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Abstract 

Boron Neutron Capture Therapy (BNCT) is an advanced, targeted radiation therapy 

that offers a highly selective approach to cancer treatment by leveraging the unique 

properties of boron-10 and neutron beams. BNCT has significant advantages over 

conventional radiotherapy: it selectively targets cancer cells while minimizing damage 

to surrounding healthy tissue, making it particularly valuable for treating invasive and 

recurrent tumors that are difficult to treat with surgery or traditional radiation. In BNCT, 

boron-10, which accumulates preferentially in tumor cells, is irradiated with neutrons, 

triggering a reaction that releases alpha particles and lithium nuclei. These particles 

have a very short range, destroying cancer cells with minimal effect on adjacent tissues. 

Despite its potential, several technical challenges remain for BNCT to reach its full 

clinical effectiveness. A major unresolved issue is the development of a real-time 

monitoring system to assess treatment effects as they occur. There is particular interest 

in a method to detect gamma rays promptly emitted from the neutron-10B reaction, 

enabling image reconstruction similar to Single Photon Emission Computed 

Tomography (SPECT), known as BNCT-SPECT. 

Developing BNCT-SPECT is challenging due to two main factors. First, there is a 

limitation in projection angles: unlike conventional SPECT systems, which rely on 

projections across 360 degrees, BNCT-SPECT is restricted to under 90 degrees. This 

limitation renders Fourier-based reconstruction methods impractical. Second, 

measurement time is constrained, as BNCT-SPECT must operate simultaneously with 

treatment, raising concerns about acquiring sufficient counts for accurate imaging. 

To overcome these challenges, this study explores a novel approach using Bayesian 

estimation in a successive approximation framework, which is specifically designed to 

operate effectively under BNCT-SPECTs limited-view-angle conditions. The proposed 

method not only addresses angle and time constraints but also enhances the potential 

for real-time, accurate monitoring of BNCT treatment effects. Detailed methodology 

and results are presented in this paper. 
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The structure of this paper is as follows. Chapter 1 provides an introduction to BNCT 

and the principles of BNCT-SPECT. Chapter 2 discusses Bayesian estimation, 

explaining its fundamental concepts and the rationale for selecting this method in our 

study. Chapter 3 details the construction of the experimental system, including the 

setup process and descriptions of the equipment used. Chapter 4 introduces the 

MCNP5 simulation code, explaining its principles and its role in this research. Chapter 

5 focuses on the design of the mock-up system, describing the design of each 

component and the sequence of experiments. Chapter 6 presents image reconstruction, 

using the theoretical foundations and experimental results obtained from previous 

chapters. Finally, Chapter 7 provides a summary of the study’s findings. 
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Chapter 1 Introduction 

1.1 Research background 

In Japan, the number of deaths by cause of malignant neoplasms (tumors) in 2022 was 

385,787 accounting for 24.6% of all deaths in the first place as shown in Figure 1.1. 

Looking at the annual trends in death rates in Figure 1.2, malignant neoplasms (tumors) 

have consistently risen and have been the leading cause of death since 1947 [1].  

 

 

Figure 1.1 Composition of major causes of death (2022). 
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Figure 1.2 Annual mortality rates by leading causes of death (per 100,000 

population). 

 

The trend of increasing mortality and morbidity of cancer is expected to be kept. 

Therefore, research on effective cancer treatment methods is essential for Japan. The 

three primary treatment methods for cancer are "surgery," "chemotherapy," and 

"radiation therapy"[2]. 

Surgical treatment of cancer involves the direct excision of the tumor through 

operative intervention. To reduce the risk of recurrence, it is standard practice to remove 

surrounding tissues and regional lymph nodes simultaneously. While this approach can 

be highly effective, the removal of nearby tissue and lymph nodes may compromise the 

function of specific organs, potentially affecting the patient’s quality of life and ability 

to perform daily activities post-surgery. Additionally, surgical procedures are generally 

performed under general anesthesia, which necessitates a certain level of physical 
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health. As a result, surgical intervention may not be appropriate for elderly patients or 

those with significant comorbidities. 

Chemotherapy, another cornerstone of cancer treatment, primarily utilizes anti-cancer 

drugs which include recently developed molecularly targeted agents, to inhibit the 

proliferation of cancer cells, leading to tumor shrinkage and cellular destruction. 

Administered orally or by injection, these drugs circulate through the bloodstream, 

enabling them to target not only primary tumors but also microscopic lesions and 

metastatic cells. However, because chemotherapy affects both malignant and normal 

dividing cells, patients often experience significant side effects that can detrimentally 

impact their daily lives. These side effects can include nausea, immunosuppression, and 

fatigue, reflecting the non-selective nature of many anti-cancer drugs. 

Radiation therapy, a fundamental modality in cancer treatment, employs high-energy 

radiation to target and shrink tumors. By delivering ionizing radiation directly to 

cancerous tissues, radiation therapy induces intracellular damage, disrupts cellular 

DNA repair mechanisms, impedes cell division, and ultimately leads to cancer cell 

death, resulting in tumor reduction. Despite its effectiveness, conventional radiation 

therapy is not tumor-specific, posing a risk of collateral damage to surrounding healthy 

tissues. To address these limitations, advances in physical and biological sciences have 

led to the development of more targeted radiation therapies, including Boron Neutron 

Capture Therapy (BNCT). 

BNCT represents a novel approach to radiation therapy, leveraging the unique 

properties of boron-10 to achieve high selectivity in targeting cancer cells. Through 

neutron irradiation, boron-10 undergoes a nuclear reaction that releases highly localized 

energy within the cancer cells, sparing nearby healthy tissue and offering new potential 

for the treatment of invasive and recurrent tumors that are challenging to manage with 

conventional methods. 

 

1.2 The principal of BNCT 

BNCT is a new cancer therapy using boron-10 and neutron. The boron-neutron capture 
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reaction induced by low-energy neutrons generates alpha-ray and lithium nuclei that 

can kill cancer cells effectively. 

 

                                                         B 
10 + n     → Li  7 + α + 2.79 MeV (6%)  

       → Li∗ 
7 + α + 2.31 MeV (94%)  

                         →  Li∗ 
7 → Li 

7 + 𝛾(478 keV) (1.1) 

 

Figure 1.3 shows the principle of BNCT. A drug-containing 10B is administered to the 

patient to accumulate in the cancer cells. Then, the patient is irradiated with thermal 

neutrons (around 0.025eV) or epi thermal neutrons (0.5eV to 10keV) from outside the 

body. The nuclear reaction is shown in Equation (1.1); alpha-ray and lithium particles 

(7Li) are the primary neutron-induced charged particles. The distance between them is 

short, about 10 μm for α-particles and about 5 μm for 7Li, and this length is close to the 

size of a cancer cell (about 10 μm), only the cancer cells in which 10B is accumulated 

will be killed by DNA damage caused by alpha-ray and 7Li. This is genuinely a radiation 

therapy method that can attack cancer cells with high pinpoint accuracy. 

 

Figure 1.3 The principle of BNCT. 

 

This indicates that BNCT exerts a substantially lesser impact on normal cells 

compared to conventional radiation therapies that use electromagnetic waves. Moreover, 
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unlike other treatments where repeated exposure to radiation limits the possibility of 

treating the same area multiple times, BNCT permits repeated treatments on the same 

region, offering a substantial therapeutic advantage. 

As shown in Table 1.1, 10B and low energy neutrons were chosen for three reasons: 

firstly, the reaction cross-section of 10B with thermal neutrons is substantial compared 

to the elements present in the human body. Secondly, the secondary radiation produced 

after the nuclear reaction must be short because if the secondary radiation is long, the 

particles may reach normal cells and affect them. Thirdly, boron compounds are readily 

taken up by living organisms and do not have the high toxicity of heavy metals. 

 

Table 1.1 Reaction cross sections of major nuclei and thermal neutrons [3]. 

Major nuclei in the human body 

Targeted nuclei Nuclear reaction Reaction cross-section 

/barn 

1H 1H(n,𝛾)2H 0.3320 

12C 12C(n,𝛾)13C 0.0035 

14N 14N(n,𝛾)15N 0.07500 

16O 16O(n,𝛾)17N 0.0001899 

Major nuclei with large reaction cross-section 

Targeted nuclei Nuclear reaction Reaction cross-section 

/barn 

3He 3He(n,p)3H 5.332×103 

6Li 6Li(n,𝛼)3H 0.9412×103 

10B 10B(n,𝛼)7Li 3.840×103 

157Gd 157Gd(n,𝛾)158Gd 254.1×103 

 

Low-energy neutrons are utilized for two primary reasons. Firstly, the reaction cross-

section of 10B is more significant at low energies than at high energies, as shown in 

Figure 1.4. Secondly, higher energy neutrons have a more significant effect on normal 

cells and are more likely to cause complications. In other words, low-energy neutrons 
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are more likely to cause nuclear reactions and have a more negligible effect on normal 

cells than high-energy neutrons. 

 

 

Figure 1.4 Reaction cross-section of 10B (n,α)7Li [4] 

 

1.3 History of BNCT 

Research on BNCT has been ongoing for over 70 years, and recent advancements have 

brought it to the cusp of widespread clinical implementation, with preparations nearly 

complete for its full-scale use in therapeutic settings. 

The principle of BNCT was proposed in 1936 by American physicist Locher [5], 

merely four years after Chadwick’s discovery of the neutron in 1932. By the 1940s, 

foundational research involving neutrons produced by accelerators was being 

conducted in the United States, using cell cultures and small animal models to explore 

the therapy's potential.[6][7] During this period, it was hypothesized that if 10B could 

be selectively absorbed by cancer cells, it would enable the targeted destruction of these 

cells. From the 1950s to the 1960s, therapeutic irradiation for BNCT was conducted at 

the Brookhaven National Laboratory’s research reactor (BGRR) and the Massachusetts 
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Institute of Technology’s research reactor (MITR). A number of brain tumor cases were 

treated using a thermal neutron field and borax (which contains 96% 10B). However, 

the anticipated therapeutic outcomes were not achieved, leading to the suspension of 

BNCT research in 1961. 

From 1964 to 1968, Dr. Hatanaka—a neurosurgeon from Teikyo University who had 

studied BNCT at Harvard University—conducted collaborative research with chemist 

Soloway and colleagues. Together, they introduced the boron compound BSH 

(Borocaptate Sodium: Na2B12H11SH), which demonstrated superior accumulation 

of 10B in brain tumors, enhancing its potential for BNCT applications. [8] After 

returning to Japan in 1968, Dr. Hatanaka conducted the first BNCT treatment in the 

country, utilizing the thermal neutron field from Hitachi’s research reactor. [9] To 

ensure that the thermal neutrons reached the deep regions of the brain tumor, Dr. 

