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Abstract

Boron Neutron Capture Therapy (BNCT) is an advanced, targeted radiation therapy
that offers a highly selective approach to cancer treatment by leveraging the unique
properties of boron-10 and neutron beams. BNCT has significant advantages over
conventional radiotherapy: it selectively targets cancer cells while minimizing damage
to surrounding healthy tissue, making it particularly valuable for treating invasive and
recurrent tumors that are difficult to treat with surgery or traditional radiation. In BNCT,
boron-10, which accumulates preferentially in tumor cells, is irradiated with neutrons,
triggering a reaction that releases alpha particles and lithium nuclei. These particles
have a very short range, destroying cancer cells with minimal effect on adjacent tissues.

Despite its potential, several technical challenges remain for BNCT to reach its full
clinical effectiveness. A major unresolved issue is the development of a real-time
monitoring system to assess treatment effects as they occur. There is particular interest
in a method to detect gamma rays promptly emitted from the neutron-'B reaction,
enabling image reconstruction similar to Single Photon Emission Computed
Tomography (SPECT), known as BNCT-SPECT.

Developing BNCT-SPECT is challenging due to two main factors. First, there is a
limitation in projection angles: unlike conventional SPECT systems, which rely on
projections across 360 degrees, BNCT-SPECT is restricted to under 90 degrees. This
limitation renders Fourier-based reconstruction methods impractical. Second,
measurement time is constrained, as BNCT-SPECT must operate simultaneously with
treatment, raising concerns about acquiring sufficient counts for accurate imaging.

To overcome these challenges, this study explores a novel approach using Bayesian
estimation in a successive approximation framework, which is specifically designed to
operate effectively under BNCT-SPECTs limited-view-angle conditions. The proposed
method not only addresses angle and time constraints but also enhances the potential
for real-time, accurate monitoring of BNCT treatment effects. Detailed methodology

and results are presented in this paper.



The structure of this paper is as follows. Chapter 1 provides an introduction to BNCT
and the principles of BNCT-SPECT. Chapter 2 discusses Bayesian estimation,
explaining its fundamental concepts and the rationale for selecting this method in our
study. Chapter 3 details the construction of the experimental system, including the
setup process and descriptions of the equipment used. Chapter 4 introduces the
MCNPS5 simulation code, explaining its principles and its role in this research. Chapter
5 focuses on the design of the mock-up system, describing the design of each
component and the sequence of experiments. Chapter 6 presents image reconstruction,
using the theoretical foundations and experimental results obtained from previous

chapters. Finally, Chapter 7 provides a summary of the study’s findings.
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Chapter 1 Introduction

1.1 Research background

In Japan, the number of deaths by cause of malignant neoplasms (tumors) in 2022 was
385,787 accounting for 24.6% of all deaths in the first place as shown in Figure 1.1.
Looking at the annual trends in death rates in Figure 1.2, malignant neoplasms (tumors)

have consistently risen and have been the leading cause of death since 1947 [1].
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Figure 1.1 Composition of major causes of death (2022).



2T

<jgE>
220 - T
300 -
280 1
260 -
240 1
3t
T 220 A DES
£ 00 (BEMERO
A g0
O
10 160
, ER
5140
3|
120
100 + M
80
60 - flise
401 § TROE
.._o'--."‘\ Y Y ’::'_":_:':"""'--.__ B3
20 - = — = mmme e
0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJ‘g@_
mf22 . 30 . 40 . 50 . 60 EHT . 17 . 21 %f4
1947  '55 '65 75 '85 '95 2005 15 22

E:1) FEEFITO LLEE BOLEEERO 1B KR TH3,

2)  FE6 - THO LLEE (BLEEER ) | 0BT, HCEHE @AREDS) (FR7E1ARD by T MCoREER
i, EEORFHOREE L TOLTE, BETEFEEIRCTLES ] e sZEEXORTHI20RANOEEI L3
LEZERD,

3) PETHe ROEEE] 0oLRoZLBEE, IKI-10 (FR7F1AFER CI3ERESBFL-LoSELI L33 0LbER S

nE,
4)  FRGE [fif ofToRRERG. CI-10 (035 CFE1 FEA) L2 EREAENL - LoRELic L3230 :E
Ainid,

Figure 1.2 Annual mortality rates by leading causes of death (per 100,000

population).

The trend of increasing mortality and morbidity of cancer is expected to be kept.
Therefore, research on effective cancer treatment methods is essential for Japan. The
three primary treatment methods for cancer are "surgery," "chemotherapy," and
"radiation therapy"[2].

Surgical treatment of cancer involves the direct excision of the tumor through
operative intervention. To reduce the risk of recurrence, it is standard practice to remove
surrounding tissues and regional lymph nodes simultaneously. While this approach can
be highly effective, the removal of nearby tissue and lymph nodes may compromise the
function of specific organs, potentially affecting the patient’s quality of life and ability
to perform daily activities post-surgery. Additionally, surgical procedures are generally

performed under general anesthesia, which necessitates a certain level of physical



health. As a result, surgical intervention may not be appropriate for elderly patients or
those with significant comorbidities.

Chemotherapy, another cornerstone of cancer treatment, primarily utilizes anti-cancer
drugs which include recently developed molecularly targeted agents, to inhibit the
proliferation of cancer cells, leading to tumor shrinkage and cellular destruction.
Administered orally or by injection, these drugs circulate through the bloodstream,
enabling them to target not only primary tumors but also microscopic lesions and
metastatic cells. However, because chemotherapy affects both malignant and normal
dividing cells, patients often experience significant side effects that can detrimentally
impact their daily lives. These side effects can include nausea, immunosuppression, and
fatigue, reflecting the non-selective nature of many anti-cancer drugs.

Radiation therapy, a fundamental modality in cancer treatment, employs high-energy
radiation to target and shrink tumors. By delivering ionizing radiation directly to
cancerous tissues, radiation therapy induces intracellular damage, disrupts cellular
DNA repair mechanisms, impedes cell division, and ultimately leads to cancer cell
death, resulting in tumor reduction. Despite its effectiveness, conventional radiation
therapy is not tumor-specific, posing a risk of collateral damage to surrounding healthy
tissues. To address these limitations, advances in physical and biological sciences have
led to the development of more targeted radiation therapies, including Boron Neutron
Capture Therapy (BNCT).

BNCT represents a novel approach to radiation therapy, leveraging the unique
properties of boron-10 to achieve high selectivity in targeting cancer cells. Through
neutron irradiation, boron-10 undergoes a nuclear reaction that releases highly localized
energy within the cancer cells, sparing nearby healthy tissue and offering new potential
for the treatment of invasive and recurrent tumors that are challenging to manage with

conventional methods.

1.2 The principal of BNCT

BNCT is anew cancer therapy using boron-10 and neutron. The boron-neutron capture



reaction induced by low-energy neutrons generates alpha-ray and lithium nuclei that

can kill cancer cells effectively.

PB+n - 7Li+ a+ 2.79 MeV (6%)
- "Li* + a + 2.31 MeV (94%)

- 7Li* > "Li+ y(478 keV) (1.1)

Figure 1.3 shows the principle of BNCT. A drug-containing '°B is administered to the
patient to accumulate in the cancer cells. Then, the patient is irradiated with thermal
neutrons (around 0.025eV) or epi thermal neutrons (0.5¢V to 10keV) from outside the
body. The nuclear reaction is shown in Equation (1.1); alpha-ray and lithium particles
("Li) are the primary neutron-induced charged particles. The distance between them is
short, about 10 pm for a-particles and about 5 um for ’Li, and this length is close to the
size of a cancer cell (about 10 um), only the cancer cells in which '°B is accumulated
will be killed by DNA damage caused by alpha-ray and “Li. This is genuinely a radiation

therapy method that can attack cancer cells with high pinpoint accuracy.
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Figure 1.3 The principle of BNCT.

This indicates that BNCT exerts a substantially lesser impact on normal cells

compared to conventional radiation therapies that use electromagnetic waves. Moreover,

10



unlike other treatments where repeated exposure to radiation limits the possibility of
treating the same area multiple times, BNCT permits repeated treatments on the same
region, offering a substantial therapeutic advantage.

As shown in Table 1.1, 1B and low energy neutrons were chosen for three reasons:
firstly, the reaction cross-section of '’B with thermal neutrons is substantial compared
to the elements present in the human body. Secondly, the secondary radiation produced
after the nuclear reaction must be short because if the secondary radiation is long, the
particles may reach normal cells and affect them. Thirdly, boron compounds are readily

taken up by living organisms and do not have the high toxicity of heavy metals.

Table 1.1 Reaction cross sections of major nuclei and thermal neutrons [3].

Major nuclei in the human body

Targeted nuclei Nuclear reaction Reaction cross-section
/barn
'H "H(n,y)*H 0.3320
2C 2C(n,y)13C 0.0035
N “N(n,y)"°N 0.07500
160 10(n,y)!"N 0.0001899

Major nuclei with large reaction cross-section

Targeted nuclei Nuclear reaction Reaction cross-section
/barn
‘He SHe(n,p)*H 5.332x10°
SLi SLi(n,@)*H 0.9412x10°
108 'B(n,a)"Li 3.840x103
157Gd 157Gd(n,y)"*8Gd 254.1x103

Low-energy neutrons are utilized for two primary reasons. Firstly, the reaction cross-
section of '°B is more significant at low energies than at high energies, as shown in
Figure 1.4. Secondly, higher energy neutrons have a more significant effect on normal

cells and are more likely to cause complications. In other words, low-energy neutrons
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are more likely to cause nuclear reactions and have a more negligible effect on normal

cells than high-energy neutrons.
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Figure 1.4 Reaction cross-section of '°B (n,a)’Li [4]

1.3 History of BNCT

Research on BNCT has been ongoing for over 70 years, and recent advancements have
brought it to the cusp of widespread clinical implementation, with preparations nearly
complete for its full-scale use in therapeutic settings.

The principle of BNCT was proposed in 1936 by American physicist Locher [5],
merely four years after Chadwick’s discovery of the neutron in 1932. By the 1940s,
foundational research involving neutrons produced by accelerators was being
conducted in the United States, using cell cultures and small animal models to explore
the therapy's potential.[6][7] During this period, it was hypothesized that if '°B could
be selectively absorbed by cancer cells, it would enable the targeted destruction of these
cells. From the 1950s to the 1960s, therapeutic irradiation for BNCT was conducted at

the Brookhaven National Laboratory’s research reactor (BGRR) and the Massachusetts
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Institute of Technology’s research reactor (MITR). A number of brain tumor cases were
treated using a thermal neutron field and borax (which contains 96% °B). However,
the anticipated therapeutic outcomes were not achieved, leading to the suspension of
BNCT research in 1961.

From 1964 to 1968, Dr. Hatanaka—a neurosurgeon from Teikyo University who had
studied BNCT at Harvard University—conducted collaborative research with chemist
Soloway and colleagues. Together, they introduced the boron compound BSH
(Borocaptate Sodium: Na:Bi12H11SH), which demonstrated superior accumulation
of ''B in brain tumors, enhancing its potential for BNCT applications. [8] After
returning to Japan in 1968, Dr. Hatanaka conducted the first BNCT treatment in the
country, utilizing the thermal neutron field from Hitachi’s research reactor. [9] To
ensure that the thermal neutrons reached the deep regions of the brain tumor, Dr.
Hatanaka combined the treatment with craniotomy. As a result, the therapeutic
outcomes were significantly better than those achieved in the United States. Following
this success, similar clinical studies were conducted at various research reactors,
including the MITRR at Musashi Institute of Technology, the KUR at Kyoto University,
and the JRR-2 and JRR-4 reactors at the Japan Atomic Energy Agency.

In 1987, a research group led by Mishima at Kobe University conducted clinical
studies using BPA (p-Boronophenylalanine: CoHi12BNO4), a boron compound that can
be efficiently accumulated in cancerous tissues via the amino acid transporter. This
research led to the world’s first successful application of BNCT for the treatment of
malignant melanoma. [10] The introduction of BPA marked a pivotal moment for
BNCT, as it became the first treatment method capable of selectively targeting and
eradicating cancer cells.

Subsequently, research groups from Osaka University and Kawasaki Medical
University began clinical trials for the treatment of head and neck cancers. In 2001, a
team led by Kato at Osaka University successfully treated head and neck cancer for the
first time in the world by combining both BSH and BPA in BNCT. Furthermore,
research into the treatment of other types of cancer, including liver cancer and
mesothelioma, has also begun in recent years.
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Looking internationally, the United States, recognizing Japan’s excellent BNCT
treatment outcomes, resumed BNCT research in 1994. The BMRR reactor at
Brookhaven National Laboratory (BNL) was modified to generate a thermal neutron
field for BNCT and combined with BPA to treat brain tumors.

In 1997, an EU-based research group, led by Germany, began clinical studies using a
thermal neutron field at the Petten Nuclear Research Center (HFR) in the Netherlands.
The use of this thermal neutron field enabled the maintenance of a high dose deep
within tissues, making it possible to treat brain tumors non-invasively, without the need
for craniotomy. In Japan, modifications were made to the KUR and JRR-4 reactors,
allowing for non-invasive treatment using thermal neutrons. While BNCT has advanced
in this way, the therapy requires powerful thermal and fast neutron sources. As a result,
clinical BNCT treatments are currently only conducted using reactors. Until 2010, the
construction of small-scale reactors for BNCT was being considered. The development
of small-scale accelerator-based fast neutron sources, which can be installed within
hospitals, is actively underway as a new neutron source for BNCT.

Since 2000, advancements in accelerator technology have made it possible to develop
BNCT accelerators that can be installed within hospitals. This progress has spurred
active BNCT research in various countries [ 12-14], including the United Kingdom, Italy,
and Argentina. Particularly in Japan, numerous universities, research institutes, and
companies have initiated projects aimed at establishing BNCT treatment systems using
accelerators. The first such project in Japan was launched by Kyoto University and
Sumitomo Heavy Industries, which developed a treatment system utilizing a cyclotron
accelerator. This system is now in the final stages of clinical trials. The successful
development of such accelerators would not only contribute to the widespread adoption
of BNCT but also enable treatment research at the university and hospital levels,

potentially leading to improved therapeutic outcomes.

1.4 Challenges of BNCT

BNCT is an exceptionally effective treatment, and research aimed at its widespread

adoption is being conducted globally. However, to establish BNCT as a standard
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radiation therapy, several challenges remain. From a physical perspective, there are
primarily three key issues to address.

Firstly, a high-intensity low-energy neutron beam generated by a BNCT accelerator is
required. Currently, treatment can only be performed using reactors, which limits the
accessibility and scalability of the therapy.

Secondly, the characterization of the neutron field remains challenging. In reactors,
the neutron field is almost standardized, and thus, there are few issues related to its
characterization. However, with accelerator-based neutron sources, the current neutron
intensity and other characteristics are somewhat insufficient, and it is difficult to ensure
an adequate thickness of the attenuation materials. As a result, the irradiation field
cannot be considered fully standardized. Therefore, when using an accelerator-
generated neutron field for treatment, it is crucial to accurately understand the energy
spectrum, intensity, and any potential presence of unnecessary high-energy neutrons or
gamma-rays. This issue is currently under investigation at the research stage. [15-17]

Thirdly, real-time measurement of treatment effectiveness is difficult. The evaluation
of BNCT treatment efficacy is determined by multiplying the boron concentration
distribution in the tumor and surrounding normal tissues with the intensity distribution
of the neutron flux that reaches these areas.

In this study, to accurately measure the treatment efficacy in real-time, this study aims
to develop a device called BNCT-SPECT, which combines the principles of Single
Photon Emission Computed Tomography (SPECT), an imaging diagnostic technique,
with BNCT. This device will enable the real-time three-dimensional measurement of

treatment effectiveness.

1.5 BNCT-SPECT

1.5.1 The principal of SPECT

Single-photon emission computed tomography (SPECT) is a sophisticated nuclear
medicine imaging technique that employs gamma-ray detection to produce

tomographic images as shown in Figure 1.5, offering three-dimensional (3D)
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visualization of the internal structures of the body. Unlike conventional imaging
methods, which provide two-dimensional (2D) images, SPECT allows for the
acquisition of 3D information, which can be presented as cross-sectional slices. These
slices can be freely reformatted or manipulated to provide a comprehensive view of the

patient’s anatomy, facilitating enhanced diagnostic and therapeutic planning.
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Figure 1.5 SPECT/CT of GE Healthcare Japan's Discovery 670DR. [18]

The SPECT process begins with the administration of a radiopharmaceutical that emits
gamma radiation. A gamma-ray detector, typically a scintillation camera or solid-state
detector, involves the rotation of a gamma-ray detector around the patient in a full 360-
degree arc, capturing multiple 2D projections from various angles. This 360-degree
rotation ensures that data from all perspectives are collected, allowing for a more
complete and accurate reconstruction of the internal structures. These projections are
then sent to a computer, which uses a tomographic reconstruction algorithm—such as

16



filtered back projection or iterative reconstruction—to combine the 2D projections into
a 3D dataset.

The resulting 3D dataset can be further processed and visualized in various formats,
such as axial, coronal, or sagittal slices, to allow detailed assessment of specific areas
of interest within the body. This versatility in reformatting provides an in-depth
understanding of anatomical and functional changes. SPECT imaging is commonly
used in clinical settings to assess tissue function, such as blood flow in the heart, brain
activity, and the distribution of certain types of cancer or infection, often
complementing other imaging techniques like CT (computed tomography) or PET

(positron emission tomography) for a more complete diagnosis

1.5.2 The principal of BNCT-SPECT

Figure 1.6 shows the principle of BNCT-SPECT. According to the nuclear reaction of
equation (1.1), about 94 % of the "Li produced by the '°B (n, a) "Li nuclear reaction is
in the excited state ("Li*). "Li* transitions to the ground state with a half-life of about
10'* s and emits 478 keV prompt gamma-ray. The SPECT system measures the
intensity distribution of the 478 keV gamma-rays emitted. The number of 478 keV
gamma-rays is proportional to '°B (n, o) "Li reactions, which directly indicates the
therapeutic effect. The attenuation coefficient of 478 keV gamma rays in tissue is
minimal (0.1 cm™), so most of the gamma-rays are emitted outside the body.

