFETや FinFETなどの従来型トランジスタの微細化限界

を打破する構造として期待されている [1, 2]．トランジスタの微細化において，ゲート制御性の向

上は不可欠であり，そのための有力な手法としてチャネルの薄膜化が挙げられる．しかし，チャネ

ルの薄膜化を進めるにつれて，半導体/酸化膜界面位置の乱れに起因するラフネス散乱強度が強くな

り，それにともなうキャリア移動度の低下が懸念される [3–6]．また，極低温下で動作する CMOS

回路が量子コンピュータの制御回路として近年注目を集めている [7]．このような極低温下におい

ては，フォノン数の減少により，ラフネス散乱が支配的な散乱過程となると考えられる．これらの

理由から，ラフネス散乱がキャリア輸送に及ぼす影響を定量的に理解することが重要である．

これまで，摂動論と有効質量近似の枠組みのもと，摂動の行列要素を計算する手法が数多く検討

されてきた [8–19]．Prange-Nee モデル [20]や一般化 Prange-Neeモデル [15]は，界面位置の変動

に対して行列要素を線形化することで計算を簡略化している．これらは計算の簡便さもあり，モン

テカルロデバイスシミュレーションなどと組み合わせて現在でも広く用いられている [21–24]．し

かし，本来ラフネス散乱は界面位置変動に対して非線形な現象であり，線形化したモデルではその

効果を正確に捉えることができないと指摘されている [25–28]．そのため，線形モデルを改良した

非線形モデルが提案されている [25–28]．このように，摂動行列要素の正確なモデル化は依然とし

て重要な課題である．

摂動論に基づくアプローチの妥当性を検討するためには，摂動論に依存しない信頼性の高いラフ

ネス散乱の理論計算が必要である．そこで本研究では，摂動論によらない無秩序な 1次元系の散乱

理論に基づいた，半導体ナノシートにおける表面ラフネス散乱の数値解析手法を開発した．本章で

は，開発した手法の妥当性と有効性を検討した結果について説明する．
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4.2 無秩序な１次元系の散乱理論

本節では，量子輸送シミュレーションの結果として得られる透過確率から，平均自由行程を抽出

するために，本研究で開発した手法について説明する．開発した手法は，無秩序な 1次元系の散乱

理論に基づき，統計的な手続きにより平均自由行程を求めることができる．

4.2.1 メゾスコピック領域

古典物理学は日常的なマクロスケールの世界を記述する．一方，量子力学は原子や分子程度の大

きさのミクロスケールの世界を記述する．伝統的には，半導体デバイス内の電子は半古典的な描像

に従うものとして理解されてきた．しかし，現在では，この半古典的な描像を適用できないような

デバイスが実際に作製可能となっている．そのようなデバイスは，原子や分子のスケールよりも大

きく，一方，半古典的な描像が適用できるスケールよりも小さい．このようなミクロ領域とマクロ

領域との間の領域は，メゾスコピック領域と呼ばれる．

メゾスコピック領域では，系のスケールに応じて様々な輸送現象が表れる [29]．例えば，チャネ

ル長が平均自由行程よりも十分短い場合，電極から注入されたキャリアはチャネル内を散乱される

ことなく通過する．このような輸送様式は弾道輸送と呼ばれる．また，着目している領域が位相緩

和長よりも短い場合，量子干渉効果と呼ばれる電子の波としての性質がデバイス特性に現れる．

位相緩和はフォノン散乱などの非弾性散乱によって引き起こされるため，室温では量子干渉の効

果を観測することは難しい．一方，ラフネス散乱や不純物散乱などの弾性散乱では位相緩和が起こ

らないと考えられるため，フォノン散乱が少ない低温下では量子干渉の効果が観測される．

実験とは異なり，シミュレーションでは解析したい散乱過程を選択的に考慮することができる．

通常，キャリアにエネルギー変化を生じさせる非弾性散乱を考慮するには，異なるエネルギー間の

相互作用を取り入れる必要があり，計算は複雑で計算量も多い [30]．一方，弾性散乱のみを考慮す

る場合，キャリアはエネルギー変化をともなわないため，計算は簡便で計算量も少ない．本章の量

子輸送シミュレーションでは，非弾性散乱を含めることなくラフネス散乱のみを考慮する．そのた

め，キャリアは可干渉性を保ったまま，すなわち，コヒーレントに輸送すると仮定する．

4.2.2 アンダーソン局在

オームの法則によると，抵抗はチャネル長の増加に対して線形に増加する．この法則は，平均自

由行程よりも位相緩和長が短い場合によく成り立つ．しかし，平均自由行程よりも位相緩和長が長

い場合には，量子干渉効果のため，オームの法則が成り立たないことがある．例えば，チャネル長

が局在長と呼ばれる長さを超えると，コンダクタンスは急激に低下することが知られている．

無秩序な系において，電子が量子干渉効果により局在化する現象はアンダーソン局在と呼ばれ，

1958年に F.W.Andersonによって提唱された [31]．アンダーソン局在の解析には，グリーン関数，

波動方程式，ランダム行列理論など，様々な理論的アプローチが用いられてきた [32–34]．後述す
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図 4.1: チャネル長 Lによるキャリア輸送領域の変化．λは平均自由行程，ξ は局在長，M は輸送
モード数を表す．

るように，アンダーソン局在の存在により，位相緩和過程を考慮しないコヒーレントな量子輸送計

算から平均自由行程や移動度などの輸送特性を抽出することは難しい．

散乱過程が電子輸送へ与える影響は，緩和時間あるいは平均自由行程で特徴付けられ，それらは

電子のエネルギー E の関数として表される．アンダーソン局在の影響が無視できる準弾道から拡

散輸送領域において (図 4.1参照)，エネルギー E の電子が長さ Lのチャネル領域を透過する確率

T (E)は，

T (E) =
λ(E)

λ(E) + L
(4.1)

と表される [35–38]．ここで，λは後方散乱の平均自由行程であり，輸送の平均自由行程 ℓとは系の

次元に応じた定数倍だけ異なる (1次元系の場合は λ = 2ℓ [39]，付録 B 参照)．

従来の数値計算手法では，適当なバンド構造や散乱過程を仮定した系において，透過確率 T (E)

のチャネル長 L依存性を数値計算し，その結果を式 (4.1)にフィッティングすることで平均自由行

程を抽出する [35–38]．拡散輸送領域では，T (E)−1 は Lに比例する (オームの法則)ため，式 (4.1)

を適用することができる．しかし，チャネル長 Lが局在長 ξ を超えて局在領域に入ると，T (E)−1

は指数関数的に増加するため，式 (4.1)は適用できなくなる [29, 31, 40–42]．

局在長 ξ は輸送に関与するモード数M を用いて ξ ∼ Mλと見積もられる．そのため，チャネル

断面が広くM が大きい場合や，散乱が弱く λが長い場合は，局在長 ξ が長くなり，幅広いチャネ

ル長の範囲 (L < Mλ ∼ ξ)で式 (4.1)を適用できる (図 4.1参照)．

しかし，極薄膜ナノシート構造では，量子閉じ込め効果が強くなるため，モード数M は数個程

度と少なくなり，さらに散乱強度が増加することから λも短くなる．したがって，局在長 ξ が短く

なるため，式 (4.1)を適用できる Lの範囲が制限され，従来手法に基づいて λを高精度に抽出する

ことは困難になる．

これらの問題は，透過確率 T (E)の計算のさいにフォノン散乱などの非弾性散乱を導入すること

で回避できるものの，計算量が大幅に増加する．さらに，ラフネス散乱に起因する平均自由行程の

みを抽出するには，マティーセン則などの仮定が追加で必要であるという課題も残る [43]．

以上の背景のもと本研究では，単一モード (M = 1)半導体ナノシートについて，ラフネス散乱

のみを考慮したコヒーレントな量子輸送シミュレーションの結果から，ラフネス散乱で決まる平均

自由行程を抽出する手法を開発した [44]．本開発手法は式 (4.1)を拡張したものであり，L < ξ の

領域のみならず，式 (4.1)では考慮できない L > ξ の領域にも適用可能であることを示す．
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4.2.3 無次元抵抗 ρの分布関数

単一モードの１次元系を考える．キャリア輸送はコヒーレントで，非弾性散乱がないと仮定する．

この仮定は，散乱過程としてラフネス散乱のみを考える場合は正しい．無次元化した抵抗 ρ(E)は

透過率 T (E)の逆数で与えられる [45]．

ρ(E) =
1

T (E)
(4.2)

煩雑さを避けるため，以降では引数のエネルギー E を省略して，ρ = 1/T と表す．チャネル長 L

が 0の極限で T → 1となることから，その極限で ρ→ 1となる．

後方散乱の平均自由行程 λを用いて無次元化したチャネル長を s = L/λ とする．無次元化した

チャネル長が sである無秩序な１次元系の集団について，ρの分布関数 F は，つぎの式で与えられ

る [42]．

F (ρ, s) =
2

(πs3)1/2

∫ ∞

acosh
√
ρ

x exp [−(x2/s+ s/4)]

(cosh2 x− ρ)1/2
dx (4.3)

ここで，sは分布関数 F のパラメータである．F (ρ, s)は，つぎのように規格化されている．∫ ∞

1

F (ρ, s)dρ = 1 (4.4)

また，無次元抵抗の対数 z = log ρに関する分布関数 f(z, s)は，∫ ∞

1

F (ρ, s)dρ =

∫ ∞

0

F (ez, s)
dρ

dz
dz =

∫ ∞

0

F (ez, s)ezdz (4.5)

より，つぎの式で与えられる．
f(z, s) = F (ez, s)ez (4.6)

さらに，無次元抵抗 ρおよびその対数 z = log ρの平均は，解析的に求められ，

⟨ρ⟩ =
∫ ∞

1

ρF (ρ, s)dρ =
1

2

(
e2s + 1

)
(4.7)

⟨log ρ⟩ =
∫ ∞

1

log ρF (ρ, s)dρ = s =
L

λ
(4.8)

となる．

s→ 0の極限で，F (ρ, s)は，
F (ρ, s) → δ(ρ− 1) (4.9)

となる．この極限では，電子は全く散乱されることなくチャネルを透過する．一方，log ρ→ ∞の
極限では，

F (ρ, s) → F∞(ρ, s) =
α

(πρs)1/2
Γ2(α+ 1

2 )

Γ(2α+ 1)
exp

[
−(α2 + 1

4 )s
]

(4.10)
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図 4.2: 無次元化したチャネル長 s = L/λ = 0.5, 1, 2, 5, 10の 1 次元系の集団における分布関数
f(z, s)．点線は近似式 f∞(z, s)．

となる．ここで，α = log ρ/2sとおいた．さらに，f∞(z, s) = F∞(ez, s)ez は以下のように平均値

が s，標準偏差が
√
2sの正規分布に近似できる．

f∞(z, s) =
1

2(πs)1/2
exp

[
− (z − s)2

4s

]
(4.11)

したがって，log ρ の相対的なゆらぎ幅 (= 標準偏差 / 平均値) は (2/s)1/2 となり，無次元化した

チャネル長 sの増加にともなって，相対的なゆらぎ幅は小さくなる．

以上のように，無次元化したチャネル長が sである無秩序な１次元系の集団において，無次元化

した抵抗 ρではなく，その対数 z = log ρの方が統計的性質が優れている [45]．そのため，本論文

では ρではなく log ρに着目する．

図 4.2に log ρの分布 f(z, s)の例を示す．無次元化したチャネル長 s = 0.5, 1, 2, 5, 10として，

式 (4.6) から計算した結果を実線でプロットした．また，s = 2, 5, 10 の場合について，近似式

f∞(z, s)を点線でプロットした．sが大きい場合，式 (4.11)の正規分布で分布 f(z, s)をよく近似

できていることがわかる．

4.2.4 量子輸送計算の結果から平均自由行程を抽出する方法

無次元化したチャネル長が sの無秩序な１次元系の集団において，無次元抵抗 ρの分布は式 (4.3)

で与えられる．また，チャネル長 L，後方散乱の平均自由行程 λ，log ρの平均には，式 (4.8)より，

λ =
L

⟨log ρ⟩
(4.12)

なる関係がある．ラフネスが存在するナノシート構造を無秩序な１次元系とみなすことで，以下の

ように量子輸送計算の結果から平均自由行程を抽出できる．
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はじめに，巨視的には同一の構造でありながら，微視的には異なる多数のサンプルについて，透

過確率 T を計算する．つぎに，その計算結果から log ρ (= − log T ) の試料平均 ⟨log ρ⟩を求める．
Lの値は既知であるため，式 (4.12)より，後方散乱の平均自由行程 λを計算できる．

この手法は，式 (4.1) に基づく従来手法の拡張と考えられる．なぜなら，L/λ → 0 の極限で

式 (4.1) は，log
(
T−1

)
= log(1 + L/λ) = L/λとなり，式 (4.12)と一致するからである．

後方散乱の平均自由行程 λから輸送の平均自由行程 ℓへの換算は，付録 Bで示すように，つぎの

式を用いる．

ℓ =
λ

2
(4.13)

4.3 シミュレーション結果

4.2節では，コヒーレントな量子輸送シミュレーションの結果から，ラフネス散乱に起因する平

均自由行程を抽出する方法を述べた．本節では，この手法をラフネスをもつナノシート構造に用い

た結果を述べる．

4.3.1 ラフネスパターンの生成

ラフネス散乱を量子輸送計算へ取り入れるために，実空間上でデバイスの表面に凸凹を設定した

(図 4.5参照)．実際のデバイスにおいて，ラフネスパターンは定常でランダムに生じると考えられ

る．したがって，ラフネスパターンはその自己相関関数，あるいはそれをフーリエ変換したパワー

スペクトル密度で特徴づけられる．

自己相関関数の関数形として，ガウス型と指数関数型の２つがよく仮定される [9, 10]．位置

r = (x, y)における界面垂直方向の変位を∆(r)，xy 方向の試料の面積を Aとすると，自己相関関

数 CR(r)は，

CR(r) =
1

A

∫
∆(r′)∆(r′ + r)dr′ (4.14)

と定義され，

CR(r) =


∆2 exp

(
− r2

Λ2

)
(ガウス型)

∆2 exp

(
−
√
2r

Λ

)
(指数関数型)

(4.15)

(4.16)

なる関数形が用いられる．ここで，∆は凸凹の界面と垂直方向の平均的な変位を，Λは界面と平行

な方向の凸凹の平均的な間隔を表すパラメータであり，それぞれ，ラフネス高さ，ラフネス相関長

と呼ばれる．

ウィーナー・ヒンチンの定理より，パワースペクトル密度 SR(q) = |∆(q)|2/Aは，自己相関関数
のフーリエ変換と等しい．

SR(q) =

∫
CR(r)e

−iq·rdr (4.17)
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(a) (b)

図 4.3: (a)ではガウス型，(b)では指数関数型の自己相関関数をそれぞれ仮定し，乱数から生成し
たラフネス∆(r)．ラフネス高さ∆ = 0.2 nm，ラフネス相関長 Λ = 2.0 nmとした．

したがって，ガウス型・指数関数型の自己相関関数を仮定した場合，

SR(q) =


π∆2Λ2 exp

(
−q

2Λ2

4

)
(ガウス型)

π∆2Λ2 exp

(
1 +

q2Λ2

2

)−3/2

(指数関数型)

(4.18)

(4.19)

となる．

パワースペクトル密度の定義より，適当な位相因子 eiν(q) を用いて，

∆(q) =
√
A
√
SR(q) e

iν(q) (4.20)

と表せる．これより，位相因子を乱数から適当に決定し，∆(q)を逆フーリエ変換することで，実

空間上でのラフネスパターン∆(r) をランダムに生成できる．

図 4.3に乱数から生成したラフネスパターンの例を示す．図 4.3(a)ではガウス型，(b)では指数

関数型の自己相関関数を仮定した．ラフネス高さを ∆ = 0.2 nm，ラフネス相関長を Λ = 2.0 nm

とした．図 4.3より，指数関数型のラフネスパターンは，ガウス型のラフネスパターンよりも，短

波長成分を多く含んでいることがわかる．実際，図 4.4からわかるように，指数関数型のパワース

ペクトル密度 (赤線)は，ガウス型のパワースペクトル密度 (青線)よりも，短波長領域での減衰が

ゆるやかである．

4.3.2 計算モデル

4.2.4節で説明した手法の妥当性と有効性を検証するために，等方的な有効質量近似のもと，ラフ

ネスをもつ単一モード半導体ナノシートについて数値計算を行った．本手法は，より現実的なバン
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(a) (b)

図 4.4: パワースペクトル密度 SR(q)．(a)は線形軸，(b) は対数軸．青線はガウス型，赤線は指数
関数型の自己相関関数をそれぞれ仮定した場合を表す．

図 4.5: シミュレーションした半導体ナノシートの模式図．チャネル長を L，チャネル幅をW，ラ
フネスのない場合のチャネル厚さを Tw とする．チャネル両端には半無限電極を取り付けた (図で
は省略)．上下面にのみラフネスを設定した．

ド構造やデバイス構造を考慮可能であるが，平均自由行程についてよく知られた摂動論に基づく解

析結果 [17]との比較を行うために，単純なバンド構造を想定した．

図 4.5にシミュレーションした半導体ナノシートの模式図を示す．チャネル長を L，チャネル幅

をW とし，ラフネスのない場合のチャネル厚さを Tw とする．チャネルの両端には，W × Tw の

断面をもつ半無限電極を接続した (図には示されていない)．チャネルの上面と下面にそれぞれラフ

ネス∆(r) (r = (x, y))を設定した．そのさい，ラフネスパターンはガウス型の自己相関関数，

⟨∆(r)∆(r′)⟩ = ∆2 exp

(
−|r − r′|2

Λ2

)
(4.21)
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を満たすように乱数を用いてランダムに生成した．ここで，⟨· · · ⟩は試料平均 [46]であり，∆およ

び Λは，それぞれ，ラフネスの高さおよび相関長である．上下面のラフネスは無相関とした．

y 軸方向と z 軸方向の運動は量子化されサブバンドを形成するが，本研究では室温の熱エネル

ギー E = kT = 25.58meV (T = 300K)において，M = 1となるようW，Tw の値を設定した．

電子状態については，等方的な有効質量m∗ = 0.2m0 を仮定し，表面での波動関数が 0となる境界

条件を課した．

以上の系を z 軸方向に 0.1 nm，x 軸および y 軸方向に 0.2 nm の間隔で離散化し，有効質

量方程式を強結合近似モデル [29] に変換した後，オープンソースの量子輸送シミュレータであ

る Kwant [47] を用いて透過確率 T (E) を計算した．そのさい，ある巨視的なパラメータの組

{L,W, Tw,∆,Λ}に対して，N ∼ 10, 000個のラフネスパターンが異なるサンプルを用意し，N 個

の透過確率 Ti(E) (i = 1, 2, . . . , N)をシミュレーションから求めた．その結果より，無次元化した

チャネル長 s (= L/λ)を，試料平均 ŝ =
∑

i log ρi/N = −
∑

i log Ti/N から推定した．ここで，母

集団の真のパラメータ sと有限のサンプルから推定したパラメータを区別するため，推定したパラ

メータは ŝとしている．

4.3.3 量子輸送計算から得た log ρの分布と理論分布との比較

無次元抵抗 z = log ρの分布について調べた．E = kT = 25.58meV (T = 300K)，W = 10 nm，

∆ = 0.2 nm，Λ = 2.0 nmの場合に，シミュレーションから求めた z (= log ρ)の分布と理論分布

f(z, ŝ)との比較を図 4.6に示す．シミュレーションから得られた分布をヒストグラムで，理論分布

を黒線で表した．チャネル長 Lを 80，100，120 nm，チャネル厚さ Tw を 2.0，3.7，4.5 nmと変

化させた場合の結果を示す．

Tw ≥ 3.7 nm程度の厚いナノシート [図 4.6(a) – (f)]では，シミュレーション結果と理論分布は

よく一致していることがわかる．一方，Tw ≤ 2.0 nm程度の薄いナノシート [図 4.6(g) – (i)]では，

シミュレーション結果と理論分布はわずかに異なり，シミュレーションした分布は理論分布 f(z, ŝ)

に比べてわずかに大きな分散をもつことがわかる．この理由は，薄膜のような強散乱領域では，散

乱に起因する自己エネルギーの実部により，分散関係が変化するからかもしれない．しかし，平均

自由行程抽出に必要なパラメータである ŝのチャネル長 L依存性は，4.3.4節で示すように，薄い

ナノシートであっても式 (4.12)と一致し，このわずかに大きな分散は λの抽出に大きな影響を与え

ない．

4.3.4 ŝのチャネル長依存性

シミュレーションから推定した ŝのチャネル長 L依存性を調べた．式 (4.12)より，

ŝ =
L

λ
(4.22)

となる．平均自由行程 λ はチャネル長 L に依存しない物理量であると考えられる．そのため，

式 (4.22)より，ŝ-Lグラフは原点を通る直線となると考えられる．これを実際にシミュレーション
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図 4.6: シミュレーションから求めた z (= log ρ) の分布 (ヒストグラム)．W = 10nm，∆ =

0.2 nm，Λ = 2.0 nm，E = 25.58meVの場合．上段 (a, b, c)，中段 (d, e, f)，下段 (g, h, i)は，
それぞれ，チャネル厚さ Tw = 4.5，3.7，2.0 nmの結果．左列 (a, d, g)，中央列 (b, e, h)，右列
(c, f, i)は，それぞれ，チャネル長 L = 80，100，120 nmの結果．黒線はN ∼ 10, 000個のサンプ
ルから推定した ŝ (= −

∑
i log Ti/N)に基づく理論分布 f(z, ŝ)．得られた ŝの値は図中に示した．

結果から確認した．

図 4.7に，Tw = 2.0 nmの場合において，シミュレーションから推定した ŝの L依存性を示す．

上段は両対数，下段は原点付近における線形プロットである．ŝが 2～ 1, 000 nmと広い Lの範囲

で原点を通る直線に乗ることがわかる．式 (4.22)より，この直線の傾きから，平均自由行程 λを抽

出できる．平均自由行程は，あるチャネル長 Lの結果のみから抽出することもできるが，サンプル

数が有限であることにともなうばらつきを抑制するため，L 依存性の傾きから平均自由行程を抽出

した．

シミュレーションから得た傾きより，λ = 2.2 nmが得られた．したがって，このような極薄膜

ナノシートの場合，局在長は ξ ∼ Mλ = 2.2 nm程度となり L < ξ の領域は極端に短くなるため，

従来の式 (4.1)に基づく手法では平均自由行程の抽出は困難である．一方，本開発手法では，L > ξ

の領域から平均自由行程の抽出が可能であることがわかる．
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(a)