Hatanaka combined the treatment with craniotomy. As a result, the therapeutic 

outcomes were significantly better than those achieved in the United States. Following 

this success, similar clinical studies were conducted at various research reactors, 

including the MITRR at Musashi Institute of Technology, the KUR at Kyoto University, 

and the JRR-2 and JRR-4 reactors at the Japan Atomic Energy Agency. 

In 1987, a research group led by Mishima at Kobe University conducted clinical 

studies using BPA (p-Boronophenylalanine: C9H12BNO4), a boron compound that can 

be efficiently accumulated in cancerous tissues via the amino acid transporter. This 

research led to the world’s first successful application of BNCT for the treatment of 

malignant melanoma. [10] The introduction of BPA marked a pivotal moment for 

BNCT, as it became the first treatment method capable of selectively targeting and 

eradicating cancer cells. 

Subsequently, research groups from Osaka University and Kawasaki Medical 

University began clinical trials for the treatment of head and neck cancers. In 2001, a 

team led by Kato at Osaka University successfully treated head and neck cancer for the 

first time in the world by combining both BSH and BPA in BNCT. Furthermore, 

research into the treatment of other types of cancer, including liver cancer and 

mesothelioma, has also begun in recent years. 
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Looking internationally, the United States, recognizing Japan’s excellent BNCT 

treatment outcomes, resumed BNCT research in 1994. The BMRR reactor at 

Brookhaven National Laboratory (BNL) was modified to generate a thermal neutron 

field for BNCT and combined with BPA to treat brain tumors. 

In 1997, an EU-based research group, led by Germany, began clinical studies using a 

thermal neutron field at the Petten Nuclear Research Center (HFR) in the Netherlands. 

The use of this thermal neutron field enabled the maintenance of a high dose deep 

within tissues, making it possible to treat brain tumors non-invasively, without the need 

for craniotomy. In Japan, modifications were made to the KUR and JRR-4 reactors, 

allowing for non-invasive treatment using thermal neutrons. While BNCT has advanced 

in this way, the therapy requires powerful thermal and fast neutron sources. As a result, 

clinical BNCT treatments are currently only conducted using reactors. Until 2010, the 

construction of small-scale reactors for BNCT was being considered. The development 

of small-scale accelerator-based fast neutron sources, which can be installed within 

hospitals, is actively underway as a new neutron source for BNCT.  

Since 2000, advancements in accelerator technology have made it possible to develop 

BNCT accelerators that can be installed within hospitals. This progress has spurred 

active BNCT research in various countries [12-14], including the United Kingdom, Italy, 

and Argentina. Particularly in Japan, numerous universities, research institutes, and 

companies have initiated projects aimed at establishing BNCT treatment systems using 

accelerators. The first such project in Japan was launched by Kyoto University and 

Sumitomo Heavy Industries, which developed a treatment system utilizing a cyclotron 

accelerator. This system is now in the final stages of clinical trials. The successful 

development of such accelerators would not only contribute to the widespread adoption 

of BNCT but also enable treatment research at the university and hospital levels, 

potentially leading to improved therapeutic outcomes. 

1.4 Challenges of BNCT 

BNCT is an exceptionally effective treatment, and research aimed at its widespread 

adoption is being conducted globally. However, to establish BNCT as a standard 
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radiation therapy, several challenges remain. From a physical perspective, there are 

primarily three key issues to address. 

Firstly, a high-intensity low-energy neutron beam generated by a BNCT accelerator is 

required. Currently, treatment can only be performed using reactors, which limits the 

accessibility and scalability of the therapy. 

Secondly, the characterization of the neutron field remains challenging. In reactors, 

the neutron field is almost standardized, and thus, there are few issues related to its 

characterization. However, with accelerator-based neutron sources, the current neutron 

intensity and other characteristics are somewhat insufficient, and it is difficult to ensure 

an adequate thickness of the attenuation materials. As a result, the irradiation field 

cannot be considered fully standardized. Therefore, when using an accelerator-

generated neutron field for treatment, it is crucial to accurately understand the energy 

spectrum, intensity, and any potential presence of unnecessary high-energy neutrons or 

gamma-rays. This issue is currently under investigation at the research stage. [15-17] 

Thirdly, real-time measurement of treatment effectiveness is difficult. The evaluation 

of BNCT treatment efficacy is determined by multiplying the boron concentration 

distribution in the tumor and surrounding normal tissues with the intensity distribution 

of the neutron flux that reaches these areas. 

In this study, to accurately measure the treatment efficacy in real-time, this study aims 

to develop a device called BNCT-SPECT, which combines the principles of Single 

Photon Emission Computed Tomography (SPECT), an imaging diagnostic technique, 

with BNCT. This device will enable the real-time three-dimensional measurement of 

treatment effectiveness. 

1.5 BNCT-SPECT 

1.5.1 The principal of SPECT 

Single-photon emission computed tomography (SPECT) is a sophisticated nuclear 

medicine imaging technique that employs gamma-ray detection to produce 

tomographic images as shown in Figure 1.5, offering three-dimensional (3D) 
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visualization of the internal structures of the body. Unlike conventional imaging 

methods, which provide two-dimensional (2D) images, SPECT allows for the 

acquisition of 3D information, which can be presented as cross-sectional slices. These 

slices can be freely reformatted or manipulated to provide a comprehensive view of the 

patient’s anatomy, facilitating enhanced diagnostic and therapeutic planning. 

 

Figure 1.5 SPECT/CT of GE Healthcare Japan's Discovery 670DR. [18] 

 

The SPECT process begins with the administration of a radiopharmaceutical that emits 

gamma radiation. A gamma-ray detector, typically a scintillation camera or solid-state 

detector, involves the rotation of a gamma-ray detector around the patient in a full 360-

degree arc, capturing multiple 2D projections from various angles. This 360-degree 

rotation ensures that data from all perspectives are collected, allowing for a more 

complete and accurate reconstruction of the internal structures. These projections are 

then sent to a computer, which uses a tomographic reconstruction algorithm—such as 

Capable of 360-degree rotation 
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filtered back projection or iterative reconstruction—to combine the 2D projections into 

a 3D dataset. 

The resulting 3D dataset can be further processed and visualized in various formats, 

such as axial, coronal, or sagittal slices, to allow detailed assessment of specific areas 

of interest within the body. This versatility in reformatting provides an in-depth 

understanding of anatomical and functional changes. SPECT imaging is commonly 

used in clinical settings to assess tissue function, such as blood flow in the heart, brain 

activity, and the distribution of certain types of cancer or infection, often 

complementing other imaging techniques like CT (computed tomography) or PET 

(positron emission tomography) for a more complete diagnosis 

1.5.2 The principal of BNCT-SPECT 

Figure 1.6 shows the principle of BNCT-SPECT. According to the nuclear reaction of 

equation (1.1), about 94 % of the 7Li produced by the 10B (n, α) 7Li nuclear reaction is 

in the excited state (7Li*). 7Li* transitions to the ground state with a half-life of about 

10-14 s and emits 478 keV prompt gamma-ray. The SPECT system measures the 

intensity distribution of the 478 keV gamma-rays emitted. The number of 478 keV 

gamma-rays is proportional to 10B (n, α) 7Li reactions, which directly indicates the 

therapeutic effect. The attenuation coefficient of 478 keV gamma rays in tissue is 

minimal (0.1 cm-1), so most of the gamma-rays are emitted outside the body. 

A collimator, typically made of tungsten or lead due to its high gamma-ray shielding 

capabilities, is positioned in front of the detector to define and control the direction of 

incoming 478 keV gamma-rays. Multiple gamma-ray detectors are arranged behind the 

collimator to measure only those 478 keV gamma-rays that pass through its precisely 

aligned apertures. The detected radiation dose data is then analyzed to map the 

distribution of (n, α) reactions occurring within the tumor. This information is used to 

reconstruct a three-dimensional image, providing a detailed view of the reaction activity 

across the targeted area. In this way, the BNCT-SPECT system enables real-time 

visualization and assessment of BNCT treatment efficacy, offering a valuable tool for 

monitoring therapeutic effects directly during treatment. 
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Figure 1.6 The principle of BNCT-SPECT 

 

 It is important to note, however, that in BNCT, the 478 keV gamma-ray measurements 

must be conducted within a high flux neutron field (high-background environment). In 

conventional SPECT, there is typically no background radiation from sources other than 

the administered single-photon-emitting radionuclide, allowing for nearly ideal 

measurement conditions with minimal background interference. In contrast, during 

BNCT, the neutron intensity near cancer cells can reach extremely high levels, 

approximately 1×10⁹ n/sec/cm². However, the intensity of the 10B(n,α)7Li reaction, 

which produces the 478 keV gamma-ray, is considerably lower—by several orders of 

magnitude—due to the boron concentration near cancer cells being in the range of tens 

of ppm. Consequently, in a high flux neutron field (high-background environment), 

selectively measuring the 478 keV gamma-rays from the 10B(n,α)7Li reaction is 

extremely challenging. The primary interfering gamma rays, as shown in Figure 1-7, 

can be observed in the pulse height spectrum (PHS) obtained using a high-purity 

germanium semiconductor detector (HP-Ge detector) under actual BNCT treatment 

conditions. This spectrum provides insight into the gamma-ray background, allowing 

the identification of specific energy peaks associated with the 10B(n,α)7Li reaction amid 

other radiation sources in the treatment environment. [19] 
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Figure 1.7 Gamma-ray pulse height spectrum (PHS) in the BNCT treatment 

environment obtained using a Hp-Ge detector. 

 

 From these results, it is evident that the following gamma rays present significant 

challenges: 

1. Capture gamma-ray (2.22 MeV) produced by the 1H(n,γ)2H reaction near 

cancer cells. 

2. Annihilation gamma-ray (511 keV) generated through the pair 

production/annihilation process. 

 The first issue arises from the fact that the human body contains a large amount of 1H, 

making it unavoidable. The Compton continuum from the 2.22 MeV gamma-ray 

emitted by the 1H(n,γ)2H reaction overlaps with the photopeak at 478 keV, creating a 

significant background signal. To estimate the intensities of the 2.22 MeV and 478 keV 

gamma rays, intensity calculations were conducted. In these calculations, it was 

assumed that the hydrogen content in cancer cells was 11% by weight, based on actual 

treatment data, with a 10B concentration of 10 ppm, and irradiation with thermal 

neutrons (0.025 eV) at an intensity of 1×109 n/sec/cm2. The calculations revealed that 

the production rate of 478 keV gamma-rays from the 10B(n,α)7Li reaction is 
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approximately 2.2×106 γ/sec per cell. In contrast, the production rate of 2.22 MeV 

gamma-rays from the 1H(n,γ)2H reaction reaches 2.2×107 γ/sec per cell, resulting in an 

intensity ratio of roughly 10:1. This indicates that when the 2.22 MeV gamma-rays 

reach the detector, they contribute significantly to the background signal. Consequently, 

for accurate measurements, a gamma-ray detector with high detection efficiency 

specifically for 478 keV gamma-rays should be employed to mitigate this background 

effect as much as possible. 