A collimator, typically made of tungsten or lead due to its high gamma-ray shielding
capabilities, is positioned in front of the detector to define and control the direction of
incoming 478 keV gamma-rays. Multiple gamma-ray detectors are arranged behind the
collimator to measure only those 478 keV gamma-rays that pass through its precisely
aligned apertures. The detected radiation dose data is then analyzed to map the
distribution of (n, a) reactions occurring within the tumor. This information is used to
reconstruct a three-dimensional image, providing a detailed view of the reaction activity
across the targeted area. In this way, the BNCT-SPECT system enables real-time
visualization and assessment of BNCT treatment efficacy, offering a valuable tool for

monitoring therapeutic effects directly during treatment.
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Figure 1.6 The principle of BNCT-SPECT

It is important to note, however, that in BNCT, the 478 keV gamma-ray measurements
must be conducted within a high flux neutron field (high-background environment). In
conventional SPECT, there is typically no background radiation from sources other than
the administered single-photon-emitting radionuclide, allowing for nearly ideal
measurement conditions with minimal background interference. In contrast, during
BNCT, the neutron intensity near cancer cells can reach extremely high levels,
approximately 1x10° n/sec/cm?. However, the intensity of the '°B(n,a)’Li reaction,
which produces the 478 keV gamma-ray, is considerably lower—by several orders of
magnitude—due to the boron concentration near cancer cells being in the range of tens
of ppm. Consequently, in a high flux neutron field (high-background environment),
selectively measuring the 478 keV gamma-rays from the '°B(n,a)’Li reaction is
extremely challenging. The primary interfering gamma rays, as shown in Figure 1-7,
can be observed in the pulse height spectrum (PHS) obtained using a high-purity
germanium semiconductor detector (HP-Ge detector) under actual BNCT treatment
conditions. This spectrum provides insight into the gamma-ray background, allowing
the identification of specific energy peaks associated with the '°B(n,o))’Li reaction amid

other radiation sources in the treatment environment. [19]
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Figure 1.7 Gamma-ray pulse height spectrum (PHS) in the BNCT treatment

environment obtained using a Hp-Ge detector.

From these results, it is evident that the following gamma rays present significant

challenges:

2. Annihilation

1. Capture gamma-ray (2.22 MeV) produced by the 'H(n,y)’H reaction near

cancer cells.

gamma-ray (511 keV) generated through the pair

production/annihilation process.

The first issue arises from the fact that the human body contains a large amount of 'H,

making it unavoidable. The Compton continuum from the 2.22 MeV gamma-ray

emitted by the 'H(n,y)*H reaction overlaps with the photopeak at 478 keV, creating a

significant background signal. To estimate the intensities of the 2.22 MeV and 478 keV

gamma

rays, intensity calculations were conducted. In these calculations, it was

assumed that the hydrogen content in cancer cells was 11% by weight, based on actual

treatment data, with a '°B concentration of 10 ppm, and irradiation with thermal

neutrons (0.025 €V) at an intensity of 1x10° n/sec/cm?. The calculations revealed that

the production rate of 478 keV gamma-rays from the '°B(n,o)’Li reaction is
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approximately 2.2x10% y/sec per cell. In contrast, the production rate of 2.22 MeV
gamma-rays from the 'H(n,y)?H reaction reaches 2.2x107 y/sec per cell, resulting in an
intensity ratio of roughly 10:1. This indicates that when the 2.22 MeV gamma-rays
reach the detector, they contribute significantly to the background signal. Consequently,
for accurate measurements, a gamma-ray detector with high detection efficiency
specifically for 478 keV gamma-rays should be employed to mitigate this background
effect as much as possible.

Additionally, regarding the second issue, the presence of annihilation gamma-rays at
511 keV close to the 478 keV gamma-rays introduces a risk of overlapping signals if
the detector’s energy resolution is insufficient. This overlap could prevent accurate
separation of the 478 keV and 511 keV peaks, resulting in additive measurements of
both gamma-rays. Therefore, to ensure accurate differentiation, a detector with an
energy resolution capable of achieving a full width at half maximum (FWHM) of less
than 33 keV (511 keV- 478 keV= 33 keV) is required. In other words, a gamma-ray

detector with high energy resolution is essential for precise measurement in this paper.

1.6 Design of BNCT-SPECT in real treatment

In order to realize BNCT-SPECT, it is essential to accurately measure the 478 keV
gamma rays generated during neutron irradiation while effectively separating them
from other gamma rays. Considering the practical application in treatment, the
following conditions must be met:

1. Neutron Irradiation Duration: The neutron irradiation time in BNCT is
approximately 60 minutes. Therefore, the measurement of 478 keV gamma rays
by BNCT-SPECT must be completed within this 60-minute time frame.

2. Measurement Accuracy: To ensure measurement precision within an acceptable
range, the peak net count of 478 keV gamma-rays for each detector must be at
least 1,000 counts.

3. Spatial Resolution of SPECT Images: From a treatment perspective, the spatial
resolution of the obtained SPECT images must be within a few millimeters.

4. Energy Resolution: To effectively separate the 511 keV gamma-ray peak, which
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is located closest to the 478 keV gamma ray, the energy resolution of the
detector must be FWHM < 33 keV (=511 keV- 478 keV).

To achieve the high spatial resolution required by the condition 3, the detector needs
to be compact. Additionally, to meet the conditions 1 and 2 (i.e., obtaining more than
1,000 counts per detector within the 60-minute irradiation period), the detector must
have a high detection efficiency for the 478 keV gamma-rays. Furthermore, to fulfill
the condition 4 (excellent energy resolution), this study selects a GAGG (Gadolinium
Aluminum Gallium Garnet) scintillator.

The GAGG detector is well-suited for this purpose because of its high light yield, fast
decay time, and good energy resolution, which allow for accurate measurement of
gamma rays with minimal interference from nearby peaks, such as the 511 keV gamma-
rays. Its compact size enables high spatial resolution, and its efficiency at the relevant
gamma-ray energies ensures that the required count rates can be achieved in the time
constraints for BNCT-SPECT.

The basic characteristics and operating principles of the GAGG detector will be

discussed in detail in Chapter 3.

1.7 Structure of this paper

This paper aims to investigate image reconstruction methods with limited-view-angle
projection data using Bayesian estimation, with a particular focus on its application in
BNCT-SPECT systems. This paper is composed of 7 chapters. The structure of the
paper is organized as follows:

Chapter 2 discusses the core principles of Bayesian estimation, specifically applying
Bayes’ theorem and Maximum Likelihood Expectation Maximization (ML-EM) in the
context of BNCT-SPECT image reconstruction. Performance evaluation indices such
as Mean Absolute Error (MAE) and Structural Similarity Index Measure (SSIM) are
also introduced to assess the quality of the reconstructed images.

Chapter 3 presents the experimental system, detailing the equipment used, including
the GAGG scintillator, MPPC (Multi-Pixel Photon Counter), MCA (Multi Channel

Analyzer), and phantom design. It also describes the experimental procedures in detail.
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In Chapter 4, the MCNP5 simulation software is introduced, providing an in-depth
discussion of Monte Carlo simulations, variance reduction methods, forced collision
techniques, tally methods, and comparisons between simulation results and
experimental data.

Chapter 5 focuses on the design of the mock-up system, elaborating on the design of
the collimator, gamma-ray systems, and presenting the final design results.

Chapter 6 delves into the image reconstruction process, comparing mathematically
ideal reconstruction with results obtained from experimental data. The chapter
concludes with a summary of the findings from these experiments.

Finally, Chapter 7 concludes the paper, summarizing the main contributions and
proposing directions for future research.

Each chapter contributes to a comprehensive understanding of BNCT-SPECT, from
theoretical concepts and experimental design to practical implementation and

evaluation.
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Chapter 2 Image reconstruction using
Bayesian estimation

2.1 Introduction

In this study, we employ Bayesian estimation, a widely recognized method in
engineering for parameter estimation, to reconstruct the gamma-ray distribution within
the body. [1] Specifically, we focus on detecting gamma-rays with an energy of 478
keV, which are produced by the '°B (n,a)’Li reaction that occurs during the BNCT
treatment process. Since the therapeutic effect of BNCT is proportional to the number
of '°B (n,a)’Li reactions and the intensity of the 478 keV gamma-rays emitted is directly
related to the number of these reactions, measuring the gamma-ray distribution provides
a quantitative means of evaluating the treatment's efficacy.

In SPECT imaging, image reconstruction techniques are generally categorized into
analytical methods and iterative approximation methods. Analytical methods, such as
the Fourier transform and superimposed integration methods, allow for the
reconstruction of images through a single computational step, assuming the projection
data has a sufficiently high sampling density. However, in situations where the sampling
density is insufficient, as is often the case in BNCT-SPECT due to constraints on
measurement time and angular coverage, analytical methods are less effective.

In contrast, iterative approximation methods refine the image through successive
recalculations of pixel values. These methods are well-suited to situations where the
projection data suffers from limited sampling or angular coverage. Given the inherent
limitations in BNCT-SPECT, the iterative approach is more appropriate for producing
reliable and high-quality images. This chapter details the principles of Bayesian
estimation and its application in estimating the gamma-ray distribution in the context

of BNCT-SPECT. [2][3]

2.2 Bayesian theorem and Bayesian estimation

Bayesian theorem, a fundamental theorem on probability and conditional probability,
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is described below.

In contrast to the probabilities P(A) and P(B) of events A and B occurring, the
conditional probability P(A|B) of event A occurring given event B is defined by
the following Equation (2.1).

P(ANB)
P(A|IB) =———— (P(B)>0 2.1
(UIB) = 5= (P(B)>0) @D
When considering the partition of the event A into A1, A2, ..., Equation (2.1) can be

rewritten as Equation (2.2).

P(4; N B)

P(AIB) = —5rss 22)
Equation (2.3) holds as well.
P(B N A;
P(Bla) =5 250 23)

Then considering that A; N B,A, N B, ...for P(B) is a partition of B, the following

equation is established together with Equation (2.4).

N
P(B) = Zk,:lp(Ak N B)
_ Z P(BNA,) = Z P(Ay) - P(BIAy) (2.4)
k=1 k=1

From the above Equation (2.2), (2.3), (2.4), the conditional probability of event A;

can be described as Equation (2.5).

PUIB) =S by P(IA)

(2.5)
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Equation (2.5) is the formula that expresses Bayesian theorem. In Bayesian theorem,
P(4;) is called the prior probability, and P(A j|B), the probability that event A; will
occur under event B, is called the posterior probability.

Bayesian revision is a procedure that applies Bayesian theorem, described in the
previous section, to obtain the posterior probability from Equation (2.5) based on
observed events after giving an arbitrary prior probability. Then, the posterior
probability obtained by this Bayesian revision is updated as a new prior probability, and
by performing repeated Bayesian revisions, an objectively reliable probability
distribution can be obtained. The method of estimating probability distributions by

repeatedly performing this Bayesian revision is called the Bayesian estimation method.

2.3 Application of Bayesian estimation in BNCT-SPECT

In this study, we applied Bayesian estimation to the image reconstruction technique
for BNCT-SPECT.

In order to obtain the distribution of gamma-ray sources in the x and y planes, we
divide the whole head into several regions as a minimum unit. We divide the 3D brain
into equal n 2D slices and generally divide the slice horizontally and vertically into n
sections and consider them as n? regions. However, n must be an odd number greater
than or equal to 3. Then, with the center of the head as the origin, n detectors and
collimators are placed in the orthogonal direction to the x-axis of the cell. This system
consisting of the detector and collimator will be referred to as the detector system in
the following. The source intensity in the j-thregion (j=1,2, ...,n%) is Nj [photons/sec],
and the count rate [CPS] value indicated by the detector at the i-th (i = 1, 2, ..., n)
measurement position is Ai. [4] As an example, the initial arrangement of the

experimental system in the case of n = 5 is shown in Figure 2.1.
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N1 | N2 | N3 | N4 [ N5

N6 | N7 | N8 | N9 | N10

N11 | N12| N13 | N14 | N15

N16 | N17 | N18 | N19 [ N20

N21 | N22 | N23 | N24 | N25

Figure 2.1 Image of the system (for n=5)

After completing the measurement at the initial position, rotate the detector system by
a certain angle clockwise around the center of the origin and perform the measurement
again. As shown in Figure 2.2, if we repeat this process and adjust the rotation angle so
that a total of n measurements is made before the rotation angle relative to the initial

state reaches 90 degrees, we end up with a total of n?> measurements from A1 to Ax?.
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Figure 2.2 Detectors’ moving angle 6=90 degrees

In this study, we classified the gamma-ray source states inside the cells in the system
into the point source case and constructed simulation models for each of them.

In this detector system, radiation entering the detector is collimated to focus the
measurements. Therefore, each detector has a field of view, as shown in Figure 2.3,
which defines the detectable range. Let the collimator have a length of £ [cm], a hole
radius at the center of the collimator of ¢ [cm], and the coordinates of the detector's
center be x_sec andy sec The range included in the detector's field of view can be

expressed in the x,y -plane by the following Equation (2.6).

2¢

2
~ (x —x_sec)+ (y_sec+ @) <y < %0 (x — x_sec) + (y_sec — @) (2.6)
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Q
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Inside the field of view
Detector \\
2

Figure 2.3 The field of view of the collimator and detector.

In the case of a point source, it is assumed that a radiation source with no area is placed
in the center of the cell. Therefore, if the center of cell j is included inside the detector's
field of view at position i, the radiation originating from cell j is determined to be
incident on detector i.

On the other hand, in the case of a surface radiation source, it is assumed that the
volume source exists uniformly spread out in the cell region. The difference between
the point source and the area source is that even if the center of the cell is not included
in the view of the detector, the radiation intensity corresponding to the percentage of
the area included in the field of view is determined to be incident on the detector. The
actual model determines whether the radiation originating from cell j is incident on the
detector at position i or not, and then the fraction of radiation sources contained inside
the detector's field of view is calculated.

In preparation for applying this system to Bayesian revision, we will treat the Nj and

Ai defined earlier as vectors N and A in the following. The purpose of this study is

to estimate the unknown vector, N, from the known vector, 4, using Bayesian

estimation. First, we define the probability that a gamma-ray emitted from the j-th

region is incident on the detector placed at the i-th position as R; ;, and define the

g
matrix R in the same way. This R is called the response. The response
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components R;; can be expressed by the Equation (2.7). Here, 7;; represents the
distance between the detector and the radiation source at measurement position i, D; ; is
the distance the gamma rays emitted from the source in cell j travel through the
head, con is the coverage ratio of the gamma rays from the source inside the detector’s
field of view in cell j, u is the attenuation coefficient of the head, Ef is the detection

efficiency of the detector, and ¢ is the radius of the collimator’s hole.

2

R;: = con X

” X Er X e HPij 2.7
i,j T[Ti?j 'f ( )

The vectors N , /T, and the matrix R can be expressed by the following Equation (2.8).
N=| | 4=| | RrR=[ :+ ~ (2.8)

We get the following equation to express these relationships in terms of matrix

Equations (2.9).

N
Il
o)
=l

(2.9)

In BNCT-SPECT, A is aknown number, and N is an unknown number, so the above
determinant is solved inversely. R is a regular matrix, and there is a possibility of
obtaining a computational solution. However, since A is a measured value, it is not

immune to the influence of error, and the result solved mathematically as an inverse
problem is not considered the actual value. Therefore, to obtain a meaningful
engineering solution, Bayesian estimation is used in this research.

First, let the sample space {2 be the 'radiation incident on the detector’, representing
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the whole event. Therefore, the probability P(£2) is "the probability that radiation
enters the detector. Then, let event Ej be the event 'when radiation is detected, the
radiation originates from the j-th cell' and event Fi is the event 'radiation is incident
on the detector at the i-th measurement position, and the detector emits a signal'.
Therefore, the probability P(Ej) represents 'the probability that the radiation
originates from the j-th cell when it is detected’, and similarly, the probability P(Fi)
represents 'the probability that the radiation is incident on the detector at the i-th
measurement position and the detector emits a signal'.

The "parallel hypothesis" allows us to interpret the event group {Ej} as "there are
multiple parallel hypotheses that form the measurement result, and any one of them
could be the correct hypothesis [2]. This gives the mixing proportions of each
hypothesis, which are finally paralleled by Bayesian estimation and are given by the
posterior probabilities of the hypotheses, P(Ej |Fi). In this study, we calculate
P(Ej |Fi) as the probability that the gamma-ray incident on the detector at
measurement position i originates from the j-th cell. This allows us to calculate an
estimate of the distribution of gamma-ray sources in the head that is reasonable when

the measurements are obtained. This probability P(Ej |Fi) is shown as Equation

(2.10).

P(E;) - P(F|E;)

PEIR) = S 5 (5 P(RIE)

(2.10)

Referring to Equation (2.9), P(Ej|Fi) corresponds to the response function
R(i,j), and P(Ej) corresponds to the source intensity Nj. However, to perform
Bayesian estimation, it is necessary to transform these equations based on the axiom of
probability as follows.

First, the response function is normalized according to the equation (2.11) using the

sum of the response function elements {R; ;} fori, ¥; R; ;.
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R, = (2.11)
Y YR

From this definition, the sum of the elements of the normalized response function
{R';;} for i, ¥;R';;, is 1 for all j. Also, using the sum of the response function
elements {R; j} for i X;R;; = fj, we define the matrix Eff represented by the

following Equation (2.12).

fi 0 = 0
Eff = 0 J o (2.12)
0 0 fu

At this point, Equation (2.9) can be rewritten using the normalized response function

matrix R’, and the matrix Eff defined above, as shown in Equation (2.13) below.
A=R -Eff-N (2.13)

The corrected source intensity vector N’, which normalizes Eff - N using the sum

|NEff| =Y fiN; of each element of Eff N, is introduced according to the

following Equation (2.14).

—

1 .,
N = -Eff-N (2.14)
|Negrl

From this definition, the sum of the elements {N;} of the vector N'is 1. Equation

(2.14) can be transformed as shown in Equation (2.15).

N = |Ngss| - Eff1- N7 (2.15)
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Combining with Equation (2.13), we can obtain Equation (2.16)
A= |Ngs| R -N (2.16)

Each element of the vector 4 can be written as in equation (2.17).

A= |NEff|ZjR'i,j -N'; (2.17)

On the other hand, if we take the sum |A| of A; and organize it, we can get the

following equation.

i l ]

= |NEff|z.N'jz.R'i.j = |Negy| (2.18)
J i

From this, if we normalize Equation (2.16) using |A| as I, Equation (2.9) is finally

expressed by the following Equation (2.19).