(b)

図 4.7: シミュレーションから推定した ŝの L依存性．W = 10 nm，Tw = 2 nm，∆ = 0.2 nm，
Λ = 2.0 nm，E = 25.58 meV の場合．(a)は広い領域にわたる両対数プロット，(b)は原点付近
における線形プロット．

図 4.8: 輸送の平均自由行程のチャネル膜厚 Tw 依存性．黒点は，本開発手法を用いて抽出した平
均自由行程 ℓ1D．黒破線は，自己無撞着ボルン近似を用いて計算した，井戸幅 Tw の無限量子井戸
に閉じ込められた 2次元電子ガスの平均自由行程 ℓ2D．点線はその漸近線 ℓ

≷
2D．
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4.3.5 平均自由行程の膜厚依存性

本開発手法を用いて，輸送の平均自由行程 ℓ1D(E) (= λ(E)/2)のチャネル厚さ Tw 依存性を求め

た結果について述べる．図 4.8に，W = 10 nm，∆ = 0.2 nm，Λ = 2.0 nm，E = 25.58meVの場合

の結果を示す．黒丸は本開発手法から抽出した平均自由行程 ℓ1D の Tw 依存性を表す．Tw ≳ 5 nm

程度とチャネルが厚い場合，ℓ1D は，よく知られた T 6
w に比例するという解析式 [17]と同様の依存

性を示すことがわかる．

井戸幅 Tw の無限量子井戸に閉じ込められた２次元電子ガス (2DEG)について，輸送の平均自由

行程 ℓ>2D をボルン近似を用いて計算すると，つぎの式が得られる (付録 C参照)．

ℓ>2D(E) = v(E)
m∗T 6

w

2π5ℏ∆2Λ2
[e−η{I0(η)− I1(η)}]−1 (4.23)

ここで，η = m∗EΛ2/ℏ2，v(E)はエネルギー E の電子の速さ (= {2E/m∗}1/2)，In (n = 0, 1)は

第 1種変形ベッセル関数 [48]を表す．参考のため，この ℓ>2D を図 4.8に青点線でプロットした*1．

このようなチャネルが厚い場合に対して，Tw ≲ 3 nm 程度とチャネルが薄い場合，ℓ1D は，T 6
w

よりも弱い依存性を示すことがわかる．これは，薄膜化にともなうラフネス散乱強度の増加によ

り，エネルギー準位に不確定性が生じるためであると考えられる．このような効果は，衝突広が

り [17, 49]として知られており，半古典的な電子輸送計算ではほとんど無視される．ボルン近似で

は散乱強度は十分に弱いと仮定されており，散乱前後のエネルギー保存則をデルタ関数を用いて記

述する．しかし，Tw が薄くなるにつれてラフネス散乱強度は増加し，ボルン近似の散乱強度が十

分に弱いという仮定が成り立たなくなる．そのため，薄膜領域において，ℓ>2D(青点線)の依存性は

ℓ1D(黒点)の依存性と大きく乖離したと考えられる．

散乱によるエネルギー準位の広がりの効果を取り入れる方法の一つとして，自己無撞着ボルン近

似がある [50]．図 4.8に，自己無撞着ボルン近似から計算した 2DEGの平均自由行程 ℓ2D を黒破

線で示す (付録 C参照)．また，Tw → 0での漸近線，

ℓ<2D(E) = v(E)
m∗T 3

w√
2 2π2ℏ∆

(4.24)

を赤点線で合わせてプロットした．Tw ≳ 3 nm 程度のチャネルが厚い範囲では，ボルン近似の結

果 ℓ>2D(青点線) と自己無撞着ボルン近似の結果 ℓ2D(黒破線) は一致していることがわかる．一方，

チャネル膜厚が薄くなると，散乱強度が強くなりエネルギー準位の広がりの影響が大きくなるため，

両者は異なる依存性を示すようになる．

本開発手法を用いて抽出した平均自由行程の Tw 依存性は，自己無撞着ボルン近似の結果と同様

の傾向を示すことがわかる．以上のように，最低次の摂動論に基づく解析が適さない場合でも，本

開発手法を用いることにより，ラフネス散乱で決まる平均自由行程を抽出可能であることがわかる．

*1 図 4.8において，ℓ1D と ℓ>2D は E や Tw などのパラメータに対して異なる依存性をもつ (ℓ>2D は定義よりW 依存性
はない)．そのため，他の計算条件では ℓ1D と ℓ>2D の絶対値は一致しない可能性がある点に注意．
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なお，エネルギー準位の広がりによる効果が大きくなり，Tw 依存性が 6乗から変化するチャネ

ル厚さ Tw は，図 4.8では 3 nm程度であるが，用いる有効質量の値や異方性・非放物線性の効果な

どによって，この値は変化する．そのため，特定の材料のナノシートを考えるさいには，その材料

のバンド構造をより詳細に記述できるモデルを導入してシミュレーションを実行する必要がある．

4.4 まとめ

本研究では，単一モードのナノシート構造における量子輸送シミュレーション結果から平均自由

行程を高効率に抽出する手法を開発した．この手法は，無秩序な１次元系の散乱理論に基づき，統

計的な手続きから平均自由行程を求めることができる．具体的な手順は以下のとおりである．

1. 乱数より生成した異なるラフネスパターンをもつナノシート構造を多数用意する．

2. 各ナノシート構造に対してコヒーレントな量子輸送シミュレーションを実行し，透過確率 T

を計算する．

3. 透過確率の逆数 ρ = T−1 について試料平均 ⟨log ρ⟩を計算し，⟨log ρ⟩とチャネル長 Lを用い

て後方散乱の平均自由行程 λを式 (4.12)により求める．

4. 後方散乱の平均自由行程 λを輸送の平均自由行程 ℓに換算する場合には式 (4.13)を用いる．

本開発手法は，従来手法がチャネル長 Lの短い領域でしか適用できなかった問題を克服し，Lの

長さに依存せず適用可能である．また，アンダーソン局在の影響を取り除くために非弾性散乱を追

加で考慮する必要がなく，高速な計算が可能である．さらに，電極領域とチャネル領域を明示的に

分割する必要がある量子輸送シミュレーションから，電極領域に依存しないバルク的な物理量を計

算することができる．

本開発手法の妥当性と有効性を検証するため，等方的な有効質量近似に基づき，ラフネスをもつ

単一モードのナノシート構造のシミュレーションを行った．本開発手法を用いて，平均自由行程の

ナノシート厚さ Tw 依存性を調べた結果，Tw が厚い場合には T 6
w の依存性を示し，薄い場合には依

存性が弱くなることがわかった．

つぎに，Tw 依存性が T 6
w から変化する理由を考察した．従来のボルン近似に基づく計算では，散

乱強度は十分に弱いと仮定され，エネルギー保存則をデルタ関数で表す．しかし，Tw が薄くなる

とラフネス散乱強度が増加するため，この仮定は適用できなくなる．そこで，強散乱領域における

エネルギー準位の広がりの影響を自己無撞着ボルン近似で解析したところ，薄い領域では平均自由

行程の依存性が弱くなることが示された．この結果は，本開発手法による結果と整合しており，本

手法がボルン近似のような単純な摂動論が成立しない領域でも適用可能な手法であることを示して

いる．

本開発手法は，無次元抵抗の統計的性質のみに基づいている．そのため，自己無撞着ボルン近似

などの手法とは異なり，ナノシートの幾何構造，ラフネスパターンを記述する統計モデル，および

電子状態モデルによらず様々な系へ応用できると考えられる．

ただし，本研究で開発した統計的手法は，単一モード系の無次元抵抗分布 [式 (4.3)]に基づいて
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いる．したがって，断面形状の大きいナノシートのような一般の多モード系に適用するためには，

多モード系の無次元抵抗分布を記述する Dorokhov-Mello-Pereyra-Kumar方程式 [51–53] などを

活用した計算手法の開発が必要である．
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第 5章

半導体ナノシートにおける電子移動度
の結晶方位依存性

5.1 はじめに

立方晶系に分類される Si のバルク結晶では，キャリア移動度は等方的である [1]．しかし，

SOI (Silicon On Insulator)やナノシート構造のような量子閉じ込め構造をもつ微細なデバイスで

は，移動度は輸送方向の結晶方位や基板面方位に依存して変化する [2, 3]．この結晶方位依存性を

利用することで，移動度を高め，デバイス性能を向上させることができると期待されている [4–7]．

そのため，ナノシート構造をチャネルにもつデバイスの解析や設計に向けて，任意の結晶方位の

チャネル構造を扱える物理モデルの開発が重要である [8]．

Siデバイスにおいて，有効質量近似に基づく標準的な電子輸送解析は，以下の手順で行われる．

はじめに，輸送方向とそれに垂直な断面方向とに，シュレディンガー方程式を分離する [9, 10]．こ

の分離によって，各電子が加速定理に基づく自由走行とフェルミの黄金則に基づく散乱とを繰り返

すことで，電子系全体の振る舞いが決まるという描像に基づく半古典的な輸送シミュレーションが

可能となる [11, 12]．このとき，加速定理に基づく自由走行では，非常に高い電界が印加された場

合 [13–15]などの例外的な状況をのぞき，電子のバンド指数は不変であると仮定される [16, 17]．

以上のような従来の電子輸送解析手法には，結晶方位の取り扱いに関して不十分な点がある．

任意の結晶方位を扱う場合，伝導帯谷のバンド構造を表現する逆有効質量テンソルの非対角成分

が，非ゼロとなることがある．この場合には，自由走行時にサブバンド指数が変化する可能性があ

る [18]．しかし，この効果が，１次元電子ガスの輸送特性に与える影響を定量的に解析した報告は

これまでない．

そこで本研究では，逆有効質量テンソルの非対角成分に由来する自由走行時サブバンド間遷移の

効果を，Krieger-Iafrate (KI)方程式を用いて定量的に解析する．さらに，KI 方程式とモンテカル

ロシミュレーションとを組み合わせ，自由走行時サブバンド間遷移がドリフト速度に与える影響を

定量的に調べる．最後に，(001)基板，(110)基板，(111)基板上に作製したナノシートにおける電

子移動度を，ナノシートの幾何構造やゲートバイアスなどの条件を変えて包括的にシミュレーショ

ンする．
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5.2 任意結晶方位を考慮した有効質量方程式

任意結晶方位からなるナノシート構造を扱う場合，伝導帯谷のバンド構造を表現する逆有効質量

テンソルの非対角成分が非ゼロとなることがある．このような場合において，１次元的に量子閉じ

込めを受けた電子状態を記述する方法を説明する [10]．また，後の節で議論する，閉じ込めを受け

た有効質量m1D および閉じ込めを無視したバルク的な有効質量m3D をそれぞれ定義する．

5.2.1 逆有効質量テンソル

Si伝導帯谷の分散関係は，

E = Ev0 +
ℏ2

2

[
kt1 kt2 kl

]
WECS

[
kt1 kt2 kl

]T
(5.1)

WECS =

1/mt1 0 0
0 1/mt2 0
0 0 1/ml

 (5.2)

と表せる．ここで，mt1 = mt2 は短軸方向の有効質量，ml は長軸方向の有効質量を表す．３つの

座標軸はそれぞれ，等エネルギー面を表す回転楕円体の主軸方向にとり，谷底の波数を座標軸の原

点とする [図 5.1(b)参照]．このとき，逆有効質量テンソルは対角表示される．この座標系を楕円体

座標系 (ECS: Ellipsoid Coordinate System)と呼び，ECSにおける逆有効質量テンソルをWECS

とする [3]．一般に，座標軸を任意にとった場合，逆有効質量テンソルは非対角成分をもつ．

ECSから一般の座標系への変換は，ECSの基底を一般の座標系の基底に変換する行列 R，[
ex ey ez

]
=
[
ekt1 ekt2 ekl

]
R (5.3)

を用いて行う [19]．ここで，ex，ey，ez は一般の座標系の基底ベクトル，ekt1
，ekt2

，ekl
は ECS

の基底ベクトルを表す．エネルギーはスカラーであることから，座標変換に対して不変であること

に注意すると，式 (5.1)は座標変換によって，

E = Ev0 +
ℏ2

2

[
kt1 kt2 kl

]
R RTWECSR RT

[
kt1 kt2 kl

]T
(5.4)

となる．ここで，変換行列 Rとして直交行列を仮定し，R−1 = RT を用いた．式 (5.4)より，新し

い座標系での逆有効質量テンソルW は，

W = RTWECSR (5.5)

となり，波数の成分表示は， kxky
kz

 = RT

kt1kt2
kl

 (5.6)

と変換される．式 (5.5)より，W は対称テンソルであることがわかる．
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(a) (b)

図 5.1: Si の伝導帯谷の等エネルギー面．(a) 結晶座標系から見た等エネルギー面．(b) 伝導帯端
を波数ベクトルの原点とした場合の楕円体座標系から見た等エネルギー面．

以上より，回転楕円体で表される伝導帯谷の分散関係は，一般の座標系において，

E(kx, ky, kz) = Ev0 +
ℏ2

2

∑
ij

wijkikj (5.7)

と表される．ここで，wij は逆有効質量テンソルの i 行 j 列成分である．また，(k1, k2, k3) =

(kx, ky, kz)である．2.4節の手続きに従い，波数を微分演算子に置きかえることで，有効質量方程

式は， ℏ2
2

∑
ij

wij k̂ik̂j + U(x, y, z) + Ev0

Φ(x, y, z) = EΦ(x, y, z) (5.8)

と与えられる．ここで，k̂i = −i(∂/∂xi)，(x1, x2, x3) = (x, y, z)である．

5.2.2 基底の変換行列

ECS から結晶座標系 (CCS: Crystal Coordinate System) への座標変換を考える．CCS とは，

図 5.1(a)に示すように３つの座標軸がそれぞれ，[100]方向，[010]方向，[001]方向を向いた座標

系である [3]．ECS から CCS への変換行列 RE→C は，CCS の基底ベクトルをそれぞれ，e[100]，

e[010]，e[001] として， [
e[100] e[010] e[001]

]
=
[
ekt1

ekt2
ekl

]
RE→C (5.9)

と与えられる．図 5.1に示すように，Siの伝導帯谷は [100]方向，[1̄00]方向，[010]方向，[01̄0]方

向，[001]方向，[001̄]方向の合わせて６個存在する．以降では略記のため，[· · ·]方向の伝導帯谷を
[· · ·]谷と表す．対称性より，[100]谷 ([010]谷，[001]谷)と [1̄00]谷 ([01̄0]谷，[001̄]谷)は，どち

らか片方だけを考慮すればよい．
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つぎに，各谷の ECSから CCSへの変換行列について，具体的な成分表示を考える．式 (5.9)と

図 5.1(a)(b)より，[100]谷の ECSから CCSへの変換行列は，

RE→C =

0 1 0
0 0 1
1 0 0

 ([100]谷) (5.10)

となる．同様にして，[010]谷の ECSから CCSへの変換行列は，

RE→C =

0 0 1
1 0 0
0 1 0

 ([010]谷) (5.11)

となる．また，[001]谷の ECSから CCSへの変換行列は，

RE→C =

1 0 0
0 1 0
0 0 1

 ([001]谷) (5.12)

となる．

CCSを一般の座標系へ変換する行列 RC→D は，[
ex ey ez

]
=
[
e[100] e[010] e[001]

]
RC→D (5.13)

と与えられる．具体例として，x軸方向，y 軸方向，z 軸方向がそれぞれ，[001]方向，[11̄0]方向，

[110]方向を向いている座標系への変換行列を考える．式 (5.13)より，

RC→D =

0 1/
√
2 1/

√
2

0 −1/
√
2 1/

√
2

1 0 0

 (5.14)

となる．この変換行列は，係数の 1/
√
2 を無視すると，１列目の成分は [0 0 1]，２列目の成分は

[1 − 1 0]，３列目の成分は [1 1 0]であり，x軸，y 軸，z 軸がそれぞれ，[001]方向，[11̄0]方向，

[110]方向を向いていることに対応する．係数の 1/
√
2は，この変換行列が直交行列であるために

必要である．

表 5.1に CCSから本章で用いる代表的な座標系への変換行列をまとめた．それぞれの変換にお

いて z 軸方向は，上段では [001]方向，中段では [110]方向，下段では [111]方向となる．ここで，

それぞれの変換を (001)面，(110) 面，(111)面への変換と呼ぶことにする．本章では，x軸方向を

輸送方向，y 軸方向をナノシート幅方向，z 軸方向をナノシート厚さ方向とする．

図 5.2 は，各面へ変換された座標系において，実空間上での原子配列と波数空間上での伝導帯

谷の等エネルギー面とを，z 軸方向から見下ろした図を表す．式 (5.3)，式 (5.9)，式 (5.13)より，

ECSから一般の座標系への変換行列は，

R = RE→CRC→D (5.15)



5.2 任意結晶方位を考慮した有効質量方程式 105

表 5.1: CCSから本論文で用いる代表的な座標系への変換行列．

Plane x-direction y-direction z-direction RC→D

(001) [100] [010] [001]


1 0 0

0 1 0

0 0 1



(110) [001] [11̄0] [110]


0 1/

√
2 1/

√
2

0 −1/
√
2 1/

√
2

1 0 0



(111) [2̄11] [01̄1] [111]


−2/

√
6 0 1/

√
3

1/
√
6 −1/

√
2 1/

√
3

1/
√
6 1/

√
2 1/

√
3



Plane Plane Plane

図 5.2: 表 5.1における３つの面への変換と対応して，実空間上での原子配列 (上段)と波数空間上
での伝導帯谷の等エネルギー面 (下段)とを，z 軸方向から見下ろした図．
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となる．さらに，図 5.2において z 軸方向の結晶方位を固定し，x軸および y 軸を θ だけ回転させ

るには，z 軸周りの回転行列 Rz(θ) を用いればよい．すなわち，

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (5.16)

を用いて，
R = RE→CRC→DRz(θ) (5.17)

とする．

5.2.3 １次元電子ガスの有効質量方程式

x軸方向には電界がなく，yz 平面内のポテンシャル U(y, z)によって１次元的に閉じ込められた

電子について考える．そのさい，一つの伝導帯谷に着目し，式 (5.8)の有効質量方程式に基づいて

電子状態を計算する．

w12 = w13 = 0の場合

はじめに，w12 = w13 = 0の場合を考える．式 (5.8)より，有効質量方程式は，[
−ℏ2

2

(
w11

∂2

∂x2
+ w22

∂2

∂y2
+ 2w23

∂2

∂y∂z
+ w33

∂2

∂z2

)
+ U(y, z)

]
Φ(x, y, z) = EΦ(x, y, z)

(5.18)

となる．ただし，Ev0 = 0とした．ポテンシャル U(y, z)は xに依存しないため，波動関数は x軸

方向を表す部分と，yz 面内を表す部分とに変数分離でき，

Φnkx
(x, y, z) =

1√
L
eikxxζn(y, z) (5.19)

となる．エネルギーは，
Enkx = ϵn + 1

2ℏ
2w11k

2
x (5.20)

となる．ここで，n (= 1, 2, 3, . . . )はサブバンド指数，ϵn はサブバンド準位，ζn(y, z)は yz 面内で

の２次元波動関数を表し，つぎの２次元の有効質量方程式に従う．[
−ℏ2

2

(
w22

∂2

∂y2
+ 2w23

∂2

∂y∂z
+ w33

∂2

∂z2

)
+ U(y, z)

]
ζn(y, z) = ϵnζn(y, z) (5.21)

以上のように，w12 = w13 = 0の場合，電子状態は x方向部分と yz 面内部分とに分離できる．

w12 ̸= 0または w13 ̸= 0の場合

一般に w12 ̸= 0または w13 ̸= 0の場合，有効質量方程式には微分演算子 w12(∂
2/∂x∂y)または

w13(∂
2/∂x∂z)などの項が含まれる．そのため，上述したように電子状態を x方向と yz 平面方向

とに分離することはできない．しかし，M. Bescond らによって導入された波動関数を用いると，

エネルギーについては z 軸方向と yz 面内方向とに分離できる [10]．
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この方法では，波動関数として，

Φnkx
(x, y, z) =

1√
L
eikxxϕnkx

(y, z) (5.22)

なる関数形を考える．このとき，エネルギーは，

Enkx
= ϵn + 1

2ℏ
2w11k

2
x − 1

2ℏ
2(w12α+ w13β)k

2
x

= ϵn + E3D(kx)− 1
2ℏ

2(w12α+ w13β)k
2
x

= ϵn + E1D(kx)

(5.23)

と与えられる [10]．ここで，
E3D(kx) =

1
2ℏ

2w11k
2
x (5.24)

E1D(kx) = E3D(kx)− 1
2ℏ

2(w12α+ w13β)k
2
x (5.25)

と定義した．また，

α =
w12w33 − w23w13

w22w33 − w2
23

, β =
w13w22 − w23w12

w22w33 − w2
23

(5.26)

である．ϕnkx
(y, z)は面内の波動関数 ζn(y, z)を用いて，

ϕnkx
(y, z) = e−ikx(αy+βz)ζn(y, z) (5.27)

と与えられる．サブバンド準位 ϵn，面内の波動関数 ζn(y, z)は，つぎの２次元の有効質量方程式に

従う． [
−ℏ2

2

(
w22

∂2

∂y2
+ 2w23

∂2

∂y∂z
+ w33

∂2

∂z2

)
+ U(y, z)

]
ζn(y, z) = ϵnζn(y, z) (5.28)