Additionally, regarding the second issue, the presence of annihilation gamma-rays at 

511 keV close to the 478 keV gamma-rays introduces a risk of overlapping signals if 

the detector’s energy resolution is insufficient. This overlap could prevent accurate 

separation of the 478 keV and 511 keV peaks, resulting in additive measurements of 

both gamma-rays. Therefore, to ensure accurate differentiation, a detector with an 

energy resolution capable of achieving a full width at half maximum (FWHM) of less 

than 33 keV (511 keV- 478 keV= 33 keV) is required. In other words, a gamma-ray 

detector with high energy resolution is essential for precise measurement in this paper. 

1.6 Design of BNCT-SPECT in real treatment 

In order to realize BNCT-SPECT, it is essential to accurately measure the 478 keV 

gamma rays generated during neutron irradiation while effectively separating them 

from other gamma rays. Considering the practical application in treatment, the 

following conditions must be met: 

1. Neutron Irradiation Duration: The neutron irradiation time in BNCT is 

approximately 60 minutes. Therefore, the measurement of 478 keV gamma rays 

by BNCT-SPECT must be completed within this 60-minute time frame. 

2. Measurement Accuracy: To ensure measurement precision within an acceptable 

range, the peak net count of 478 keV gamma-rays for each detector must be at 

least 1,000 counts. 

3. Spatial Resolution of SPECT Images: From a treatment perspective, the spatial 

resolution of the obtained SPECT images must be within a few millimeters. 

4. Energy Resolution: To effectively separate the 511 keV gamma-ray peak, which 
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is located closest to the 478 keV gamma ray, the energy resolution of the 

detector must be FWHM < 33 keV (= 511 keV- 478 keV). 

To achieve the high spatial resolution required by the condition 3, the detector needs 

to be compact. Additionally, to meet the conditions 1 and 2 (i.e., obtaining more than 

1,000 counts per detector within the 60-minute irradiation period), the detector must 

have a high detection efficiency for the 478 keV gamma-rays. Furthermore, to fulfill 

the condition 4 (excellent energy resolution), this study selects a GAGG (Gadolinium 

Aluminum Gallium Garnet) scintillator. 

The GAGG detector is well-suited for this purpose because of its high light yield, fast 

decay time, and good energy resolution, which allow for accurate measurement of 

gamma rays with minimal interference from nearby peaks, such as the 511 keV gamma-

rays. Its compact size enables high spatial resolution, and its efficiency at the relevant 

gamma-ray energies ensures that the required count rates can be achieved in the time 

constraints for BNCT-SPECT. 

The basic characteristics and operating principles of the GAGG detector will be 

discussed in detail in Chapter 3. 

1.7 Structure of this paper 

This paper aims to investigate image reconstruction methods with limited-view-angle 

projection data using Bayesian estimation, with a particular focus on its application in 

BNCT-SPECT systems. This paper is composed of 7 chapters. The structure of the 

paper is organized as follows:  

Chapter 2 discusses the core principles of Bayesian estimation, specifically applying 

Bayes’ theorem and Maximum Likelihood Expectation Maximization (ML-EM) in the 

context of BNCT-SPECT image reconstruction. Performance evaluation indices such 

as Mean Absolute Error (MAE) and Structural Similarity Index Measure (SSIM) are 

also introduced to assess the quality of the reconstructed images. 

Chapter 3 presents the experimental system, detailing the equipment used, including 

the GAGG scintillator, MPPC (Multi-Pixel Photon Counter), MCA (Multi Channel 

Analyzer), and phantom design. It also describes the experimental procedures in detail.  
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In Chapter 4, the MCNP5 simulation software is introduced, providing an in-depth 

discussion of Monte Carlo simulations, variance reduction methods, forced collision 

techniques, tally methods, and comparisons between simulation results and 

experimental data. 

Chapter 5 focuses on the design of the mock-up system, elaborating on the design of 

the collimator, gamma-ray systems, and presenting the final design results.  

Chapter 6 delves into the image reconstruction process, comparing mathematically 

ideal reconstruction with results obtained from experimental data. The chapter 

concludes with a summary of the findings from these experiments. 

Finally, Chapter 7 concludes the paper, summarizing the main contributions and 

proposing directions for future research. 

 Each chapter contributes to a comprehensive understanding of BNCT-SPECT, from 

theoretical concepts and experimental design to practical implementation and 

evaluation. 
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Chapter 2 Image reconstruction using 

Bayesian estimation 

2.1 Introduction 

In this study, we employ Bayesian estimation, a widely recognized method in 

engineering for parameter estimation, to reconstruct the gamma-ray distribution within 

the body. [1] Specifically, we focus on detecting gamma-rays with an energy of 478 

keV, which are produced by the 10B (n,α)7Li reaction that occurs during the BNCT 

treatment process. Since the therapeutic effect of BNCT is proportional to the number 

of 10B (n,α)7Li reactions and the intensity of the 478 keV gamma-rays emitted is directly 

related to the number of these reactions, measuring the gamma-ray distribution provides 

a quantitative means of evaluating the treatment's efficacy. 

In SPECT imaging, image reconstruction techniques are generally categorized into 

analytical methods and iterative approximation methods. Analytical methods, such as 

the Fourier transform and superimposed integration methods, allow for the 

reconstruction of images through a single computational step, assuming the projection 

data has a sufficiently high sampling density. However, in situations where the sampling 

density is insufficient, as is often the case in BNCT-SPECT due to constraints on 

measurement time and angular coverage, analytical methods are less effective. 

In contrast, iterative approximation methods refine the image through successive 

recalculations of pixel values. These methods are well-suited to situations where the 

projection data suffers from limited sampling or angular coverage. Given the inherent 

limitations in BNCT-SPECT, the iterative approach is more appropriate for producing 

reliable and high-quality images. This chapter details the principles of Bayesian 

estimation and its application in estimating the gamma-ray distribution in the context 

of BNCT-SPECT. [2][3] 

2.2 Bayesian theorem and Bayesian estimation 

Bayesian theorem, a fundamental theorem on probability and conditional probability, 
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is described below. 

In contrast to the probabilities 𝑃(𝐴) and 𝑃(𝐵) of events 𝐴 and 𝐵 occurring, the 

conditional probability 𝑃(𝐴|𝐵)  of event 𝐴  occurring given event 𝐵  is defined by 

the following Equation (2.1). 

 

                                                 𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
    (𝑃(𝐵) > 0)                                 (2.1) 

 

When considering the partition of the event 𝐴 into 𝐴1, 𝐴2, ..., Equation (2.1) can be 

rewritten as Equation (2.2). 

 

                                                   𝑃(𝐴𝑖|𝐵) =
𝑃(𝐴𝑖 ∩ 𝐵)

𝑃(𝐵)
                                                       (2.2) 

 

Equation (2.3) holds as well. 

 

                                                         𝑃(𝐵|𝐴𝑖) =
𝑃(𝐵 ∩ 𝐴𝑖)

𝑃(𝐴𝑖)
                                                 (2.3) 

 

Then considering that 𝐴1 ∩ 𝐵,𝐴2 ∩ 𝐵,…for 𝑃(𝐵) is a partition of 𝐵, the following 

equation is established together with Equation (2.4). 

 

                𝑃(𝐵) =∑ 𝑃(𝐴𝑘 ∩ 𝐵)     
𝑁

𝑘=1

=∑ 𝑃(𝐵 ∩ 𝐴𝑘) =∑ 𝑃(𝐴𝑘) ∙ 𝑃(𝐵|𝐴𝑘)                                (2.4)
𝑁

𝑘=1

𝑁

𝑘=1
 

 

From the above Equation (2.2), (2.3), (2.4), the conditional probability of event 𝐴𝑗 

can be described as Equation (2.5). 

 

                                                𝑃(𝐴𝑗|𝐵) =
𝑃(𝐴𝑗) ∙ 𝑃(𝐵|𝐴𝑗)

∑ 𝑃(𝐴𝑗)
𝑁
𝑗=1 ∙ 𝑃(𝐵|𝐴𝑗)

                                     (2.5) 
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Equation (2.5) is the formula that expresses Bayesian theorem. In Bayesian theorem, 

𝑃(𝐴𝑗) is called the prior probability, and 𝑃(𝐴 𝑗|𝐵), the probability that event 𝐴𝑗 will 

occur under event 𝐵, is called the posterior probability. 

Bayesian revision is a procedure that applies Bayesian theorem, described in the 

previous section, to obtain the posterior probability from Equation (2.5) based on 

observed events after giving an arbitrary prior probability. Then, the posterior 

probability obtained by this Bayesian revision is updated as a new prior probability, and 

by performing repeated Bayesian revisions, an objectively reliable probability 

distribution can be obtained. The method of estimating probability distributions by 

repeatedly performing this Bayesian revision is called the Bayesian estimation method. 

 

2.3 Application of Bayesian estimation in BNCT-SPECT 

In this study, we applied Bayesian estimation to the image reconstruction technique 

for BNCT-SPECT.  

In order to obtain the distribution of gamma-ray sources in the x and y planes, we 

divide the whole head into several regions as a minimum unit. We divide the 3D brain 

into equal n 2D slices and generally divide the slice horizontally and vertically into n 

sections and consider them as n2 regions. However, n must be an odd number greater 

than or equal to 3. Then, with the center of the head as the origin, n detectors and 

collimators are placed in the orthogonal direction to the x-axis of the cell. This system 

consisting of the detector and collimator will be referred to as the detector system in 

the following. The source intensity in the j-th region (j = 1, 2, ..., n2) is 𝑁𝑗 [photons/sec], 

and the count rate [CPS] value indicated by the detector at the i-th (i = 1, 2, ..., n) 

measurement position is 𝐴𝑖 . [4] As an example, the initial arrangement of the 

experimental system in the case of n = 5 is shown in Figure 2.1. 
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Figure 2.1 Image of the system (for n=5) 

 

After completing the measurement at the initial position, rotate the detector system by 

a certain angle clockwise around the center of the origin and perform the measurement 

again. As shown in Figure 2.2, if we repeat this process and adjust the rotation angle so 

that a total of n measurements is made before the rotation angle relative to the initial 

state reaches 90 degrees, we end up with a total of n2 measurements from A1 to An
2. 
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Figure 2.2 Detectors’ moving angle θ=90 degrees 

 

In this study, we classified the gamma-ray source states inside the cells in the system 

into the point source case and constructed simulation models for each of them.  

In this detector system, radiation entering the detector is collimated to focus the 

measurements. Therefore, each detector has a field of view, as shown in Figure 2.3, 

which defines the detectable range. Let the collimator have a length of ℓ [cm], a hole 

radius at the center of the collimator of φ [cm], and the coordinates of the detector's 

center be x_sec  and y_sec The range included in the detector's field of view can be 

expressed in the x,y -plane by the following Equation (2.6). 