A =—=—""" =R -N 2.19
4] ] (2.19)

When transformed in this way, each element  {A";} , {R';;} ,and {N’;} ofthe

J
matrices and vectors in Equation (2.19) can be regarded as a probability, and Bayesian

estimation can be performed using them. Therefore, we rewrite the prior establishment

P(E]-) into the corrected estimated source strength est

K . :
j( ), which is an expression

keeping in mind the repeated application of Bayesian revision. This is an estimate of
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the normalized source intensity N’ defined by Equation (2.14), and therefore, as well

as N’, the sum of the elements {estj(k)} of the corrected estimated source intensity

vector is 1. As shown in Equation (2.20),

Z est() =1 (2.20)
J

(k+1)

The revised corrected estimated source strength est; is shown in the following

Equation (2.21) from the correspondence with Equation (2.10),

(k) | pr
estj R ij

¥jest{ D R

est! V() = A’ - (2.21)

(i) is the measured value of the i-th detector.
In addition, the following addition operation is performed to consider all measured

values.

&), pr
est:’*R';;
est].(k+1) = Z A’i ' J ) ! (222)
i Z] estj . R’i,j

This yields the Bayesian revised corrected estimated source intensity estj(k+1). This

operation expands the meaning of Equation (2.10) derived from Bayes' theorem. In
Equation (2.21), the factor A';, which is not in Equation (2.10), is multiplied. Finally,

an addition operation is performed in Equation (2.22), which is equivalent to the

operation of averaging, where multiple prior knowledge es are weighted by A’;.

()
L
This operation is necessary when Bayesian revision is repeated on the aggregated data
after completing the measurements. This is the idea behind the spectral Bayesian

(k)
t;

estimation method. The integral value ofes can be developed as the following
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Equation (2.23).

- 2.,4'1- —1 (2.23)

For the initial value of the corrected estimated source intensity, est(®), we adopt the
white spectrum in this study, where all elements have the same value. From Equation

(2.23), the initial value is given as follows.

est® .
© | 1
est;” | = 2( 1 2.24
: n\: (2:24)
1
esty

The initial value can be determined by a known value, the measurement value. Using

this and Equation (2.22), the Bayesian revision is repeated ic times to obtain the
corrected estimated source strength est(®). Using est(©) instead of N’ in
Equation (2.14) , the final estimated source intensity Nj can be obtained by solving

the following Equation (2.25).

N = |Ngsf|- Eff 1 est© (2.25)

This is the end of the procedure for applying Bayesian revision to image

reconstruction methods for BNCT-SPECT in this study.
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2.4 ML-EM

The Maximum-Likelihood Expectation Maximization method (ML-EM) is a currently
used image reconstruction technique [5][6], classified as a successive approximation
method. The iterative formula for this method is expressed by the following equation

(2.26).

(k)
NN est; Ai- Ry
J YiRi; iR estj(,k)

(2.26)

estj(k) represents the pixel values of the k-th reconstructed image, R;; is the

elements of the response matrix, A; is the measured projection data, and n is the
number of detectors.

The procedure for the ML-EM method, broken down according to the calculation steps,
is as follows:

1. From the i-th image est®, create the i-th virtual projection data yl.(k). The

projection equation is expressed by Equation (2.27).
y = Z Ry - est)” (2.27)
jr

2. According to Equation (2-28), calculate the ratio y; , which is the ratio of

the k-th virtual projection data to the actual measured projection data.

;A
Vi = o
yi()

(2.28)

3. Perform back projection on this ratio to create the image 4; . The back

projection equation is shown in Equation (2.29).
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1
A= E "“R;: 2.29
/ ZiRi.j iyl t ( )

4. According to Equation (2.30), multiply the image A}, which is the back
projected ratio of virtual to measured projection data, by the k-th image estj(k),

and update it to the (k+1)-th image.

(k+1)

k ’
est; = estj( ) -4 (2.30)

The initial input est(® is an image with all values set to 1. This is the general
procedure of the ML-EM method, which is widely known as a successive

approximation-based image reconstruction method.

2.5 Performance evaluation index

The following two types of error evaluation indices were adopted to compare the
performance of the proposed Bayesian estimation method and that of the existing ML-

EM image reconstruction method. [7][8]

2.5.1 MAE

The Mean Absolute Error (MAE) is the average of the absolute values of the errors
[9][10]. In statistics, MAE 1is a measure of errors between paired observations

expressing the same phenomenon, and its definition is given by Equation (2.31).
1 n
(MAE) = N2|esti —t,] (2.31)
i=1

n represents the total number of pixels, est; denotes the pixel values of the
reconstructed image, and t; represents the pixel values of the true image, where

|est; — t;| represents the absolute error. The smaller this value, the smaller the error
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in the estimated values of the reconstructed image.

2.5.2 SSIM

The Structural Similarity Index Measure (SSIM) is devised to evaluate the structural
similarity of images as perceived by the human eye and has recently become frequently
used in the field of image reconstruction [11][12]. The SSIM index is a full reference
metric; in other words, the measurement or prediction of image quality is based on an
initial uncompressed or distortion-free image as a reference. It is calculated using

Equation (2.32).

Cuetye + C1)(20't,re +¢1)

(SSIM) =
(Ui + p2e + c1)(0F + 0%, + c3)

(2.32)

U; 1s the mean of the pixel values of the true image, u,.. is the mean of the pixel values
of the reconstructed image, o is the variance of the true image, ¢, is the variance of
the pixel values of the reconstructed image, and oy .., 1s the covariance between the true
and reconstructed images. Additionally, ¢; and ¢, can be set arbitrarily. In this study,
we used the prescribed values ¢; = (0.01 X 255)? and ¢, = (0.03 x 255)2.

From this equation, SSIM is 1 when the reconstructed and true images are perfectly

matched and approaches 0 as the structural similarity decreases [13].

2.6 Summary

In Chapter 2, we provide an in-depth explanation of the Bayesian estimation method
and its practical application within the BNCT-SPECT imaging framework. We begin
by introducing the foundational principles of Bayesian estimation, emphasizing how it
enables accurate estimation of gamma-ray distributions by iteratively updating prior
probabilities based on acquired data. For this study, we use a detector array
with n detectors to acquire projection data over multiple angles, resulting in a
comprehensive dataset of projections for an n X n pixel true image.

To estimate each pixel value, the response matrix R is normalized and used in
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Bayesian revisions, facilitating the reconstruction of high-resolution images for BNCT-

SPECT. This approach compensates for the limited projection angles and measurement
times inherent in BNCT by improving reconstruction accuracy through iterative
calculations. Additionally, we introduced ML-EM, a widely used method for image
reconstruction.

Finally, we introduce two critical error evaluation indices used to assess the quality of
reconstructed images: Mean Absolute Error (MAE) and Structural Similarity Index
Measure (SSIM). MAE quantifies the average deviation between estimated and true
pixel values, providing an overall measure of reconstruction accuracy, while SSIM
assesses structural fidelity by comparing patterns of luminance and contrast, thus
capturing more nuanced aspects of image quality. These indices are essential in

evaluating and optimizing the performance of the BNCT-SPECT imaging system.
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Chapter 3 The experimental system

3.1 Introduction

In the previous chapter, we discussed the core features and performance of our method.
Here, we provide a detailed overview of the experimental system constructed to
evaluate its practical applicability. In this chapter, we present the initial construction of
the experimental system, detailing each component's structure and operating principles.
The primary purpose of this chapter is to evaluate the applicability of our method to
existing systems by examining the functionality and integration of each part in the
experimental setup. This groundwork establishes a foundation for further testing and

refinement of our approach.

3.2 The configuration of the experimental system

Figure 3.1 shows the simplified experimental system used in this study. To simulate
brain tumors emitting gamma-rays during neutron irradiation, we constructed a head
phantom containing a '*’Cs source, which was strategically placed at various locations.
This source, selected for its monochromatic gamma emission near 478 keV,
approximates the gamma-ray characteristics expected in BNCT. A standard '3’Cs
gamma-ray source with an intensity of 1.0x107 Bq was used for the experiments. In this
setup, gamma-rays were detected, and the total measured value was calculated. To
derive the response matrix element, this total value was divided by the product of the
source intensity in becquerels (Bq) and the measurement time in seconds (s), yielding

the normalized detection response.
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Figure 3.1 Simplified experimental system

Table 3.1 Equipment of the experimental system

Equipment

Product model

Motorized stage (rotation)

SIGMAKOKI OSMS-120YAW

Motorized stage (translation)

SIGMAKOKI OSMS26-200

Stage controller

SIGMAKOKI SHOT-702

MPPC

HAMAMATSU MPPC C14047-9955

MCA

AMTEK MCA8000D

The phantom is positioned on a stage, allowing emitted gamma rays to be directed

accurately through a lead collimator toward the GAGG scintillation detector. This

collimation ensures that gamma rays are captured precisely from the intended locations

within the phantom, based on the field of view of each detector. Using this setup, we

obtain the spatial energy distribution of gamma rays throughout the phantom,

facilitating a detailed analysis of radiation behavior at different locations.

Table 3.1 lists the equipment used in the experimental system. The motorized stage

enables precise control over the position and orientation of the phantom, allowing for

targeted adjustments of which part of the phantom enters the detector's field of view.

This setup ensures that specific areas can be consistently analyzed, optimizing data

acquisition and improving the accuracy of gamma-ray distribution measurements

42



within the phantom.

3.3 GAGG scintillator

3.3.1 Inorganic scintillator

When radiation enters certain types of materials, the electrons within these materials
are elevated to a high-energy state (excited state). As they return to their original state
(ground state), they release the energy difference in the form of light, or fluorescence.
This phenomenon is known as scintillation, and materials that exhibit this property are
called scintillators. Since the emitted light is usually very faint, scintillators are often
paired with devices such as photomultiplier tubes, which amplify the weak light signal
into a readable electronic signal.

Scintillators are broadly categorized into two types: inorganic and organic scintillators.
Inorganic materials generally offer superior light output and linearity, although most
have relatively long response times. Due to their high atomic numbers and densities,
inorganic scintillators are particularly well-suited for gamma-ray spectroscopy. On the
other hand, organic scintillators tend to have fast response times, though they produce
lower light output. They are commonly used for beta-ray spectroscopy and, because
they contain hydrogen, are also effective for neutron detection. [1] In this study, an
inorganic scintillator was employed as the gamma-ray detector, so the following will
focus on the properties and characteristics of inorganic scintillators.

In inorganic materials, the scintillation mechanism is determined by the energy states
defined by the crystal lattice structure. As shown in Figure 3.2, electrons within an
insulator or semiconductor material are restricted to specific energy bands. Valence
band electrons are bound to specific lattice positions, while conduction band electrons
have sufficient energy to move freely within the crystal. Between these bands lies a
forbidden gap, an energy range where electrons cannot exist in a pure crystal. In pure
crystals, the process of an electron in the conduction band returning to the valence band
by emitting a photon is inefficient. Additionally, the width of this gap results in photons

with energy levels too high to produce visible light, making the scintillation process
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ineffective for practical applications without specific modifications.

Conduction band

Activator
excited states
Forbidden
Gap _
Photon Activator
ground state
o e
e

Valence band
Figure 3.2 Energy band structure and scintillation mechanism of an activated

crystalline scintillator. [5]

To enhance the probability of visible light emission through transition processes,
inorganic scintillators are typically doped with a small amount of impurity, known as
an activator. This activator creates specific sites within the crystal lattice and alters the
structure of the energy bands in the pure crystal. Consequently, new energy states are
formed within the forbidden gap, allowing electrons to transition more effectively from
the conduction band to the valence band. These transitions release energy in the form

of visible photons, thereby increasing the scintillation efficiency of the material.

3.3.2 Scintillator Properties

For scintillators used in radiation measurement, characteristics such as luminescence
intensity and decay time are carefully considered based on the type of radiation being
measured and the specific purpose of the measurement. This section provides an
overview of these fundamental characteristics, and in the following section, we discuss
the rationale behind selecting the GAGG(Ce) scintillator, taking these properties into
account.

1. Atomic Number and Density

Inorganic scintillators, primarily used for gamma-ray measurement, achieve
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higher detection efficiency for gamma rays when composed of materials with a
higher atomic number. This is due to an increased probability of interactions,
particularly the photoelectric effect, which enhances the ability to detect gamma
rays effectively.
Luminescent Wavelength

The emission spectrum of scintillator crystals varies depending on the type of
crystal used. To maximize the utilization of scintillation light, this spectrum mus
t align closely with the wavelength range of the photodetector’s peak sensitivity.
This matching optimizes the efficiency of light detection, ensuring that the
maximum amount of scintillation light contributes to the detection process.
Attenuation Constant

The luminescence produced by a scintillator decay exponentially over time.
Although many inorganic scintillators exhibit more than one decay component, in
most cases, only the primary decay component is considered for practical purposes.
If we denote the decay time of fluorescence as t and the initial luminescence
intensity as I,, the luminescence intensity I at time t after excitation can be

expressed by Equation (3.1):

t
I=1,-et (3.1)

This exponential decay behavior is crucial for determining the timing
characteristics of scintillation detectors, as it influences the resolution and count
rate capability in radiation detection applications.

Luminescence Yield

Luminescence yield refers to the number of photons emitted when 1 MeV of
energy is deposited in the scintillator. This measure is critical for evaluating the
efficiency of a scintillator material in converting the energy of incoming
radiation into detectable light. High luminescence yield is desirable, as it leads to

stronger signals and improves the precision and accuracy of radiation detection.
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3.3.3 Selection of GAGG(Ce) scintillators

Figure 4 illustrates the GAGG scintillator implemented in the mock-up experiments,
selected due to its favorable properties tailored for BNCT-SPECT systems.

Firstly, in systems utilizing inorganic scintillators, achieving optimal detection
performance demands that the scintillator material possesses high density and a suitable
atomic number, as these factors contribute directly to the material's gamma-ray
detection efficiency by increasing photon interaction probabilities within the detector
volume. The high atomic number enhances photoelectric interactions, which is
particularly beneficial for detecting low-energy gamma rays.

Secondly, achieving fine energy resolution is critical to accurately separate the 478
keV gamma rays from the nearby 511 keV annihilation gamma rays, as overlapping
peaks would otherwise compromise the reconstruction accuracy. Thus, it is essential for
the material to exhibit high luminescence yield under gamma-ray interaction,
generating a sufficient number of photons per incident gamma event. This reduces
statistical variations in photon count, leading to improved energy resolution and
allowing for a precise distinction between close energy peaks.

Finally, another essential property for BNCT-SPECT applications is the scintillator's
decay time. A short decay time minimizes signal overlap from successive events, which
is vital for maintaining high count rates without substantial dead-time losses, especially
under the high-flux conditions often encountered in clinical BNCT settings. The
absence of intrinsic self-radiation further reduces background noise, which is beneficial
for low-background measurements in medical imaging.

Table 3.2 presents the properties of various inorganic scintillators [2]. For this study,
we selected a Ce-doped GAGG (Gadolinium Aluminum Gallium Garnet; GdsAl2GasO1.:
Ce) scintillator from among the options. Figure 3.5 shows the GAGG(Ce) scintillator
crystal used in the experiments. GAGG(Ce) is a recently developed scintillator crystal
and has several advantages compared to traditional scintillator crystals, such as Nal and
Csl. Notably, it offers a high density of 6.63 g/cm?® [3] and excellent energy resolution
of 6.3% at 662 keV for '3’Cs gamma rays.
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While other scintillators like LuAG(Pr) and LaBr:(Ce) could also be potential
candidates due to their comparable resolution and density, each presents limitations.
LuAG(Pr), for instance, has a short emission wavelength of 312 nm, making it
incompatible with the silicon-based photodetectors used for small-scale and arrayed
configurations, such as the Multi-Pixel Photon Counter (MPPC) intended for this
system. LaBr3(Ce), on the other hand, is deliquescent, posing handling and durability
challenges in typical lab or clinical environments.

Therefore, GAGG(Ce) was chosen for this study due to its favorable properties and
compatibility with the MPPC detection system, which will be explained in detail in the
following section. In this research, a 3.5%3.5x30 mm?® GAGG(Ce) is used considering
the spatial resolution is Smm or less, and the statistical accuracy is less than 4.39% [4].
This selection allows for effective gamma-ray detection while ensuring system

reliability and ease of maintenance in practical applications.
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Figure 3.5 GAGG scintillator used in the experiments

(Left: before shielding Right: after shielding)

Table 3.2 Performance comparison of major inorganic scintillators

Scintillator GAGG Nal Csl LaBr3; LuAG BGO
(Ce) (T1) (T1) (Ce) (Pr)
Intensity [g/cm?] 663 | 367 | 453 | 508 6.7 713
Luminous Intensity | ¢ 600 | 45,000 | 56,000 | 75.000 | 22,000 | 8,000
[photon/MeV]
Deliquescence No Yes Yes Yes No No
Energy Resolution 6.3 5.6 5.7 2.6 42 12
[%@Cs-662keV]
Luminescent 520 | 415 550 | 375 | 312 | 480
Wavelength [nm]
y-ray Stopping 43 25 38 25 79 186
Power pZeff*[x10%]

3.3.4 Detection efficiency

The performance of gamma-ray detectors is primarily evaluated through two key
metrics: counting efficiency and energy resolution. To understand intrinsic efficiency,

we first define counting efficiency. Counting efficiency represents the ratio between the
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number of pulses counted by a radiation detector and the activity of the radiation source.
A higher counting efficiency indicates a more effective detector, as it captures a larger
portion of the emitted radiation, making it well-suited for sensitive and precise
measurements. Intrinsic efficiency builds upon this by considering the detector's
inherent ability to detect gamma-rays independently of external factors.

All radiation detectors output pulse signals as a result of interactions between incident
radiation and the sensitive volume within the detector. For charged particles, such as
alpha and beta particles, interaction is inevitable once the particle enters the sensitive
volume, generating a sufficient number of electron-hole pairs along its path. This
interaction produces a detectable pulse signal. Therefore, in the case of charged
particles, detection is guaranteed as long as the particle enters the sensitive volume,
ensuring reliable detection within the specified range of the detector.

In contrast, uncharged particles such as X-rays, gamma rays, and neutrons, due to their
lack of charge and high penetration capability, often pass through the detector without
interacting. Occasionally, they do interact with the detector, and the resulting charged
particles generated from these interactions can then be detected. Consequently, the
detection efficiency for uncharged particles is generally less than 100%, making it
essential to precisely determine the counting efficiency.