式 (5.21) と式 (5.28) とを比べると，サブバンド準位 ϵn と面内の波動関数 ζn(y, z) は，w12 =

w13 = 0 の場合と，w12 ̸= 0 または w13 ̸= 0 の場合とで共通していることがわかる．一方，

式 (5.19)，式 (5.22)，式 (5.27)を比べると，波動関数は位相因子 exp(−ikx(αy + βz))だけ異なる

ことがわかる．また，式 (5.20)，式 (5.23)を比べると，エネルギーは ℏ2(w12α + w13β)k
2
x/2だけ

異なることがわかる．

w12 ̸= 0または w13 ̸= 0に由来する有効質量の増加

式 (5.23)より，閉じ込めがない場合の有効質量 m3D，１次元的に閉じ込められた場合の有効質

量m1D をそれぞれ，つぎのように定義する．

1

m3D
=

1

ℏ2
∂2E3D(kx)

∂k2x
= w11 (5.29)

1

m1D
=

1

ℏ2
∂2E1D(kx)

∂k2x
=

1

m3D
− (w12α+ w13β) (5.30)

逆有効質量テンソルW が正定値であると仮定すると，w12 ̸= 0または w13 ̸= 0のとき，

w12α+ w13β > 0 (5.31)
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となることが証明できる*1．Siの伝導帯谷の逆有効質量テンソルは正定値であるため，式 (5.31)を

式 (5.30)に用いると，w12 ̸= 0または w13 ̸= 0のとき，m1D > m3D となることがわかる．すなわ

ち，逆有効質量テンソルの非対角成分 w12，w13 によって x軸方向の有効質量は，バルクの有効質

量m3D から必ず重くなる．

以上の結果は，yz 面内の閉じ込めポテンシャルとして幅が十分広い量子井戸を考えても，輸送方

向 (x軸方向)の有効質量m1D が，閉じ込めがない場合の有効質量m3D と異なることを表す．これ

は，量子井戸幅を十分に広げた極限が閉じ込めがない場合であることを考えると，不自然な結果と

言える．次節で説明するようにこの問題は，w12α+w13β ̸= 0の場合には電界による加速時にサブ

バンド間遷移が起こるため有効質量の増加が相殺され，解決すると考えられる．しかし，加速時は

通常サブバンド指数が変化しないと仮定されており，この場合の移動度の計算結果は実際よりも低

くなると考えられる．

5.2.4 具体例

(110) 面における [001] 谷の電子について考える．輸送方向 (x 軸方向) を，図 5.2 の場合から

−π/4回転させる．このとき，変換行列 Rは，

R =

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

RE→C

0 1/
√
2 1/

√
2

0 −1/
√
2 1/

√
2

1 0 0


︸ ︷︷ ︸

RC→D

cos (−π/4) − sin (−π/4) 0
sin (−π/4) cos (−π/4) 0

0 0 1


︸ ︷︷ ︸

Rz(θ)

(5.32)

となり，逆有効質量テンソルは，式 (5.5)より，

W = RTWECSR =



1

2mt
+

1

2ml
− 1

2mt
+

1

2ml
0

− 1

2mt
+

1

2ml

1

2mt
+

1

2ml
0

0 0
1

mt


(5.33)

となる．本研究では，mt = 0.190m0，ml = 0.916m0 とした [20]．

*1 W の正定値性より，W から 1行目と 1列目を取り除いた 2× 2の主小行列の行列式は正である．∣∣∣∣w22 w23

w32 w33

∣∣∣∣ = w22w33 − w2
23 > 0

W の正定値性より，w12 ̸= 0または w13 ̸= 0のとき，つぎの不等式が成り立つ．[
0 −w13 w12

]
W

[
0 −w13 w12

]T
= w12w

2
33 + w13w

2
22 − 2w23w12w13 > 0

したがって，

w12α+ w13β =
w12w2

33 + w13w2
22 − 2w23w12w13

w22w33 − w2
23

> 0

となり，式 (5.31)が証明された．
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(a)

(b)

図 5.3: (a) ナノシートの断面の模式図．(b) (110) 面における [001] 谷の電子のサブバンド構造．
E1D(kx)を黒実線，E3D(kx)を水色破線で示す．ナノシートの断面構造は h = 5nm，w = 20nm

とした．

ナノシートの断面構造として，幅 w，厚さ h の矩形を考える．電子密度が低い場合，閉じ込め

方向のポテンシャルは空間的に一様であると考えられる．そのため，図 5.3(a)のように，yz 面内

の閉じ込めポテンシャルとして井戸幅がそれぞれ，w，h の無限量子井戸型ポテンシャルを考え

る．このとき，サブバンド構造の計算結果を，図 5.3(b)に示す．黒実線は E1D(kx)で，水色破線

は E3D(kx)である．逆有効質量テンソルの非対角成分 w12 により，x方向の有効質量が増加して

いることがわかる．

5.3 逆有効質量テンソルに非対角成分がある場合の電子加速

高電界が印加された場合などの例外的な状況をのぞき，通常電子が加速されるさい，電子のサブ

バンド指数は変化しないと仮定される．しかし，2DEGにおいて，逆有効質量テンソルの非対角成

分が非ゼロの場合，電子の加速時にサブバンド指数が確率的に変化することが指摘されている [18]．

本節では，1DEGにおいて，加速時のサブバンド指数変化を KI方程式を用いて解析した結果を述

べる．

5.3.1 1次元電子ガスにおける Krieger-Iafrate方程式

2.5.2節では，３次元結晶における KI方程式を導出した．本節では，ある一つの谷に有効質量近

似を適用し，それに由来するサブバンドを考え，１次元系における KI方程式の表式を示す．
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式 (2.106)と式 (2.100)とを１次元的な波数 kx に対して書き下すと，

dan(t)

dt
= −eFx

iℏ
∑
n′

an′(t)Xn,n′(kx(t)) exp

[
i

ℏ

∫ t

0

(
Enkx(t′) − En′kx(t′)

)
dt′
]

(5.34)

Xn,n′(kx(t)) = −i
∫

dru∗n,kx(t)
(r, 0) ∂

∂kx
un′,kx(r, 0)

∣∣∣
kx=kx(t)

(5.35)

となる．ここで，式 (5.22)と式 (5.27)より，包絡関数近似のもとブロッホ関数の周期関数部分は，

un,kx
(r, 0) =

ζn(y, z)√
L

e−ikx(αy+βz) (5.36)

と表せる．時間に依存する波数 kx(t)は，

kx(t) = kx(0)−
eFx

ℏ
t (5.37)

となる．式 (5.36)を式 (5.35)に代入すると，

Xn,n′(kx(t)) = −
∫∫

dydz ζ∗n(y, z)(αy + βz)ζn′(y, z) = −⟨ζn|αy + βz|ζn′⟩ (5.38)

が得られる．式 (5.23)より，
Enkx(t′) − En′kx(t′) = ϵn − ϵn′ (5.39)

となり，エネルギーの差は時間に依存せず，サブバンド準位の差で決まる．式 (5.38)と式 (5.39)と

を式 (5.34)に代入すると，１次元系における KI方程式は，以下のようにまとめられる．

dan(t)

dt
= −i

∑
n′

Ωnn′eiωnn′ tan′(t) (5.40)

Ωnn′ =
eFx

ℏ
⟨ζn|αy + βz|ζn′⟩ (5.41)

ωnn′ =
ϵn − ϵn′

ℏ
(5.42)

時刻 tに電子を n番目のサブバンドに見出す確率 Pn(t)は，

Pn(t) = |an(t)|2 (5.43)

と与えられる．全確率は保存されるため，∑
n

Pn(t) =
∑
n

|an(t)|2 = 1 (5.44)

である．

以上より，Ωnn′ が非ゼロの場合，すなわち，w12 ̸= 0または w13 ̸= 0の場合，KI方程式に従っ

て，an(t)あるいは Pn(t)は時間変化する．つまり，逆有効質量テンソルの非対角成分に起因して，

自由走行時にサブバンド間遷移が生じる．その遷移確率は式 (5.40)から計算することができる．
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5.3.2 平均的な分散関係

t = 0のとき，電子が初期状態 (n0, k0)にあったとする．すなわち，

an(0) = δn,n0 (5.45)

とする．これを初期条件として KI方程式を数値的に解くことで，an(t)の時間発展を計算できる．

平均的な分散関係をつぎのように定義する．

Ēn0k0
(kx(t)) =

∑
n

|an(t)|2Enkx(t) (5.46)

ここで，Enkx は式 (5.23) で定義したエネルギーである．また，kx(t) は時間に依存する波数であ

り，つぎの式に従う．

kx(t) = k0 −
eFx

ℏ
t (5.47)

まず，サブバンド間遷移を考慮しない場合において，平均的な分散関係 Ēn0k0 の表式を示す．こ

れは，|an(t)|2 が時間変化しないため，後述するように容易に示すことができる．
一方，サブバンド間遷移を考慮する場合には，平均的な分散関係 Ēn0k0

の解析的な表式を一般に

示すことはできない．しかし，本節で導出するように，加速はじめからの経過時間が短い範囲，す

なわち，t→ 0の極限で Ēn0k0 が漸近する式を解析的に示すことができる．

サブバンド間遷移を考慮しない場合の Ēn0k0
(kx(t))

サブバンド間遷移を考慮しない場合を考える．この場合，電子は初期時刻のサブバンド n0 に留

まり続ける．すなわち，an(t)は時間変化しないため，

Ēn0k0(kx(t)) = En0kx(t) = ϵn0 + E1D(kx(t)) = ϵn0 +
ℏ2k2x(t)
2m1D

(5.48)

となる．この式から，速度の時間発展の表式は，

vk0(t) =
1

ℏ
∂Ēn0k0

(kx(t))

∂k
= − eFx

m1D
t+

ℏk0
m1D

(5.49)

となる．この式を時間で微分すると，速度の時間変化率は v̇k0
= −eFx/m1D となることがわかる．

すなわち，サブバンド間遷移を考慮しない場合，電子は有効質量 m1D をもつ粒子として加速され

る．つまり，電子は E1D(kx)に沿って自由走行する．

サブバンド間遷移を考慮した場合の Ēn0k0
(kx(t))

KI方程式に基づいてサブバンド間遷移を考慮する場合を考える．t = 0に加速されはじめた電子

について，tが十分に短い加速の初期期間では，an(t)はつぎのように近似できると考えられる．

a(t) ≈ a(0)− iΩa(0)t (5.50)
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ここで，a(t) = (a1(t), a2(t), . . . )
T，Ω を n 行 n′ 列成分が Ωnn′ で与えられる行列とした．

an(0) = δn,n0
を用いると，式 (5.50)より，

an(t) =

{
−iΩnn0

t (n ̸= n0)

1−
∑

n′ ̸=n0
|an′(t)|2 (n = n0)

(5.51)

となる．この式を，式 (5.46)に代入すると，

Ēn0k0(kx(t)) ≈
∑
n ̸=n0

|Ωnn0t|2
[
Enkx(t) − En0kx(t)

]
+ En0kx(t)

=

∣∣∣∣eFxt

ℏ

∣∣∣∣2 ∑
n ̸=n0

|⟨ζn|αy + βz|ζn0
⟩|2 [ϵn − ϵn0

] + En0kx(t)

=

∣∣∣∣eFxt

ℏ

∣∣∣∣2 1

2
ℏ2(αw12 + βw13) + En0kx(t) (5.52)

となる．最後の式変形では，総和則 [21]より，∑
n

|⟨ζn|αy + βz|ζn0⟩|
2
[ϵn − ϵn0 ] =

1

2
ℏ2(αw12 + βw13) (5.53)

となることを用いた．式 (5.52)を整理すると，時刻 t = 0に初期状態 (n0, k0)から出発した電子に

関する平均的な分散関係 Ēn0k0
は，経過時間 tが十分に短い加速の初期期間において，つぎのよう

に表される．

Ēn0k0(kx(t)) → Ēinit
n0k0

(kx(t)) =
ℏ2

2m3D
(kx(t)− k0)

2 +
ℏ2k0
m1D

(kx(t)− k0) +
ℏ2k20
2m1D

+ ϵn0 (5.54)

= E3D(δkx(t)) + δkx(t)
∂En0kx

∂kx

∣∣∣∣
kx=k0

+ En0k0
(5.55)

ここで，δkx(t) = kx(t) − k0 = −eFxt/ℏ とした．また，m3D と m1D はそれぞれ，式 (5.29) と

式 (5.30)によって定義された x軸方向の有効質量である．式 (5.54)より，加速の初期期間におけ

る速度の時間発展は，

vinitk0
(t) =

1

ℏ
∂Ēinit

n0k0
(kx(t))

∂k
= − eFx

m3D
t+

ℏk0
m1D

(5.56)

となる．この式を時間で微分すると，速度の時間変化率は v̇initk0
(t) = −eFx/m3D となることがわか

る．すなわち，加速の初期期間では，電子は閉じ込めの影響がない場合の有効質量 m3D をもつ粒

子として加速される．

以上より，逆有効質量テンソルの非対角成分に由来する自由走行時サブバンド間遷移を考慮する

ことで，電子の加速に関与する有効質量は，加速の初期期間においてm1D からm3D に変化すると

言える．

5.3.3 |an(t)|2 時間発展のシミュレーション結果

前節では，式 (5.46)によって平均的な分散関係 Ēn0k0
を定義した．また，電子が加速されはじめ

てから最初の一定期間における平均的な分散関係 Ēn0k0
は式 (5.54)で与えられる Ēinit

n0k0
となるこ
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とを示した．さらに，自由走行時サブバンド間遷移を考慮することで，加速の有効質量が m1D か

らm3D へ変化することを述べた．

しかし，このように Ēn0k0
→ Ēinit

n0k0
となる tの範囲を解析的に求めることは困難である．また，

この加速の初期期間以降において，Ēn0k0
がどのように時間発展するかを解析的に調べることはで

きない．そこで本節では，KI方程式をルンゲ・クッタ法を用いて数値的に解くことで，an(t)の時

間発展を求め，平均的な分散関係 Ēn0k0 をシミュレーションした結果を述べる．

(110) 面における [001] 谷の電子について考える．5.2.4 節と同様に，輸送方向 (x 軸方向) を

図 5.2 の場合から −π/4 回転させた系を考える．このとき，逆有効質量テンソルは式 (5.33) とな

り，w12 ̸= 0のため加速時にサブバンド間遷移が起こる．xy面内の閉じ込めポテンシャルは無限量

子井戸型ポテンシャルとし，z 軸方向の井戸幅を h，y 軸方向の井戸幅を wとした．

図 5.4(a)–(f) は，時刻 t = 0 に初期状態 (n0 = 1, k0 = 0) であった電子を，x 軸方向の電界

Fx で加速しはじめ，その後，電子を n 番目のサブバンドに見出す確率 Pn(t) = |an(t)|2 の時間
発展を表す．サブバンド指数ごとに Pn(t) を異なる色の実線でプロットし，線の近くに n の値を

付した．例えば，黒実線は P1(t)，青実線は P2(t)，赤実線は P3(t)，· · · を表す．初期条件より，
Pn(0) = |an(0)|2 = δ1,n である．z 軸方向の井戸幅 hは，図 5.4(a)–(f)で共通して，h = 5 nmと

した．y 軸方向の井戸幅 w は，上段 (a, b) では w = 20 nm，中段 (c, d) では w = 40 nm，下段

(e, f)では w = 60 nmとした．電界 Fx は，左列 (a, c, e)では Fx = −5 kV/cm，右列 (b, d, f)で

は Fx = −10 kV/cmとした．

図 5.4(a)–(f)に示す Pn(t)の時間発展と並行して，図 5.4(a′)–(f ′)に，式 (5.46)から計算した平均

的な分散関係 Ēn0k0
(kx(t))を実線でプロットした．また，サブバンド構造 Enkx

(= E1D(kx) + ϵn)

を点線で，Ēinit
n0k0

(kx(t))を破線で示した*2．ここで，横軸には波数 kx (図の下部)と時刻 t (図の上

部)の両方を併記した．

はじめに，自由走行時サブバンド間遷移の井戸幅 w依存性について考える．y 軸方向の井戸幅 w

が 20，40，60 nmと増加するにつれて，電子の存在確率 Pn(t)は，より nの大きいサブバンドま

で広がっていることがわかる．この振る舞いは，対応する分散関係の図より，井戸幅 w が増加す

るにつれてサブバンド準位のエネルギー間隔が狭くなることに由来する．また，平均的な分散関係

Ēn0k0(kx(t)) (実線)は，経過時間 tが小さい場合，Ēinit
n0k0

(kx(t))(破線)とよく一致していることが

わかる．さらに，井戸幅 w の増加にともなって，Ēn0k0(kx(t))が Ēinit
n0k0

(kx(t))とよく一致する時

間は，長くなることがわかる．

このように，加速の初期期間において，逆有効質量非対角成分に由来するサブバンド間遷移によ

り，閉じ込めに由来する x軸方向の有効質量増加を相殺するように，電子はよりエネルギーの高い

サブバンドに遷移する．その結果，加速の初期期間では，加速時の有効質量はm1D からm3D へ変

化する．

つぎに，自由走行時サブバンド間遷移の電界 Fx 依存性について考える．電界が大きいほどより

大きな波数まで，Ēn0k0
(kx(t))(実線)が Ēinit

n0k0
(kx(t))(破線)とよく一致していることがわかる．し

かし，これらがよく一致する時間については注意が必要である．波数 kx と時刻 tには，今の場合，

*2 今の場合，Ēinit
n0k0

(kx(t)) = E3D(kx) + ϵ1
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図 5.4: 時刻 t = 0に初期状態 (n0 = 1，k0 = 0)であった電子について，(a)–(f)は KI方程式を
数値的に解き求めた Pn(t)の時間発展を表す．(a′)–(f ′)には，平均的な分散関係 Ēn0k0(kx(t))を
実線で，サブバンド構造 Enkx を点線で，Ēinit

n0k0
(kx(t)) を破線で示す．横軸には波数 kx (図の下

部) と時刻 t (図の上部) の両方を併記した．井戸幅 w，h および電界 Fx は図中に示した．逆有効
質量テンソルは式 (5.33)を用いた．
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kx = −eFxt/ℏ という関係がある．すなわち，電子は同じ時間加速されても，Fx が小さい場合は

kx 変化が小さく，Fx が大きい場合は kx 変化が大きくなる．つまり，ある一定量 kx を変化させる

のに必要な経過時間は，Fx が大きいほど短くなる．このことに注意して，図 5.4(a′–f ′) の時間軸

(上側の横軸)を確認すると，平均的な分散関係が近似式によく一致する時間は，Fx = −5 kV/cm

と Fx = −10 kV/cmとを比べる限り明確な差はないことがわかる．

自由走行時サブバンド間遷移の電界依存性を詳しく解析するために，w = 40 nm，h = 5 nm

として同様の計算を行い，Ēn0k0
(kx(t)) をシミュレーションした．図 5.5(a) に，初期状態を

(n0 = 1, k0 = 0)として KI方程式を数値的に解いて求めた Ēn0k0
(kx(t))を実線で，サブバンド構

造Enkx を点線で，Ē
init
n0k0

(kx(t))を破線で示す．ただし，エネルギーの原点を n = 1のサブバンド端

として図示した．このとき，Ēinit
n0k0

(kx) = ℏ2k2x/2m3D，n = 1のサブバンドはE1,kx = ℏ2k2x/2m1D

となる．Fx = −1, −10, −50 kV/cm とした場合の平均的な分散関係をそれぞれ，緑実線，赤実

線，青実線で示す．電界の絶対値が大きくなるにつれて，より大きな波数 kx まで，Ēn0k0
(kx(t))

と Ēinit
n0k0

(kx(t)) とがよく一致していることがわかる．また，Ēn0k0
(kx(t)) は，まず Ēinit

n0k0
(kx(t))

に追従したあと，もとのサブバンド E1,kx(点線)に戻ることがわかる．この様子を詳しく見るため，

図 5.5(a)を，両対数プロットした結果を図 5.5(b)に示す．ここで，サブバンドは n = 1のものだ

けを図示した．この図 5.5(b)より，加速しはじめは Ēinit
n0k0

(kx)に沿って加速され，その後 E1,kx
に

沿って加速されることがわかる．

図 5.5(a)(b) は，横軸を波数 kx で図示した結果であった．この横軸を，kx(t) = −eFxt/ℏ を用
いて，時刻 tに変換した結果を図 5.5(c)(d)に示す．図 5.5(c)は線形プロット，図 5.5(d)は両対数

プロットである．緑線，赤線，青線はそれぞれ Fx = −1, −10, −50 kV/cmの場合の結果である．

点線は n = 1のサブバンド，実線はシミュレーションした平均的な分散関係 Ēn0k0
(kx(t))，破線は

Ēinit
n0k0

(kx(t))を表す．加速の有効質量がm1D からm3D へと切り替わる時刻は，電界に対しておよ

そ |Fx|−1/2 の依存性を示すことがわかる．

つぎに，初期状態 (n0, k0)を変化させて，平均的な分散関係をシミュレーションした結果につい

て述べる．図 5.6は，w = 100 nm，h = 20 nm，Fx = −1 kV/cmとした場合において，シミュ

レーションした Ēn0k0
(kx)を実線，サブバンド構造 Enkx

を点線，Ēinit
n0k0

(kx)を破線でそれぞれ示

す．赤線は初期状態 (n = 1, kx = 0)，青線は初期状態 (n = 5, kx = 0.1 nm−1)，緑線は初期状

態 (n = 0, kx = −0.2 nm−1) とした場合の結果である．図より加速しはじめは，Ēn0k0(kx(t)) と

Ēinit
n0k0

(kx(t))とがよく一致していることがわかる．その後，電子は初期状態のサブバンド En0kx
に

沿って加速することがわかる．

以上の結果を，有効質量の時間変化という観点から，図 5.7に模式的に示す．図 5.7(a)は，自由

走行時サブバンド間遷移を無視した場合，電子は有効質量 m1D で加速されることを表す．一方，

図 5.7(b)は自由走行時サブバンド間遷移を考慮すると，加速しはじめのある一定期間は平均的に有

効質量m3D で加速し，その後，元のサブバンドに戻り有効質量m1D で加速されることを表す．こ

こで，図 5.7(b)に示すように，両者を分ける時間を τc とおく．ただし，m3D から m1D への変化

は時刻 τc で瞬時に起こるわけではない．

図 5.4の結果より，井戸幅 wが増加するにつれて τc も増加する．一方，図 5.5の結果より，τc は
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図 5.5: 時刻 t = 0 に初期状態 (n0 = 1，k0 = 0) であった電子について，平均的な分散
関係 Ēn0k0(kx(t)) を実線で，サブバンド構造 Enkx を点線で，Ēinit

n0k0
(kx(t)) を破線で示す．

縦軸の原点を n = 1 のサブバンド端とした．井戸幅は w = 40 nm，h = 5 nm とした．
Fx = −50, −10, −1 kV/cm の場合の結果をそれぞれ，青線，赤線，緑線でプロットした．
(a)(b)では横軸を波数 kx とした．一方，(c)(d)では横軸を波数から，kx(t) = −eFxt/ℏを用いて
時間に変換した結果を示す．(c)(d)には，n = 1のサブバンド構造のみを点線で示した．(b)は (a)