 

        −
2𝜑

ℓ
(𝑥 − 𝑥_𝑠𝑒𝑐) + (𝑦_𝑠𝑒𝑐 + 𝜑) ≤ 𝑦 ≤

2𝜑

ℓ
(𝑥 − 𝑥_𝑠𝑒𝑐) + (𝑦_𝑠𝑒𝑐 − 𝜑)     (2.6) 

 

90 。 
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Figure 2.3 The field of view of the collimator and detector. 

 

In the case of a point source, it is assumed that a radiation source with no area is placed 

in the center of the cell. Therefore, if the center of cell j is included inside the detector's 

field of view at position i, the radiation originating from cell j is determined to be 

incident on detector i.  

On the other hand, in the case of a surface radiation source, it is assumed that the 

volume source exists uniformly spread out in the cell region. The difference between 

the point source and the area source is that even if the center of the cell is not included 

in the view of the detector, the radiation intensity corresponding to the percentage of 

the area included in the field of view is determined to be incident on the detector. The 

actual model determines whether the radiation originating from cell j is incident on the 

detector at position i or not, and then the fraction of radiation sources contained inside 

the detector's field of view is calculated. 

In preparation for applying this system to Bayesian revision, we will treat the 𝑁𝑗 and 

𝐴𝑖 defined earlier as vectors 𝑁⃗⃗  and 𝐴  in the following. The purpose of this study is 

to estimate the unknown vector, 𝑁⃗⃗  , from the known vector,  𝐴  , using Bayesian 

estimation. First, we define the probability that a gamma-ray emitted from the j-th 

region is incident on the detector placed at the i-th position as 𝑅𝑖,𝑗 , and define the 

matrix R in the same way. This R is called the response. The response 
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components 𝑅𝑖,𝑗  can be expressed by the Equation (2.7). Here, 𝑟𝑖,𝑗 represents the 

distance between the detector and the radiation source at measurement position i, 𝐷𝑖,𝑗  is 

the distance the gamma rays emitted from the source in cell j travel through the 

head, 𝑐𝑜𝑛 is the coverage ratio of the gamma rays from the source inside the detector’s 

field of view in cell j, 𝜇 is the attenuation coefficient of the head, 𝐸𝑓 is the detection 

efficiency of the detector, and 𝜑 is the radius of the collimator’s hole. 

 

                                                   R𝑖,𝑗 = 𝑐𝑜𝑛 ×
𝜋𝜑2

4𝜋𝑟𝑖,𝑗
2 × 𝐸𝑓 × 𝑒

−𝜇𝐷𝑖,𝑗                                  (2.7) 

 

The vectors 𝑁⃗⃗ , 𝐴 , and the matrix R can be expressed by the following Equation (2.8). 

 

                 𝑁⃗⃗ =

(

 
 

𝑁1
𝑁2
∙
∙
∙
𝑁𝑛2)

 
 
, 𝐴 =

(

 
 

𝐴1
𝐴2
∙
∙
∙
𝐴𝑛2)

 
 
, 𝑹 = (

𝑅1,1 ⋯ 𝑅1,𝑛2

⋮ ⋱ ⋮
𝑅𝑛2,1 ⋯ 𝑅𝑛2,𝑛2

)            (2.8) 

 

We get the following equation to express these relationships in terms of matrix 

Equations (2.9). 

 

                                                                         𝐴 = 𝐑 ∙ 𝑁⃗⃗                                                        (2.9) 

 

In BNCT-SPECT, 𝐴  is a known number, and 𝑁⃗⃗  is an unknown number, so the above 

determinant is solved inversely. R is a regular matrix, and there is a possibility of 

obtaining a computational solution. However, since 𝐴   is a measured value, it is not 

immune to the influence of error, and the result solved mathematically as an inverse 

problem is not considered the actual value. Therefore, to obtain a meaningful 

engineering solution, Bayesian estimation is used in this research. 

First, let the sample space 𝛺 be the 'radiation incident on the detector', representing 
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the whole event. Therefore, the probability 𝑃(𝛺)  is "the probability that radiation 

enters the detector. Then, let event 𝐸𝑗 be the event 'when radiation is detected, the 

radiation originates from the j-th cell' and event 𝐹𝑖 is the event 'radiation is incident 

on the detector at the i-th measurement position, and the detector emits a signal'. 

Therefore, the probability 𝑃(𝐸𝑗)  represents 'the probability that the radiation 

originates from the j-th cell when it is detected', and similarly, the probability 𝑃(𝐹𝑖) 

represents 'the probability that the radiation is incident on the detector at the i-th 

measurement position and the detector emits a signal'. 

The "parallel hypothesis" allows us to interpret the event group {𝐸𝑗} as "there are 

multiple parallel hypotheses that form the measurement result, and any one of them 

could be the correct hypothesis [2]. This gives the mixing proportions of each 

hypothesis, which are finally paralleled by Bayesian estimation and are given by the 

posterior probabilities of the hypotheses,  𝑃(𝐸𝑗 |𝐹𝑖 ) . In this study, we calculate 

𝑃(𝐸𝑗 |𝐹𝑖 )  as the probability that the gamma-ray incident on the detector at 

measurement position i originates from the j-th cell. This allows us to calculate an 

estimate of the distribution of gamma-ray sources in the head that is reasonable when 

the measurements are obtained. This probability 𝑃(𝐸𝑗 |𝐹𝑖 )  is shown as Equation 

(2.10). 

 

                                                   P(𝐸𝑗|𝐹𝑖) =
𝑃(𝐸𝑗) ∙ 𝑃(𝐹𝑖|𝐸𝑗)

∑ 𝑃(𝐸𝑗) ∙ 𝑃(𝐹𝑖|𝐸𝑗)
𝑁
𝑗=1

                               (2.10) 

 

Referring to Equation (2.9), 𝑃(𝐸𝑗 |𝐹𝑖 )  corresponds to the response function 

𝑅(𝑖, 𝑗) , and 𝑃(𝐸𝑗)  corresponds to the source intensity 𝑁𝑗 . However, to perform 

Bayesian estimation, it is necessary to transform these equations based on the axiom of 

probability as follows. 

First, the response function is normalized according to the equation (2.11) using the 

sum of the response function elements {𝑅𝑖,𝑗} for i, ∑ 𝑅𝑖,𝑗𝑖 . 
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                                                                  𝑅′𝑖,𝑗 =
𝑅𝑖,𝑗
∑ 𝑅𝑖,𝑗𝑖

                                                    (2.11) 

 

From this definition, the sum of the elements of the normalized response function 

{𝑅′𝑖,𝑗}  for i, ∑ 𝑅′𝑖,𝑗𝑖  , is 1 for all j. Also, using the sum of the response function 

elements {𝑅𝑖,𝑗}  for i ∑ 𝑅𝑖,𝑗𝑖 = 𝑓𝑗 , we define the matrix 𝑬𝒇𝒇  represented by the 

following Equation (2.12). 

 

                                                            𝑬𝒇𝒇 = [

𝑓1
0

0
⋱

⋯
⋱

0
⋮

⋮
0

⋱
⋯

⋱
0

0
𝑓𝑛

]                                       (2.12) 

 

At this point, Equation (2.9) can be rewritten using the normalized response function 

matrix 𝑅′, and the matrix 𝑬𝒇𝒇 defined above, as shown in Equation (2.13) below. 

 

                                                                    𝐴 = 𝑹′ ∙ 𝑬𝒇𝒇 ∙ 𝑁⃗⃗                                              (2.13) 

 

The corrected source intensity vector 𝑁′⃗⃗⃗⃗ , which normalizes 𝑬𝒇𝒇 ∙ 𝑁⃗⃗  using the sum 

  |𝑁𝐸𝑓𝑓| = ∑ 𝑓𝑗𝑁𝑗𝑗   of each element of 𝑬𝒇𝒇 ∙ 𝑁⃗⃗  , is introduced according to the 

following Equation (2.14). 

 

                                                                 𝑁′⃗⃗⃗⃗ =
1

|𝑁𝐸𝑓𝑓|
∙ 𝑬𝒇𝒇 ∙ 𝑁⃗⃗                                        (2.14) 

 

From this definition, the sum of the elements {𝑁𝑗} of the vector 𝑁′⃗⃗⃗⃗  is 1. Equation 

(2.14) can be transformed as shown in Equation (2.15). 

 

                                                             𝑁⃗⃗ = |𝑁𝐸𝑓𝑓| ∙ 𝑬𝒇𝒇
−𝟏 ∙ 𝑁′⃗⃗ ⃗⃗                                       (2.15) 
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Combining with Equation (2.13)，we can obtain Equation (2.16) 

 

                                                                  𝐴 = |𝑁𝐸𝑓𝑓| ∙ 𝑹
′ ∙ 𝑁′⃗⃗ ⃗⃗                                           (2.16) 

 

Each element of the vector 𝐴  can be written as in equation (2.17). 

 

                                                                𝐴𝑖 = |𝑁𝐸𝑓𝑓|∑ 𝑅′𝑖,𝑗 ∙ 𝑁
′
𝑗

𝑗
                               (2.17) 

 

On the other hand, if we take the sum |𝐴|  of 𝐴𝑖  and organize it, we can get the 

following equation. 

 

 

|𝐴| =∑ 𝐴𝑖
𝑖
=∑ |𝑁𝑒𝑓𝑓|∑ 𝑅′𝑖,𝑗 ∙ 𝑁

′
𝑗

𝑗𝑖
 

= |𝑁𝐸𝑓𝑓|∑ 𝑁′𝑗
𝑗

∑ 𝑅′𝑖,𝑗
𝑖

= |𝑁𝐸𝑓𝑓|                   (2.18) 

 

From this, if we normalize Equation (2.16) using |A| as 𝐴′⃗⃗  ⃗, Equation (2.9) is finally 

expressed by the following Equation (2.19). 

 

𝐴′⃗⃗  ⃗ =
𝐴 

|𝐴|
=
|𝑁𝐸𝑓𝑓| ∙ 𝑹′ ∙ 𝑁′⃗⃗⃗⃗ 

|𝐴|
= 𝑹′ ∙ 𝑁′⃗⃗ ⃗⃗                                 (2.19) 

 

When transformed in this way, each element ｛𝐴′𝑖｝, ｛𝑅′𝑖,𝑗｝, and｛𝑁′𝑗｝ of the 

matrices and vectors in Equation (2.19) can be regarded as a probability, and Bayesian 

estimation can be performed using them. Therefore, we rewrite the prior establishment 

P(𝐸𝑗)  into the corrected estimated source strength 𝑒𝑠𝑡𝑗
(𝑘)

 , which is an expression 

keeping in mind the repeated application of Bayesian revision. This is an estimate of 
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the normalized source intensity 𝑁′⃗⃗⃗⃗  defined by Equation (2.14), and therefore, as well 

as 𝑁′⃗⃗⃗⃗ , the sum of the elements ｛𝑒𝑠𝑡𝑗
(𝑘)

｝ of the corrected estimated source intensity 

vector is 1. As shown in Equation (2.20), 

 

∑ 𝑒𝑠𝑡𝑗
(𝑘) = 1

𝑗
                                                          (2.20) 

 

The revised corrected estimated source strength 𝑒𝑠𝑡𝑗
(𝑘+1)

 is shown in the following 

Equation (2.21) from the correspondence with Equation (2.10), 

 

𝑒𝑠𝑡𝑗
(𝑘+1)(𝑖) = 𝐴′𝑖 ∙

𝑒𝑠𝑡𝑗
(𝑘)
∙ 𝑅′𝑖,𝑗

∑ 𝑒𝑠𝑡𝑗
(𝑘+1) ∙ 𝑅′𝑖,𝑗𝑗

                               (2.21) 

 

(𝑖) is the measured value of the i-th detector. 