Counting efficiency can be categorized into two types: absolute efficiency (&,;s) and
intrinsic efficiency (&;,¢). Absolute efficiency depends not only on the characteristics
of the detector but also on the distance between the radiation source and the detector.
Absolute efficiency and intrinsic efficiency are defined by the following Equations (3.2)

and (3.3), respectively:

Number of pulses detected

(3.2)

Eabs = — .
bs ™ Total radiation emitted by the source

Number of pulses detected

(3.3)

Eint = T : -
"t ™ Radiation entering the detector’s sensitive volume

For an isotropic radiation source, these two types of efficiency are related, as shown
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in Equation (3.4). Here, {2 represents the solid angle subtended by the detector from
the position of the source. As indicated by Equation (3.4), intrinsic efficiency is less
dependent on the detector’s position relative to the source compared to absolute

efficiency.

4
Eint = €abs E (3.4)

In this measurement, the denominator of Equation (3.3) is determined using Equation
(3.5). In Equation (3.5), S represents the detector's entrance area, r is the distance
between the source and the detector, and Bq denotes the standard source activity.
Additionally, T is the half-life of the standard source, and t indicates the elapsed time
since the calibration date of the standard source. The emission ratio represents the

fraction of gamma rays emitted per decay event of the standard source.

Radiation entering the detector’s sensitive volume

t
Iz

S T
X Bg X <§) X emission ratio X detection tim (3.5)

4mrr?

3.3.5 Energy resolution

One of the key characteristics of a radiation detector is its energy resolution, which
can be evaluated by observing the detector's response to a monoenergetic radiation
source.

Figure 3-6 shows the formal definition of the energy resolution of a detector. The
width I'(E,) at half of the peak maximum is referred to as the Full Width at Half
Maximum (FWHM). The detector’s ability to discriminate particles at the energy
peak E, is known as the energy resolution R(E,), which is defined by Equation (3.6).

Here, I'(E}) is expressed in units of energy, while R(Ej) is dimensionless.
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(3.6)

Y2

Figure 3.5 Definition of the energy resolution of a detector.

The factors affecting the energy resolution of a detector’s response can be categorized
into the following three aspects:

1. Statistical fluctuations in the number of electron-hole pairs created within the
detector — These fluctuations arise from the inherent randomness in the particle
interactions within the detector material.

2. Electronic noise from the detector body or connected circuitry — This includes
noise introduced by vibrations, electromagnetic fields, and other sources that
can interfere with the signal processing.

3. Imperfect creation of electron-hole pairs within the detector — This factor stems
from irregularities in the semiconductor crystal structure, which can lead to
incomplete or inconsistent electron-hole pair formation.

Each of these factors contributes to broadening the detector’s response function,
thereby impacting its energy resolution.

Among these factors, the statistical fluctuations in the number of electron-hole pairs
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(factor 1) are the most significant. This is because factors 2 and 3 contribute a baseline
level of noise that cannot be eliminated, even with a perfectly constructed detector; they
represent unavoidable fluctuations present in any detector signal. The number of
electron-hole pairs generated within the detector due to radiation is inherently discrete
and varies, even when the incoming energy is the same. This discrete nature of electron-
hole pair production introduces statistical noise, which affects the consistency of the
signal and thus the energy resolution of the detector.

Suppose radiation enters the detector, depositing an energy E. If the average energy
required to produce one electron-hole pair in the scintillator is &, then the average
number of electron-hole pairs N produced can be expressed by the following Equation

(3.7):

(3.7)

m | I

In radiation measurements, N is typically a large value, meaning that if it were the
only source of signal fluctuation, the distribution of counts would follow a Gaussian
distribution, as shown in Figure 3.5 (or a Poisson distribution if the count numbers are
low). Thus, the relationship between the standard deviation ¢ and the measured count

of electron-hole pairs N is given by Equation (3.8):

O-:\/é:\/ﬁ (3.8)

Additionally, a Gaussian distribution can be expressed as shown in Equation (3.9):

A (E — Ey)?
G(E) = Jmexp <— T) (39)

From this distribution, theFWHM, denoted as I', can be determined using the
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relationship given in Equation (3.10):

['=2V2In20 = 2.3550 (3.10)

Here, A represents the peak area. Generally, there is a proportional relationship
between the pulse height Ey and the number of electron-hole pairs N, which can be
expressed as E; = KN, where K is a proportional constant. Given that the standard

deviation o of the pulse height spectrum is related to the pulse height, we can convert
it to energy using Equation (3.8), resulting in: ¢ = K+/N. Substituting this into

Equation (3.10), the FWHM becomes: I' = 2v/2In20 ~ 2.355K~+/N. Equation (3.11)

provides the energy resolution R as a function of N, indicating how statistical variations

influence the precision of energy measurements.

I 2.355KVN 2.355
R=—= = (3.11)
E, KN VN

From Equation (3.11), we can see that the energy resolution R depends solely on the
number of counted electron-hole pairs N; the larger N is, the better the resolution.
However, in practice, individual electron-hole pair creation events are not entirely
independent, and the variance in N is smaller than what would be expected from a
Poisson process. To quantify this deviation from the Poisson process in electron-hole
pair generation, the Fano factor F is introduced, which is defined by Equation (3.12).

The Fano factor adjusts the expected variance, accounting for the sub-Poissonian
behavior observed in real materials, thus providing a more accurate representation of

statistical fluctuations in radiation detection.

The variance in the total measured number of electron — hole pairs N

The expected variance N in an ideal Poisson distribution

2
Oabs
= 12
N (3.12)
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Here, 0, represents the standard deviation adjusted by the Fano factor F, and it is

given by Equation (3.13):
Oaps = VFN (3.13)

The value of the Fano factor F ranges between 0 and 1. Therefore, considering the
Fano factor, the FWHM T can be expressed in relation to the adjusted standard

deviation o, as shown in Equation (3.14):

['=2V2In2Kao,,s = 2.355K0 (3.14)

Additionally, from Equations (3.13) and (3.14), we can derive Equation (3.15):

[ = 2.355KVFN (3.15)

The energy resolution R, as determined by the Fano factor, is equivalent to the

expression given in Equation (3.6).

I 2.35KVNVF F
go L _235KVNVF _, oo |F (3.16)
E, KN N

This R is known as the "Fano limit." In scintillation detectors, the value of F is
typically 1. In this study, we use I', which is more intuitive for assessing energy
resolution, as the primary parameter. By rearranging Equation (3.15) using Equation
(3.8) and taking the logarithm of both sides, we obtain Equation (3.17),

1
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where C is a constant independent of E. This transformed expression allows for a
simplified analysis of energy resolution using I as a key parameter.

This relationship highlights that the statistical variation in the signal, represented by
the standard deviation, is proportional to the square root of the number of detected
electron-hole pairs. This variance influences the precision of energy measurements

within the detector.

3.4 MPPC

MPPC stands for Multi-Pixel Photon Counter, a type of device known as a Si-PM
(Silicon Photomultiplier). It is a photodetector that operates in Geiger mode, utilizing
an array of avalanche photodiodes (APDs) arranged in multiple pixels to enhance
photon detection capabilities. The main characteristics of MPPCs are as follows, with

an image of the MPPC used in this study shown in Figure 3.6. [6]
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Figure 3.6 MPPC dimensional outlines

The main features of MPPCs are as follows:
1. Compact and Cost-Effective: MPPCs are small in size and relatively
inexpensive compared to other photodetectors.

2. Operates at Low Bias Voltage: They require only a low bias voltage for
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operation, making them energy-efficient and easy to handle.

3. High Quantum Efficiency: MPPCs have a high quantum efficiency,
enabling efficient photon detection.

4. FastResponse: They exhibit high-speed response, suitable for applications
requiring rapid signal processing.

5. Resistant to Magnetic Fields: MPPCs are less affected by magnetic fields,
making them reliable in environments with strong electromagnetic interference.

These characteristics make MPPCs highly versatile and effective for use in photon

detection applications, including those in this study.

3.4.1 Operating principle

Before explaining the operating principle of the MPPC, it is essential to understand
the fundamental component behind its operation: the APD (Avalanche Photodiode). An
APD is a highly sensitive photodiode that amplifies photocurrent by applying a specific
reverse voltage. While the mechanism for generating photocurrent in an APD is similar
to that of a conventional photodiode, the key difference lies in the APD’s ability to
multiply the generated charge carriers, enhancing its sensitivity compared to standard
photodiodes.

When light with energy exceeding the bandgap enters a photodiode, electron-hole
pairs are generated as a result of the light energy. When a reverse voltage is applied to
a p-n junction, the electron-hole pairs produced within the depletion region drift under
the influence of the electric field. The drift velocity of these carriers increases as the
electric field strengthens. At a certain field strength, known as the breakdown voltage,
the frequency of collisions between carriers and the crystal lattice increases, reaching a
point where it saturates.

As the electric field further increases, carriers that avoid collisions with the lattice gain
very high energy. When such high-energy carriers eventually collide with the crystal
lattice, they generate additional electron-hole pairs, a process known as ionization. This

ionization can trigger a chain reaction where newly created electron-hole pairs
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themselves initiate further ionization, a phenomenon referred to as avalanche
multiplication. A photodiode that amplifies the signal via avalanche multiplication is
known as an APD. This process enables APDs to achieve significant signal
amplification, making them highly sensitive detectors for low-level light signals. [7][8]

When an APD is operated with a reverse voltage exceeding the breakdown voltage, it
detects a fixed signal regardless of the number of incident photons. This phenomenon
is known as Geiger discharge, and the operation of an APD under such a voltage is
referred to as Geiger mode. To stop the Geiger discharge and prepare the APD for
detecting the next photon, the operating voltage must be reduced.

To achieve this, a quenching resistor is connected in series with the APD, as shown in
Figure 3.7. During Geiger discharge, the current generated causes a voltage drop across
the quenching resistor, which lowers the APD's operating voltage, effectively halting
the discharge. The output current from Geiger discharge has a sharp rising edge,
forming a pulse-like signal, while the falling edge of the output current, regulated by
the quenching resistor, has a gradual slope, resulting in a smoothed pulse shape.

This quenching mechanism ensures the APD is ready for subsequent photon detection,
making it suitable for applications requiring high sensitivity and precise detection

timing.
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Figure 3.6 Structure of MPPC

3.4.2 MPPC Properties

The MPPC has various characteristics, some of which are highlighted below.
1. Gain

The gain M of an MPPC is defined as the ratio of the charge Q generated by a single
pixel detecting one photon to the elementary charge e. It can be expressed by Equation

(3.18):

M= (3.18)

e
Here, e is the elementary charge, given as 1.60x107!° C. This gain represents the level
of signal amplification achieved by the MPPC for detecting individual photons.
The charge Q depends on the reverse voltage Vr and the breakdown voltage Vg, as

expressed in Equation (3.19):
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Q=Cx (Vg —Vgg) (3.19)

where C represents the capacitance of a single pixel. This relationship indicates that the
charge generated by each pixel is proportional to the difference between the reverse
voltage and the breakdown voltage, with the pixel capacitance acting as a scaling factor.

Equations (3.18) and (3.19) indicate that the gain M increases with both a larger pixel
capacitance C and a higher reverse voltage V. This means that the amplification
capability of the MPPC is enhanced when the capacitance of each pixel is greater or
when a higher reverse voltage is applied, as both factors contribute to a larger
charge Q generated per detected photon.

2. Dark Count

In an MPPC, pulses can also be generated by thermally produced carriers, which are
known as dark pulses. These thermally induced carriers are amplified to a consistent
signal level and are observed alongside actual signals, potentially causing detection
errors. The rate of dark counts increases with rising ambient temperature, as higher
temperatures promote the generation of thermal carriers. This dark count rate is an
important factor to consider in applications requiring high sensitivity and low noise.

3. Crosstalk

In an MPPC, when a single photon enters one pixel, it is sometimes possible to observe
two or more pulses. This occurs when secondary photons generated during the
avalanche process in one pixel enter an adjacent pixel, triggering an additional
avalanche and causing a detectable signal in the neighboring pixel. This phenomenon
is known as optical crosstalk.

The probability of crosstalk is largely independent of temperature within the operating
temperature range but increases with higher reverse voltage. As the reverse voltage rises,
the likelihood of secondary photons inducing signals in neighboring pixels also rises,
thereby increasing the frequency of crosstalk events. This effect must be managed to
maintain signal accuracy in high-sensitivity applications.

4. Photosensitivity and Detection Efficiency
Two key characteristics that indicate the optical detection sensitivity of an MPPC are
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photosensitivity and detection efficiency. Photosensitivity is defined as the ratio of the
MPPC’s output current to the amount of incident light when continuous light is directed
onto the MPPC. In contrast, detection efficiency refers to the ratio of detected photons
to the number of incident photons when pulsed light is used for photon counting with
the MPPC.

Since photosensitivity is proportional to the gain, it increases with the reverse voltage
applied to the MPPC. However, it is essential to note that photosensitivity includes
contributions from effects such as crosstalk, which may artificially enhance the
measured sensitivity. Therefore, careful interpretation is required when evaluating

photosensitivity, especially in applications where high precision is necessary.

3.5 MCA

The MCAS8000D is a state-of-the-art, high-performance multichannel analyzer (MCA)
developed by Amptek. It serves as an upgrade to the MCA8000A, which has been a
reliable tool in spectroscopic applications for over 15 years. The MCA8000D
incorporates modern digital signal processing technology and features contemporary
high-speed USB and Ethernet interfaces, addressing the obsolescence issues associated
with the MCA8000A's architecture.

An MCA is a critical component of a complete instrumentation system, widely used
in applications requiring detailed signal analysis. Typically, a sensor generates a series
of current pulses as its signal in response to incoming radiation or particles. Signal
processing electronics then shape these pulses into forms where the peak voltage
corresponds directly to a quantity of interest, such as the deposited energy or particle
size.

The MCA processes these shaped pulses and outputs a pulse height spectrum, which
is essentially a histogram of pulse heights. This spectrum provides valuable insights
into the distribution of energies or other properties of the detected particles, making the
MCA an essential tool in spectroscopic and particle detection applications.

The MCA operates by detecting the peak voltage of each shaped pulse and converting

it into a digital value. This digital value is proportional to the peak voltage of the pulse.
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For instance, with a 10-bit resolution, the MCA divides the full voltage scale into 1024
channels. For a gain setting of 1V full scale, a pulse with a peak voltage of 0.5V would
be assigned to channel 512.

Each time a pulse's peak falls into a particular channel, the MCA increments the
counter for that channel. The resulting array of integer counter values constitutes
the pulse height spectrum, which is the MCA's primary output. This spectrum is either
displayed directly or transmitted to spectrum processing software for further analysis.

In addition to the histogram, the MCA provides supplementary data, including the
total measurement time, a dead time correction factor, and the total number of counts
detected. These outputs enhance the utility of the MCA in applications requiring precise
spectroscopic measurements. [9]

Figure 3.7 shows the dimensions of the MCA used in this study.
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Figure 3.7 Dimensions of MCA8000D

The MCAS8000D incorporates a threshold parameter that is configurable through

software and plays a key role in the peak detection logic. For a pulse to be recognized
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as having a peak, its height must exceed the threshold value, and then it must fall below
the peak by the threshold amount. Typically, the MCA only records pulses that are
above this threshold. However, in the case of bipolar pulses, it is possible for below-
threshold pulses to be recorded.

Additionally, the MCAS8000D features a separate parameter known as the LLD (low-
level discriminator). Unlike the threshold parameter, the LLD functions strictly as a
lower cutoff, ensuring that only pulse heights exceeding this limit are recorded. This
dual-threshold system enables the MCAS8000D to filter unwanted low-amplitude
signals effectively while maintaining flexibility for various signal processing scenarios.

In our experimental system, it is common practice to measure the spectrum of a sample
containing at least two peaks of known energies. These known energies are used to
correlate the measured centroids of the peaks, allowing for the calibration of not only
the MCA but also the entire signal processing chain, including the detector, preamplifier,
and shaping amplifier.

Since the characteristic energies of X-rays and gamma rays are universal physical
constants, there is no requirement for NIST-traceable calibrations; the system is
calibrated against these fixed constants. However, it is essential to have a spectrum
containing peaks with known energies to perform this calibration accurately. This
approach ensures that the energy scale of the system is correctly aligned with the
physical properties of the incident particles.

By combining the MCA functionality described in this section with the GAGG
detector discussed in Section 3.3.3 and the explanation of energy resolution in Section
3.3.5, the energy resolution of the GAGG detector used in this experiment can be
determined. The experimental results for the FWHM, which is for the energy resolution,

are presented in Table 3.3, with the corresponding graph depicted in Figure 3.8.
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Table 3.3 FWHM measurement results

Source E/MeV R FWHM
Co 1.33249 0.039347 0.05243
Eu 1.40801 0.038305 0.053934
Cs 0.66166 0.05507 0.036438
Na 0.551 0.060009 0.033065
1.27454 0.040207 0.051246
Ba 0.356 0.073259 0.02608
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Figure 3.8 Measurement results of FWHM

The relationship between FWHM and energy observed in our experiments is

expressed in Equation (3.20).

I = 0.0451E05625 (3.20)

3.6 Design of phantom

Figure 3.9 illustrates the human head phantom used in the experiments. A cylindrical
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phantom with a diameter of 20 cm and a height of 20 cm, made of acrylic and water,
was developed. This phantom was placed on a stage that allowed for free adjustment of
its position and rotation. Since the position of the detector could not be altered due to
the setup of the experimental system, the stage was utilized to change the position of
the simulated tumor, effectively replicating the position change of the detector. An
adjustable acrylic platform was incorporated into the phantom to enable precise
placement and height adjustment of the gamma-ray source, simulating a tumor. The
right-hand portion of the figure depicts the Monte Carlo N-Particle 5 (MCNPS5)
simulation model of the experimental system. MCNP, a general-purpose three-
dimensional Monte Carlo N-particles transport code, is employed to simulate particle
motion in various environments, replicating natural conditions. Further details on

MCNP5 will be provided in Chapter 4.

vl bar

seryl

Figure 3.9 Phantom used in the experiments

In this study, we adopted a grid system of n=50, representing the image area, and
positioned the head phantom within this grid. As shown in Figure 3.10, the black region
represents the observation area, a square with a side length of 20 cm, resulting in a pixel
size of 0.4? cm?. The white circle denotes the border of the phantom, which is made of
acrylic and has a thickness of 0.3 cm. This configuration provides a detailed framework

for the imaging and analysis of gamma-ray distributions within the phantom.
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Figure 3.10 Head phantom placed in the observation area

3.7 Experimental procedure

Based on the head constructed above, the gamma-ray source can be positioned within
the brain region to simulate cancer cells. For instance, as shown in Figure 3.11, the red
point represents the gamma-ray source, while the green blocks indicate the GAGG
scintillator array. The gray area corresponds to the brain, with a diameter of 48 pixels.
This setup enables a realistic simulation of gamma-ray emissions and their detection

within the brain region of the phantom.
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Figure 3.11 A simple schematic view of the detection process for experiments with

GAGG scintillator
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moving angle 6=90 degrees and n=50.