の両対数プロット，(d)は (c)の両対数プロットである．逆有効質量テンソルは式 (5.33)を用いた．
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図 5.6: 電子の初期状態を (n0 = 0, k0 = 0)，(n0 = 5, k0 = 0.1 nm−1)，(n0 = 1, k0 =

−0.2 nm−1) とした場合における平均的な分散関係 Ēn0k0(kx) をそれぞれ赤線，青線，緑線で示
す．対応する Ēinit

n0k0
(kx)をそれぞれ赤破線，青破線，緑破線で示す．点線は，サブバンド構造 Enkx

を表す．井戸幅を w = 100 nm，h = 20 nm，電界を Fx = −1 kV/cmとした．逆有効質量テン
ソルは式 (5.33)を用いた．

Acceleration time0
(Transition Region)

Acceleration time0

(a)

(b)

図 5.7: 加速時間による加速時有効質量の変化の模式図．(a) 自由走行時サブバンド間遷移を無視
した場合．電子は加速しはじめからつねに m1D で加速される．(b) 自由走行時サブバンド間遷移
を考慮した場合．電子は加速しはじめからおよそ τc まで有効質量 m3D で加速され，その後 m1D

で加速される．
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電界に対しておよそ τc ∝ |Fx|−1/2 の依存性がある．

式 (5.31)より，Siの伝導帯谷では必ず m3D < m1D である．したがって，自由走行時サブバン

ド間遷移を無視した場合，ドリフト速度は実際よりも低く計算される．このことについて，つぎの

極端な２つの例を考察する．

はじめに，すべての電子の自由走行時間が τc よりも長い場合を考える．このとき，自由走行時サ

ブバンド間遷移を考慮してもしなくても，すべての電子の加速時有効質量は m1D となる．そのた

め，自由走行時サブバンド間遷移を考慮してもしなくてもドリフト速度は変わらない．すなわち，

vKI = vo (5.57)

となる．ここで，自由走行時サブバンド間遷移を無視した場合のドリフト速度を vo，自由走行時サ

ブバンド間遷移を考慮した場合のドリフト速度を vKI とした．

つぎに，すべての電子の自由走行時間が τc よりも短い場合を考える．このとき，自由走行時サブ

バンド間遷移を考慮すると，すべての電子の加速時有効質量はm3Dとなる．そのため，m3D < m1D

に注意すると，自由走行時サブバンド間遷移を考慮する場合，これを無視した場合に比べてドリフ

ト速度は大きくなる．より正確には，

vKI = vo ×
m1D

m3D
(5.58)

となる．

以上の２つの極端な例とは異なり，実際には，τc よりも自由走行時間が長い電子もあれば，短い

電子も存在する．したがって，つぎの不等式が成り立つと考えられる．

vo ≤ vKI ≤ vo ×
m1D

m3D
(5.59)

電子の自由走行時間は，量子緩和時間 τqnkx
(あるいはその逆数である散乱確率) で決まる．そのた

め，vKI の実際の値は，τc と τqnkx
の兼ね合いで決まる．

5.4 自由走行時サブバンド間遷移を考慮したモンテカルロシミュ

レーション

前節では，加速はじめから τc までに散乱される電子の割合が多いほど，自由走行時サブバンド間

遷移の効果が大きくなることを定性的に説明した．本節では，標準的な一粒子モンテカルロシミュ

レーションと KI方程式とを組み合わせ，自由走行時サブバンド間遷移が輸送特性に与える影響を

定量的に調べた結果を述べる．

5.4.1 フォノン散乱

本研究では，フォノン散乱過程として音響フォノン散乱および無極性光学フォノン散乱を考慮し

た [3, 11, 12, 22]．まず，図 5.8に示すように，６つの伝導帯谷それぞれに v = 1, 2, . . . , 6とラベル

を割り当てた．つぎに，輸送方向 (x軸方向)と基板面方位 (z 軸方向)の結晶方位を決め，式 (5.17)
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図 5.8: Si伝導帯端における g-typeおよび f -typeフォノン谷間散乱過程．

表 5.2: 本研究で用いたフォノン散乱のパラメータ．

m Symbol ℏωp (meV) ∆Em (meV) Dac (eV) Dp (eV/cm) Transition Type

1 AP-abs 0 0 13 Intra-valley

2 AP-emi 0 0 13 Intra-valley

3 f -TA-abs 19 +19 3× 107 f -type

4 f -TA-emi 19 −19 3× 107 f -type

5 f -LA-abs 47 +47 2× 108 f -type

6 f -LA-emi 47 −47 2× 108 f -type

7 f -TO-abs 59 +59 2× 108 f -type

8 f -TO-emi 59 −59 2× 108 f -type

9 g-TA-abs 12 +12 5× 107 g-type

10 g-TA-emi 12 −12 5× 107 g-type

11 g-LA-abs 19 +19 8× 107 g-type

12 g-LA-emi 19 −19 8× 107 g-type

13 g-LO-abs 62 +62 1.1× 109 g-type

14 g-LO-emi 62 −62 1.1× 109 g-type

を用いて v で指定される各谷の逆有効質量テンソルを求めた．各伝導帯谷に有効質量近似を適用

し，波動関数を式 (5.22)，エネルギーを式 (5.23)とした．２次元面内の有効質量方程式 [式 (5.28)]

を，有限差分法を用いて数値的に解くことで，面内の波動関数 ζv,n(y, z)およびサブバンド準位 ϵv,n

を求めた．ここで，添字 v は谷を区別するために付した．

以上より，固有状態は谷を指定する添字 v，サブバンド指数 n，波数 kx を用いて (v, n, kx)と指

定される．また，その固有状態のエネルギーを Ev,n,kx と表す．
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表 5.2は，本研究で考慮したフォノン散乱過程を表す．散乱過程を区別するため，各散乱過程に

ラベル m (= 1, 2, . . . , 14)を割り当てた．奇数番目の散乱過程はフォノン吸収過程，偶数番目の散

乱過程はフォノン放出過程を表す．各散乱過程に関与するフォノンのエネルギーを ℏωp とした．

m = 1, 2は音響フォノンによる同一谷内散乱であり，m = 3, 4, · · · , 14は谷間散乱である．谷間散
乱には，f 型か g型かを付した [22]．Dac は音響フォノンの変形ポテンシャル，Dp は光学フォノ

ンの変形ポテンシャルである．

m番目の散乱過程に起因して電子が状態 (v, n, kx)から状態 (v′, n′, k′x)へ遷移する遷移確率は，

フェルミの黄金則より，つぎのように表される [3, 11, 12, 22]．

S
(m)
v,n;v′,n′(kx, k

′
x) =

1

L
Z

(m)
v,v′CmF

v,n
v′,n′δ(Ev,n,kx − Ev′,n′,k′

x
+∆Em) (5.60)

ここで，形状因子 F v,n
v′,n′ は，つぎの式で与えられる．

F v,n
v′,n′ =

∫∫
|ζv,n(y, z)ζv′,n′(y, z)|2dydz (5.61)

Cm は電子とフォノンとの相互作用の強さを表し，

Cm =



πkBTD
2
ac

ρℏv2s
(m = 1, 2)

πD2
p

ωpρ
nph(ℏωp) (m = 3, 5, 7, 9, 11, 13)

πD2
p

ωpρ
[nph(ℏωp) + 1] (m = 4, 6, 8, 10, 12, 14)

(5.62)

となる．ここで，nph(ℏωp)は，フォノン系が温度 T の熱平衡状態のとき，エネルギーが ℏωp であ

るフォノンの数の期待値であり，ボース分布関数に従う．

nph(ℏωp) =
1

eℏωp/kBT − 1
(5.63)

ρは結晶の密度，vs は音速を表す．本研究では，ρ = 2329 kg/m3，vs = 9040 m/sとした [20]．最

後に，散乱過程の選択則を表す Z
(m)
v,v′ の具体的な表式を示す．v 行 v′ 列の成分を Z

(m)
v,v′ とする行列

を Z(m) とすると，m = 1, 2のとき (すなわち，散乱が同一谷内散乱のとき)，

Z(m) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (m = 1, 2) (5.64)

となり，m = 3, 4, 5, 6, 7, 8のとき (すなわち，散乱が f 型の谷間散乱のとき)，

Z(m) =


0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 0

 (m = 3, 4, 5, 6, 7, 8) (5.65)
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となり，m = 9, 10, 11, 12, 13, 14のとき (すなわち，散乱が g型の谷間散乱のとき)，

Z(m) =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 (m = 9, 10, 11, 12, 13, 14) (5.66)

となる．v から v′ への散乱が可能なとき，v′ から v への散乱も可能であるため，Z(m) は対称行列

となる．

電子が状態 (v, n, kx)のとき，散乱確率Wv,n,kx
は，

Wv,n,kx
=
∑
m

∑
v′

∑
n′

∑
k′
x

S
(m)
v,n;v′,n′(kx, k

′
x)

=
∑
m

∑
v′

∑
n′

Z
(m)
v,v′CmF

v,n
v′,n′gv′,n′(Ev,n,kx

+∆Em)
(5.67)

となる．ここで，v′ 番目の伝導帯谷における n′ 番目のサブバンドの状態密度を，

gv′,n′(E) =
1

L

∑
k′
x

δ(E − Ev′,n′,k′
x
) =

1

πℏ

√
mv′

1D

2(E − ϵv′,n′)
Θ(E − ϵv′,n′) (5.68)

とおいた．Θ(·)はヘヴィサイドの階段関数である．mv′

1D は，v
′ 番目の伝導帯谷における輸送方向

の有効質量であり，式 (5.30)で定義される．

式 (5.67)の右辺は，v，n，Ev,n,kx で指定される．そのため，Ev,n,kx をあらためて E とおくと，

v 番目の伝導帯谷の n番目のサブバンドに属しエネルギー E の電子の散乱確率は，

Wv,n(E) =
∑
m

∑
v′

∑
n′

Z
(m)
v,v′CmF

v,n
v′,n′gv′,n′(E +∆Em) (5.69)

と表せる．ただし，この式を E の関数として見ると，厳密には E > ϵv,n の範囲でのみ定義される．

式 (5.68)より，散乱確率は，終状態のエネルギー E +∆Em がサブバンド端のエネルギー ϵv′,n′

と一致するとき正の無限大に発散する．このように散乱確率が高い場合には，2.6.2節で述べたよう

にフェルミの黄金則が成り立たない．したがって，本節のように，式 (5.60)用いて散乱確率を計算

できない．実際には，高散乱領域では状態密度が幅を持ち，散乱確率は有限の値に留まる．本研究

では，図 5.9に示すように，解析的に放物線で表されるサブバンド構造を，サブバンド端から ∆E

の等間隔で離散化し，途中を直線で補完したものをモンテカルロシミュレーションで用いた．この

離散化したサブバンド構造を用いた場合，解析的にサブバンド構造を表現した場合とは異なり，サ

ブバンド端で状態密度が発散しない．

5.4.2 自由走行を修正したモンテカルロシミュレーションのアルゴリズム

本研究では，フォノン散乱による遷移確率として式 (5.60) を用い，一粒子モンテカルロシミュ

レーションを行った．散乱確率は，式 (5.67)あるいは式 (5.69)となる．ここで，以下のように自己

散乱を導入した．
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図 5.9: 解析的な放物線バンド構造をエネルギー幅 ∆E で離散化し，その間を線形補完した模式
図．本研究のモンテカルロシミュレーションでは，∆E = 0.1 meVとした．

まず，最大散乱確率 Γをつぎのように定める．

Γ = max
v,n,kx

Wv,n,kx
(5.70)

電子が状態 (v, n, kx)のとき，自己散乱の散乱確率W self
v,n,kx

を，つぎのように定義する．

W self
v,n,kx

= Γ−Wv,n,kx
(5.71)

時刻 t = −0に散乱され，時刻 t = +0に状態 (v0, n0, k0)に遷移してきた電子が，一定電界 Fx

で加速されるとする．時間に依存する波数 kx(t)は，

kx(t) = k0 −
eFx

ℏ
t (5.72)

となる．このとき，自己散乱も含めたすべての散乱過程を考慮した散乱確率は，

W tot
v0,n0,kx(t)

=Wv0,n0,kx(t) +W self
v0,n0,kx(t)

= Γ (5.73)

となる．

t = +0のとき状態 (v0, n0, k0)にいる電子について，自由走行時のサブバンド指数変化は KI方

程式を数値的に解くことで求まる．具体的には，t = +0における初期条件を，

an(+0) = δn,n0
(5.74)

として式 (5.40) をルンゲ・クッタ法を用いて数値的に解くことで，an(t) を求めることができる．

この an(t)を用いて，サブバンド指数にわたる平均的な散乱確率をつぎの式で計算する．

⟨W tot
v0,n0,kx(t)

⟩ =
∑
n

|an(t)|2
(
Wv0,n,kx(t) +W self

v0,n,kx(t)

)
= ⟨Wv0,n0,kx(t)⟩+ ⟨W self

v0,n0,kx(t)
⟩ (5.75)

ここで，
⟨Wv0,n0,kx(t)⟩ =

∑
n

|an(t)|2Wv0,n,kx(t) (5.76)
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⟨W self
v0,n0,kx(t)

⟩ =
∑
n

|an(t)|2W self
v0,n,kx(t)

(5.77)

とおいた．式 (5.44)，式 (5.73)より，式 (5.75)は，

⟨W tot
v0,n0,kx(t)

⟩ = ⟨Wv0,n0,kx(t)⟩+ ⟨W self
v0,n0,kx(t)

⟩ = Γ (5.78)

となる．したがって，自由走行時間 tFF は，区間 (0, 1)の一様分布からサンプリングした乱数 r を

用いて，

tFF =
− log r

Γ
(5.79)

と与えられる [23, 24]．

自由走行時間 tFF 経過後において，自己散乱ではない真の散乱が起こる確率は，⟨Wv0,n0,kx(t)⟩/Γ
である．一方，自己散乱が起こる確率は ⟨W self

v0,n0,kx(t)
⟩/Γ = 1 − ⟨Wv0,n0,kx(t)⟩/Γ である．真の散

乱が起こるか自己散乱が起こるかは，乱数を用いて確率的に決定する．

自己散乱が選ばれた場合，再び式 (5.79)から tFF を決定し，自由走行を継続する．そのさい，KI

方程式は，１つ前の t = −0で起こった散乱過程によって決まった初期条件 [式 (5.74)]を継続し，

続きから時間発展させる．結局のところ，自己散乱では何も起こらない．

真の散乱が選ばれた場合，まず散乱の始状態を |an(t)|2 の重みに基づいて確率的に決定する．す
なわち，散乱直前に電子がサブバンド指数 ni にある確率を |ani

(t)|2 とし，ni を乱数を用いて決定
する．サブバンド指数を決めた後は電子が状態 (v0, ni, kx(t))にあるとし，フォノン散乱の遷移確

率を用いた標準的な散乱の終状態決定アルゴリズム [3, 11, 12, 22] から，散乱の終状態 (vf , nf , kf )

を決定する．

最後に，ドリフト速度の計算方法を述べる．ある１回の自由走行にともなう電子のエネルギー変

化を ∆EFF とする．自由走行終了時の電子のエネルギーは，|an(t)|2 に基づきサブバンド指数を確
定させたときのエネルギーとする．すなわち，上述した記法を用いると，

∆EFF = Ev0,ni,kx(t) − Ev0,n0,k0
(5.80)

となる．電子の速度を v(t)と表すと，エネルギー保存則より，

∆EFF = −
∫
FF

v(t)eFxdt (5.81)

と表せると考えられる．ここで，右辺の積分の範囲は，ある１回の自由走行である．シミュレー

ション時間を ttot とし，その間に起こった１回の自由走行にともなうエネルギー変化∆EFF をすべ

て足した値を∆Etot
FF とすると，つぎの式が成り立つ．

∆Etot
FF = −

∫ ttot

0

v(t)eFxdt (5.82)

この式から，ドリフト速度は，

v =
1

ttot

∫ ttot

0

v(t)dt =
∆Etot

FF

−eFxttot
(5.83)

と求めることができる．
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(a) (b)

図 5.10: (110)面における [001]谷の電子について考え，表 5.2のm = 1, 2, 13, 14の４つの散乱
過程のみを考慮した場合のモンテカルロシミュレーション結果．y 軸方向の井戸幅は w = 50 nm，
z 軸方向の井戸幅は h = 5 nmとした．(a)ドリフト速度の電界依存性．黒線は自由走行時サブバ
ンド間遷移を無視した場合のドリフト速度 vo，赤線は KI方程式を数値的に解きサブバンド間遷移
を考慮した場合のドリフト速度 vKI．(b)移動度の変形ポテンシャル Dac 依存性．黒線は自由走行
時サブバンド間遷移を無視した場合の移動度 µo，赤線は KI方程式を数値的に解き自由走行時サブ
バンド間遷移を考慮した場合の移動度 µKI を表す．青線は，h = 5 nmの z 軸方向の無限量子井戸
に閉じ込められた 2 次元電子ガス (2DEG) を仮定したモンテカルロシミュレーションから求めた
移動度 µ2DEG を表す．移動度は，Fx = 0.5 kV/cmにおけるドリフト速度を電界で割ることで算
出した．

5.4.3 輸送特性のシミュレーション結果

２つの伝導帯谷を考慮した場合

(110)面における [001]谷の電子について考え，輸送方向 (x軸方向)を，図 5.2から −π/4回転
させた場合を考える．この状況において，表 5.2の m = 1, 2, 13, 14の４つの散乱過程のみを考慮

した場合のシミュレーション結果である図 5.10および図 5.11について考察する．m = 1, 2の散乱

過程は同一谷内散乱，m = 13, 14の散乱過程は g-typeの谷間散乱のため，電子は [001]谷あるい

は [001̄]谷にのみ存在しうる．xy 面内の閉じ込めポテンシャルは，無限量子井戸型ポテンシャルと

し，z 軸方向の井戸幅を h，y 軸方向の井戸幅を wとした．

図 5.10(a)はモンテカルロシミュレーションから得たドリフト速度の電界依存性である．黒線は

自由走行時サブバンド間遷移を無視した場合のドリフト速度 vo，赤線は KI 方程式を数値的に解

きサブバンド間遷移を考慮した場合のドリフト速度 vKI 表す．井戸幅は w = 50 nm，h = 5 nm

とした．サブバンド間遷移を考慮すると，考慮しない場合に比べて電界に依存しない定数倍だけ

ドリフト速度が大きくなることがわかる．すなわち，vKI/vo は 1 以上でかつ電界に依存しない．
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したがって，サブバンド間遷移を無視した場合と同様に，サブバンド間遷移を考慮した場合にお

いても移動度を定義できる．本研究においてモンテカルロシミュレーションから求めた移動度は，

Fx = 0.5 kV/cmにおけるドリフト速度を求め，それを電界で割ることによって算出した．すなわ

ち，自由走行時サブバンド間遷移を無視した場合の移動度 µo と，自由走行時サブバンド間遷移を

考慮した場合の移動度 µKI をそれぞれ，つぎの式で計算した．

µo =
vo
Fx
, µKI =

vKI

Fx
(5.84)

図 5.10(b)は移動度の変形ポテンシャルDac 依存性である．通常，Dac は音響フォノン散乱の散

乱強度を決める定数である．ここでは，t < τc で散乱される電子の割合の変化に対して vKI/vo が

どのように変化するかを調べるために，Dac を変化させてシミュレーションを行った．黒線は自由

走行時サブバンド間遷移を無視した場合の移動度 µo，赤線は KI方程式を数値的に解き自由走行時

サブバンド間遷移を考慮した場合の移動度 µKI を表す．青線は，h = 5 nmの z 軸方向の無限量子

井戸に閉じ込められた 2 次元電子ガス (2DEG) を仮定したモンテカルロシミュレーションから求

めた移動度 µ2DEG を表す*3．µ2DEG は µo をm1D/m3D 倍した値とよく一致した．

変形ポテンシャルDac の増加にともなって散乱確率が増加するため，いずれの場合も移動度は低

下していくことがわかる．一方，Dac が小さい場合 µKI は µo に漸近し，Dac が大きい場合 µKI は

µ2DEG に漸近することがわかる．

散乱確率が小さい場合，τc < t で散乱される電子の割合が多くなる．これに対して散乱確率が

大きい場合，t < τc で散乱される電子の割合が多くなる．τc の前後で加速時有効質量が軽い m3D

から重い m1D へ切り替わることから，Dac が小さい場合 µKI は µo に漸近し，Dac が大きい場合

µKI は µ2DEG に漸近したと考えられる．このシミュレーション結果は，5.3.3節で定性的に述べた

式 (5.59)と整合していることがわかる．

図 5.11は，z 軸方向の井戸幅が h = 5 nmまたは h = 3 nmの場合における，移動度の y 軸方向

の井戸幅 w 依存性を表す．実線は，自由走行時サブバンド間遷移を無視した場合の移動度 µo を表

し，破線は，自由走行時サブバンド間遷移を考慮した場合の移動度 µKI を表す．点線は，z 軸方向

の無限量子井戸に閉じ込められた 2DEGを仮定したモンテカルロシミュレーションから求めた移

動度 µ2DEG を表す．

まず，µo は，w = 20 nm程度で µ2DEG よりも低い値で飽和することがわかる．この結果は，x

軸と y軸方向に閉じ込められた 1DEGに基づくシミュレーションにおいて，y軸方向の閉じ込め幅

wを無限に広げた極限が，z 軸方向に閉じ込められた 2DEGの結果と一致しないという不自然な結

果である．

一方，µKI は，wが小さい場合には µKI/µo = 1であるが，wが大きくなるにつれて µ2DEG に漸

近することがわかる．この理由は，5.3.3節で示したように，w が大きくなるにつれて τc が長くな

るためである．

wが小さいときは τc が短くなるため，τc < tで散乱される電子の割合が多くなる．これに対して

*3 今の場合，w13 = 0 であるため，z 軸方向に閉じ込められた 2DEG では自由走行時サブバンド間遷移は生じない．
そのため，ここでは，標準的な 2DEGのモンテカルロシミュレーション [3]を行った．
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図 5.11: z 軸方向の井戸幅が h = 5 nmまたは h = 3 nmの場合における，移動度の y 軸方向の
井戸幅 w 依存性．(110)面における [001]谷の電子について考え，表 5.2の m = 1, 2, 13, 14の４
つの散乱過程のみを考慮した．実線は，自由走行時サブバンド間遷移を無視した場合の移動度 µo