In addition, the following addition operation is performed to consider all measured 

values. 

 

𝑒𝑠𝑡𝑗
(𝑘+1)

=∑ (𝐴′𝑖 ∙
𝑒𝑠𝑡𝑗

(𝑘) ∙ 𝑅′𝑖,𝑗

∑ 𝑒𝑠𝑡𝑗
(𝑘)
∙ 𝑅′𝑖,𝑗𝑗

)
𝑖

                            (2.22) 

 

This yields the Bayesian revised corrected estimated source intensity 𝑒𝑠𝑡𝑗
(𝑘+1)

. This 

operation expands the meaning of Equation (2.10) derived from Bayes' theorem. In 

Equation (2.21), the factor 𝐴′𝑖 , which is not in Equation (2.10), is multiplied. Finally, 

an addition operation is performed in Equation (2.22), which is equivalent to the 

operation of averaging, where multiple prior knowledge 𝑒𝑠𝑡𝑗
(𝑘)

 are weighted by 𝐴′𝑖 . 

This operation is necessary when Bayesian revision is repeated on the aggregated data 

after completing the measurements. This is the idea behind the spectral Bayesian 

estimation method. The integral value of𝑒𝑠𝑡𝑗
(𝑘)

  can be developed as the following 
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Equation (2.23). 

 

∑ 𝑒𝑠𝑡𝑗
(𝑘)

𝑗
=∑ ∑ (𝐴′𝑖 ∙

𝑒𝑠𝑡𝑗
(𝑘) ∙ 𝑅′𝑖,𝑗

∑ 𝑒𝑠𝑡𝑗
(𝑘) ∙ 𝑅′𝑖,𝑗𝑗

)
𝑗𝑖

 

             =∑ 𝐴′𝑖 ∙
𝑖

(
∑ 𝑒𝑠𝑡𝑗

(𝑘)
∙ 𝑅′𝑖,𝑗𝑗

∑ 𝑒𝑠𝑡𝑗
(𝑘)
∙ 𝑅′𝑖,𝑗𝑗

) 

      =∑ 𝐴′𝑖
𝑖

 = 1                                                            (2.23) 

 

For the initial value of the corrected estimated source intensity, 𝑒𝑠𝑡⃗⃗⃗⃗⃗⃗ (0), we adopt the 

white spectrum in this study, where all elements have the same value. From Equation 

(2.23), the initial value is given as follows. 

 

(

 
 

𝑒𝑠𝑡1
(0)

𝑒𝑠𝑡2
(0)

⋮

𝑒𝑠𝑡
𝑛2
(0)
)

 
 
=
1

𝑛
(

1
1
⋮
1

)                                                  (2.24) 

 

The initial value can be determined by a known value, the measurement value. Using 

this and Equation (2.22), the Bayesian revision is repeated 𝑖𝑐  times to obtain the 

corrected estimated source strength 𝑒𝑠𝑡⃗⃗⃗⃗⃗⃗ (𝑖𝑐) . Using  𝑒𝑠𝑡⃗⃗⃗⃗⃗⃗ (𝑖𝑐)  instead of  𝑁′⃗⃗⃗⃗    in 

Equation (2.14) ，the final estimated source intensity Nj can be obtained by solving 

the following Equation (2.25). 

 

𝑁⃗⃗ = |𝑁𝐸𝑓𝑓| ∙ 𝑬𝒇𝒇
−𝟏 ∙ 𝑒𝑠𝑡⃗⃗⃗⃗⃗⃗ (𝑖𝑐)                                        （2.25） 

 

This is the end of the procedure for applying Bayesian revision to image 

reconstruction methods for BNCT-SPECT in this study. 
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2.4 ML-EM 

The Maximum-Likelihood Expectation Maximization method (ML-EM) is a currently 

used image reconstruction technique [5][6], classified as a successive approximation 

method. The iterative formula for this method is expressed by the following equation 

(2.26). 

 

                                                𝑒𝑠𝑡𝑗
(𝑘+1)

=
𝑒𝑠𝑡𝑗

(𝑘)

∑ 𝑅𝑖,𝑗𝑖
∑

𝐴𝑖 ∙ 𝑅𝑖,𝑗

∑ 𝑅𝑖,𝑗 ∙ 𝑒𝑠𝑡𝑗′
(𝑘)

𝑗′𝑖
                          (2.26) 

 

𝑒𝑠𝑡𝑗
(𝑘)  represents the pixel values of the k-th reconstructed image, 𝑅𝑖,𝑗  is the 

elements of the response matrix, 𝐴𝑖  is the measured projection data, and 𝑛  is the 

number of detectors. 

The procedure for the ML-EM method, broken down according to the calculation steps, 

is as follows: 

1. From the i-th image 𝑒𝑠𝑡(𝑘), create the i-th virtual projection data 𝑦𝑖
(𝑘)

. The 

projection equation is expressed by Equation (2.27). 

 

                                                             𝑦𝑖
(𝑘)
=∑ 𝑅𝑖,𝑗′ ∙ 𝑒𝑠𝑡𝑗′

(𝑘)
 

𝑗′
                                     (2.27) 

 

2. According to Equation (2-28), calculate the ratio 𝑦𝑖
′ , which is the ratio of 

the k-th virtual projection data to the actual measured projection data. 

 

                                                                          𝑦𝑖
′ =

𝐴𝑖

𝑦𝑖
(𝑘)                                                     (2.28) 

 

3. Perform back projection on this ratio to create the image 𝜆𝑗
′  . The back 

projection equation is shown in Equation (2.29). 
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                                                                 𝜆𝑗
′ =

1

∑ 𝑅𝑖.𝑗𝑖
∑ 𝑦𝑖

′ ∙ 𝑅𝑖,𝑗
𝑖

                                   (2.29) 

 

4. According to Equation (2.30), multiply the image 𝜆𝑗
′ , which is the back 

projected ratio of virtual to measured projection data, by the k-th image 𝑒𝑠𝑡𝑗
(𝑘)

, 

and update it to the (k+1)-th image. 

 

                                                                      𝑒𝑠𝑡𝑗
(𝑘+1)

= 𝑒𝑠𝑡𝑗
(𝑘)
∙ 𝜆𝑗
′                                    (2.30) 

 

The initial input 𝑒𝑠𝑡⃗⃗⃗⃗⃗⃗ (0)  is an image with all values set to 1. This is the general 

procedure of the ML-EM method, which is widely known as a successive 

approximation-based image reconstruction method. 

2.5 Performance evaluation index 

The following two types of error evaluation indices were adopted to compare the 

performance of the proposed Bayesian estimation method and that of the existing ML-

EM image reconstruction method. [7][8] 

2.5.1 MAE 

The Mean Absolute Error (MAE) is the average of the absolute values of the errors 

[9][10]. In statistics, MAE is a measure of errors between paired observations 

expressing the same phenomenon, and its definition is given by Equation (2.31). 

 

                                                           (𝑀𝐴𝐸) =
1

𝑁
∑|𝑒𝑠𝑡𝑖 − 𝑡𝑖|

𝑛

𝑖=1

                                    (2.31) 

 

𝑛  represents the total number of pixels, 𝑒𝑠𝑡𝑖  denotes the pixel values of the 

reconstructed image, and 𝑡𝑖  represents the pixel values of the true image,  where 

|𝑒𝑠𝑡𝑖 − 𝑡𝑖| represents the absolute error. The smaller this value, the smaller the error 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Error_(statistics)
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in the estimated values of the reconstructed image. 

2.5.2 SSIM 

The Structural Similarity Index Measure (SSIM) is devised to evaluate the structural 

similarity of images as perceived by the human eye and has recently become frequently 

used in the field of image reconstruction [11][12]. The SSIM index is a full reference 

metric; in other words, the measurement or prediction of image quality is based on an 

initial uncompressed or distortion-free image as a reference. It is calculated using 

Equation (2.32). 

 

                                      (𝑆𝑆𝐼𝑀) =
(2𝜇𝑡𝜇𝑟𝑒 + 𝑐1)(2𝜎𝑡,𝑟𝑒 + 𝑐1)

(𝜇𝑡
2 + 𝜇𝑟𝑒2 + 𝑐1)(𝜎𝑡

2 + 𝜎𝑟𝑒2 + 𝑐2)
                          (2.32) 

 

𝜇𝑡 is the mean of the pixel values of the true image, 𝜇𝑟𝑒 is the mean of the pixel values 

of the reconstructed image, 𝜎𝑡
2 is the variance of the true image, 𝜎𝑟𝑒

2  is the variance of 

the pixel values of the reconstructed image, and 𝜎𝑡,𝑟𝑒 is the covariance between the true 

and reconstructed images. Additionally, 𝑐1 and 𝑐2 can be set arbitrarily. In this study, 

we used the prescribed values 𝑐1 = (0.01 × 255)
2 and 𝑐2 = (0.03 × 255)

2. 

From this equation, SSIM is 1 when the reconstructed and true images are perfectly 

matched and approaches 0 as the structural similarity decreases [13]. 

 

2.6 Summary 

 In Chapter 2, we provide an in-depth explanation of the Bayesian estimation method 

and its practical application within the BNCT-SPECT imaging framework. We begin 

by introducing the foundational principles of Bayesian estimation, emphasizing how it 

enables accurate estimation of gamma-ray distributions by iteratively updating prior 

probabilities based on acquired data. For this study, we use a detector array 

with 𝑛  detectors to acquire projection data over multiple angles, resulting in a 

comprehensive dataset of projections for an 𝑛 × 𝑛 pixel true image. 

 To estimate each pixel value, the response matrix 𝐑  is normalized and used in 
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Bayesian revisions, facilitating the reconstruction of high-resolution images for BNCT-

SPECT. This approach compensates for the limited projection angles and measurement 

times inherent in BNCT by improving reconstruction accuracy through iterative 

calculations. Additionally, we introduced ML-EM, a widely used method for image 

reconstruction. 