During treatment, the patient is positioned in close contact with the neutron exit wall,
making it impractical to acquire projections from a full 360 degrees. Instead, the
projection angle is typically limited to less than 180 degrees. Furthermore, the detector's
movement is constrained to a 90-degree range due to the physical setup, with the
detector angle fixed less than 90 degrees.

Using the Bayesian estimation method, projections are taken m times at every degree
increment defined as 46 around the patient's head. For instance, as shown in Figure
3.11, with n = 50, the head is divided into 2500 pixels. This means that each detector
row, comprising 50 detectors, captures 50 measurements at evenly distributed angles.
By detecting the emitted gamma rays in this manner, we can reconstruct n X n pixel
data from m X n projection data using the Bayesian estimation method.

This process involves the calculation of a response function R, which defines the
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relationship between the detected projection data and the reconstructed image data, as
discussed in Chapter 2. This method provides a practical and efficient approach to

image reconstruction under the constrained conditions of BNCT treatment.
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Figure 3.12 Comparison between experimental result and MCNP result

We designed and constructed an experimental system and conducted experiments to
evaluate its performance. MCNPS5 simulations were performed to generate limited-
view-angle projection data and compute the response function, enabling successful
image reconstruction. The experimental system was developed to explore experimental
specifications for a real BNCT-SPECT system and to validate the measurement
system's response function, as evaluated by MCNPS5.

The gamma-ray spectra obtained from our experiment and MCNP simulation are
shown in Figure 3.12. The response of '37Cs was successfully reproduced using the
MCNP code by placing the 1*’Cs source at the center of the phantom and detecting
gamma rays for 2 hours. This confirmed that MCNP can effectively be used in this
study to evaluate the system's response functions.

It became evident that directly simulating the real BNCT-SPECT system using the
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experimental system poses significant challenges. One major limitation is the absence
of background noise in the experimental system, which fails to replicate the
complexities of real-world conditions. Moreover, the MCNP simulations do not account
for background noise, further reducing the accuracy of system replication.
Additionally, the experimental system lacks the source intensity required to match the
conditions of an actual BNCT-SPECT system. This limitation significantly impacts its
ability to achieve the necessary accuracy. To address these issues, we established a
mock-up system with statistical accuracy and a signal-to-noise ratio comparable to real
BNCT-SPECT systems. For this purpose, a '3’Cs and a %°Co source were employed to
simulate the gamma rays produced during real treatment, providing more representative
conditions for testing and validating the system's response. The details of this improved

experimental mock-up system will be discussed in Chapter 5.

3.7 Summary

Chapter 3 provides a comprehensive description of the experimental system designed
for this study. It begins with an Introduction that outlines the purpose and scope of the
experimental system, emphasizing its role in testing and validating the performance of
key components for BNCT-SPECT.

The Configuration of the Experimental System describes the overall structure and
integration of the system, focusing on the interconnection of various components to
achieve accurate gamma-ray detection.

The chapter then delves into the GAGG Scintillator, a core component of the detection
system. It first introduces inorganic scintillators and highlights their fundamental
properties, such as density, energy resolution, and luminescence efficiency. Section
3.3.3 explains the rationale for selecting GAGG(Ce) scintillators, comparing their
performance with other options like Nal(T1) and CsI(Tl). The chapter further evaluates
the detection efficiency and energy resolution of the GAGG(Ce) scintillator, providing
experimental results and discussions on its suitability for BNCT-SPECT.

The MPPC component is then detailed, starting with an explanation of its operating

principle based on avalanche photodiode technology and Geiger mode. Section 3.4.2

68



highlights MPPC properties, such as high gain, fast response, and low susceptibility to
magnetic fields.

The MCA describes the multichannel analyzer's role in processing and analyzing the
signals generated by the MPPC, with details on its digital architecture and spectral
processing capabilities.

The Design of the Phantom outlines the human head phantom used to simulate
gamma-ray emissions, including its material composition, dimensions, and adaptability
for positioning the source.

Finally, the Experimental Procedure provides a step-by-step explanation of how the
experiments were conducted, detailing the methodologies used for data collection and
analysis. This section integrates all components into a cohesive experimental workflow,
ensuring accurate and reproducible results.

This chapter lays the foundation for evaluating the performance of the BNCT-SPECT
system and guides the development of improved detection methodologies in subsequent

chapters.
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Chapter 4 MCNP5

4.1 MCNP

As mentioned in Section 3.6, MCNP stands for A General Monte Carlo N-Particle
Transport Code [1]. It is a radiation transport simulation code widely used for
calculating particle transport and interactions in various environments.

MCNP was developed in the mid-1970s by the Los Alamos National Laboratory in
the United States. Initially, it was designed to simulate the transport of neutrons and
photons. Starting with the fourth version, MCNP4, it was expanded to include electron
transport calculations. Currently, the code has been updated to version MCNP6. For the
simulations in this study, version 5, MCNPS5, was used.

MCNP is widely utilized across various fields for design and safety evaluations, such
as for nuclear reactors, accelerators, and satellites. The code supports a broad energy
range for calculations: neutrons from 107> eV to 20 MeV (up to 150 MeV for certain
isotopes), photons from 1 keV to 100 GeV, and electrons from 1 keV to 1 GeV. These
simulations rely on evaluated nuclear data libraries such as JENDL and ENDF for

transport calculations.

4.2 Monte-Carlo method

The transport calculations in MCNP are performed using the Monte Carlo method, a
numerical simulation technique that tracks individual particle interactions to
statistically solve complex transport problems. The Monte Carlo method, invented by
mathematicians J. von Neumann and S. Ulam, was first formally introduced in 1949 in
a paper titled "The Monte Carlo Method" by N. Metropolis and S. Ulam [2][3]. Initially
developed to study neutron diffusion in atomic nuclei, the method has since found
applications in diverse fields such as transportation, financial engineering, and physics.

In essence, the Monte Carlo method involves performing numerous repetitions of an
experiment or simulation using random numbers within a computer. Random numbers
are employed because many real-world phenomena—such as radiation from

radioactive isotopes, traffic congestion on national highways, or fluctuations in
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property prices—are inherently random. By utilizing random sampling, the Monte
Carlo method can generate solutions that closely approximate real-world behaviors,
making it a powerful tool for solving complex problems.

The primary advantage of the Monte Carlo method lies in the simplicity of its
calculation algorithm. In traditional methods, if the desired outcome depends on a
function of several random variables (e.g., radiation energy or direction), a specific
program must be written for each stochastic event (e.g., elastic or inelastic scattering).

In contrast, the Monte Carlo method simplifies this process by using random sampling
based on a probability distribution defined by the random variables. Radiation events,
characterized by parameters such as energy and position, are repeatedly simulated
according to a physical model (e.g., the experimental system). The average result from
these simulations provides an approximate solution.

This approach eliminates the need to solve complex equations like the Boltzmann
transport equation directly. Instead, the Monte Carlo method offers a computationally
efficient way to obtain approximate solutions that closely represent real-world
phenomena.

The Monte Carlo method is used for replicating statistical processes, such as the
interactions of nuclear particles with materials, and is particularly effective for solving
complex problems that are beyond the scope of deterministic computational methods.
This approach involves sequentially simulating the individual probabilistic events that
make up a process. By statistically sampling from the probability distributions that
govern these events, the method provides a comprehensive representation of the overall
phenomenon.

Due to the large number of trials required to accurately model these processes,
simulations are typically conducted on digital computers. The statistical sampling relies
on the use of random numbers, akin to rolling dice in a casino, which is why the
technique is named "Monte Carlo."

In particle transport, the Monte Carlo method offers a highly realistic numerical
experiment. It involves tracking numerous particles individually, from their initial
emission to their eventual termination in outcomes such as absorption or escape. At
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each step, transport data is used to randomly sample probability distributions,
determining the particle's behavior and trajectory. This step-by-step simulation ensures

a detailed and accurate depiction of particle interactions.

Incident
Neutron

t“
q;

Void Fissionable Material

Figure 4.1 Various particles random walks

Figure 4.1 illustrates the random trajectory of a neutron interacting with a slab of
material capable of undergoing fission. Random numbers between 0 and 1 are generated
to determine the type and location of interactions based on the governing physics and
probabilistic transport data for the materials involved. [4]

In this example, the neutron undergoes a collision at event 1, where it is scattered in a

randomly selected direction, derived from the physical scattering distribution. A photon
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is also produced during this interaction and is temporarily stored, or banked, for later
analysis. At event 2, a fission reaction occurs, resulting in the termination of the initial
neutron and the creation of two new neutrons and one photon. One of these neutrons
and the photon are banked for subsequent analysis.

The first fission neutron is captured and terminated at event 3. The banked neutron is
then retrieved and, through random sampling, is shown to leak out of the slab at event
4. The photon produced during the fission event collides at event 5 and subsequently
escapes the slab at event 6. Finally, the photon generated at event 1 is tracked and
captured at event 7.

It is important to note that MCNP retrieves banked particles using a last-in, first-out
(LIFO) method, meaning the most recently stored particle is the first to be processed.
This example demonstrates the sequential random sampling process that underpins the
Monte Carlo method in particle transport simulations.

This neutron history is now complete. As more individual histories are simulated, the
distributions of neutrons and photons become increasingly well-defined. The quantities
of interest, as specified by the user, are systematically tallied during the simulation.
Additionally, the statistical precision (uncertainty) of the results is calculated, providing

an estimate of the reliability of the computed data.

4.3 Tallies

We can configure MCNP to perform diverse tallies, such as those for particle currents,
flux distributions, and energy deposition. In most scenarios, these tallies are normalized
per initial particle, with exceptions primarily in cases involving criticality sources.
Particle currents can be recorded based on directionality and calculated for any
combination of surfaces, surface segments, or an aggregate of surfaces within the
simulation. Additionally, the code supports tallying charges specifically for electrons
and positrons. It also supports flux tallies across various configurations, including
specific surfaces, surface segments, aggregated surfaces, cells, cell segments, or
combinations of cells. Standard tallies include flux measurements at designated

detector points or rings, as well as radiography detectors. Additionally, fluxes can be
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recorded on a mesh grid overlaid on the problem's geometry. Energy deposition can be
assessed using heating and fission tallies, which provide energy values for specified
cells. A pulse height tally records the energy distribution of pulses generated in a
detector by radiation. Particles can also be flagged upon crossing specified surfaces or
entering designated cells, and their contributions to the tallies are reported separately.
MCNP enables the calculation of a wide range of parameters, such as the number of
fissions, absorption events, total helium production, or any product of the flux and
approximately 100 standard ENDF reaction types, along with several nonstandard
reactions, using its tally system. In essence, any quantity expressed in the form C =
[P(EYF(E)AE can be calculated using MCNP's tally capabilities.
Here, ¢ (E) represents the energy-dependent fluence, while f (E) can be any product or
summation of values derived from the cross-section libraries or a specified response
function. Tallies in MCNP can account for line-of-sight attenuation, allowing for more
precise simulation results. It is possible to calculate tallies for specific segments of cells
or surfaces without incorporating these segments directly into the problem geometry.
All tallies are user-defined as functions of time and energy and are normalized per initial
particle. Similarly, mesh tallies are energy-dependent and are also normalized on a per-

particle basis, ensuring consistency across simulations.

Table 4.1 Tally mnemonic

Tally Mnemonic Description
F1:N or FI1:P or F1:E Surface current

F2:N or F2:P or F2E Surface flux
F4:N or F4:P or F4E Track length estimate of cell flux

F5a2N or F5a:P Flux at a point or ring detector
F6:N or F6:P or F6:N,P Track length estimate of energy deposition
F7:N Track length estimate of fission energy deposition
F&N or F8&P or F8E Pulse height tally
or F8:PE

Table 4.2 Tally quantities scored
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Tally Score Physical nti nit
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/4 n 1 > A . 2
F2 W oy = jjdEIdtjdA_[dQ y(r,Q, E t) particles/cm
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-p—’ V b ’ ’
F5 W p(QP)e—?h dp = IdEIdtIdQ 1|f(_r> P> QE 1 particles/cm2
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R

F6 WT,GI(E)H(E)%I H, %IdEIdtIdVJdQ o(E)H(E)Wy(T,Q, E, {) MeVig

F7 WTIGf(E)Q% 1 %QIdEJdtIdVJdQ of(E)w(?,fz,E,t MeV/g

f
F8 W putinbin E;, pulses pulses

MCNP ofters seven standard tally types shown in Table 4.1, encompassing seven
neutron tallies, six photon tallies, and four electron tallies. These standard tallies serve
as the foundation for simulation data collection and can be customized extensively by
the user to suit specific requirements.

All tally results are normalized on a per-starting-particle basis, with the exception
of KCODE criticality calculations, where tallies are normalized per fission neutron
generation. To facilitate the interpretation of results, MCNP includes a tally
plotter feature, which provides graphical visualizations of the tally outputs, making it
easier to analyze and present the data. In this study, we utilized the F8 tally, which is

used for energy deposition in detectors.

4.4 Variance reduction

The estimated relative error R in MCNP simulations is inversely proportional

to 1/+/N, where N represents the number of particle histories. Since the computational

time T is directly proportional to N, the relationship R = C/VT holds, where C is a

positive constant.
Reducing R can be achieved in two ways: (1) increasing the computational time T or

(2) decreasing the constant C . However, practical constraints, such as limited
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computational resources, often restrict the first option. For instance,
achieving R=0.10 might take 2 hours, but reducing R to 0.01 would require 200
hours—a prohibitive increase.

To address this, MCNP provides specialized variance reduction techniques to
minimize C, which represents the variance divided by the number of samples. The value
of C depends on the tally choices and sampling strategy, making variance reduction an
essential tool for improving simulation efficiency without excessive computational

CosSts.

4.4.1 Tally choices

An example of how the tally choice impacts results can be seen in estimating the
fluence within a cell. This can be achieved using either a collision estimates or a track
length estimate.

The collision estimate involves tallying 1/); (where Y., is the macroscopic total
cross-section) at each collision within the cell. Conversely, the track length
estimate calculates the fluence by tallying the distance a particle travels inside the cell.
When Y, is very small, collisions become infrequent, but each collision contributes
disproportionately large tallies, leading to high variance in the results. In contrast, the
track length estimate contributes a tally for every particle that passes through the cell,
regardless of whether a collision occurs. This difference significantly reduces variance
in most scenarios.

For this reason, MCNP includes track length tallies as a standard option, while collision
tallies are generally not standard, except when used for specific calculations like
estimating k,r¢. This preference reflects the efficiency and reliability of track length

tallies in minimizing variance.

4.4.2 Variance reduction tools in MCNP

Variance reduction techniques in MCNP can be categorized into four distinct classes,
ranging from straightforward methods to more advanced and complex approaches.

These techniques are designed to enhance simulation efficiency by reducing statistical
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variance without requiring an impractical increase in computation time.

1. Truncation Methods are the most straightforward variance reduction techniques.
These methods accelerate calculations by excluding portions of the phase space that
have minimal impact on the solution. A common example is geometry truncation,
where irrelevant sections of the geometry are omitted from the model.

In MCNP, specific truncation methods include:

e Energy cutoff: Eliminates particles with energies below a specified
threshold, as their contribution to the tally is negligible.

o Time cutoff: Stops tracking particles after a certain time, focusing only on
interactions within the timeframe of interest.

These truncation methods reduce the computational load by streamlining the

simulation to focus on the most significant aspects of the problem.

2. Population Control Methods are variance reduction techniques that use particle
splitting and Russian roulette to regulate the number of samples tracked in different
regions of phase space. These methods aim to concentrate computational effort on
regions of greater importance while reducing it in less significant areas.

In important regions, particles are split into multiple lower-weight samples to increase
statistical sampling. Conversely, in less important regions, fewer particles are tracked,
but they are assigned higher weights. This approach ensures the solution remains
unbiased through proper weight adjustments.

Specific Population Control Methods in MCNP include:

e Geometry splitting and Russian roulette: Particles entering critical regions
are split into several tracks, while those in less critical regions may be
eliminated probabilistically.

o Energy splitting/roulette: Particles are split or eliminated based on their
energy levels to emphasize specific energy ranges.

o Time splitting/roulette: Particles are split or terminated based on their time
of existence, focusing on relevant timeframes.

78



o Weight cutoff: Particles with weights below a threshold are eliminated.
o  Weight windows: A range of acceptable weights is defined, and particles
are adjusted to fit within this range using splitting or roulette.
These methods allow simulations to achieve high efficiency and reduced variance by

tailoring sampling efforts to the most impactful regions of the problem.

3. Modified Sampling Methods adjust the statistical sampling process to increase the
number of meaningful tallies per particle. In Monte Carlo simulations, particles can be
sampled from distributions that differ from their physical probabilities, provided that
their weights are appropriately adjusted to maintain the unbiased nature of the solution.

With these methods, particles are preferentially directed toward desired regions of
phase space—such as specific directions, time intervals, energy ranges, or collision
locations/types—thereby enhancing the efficiency of the simulation. This targeted
sampling ensures that the simulation focuses on regions or events of higher significance.

Modified sampling techniques available in MCNP include:

e Exponential transform: Alters the sampling of particle paths to favor
specific directions or reduce particle attenuation in exponential decays.

o Implicit absorption: Avoids particle termination after capture by
redistributing the particle's weight to other interactions, increasing the tally
contribution.

e Forced collisions: Ensures that a particle interacts within a specified
region, even if the natural probability of collision is low.

e Source variable biasing: Adjusts the initial sampling of source particles to
favor certain energies, directions, or positions.

e Neutron-induced photon production biasing: Enhances the sampling of
photon production events caused by neutron interactions.