を表す．破線は，KI 方程式を数値的に解き自由走行時サブバンド間遷移を考慮した場合の移動度
µKI を表す．点線は，z 軸方向の無限量子井戸に閉じ込められた 2DEGを仮定したモンテカルロシ
ミュレーションから求めた移動度 µ2DEG を表す．移動度は，Fx = 0.5 kV/cmにおけるドリフト
速度を電界で割ることで算出した．

w が大きいときは τc が長くなるため，t < τc で散乱される電子の割合が多くなる．τc の前後で加

速時有効質量が軽いm3D から重いm1D へ切り替わることから，w が小さい場合には µKI/µo = 1

となり，wが大きくなるにつれて µKI は µ2DEG に漸近したと考えられる．

以上のように，x軸と y 軸方向に閉じ込められた 1DEGに基づくシミュレーションにおいて，y

軸方向の閉じ込め幅 w を無限に広げた極限が，z 軸方向に閉じ込められた 2DEGの結果と一致す

るという自然な結果は，自由走行時サブバンド間遷移を考慮することで達成できることがわかる．

６つの伝導帯谷を考慮した場合

6 つの伝導帯谷すべてを考慮した場合のシミュレーション結果について述べる．散乱過程は，

表 5.2のm = 1, 2, . . . , 13, 14の 14個を考慮した．図 5.12に，h = 5 nmとした場合における，移

動度の w 依存性を示す．丸印は自由走行時サブバンド間遷移を無視した場合の移動度 µo，三角印

は自由走行時サブバンド間遷移を考慮した場合の移動度 µKI をそれぞれ表す．今の場合，z 軸方向

の井戸幅が狭いため，w13 に由来する自由走行時サブバンド間遷移の影響は無視できる．一方，y

軸方向の井戸幅が広くなるにつれて，w12 に由来する自由走行時サブバンド間遷移の影響が表れる．

図 5.12(a,b,c)はそれぞれ，z 軸に垂直な面の面方位が (001)，(110)，(111)の場合の結果である．

図 5.12(a) において，赤線，青線の輸送方向はそれぞれ，[100]，[110] である．図 5.12(b) におい

て，赤線，青線，緑線の輸送方向はそれぞれ，[001]，[11̄0]，[11̄1]である．図 5.12(c)において，赤

線，青線の輸送方向はそれぞれ，[2̄11]，[01̄1]である．図 5.12の各線には，x軸方向 (輸送方向)の
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(b)(a)

(c) (d)

(001) Plane

(111) Plane

(110) Plane

図 5.12: 6つの伝導帯谷を考慮したモンテカルロシミュレーションから求めた移動度の y軸方向の
井戸幅 w 依存性．散乱過程として，表 5.2のm = 1, 2, . . . , 13, 14の 14個を考慮した．(a)(b)(c)

丸印は自由走行時サブバンド間遷移を無視した場合の移動度 µo，三角印は自由走行時サブバンド
間遷移を考慮した場合の移動度 µKI をそれぞれ表す．h = 5 nmとした．図中に，x軸方向 (輸送
方向) の結晶方位を [· · · ]，z 軸方向の結晶方位を (· · · ) として，[· · · ]/(· · · ) と付した．移動度は，
Fx = 0.5 kV/cmにおけるドリフト速度を電界で割ることで算出した．(d)は図 5.2と同じ図であ
る．
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結晶方位を [· · · ]，z 軸方向の結晶方位を (· · · )として，[· · · ]/(· · · )と付した．
まず，(001) 面上のナノシートについて考える．[100]/(001) では，すべての伝導帯谷において

w12 = w13 = 0である．したがって，自由走行時サブバンド間遷移は起こらないため，vKI/vo = 1

である．一方，[110]/(001) では，[010] 谷と [100] 谷が w12 ̸= 0 であるため，自由走行時サブバ

ンド間遷移が起こり，w が大きくなるにつれて vKI/vo は大きくなる．つぎに，(110) 面上のナノ

シートについて考える．[001]/(110)と [11̄0]/(110)では，すべての伝導帯谷において w12 = 0であ

る．そのため，w を大きくしても，vKI/vo = 1である．一方，[11̄1]/(110)では，すべての伝導帯

谷において w12 ̸= 0である．そのため，w が大きくなるにつれて，vKI/vo は大きくなる．同様に，

[2̄11]/(111)と [01̄1]/(111)でも，wが大きくなるにつれて，vKI/vo は大きくなる．

以上の結果をまとめると，z 軸方向の閉じ込め幅 hが狭く w13 に由来する自由走行時サブバンド

間遷移が無視できる場合，w12 に由来する自由走行時サブバンド間遷移の効果は，

1. (001)面上のナノシート構造では．[100]/(001)の場合無視できる．

2. (110)面上のナノシート構造では，[001]/(110)または [11̄0]/(110)の場合無視できる．

3. (111)面上のナノシート構造では無視できない．

となる．ただし，図 5.12より，いずれの結晶方位でも w が小さい場合には，自由走行時サブバン

ド間遷移の効果 vKI/vo は比較的小さいと言える．

5.5 緩和時間近似に基づく電子移動度のシミュレーション

前節では，任意の結晶方位からなるナノシート構造において，自由走行時サブバンド間遷移が輸

送特性に与える影響を定量的に調べた．その結果，デバイス構造によっては自由走行時サブバンド

間遷移を無視できることを明らかにした．幸いにも，応用上関心のあるデバイス構造では，自由走

行時サブバンド間遷移を無視できる場合が多い．そのため，本節では，自由走行時サブバンド間遷

移を無視し，様々な結晶方位のナノシート構造の電子移動度を計算した結果を述べる．

電子状態計算では，シュレディンガー方程式とポアソン方程式との自己無撞着計算を行った．輸

送計算では，フォノン散乱に加えて，ラフネス散乱を考慮した．移動度は緩和時間近似を用いて計

算した．

5.5.1 久保-Greenwood公式

2.7.1節より，１次元電子ガスのボルツマン輸送方程式は，

−∂fn(k)
∂k

· eF
ℏ

= Sin
n (k)− Sout

n (k) (5.85)

となる．ここで，分布関数 f は x軸方向に依存せず一様であり，かつ，時間にも依存しないと仮定

した．略記のため，伝導帯谷を指定する添字とサブバンド指数をまとめて nと表している．また，

x軸方向の波数を k，x軸方向の電界を F と表す．
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電界が小さく分布関数 f が熱平衡分布 f0 と大きく変わらない場合，式 (5.85)は，

−∂fn(k)
∂k

· eF
ℏ

= −δfn(k)
τnk

(5.86)

と表せると考えられる [3, 20, 25]．ここで，分布関数の熱平衡分布からのずれを δfn(k) = fn(k)−
f0(Enk)とおいた．f0(E)はフェルミ分布関数である．τnk は運動量緩和時間であり，具体的な表

式は後で述べる．電界が小さいという仮定のもと，式 (5.86)の左辺は，

−∂fn(k)
∂k

· eF
ℏ

= −∂f0(Enk)

∂E

∂Enk

∂k

eF

ℏ
− ∂(δfn(k))

∂k
· eF
ℏ

≈ −vnkeF
∂f0(Enk)

∂E
(5.87)

と近似できる [3, 20, 25]．ここで，vnk = ℏ−1∂Enk/∂k とおいた．式 (5.87)を式 (5.86)に代入す

ると，つぎの式が得られる．

δfn(k) = τnkvnkeF
∂f0(Enk)

∂E
(5.88)

したがって，サブバンド指数が nである電子に由来する電流は，

Jn =
−ensp

L

∑
k

vnkfn(k) =
−ensp

L

∑
k

vnkδfn(k) =
−ensp

L

∑
k

τnkv
2
nkeF

∂f0(Enk)

∂E
(5.89)

と与えられる．ここで，vnk が kに関して奇関数的であることより
∑

k vnkf0(k) = 0となることを

用いた．式 (5.89) より，サブバンド指数が n である電子に由来する移動度は，つぎの式で求めら

れる．

µn =
Jn

−eFNn
=

−ensp

NnL

∑
k

τnkv
2
nk

(
−∂f0(Enk)

∂E

)
(5.90)

ここで，サブバンド指数が nである電子に由来する線電子密度 Nn は，つぎの式で与えられる．

Nn =
1

L

∑
k

f0(Enk) =

∫
nspgn(E)f0(E)dE (5.91)

後述するように，運動量緩和時間の k 依存性は，エネルギー Enk を通してのみ入っているため，

τnk = τn(Enk)と表せる．また，v2nk = 2(Enk − ϵn)/m
n
1D と表せる．これらを式 (5.90)に代入す

ると，

µn =
−ensp

NnL

∑
k

τn(Enk)
2(Enk − ϵn)

mn
1D

(
−∂f0(Enk)

∂E

)
=

−ensp

NnL

∑
k

∫
dEδ(E − Enk)τn(E)

2(E − ϵn)

mn
1D

(
−∂f0(E)

∂E

)
=

−ensp

Nn

∫
gn(E)τn(E)

2(E − ϵn)

mn
1D

(
−∂f0(E)

∂E

)
dE (5.92)

となる*4．すべてのサブバンドの電子を考慮した場合の移動度は，すべてのサブバンドの電子に由

*4 式 (5.92)を，つぎの表式まで変形した式がよく引用される．

µn =
−e

mn
1D

∫
τn(E)(E − ϵn)1/2

(
− ∂f0(E)

∂E

)
dE∫

(E − ϵn)1/2
(
− ∂f0(E)

∂E

)
dE
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来する電流 J を，すべてのサブバンドの電子に由来する線電子密度 N で割れば求まる．

µ =
J

−eFN
=

∑
n −eNnµnF

−eFN
=
∑
n

Nn

N
µn

=
−ensp

N

∫
dE

(
−∂f0(E)

∂E

)∑
n

gn(E)τn(E)
2(E − ϵn)

mn
1D

(5.93)

ここで，すべてのサブバンドの電子に由来する線電子密度 N は，つぎの式で与えられる．

N =
∑
n

Nn (5.94)

式 (5.92)および式 (5.93)は久保-Greenwood公式として知られている [3]．

なお，f0(E)の導関数を −1倍した関数は，つぎのように表せる*5．

−∂f0(E)

∂E
=

1

kBT
f0(E) (1− f0(E)) =

1

4kBT cosh2 [(E − EF)/2kBT ]
(5.95)

この関数は，全エネルギー範囲で積分すると１になる．∫ (
−∂f0(E)

∂E

)
dE = 1 (5.96)

E が EF よりも十分に大きい範囲で，つぎのように近似できる．

−∂f0(E)

∂E
≈ 1

kBT
f0(E) ≈ eEF/kBT

kBT
e−E/kBT (5.97)

T → 0の極限で，

−∂f0(E)

∂E
= δ(E − EF) (5.98)

となる．

5.5.2 運動量緩和時間

式 (5.85)の右辺を，遷移確率を用いて表すと，

Sin
n (k)−Sout

n (k) = [1− fn(k)]
∑
n′k′

Sn′,n(k
′, k)fn′(k′)−fn(k)

∑
n′k′

Sn,n′(k, k′) [1− fn′(k′)] (5.99)

となる．この式に，fn(k) = f0(k) + δfn(k)および fn′(k′) = f0(k
′) + δfn′(k′)を代入し，δfn(k)

および δfn′(k′)に関して 1次の項のみを残すと，

Sin
n (k)−Sout

n (k) = −δfn(k)
∑
n′k′

Sn,n′(k, k′)
1− f0(En′k′)

1− f0(Enk)

[
1− δfn′(k′)

δfn(k)

f0(Enk)

f0(En′k′)

1− f0(Enk)

1− f0(En′k′)

]
(5.100)

τn(E)がエネルギーに依存しない場合，

µn =
−eτn

mn
1D

となる．
*5 −∂f0(E)/∂E あるいは −kBT∂f0(E)/∂E は熱的広がり関数 (Thermal Broadening Function) と呼ばれる [26,

27]．
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となる．ここで，つぎの詳細平衡の原理を用いて，Sn′,n(k
′, k)を Sn,n′(k, k′)で表した．

Sn,n′(k, k′)f0(Enk) [1− f0(En′k′)] = Sn′,n(k
′, k)f0(En′k′) [1− f0(Enk)] (5.101)

式 (5.88)より，
δfn′(k′)

δfn(k)

f0(Enk)

f0(En′k′)

1− f0(Enk)

1− f0(En′k′)
=
τn′k′

τnk

vn′k′

vnk
(5.102)

となり，これを式 (5.100)に代入すると，つぎの式が得られる．

Sin
n (k)− Sout

n (k) = −δfn(k)
∑
n′k′

Sn,n′(k, k′)
1− f0(En′k′)

1− f0(Enk)

[
1− τn′k′

τnk

vn′k′

vnk

]
(5.103)

この式と Sin
n (k)− Sout

n (k) = −δfn(k)/τnk とを比較すると，

1

τnk
=
∑
n′k′

Sn,n′(k, k′)
1− f0(En′k′)

1− f0(Enk)

[
1− τn′k′

τnk

vn′k′

vnk

]
(5.104)

となる．これが，運動量緩和時間 τnk を決定する方程式である．

互いに相関のない散乱過程が NS 個ある場合を考える．このとき，式 (5.104) の Sn,n′(k, k′) に

は，すべての散乱過程 s (= 1, 2, . . . , NS)に由来する遷移確率の総和を用いる必要がある．

Sn,n′(k, k′) =
∑
s

S
(s)
n,n′(k, k

′) (5.105)

しかし，緩和時間近似に基づいて移動度を計算する場合，各散乱過程 s の運動量緩和時間 τ
(s)
nk を

個別に計算することが多い．すなわち，式 (5.104) の Sn,n′(k, k′) に S
(s)
n,n′(k, k′) を代入し，計算

した運動量緩和時間を τ
(s)
nk とする．そして，この個別に計算した運動量緩和時間 τ

(s)
nk を用いて，

式 (5.92)または式 (5.93)から移動度を計算し，これを各散乱過程 s に由来する移動度とする．

緩和時間近似では，すべての散乱過程を考慮した運動量緩和時間 τnk を，つぎのように近似的に

表す．
1

τnk
=
∑
s

1

τ
(s)
nk

(5.106)

式 (5.106) で計算される運動量緩和時間は，はじめに異なる散乱過程の遷移確率を合計した後，

式 (5.104)を用いて計算した運動量緩和時間とは一般に異なる．ただし，考慮する散乱過程が，弾

性散乱または等方散乱のみである場合，両者の運動量緩和時間は等しくなる [3]．

ある散乱過程 sが等方散乱の場合，運動量緩和時間 τ
(s)
nk は，

1

τ
(s)
nk

=
∑
n′k′

S
(s)
n,n′(k, k

′)

[
1− f0(En′k′)

1− f0(Enk)

]
(5.107)

と計算できる [3, 28]．したがって，フォノン散乱に起因する運動量緩和時間は，

1

τ
(ph)
vnk

=
∑
m

∑
v′

∑
n′

∑
k′

S
(m)
v,n;v′,n′(k, k

′)

[
1− f0(Ev′n′k′)

1− f0(Evnk)

]
=
∑
m

∑
v′

∑
n′

Z
(m)
v,v′CmF

v,n
v′,n′gv′,n′(Evnk +∆Em)

[
1− f0(Evnk +∆Em)

1− f0(Evnk)

]
(5.108)
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となる．ここで，谷を指定するラベル v とその谷に由来するサブバンドを指定するサブバンド指数

nを陽に表して状態を指定した．式 (5.108)より，運動量緩和時間の k 依存性は，エネルギーを通

してのみ入っているため，

1

τ
(ph)
vn (E)

=
∑
m

∑
v′

∑
n′

Z
(m)
v,v′CmF

v,n
v′,n′gv′,n′(E +∆Em)

[
1− f0(E +∆Em)

1− f0(E)

]
(5.109)

と表せる．これを式 (5.93)に代入すると，フォノン散乱制限移動度を計算することができる．

5.5.3 ラフネス散乱

ラフネス散乱では，同一谷内遷移のみが起こるとした．また，４つの界面のラフネスパターンが

無相関であると仮定した．そのため，各界面に起因する遷移確率は，各界面ごとに個別に計算でき

る．以下では，左側界面 [図 5.13(b)参照]のラフネスによる遷移確率の表式について述べる．他の

３つの界面に起因する遷移確率も同様に計算できる．

左側界面のラフネスに起因して，電子が状態 (v, n, k)から状態 (v, n′, k′)に遷移する遷移確率は，

S
(SR)
v,n,n′(k, k

′) =
2π

ℏ
|Mv,n,n′(q)|2 δ(Evn′k′ − Evnk) (5.110)

=
2π

ℏ

∣∣∣Γ(SR)
v,n,n′

∣∣∣2 1

L
SR(q)δ(Evn′k′ − Evnk) (5.111)

となる [29]．ここで，q = k′ − k とおいた．Γ
(SR)
v,n,n′ は一般化 Prange-Nee項である．

Γ
(SR)
v,n,n′ = −ℏ2

w

∫ h

0

dz

∫ w

0

dy ζv,n(y, z)w
v
yy

∂2ζv,n′(y, z)

∂y2

− ℏ2

w

∫ h

0

dz

∫ w

0

dy ζv,n(y, z)w
v
yz

∂2ζv,n′(y, z)

∂y∂z

+

∫ h

0

dz

∫ w

0

dy ζv,n(y, z)
(
1− y

w

)
eFyζv,n′(y, z)

+ (ϵv,n − ϵv,n′)

∫ h

0

dz

∫ w

0

dy ζv,n(y, z)
(
1− y

w

) ∂ζv,n′(y, z)

∂y

(5.112)

SR(q)は，ラフネスの１次元パワースペクトル密度である．本研究では，自己相関関数が指数関数

型のラフネスを仮定した．このとき，パワースペクトル密度は，

SR(q) =
2
√
2∆2Λ

q2Λ2 + 2
(5.113)

となる [30]．∆と Λはラフネスを特徴づけるパラメータであり，それぞれ，ラフネス高さとラフネ

ス相関長である．本研究では，ラフネス散乱の行列要素として式 (5.112)の一般化 Prange-Nee項

のみを考慮し，界面変動にともなう電荷密度，分極電荷，鏡像電荷変化の効果 [31, 32]は無視した．

つぎに，ラフネス散乱に起因する運動量緩和時間の計算方法を述べる．式 (5.111) を式 (5.104)
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に代入すると，

1

τvnk
=

2π

ℏ
1

L

∑
n′k′

∣∣∣Γ(SR)
v,n,n′

∣∣∣2 SR(q)

[
1− τvn′k′

τvnk

k′

k

]
δ(Evn′k′ − Evnk)

=
2π

ℏ
1

2π

∑
n′

∣∣∣Γ(SR)
v,n,n′

∣∣∣2 ∑
s=±1

∫ ∞

0

dk′SR(q)

[
1− τvn′,sk′

τvnk

sk′

k

]
δ
(

ℏ2k′2

2mv
1D

− ℏ2k2

2mv
1D

+ ϵn′ − ϵn

)
(5.114)

となる．ラフネス散乱は弾性散乱であるため，詳細平衡の原理から，運動量緩和時間は k の

大きさにのみ依存する．谷 v のサブバンド n に属しエネルギーが E の電子の波数の大きさを

kvn(E) =
√

2mv
1D(E − ϵvn)/ℏとおくと，式 (5.114)は，

1

τvn(E)
=

2π

ℏ
∑
n′

gvn′(E)

2

∣∣∣Γ(SR)
v,n,n′

∣∣∣2 ∑
s=±1

SR(q)

[
1− τvn′(E)

τvn(E)

skvn′(E)

kvn(E)

]
(5.115)

となる．両辺に τvn(E)kvn(E)を乗じ整理すると，つぎの τvn(E)に関する連立方程式を得る [33]．

kvn(E) = Av
n(E)τvn(E)−

∑
n′

Bv
nn′(E)τvn′(E) (5.116)

Av
n(E) =

2π

ℏ
∑
n′

gvn′(E)

2

∣∣∣Γ(SR)
v,n,n′

∣∣∣2 ∑
s=±1

SR(skvn′(E)− kvn(E))kvn(E) (5.117)

Bv
nn′(E) =

2π

ℏ
gvn′(E)

2

∣∣∣Γ(SR)
v,n,n′

∣∣∣2 ∑
s=±1

SR(skvn′(E)− kvn(E)) skvn′(E) (5.118)

式 (5.116)を数値的に解くことで，遷移確率から運動量緩和時間 τvn(E)が計算できる．

最後に，ラフネス散乱の遮蔽効果の計算方法について述べる．乱雑位相近似 (RPA: Random

Phase Approximation) によると，遮蔽効果を考慮していないラフネス散乱行列要素 Mv,n,n′(q)

と，遮蔽効果を考慮したラフネス散乱行列要素M
(scr)
v,n,n′(q)には，つぎの関係がある．

Mv,m,m′(q) =
∑

w,n,n′

ϵw,n,n′

v,m,m′(q)M
(scr)
w,n,n′(q) (5.119)