 Finally, we introduce two critical error evaluation indices used to assess the quality of 

reconstructed images: Mean Absolute Error (MAE) and Structural Similarity Index 

Measure (SSIM). MAE quantifies the average deviation between estimated and true 

pixel values, providing an overall measure of reconstruction accuracy, while SSIM 

assesses structural fidelity by comparing patterns of luminance and contrast, thus 

capturing more nuanced aspects of image quality. These indices are essential in 

evaluating and optimizing the performance of the BNCT-SPECT imaging system. 
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Chapter 3 The experimental system 

3.1 Introduction 

In the previous chapter, we discussed the core features and performance of our method. 

Here, we provide a detailed overview of the experimental system constructed to 

evaluate its practical applicability. In this chapter, we present the initial construction of 

the experimental system, detailing each component's structure and operating principles. 

The primary purpose of this chapter is to evaluate the applicability of our method to 

existing systems by examining the functionality and integration of each part in the 

experimental setup. This groundwork establishes a foundation for further testing and 

refinement of our approach.  

3.2 The configuration of the experimental system 

Figure 3.1 shows the simplified experimental system used in this study. To simulate 

brain tumors emitting gamma-rays during neutron irradiation, we constructed a head 

phantom containing a 137Cs source, which was strategically placed at various locations. 

This source, selected for its monochromatic gamma emission near 478 keV, 

approximates the gamma-ray characteristics expected in BNCT. A standard 137Cs 

gamma-ray source with an intensity of 1.0×107 Bq was used for the experiments. In this 

setup, gamma-rays were detected, and the total measured value was calculated. To 

derive the response matrix element, this total value was divided by the product of the 

source intensity in becquerels (Bq) and the measurement time in seconds (s), yielding 

the normalized detection response. 
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Figure 3.1 Simplified experimental system 

 

Table 3.1 Equipment of the experimental system  

 

 

The phantom is positioned on a stage, allowing emitted gamma rays to be directed 

accurately through a lead collimator toward the GAGG scintillation detector. This 

collimation ensures that gamma rays are captured precisely from the intended locations 

within the phantom, based on the field of view of each detector. Using this setup, we 

obtain the spatial energy distribution of gamma rays throughout the phantom, 

facilitating a detailed analysis of radiation behavior at different locations. 

Table 3.1 lists the equipment used in the experimental system. The motorized stage 

enables precise control over the position and orientation of the phantom, allowing for 

targeted adjustments of which part of the phantom enters the detector's field of view. 

This setup ensures that specific areas can be consistently analyzed, optimizing data 

acquisition and improving the accuracy of gamma-ray distribution measurements 

Scintillation 
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within the phantom. 

3.3 GAGG scintillator 

3.3.1 Inorganic scintillator 

When radiation enters certain types of materials, the electrons within these materials 

are elevated to a high-energy state (excited state). As they return to their original state 

(ground state), they release the energy difference in the form of light, or fluorescence. 

This phenomenon is known as scintillation, and materials that exhibit this property are 

called scintillators. Since the emitted light is usually very faint, scintillators are often 

paired with devices such as photomultiplier tubes, which amplify the weak light signal 

into a readable electronic signal. 

Scintillators are broadly categorized into two types: inorganic and organic scintillators. 

Inorganic materials generally offer superior light output and linearity, although most 

have relatively long response times. Due to their high atomic numbers and densities, 

inorganic scintillators are particularly well-suited for gamma-ray spectroscopy. On the 

other hand, organic scintillators tend to have fast response times, though they produce 

lower light output. They are commonly used for beta-ray spectroscopy and, because 

they contain hydrogen, are also effective for neutron detection. [1] In this study, an 

inorganic scintillator was employed as the gamma-ray detector, so the following will 

focus on the properties and characteristics of inorganic scintillators. 

In inorganic materials, the scintillation mechanism is determined by the energy states 

defined by the crystal lattice structure. As shown in Figure 3.2, electrons within an 

insulator or semiconductor material are restricted to specific energy bands. Valence 

band electrons are bound to specific lattice positions, while conduction band electrons 

have sufficient energy to move freely within the crystal. Between these bands lies a 

forbidden gap, an energy range where electrons cannot exist in a pure crystal. In pure 

crystals, the process of an electron in the conduction band returning to the valence band 

by emitting a photon is inefficient. Additionally, the width of this gap results in photons 

with energy levels too high to produce visible light, making the scintillation process 
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ineffective for practical applications without specific modifications. 

 

 

Figure 3.2 Energy band structure and scintillation mechanism of an activated 

crystalline scintillator. [5] 

 

To enhance the probability of visible light emission through transition processes, 

inorganic scintillators are typically doped with a small amount of impurity, known as 

an activator. This activator creates specific sites within the crystal lattice and alters the 

structure of the energy bands in the pure crystal. Consequently, new energy states are 

formed within the forbidden gap, allowing electrons to transition more effectively from 

the conduction band to the valence band. These transitions release energy in the form 

of visible photons, thereby increasing the scintillation efficiency of the material. 

3.3.2 Scintillator Properties 

For scintillators used in radiation measurement, characteristics such as luminescence 

intensity and decay time are carefully considered based on the type of radiation being 

measured and the specific purpose of the measurement. This section provides an 

overview of these fundamental characteristics, and in the following section, we discuss 

the rationale behind selecting the GAGG(Ce) scintillator, taking these properties into 

account. 

1. Atomic Number and Density 

 Inorganic scintillators, primarily used for gamma-ray measurement, achieve 
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higher detection efficiency for gamma rays when composed of materials with a 

higher atomic number. This is due to an increased probability of interactions, 

particularly the photoelectric effect, which enhances the ability to detect gamma 

rays effectively. 

2. Luminescent Wavelength 

The emission spectrum of scintillator crystals varies depending on the type of 

crystal used. To maximize the utilization of scintillation light, this spectrum mus

t align closely with the wavelength range of the photodetector’s peak sensitivity. 

This matching optimizes the efficiency of light detection, ensuring that the 

maximum amount of scintillation light contributes to the detection process. 

3. Attenuation Constant 

The luminescence produced by a scintillator decay exponentially over time. 

Although many inorganic scintillators exhibit more than one decay component, in 

most cases, only the primary decay component is considered for practical purposes. 

If we denote the decay time of fluorescence as 𝜏 and the initial luminescence 

intensity as 𝐼₀ , the luminescence intensity 𝐼  at time 𝑡  after excitation can be 

expressed by Equation (3.1): 

 

                                                                 𝐼 =  𝐼0 ∙ 𝑒
−
𝑡
𝜏                                                  (3.1) 

 

This exponential decay behavior is crucial for determining the timing 

characteristics of scintillation detectors, as it influences the resolution and count 

rate capability in radiation detection applications. 

4. Luminescence Yield 

Luminescence yield refers to the number of photons emitted when 1 MeV of 

energy is deposited in the scintillator. This measure is critical for evaluating the 

efficiency of a scintillator material in converting the energy of incoming 

radiation into detectable light. High luminescence yield is desirable, as it leads to 

stronger signals and improves the precision and accuracy of radiation detection. 
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3.3.3 Selection of GAGG(Ce) scintillators 

Figure 4 illustrates the GAGG scintillator implemented in the mock-up experiments, 

selected due to its favorable properties tailored for BNCT-SPECT systems.  

Firstly, in systems utilizing inorganic scintillators, achieving optimal detection 

performance demands that the scintillator material possesses high density and a suitable 

atomic number, as these factors contribute directly to the material's gamma-ray 

detection efficiency by increasing photon interaction probabilities within the detector 

volume. The high atomic number enhances photoelectric interactions, which is 

particularly beneficial for detecting low-energy gamma rays. 

Secondly, achieving fine energy resolution is critical to accurately separate the 478 

keV gamma rays from the nearby 511 keV annihilation gamma rays, as overlapping 

peaks would otherwise compromise the reconstruction accuracy. Thus, it is essential for 

the material to exhibit high luminescence yield under gamma-ray interaction, 

generating a sufficient number of photons per incident gamma event. This reduces 

statistical variations in photon count, leading to improved energy resolution and 

allowing for a precise distinction between close energy peaks. 

Finally, another essential property for BNCT-SPECT applications is the scintillator's 

decay time. A short decay time minimizes signal overlap from successive events, which 

is vital for maintaining high count rates without substantial dead-time losses, especially 

under the high-flux conditions often encountered in clinical BNCT settings. The 

absence of intrinsic self-radiation further reduces background noise, which is beneficial 

for low-background measurements in medical imaging. 

Table 3.2 presents the properties of various inorganic scintillators [2]. For this study, 

we selected a Ce-doped GAGG (Gadolinium Aluminum Gallium Garnet; Gd₃Al₂Ga₃O₁₂: 

Ce) scintillator from among the options. Figure 3.5 shows the GAGG(Ce) scintillator 

crystal used in the experiments. GAGG(Ce) is a recently developed scintillator crystal 

and has several advantages compared to traditional scintillator crystals, such as NaI and 

CsI. Notably, it offers a high density of 6.63 g/cm³ [3] and excellent energy resolution 

of 6.3% at 662 keV for 137Cs gamma rays. 
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While other scintillators like LuAG(Pr) and LaBr₃(Ce) could also be potential 

candidates due to their comparable resolution and density, each presents limitations. 

LuAG(Pr), for instance, has a short emission wavelength of 312 nm, making it 

incompatible with the silicon-based photodetectors used for small-scale and arrayed 

configurations, such as the Multi-Pixel Photon Counter (MPPC) intended for this 

system. LaBr₃(Ce), on the other hand, is deliquescent, posing handling and durability 

challenges in typical lab or clinical environments. 

Therefore, GAGG(Ce) was chosen for this study due to its favorable properties and 

compatibility with the MPPC detection system, which will be explained in detail in the 

following section. In this research, a 3.5×3.5×30 mm3 GAGG(Ce) is used considering 

the spatial resolution is 5mm or less, and the statistical accuracy is less than 4.39% [4]. 

This selection allows for effective gamma-ray detection while ensuring system 

reliability and ease of maintenance in practical applications.  
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Figure 3.5 GAGG scintillator used in the experiments 

(Left: before shielding Right: after shielding) 

 

 

Table 3.2 Performance comparison of major inorganic scintillators 

Scintillator GAGG 

(Ce) 

NaI 

(Tl) 

CsI 

(Tl) 

LaBr3 

(Ce) 

LuAG 

(Pr) 

BGO 

Intensity [g/cm3] 6.63 3.67 4.53 5.08 6.7 7.13 

Luminous Intensity 

[photon/MeV] 

60,000 45,000 56,000 75,000 22,000 8,000 

Deliquescence No Yes Yes Yes No No 

Energy Resolution 

[%@Cs-662keV] 

6.3 5.6 5.7 2.6 4.2 12 

Luminescent 

Wavelength [nm] 

520 415 550 375 312 480 

γ-ray Stopping  

Power ρZeff4[×106] 

43 25 38 25 79 186 

 

3.3.4 Detection efficiency 

The performance of gamma-ray detectors is primarily evaluated through two key 

metrics: counting efficiency and energy resolution. To understand intrinsic efficiency, 

we first define counting efficiency. Counting efficiency represents the ratio between the 
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number of pulses counted by a radiation detector and the activity of the radiation source. 