These methods allow the simulation to gather more statistically relevant data from
fewer particle histories, significantly improving computational efficiency while

maintaining accuracy.
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4. Partially-Deterministic Methods are the most complex type of variance reduction
techniques, as they bypass the standard random walk process by incorporating
deterministic-like strategies. These methods leverage approaches such as next-event
estimators or control of the random number sequence to improve computational
efficiency and accuracy.

In MCNP, partially-deterministic methods include:

e Point Detectors: Estimate the contribution of radiation to a specific point
in space by calculating the direct path from the source to the point without
relying solely on random sampling.

e DXTRAN: Creates a deterministic path for particles to travel toward a
predefined region while preserving randomness in other aspects of the
simulation, allowing for focused analysis of specific areas.

e Correlated Sampling: Uses a controlled random number sequence to
analyze variations between different scenarios or parameters efficiently,
reducing variance in comparative studies.

These advanced methods are particularly useful for problems requiring precise
calculations in specific regions or conditions where traditional random sampling would
be inefficient or yield high variance.

Variance reduction techniques, when applied correctly, can significantly enhance the
efficiency of calculations, allowing users to achieve accurate results with reduced
computational time. However, improper use of these techniques can lead to erroneous
results with seemingly good statistical precision, often providing few indications that
the results are flawed.

Certain variance reduction methods are broadly applicable and relatively
straightforward to implement, minimizing the risk of misuse. Others, however, are
highly specialized and carry a greater risk of errors if not applied carefully.

In many cases, variance reduction is not merely a tool to accelerate simulations but an
essential requirement to obtain results at all. For instance, simulations involving deep
penetration scenarios or pipe detector problems would be computationally
prohibitive—running slower by factors of trillions—without the application of effective
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variance reduction strategies. [4]

4.5 Simulation results with MCNP

Based on the MCNP description provided above, we utilized MCNP in this study to

simulate and replicate the actual BNCT-SPECT process.

478 keV

Net

Count/sec

Background

Energy of gamma-ray/ MeV

Figure 4.2 Ideal PHS for BNCT-SPECT

Figure 4.2 shows the ideal Pulse Height Spectrum (PHS) for the BNCT-SPECT system.
At 478 keV, the red region represents the background (BG), while the remainder of the
peak corresponds to the net count. The background originates from gamma rays emitted
due to various reactions within the experimental system.

In addition to the immediate 478 keV gamma rays generated from the '°B(n, o)’Li
reaction, which reflects the therapeutic effect, background gamma rays are produced by
other neutron interactions. These include gamma rays from reactions such as 'H(n, y)°H,
153Gd(n, 7), °’Gd(n, y), and "*Gd(n, y) within GAGG and water. All these gamma rays
contribute to the background and are a result of neutron interactions.

In this study, neutrons are not utilized, so alternative methods are required to simulate

the background generated by neutron interactions. A '3’Cs source is employed to
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simulate cancer cells, with the gamma rays produced by '3’Cs representing those
emitted during actual BNCT treatments. Additionally, a ®°Co source is used to generate
background gamma rays, replicating the background conditions observed in real BNCT
scenarios.

To evaluate the performance of the BNCT-SPECT system, it is crucial to ensure that
the statistical accuracy remains below 5%. Statistical accuracy is an indicator of the
reliability of the 478 keV gamma rays produced by the '°B(n,a)’Li reaction obtained
from calculations. A lower value of statistical accuracy indicates more reliable results.
The method for determining this statistical accuracy is described below.

When the counting time is consistent, the net count N,,,; can be expressed using the
total count N;,:,; and the background count Ng;, as shown in Equation (4.1).
Additionally, the standard deviation of the net count, a,,., is calculated using Equation
(4.2) [7]. These equations form the basis for evaluating the reliability of the

measurement results.

Npet = Niotar — Npe (4'1)

Onet = \/O'tzotaz + 0§G:\/Ntomz + Ngg (4.2)

If the total count N;,;4; cannot be obtained, Equations (4.1) and (4.2) can be rewritten

as Equations (4.3) and (4.4), respectively.

Nper = (Nper + NBG)_ Ngg (4.3)

Onet = v 0ot + 02¢ + 027+ Nnet + 2Ngg (4.4)

The statistical accuracy, defined as the ratio of the standard deviation a,,,; to the net
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count N,.., is quantified using Equation 4.5. This metric evaluates the relative
statistical fluctuations in the net count, providing a quantitative measure of the
reliability and precision of the experimental data. Achieving high statistical accuracy is
crucial for ensuring precise imaging results, which are essential for the effective

performance of the BNCT-SPECT system.

o v Nper + 2N,
Statistical accuracy [%] = —<= x 100 = Y& 58 % 100 (4.5)
net net

To replicate the designed experimental system using the two gamma-ray sources, it is
essential to achieve an accuracy of 4.39% and a signal-to-noise ratio (S/N) of 0.21. The
S/N is calculated using Equation (4.2), which defines the relationship between the
signal and background noise levels in the system. Meeting these criteria ensures the
experimental setup closely approximates the conditions and performance of the real

BNCT system.

__ NET

S
N BG (4.2)
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Figure 4.3 Simulation model in MCNP

The placement of the ®°Co source significantly impacts the S/N ratio. To analyze this,
MCNP simulations were performed based on the model shown in Figure 4.3. In these
simulations, the '¥’Cs source was positioned at the center of the phantom [5], while
the ®*Co source was placed at varying distances L to the right of the detector. This setup
allowed the calculation of different S/N ratios depending on the location of
the °Co source relative to the detector [6].

Figure 4.4 shows the calculated results for different distances: the upper part
represents calculations for distances ranging from 2 to 8 cm, while the lower part
focuses on distances between 4.1 and 5 cm. Table 4.3 provides detailed calculation data
for distances in the range of 4.1 to 5 cm.

The S/N ratio reached 0.20798 when the ®*Co source was positioned at a distance
0of 4.9 cm from the detector. This value is the closest to the target S/N ratio of 0.21,

confirming the optimal placement for achieving the desired experimental conditions.
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Figure 4.4 Calculation results of S/N.

(Top: Distance range 2-8 cm; Bottom: Distance range 4.1-5 cm)

Table 4.3 Calculation results of S/N for a distance range of 4.1-5 cm

Distance/cm | 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

S/N ratio 0.1533 | 0.1604 | 0.1677 | 0.1744 | 0.1819 | 0.1886 | 0.1959 | 0.2027 | 0.2098 | 0.2185

After establishing the simulation mock-up system, the counts for various detection
times were calculated. The optimal accuracy of 4.38% was achieved with a detection

time of 0.48 hours. Additionally, the net count for *’Cs was 5474, with a background
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count of 26,024, meeting the specified design criteria.

Table 4.4 Simulation result

Accuracy 4.38%
S/N 0.2098
time 0.48h
NET 5474.21
BG 26024.23

Distance 4.9cm

Under the specified calculation conditions, the MCNP simulation results are presented

in Figure 4.5. The orange line represents the simulation outcome for the *’Cs source in

isolation, while the gray line depicts the standalone simulation result for the %°Co source.

The blue line illustrates the combined simulation results for an experimental setup

incorporating both '3’Cs and ®®Co under the previously described experimental

conditions. These results provide a comprehensive comparison of the individual and

combined behaviors of the sources within the experimental configuration.

3500
3000
2500
22000
>
(@]
O1500
1000

500

€0

A

90

60

e Cs-137, CO-60

Cs-137
C0-60
= = e N
N [6x] [00] [l
Energy/MeV

Figure 4.5 Simulation result of mock-up system
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This experimental model successfully reproduces the S/N ratio and accuracy required
for actual BNCT treatment scenarios. It demonstrates the viability of the system design
and validates the methodology for achieving the precision and detection conditions
necessary for practical application in BNCT.

Furthermore, the results confirm the feasibility and reliability of MCNP simulations

for use in this study, reinforcing its role as a dependable tool for modeling and analysis.

4.6 Summary

Chapter 4 provides a detailed exploration of the use of MCNPS5, a powerful Monte
Carlo simulation tool, within the context of this study. It begins with an overview
of MCNP, outlining its capabilities as a general-purpose Monte Carlo N-Particle
transport code for modeling particle interactions and transport in various physical
environments. This section introduces its historical development and the range of
applications it supports, from nuclear reactor design to medical physics.

Monte Carlo Simulation discusses the underlying principles of the Monte Carlo
method, emphasizing its role in solving complex stochastic problems. This section
elaborates on how particles are tracked through random sampling based on probability
distributions, ensuring realistic and accurate simulations.

The chapter then focuses on Tally, explaining how MCNP tallies are used to collect
statistical data about particle interactions. Subsection 4.3.1 introduces tally choices,
detailing the various standard tallies available for neutrons, photons, and electrons, as
well as the flexibility to customize them for specific applications. Subsection 4.3.2
introduces the variance reduction tools in MCNP, which improve computational
efficiency by focusing simulation efforts on important regions and interactions.
Methods such as truncation, population control, and modified sampling are discussed,
highlighting their practical applications.

Variance Reduction elaborates on techniques designed to reduce statistical

uncertainties and enhance simulation performance. Examples include energy and time
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cutoffs, track-length tallies, and advanced tools like point detectors and DXTRAN.
These methods ensure that simulations are both computationally efficient and accurate.

Finally, Simulation Results with MCNP presents the outcomes of the MCNP
simulations conducted in this study. It includes detailed analyses of the signal-to-noise
ratio (S/N) and detection precision, showcasing the effectiveness of the mock-up
system and its ability to replicate conditions relevant to real BNCT treatment scenarios.
The results confirm the feasibility and reliability of MCNP as a tool for modeling and
validating experimental designs.

This chapter serves as a comprehensive guide to the application of MCNPS in this
research, demonstrating its critical role in achieving accurate simulations, optimizing

experimental designs, and validating theoretical models.
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Chapter 5 Design of mock-up system

5.1 Introduction

The construction of a mock-up system was undertaken to replicate the experimental
specifications of the actual BNCT-SPECT system. A '3’Cs source was used to simulate
the gamma-rays emitted by '°B during actual BNCT treatment, while a °Co source was
utilized to mimic the background radiation present in the designed BNCT system. The
following content provides an overview of the developed mock-up system for BNCT-
SPECT. This setup served as the foundation for validating the experimental and

simulation methodologies developed in this study.

5.2 Design of collimator

5.2.1 Spatial Resolution

Spatial resolution refers to the ability of an imaging system to distinguish between two
closely spaced objects or details. In the context of BNCT-SPECT systems, it is a critical
parameter that determines the system's capability to accurately reconstruct the
distribution of gamma-ray sources within the target area. Higher spatial resolution
implies finer detail and more precise localization of the gamma-ray emissions, which
is essential for effective imaging and treatment planning. Achieving the required spatial
resolution involves optimizing factors such as detector design, pixel size, and system
configuration.

The BNCT-SPECT system requires a spatial resolution of 5 mm or less to meet the
precision standards necessary for treatment. Figure 5.2 illustrates a scenario where the
pitch length of the scintillator exceeds the spatial resolution requirement. In such cases,
gaps occur where the scintillators fail to capture any information. Specifically, if the
spacing between detectors is greater than the field of view of a single detector, there
will be regions within the system that remain undetected, creating blind spots in the

imaging process. This highlights the importance of optimizing detector placement and
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spacing to ensure comprehensive coverage and accurate data acquisition.
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Figure 5.2 Relationship between spatial resolution and scintillator pitch [1]

5.2.2 Construction of collimator

Based on previous research, the collimator length is 26 cm, with a single circular hole
of 0.35 cm in diameter. The spatial resolution, as shown in Figure 5.3, is 0.42 cm. In
this study, to design and produce a collimator suitable for actual BNCT treatment, we

opted for a design featuring 64 square holes. Each square hole is designed to have the

. ) . ) 0.35)2
same area as the circular hole in previous studies, calculated as (T) ‘m=0.31cm.

' 11 ¢cm ' 26 cm '

Figure 5.3 System Configuration for Calculating Spatial Resolution

However, during the manufacturing process, achieving an exact precision of 0.31 cm
proved highly challenging. To ensure manufacturability while maintaining the required
spatial resolution, the collimator holes are square-shaped with a side length of 0.3 cm,
and the spacing between adjacent holes is 0.1 cm. This configuration results in a
scintillator pitch of 0.4 cm, as illustrated in Figure 5.4. This adjustment ensures both

production feasibility and compliance with the spatial resolution requirements.
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Figure 5.4 Size of holes in the collimator

The production of the collimators, as shown in Figure 5.5, involves a modular design
consisting of tungsten plates and tungsten rods. These components are engineered to be
stacked on top of each other, allowing for precise assembly and alignment to achieve

the desired collimator configuration.
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Figure 5.5 Design of collimator

The details of the manufactured collimator are shown in Figure 5.6 below, providing

a comprehensive view of its design and construction.
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Figure 5.6 Detailed Design of the Manufactured Collimator
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5.3 Design of gamma-ray

5.3.1 ¥Cs

137Cs is a radioactive isotope of cesium with significant applications in medicine,
industry, and scientific research due to its unique properties. It is a fission product of
uranium and plutonium, making it one of the prominent radionuclides in nuclear waste

and fallout.

1. Physical and Nuclear Properties
Atomic Number: 55 (Cesium)
Atomic Mass: 137.91u
Decay Mechanism:
o 37Cs undergoes beta decay (B—) to form a metastable state of
barium, *’™Ba (Barium-137m).
o  The transition from '3’™Ba to stable '3"Ba is accompanied by the
emission of a gamma photon with an energy of 662 keV.
o This two-step decay process accounts for its usefulness as a
gamma-ray source.
Half-Life:
o 17Cs has a half-life of approximately 30.17 years.
o  13"mBa, its decay product, has a half-life of about 2.55 minutes,
ensuring a consistent gamma-ray emission.
Radiation Type:
o  Beta Particles (from '*’Cs decay).

o Gamma Rays (from *""Ba a decay, primarily at 662 keV).

2. Applications of 37Cs
Medical Applications:
o Historically used in radiotherapy for cancer treatment,
particularly in cesium-based teletherapy units.
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3.

o  Its gamma-ray emission at 662 keV is ideal for penetrating tissues

while maintaining a localized treatment effect.
Industrial Applications:

o Non-destructive Testing (NDT): Used in industrial radiography
to inspect welds and materials for structural integrity.

o Moisture and Density Gauges: Widely applied in construction,
agriculture, and petroleum industries for density and moisture content
measurement.

Scientific and Research Applications:

o  Calibration Source: Frequently used for calibrating gamma
spectrometers and radiation detection equipment due to its well-defined
energy emission.

o Environmental Monitoring:

= Traces of 3’Cs in the environment are used as markers to
study soil erosion, sedimentation, and the effects of nuclear
fallout.

= [t is one of the key radionuclides monitored after nuclear
accidents, such as Chernobyl and Fukushima.

o Educational Use: Demonstrates principles of radioactive decay
and gamma-ray detection in laboratories.

Environmental Significance:

o 137Cs is a major component of nuclear fallout due to its high
fission yield.

o  Its long half-life and mobility in the environment make it a

critical isotope for assessing long-term radiological contamination.

Safety Considerations
37Cs poses both external and internal radiation hazards:
o External Hazard: Its gamma-ray emission (662 keV) requires adequate
shielding, typically with lead or concrete.
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o Internal Hazard: If ingested or inhaled, it accumulates in soft tissues,
especially muscles, and poses a significant health risk.
Handling '37Cs requires adherence to strict safety protocols:
o Use of protective equipment and remote handling tools.
o Proper containment and shielding during storage and transportation.

o Regulatory compliance for disposal of radioactive waste.

. Role of *7Cs in This Study

In this study, the primary objective is to investigate image reconstruction
techniques and validate the ability of the BNCT-SPECT system to reproduce
the desired signal-to-noise ratio (S/N) as defined in the system's design. A key
focus is on accurately replicating the net count and background count associated
with the 478 keV gamma-rays emitted during the 1°B(n,a))’Li reaction, as these
parameters are critical for effective image reconstruction and system
performance evaluation.

However, directly handling the 478 keV gamma rays from the neutron
interaction poses significant practical challenges in experimental conditions.
Instead, 137Cs is employed as a substitute gamma-ray source, emitting 662 keV
gamma-rays. This substitution is justified because the absolute energy
resolution for 478 keV is inherently superior to that for 662 keV, making it
reasonable to conclude that if the system performs adequately with 662 keV
gamma rays, it will also perform well for 478 keVV gamma rays.

In this setup, '3’Cs is used as the primary source to simulate the net count,
representing the gamma-rays of interest in BNCT. To reproduce the background
contribution and achieve a realistic S/N ratio, another radioactive source that
does not emit interfering gamma-rays at or near 662 keV is selected. This
secondary source provides background radiation that complements the *’Cs
emissions, ensuring the background levels are accurately modeled according to

the design criteria.
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By substituting the neutron-induced gamma-rays with those from 37Cs, this
study effectively bypasses the complexities of neutron handling while
maintaining the integrity of experimental objectives. The use of '3’Cs as a
controlled and stable gamma-ray source enables precise replication of the S/N
ratio and energy resolution required for BNCT-SPECT system validation,
highlighting its critical role in ensuring the feasibility and accuracy of this

research.

5.3.2 “Co

%0Co is a synthetic radioactive isotope of cobalt widely used in industrial, medical, and

scientific applications due to its stable gamma-ray emissions and high-energy radiation.

It is produced by neutron activation of 3Co in nuclear reactors and plays a crucial role

in radiation-based technologies.

1. Physical and Nuclear Properties

Atomic Number: 27 (Cobalt)
Atomic Mass: 59.933u
Decay Mechanism:
o %Co undergoes beta decay (B—), transforming into stable ®“Ni (Nickel-
60).
o This decay process emits two primary gamma rays with energies
of 1.173 MeV and 1.332 MeV.
Half-Life: Approximately 5.27 years, making it a relatively long-lived source
suitable for extended use.
Radiation Type:
o Beta Particles: Emitted during the decay to ®Ni.
o Gamma Rays: High-energy photons at 1.173 MeV and 1.332 MeV,

which are particularly useful in various applications.
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2. Applications of ©°Co

Medical Applications:

o

Radiotherapy: Historically used in external beam radiation therapy
(teletherapy) for treating cancer. The high-energy gamma rays
from %°Co are effective in delivering precise doses to deep-seated tumors.
Sterilization of Medical Equipment: Used to sterilize disposable medical
devices such as syringes, surgical instruments, and implants, due to its

high penetration and efficiency in destroying microorganisms.