ここで，ϵw,n,n′

v,m,m′(q)は誘電関数テンソル (TDF: Tensorial Dielectric Function)であり，

ϵw,n,n′

v,m,m′(q) = δw,vδn,mδn′,m′ +
e2

2πϵSi
Fw,n,n′

v,m,m′(q)Πw,n,n′(q) (5.120)

と与えられる [28, 34]．本来，Si 領域，酸化膜領域，ゲート金属領域でそれぞれ誘電率は異なる

が，本研究では，全領域が Siの誘電率をもつ一様な環境にあると仮定して，遮蔽効果を計算した．

Fw,n,n′

v,m,m′(q)は遮蔽の形状因子と呼ばれ，つぎの式で与えられる．

Fw,n,n′

v,m,m′(q) =

∫
dy0

∫
dz0

∫
dy

∫
dz K0(|q|

√
(y − y0)2 + (z − z0)2)

× ζw,n(y0, z0)ζw,n′(y0, z0)ζv,m(y, z)ζv,m′(y, z)
(5.121)
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ここで，K0(·)は第 2種変形ベッセル関数である．Πw,n,n′(q)は分極因子と呼ばれ，つぎの式で与

えられる．

Πw,n,n′(q) = − 1

L

∑
k

fw,n′,k+q − fw,n,k

Ew,n′,k+q − Ew,n,k
≈ − 1

L

∑
k

f0(Ew,n′,k+q)− f0(Ew,n,k)

Ew,n′,k+q − Ew,n,k
(5.122)

ここで，低電界では分布関数の熱平衡分布からのずれは小さいと考えられるため，fw,n′,k+q ≈
f0(Ew,n′,k+q)，fw,n,k ≈ f0(Ew,n,k)と近似した*6．

5.5.4 自己無撞着シュレディンガー・ポアソン法

２次元シュレディンガー方程式 [式 (5.28)]を，再度以下に示す．[
−ℏ2

2

(
w22

∂2

∂y2
+ 2w23

∂2

∂y∂z
+ w33

∂2

∂z2

)
+ U(y, z)

]
ζn(y, z) = ϵnζn(y, z) (5.123)

ポテンシャルエネルギー U(y, z)を，

U(y, z) = −eϕ(y, z)− [χ(y, z)− χSi] (5.124)

と定義する．χ(y, z) は位置に依存する電子親和力である．Si 領域内では，U(y, z) = −eϕ(y, z)，
酸化膜領域では，U(y, z) = −eϕ(y, z)− (χox −χSi)となる．ここで，χSi は Siの電子親和力，χox

は酸化膜の電子親和力を表す．

ϕ(y, z)は静電ポテンシャルであり，つぎの 2次元ポアソン方程式を満たす．

∇ · (ϵ∇)ϕ = −ρ(y, z) (5.125)

ρ(y, z) = e [p(y, z)− n(y, z) +ND(y, z)−NA(y, z)] (5.126)

ここで，ϵ は位置に依存する誘電率である．ND(y, z) および NA(y, z) はイオン化不純物密度を表

す．本研究では，ノンドープのデバイスを想定し，ND(y, z) = 0，NA(y, z) = 0とした．また，n

型反転層での電子輸送計算を行うため，p(y, z) = 0とした．したがって，電荷密度は，

ρ(y, z) = −e n(y, z) = −e
∑
nk

|Φnk(y, z)|2 f0(Enk)

= −e
∑
nk

1

L
|ζn(y, z)|2 f0(Enk)

= −e
∑
n

|ζn(y, z)|2
∫
nspgn(E)f0(E)dE

= −e
∑
n

|ζn(y, z)|2Nn (5.127)

となる．ここで，総和はすべての谷のすべてのサブバンドに対してとる．また，Nn は，式 (5.91)

で定義したサブバンド指数が nであるすべての電子に由来する線電子密度である．

*6 n = n′ かつ長波長極限において，式 (5.122)は，つぎの表式で表される．

lim
q→0

Πw,n,n(q) =

∫
nspgn(E)

(
−
∂f0(E)

∂E

)
dE =

∂

∂EF

∫
nspgn(E)f0(E)dE =

∂Nn

∂EF

このように，電子密度をフェルミ準位で微分した量は熱力学状態密度と呼ばれる [35]．
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(a) (b)

図 5.13: (a)ナノシート構造における z 軸方向のバンドダイアグラム．χox と χSi は酸化膜と Si

の電子親和力，ΦM はゲート金属の仕事関数を表す．EF は Siチャネル内部のフェルミ準位，ある
いはある x における yz 面内の擬フェルミ準位を表す．(b)x 軸方向を輸送方向，y 軸方向をナノ
シート幅方向，z 軸方向をナノシート厚さ方向とする矩形断面ナノシート構造．h，w，tox はナノ
シート厚さ，ナノシート幅，酸化膜厚を表す．

つぎに，2次元ポアソン方程式の境界条件について考える．図 5.13(a)に示すように，デバイス

領域内のフェルミエネルギーを EF = 0とする．ゲート電圧印加は，EF = 0に対してゲート電極

内のフェルミエネルギーを eVG だけシフトさせる．したがって，図 5.13(a)より*7，金属/酸化膜

界面における (わずかに酸化膜側の)ポテンシャルエネルギー UG は，

UG = −eVG +ΦM − χox (5.128)

となる．ここで，ΦM はゲート金属の仕事関数である．式 (5.124) より，UG を静電ポテンシャル

ϕG = UG/(−e)に書き換えると，

ϕG = VG − ΦM − χSi

e
(5.129)

となる．この式からわかるように，ΦM − χSi は VG に対して ϕG をシフトさせる以外に，系に影響

を与えない．本研究では簡単のため，ΦM = χSi と仮定した．そのため，図 5.13(b)に示すように，

Si領域を取り囲む金属/酸化膜界面に対して ϕ = VG とする第 1種境界条件を課し，2次元ポアソ

ン方程式を解くことで静電ポテンシャル ϕ(y, z)が求まる．本研究では，有限要素法を用いて 2 次

元ポアソン方程式を数値的に解いた [36]．

最後に，シュレディンガー方程式とポアソン方程式の自己無撞着計算法について概説する [3, 37]．

シュレディンガー方程式とポアソン方程式を同時に満たす電荷密度 ρ(y, z)および静電ポテンシャ

*7 図 5.13(a)において EF = 0を表す一点鎖線から，eVG だけ下がり，ΦM だけ上がり，χox だけ下がると UG に到
達する．
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ル ϕ(y, z) を決定する計算は，自己無撞着計算と呼ばれる．ポアソン方程式の右辺に現れる電荷密

度 n(y, z) は，サブバンド準位 ϵn および波動関数 ζn(y, z) を含む式から計算されるため，ポアソ

ン方程式を解くにはシュレディンガー方程式を解く必要がある．一方，シュレディンガー方程式に

は，ポテンシャルエネルギー U(y, z)として静電ポテンシャル ϕ(y, z)が含まれるため，シュレディ

ンガー方程式を解くにはポアソン方程式を解く必要がある．このように，互いに依存する方程式を

解くための基本的な手順は以下のとおりである．

はじめに，適当な電荷密度 ρ(0)(y, z)を仮定し，これをもとにポアソン方程式を解いて静電ポテ

ンシャル ϕ(0)(y, z)を得る．つぎに，ϕ(0)(y, z)からポテンシャルエネルギー U (0)(y, z)を計算し，

シュレディンガー方程式を解いてサブバンド準位と波動関数を求める．その後，得られたサブバン

ド準位と波動関数を用いて新たな電荷密度 ρ(1)(y, z)を計算する．通常，ρ(0)(y, z)と ρ(1)(y, z)は

一致しないため，収束条件が満たされるまで，シュレディンガー方程式とポアソン方程式を繰り返

し解く必要がある．本研究では，電位 ϕ(y, z)に対してつぎの式が満たされたとき，自己無撞着計

算が収束したとみなした．
max
y,z

∣∣∣ϕ(i+1)(y, z)− ϕ(i)(y, z)
∣∣∣ < ϵa (5.130)

ここで，ϵa は許容誤差を表す．本研究では ϵa = 0.25 mVとした．

自己無撞着計算を効率的に収束させるため，数学的および物理的考察に基づいた様々なスキーム

が用いられる．例えば，非線形方程式を反復的に解く手法として，単純混合法や拡張 Anderson法，

あるいは Broyden 法などが用いられる [38]．また，ポアソン方程式を電位変化に対して線形化し

た線形化ポアソン方程式や，Predictor-Corrector法 [39]なども用いられる．

5.5.5 シミュレーション結果

はじめに，ナノシート構造の電子状態を 2DEGとして近似的に扱うのではなく，1DEGとして適

切に扱うことの重要性を示す．図 5.14(a) は，[100]/(001)ナノシート構造のラフネス散乱制限移動

度 µSR を，ラフネスの相関長 Λの関数として示したものである．ここで，[· · · ]は輸送方向の結晶
方位を表し，(· · · )は基板面方位を表す．電子密度が十分低く電子系は非縮退の古典的なガスである
と仮定した．そのため，自己無撞着計算の結果デバイス内のポテンシャルは平らであり，すなわち，

垂直電界はゼロである．1DEGの結果と 2DEGの結果とを比較するため，ラフネスはナノシート

構造の上下面にのみ存在するとし，側面のラフネス散乱を無視した．h = 3 nmとし，w = 10 nm

の結果を丸印で，w = 20 nmの結果をバツ印で示す．比較のため，h = 3 nmの 2DEGに基づい

て計算したラフネス散乱制限移動度を点線で示した．

電子状態を 2DEGとして近似的に扱うと，µSR は Λの増加に対して単調減少することがわかる．

一方，電子状態を 1DEGとして適切に扱うと w が小さくなるにつれて µSR が増加し，Λが長い領

域で µSR が増加に転じることがわかる．この理由は，図 5.14(b)に示すように，1DEGと 2DEG

では散乱前後で許される波数変化が本質的に異なること，さらに，ラフネスのパワースペクトル密

度が波数変化の大きさ |q|に対して急激に減少することからつぎのように説明できる [40, 41]．

強い量子閉じ込め効果によりサブバンド間隔が十分に広い 1DEG において，運動量緩和を引き
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2DEG

Correlation Length, 

1DEG

2DEG

(a) (b)

Initial State

Final State

Backscattering

図 5.14: (a)ラフネス散乱制限移動度 µSR のラフネス相関長 Λ 依存性．電子密度は十分低く電
子系は非縮退の古典的なガスであると仮定した．電子状態を 1DEG として適切に扱った結果と，
2DEGに近似した結果とを比較するために，ラフネスはナノシート構造の上下面にのみ存在すると
し，側面のラフネス散乱を無視した．(b) 1DEGと 2DEGにおいて，次元性に由来する可能な散乱
過程の違いの模式図．

起こす散乱過程は，図 5.14(b)に模式的に示すように，後方散乱 (Backscattering)のみである．始

状態の波数を kinit とすると，後方散乱にともなう波数変化は q = −2kinit となる．そのため，この

遷移が起こる確率は，ラフネスのパワースペクトル密度 SR(−2kinit)に比例し，ラフネス相関長 Λ

が大きくなるにつれて急激に低下する．以上の理由から，1DEGでは Λが大きい範囲において，Λ

の増加にともないラフネス散乱確率が低下し，µSR は増加する．

実際には，w が大きくなるにつれてサブバンド間隔が狭くなり，純粋な１次元系ではなくなる．

その場合，サブバンド指数変化をともなう波数変化の小さな散乱過程も可能となるため，w が大き

くなるにつれて電子状態の１次元性による散乱確率の低下の効果は小さくなる．

このような振る舞いを示す 1DEGに対して 2DEGでは，図 5.14(b)に示すように，後方散乱の

みならず，点線で丸く示す等エネルギー線上すべてに散乱可能である．このような小さな波数変化

をともなう遷移過程は，遷移確率が大きいため 2DEGの移動度を低下させる．

つぎに，遮蔽効果を考慮するためには，誘電関数テンソルの使用が重要であることを示す．移動

度のシミュレーションにおいて，計算時間の大部分は誘電関数テンソルに基づく遮蔽効果の計算が

占める．したがって，計算量削減のため，ϵw,n,n′

v,m,m′(q)の対角成分のみを考慮し，式 (5.119)を，

Mv,m,m′(q) = ϵv,m,m′

v,m,m′(q)M
(scr)
v,m,m′(q) (5.131)

と近似する方法が考えられる．このように誘電関数テンソルの対角成分のみを用いると，遮蔽

効果の計算に 1 つのサブバンドしか含まないため，計算時間が大幅に削減できる．図 5.15 に，

[100]/(001)ナノシート構造における，ラフネス散乱制限移動度の実効シート電子密度 Ninv 依存性
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Open Circles: Unscreened

Solid Circles: Screened (Full Tensor)

Dotted Lines: Screened (Diagonal Approx.)

Effective Sheet Density,

図 5.15: ラフネス散乱制限移動度の実効シート電子密度Ninv 依存性．∆ = 0.48 nm，Λ = 1.3 nm

とした．遮蔽効果を無視した場合の結果を白抜きのマーカーで，誘電関数テンソルに基づき遮蔽効
果を考慮した結果を塗りつぶしたマーカーで，誘電関数テンソルを対角近似して遮蔽効果を考慮し
た結果を点線で示す．

を示す．ここで，実効シート電子密度 Ninv は，

Ninv =
N

2(w + h)
(5.132)

と定義した．N は式 (5.94)で与えられる線電子密度であり，2(w+ h)はナノシートの周長である．

遮蔽効果を無視した場合の結果を白抜きのマーカーで，誘電関数テンソルに基づき遮蔽効果を考慮

した結果を塗りつぶしたマーカーで，誘電関数テンソルを対角近似して遮蔽効果を考慮した結果を

点線で示す．h = 4 nmとし，青線は w = 4 nm，赤線は w = 8 nmの場合をそれぞれ表す．

Ninv が 1011 cm−2 程度と小さい場合には，遮蔽効果を考慮してもしなくても結果は変わらない

ことがわかる．一方，Ninv が大きくなるにつれて，遮蔽効果の影響が輸送特性に表れ，遮蔽効果

を考慮すると，考慮しない場合よりもラフネス散乱制限移動度が高くなることがわかる．また，誘

電関数テンソルを対角近似した場合には，遮蔽効果を低く見積もってしまうことがわかる．とく

に，Ninv が高い場合には，誘電関数テンソルの対角近似による誤差は大きい．この理由は，Ninv

の増加とともに，誘電関数テンソルに寄与するサブバンドの数が増加することによる．同様の理由

により，サブバンド間隔が比較的広い w = 4 nm の場合に比べて，サブバンド間隔が比較的狭い

w = 8 nmの場合のほうが，誘電関数テンソルの対角近似による誤差は大きいことがわかる．

つぎに，w = 20 nm のナノシート構造において，移動度の厚さ h 依存性をシミュレーショ

ンした結果について述べる．図 5.16(a,b,c,d) はそれぞれ結晶方位が，[100]/(001)，[110]/(001)，

[001]/(110)，[11̄0]/(110)のナノシート構造における移動度の h依存性である．青線はラフネス散

乱制限移動度 µSR，赤線はフォノン散乱制限移動度 µPH，黒線はラフネス散乱とフォノン散乱とを

考慮した場合の移動度 µtot である．ゲート電圧は Ninv = 5 × 1012 cm−2 となるように適宜調整
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(a)

(c) (d)

(b)

図 5.16: w = 20 nmのナノシート構造における移動度の厚さ h依存性．Ninv = 5× 1012 cm−2，
∆ = 0.48 nm，Λ = 1.3 nmとした．赤線はフォノン散乱制限移動度，青線はラフネス散乱制限移
動度，黒線はフォノン散乱とラフネス散乱を考慮した場合の移動度を表す．(a)(b)(c)(d)はそれぞ
れ結晶方位が，[100]/(001)，[110]/(001)，[001]/(110)，[11̄0]/(110)の場合の結果である．

した．

(001) 面上のナノシート構造 [図 5.16(a)(b)] では，h = 2.5 nm 程度で µSR と µPH の大小関係

が逆転していることがわかる．一方，(110) 面上のナノシート構造 [図 5.16(c)(d)] では，厚さが

h = 2.5 nmよりも大きい領域で µSR と µPH の大小関係が逆転していることがわかる．h = 2 nm

程度の極薄膜領域では，(110)面上のナノシート構造ではラフネス散乱強度が高くなるため，(001)

面上のナノシート構造よりも移動度は低くなる．

(001)面の移動度が比較的高い理由として，(001)面上のナノシート構造では，[001]谷の z 軸方
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向の有効質量が重いことが挙げられる．まず，h < w であるため，各谷の基底サブバンド準位の上

下関係は，z 軸方向の有効質量でおおむね決まる．したがって，z 軸方向の有効質量が ml で重い

[001]谷は，基底サブバンド準位が低く，もっとも占有率が高くなる．さらに，この z 軸方向の有効

質量が重い [001]谷では，界面位置乱れによるサブバンド準位の変動が抑えられるため，ラフネス

散乱強度が低くなる．

以上より，極薄膜領域のナノシート構造デバイスを作製する場合，移動度を高くするという観点

からは (001)面が優れていることがわかる．一方，h = 5 nm程度と比較的厚い領域では，(110)面

上のナノシート構造でも移動度は比較的高い．具体的には，図 5.16(c) の [001]/(110) ナノシート

構造の結果を見ると，µtot は 500 cm2/Vs程度であり，これは (001)面上のデバイスの µtot と同

程度に高い．この理由は，hが大きい範囲ではラフネス散乱だけでなく，フォノン散乱が輸送特性

に関与するためである．比較的厚い領域では，ラフネス散乱とフォノン散乱を同時に考慮する必要

がある．

つぎに，h = 4 nm，w = 10 nmのナノシート構造における，移動度の結晶方位依存性のシミュ

レーション結果について述べる．図 5.17(a) は，実効シート電子密度を Ninv = 8 × 1012 cm−2 と

固定した場合における移動度の結晶方位依存性である．赤線は (001)面，青線は (110)面，緑線は

(111)面上のナノシート構造を表す．縦軸はラフネス散乱とフォノン散乱を考慮した場合の移動度，

横軸は輸送方向の角度 θである．ここで，輸送方向の角度の原点 θ = 0°は，(001)面の場合は [100]

方向，(110)面の場合は [001]方向，(111)面の場合は [2̄11]方向とした [図 5.2および図 5.17(b)参

照]．図中には主要な結晶方位の結果に，その輸送方向と基板面方位を，[輸送方向]/(基板面方位)と

付した．図 5.2に示すように，結晶の対称性から，(001)面上のナノシート構造は θ = 45°，(110)

面上のナノシート構造は θ = 90°，(111)面上のナノシート構造は θ = 30°で移動度が周期的に変

化する．したがって，図 5.17(a)は，各面上のデバイスにおいて可能な輸送方向をすべて網羅して

いる．

図 5.17(a)より (110)面では，輸送方向による移動度の変化が大きく，0°と 90°で 2倍程度変化

していることがわかる．また，移動度は 60°付近まで単調に減少し，その後，増加に転じることが

わかる．この理由は，Siにおける 6つの伝導帯谷の強い有効質量の異方性からつぎのように説明で

きる．

図 5.17(c)に，(110)面と (001)面における波数空間上での 6 つの伝導帯谷の等エネルギー面を

示す．赤色，青色，緑色で示す伝導帯谷はそれぞれ，[100]谷，[010]谷，[001]谷である．図 5.17(a)

の青線の結果を，より詳細に解析した結果を図 5.17(d,e,f)に示す．

図 5.17(d)では，各伝導帯谷に電子が占有されている割合を示した*8．赤線は [100]谷の占有率，

緑線は [001]谷の占有率である．図 5.17(c)からわかるように，対称性から [010]谷の占有率は [100]

谷のそれと等しいため，図では線が重なっている．なお，[100]谷の占有率は [1̄00]谷の占有率との

合計とした．同様に，[010]谷の占有率は [01̄0] 谷の占有率との合計，[001]谷の占有率は [001̄]谷の

*8 式 (5.94) で定義されるサブバンド n 由来の線電子密度 Nn を，各谷 v (= [100], [010], [001], [1̄00], [01̄0], [001̄])

に由来するサブバンド全体について足し合わせ，これをすべての谷に由来する線電子密度 N [式 (5.94)] で割ること
で，各伝導帯谷に電子が占有されている割合を計算した．
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図 5.17: h = 4 nm，w = 10 nm のナノシート構造における移動度の結晶方位依存性．Ninv =

8× 1012 cm−2，∆ = 0.48 nm，Λ = 1.3 nmとした．(a)赤線は (001)面，青線は (110)面，緑
線は (111)面上のナノシート構造を表す．横軸は輸送方向を表す角度 θ である．θ = 0°は，(001)

面の場合は [100] 方向，(110) 面の場合は [001] 方向，(111) 面の場合には [2̄11] 方向とした．(b)

輸送方向を表す角度 θ と，(110) 面および (001) 面の原子配列．(c) 波数空間における６つの伝導
帯谷の等エネルギー面．(d)(g)は (110)面と (001)面上ナノシート構造における各谷の占有率の θ

依存性．(e)(h) は (110) 面と (001) 面上ナノシート構造における各谷の x 軸方向の有効質量の θ

依存性．(f)(i)は (110)面と (001)面上ナノシート構造における移動度に対する各谷の寄与の θ 依
存性．
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占有率との合計とした．定義より，赤線，緑線，青線 (赤線と重なっている)の和はつねに１である．

θ が増加するにつれて，[100]谷および [010]谷の占有率は低下し，[001] 谷の占有率は増加する

ことがわかる．この理由は，θ の変化にともない伝導帯谷の主軸方向に対して閉じ込め方向が変化

するためである．

図 5.17(e)は，各谷における輸送方向の有効質量m1D の θ依存性を表す．図 5.17(c)からわかる

ように，対称性から [100]谷と [010]谷ではm1D が等しいため，図では線が重なっている．θ が増

加するにつれて，[001]谷の輸送方向の有効質量は軽くなり，[100]谷および [010]谷の輸送方向の

有効質量は重くなることがわかる．

図 5.17(f)は，すべての谷を考慮した移動度 [図 5.17(a)の青線]への各谷の寄与を表す．すなわ

ち，各谷の移動度に各谷の占有率を乗じた値を表す．まず，θ = 0°では，[100]谷および [010]谷の

占有率が大きく，かつ，[100]谷および [010]谷の輸送方向の有効質量は軽い．したがって，θ = 0°

において (110)面の移動度は最大値をとる．これに対して，θ が増加すると，[100]谷および [010]