A higher counting efficiency indicates a more effective detector, as it captures a larger 

portion of the emitted radiation, making it well-suited for sensitive and precise 

measurements. Intrinsic efficiency builds upon this by considering the detector's 

inherent ability to detect gamma-rays independently of external factors. 

All radiation detectors output pulse signals as a result of interactions between incident 

radiation and the sensitive volume within the detector. For charged particles, such as 

alpha and beta particles, interaction is inevitable once the particle enters the sensitive 

volume, generating a sufficient number of electron-hole pairs along its path. This 

interaction produces a detectable pulse signal. Therefore, in the case of charged 

particles, detection is guaranteed as long as the particle enters the sensitive volume, 

ensuring reliable detection within the specified range of the detector. 

In contrast, uncharged particles such as X-rays, gamma rays, and neutrons, due to their 

lack of charge and high penetration capability, often pass through the detector without 

interacting. Occasionally, they do interact with the detector, and the resulting charged 

particles generated from these interactions can then be detected. Consequently, the 

detection efficiency for uncharged particles is generally less than 100%, making it 

essential to precisely determine the counting efficiency. 

Counting efficiency can be categorized into two types: absolute efficiency (𝜀𝑎𝑏𝑠) and 

intrinsic efficiency (𝜀𝑖𝑛𝑡). Absolute efficiency depends not only on the characteristics 

of the detector but also on the distance between the radiation source and the detector. 

Absolute efficiency and intrinsic efficiency are defined by the following Equations (3.2) 

and (3.3), respectively: 

 

                                    𝜀𝑎𝑏𝑠 =
Number of pulses detected

Total radiation emitted by the source
                         (3.2) 

 

                       𝜀𝑖𝑛𝑡 =
Number of pulses detected

Radiation entering the detector’s sensitive volume
             (3.3) 

 

For an isotropic radiation source, these two types of efficiency are related, as shown 
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in Equation (3.4). Here, 𝛺 represents the solid angle subtended by the detector from 

the position of the source. As indicated by Equation (3.4), intrinsic efficiency is less 

dependent on the detector’s position relative to the source compared to absolute 

efficiency.  

 

                                                                  𝜀𝑖𝑛𝑡 = 𝜀𝑎𝑏𝑠 ∙
4𝜋

Ω
                                                   (3.4) 

 

In this measurement, the denominator of Equation (3.3) is determined using Equation 

(3.5). In Equation (3.5), 𝑆  represents the detector's entrance area, 𝑟  is the distance 

between the source and the detector, and Bq denotes the standard source activity. 

Additionally, 𝑇 is the half-life of the standard source, and 𝑡 indicates the elapsed time 

since the calibration date of the standard source. The emission ratio represents the 

fraction of gamma rays emitted per decay event of the standard source. 

 

     Radiation entering the detector’s sensitive volume

=
𝑆

4𝜋𝑟2
× 𝐵𝑞 × (

1

2
)

𝑡
𝜏
× emission ratio × 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚               (3.5) 

 

3.3.5 Energy resolution 

One of the key characteristics of a radiation detector is its energy resolution, which 

can be evaluated by observing the detector's response to a monoenergetic radiation 

source.  

Figure 3-6 shows the formal definition of the energy resolution of a detector. The 

width Γ(𝐸0) at half of the peak maximum is referred to as the Full Width at Half 

Maximum (FWHM). The detector’s ability to discriminate particles at the energy 

peak 𝐸0 is known as the energy resolution 𝑅(𝐸0), which is defined by Equation (3.6). 

Here, Γ(𝐸0) is expressed in units of energy, while 𝑅(𝐸0) is dimensionless. 
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                                                                     𝑅(𝐸0) =
Γ(𝐸0)

𝐸0
                                                 (3.6) 

 

 

Figure 3.5 Definition of the energy resolution of a detector. 

 

The factors affecting the energy resolution of a detector’s response can be categorized 

into the following three aspects: 

1. Statistical fluctuations in the number of electron-hole pairs created within the 

detector – These fluctuations arise from the inherent randomness in the particle 

interactions within the detector material. 

2. Electronic noise from the detector body or connected circuitry – This includes 

noise introduced by vibrations, electromagnetic fields, and other sources that 

can interfere with the signal processing. 

3. Imperfect creation of electron-hole pairs within the detector – This factor stems 

from irregularities in the semiconductor crystal structure, which can lead to 

incomplete or inconsistent electron-hole pair formation. 

Each of these factors contributes to broadening the detector’s response function, 

thereby impacting its energy resolution. 

Among these factors, the statistical fluctuations in the number of electron-hole pairs 
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(factor 1) are the most significant. This is because factors 2 and 3 contribute a baseline 

level of noise that cannot be eliminated, even with a perfectly constructed detector; they 

represent unavoidable fluctuations present in any detector signal. The number of 

electron-hole pairs generated within the detector due to radiation is inherently discrete 

and varies, even when the incoming energy is the same. This discrete nature of electron-

hole pair production introduces statistical noise, which affects the consistency of the 

signal and thus the energy resolution of the detector. 

Suppose radiation enters the detector, depositing an energy 𝐸. If the average energy 

required to produce one electron-hole pair in the scintillator is 𝜀 , then the average 

number of electron-hole pairs 𝑁 produced can be expressed by the following Equation 

(3.7): 

 

                                                                          𝑁 =
𝐸

𝜀
                                                            (3.7) 

 

In radiation measurements, 𝑁 is typically a large value, meaning that if it were the 

only source of signal fluctuation, the distribution of counts would follow a Gaussian 

distribution, as shown in Figure 3.5 (or a Poisson distribution if the count numbers are 

low). Thus, the relationship between the standard deviation 𝜎 and the measured count 

of electron-hole pairs 𝑁 is given by Equation (3.8): 

 

                                                                   𝜎 = √
𝐸

𝜀
= √𝑁                                                    (3.8) 

 

Additionally, a Gaussian distribution can be expressed as shown in Equation (3.9): 

 

                                                 𝐺(𝐸) =
𝐴

𝜎√2𝜋
exp(−

(𝐸 − 𝐸0)
2

2𝜎2
)                                  (3.9) 

 

From this distribution, theFWHM, denoted as Γ , can be determined using the 
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relationship given in Equation (3.10): 

 

                                                            Γ = 2√2𝑙𝑛2𝜎 ≈ 2.355𝜎                                       (3.10) 

 

Here, 𝐴  represents the peak area. Generally, there is a proportional relationship 

between the pulse height 𝐸0 and the number of electron-hole pairs 𝑁, which can be 

expressed as 𝐸0 = 𝐾𝑁 , where 𝐾 is a proportional constant. Given that the standard 

deviation 𝜎 of the pulse height spectrum is related to the pulse height, we can convert 

it to energy using Equation (3.8), resulting in: 𝜎 = 𝐾√𝑁 . Substituting this into 

Equation (3.10), the FWHM becomes: Γ = 2√2𝑙𝑛2𝜎 ≈ 2.355𝐾√𝑁. Equation (3.11) 

provides the energy resolution 𝑅 as a function of 𝑁, indicating how statistical variations 

influence the precision of energy measurements. 

 

                                                     𝑅 =
Γ

𝐸0
=
2.355𝐾√𝑁

𝐾𝑁
=
2.355

√𝑁
                                  (3.11) 

 

From Equation (3.11), we can see that the energy resolution 𝑅 depends solely on the 

number of counted electron-hole pairs 𝑁 ; the larger 𝑁  is, the better the resolution. 

However, in practice, individual electron-hole pair creation events are not entirely 

independent, and the variance in 𝑁 is smaller than what would be expected from a 

Poisson process. To quantify this deviation from the Poisson process in electron-hole 

pair generation, the Fano factor 𝐹 is introduced, which is defined by Equation (3.12). 

The Fano factor adjusts the expected variance, accounting for the sub-Poissonian 

behavior observed in real materials, thus providing a more accurate representation of 

statistical fluctuations in radiation detection. 

 

𝐹 =
𝑇ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 − ℎ𝑜𝑙𝑒 𝑝𝑎𝑖𝑟𝑠 𝑁

 𝑇ℎ𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑁 𝑖𝑛 𝑎𝑛 𝑖𝑑𝑒𝑎𝑙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

=
𝜎𝑎𝑏𝑠
2

𝑁
                                                                                                        (3.12) 
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Here, 𝜎𝑎𝑏𝑠  represents the standard deviation adjusted by the Fano factor 𝐹, and it is 

given by Equation (3.13): 

 

                                                                     𝜎𝑎𝑏𝑠 = √𝐹𝑁                                                    (3.13) 

 

The value of the Fano factor 𝐹 ranges between 0 and 1. Therefore, considering the 

Fano factor, the FWHM Γ  can be expressed in relation to the adjusted standard 

deviation 𝜎𝑎𝑏𝑠  as shown in Equation (3.14): 

 

                                                       Γ = 2√2𝑙𝑛2𝐾𝜎𝑎𝑏𝑠 ≈ 2.355𝐾𝜎𝑎𝑏𝑠                            (3.14) 

 

Additionally, from Equations (3.13) and (3.14), we can derive Equation (3.15): 

 

                                                                Γ = 2.355𝐾√𝐹𝑁                                                 (3.15) 

 

The energy resolution 𝑅 , as determined by the Fano factor, is equivalent to the 

expression given in Equation (3.6). 

 

                                                 𝑅 =
Γ

𝐸0
=
2.35𝐾√𝑁√𝐹

𝐾𝑁
= 2.355√

𝐹

𝑁
                           (3.16) 

 

This 𝑅  is known as the "Fano limit." In scintillation detectors, the value of 𝐹  is 

typically 1. In this study, we use Γ , which is more intuitive for assessing energy 

resolution, as the primary parameter. By rearranging Equation (3.15) using Equation 

(3.8) and taking the logarithm of both sides, we obtain Equation (3.17), 

 

                                                       𝑙𝑜𝑔10(Γ) =
1

2
𝑙𝑜𝑔10(E) + 𝐶                                       (3.17) 
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where 𝐶  is a constant independent of 𝐸 . This transformed expression allows for a 

simplified analysis of energy resolution using Γ as a key parameter. 

This relationship highlights that the statistical variation in the signal, represented by 

the standard deviation, is proportional to the square root of the number of detected 

electron-hole pairs. This variance influences the precision of energy measurements 

within the detector. 