Industrial Applications:

o

Non-destructive Testing (NDT): Employed in industrial radiography to
inspect welds, castings, and structural materials for defects.

Irradiation of Materials: Used in food preservation and to prevent
spoilage by killing bacteria and insects in agricultural products.
Thickness Gauging: Helps measure material thickness in industries such

as steel and paper production by monitoring gamma-ray attenuation.

Scientific and Research Applications:

o

Calibration Source: Serves as a standard gamma-ray source for
calibrating detectors and spectrometers due to its well-defined energy
emissions.

Environmental Tracer: Used in studies to trace the movement of

particles or materials in ecosystems or industrial processes.

Environmental and Safety Monitoring:

o

Frequently employed in studies assessing radiation exposure risks,

including those associated with nuclear facilities or accidents.

3. Safety Considerations

%0Co poses both external and internal radiation hazards due to its high-energy

gamma rays:

o

External Hazard: Requires significant shielding, typically using lead or
concrete, to protect against its penetrating gamma radiation.
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o Internal Hazard: If inhaled or ingested, ®®Co accumulates in tissues and
presents a serious health risk.
Safe handling involves strict adherence to radiation safety protocols, including:
o Proper containment and transport in shielded containers.
o Remote handling tools to minimize direct exposure.
o Monitoring and compliance with disposal regulations for radioactive

waste.

Role of ®°Co in This Study

In this study, °°Co serves a critical role in simulating the background radiation
required to evaluate the signal-to-noise ratio (S/N) and validate the performance
of the BNCT-SPECT system. For this purpose, it was essential to select a
radioactive source that meets specific criteria: it must produce gamma rays that
do not interfere with the emissions from 3’Cs, and it must contribute an
appropriate level of background radiation to accurately replicate the conditions
of a real BNCT treatment environment.

The gamma-ray emissions of ®*Co, at energies of 1.173 MeV and 1.332 MeV,
are significantly higher than the 662 keV gamma-rays emitted by '3’Cs. This
clear separation in energy ensures that the background radiation from *°Co does
not overlap or interfere with the '3’Cs signal, preserving the integrity of the
experimental measurements. Additionally, the high-energy photons from ®Co
provide a stable and consistent background source that effectively mimics the
scattering and noise present in a clinical BNCT scenario.

By incorporating %°Co as the background source, the study achieves a realistic
approximation of the radiation environment encountered during BNCT. This
enables the experimental system to replicate the design conditions accurately,
ensuring the validity of the S/N ratio and energy resolution measurements.
Furthermore, the use of %°Co demonstrates its reliability and effectiveness in
creating a controlled and realistic testing environment, reinforcing its role as an
indispensable component in this research.
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5.4 Design results

The development and construction of an advanced mock-up system were undertaken
to replicate the experimental specifications of the actual BNCT-SPECT system. In this
system, a *’Cs source was utilized to simulate the gamma-rays emitted by '’B during
actual BNCT treatment, while a °°Co source was employed to generate the background
radiation. This design was informed by the research above and tailored to reproduce the
conditions necessary for evaluating the system's performance under realistic treatment
scenarios. Figure 5.7 shows the front and top views of the actual developed mock-up

system.

llumu:x
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Figure 5.7 Mock-up system: front view (A) and top view (B).

A 1¥7Cs source was positioned at the center of a head phantom composed of acrylic
and water [2], while a °Co source was placed at various distances (d) above the
detector to evaluate the statistical accuracy and signal-to-noise (S/N) ratio of the system.
Given its critical role in cancer treatment, the BNCT-SPECT system is designed to
achieve a spatial resolution of 0.5 cm or finer, ensuring precise imaging capabilities.
Based on previous studies, the collimator’s optimal length was established at 26 cm [1].
A detailed summary of the specifications for the developed mock-up system, along with
a comparison to the designed BNCT-SPECT system, is provided in Table 5.1, offering

a clear overview of the system's parameters and performance alignment.
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Table 5.1 Specifications of the experimental system compared to the designed BNCT-

SPECT system.

Present mock-up

Design item Designed BNCT-SPECT
system
Material > GAGG(Ce)
Scintillator ) _ 0.35cm x 0.35cm x 3 cm
Dimensions >
[1]
Material Pb W
Collimator Thickness > 26cm
Hole size 0.3cm x 0.3 cmx64 @ 0.35 cmx64
Material Acryl and water -
Phantom i :
Dimensions @20 cm x 20 cm -
Statistical accuracy 4.39% 4.39%
(S/N) 0.21 0.21 [8]

Subsequently, experiments were conducted using the aforementioned designed system

to evaluate its performance under the specified conditions. In parallel, the MCNP

simulation code was utilized to construct a virtual system identical to the designed

mock-up system, enabling detailed computational analyses and validation of the

experimental results.
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Figure 5.8 Comparison between experimental result and MCNP5 result.

Figure 5.8 presents a comparison of the pulse height spectra obtained from the mock-
up experiments and MCNP5 simulations, showing agreement between the two. Clear
and distinct peaks corresponding to °Co and '*’Cs gamma-ray emissions are observed,
effectively replicating the designed BNCT-SPECT conditions. These peaks serve as the
background and signal components necessary for testing the system’s performance.

Table 5.2 provides the intensities of the '3’Cs and °°Co gamma-ray sources used in the
study. As described in Chapter 4, the '¥’Cs source, with an activity of 1x107 Bq, is
placed at the center of the head phantom, while the ®°Co source, with an intensity of
1.06x10°Bq, is positioned 4.9 cm above the detector. The intensities of '*’Cs and °Co
were chosen based on the most suitable sources available in our laboratory to ensure an
optimal balance between experimental conditions and measurement duration. This
setup ensures realistic replication of the experimental and simulation conditions for

validating the BNCT-SPECT system.

Table 5.2 Simulation condition.

137Cs intensity 1x107Bq
0Co intensity 1.06x10°Bq
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Based on the findings from Chapters 4 and 5, the mock-up system demonstrated
remarkable performance, achieving a statistical accuracy of 4.39% within a counting
time of just 0.48 hours, which is less than one hour. This result closely aligns with the
design specifications of the BNCT-SPECT system. Furthermore, the count rate per hour
for 1*7Cs confirmed that the mock-up system is suitable for practical measurements
under experimental conditions.

Notably, the mock-up system achieved a statistical accuracy of 4.4% and an S/N ratio
of 0.21, both of which are consistent with the expected performance of the designed
BNCT-SPECT system. These results highlight the mock-up system's ability to closely
replicate the statistical accuracy and signal quality required for effective BNCT-SPECT
imaging, making it a reliable platform for further experimental validation and system

development.

5.5 Summary

Chapter 5 provides a detailed account of the design and development of the mock-up
system for the BNCT-SPECT experiment, focusing on its key components such as the
collimator and gamma-ray sources. The purpose of the mock-up system is to replicate
the performance of the designed BNCT-SPECT system, ensuring its suitability for
practical applications and experimental validation.

The spatial resolution of the BNCT-SPECT system, critical for accurate imaging, is
designed to be 0.5 cm or finer. The chapter discusses the impact of collimator pitch and
geometry on achieving the desired resolution, highlighting adjustments made to
eliminate undetected regions. Based on prior studies, the optimal collimator length was
set to 26 cm. The collimator features square holes with a side length of 0.3 cm,
redesigned from a circular hole of equivalent area to ensure manufacturability while
maintaining spatial resolution.

For gamma-ray sources, a '*’Cs source with an activity of 1x107 Bq was placed at the
center of an acrylic and water phantom to simulate the gamma-rays emitted by '°B

during BNCT treatment. Its 662 keV gamma-ray emissions closely approximate the
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conditions required for evaluating system performance. Additionally, a %°Co source
with an intensity of 1.06x10° Bq was positioned 4.9 ¢cm above the detector to simulate
background radiation. The high-energy gamma emissions of ®Co (1.173 MeV and
1.332 MeV) ensured non-interference with the *’Cs signal, effectively replicating the
S/N ratio observed in real BNCT-SPECT systems.

The mock-up system demonstrated excellent performance, achieving a statistical
accuracy of 4.39% within a counting time of 0.48 hours, closely matching the design
results of the BNCT-SPECT system. Additionally, the system achieved a favorable S/N
ratio of 0.21, confirming its ability to replicate the designed system's specifications.
These results underscore the reliability of the mock-up system as a platform for
experimental validation and further development, ensuring all components align with

the requirements of the BNCT-SPECT system.
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Chapter 6 Image reconstruction

6.1 Introduction

In this chapter, we focus on the process of image reconstruction for the BNCT-SPECT
system using two distinct methodologies. The first involves employing an idealized
response function, constructed mathematically and implemented through Python, to
perform image reconstruction under theoretically perfect conditions. The second
approach utilizes the experimentally derived response function obtained from the
mock-up system designed and constructed in Chapter 5.

By comparing the reconstructed images from these two methods, we aim to evaluate
the practicality and accuracy of the experimental system against the theoretically ideal
conditions. This comparison highlights the strengths and limitations of the mock-up
system, providing insights into the feasibility of achieving accurate image
reconstruction in real-world BNCT applications.

The chapter proceeds as follows: Section 6.2 discusses the reconstruction process
using a mathematically ideal response function, providing a foundation for
understanding theoretical image reconstruction. Section 6.3 details the experiments
conducted using the designed mock-up system to collect experimental data, while
Section 6.4 focuses on reconstructing images based on the experimentally derived
response function. Finally, Section 6.5 summarizes the findings and outlines the

implications of these results for the development of BNCT-SPECT systems.

6.2 Reconstruction with the mathematically ideal process

Based on the content introduced in Chapter 2, pseudo-projection data was generated
to evaluate the performance of the image reconstruction methods. A true image of
size 50 X 50 pixels was used, with 50 detectors per projection angle. This setup
allowed for the acquisition of projection data across multiple angles, resulting in a
comprehensive sinogram comprising 50 X m (m = 90/A8) data points.

Figure 3.1 illustrates the portion of the detector system used for image reconstruction

in a single cross-section. In this setup, multiple detectors arranged in a straight line
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simultaneously measure gamma-rays to determine the intensity of radiation emitted by
the source inside the head phantom at the respective positions of each detector. In the
actual measurement system, detector arrays, such as those shown in Figure 3.1, are
vertically stacked at different heights. These stacked arrays collect data that is
subsequently used to reconstruct cross-sectional images for each height.

The majority of the radiation detected by each detector originates from the source
directly in front of the collimator hole. As a result, radiation from sources positioned
above or below a given detector row has minimal impact on the reconstruction results.
However, the effects of cross-talk, a phenomenon in which radiation entering one
detector undergoes Compton scattering and is subsequently detected by adjacent
detectors, must be considered. This is particularly important when multiple scintillator
detectors are placed in close proximity.

When cross-talk occurs, a single incident radiation event may result in detections by
multiple detectors, causing the total detection count to exceed the expected number
based on the calculated detection efficiency. According to prior research conducted in
the author’s laboratory, this issue can be mitigated by considering coincident counting
of radiation detected simultaneously by neighboring detectors. This approach not only
resolves the cross-talk problem but also improves the statistical accuracy of the
measurements.

In BNCT-SPECT, cross-sectional images are reconstructed for each height, and the
resulting slices are stacked to estimate the three-dimensional distribution of the
radiation source. This method enables accurate reconstruction of the spatial distribution

of gamma-ray sources, critical for BNCT applications.

107



P — S
” ~

Figure 6.1 Overall Diagram of the Detector System Assumed in the Image

Reconstruction Program

The sinogram was subsequently utilized to reconstruct the image using the proposed
method. Each reconstruction was iteratively refined over 100 iterations to ensure
convergence and accuracy. Following the reconstruction process, a Gaussian filter [1]
was applied to the images to enhance quality by smoothing out noise and improving
visual clarity.

The performance of the reconstructed images was quantitatively assessed using two
evaluation metrics: Mean Absolute Error (MAE) and Structural Similarity Index
(SSIM). MAE measured the pixel-wise difference between the true and reconstructed
images, while SSIM provided an assessment of structural and perceptual fidelity. This
analysis enabled a comparative evaluation of the proposed method against ML-EM,
demonstrating the effectiveness of the techniques in achieving high-quality image

reconstruction.

6.2.1 Reconstruction at 40 = 30° with a single model

According to the calculations by our research group in 2021, the optimal choice is to

irradiate four times with 8 = 90° and A6 = 30°. This conclusion is based on a
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comprehensive evaluation of the SSIM and MAE results, which demonstrate that this
configuration yields the best performance. [2] The mean MAE values, calculated from
the estimated results over 50 iterations for each A9, are presented in Figure 3. Similarly,
the mean SSIM values obtained under the same conditions are displayed in Figure 4.
These results provide a comprehensive evaluation of the reconstruction performance

for different A settings.

0.14 OMAE(Bayes) BMAE(ML-EM)

Figure 6.2 Relationship between projection angle A8 and MAE.

Figure 6.2 shows that the MAE reached its lowest value of 0.0568+0.0002 at 46 =
30°. Across all AO values, the MAE trends highlight that 460 = 30° offers optimal
accuracy for image reconstruction, making it a key parameter choice for achieving
precise results. This result underscores the importance of carefully selecting A6 in

ensuring minimal error in the reconstructed images.

109



0.5 OSSIM(Bayes) @SSIM(ML-EM)

SSIM

0.05

9 10 15 18 30 45 90
46

Figure 6.3 Relationship between projection angle A8 and SSIM.

Figure 4 demonstrates that the highest SSIM values are achieved at 460 = 30°. This
finding suggests that 460 = 30° is the optimal setting for balancing structural similarity
and accuracy, particularly when prioritizing precise estimates in normal cells, as
supported by the MAE trend.

Based on these findings, it can be concluded that, under the expected conditions of
BNCT-SPECT, performing image reconstruction on projection data captured with a 30-
degree angular step achieves optimal results.

Figure 6.4 presents the true image, the corresponding sinogram, and the reconstructed
images obtained from the initial calculations with a projection angle 46 = 30°. The
captions accompanying each figure detail the number of estimation iterations required
to generate the images, along with the MAE and SSIM values for the respective

reconstructions.
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Figure 6.4 Simulation results (46 = 30°):
Top left: True image (the black areas: regions outside the head, the grey areas: normal
cells, the white areas: tumor cells.)
Top right: Sinogram created by projection
Bottom left: Image reconstructed using the Bayesian estimation method (iter =9, MAE
=0.0560, SSIM =0.3560)
Bottom right: Image reconstructed using the ML-EM method (iter =3, MAE =0.1223,
SSIM =0.3934).

Additionally, Figure 6.5 illustrates the absolute error distributions for each method,
visualized as images, providing a clear depiction of the error patterns across the
reconstructed images.
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- 0.6

Figure 6.5 Absolute error distribution (46 = 30°):

Top left: Proposed method, before smearing
Top right: ML-EM method, before smearing
Bottom left: Proposed method, after smearing

Bottom right: ML-EM method, after smearing.

Based on the results, for normal cells (1,408 pixels), the proposed method yielded an
average estimated value of 0.3154+0.0005, compared to the true value of 0.31. The
MAE for normal cells was calculated as 0.0481+0.0004.

For tumor cells (16 pixels), the proposed method produced an average estimated value

of 0.5317+£0.0051, whereas the true value was 1.00. Consequently, the Tumor-to-
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Normal (T/N) ratio achieved by the proposed method was approximately 1.7, falling
short of the expected ratio of 3.2 in this study.

In BNCT-SPECT, the accuracy of pixel values in normal cells is a critical factor for
reliable treatment planning and assessment. To evaluate this, the relative error of the
reconstructed image was defined as the ratio of the average pixel value of normal cells
in the reconstructed image to the true pixel value of normal cells, considering only the
normal cells. Using this metric, the relative error for the reconstructed image based on
projection data obtained at a 30-degree projection angle was determined to be
approximately 16% for the proposed method. A detailed summary of these results is

presented in Table 1.

Table 1. Comparison of MAE, SSIM, and average pixel values for estimated images.

A0 = MAE SSIM | Average MAE Average MAE
30 (Entire (Entire | value of | (tumor | value of | (normal
image) image) tumor cells) normal cells)
cells cells
(=1.0) (=0.31)

Propo | 0.0568+0.0 | 0.3624+0. | 0.5317+0. | 0.4683+0. | 0.3154+0. | 0.0481+0.
sed 0021 0026 0051 0051 0005 0004

metho

Considering the statistical errors inherent in BNCT-SPECT measurements, including
constraints on projection angles and measurement times, projections performed
with 460 = 30° and image reconstruction using the proposed method yielded promising
results. The MAE for the entire estimated image was 0.0568+0.0021, and for normal
cells alone, it was 0.3154+0.0005, both demonstrating minimal error. These values
were derived from the standard errors of data obtained through 50 numerical

experiments, reinforcing the reliability of the findings.
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Thus, it can be concluded that "under the conditions anticipated for BNCT-SPECT,
performing a total of four projections with a projection angle of 46 = 30° and using
the proposed method for image reconstruction represents the optimal approach."
However, when defining the relative error of the estimated image as the MAE of normal
cells divided by the true pixel value of normal cells (=0.31), the relative error was
approximately 16%, which is relatively high. Additionally, the T/N ratio remained
around 1.7, significantly lower than the expected value of 3.2.

These findings indicate that while the proposed method shows promise, process
improvements are required to address the high relative error and suboptimal T/N ratio

to ensure practical and effective implementation of BNCT-SPECT in clinical settings.

6.2.2 Reconstruction at 40 = 20° with six models

The reconstructed results presented in the previous section show there can be
substantial improvement in our image reconstruction method. In this study, based on
the principles of Bayesian estimation, we developed a Split-TV-EM approach.

The TV-EM  (Total Variation Expectation Maximization) method is a technique
that incorporates total variation (TV) norm regularization into the ML-EM (Maximum
Likelihood Expectation Maximization) algorithm to achieve more accurate data
reconstruction.

The ML-EM method is a widely used iterative algorithm for image reconstruction in
emission tomography. It estimates the most likely distribution of the radioactive source
by maximizing the likelihood function based on measured projection data. However,
ML-EM often suffers from noise amplification, particularly in low-count regions,
leading to degraded image quality.