谷の占有率は低下し，輸送方向の有効質量が重い [001]谷に電子が占有されはじめる．この効果に

より，θ ≲ 60°では，移動度は単調に減少する．

つぎに，θ ≳ 60°の場合を考察する．この範囲においても θが増加するにつれて，[100]谷および

[010]谷の占有率は低下し，[001]谷の占有率は増加する．しかし，[100]谷および [010]谷の輸送方

向の有効質量は重くなり，[001] 谷の輸送方向の有効質量は軽くなる結果，その大小関係が逆転す

る．したがって，θ = 60°付近で移動度は増加に転じる．

つぎに，(001) 面の結果について考察する．図 5.17(a) より (001) 面では，θ が増加するにつれ

て，移動度は低下することがわかる．先に述べた対称性より 45°から 90°における移動度の θ 依存

性は，0°から 45°の θ依存性を反転したものに等しい．そこで，0° ≤ θ ≤ 45°の範囲において，各

谷の占有率を図 5.17(g)，各谷の輸送方向の有効質量を図 5.17(h)，すべての谷を考慮した移動度へ

の各谷の寄与を図 5.17(i)に示す．

θ によらず [001]谷の占有率がもっとも高く，かつ，輸送方向の有効質量が軽いため，[001]谷の

寄与が全移動度に対して支配的であることがわかる．そのつぎに移動度に寄与しているのは [010]

谷である．この [010] 谷の占有率は θ の増加にともない低下し，輸送方向の有効質量も重くなる．

したがって，[010]谷の全移動度への寄与が低下するため，θの増加にともないすべての谷を考慮し

た移動度は低下する．

最後に，h = 4 nm，w = 10 nmのナノシート構造における，移動度の Ninv 依存性のシミュレー

ション結果について述べる．図 5.18(a)に，代表的な結晶方位のナノシート構造において，ラフネ

ス散乱とフォノン散乱を考慮した移動度の Ninv 依存性を示す．

結晶方位によらない全体的な傾向として，Ninv が大きい領域では，その増加にともない移動度は

低下することがわかる．この原因の一つは，Ninv の増加による垂直電界の増加により，ラフネス散

乱強度が強くなるためである．

しかし，例えば [001]/(110)に着目すると，Ninv が小さい場合には，その増加にともない移動度

も増加することがわかる．この理由は，Ninv の増加により遮蔽効果が強くなり，ラフネス散乱強度

が弱くなるためである．このように，Ninv の増加に対して，遮蔽効果による散乱強度低下と，垂
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(a)

(b)

(c)

図 5.18: (a)h = 4 nm，w = 10 nm のナノシート構造における移動度の Ninv 依存性．∆ =

0.48 nm，Λ = 1.3 nmとした．(b)(c)はそれぞれ，[100]/(001)および [001]/(110)における各谷
の占有率の Ninv 依存性．各谷の x軸方向の有効質量を各線の近くに付した．

直電界による散乱強度増加という相反する効果がラフネス散乱に表れる．これらの効果の大小関係

は，図 5.18(a)より，Ninv = 6× 1012 cm−2 程度で入れかわることがわかる．

なお，[100]/(001) において，Ninv の増加にともない移動度が増加する領域が存在しないのは，

Ninv が低い領域ではラフネス散乱ではなくフォノン散乱によって移動度が支配的に決定されるため

である．すなわち，ラフネス散乱強度は遮蔽効果によりたしかに弱くなるが，Ninv が低い領域での

移動度はほとんどフォノン散乱で決まるため，遮蔽効果の影響は [001]/(110)のようには表れない．

図 5.18(a)より，Ninv = 1013 cm−2 程度では，[001]/(110)が [100]/(001)を上回りもっとも高

い移動度を示すことがわかる．この理由の一つは，Ninv の増加にともない，[100]/(001)では z 軸

方向の有効質量が軽い [010]谷の占有率が増加するためである．z 軸方向の有効質量が軽い [010]谷

の電子は，ラフネス散乱強度が大きくなるため移動度は低い．

実際，図 5.18(b)(c)にそれぞれ，[100]/(001)および [001]/(110)における各谷の占有率を，Ninv

の関数として示す．各谷の輸送方向の有効質量 m1D を線の横に付した．[001]/(110) では，[100]

谷と [010] 谷が縮退しているため，これらの谷の占有率の和を破線で示した．

[100]/(001)では，Ninv の増加にともない [001]谷の占有率が低下する一方，[010]谷の占有率は

増加することがわかる．この [010]谷の z 軸方向の有効質量は軽い．したがって，[100]/(001)では

Ninv の増加にともない，ラフネス散乱強度が強くなり，移動度が低下する．

このような占有率変化にともなう移動度の低下は，Ninv = 1013 cm−2 程度の場合，[001]/(110)

では起こらない．なぜなら，[001]/(110)では，基底サブバンドを形成する [100]谷と [010]谷が縮
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退しているため状態密度が高く，フェルミエネルギーが上がりづらいためである*9．

以上の理由から，Ninv = 1013 cm−2 程度では，[001]/(110)が [100]/(001)を上回りもっとも移

動度が高くなる．なお，図 5.18(c)より，[001]/(110)において Ninv = 1013 cm−2 を超えさらに大

きくなる場合，輸送方向の有効質量が重い [001]谷の占有率が増加しはじめることがわかる．した

がって，図 5.18(a)に示すように，[001]/(110)の移動度は Ninv = 1013 cm−2 付近から急速に減少

しはじめる．

5.6 まとめ

はじめに，任意の結晶方位からなるナノシート構造において，1次元的に量子閉じ込めを受けた

電子状態を有効質量近似に基づき記述する方法を説明した．逆有効質量テンソルの非対角成分が非

ゼロの場合，量子閉じ込め効果によって輸送方向の有効質量が重くなることを数学的に示した．こ

の有効質量の増加により，自由走行時にサブバンド指数が不変であると仮定すると，閉じ込めがな

い極限での計算結果が，実際のバルク結晶における計算結果に漸近しないという問題が発生するこ

とを述べた．

つぎに，KI方程式に基づき，自由走行時のサブバンド指数変化を解析した．逆有効質量テンソル

の非対角成分がゼロの場合，サブバンド指数は不変である一方，非対角成分が非ゼロの場合にはサ

ブバンド指数が確率的に変化することがわかった．このような加速にともなうサブバンド指数変化

が輸送特性へ与える影響を調べるため，各サブバンドに電子が存在する確率 |an(t)|2 で重み付けし
た平均的な分散関係 Ēn0k0

を解析した．加速の初期期間 t < τc において，量子閉じ込め効果によ

る輸送方向の有効質量増加を打ち消すようにサブバンド間遷移が起こることを解析的に示した．ま

た，初期期間以降 τc < tでは，電子が初期状態のサブバンドに戻ることを数値計算により示した．

これらの結果から，τc までに散乱される電子が多いほど，自由走行時のサブバンド間遷移の効果

によってドリフト速度が高くなることがわかった．さらに，閉じ込めがない極限では τc → ∞とな
ることが期待されるため，自由走行時にサブバンド指数が不変であるという仮定が生じさせる漸近

性の問題は，サブバンド指数変化を考慮することで解決できる．実際には，τc までに散乱される電

子と τc 以降に散乱される電子の両方が存在するため，サブバンド間遷移を無視したシミュレーショ

ンによるドリフト速度 vo と，サブバンド間遷移を考慮したシミュレーションによるドリフト速度

vKI には，
vo ≤ vKI ≤ vo ×

m1D

m3D
(5.133)

という関係 [式 (5.59)]が定性的に成立することを示した．

自由走行時サブバンド間遷移が輸送特性へ与える影響を，モンテカルロシミュレーションを用

いて定量的に調べた．その結果，vKI/vo は電界にほとんど依存しないことがわかった．さらに，

量子閉じ込め幅を十分に広げていくと，vKI/vo が m1D/m3D に漸近することが明らかとなった．

[100]/(001)，[001]/(110)，[11̄0]/(110)などの特定の結晶方位のナノシート構造では，vKI/vo = 1

*9 サブバンド端よりもフェルミ準位が熱エネルギーの数倍程度低い場合，占有率はフェルミ準位に対して不変である．
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であることがわかった．また，極めて微細なナノシート構造では，自由走行時サブバンド間遷移の

効果は比較的小さいことがわかった．

ただし，本研究のモンテカルロシミュレーションでは，散乱過程として等方的なフォノン散乱の

みを考慮した．そのため，不純物散乱などの非等方的な一般の散乱過程を考慮した場合に，自由走

行時サブバンド間遷移が電子輸送特性へ与える影響は異なる可能性がある．

最後に，(001)面，(110)面，(111)面上のナノシート構造における電子移動度を，緩和時間近似

に基づき計算した．フォノン散乱に加え，ラフネス散乱を考慮し，さらに誘電関数テンソルを用い

て遮蔽効果を考慮した．1DEG の電子状態は，シュレディンガー方程式とポアソン方程式の自己

無撞着計算から求めた．ラフネス散乱制限移動度を，電子状態を 2DEG として近似した場合と，

1DEGとして適切に扱った場合の両方で計算し，それらの違いを比較した．その結果，ナノシート

構造の電子状態を 2DEGとして近似するのではなく，1DEGとして適切に扱うことの重要性が示

された．また，誘電関数テンソルを用いた遮蔽効果の考慮が，電子移動度の正確な評価において重

要であることがわかった．

極めて薄いナノシート構造では，[001] 谷の z 軸方向における有効質量が重いため，(001) 面上

のデバイスが高い移動度を示すことがわかった．比較的厚いナノシートにおいて，移動度の輸送方

向依存性を包括的にシミュレーションした結果，(110)面上のナノシート構造では，伝導帯谷の強

い有効質量異方性により，輸送方向によって移動度が大きく変化することがわかった．ナノシート

幅 w = 10 nm，ナノシート厚さ h = 4 nm，実効シート電子密度 Ninv = 8× 1012 cm−2 の条件下

において，(001)面上のナノシートでは輸送方向が [100]，(110)面上のナノシートでは輸送方向が

[001]，(111) 面上のナノシートでは輸送方向が [01̄1] の場合に移動度が高くなることがわかった．

また，ナノシート幅 w = 10 nm，ナノシート厚さ h = 4 nmのナノシートについて，移動度のNinv

依存性をシミュレーションした結果，Ninv = 1013 cm−2 程度の場合には，[001]/(110)がもっとも

高い移動度を示すことがわかった．
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第 6章

結論

本研究の目的は，次世代半導体デバイスの早期開発に向けて，半導体ナノシートにおける電子輸

送理論および計算技術を開発することである．この目的に対して，以下の (1)～(3) に関する研究

を行った．(1)ナノシートの高効率な量子輸送デバイスシミュレーションを実現するため，ハミル

トニアン行列サイズを削減する等価モデルの新規開発．(2)ナノシートにおいてラフネス散乱で決

まる平均自由行程を，摂動論によらない量子輸送シミュレーション結果から抽出する数値計算手法

の新規開発．(3)自由走行時サブバンド間遷移確率の量子論に基づく計算と，これを反映したモン

テカルロ法に基づく１次元電子ガスの輸送理論の新規開発．本章では，本研究を通して得られた成

果・知見を総括し，本論文の結論を述べる．

第 3 章では，項目 (1) に関する研究結果を述べた．本研究で新規に開発した 1 次元等価モデル

(1DEM) は，シミュレーション対象のデバイスのバンド構造のみから，サイズの小さなハミルト

ニアン行列を構築できる．従来の行列次元削減法では，サイズの大きなハミルトニアン行列から

サイズの小さなハミルトニアン行列を構築する必要があった．すなわち，削減対象となる元のハ

ミルトニアン行列を最初に用意しなければならなかった．1DEM にはこのような制限がなく，柔

軟にデバイスシミュレーションへ応用できる点に独自性がある．1DEM を様々な半導体 1 次元

構造に適用し，性能を評価するために強結合近似モデル (TBM) との比較を行った．まず，TBM

と 1DEM のバンド構造を比較し，TBM のバンド端付近のバンド構造を 1DEM が小さな行列サ

イズで精度良く表現できることを確認した．つぎに，1DEM と TBM に基づく非平衡グリーン関

数 (NEGF)シミュレーションを実行し，その結果を比較した．TBM-NEGFから求めた透過関数

と 1DEM-NEGF から求めた透過関数が精度良く一致していることが確認できた．これにより，

1DEMを用いることで必要な精度を維持しつつ，NEGFシミュレーションの計算量を大幅に削減

できることを実証した．

第 4章では，項目 (2)に関する研究結果を述べた．本研究で新規に開発した統計的な手法は，量

子輸送シミュレーション結果から単一モードナノシートのラフネス散乱に起因する平均自由行程を

高効率に抽出できる．本開発手法は，チャネル長 Lが短い領域でのみ用いることができた従来手法

を拡張したものであり，Lの長さによらず適用できる．また，アンダーソン局在の影響を取り除く

ために非弾性散乱を追加で考慮する必要がないため，高速に計算できるという特徴も有する．さら
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に，電極領域とチャネル領域とを明示的に分割する必要がある量子輸送シミュレーションから，電

極領域に依存しないバルク的な物理量を計算できる点にも独自性がある．本開発手法を用いて平均

自由行程のナノシート厚さ Tw 依存性を調べたところ，Tw が厚い領域ではよく知られた T 6
w の依存

性を示し，Tw が薄い領域では Tw 依存性が弱くなることがわかった．これは，ボルン近似および自

己無撞着ボルン近似に基づく計算と整合していることを示した．本開発手法は，単純な摂動論が成

立しない場合でも適用できる．また，無次元抵抗の統計的性質のみに基づいているため，ナノシー

トの幾何構造，ラフネスパターンを記述する統計モデル，および電子状態モデルによらず様々な系

へ応用できると考えられる．本研究で開発した統計的手法の利点の一つは，このような適用範囲の

広さにある．

第 5章では，項目 (3)に関する研究結果を述べた．本研究では，Krieger-Iafrate (KI)方程式を用

いて，1次元電子ガスにおける自由走行時サブバンド間遷移確率を解析した．はじめに，逆有効質

量テンソルの非対角成分が非ゼロの場合，量子閉じ込め効果によって輸送方向の有効質量m1D が，

閉じ込めを無視したバルク的な有効質量 m3D よりも重くなることを数学的に証明した．つぎに，

KI方程式に基づき，自由走行時のサブバンド指数変化を解析した．逆有効質量テンソルの非対角

成分がゼロの場合，サブバンド指数は不変である一方，逆有効質量テンソルの非対角成分が非ゼロ

の場合，サブバンド指数が確率的に変化することを示した．自由走行時サブバンド間遷移を無視し

たシミュレーションから得たドリフト速度 vo と，自由走行時サブバンド間遷移を考慮したシミュ

レーションから得たドリフト速度 vKI には，vo ≤ vKI ≤ vo × (m1D/m3D)なる関係が成り立つこ

とを示した．サブバンド間遷移確率を，従来のモンテカルロシミュレーションに取り入れる新規手

法を開発した．これを用いて，サブバンド間遷移が輸送特性に与える影響を定量的に解析した．新

規手法と従来手法を用いて移動度をシミュレーションし，新規手法は，従来法が抱える巨視的な系

への漸近性に関する問題点を，改善していることを示した．さらに，微細なナノシート構造では，

vKI/vo ≈ 1であることを明らかにした．すなわち，自由走行時サブバンド間遷移が輸送特性に与え

る影響はそれほど大きくなく，無視できることを定量的に示した．矩形断面ナノシートの電子移動

度の結晶方位依存性を包括的にシミュレーションし，とくに (110)基板では，チャネル方位によっ

て移動度が大きく変調されることを示した．

以上のように，本研究では，次世代半導体デバイスの開発に必要な基盤となる電子輸送理論およ

び計算技術に関する新たな知見を得るとともに，実用的なシミュレーション手法を提案し，その有

用性を実証した．具体的には，1次元等価モデルの開発による計算効率の向上，ラフネス散乱に起

因する輸送特性の解析手法の新規開発，および自由走行時のサブバンド間遷移を考慮した輸送理論

の確立という 3 つの主要課題に取り組み，それぞれにおいて新規かつ独自の結果が得られたと考

える．これらの成果は，ナノシートを用いた次世代半導体デバイスのシミュレーション技術開発に

寄与するものであり，半導体デバイスのさらなる高性能化に貢献するものと考えている．本研究を

通して得られた成果は，半導体デバイスの性能向上のみならず，ナノスケール物理現象の理解にも

寄与するものである．これにより，次世代のナノエレクトロニクスの発展に貢献することが期待さ

れる．

最後に，さらなる研究課題と将来の展望について述べる．本研究では，完全結晶からなるデバイ
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スに対して 1DEMを構築し，有効性を確認した．しかし，デバイス内部に歪みや欠陥が存在する場

合でも，そのバンド構造がなんらかの方法で取得可能であれば，1DEM を適用できると考えられる．

これを実際に検証し，その有効性と限界を明らかにすることが次の課題となる．また，本研究で開

発した統計的手法は，単一モード系の無次元抵抗分布に基づき，単一モードのナノシート構造から

ラフネス散乱に由来する平均自由行程を抽出する．断面形状の大きいナノシートのような多モード

系に適用するためには，多モード系の無次元抵抗分布を記述する Dorokhov-Mello-Pereyra-Kumar

方程式 [1–3] などを活用した計算手法の開発が必要である．多モード系への拡張が実現できれば，

本研究で開発した統計的手法の適用範囲を大幅に広げられる．さらに，自由走行時サブバンド間遷

移の解析は，本研究では一様電界を仮定して行った．一方，実際のデバイスでは，電界が非一様で

ある場合がほとんどである．この非一様電界下での自由走行時サブバンド間遷移がデバイス特性に

与える影響を詳細に解析することは，実用的なデバイス設計に直接貢献する．

これらの課題に取り組むことで，本研究の電子輸送理論をさらに拡張し，次世代半導体デバイス

の開発に向けた理論基盤の深化が期待される．
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付録 A

バンド間トンネルシミュレーションの
精度

等価モデル (EM: Equivalent Model) は，2012 年に G.Mil’nikov らによって文献 [1] ではじ

めて提案された．本付録では，間接遷移型半導体からなる量子細線において，バンド間トンネル

(BTBT: Band-to-Band Tunneling) シミュレーションを行い，EM の輸送エネルギー窓と計算精

度との関係を調べた結果を述べる [2]．

A.1 等価モデルの構築方法

文献 [1] で示されている方法を用いて，sp3d5s∗ 強結合近似モデル (TBM: Tight-Binding

Model) [3] で記述された量子細線構造の EM を構築した．その方法を以下で述べる．まず，

輸送エネルギー窓を [ϵ1, ϵ2]と表す．ここで，ϵ1 と ϵ2 はそれぞれ輸送エネルギー窓の下限と上限で

ある．EMでは，サイズの大きなハミルトニアン行列から，[ϵ1, ϵ2]の範囲のブロッホ状態を抽出す

ることで，サイズの小さなハミルトニアン行列を構築する．

TBMのバンド構造は，
H(k) = H0 +W eika +WTe−ika (A.1)

を対角化することで得られる．ここで，kは波数，aは格子定数である．H0 は孤立した単位胞のハ

ミルトニアンであり，W は隣接する単位胞間の相互作用を表す．H0 とW は大きさがNAM×NAM

実行列である．TBMのバンド構造の中から，輸送エネルギー窓内を表現するように，ブロッホ状

態 ϕnk を任意の数サンプリングする．それらを並べた行列を直交化し，初期変換行列 Φを構築す

る．変換行列 Φを用いて，EMのハミルトニアンは，

h0 = Φ†H0Φ, w = Φ†WΦ (A.2)

と与えられる．Φのサイズは NAM ×NEM である．通常，NEM < NAM となる．EMのバンド構

造は，
h(k) = h0 + weika + wTe−ika (A.3)
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図 A.1: h × hの正方形断面をもつ半導体量子細線構造の模式図．チャネルは両端で左電極 (ソー
ス)と右電極 (ドレイン)に接続されている．

を対角化することで得られる．初期変換行列から構築した EMのバンド構造は，輸送エネルギー窓

内のすべての物理的な状態を含む．しかし，非物理的な状態も含む．この非物理的な状態は，追加

の基底 Φextra を変換行列 Φに加えることで除去できる．そのさい，初期変換行列 Φにすでに含ま

れる物理的な状態へ影響を及ぼさないように，追加する基底を構成する必要がある．このような基

底の追加は，変分関数 F [Φ]を最小化することで行える．F [Φ]の詳細な定義などは，文献 [1]で示

されている．

A.2 輸送エネルギー窓とバンド間トンネルシミュレーション精度の

関係

図 A.1 にシミュレーションした量子細線構造を示す．h = 1.4 nm の正方形断面 GaP 量子細

線構造に対して EM を構築した．単位胞には 60 個の原子が含まれており，TBM のサイズは

NTBM = 600 である．図 A.2 に TBM のバンド構造を灰色の実線で示す．右のパネルは実バン

ド構造 (E-k 関係)，左のパネルは複素バンド構造 (E-κ 関係) を表す．κ は波数の虚数部である．

GaPは間接遷移型の半導体であるが，量子細線構造の場合には価電子帯端と伝導帯端は k = 0に

位置し，それらはバンドギャップ領域で単一の減衰状態によって接続されていることがわかる．こ

のもっとも内側の減衰状態が BTBTに主に寄与すると考えられる．

つぎに，3 とおりの輸送エネルギー窓を設定し，EM を構築した．輸送エネルギー窓を [Ec +

∆Ec, Ev −∆Ev] と表す．ここで，Ec と Ev はそれぞれ伝導帯端と価電子帯端のエネルギーであ

る．輸送エネルギー窓幅は EW = ϵ2 − ϵ1 = Eg +∆Ec +∆Ev と与えられる．ここで，Eg はバン

ドギャップエネルギーを表す．

図 A.2に，(a)∆Ec = ∆Ev = 0.1 eV，(b) 0.5 eV，(c) 1.5 eVとして構築した EMのバンド構造

を赤破線で示す．図 A.2(a)(b)より，EMは，価電子帯端および伝導帯端の実バンド構造を精度良

く表現していることがわかる．しかし，減衰状態は精度良く表現できていない．一方，図 A.2(c)の

ように，輸送エネルギー窓幅を十分に広げると，EMは広い範囲の減衰状態を精度良く表現できて
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(a) (b) (c)

WavenumberWavenumber Wavenumber
kκkκkκ

Ew

ΔEc

ΔEv

図 A.2: h = 1.4 nmの GaP量子細線のバンド構造．灰色の実線は TBM，赤破線は EMを用い
て計算した．右パネルは実バンド構造 (E-k 関係)，左パネルは複素バンド構造 (E-κ関係)を表す．
輸送エネルギー窓幅はそれぞれ，(a)EW = 3.48 eV，(b) 4.28 eV，(c) 6.28 eVである．

m
eV

(a)

(b)

(c)

Eg

ΔE

z

ℓ

T(E)
0

図 A.3: 透過関数 T (E) のエネルギー依存性．エネルギーの原点はソース領域の価電子帯端とし
た．実線は TBM，点線は EM を用いて計算した T (E)．(a)～(c) の各 EM は図 A.2 と対応して
いる．挿入図は，チャネル領域に印加したポテンシャルを表す．

いることがわかる．行列サイズの縮小割合 NEM/NTBM は，(a) 16/600，(b) 89/600，(c) 252/600

となった．

つぎに，図 A.2(a)(b)(c)の 3つの EMに基づく非平衡グリーン関数法より，BTBT透過関数を

計算した．デバイス全体を，ソース領域，チャネル領域，ドレイン領域の３つの領域に分け，ソー

ス領域の価電子帯からドレイン領域の伝導帯への BTBTをシミュレーションした．チャネル領域
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には，図 A.3に示すような tanh関数型ポテンシャル，

U(z) =
Eg +∆E

2
tanh

(
−αz

ℓ

)
(A.4)

を印加した．ここで，α = log(1 + 2Eg/∆E)，∆E はトンネル窓幅である．ℓはトンネル距離であ

り，トンネル窓の中央における価電子帯と伝導帯の距離を表す．図 A.3に，透過関数 T (E)のエネ

ルギー依存性を示す．∆E = 10 meV，ℓ = 5 nmとした．エネルギーの原点はソース領域の価電子

帯上端とした．TBMの結果を実線で，EMの結果を点線で示す．(a)(b)の EMから計算した透過

関数は，TBMの結果と異なる値を示す．一方，(c)の輸送エネルギー窓幅を広く設定した EMは，

TBMの結果と精度良く一致していることがわかる．

以上の結果は，BTBT のシミュレーションでは，E-k 関係を表現するだけでは不十分であり，

E-κ関係も十分な精度で表現する必要があることを示唆している．したがって，EMで BTBTを

扱う場合，実バンド構造だけに注目した見かけの輸送エネルギー窓では不十分である．減衰状態を

高精度に表現するために見かけよりも広い輸送エネルギー窓を設定する必要がある．
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付録 B

後方散乱の平均自由行程

本付録では，後方散乱の平均自由行程 λと輸送の平均自由行程 ℓとの関係について説明する．

B.1 後方散乱の平均自由行程 λと輸送の平均自由行程 ℓ

拡散輸送領域における等方的な d次元伝導体 (d = 1, 2, 3)を考える．試料の大きさを，

Ω =


L (d = 1)

LW (d = 2)

LA (d = 3)

(B.1)

(B.2)

(B.3)

とする．図 B.1に示すように，Lは輸送方向 (x軸方向)の長さを表し，W は 2次元伝導体の断面

長さ，Aは 3次元伝導体の断面積を表す．この d次元伝導体を流れる電流*1は，緩和時間近似のも

とで，

J =
nsp
Ω

∑
k

ev(k)f(k), f(k) = eτkv(k) · F
(
−∂f0(E)

∂E

)
(B.4)

と表せる [1, 2]．ここで，v(k)は群速度，τk は運動量緩和時間，F は電界ベクトル，f0(E)は熱

平衡分布関数，nsp = 2 はスピン縮退度を表す．この式より，電気伝導率 σxx はつぎの式で与えら

� �

�

�

�

� � �

�

図 B.1: d次元伝導体の模式図．輸送方向を x軸方向とした．

*1 d = 3の場合，J は輸送方向に垂直な面積あたりの電流を表す．d = 2の場合，J は輸送方向に垂直な幅あたりの電
流を表す．d = 1の場合，J は電流を表す．
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れる．

σxx =
nsp
Ω

∑
k

e2τkv
2
x(k)

(
−∂f0(E)

∂E

)
= e2

∫
D(E)τ(E)

v2(E)

d

(
−∂f0(E)

∂E

)
dE

(B.5)

ここで，v(E) = (2E/m)1/2 は電子の速さであり，D(E)は状態密度を表す．波数 kに関する総和

をエネルギー積分に変換するさい，例えば，3次元の場合，v2x + v2y + v2z = 3v2x = v2 が成り立つこ

となどを利用した．つぎに，電気伝導率 σxx からコンダクタンス Gを計算する．

1次元の場合は，

G =
σxx
L

=
nspe

2

2πℏ

∫
2v(E)τ(E)

L

(
−∂f0(E)

∂E

)
dE (B.6)

2次元の場合は，

G =
W

L
σxx =

nspe
2

2πℏ

∫
W

√
2mE

πℏ

π
2 v(E)τ(E)

L

(
−∂f0(E)

∂E

)
dE (B.7)

3次元の場合は，

G =
A

L
σxx =

nspe
2

2πℏ

∫
A
mE

2πℏ2
4
3v(E)τ(E)

L

(
−∂f0(E)

∂E

)
dE (B.8)

となる．一方，ランダウアー公式より，コンダクタンスは，

G =
nspe

2

2πℏ

∫
M(E)T (E)

(
−∂f0(E)

∂E

)
dE (B.9)

と表せる．ここで，T (E)は透過率であり，M(E)はつぎの式で与えられるモード数関数である [3]．

M(E) =



Θ(E) (d = 1)

W

√
2mE

πℏ
(d = 2)

A
mE

2πℏ2
(d = 3)

(B.10)

(B.11)

(B.12)

透過率 T (E)が，後方散乱の平均自由行程 λ(E)を用いて，

T (E) =
λ(E)

L+ λ(E)
(B.13)

と表せると仮定すると，拡散輸送領域では L ≫ λ(E)であるので，式 (B.13)を式 (B.9) に代入す

ると，拡散輸送領域のコンダクタンスの式，

G =
nspe

2

2πℏ

∫
M(E)

λ(E)

L

(
−∂f0(E)

∂E

)
dE (B.14)
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が得られる．この式と，式 (B.6)，式 (B.7)，式 (B.8)とを比較することにより，電気伝導に関する

平均自由行程 ℓ(E) = v(E)τ(E)と，後方散乱の平均自由行程 λ(E)とは以下の関係にあることが

わかる [4]．

λ(E)/ℓ(E) =


2 (d = 1)
π

2
(d = 2)

4

3
(d = 3)

(B.15)

(B.16)

(B.17)
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付録 C

量子井戸におけるラフネス散乱

本付録では，量子井戸におけるラフネス散乱の摂動モデルについて説明する [1, 2]．

C.1 行列要素

幅 Tw の無限量子井戸に閉じ込められた２次元電子ガスを考える．サブバンド指数を n (=

1, 2, 3, . . . )，面内の波数を kとして電子状態は，

Φnk =
1√
A
eik·rξn(z) (C.1)

Enk = Ek + ϵn =
ℏ2k2

2mxy
+

ℏ2

2mz

(
nπ

Tw

)2

(C.2)

と表せる．ここで，Aは２次元系の面積，mxy は xy 面内方向の有効質量，mz は z 軸方向 (閉じ込

め方向)の有効質量，Ek は電子の運動エネルギー，ϵn はサブバンド準位を表す．片側の面のラフネ
ス ∆(r)によるエネルギー変化は，

Un(r) =
∂Enk

∂Tw
∆(r) = −ℏ2n2π2

mzT 3
w

∆(r) (C.3)

となる．同一サブバンド間行列要素は，

⟨nk′|Un(r)|nk⟩ = −n
2π2ℏ2

mzT 3
w

1

A

∫
∆(r)e−iq·rdr, q = k′ − k (C.4)

となるので，つぎの式が得られる．

| ⟨nk′|Un(r)|nk⟩ |2 =
n4π4ℏ4

m2
zT

6
w

1

A2

∫∫
∆(r)∆(r′)e−iq·(r−r′)drdr′ (C.5)

ラフネスパターンに関する統計平均 (試料平均)，⟨· · · ⟩av をとると，

⟨| ⟨nk′|Un(r)|nk⟩ |2⟩av =
n4π4ℏ4

m2
zT

6
w

1

A2

∫∫
⟨∆(r)∆(r′)⟩ave−iq·(r−r′)drdr′ (C.6)
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となる．ここで，ラフネスパターンは定常でランダムに生じることに注意すると，⟨∆(r)∆(r′)⟩av
は，式 (4.14)で定義される自己相関関数 CR(r)を用いて，

⟨∆(r)∆(r′)⟩av = CR(r − r′) (C.7)

と表せる．これを式 (C.6)に代入すると，

⟨| ⟨nk′|Un(r)|nk⟩ |2⟩av =
n4π4ℏ4

m2
zT

6
w

1

A
SR(q) (C.8)

となる．ただし，SR(q)は式 (4.17)で定義されるパワースペクトル密度である．

以上の計算からわかるように，一般に，行列要素がラフネス ∆(r) に比例する場合，

⟨| ⟨nk′|Un(r)|nk⟩ |2⟩av はパワースペクトル密度 SR(q)に比例する．

C.2 運動量緩和時間

上下の面のラフネスに相関がないと仮定すると，gR = 2として，運動量緩和時間 τnk は，

1

τnk
= gR

2π

ℏ
∑
k′

⟨| ⟨nk′|Un(r)|nk⟩ |2⟩av(1− cos θ)δ(Enk′ − Enk) (C.9)

となる．ここで，θ は k′ と kがなす角を表す．行列要素に前節の結果を代入すると，

1

τnk
= gR

2π

ℏ
n4π4ℏ4

m2
zT

6
w

mxy

2πℏ2

∫
dθ

2π
SR(k [2(1− cos θ)]

1/2
)(1− cos θ) (C.10)

となる．ただし，|k′ − k| = k [2(1− cos θ)]
1/2 なる関係を用いた．相関関数としてつぎの形を仮定

する．
SR(q) = π∆2Λ2F

(
q2Λ2/4

)
(C.11)

とくに，ガウス型・指数関数型の相関関数の場合，

F (x) =

{e−x (ガウス型)

(1 + 2x)−3/2 (指数関数型)

(C.12)

(C.13)

である．このとき，

1

τnk
= gR

2π

ℏ
n4π4ℏ4

m2
zT

6
w

mxy

2πℏ2

∫ 2π

0

dθ

2π
π∆2Λ2F

(
1
2k

2Λ2(1− cos θ)
)
(1− cos θ)

= gR
2π

ℏ
n4π5ℏ4

m2
zT

6
w

mxy

2πℏ2
∆2Λ2 [M0(η)−M1(η)] (C.14)

となる．ここで，η = k2Λ2/2 = mxyEkΛ2/ℏ2 であり，M0(η)，M1(η) を，つぎの式で定義した．

Mn(η) =
1

2π

∫ 2π

0

F (η(1− cos θ)) cosn θdθ (n = 0, 1) (C.15)

このM0(η)，M1(η)は，ガウス型相関関数の場合，

Mn(η) = e−ηIn(η) (n = 0, 1) (C.16)
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となり，指数関数型相関関数の場合，

M0(η) =
2E(m)

π
√
1 + 4η

, M1(η) =
(2η + 1)E(m)−K(m)

πη
√
1 + 4η

, m =
4η

1 + 4η
(C.17)

となる．ただし，In(η)はつぎの式で定義される変形ベッセル関数，

In(η) =
1

π

∫ π

0

eη cos θ cos(nθ)dθ (C.18)

であり，K(m)，E(m)は，つぎの式で定義される第１種・第２種の完全楕円積分である．

K(m) =

∫ π/2

0

(1−m sin2 t)−1/2dt, E(m) =

∫ π/2

0

(1−m sin2 t)1/2dt (C.19)

C.3 量子緩和時間

量子緩和時間 τqnk は，

1

τqnk
= gR

2π

ℏ
∑
k′

⟨| ⟨nk′|Un(r)|nk⟩ |2⟩avδ(Enk′ − Enk) (C.20)

と定義される．運動量緩和時間と同様にして計算を進めると，

1

τqnk
= gR

2π

ℏ
n4π5ℏ4

m2
zT

6
w

mxy

2πℏ2
∆2Λ2M0(η) (C.21)

となる．

C.4 自己無撞着ボルン近似

自己無撞着ボルン近似のもとでは，自己エネルギー Σnk の虚部を −iΓnk/2とすると，

Γnk =
ℏ
τqnk

(C.22)

であり，
Γnk

ℏ
= gR

2π

ℏ
∑
k′

⟨| ⟨nk′|Un(r)|nk⟩ |2⟩av
[
− 1

π
ImGnk′(Enk)

]
(C.23)

Gnk′(E) =
1

E − Enk′ + i
2Γnk′

(C.24)

と表す (自己エネルギーの実部を無視した)．したがって，

Γnk

ℏ
= gR

2π

ℏ
∑
k′

⟨| ⟨nk′|Un(r)|nk⟩ |2⟩av

[
− 1

π
Im

1

Ek − Ek′ + i
2Γnk′

]
(C.25)
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となる．ここで，Γnk′ = Γnk を仮定すると，

Γnk

ℏ
= gR

2π

ℏ
∑
k′

⟨| ⟨nk′|Un(r)|nk⟩ |2⟩av

[
− 1

π
Im

1

Ek − Ek′ + i
2Γnk

]

= gR
2π

ℏ
∑
q

n4π4ℏ4

m2
zT

6
w

SR(q)

A

[
− 1

π
Im

1

Ek − E|k+q| +
i
2Γnk

]

= gR
2π

ℏ
n4π4ℏ4

m2
zT

6
w

∫
qdqdϕ

(2π)2
SR(q)

[
− 1

π
Im

1

Ek − E|k+q| +
i
2Γnk

]

= gR
n4π4ℏ3∆2

2m2
zT

6
w

∫
qdqdϕΛ2F

(
q2Λ2/4

) [
− 1

π
Im

1

Ek − E|k+q| +
i
2Γnk

]
(C.26)

となる．ここで，kの方向に x軸を選ぶと，k = (k, 0)，q = (q cosϕ, q sinϕ)となり，

|k + q|2 = k2 + q2 + 2kq cosϕ (C.27)

となるので，Eq = ℏ2q2/2mxy として，

E|k+q| = Ek + Eq + 2
√

EkEq cosϕ (C.28)

qdq =
mxy

ℏ2
dEq (C.29)

と表せるため，

Γnk = gR
n4π4ℏ4∆2

2m2
zT

6
w

1

EΛ

∫ ∞

0

dEqF (Eq/4EΛ)
∫ π

0

dϕ

[
− 1

π
Im

1

−Eq − 2
√
EkEq cosϕ+ i

2Γnk

]
(C.30)

となる．ここで，EΛ = ℏ2/2mxyΛ
2 とおいた．したがって，自己無撞着方程式は，x = Eq/4EΛ と

して，以下のようになる．

Γnk = gR
n4π4ℏ4∆2

2m2
zT

6
w

1

πEΛ

∫ ∞

0

dEqF (Eq/4EΛ)
∫ π

0

dϕ
1
2Γnk

(Eq + 2
√
EkEq cosϕ)2 + ( 12Γnk)2

= gR
2n4π3ℏ4∆2

m2
zT

6
w

∫ ∞

0

dxF (x)

∫ π

0

dϕ
1
2Γnk

(4EΛx+ 4
√
EkEΛx cosϕ)2 + ( 12Γnk)2

(C.31)

特別な場合として，量子緩和時間が短く状態密度の幅が大きい場合，式 (C.31)の被積分関数にお

ける分母の第１項を無視すると，

Γ
(1)
nk =

√
gR

2n2π2ℏ2∆
mzT 3

w

(C.32)

となる．また，量子緩和時間時間が長く状態密度の幅が小さい場合，−ImGnk′(E)/π = δ(E−Enk′)

となることから，式 (C.23)より，

Γ
(0)
nk = gR

n4π5ℏ2mxy∆
2Λ2

m2
zT

6
w

M0(η) (C.33)

となる．
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(a)

(c) (d)

(b)

図 C.1: 状態密度の幅 Γ の井戸幅 Tw 依存性．実線は式 (C.31) を自己無撞着的に解いた結
果，赤点線は式 (C.32)，青点線は式 (C.33) を用いた場合の結果．相関関数をガウス型，n = 1，
mxy = 0.19m0，mz = 0.916m0とした．上段 (a,b)では∆ = 0.2 nm，下段 (c,d)では∆ = 0.4 nm

とした．左列 (a,c)では Λ = 2.0 nm，右列 (b,d)では∆ = 4.0 nmとした．

図 C.1に，状態密度の幅 Γの井戸幅 Tw 依存性を示す．実線は式 (C.31)を自己無撞着的に解い

た場合，赤点線は式 (C.32)，青点線は式 (C.33)を用いた場合の結果を表す．相関関数をガウス型，

n = 1，mxy = 0.19m0，mz = 0.916m0 とした．上段 (a,b) では ∆ = 0.2 nm，下段 (c,d) では

∆ = 0.4 nmとした．左列 (a,c)では Λ = 2.0 nm，右列 (b,d)では∆ = 4.0 nmとした．井戸幅が

大きくなるにつれて，ラフネス散乱強度が低くなるため，状態密度の幅は小さくなることがわかる．

また，式 (C.31)を自己無撞着的に解いた結果 (黒実線)は，ボルン近似の結果 (青点線)に漸近して

いることがわかる．一方，井戸幅が小さくなるにつれて黒実線は赤点線に漸近していることがわか

る．したがって，量子緩和時間は，式 (C.32)，式 (C.33)より，Tw が大きい場合は T 6
w，Tw が小さ
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(a) (b)

図C.2: 量子緩和時間の膜厚 Tw 依存性が，T 3
w から T 6

w に変化するおよその膜厚 T ∗
w の相関長 Λ依

存性．(a)はガウス型相関関数，(b)は指数型相関関数の場合．ラフネス高さ∆ = 0.2 nm，有効質
量mxy = 0.19m0，mz = 0.916m0 とした．電子の運動エネルギーが E = 12.0, 24.0, 36.0 meV

の場合の結果をそれぞれ，赤線，緑線，青線で示した．

い場合は T 3
w に比例して変化することがわかる．量子緩和時間の井戸幅に対する依存性が T 3

w から

T 6
w に変化する Tw は，赤点線と青点線が交わる Tw 程度であると見積もることができる．すなわ

ち，Γ
(1)
nk = Γ

(0)
nk を満たす Tw を求めると，

T ∗
w =

[√
gRn

2π3

2

mxy

mz
∆Λ2M0(η)

]1/3
, η = mxyEkΛ2/ℏ2 (C.34)

となる．この式から計算した T ∗
w の相関長 Λ 依存性を図 C.2 に示す．相関関数の関数形とし

て，図 C.2(a) ではガウス型相関関数，(b) では指数型相関関数を仮定した．また，ラフネス高

さ ∆ = 0.2 nm，有効質量 mxy = 0.19m0，mz = 0.916m0 とした．電子の運動エネルギーが

E = 12.0, 24.0, 36.0 meVの場合の結果をそれぞれ，赤線，緑線，青線で示した．なお，図 C.1お

よび図 C.3からわかるように，平均自由行程の Tw 依存性が変化するのは，T ∗
w より，1− 2 nm程

度厚い点であることに注意．

C.5 状態密度の幅を考慮した運動量緩和時間

自己無撞着的に求めた状態密度の幅 Γnk を考慮した運動量緩和時間は，

1

τnk
= gR

2π

ℏ
∑
k′

⟨| ⟨nk′|Un(r)|nk⟩ |2⟩av(1− cos θ)

[
− 1

π
ImGnk′(Enk)

]
(C.35)
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(a)

(c) (d)

(b)

図C.3: 緩和時間の井戸幅 Tw 依存性．実線は式 (C.36)を，青破線は式 (C.10)を用いて計算した
運動量緩和時間．赤点線は式 (C.32)，青点線は式 (C.33)から計算した状態密度の幅を量子緩和時
間に換算した結果．相関関数をガウス型，n = 1，mxy = 0.19m0，mz = 0.916m0 とした．上段
(a,b)では∆ = 0.2 nm，下段 (c,d)では∆ = 0.4 nmとした．左列 (a,c)では Λ = 2.0 nm，右列
(b,d)では∆ = 4.0 nmとした．

と表せる．前節の結果を用いると，

1

τnk
=

Γ
(1)
nk

2

2πℏ

∫ ∞

0

dxF (x)

∫ π

0

dϕ
1
2Γnk

(4EΛx+ 4
√
EkEΛx cosϕ)2 + ( 12Γnk)2

(1− cos θ) (C.36)

となる．ここで，ϕは q と kがなす角，θ は k′ と kがなす角を表す．

図C.3に，運動量緩和時間と量子緩和時間の井戸幅 Tw依存性を示す．実線は式 (C.36)を，青破線

は式 (C.10)を用いて計算した運動量緩和時間である．式 (C.36)を計算するさい，cos θ = − cos 2ϕ

と近似した．上段 (a,b) では ∆ = 0.2 nm，下段 (c,d) では ∆ = 0.4 nm とした．左列 (a,c) では
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Λ = 2.0 nm，右列 (b,d)では ∆ = 4.0 nmとした．Tw が大きい場合，実線と青破線は一致してい

ることがわかる．これは，Tw が大きい場合，散乱強度が低く，状態密度が幅をもつ効果が表れな

いためである．また，図には，量子緩和時間を合わせてプロットした．赤点線は式 (C.32)，青点線
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