To address this issue, the TV-EM method introduces TV norm regularization into the
ML-EM framework. The TV norm helps suppress noise and preserve edge structures
by minimizing excessive intensity variations in the reconstructed image. By
incorporating this regularization term, TV-EM enhances image quality while
maintaining spatial resolution, making it particularly suitable for limited-view-angle

reconstruction scenarios.
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To effectively reduce noise and enhance the clarity of tumor shape reproduction, this
study develops the Split-TV-EM method based on the aforementioned approach. Figure
6.6 illustrates the workflow of the Split-TV-EM method. A distinctive feature of Split-
TV-EM is its ability to utilize measured sinogram data obtained from FBPA-PET, which
is conducted prior to BNCT treatment to predict therapeutic effects. This method
separates the normal cell region and tumor cell region within the sinogram and performs
image reconstruction for each region independently. By doing so, it aims to improve

reconstruction accuracy and better preserve tumor morphology.

= B

Tumor cell part Tumor cell part |mage

Projection data

Final Result

el

Normal cell part Normal cell part image

Figure 6.6 The workflow of the Split-TV-EM

Further research revealed that due to equipment design constraints in BNCT-SPECT,
the projection moving angle 6 must be less than 90°. When measuring gamma rays in
BNCT-SPECT, the detector system rotates around the center of the head phantom, as
shown in Figure 6.7. Since BNCT-SPECT requires measurements to be conducted
during treatment, various treatment equipment, such as the patient bed and neutron
source, restrict the rotation path of the detector. As a result, as illustrated in Figure 6.8,
the projection angle is limited to less than 180 degrees, and the projection moving angle

itself is further constrained to less than 90 degrees.
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Collimator, detectors

Figure 6.7 Overall diagram of the detection system

Figure 6.8 Illustration of projection angles and projection moving angle

Although larger projection angles generally improve reconstruction accuracy, smaller
projection angles simplify the design and implementation of the system. Therefore, it
is crucial to determine the minimum detection angle that can maintain reconstruction

accuracy at a level sufficient for diagnostic purposes. Therefore, based on the
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computational studies by our research group in 2024, the projection parameters were
setto 8 = 60° and 46 = 20°. [3]

In this numerical experiment, image reconstruction was performed using a total of six
source models. These models are referred to as Models 1 to 6, and their details are

described below. The projection directions are illustrated in Figure 6.9.

Projection direction

Figure 6.9 Projection direction

Model 1 represents a scenario where a single circular tumor exists within a uniform
field of normal cells. This model was designed to evaluate whether the source
concentration in both normal and tumor cells could be accurately reproduced when a
small tumor is located in the deep brain. The tumor was positioned near the projection
direction in the upper right region, with its minimum depth from the head surface set at
5.2 cm. The tumor's shape was modeled as a circle with a diameter of 4 pixels (=1.6
cm).

In the figure, the black areas indicate regions outside the head, the red areas represent
normal cells, and the white areas represent tumor cells. If the brightness levels of the
black and white areas are set to 0 and 1, respectively, the brightness level of the red

areas is set to 0.31. This brightness difference corresponds to the T/N ratio, which
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reflects the relative boron accumulation in tumor cells compared to normal cells. In this
system, the T/N ratio is approximately 1/0.31=3.23.

Model 2 replaces the circular tumor in Source Model 1 with an elliptical shape. This
model was developed to evaluate whether the source concentration in normal and tumor
cells can be accurately reproduced when a larger tumor exists in the deep brain. The
elliptical tumor was positioned such that its center coincided with the center of the
circular tumor in Source Model 1. In this configuration, the minimum depth from the
head surface to the tumor is 4.5 cm. The ellipse representing the tumor has a major axis
of 7 pixels (=2.4 cm) and a minor axis of 5 pixels (=1.6 cm).

Models 3 and 4 are variations of Models 1 and 2, respectively, with the tumor positions
moved closer to the head surface. These models were designed to evaluate whether the
source concentrations in normal and tumor cells can be accurately reproduced when
smaller or larger tumors are located in more superficial regions of the brain.

For Model 3, the tumor shape is identical to that of Model 1, with a minimum depth
of approximately 2.1 cm from the head surface. Similarly, for Model 4, the tumor retains
the elliptical shape of Model 2, but its minimum depth is reduced to approximately 1.7
cm. These configurations enable the assessment of reconstruction accuracy for tumors
located closer to the surface.

Models 5 and 6 are extensions of Models 1 and 2, respectively, with an additional
elliptical region introduced to simulate the leakage of boron from the tumor into
surrounding normal cells. This elliptical region has a brightness value of 0.5 and
dimensions of 20 pixels for the major axis and 16 pixels for the minor axis.

The elliptical region is positioned slightly to the right within the circular area
representing normal cells, at a minimum depth of 3.2 cm from the head surface. These
models aim to evaluate the ability of the proposed method to reproduce distributions
with smaller variations in normal cells compared to tumors. Additionally, they assess
the impact of tumor shape on the reproducibility of these distributions. This
configuration enables a deeper understanding of the method's performance under more
complex conditions.

The six source models themselves are depicted in Figure 6.10.
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Model 1 Model 3 Model 5
Model 2 Model 4 Model 6

Figure 6.10 Model 1-6

The reconstruction results are shown in Figures 6.11 to 6.16.
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Figure 6.11 Model 1: true image and reconstructed image
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Figure 6.12 Model 2: true image and reconstructed image
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Figure 6.13 Model 3: true image and reconstructed image
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Figure 6.14 Model 4: true image and reconstructed image
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Figure 6.15 Model 5: true image and reconstructed image
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Figure 6.16 Model 6: true image and reconstructed image

Using the six models, image reconstruction was performed with the proposed Split-
TV-EM method, and the results were compared to evaluate its performance. The
evaluation revealed two significant strengths of the proposed method.

The first strength lies in its exceptional noise reduction capability in normal cells. This
is primarily due to the creation of sinograms for normal cells through polynomial fitting,
which not only interpolates the missing peaks in the sinogram of normal cells but also
effectively eliminates noise.

The second strength addresses a common issue arising when the sampling density of

the sinogram is low—namely, the distortion of tumor regions in the projection direction
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and the associated underestimation of pixel values. By separating the tumor and normal
cell regions within the sinogram, the proposed method reconstructs the tumor region
without the influence of background signals from normal cells. As a result, pixel values
originating from the tumor region are not dispersed into the normal cell area, allowing
the pixel values to remain concentrated in the tumor region and preventing
underestimation.

On the other hand, the proposed method has five challenges, albeit some of them are
minor:

First, slightly Enlarged Tumor Shape: The reconstructed tumor shape may appear
approximately one pixel larger in diameter than its actual size. However, since the total
pixel value of the tumor region remains unchanged, this issue is not significant in
BNCT-SPECT, where pixel values are more critical than precise shape accuracy.

Second, the formation of Artificial Peaks: A one-pixel-wide false peak may sometimes
form at the outer edge of the tumor region. This peak becomes less noticeable when a
Gaussian blur is applied, making it a minor concern.

Third, loss of Fine Features in Normal Cells: Fine details in the distribution of the
normal cell region may be lost during reconstruction. However, in BNCT-SPECT, these
fine details are not a priority, as the average pixel value representing the therapeutic
effect is the primary focus. Hence, this issue is not a significant concern.

Fourth, distortion in Tumor Shape for Larger Tumors: When the tumor is larger, the
peaks in the sinogram may split into multiple peaks, leading to distortions in the tumor
shape in the reconstructed image. Although the distortion can often be mitigated by
applying a Gaussian blur, the number of pixels occupied by the tumor generally does
not change significantly. Consequently, the impact on the Tumor-to-Normal (T/N) ratio
is minimal, making this issue less critical.

Fifth, sensitivity to Noise in Tumor Reconstruction: Tumor reconstruction is more
susceptible to noise, especially for small and deep-seated tumors. This can result in
frequent distortions in the tumor shape and increased variance in the tumor’s average
pixel value and the T/N ratio. This issue could be addressed by pre-estimating the
number of pixels occupied by the tumor using auxiliary examinations such as FBPA-
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PET. However, this approach would require additional prior information, which should
be considered carefully.

By performing image reconstruction using the proposed method, it is possible to
address the major challenges associated with image reconstruction in BNCT-SPECT.
Therefore, the proposed method can be considered well-suited as a reconstruction
algorithm specifically designed for BNCT-SPECT. However, the method still faces the
issue of tumor shape distortion, which leads to increased variance in the Tumor-to-
Normal (T/N) ratio. Hence, further improvements are necessary to resolve these

challenges and enhance the method's performance.

6.3 Reconstruction with experimental data

In this section, we conduct experiments using the mock-up system established in
Chapter 5. The experimental procedure follows the sequence described in the previous
section.

A suitable volumetric gamma-ray source could not be prepared for this study; instead,
a point source was utilized for the measurements. However, measuring a pulse height
spectrum for a point source with collimators posed significant challenges due to the
large variability in count numbers with slight positional changes. To address this, the
measurements were conducted without collimators, and the results will be subsequently
corrected through simulation to account for the absence of collimation.

In this setup, the *’Cs gamma-ray source was positioned at the center of the head
phantom, corresponding to the four central pixel locations. The head phantom was
divided into sections, and for each position, measurements were conducted at four
projection angles: 0, 20, 40, 60 degrees. An illustration of the projection angles is shown

in Figure 6.17.
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Figure 6.17 Projection angles: 0, 20, 40, 60 degrees
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Simulation calculations were performed using MCNP5 to replicate the experimental
setup accurately. The simulation was conducted twice under the same conditions: once
with collimators and once without collimators. This process produced two distinct
response functions. The corrected count, N, , corresponding to a system with
collimators, can be calculated using the following Equation (6.1):

R¢

NC = NNC X — (6.1)
RNC

where Ny is the number of counts measured in the experiment without collimators,
R is the simulated response function with collimators, Ry is the simulated response
function without collimators.

This corrected count value serves as an effective proxy for the true system response

and can be utilized for image reconstruction, ensuring that the results more accurately

reflect the conditions of a system with collimators.
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Figure 6.18 Results of image reconstruction

Figure 6.18 illustrates the initial image reconstruction results obtained using the new

response function derived from prototype measurements.

o Panel (a): The true image represents the experimental setup, featuring four
centrally located sources, each occupying a single pixel with an initial value of
1.0 (orange). The background pixels are assigned a value of 0.31 (purple),
reflecting the relative contrast between the sources and the surrounding area.

e Panel (b): The sinogram, generated using the Radon Transform algorithm,
simulates the data as it would be captured by the SPECT system during

measurements.
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o Panel (c): The reconstructed image is presented, derived from the sinogram data,
showing meaningful information confined to the Region of Interest (ROI). This
focus is a direct result of the tailored design of the response function.

e Panel (d): The calculated sinogram is produced by applying a second Radon
Transform to the reconstructed image, providing a comparative analysis with

the initial sinogram.

This approach highlights the accuracy and functionality of the new response function
in reconstructing data within the ROI.

The measurements were performed exclusively for the four central pixels. As a result,
the rest of the response function, even after applying the correction, contains zero values.
Consequently, in this simulation, only signals originating from the centrally located
pixels are detectable. This limitation confines the reconstructed image to represent only
the central region, restricting the scope of the reconstructed data to the area covered by
the measured response function.

This initial result confirms that our image reconstruction system can successfully
reproduce the original image, even with limited-view angle projection data. The values
of all four individual pixels deviate by approximately 10% from the actual y-ray source
intensity. Moving forward, the objective is to reduce these deviations to less than 5%.

Both individual pixel accuracy and ROI accuracy are critical for effective treatment
monitoring in BNCT. Significant discrepancies or systematic errors in individual pixel
values could result in misinterpretations of the boron distribution, potentially
compromising treatment efficacy. To address this, future experiments should replicate
this study for other pixel locations to assess the consistency of discrepancies between
the true and reconstructed images and identify any potential systematic errors.
Extending these evaluations to include tumors located in various positions within the
phantom will aid in validating the image reconstruction method for the prototype,
ensuring its reliability and accuracy in practical applications. Conducting experiments
with tumors placed at different locations, rather than solely at the center of the phantom,

is essential for a more comprehensive and meaningful evaluation of this image
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reconstruction method in future studies.

6.4 Summary

In this chapter, we present the results of image reconstruction using both
mathematically ideal response functions and experimental data derived from the mock-
up system established in Chapter 5. The focus is on evaluating the effectiveness and
accuracy of the proposed Bayesian estimation method under conditions relevant to
BNCT-SPECT.

Section 6.1 introduces the chapter, explaining the two distinct reconstruction scenarios:
using an ideal response function and employing experimental data. The aim is to
compare the reconstruction quality across these methods and explore how well the
experimental setup replicates the designed BNCT-SPECT system.

Section 6.2 explores the reconstruction process using a mathematically ideal response
function. This section is further divided into two parts: Section 6.2.1 investigates
reconstruction using a single model at a projection angle of AG=30°. This configuration,
based on previous studies, demonstrates promising results, achieving minimal MAE
and a well-defined T/N ratio. Section 6.2.2 introduces the Split-TV-EM method, which
is developed based on the Bayesian estimation principles discussed in Chapter 2. This
section examines reconstruction using six different models at a projection angle of
AB=20°. By applying multiple models, this section evaluates the robustness of the
reconstruction process and the impact of varying tumor shapes and locations on
reconstruction quality.

Section 6.3 shifts focus on experimental data obtained through the mock-up system.
Utilizing corrected response functions derived from MCNP simulations, this section
validates the practicality of the proposed method under real experimental conditions. It
highlights the challenges of limited-view angle projection data and discusses the
system's performance in reconstructing images for central pixel locations.

The results in this chapter confirm the efficacy of the proposed Bayesian estimation
method for BNCT-SPECT image reconstruction. While reconstruction accuracy is

promising, particularly for central regions, challenges remain in achieving consistent
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results for tumors positioned at various locations within the phantom and reducing
systematic discrepancies. These findings emphasize the need for further experiments to
validate the method across varying pixel locations and projection conditions, paving

the way for improvements in clinical applications.
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Chapter 7 Conclusion

This study explores the image reconstruction technique for BNCT-SPECT systems,
aiming to address critical challenges of reconstruction images from limited-view-angle
projection data- a key constraint in real-time BNCT monitoring. The research
systematically investigates the design, simulation, and experimental validation of a
BNCT-SPECT prototype, focusing on achieving accurate image reconstruction under
practical constraints. Below, the major contributions and findings of each chapter are
summarized, culminating in key conclusions and future directions.

Chapter 1 introduces the fundamental principles of BNCT and SPECT, tracing their
development and integration into BNCT-SPECT systems for real-time treatment
monitoring. The unique challenges in BNCT, such as the need for high precision and
overcoming constraints like limited projection angles, are highlighted. This chapter
establishes the motivation for adopting a hybrid imaging system and outlines the
structure of the paper.

Chapter 2 discusses the theoretical basis of Bayesian estimation, emphasizing its
application in image reconstruction for BNCT-SPECT. The chapter compares Bayesian
estimation with the widely-used ML-EM method, demonstrating the suitability of
Bayesian estimation methods for limited-view-angle data. Performance evaluation
metrics, such as Mean Absolute Error (MAE) and Structural Similarity Index (SSIM),
are introduced to quantify image quality.

Chapter 3 details the experimental setup for the study, including the selection and
evaluation of key components like the GAGG(Ce) scintillator, MPPC, and MCA. The
design and construction of a head phantom with precise geometric and material
properties are presented. Experimental procedures are outlined to validate the imaging
system, with emphasis on achieving realistic experimental conditions to replicate
BNCT-SPECT scenarios.

Chapter 4 introduces MCNPS5 simulations to model the BNCT-SPECT system. The
Monte Carlo method is employed to calculate response functions and simulate complex

interactions between radiation and matter. Variance reduction techniques and tally tools
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are utilized to optimize computational efficiency, and simulation results validate the
feasibility of the proposed imaging system under controlled conditions.

Chapter 5 focuses on the design and construction of a mock-up system, integrating
components such as collimators, *’Cs, and ®Co sources. Key design parameters,
including spatial resolution and gamma-ray intensity, are meticulously optimized to
ensure compatibility with BNCT-SPECT requirements. The chapter highlights the
success of the mock-up system in replicating key experimental specifications.

Chapter 6 presents the results of image reconstruction using both mathematically ideal
response functions and experimental data. Reconstructions were conducted under
various projection angles (A0=30° and A0=20°) using single and multiple source
models. The results demonstrate the efficacy of Split-TV-EM method in achieving high
reconstruction accuracy, with minimal MAE and acceptable SSIM values under
constrained experimental conditions. Challenges related to tumor shape distortion and
noise sensitivity are also discussed, paving the way for future improvements.

Key Findings and Contributions

1. Addressing Limited-view-angle projection angle: The study confirms the
viability of Bayesian estimation for reconstructing images with high accuracy
under limited projection angles. The method outperforms traditional approaches,
particularly in noise reduction.

2. Development of Mock-Up System: The developed mock-up system
successfully simulates BNCT-SPECT conditions, with results demonstrating its
ability to reproduce key experimental parameters such as S/N ratio and
statistical accuracy.

3. Integration of Simulation and Experimentation: MCNPS5 simulations
complement experimental measurements, enabling corrections for collimator
effects and enhancing the reliability of the reconstructed images.

Challenges and Future Directions

While the study demonstrates significant advancements in BNCT-SPECT imaging,
several challenges remain:

e Tumor Shape Distortion: Reconstruction inaccuracies in tumor shape,
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particularly for smaller or deeper tumors, require further refinement of the
response function.

e Noise Sensitivity: Improved noise reduction techniques are essential for
enhancing the reliability of reconstructed images under realistic conditions.

e Tumor Position Diversification: Future studies should focus on reconstructing
images for tumors located in various positions within the phantom to ensure
consistent accuracy across all regions of interest.

In conclusion, this research tackles the critical problem of reconstructing images using
limited-view-angle projection data in BNCT-SPECT systems, offering promising
insights into real-time treatment monitoring. By integrating Bayesian estimation
methods with experimental and simulation-based validations, the study establishes a
robust foundation for real-time treatment efficacy monitoring during BNCT
treatments. By developing and validating a BNCT-SPECT system capable of
reconstructing images with high precision, this study provides a reliable image
reconstruction technique. Addressing the identified challenges and refining the system
further will strengthen its potential to reliably monitor and guide BNCT treatments,

ultimately contributing to safer and more effective clinical applications.
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