3.4 MPPC 

MPPC stands for Multi-Pixel Photon Counter, a type of device known as a Si-PM 

(Silicon Photomultiplier). It is a photodetector that operates in Geiger mode, utilizing 

an array of avalanche photodiodes (APDs) arranged in multiple pixels to enhance 

photon detection capabilities. The main characteristics of MPPCs are as follows, with 

an image of the MPPC used in this study shown in Figure 3.6. [6] 

 

 

Figure 3.6 MPPC dimensional outlines 

 

The main features of MPPCs are as follows: 

1. Compact and Cost-Effective: MPPCs are small in size and relatively 

inexpensive compared to other photodetectors. 

2. Operates at Low Bias Voltage: They require only a low bias voltage for 
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operation, making them energy-efficient and easy to handle. 

3. High Quantum Efficiency: MPPCs have a high quantum efficiency, 

enabling efficient photon detection. 

4. Fast Response: They exhibit high-speed response, suitable for applications 

requiring rapid signal processing. 

5. Resistant to Magnetic Fields: MPPCs are less affected by magnetic fields, 

making them reliable in environments with strong electromagnetic interference. 

These characteristics make MPPCs highly versatile and effective for use in photon 

detection applications, including those in this study. 

 

3.4.1 Operating principle 

Before explaining the operating principle of the MPPC, it is essential to understand 

the fundamental component behind its operation: the APD (Avalanche Photodiode). An 

APD is a highly sensitive photodiode that amplifies photocurrent by applying a specific 

reverse voltage. While the mechanism for generating photocurrent in an APD is similar 

to that of a conventional photodiode, the key difference lies in the APD’s ability to 

multiply the generated charge carriers, enhancing its sensitivity compared to standard 

photodiodes. 

When light with energy exceeding the bandgap enters a photodiode, electron-hole 

pairs are generated as a result of the light energy. When a reverse voltage is applied to 

a p-n junction, the electron-hole pairs produced within the depletion region drift under 

the influence of the electric field. The drift velocity of these carriers increases as the 

electric field strengthens. At a certain field strength, known as the breakdown voltage, 

the frequency of collisions between carriers and the crystal lattice increases, reaching a 

point where it saturates. 

As the electric field further increases, carriers that avoid collisions with the lattice gain 

very high energy. When such high-energy carriers eventually collide with the crystal 

lattice, they generate additional electron-hole pairs, a process known as ionization. This 

ionization can trigger a chain reaction where newly created electron-hole pairs 
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themselves initiate further ionization, a phenomenon referred to as avalanche 

multiplication. A photodiode that amplifies the signal via avalanche multiplication is 

known as an APD. This process enables APDs to achieve significant signal 

amplification, making them highly sensitive detectors for low-level light signals. [7][8] 

When an APD is operated with a reverse voltage exceeding the breakdown voltage, it 

detects a fixed signal regardless of the number of incident photons. This phenomenon 

is known as Geiger discharge, and the operation of an APD under such a voltage is 

referred to as Geiger mode. To stop the Geiger discharge and prepare the APD for 

detecting the next photon, the operating voltage must be reduced. 

To achieve this, a quenching resistor is connected in series with the APD, as shown in 

Figure 3.7. During Geiger discharge, the current generated causes a voltage drop across 

the quenching resistor, which lowers the APD's operating voltage, effectively halting 

the discharge. The output current from Geiger discharge has a sharp rising edge, 

forming a pulse-like signal, while the falling edge of the output current, regulated by 

the quenching resistor, has a gradual slope, resulting in a smoothed pulse shape. 

This quenching mechanism ensures the APD is ready for subsequent photon detection, 

making it suitable for applications requiring high sensitivity and precise detection 

timing. 



 58 

 

Figure 3.6 Structure of MPPC 

 

3.4.2 MPPC Properties 

The MPPC has various characteristics, some of which are highlighted below. 

1.  Gain 

The gain 𝑀 of an MPPC is defined as the ratio of the charge 𝑄 generated by a single 

pixel detecting one photon to the elementary charge 𝑒. It can be expressed by Equation 

(3.18): 

 

                                                                               𝑀 =
𝑄

𝑒
                                                    (3.18) 

 

Here, 𝑒 is the elementary charge, given as 1.60×10−19 C. This gain represents the level 

of signal amplification achieved by the MPPC for detecting individual photons. 

The charge 𝑄 depends on the reverse voltage VR and the breakdown voltage VBR, as 

expressed in Equation (3.19): 

 

Geiger-mode 

APD pixel 

Quenching 

resister 
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                                                                𝑄 = 𝐶 × (𝑉𝑅 − 𝑉𝐵𝑅)                                          (3.19) 

 

where 𝐶 represents the capacitance of a single pixel. This relationship indicates that the 

charge generated by each pixel is proportional to the difference between the reverse 

voltage and the breakdown voltage, with the pixel capacitance acting as a scaling factor. 

 Equations (3.18) and (3.19) indicate that the gain 𝑀 increases with both a larger pixel 

capacitance 𝐶  and a higher reverse voltage 𝑉𝑅. This means that the amplification 

capability of the MPPC is enhanced when the capacitance of each pixel is greater or 

when a higher reverse voltage is applied, as both factors contribute to a larger 

charge 𝑄 generated per detected photon. 

2.  Dark Count 

In an MPPC, pulses can also be generated by thermally produced carriers, which are 

known as dark pulses. These thermally induced carriers are amplified to a consistent 

signal level and are observed alongside actual signals, potentially causing detection 

errors. The rate of dark counts increases with rising ambient temperature, as higher 

temperatures promote the generation of thermal carriers. This dark count rate is an 

important factor to consider in applications requiring high sensitivity and low noise. 

3. Crosstalk 

In an MPPC, when a single photon enters one pixel, it is sometimes possible to observe 

two or more pulses. This occurs when secondary photons generated during the 

avalanche process in one pixel enter an adjacent pixel, triggering an additional 

avalanche and causing a detectable signal in the neighboring pixel. This phenomenon 

is known as optical crosstalk. 

The probability of crosstalk is largely independent of temperature within the operating 

temperature range but increases with higher reverse voltage. As the reverse voltage rises, 

the likelihood of secondary photons inducing signals in neighboring pixels also rises, 

thereby increasing the frequency of crosstalk events. This effect must be managed to 

maintain signal accuracy in high-sensitivity applications. 

4. Photosensitivity and Detection Efficiency 

Two key characteristics that indicate the optical detection sensitivity of an MPPC are 
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photosensitivity and detection efficiency. Photosensitivity is defined as the ratio of the 

MPPC’s output current to the amount of incident light when continuous light is directed 

onto the MPPC. In contrast, detection efficiency refers to the ratio of detected photons 

to the number of incident photons when pulsed light is used for photon counting with 

the MPPC. 

Since photosensitivity is proportional to the gain, it increases with the reverse voltage 

applied to the MPPC. However, it is essential to note that photosensitivity includes 

contributions from effects such as crosstalk, which may artificially enhance the 

measured sensitivity. Therefore, careful interpretation is required when evaluating 

photosensitivity, especially in applications where high precision is necessary. 

3.5 MCA 

The MCA8000D is a state-of-the-art, high-performance multichannel analyzer (MCA) 

developed by Amptek. It serves as an upgrade to the MCA8000A, which has been a 

reliable tool in spectroscopic applications for over 15 years. The MCA8000D 

incorporates modern digital signal processing technology and features contemporary 

high-speed USB and Ethernet interfaces, addressing the obsolescence issues associated 

with the MCA8000A's architecture.  

An MCA is a critical component of a complete instrumentation system, widely used 

in applications requiring detailed signal analysis. Typically, a sensor generates a series 

of current pulses as its signal in response to incoming radiation or particles. Signal 

processing electronics then shape these pulses into forms where the peak voltage 

corresponds directly to a quantity of interest, such as the deposited energy or particle 

size. 

The MCA processes these shaped pulses and outputs a pulse height spectrum, which 

is essentially a histogram of pulse heights. This spectrum provides valuable insights 

into the distribution of energies or other properties of the detected particles, making the 

MCA an essential tool in spectroscopic and particle detection applications. 

The MCA operates by detecting the peak voltage of each shaped pulse and converting 

it into a digital value. This digital value is proportional to the peak voltage of the pulse. 
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For instance, with a 10-bit resolution, the MCA divides the full voltage scale into 1024 

channels. For a gain setting of 1V full scale, a pulse with a peak voltage of 0.5V would 

be assigned to channel 512. 

Each time a pulse's peak falls into a particular channel, the MCA increments the 

counter for that channel. The resulting array of integer counter values constitutes 

the pulse height spectrum, which is the MCA's primary output. This spectrum is either 

displayed directly or transmitted to spectrum processing software for further analysis. 

In addition to the histogram, the MCA provides supplementary data, including the 

total measurement time, a dead time correction factor, and the total number of counts 

detected. These outputs enhance the utility of the MCA in applications requiring precise 

spectroscopic measurements. [9] 

Figure 3.7 shows the dimensions of the MCA used in this study.  

 

 

Figure 3.7 Dimensions of MCA8000D 

 

The MCA8000D incorporates a threshold parameter that is configurable through 

software and plays a key role in the peak detection logic. For a pulse to be recognized 
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as having a peak, its height must exceed the threshold value, and then it must fall below 

the peak by the threshold amount. Typically, the MCA only records pulses that are 

above this threshold. However, in the case of bipolar pulses, it is possible for below-

threshold pulses to be recorded. 

Additionally, the MCA8000D features a separate parameter known as the LLD (low-

level discriminator). Unlike the threshold parameter, the LLD functions strictly as a 

lower cutoff, ensuring that only pulse heights exceeding this limit are recorded. This 

dual-threshold system enables the MCA8000D to filter unwanted low-amplitude 

signals effectively while maintaining flexibility for various signal processing scenarios. 

In our experimental system, it is common practice to measure the spectrum of a sample 

containing at least two peaks of known energies. These known energies are used to 

correlate the measured centroids of the peaks, allowing for the calibration of not only 

the MCA but also the entire signal processing chain, including the detector, preamplifier, 

and shaping amplifier. 

Since the characteristic energies of X-rays and gamma rays are universal physical 

constants, there is no requirement for NIST-traceable calibrations; the system is 

calibrated against these fixed constants. However, it is essential to have a spectrum 

containing peaks with known energies to perform this calibration accurately. This 

approach ensures that the energy scale of the system is correctly aligned with the 

physical properties of the incident particles.  

By combining the MCA functionality described in this section with the GAGG 

detector discussed in Section 3.3.3 and the explanation of energy resolution in Section 

3.3.5, the energy resolution of the GAGG detector used in this experiment can be 

determined. The experimental results for the FWHM, which is for the energy resolution, 

are presented in Table 3.3, with the corresponding graph depicted in Figure 3.8. 
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Table 3.3 FWHM measurement results 

Source E/MeV R FWHM 

Co 1.33249 0.039347 0.05243 

Eu 1.40801 0.038305 0.053934 

Cs 0.66166 0.05507 0.036438 

Na 0.551 0.060009 0.033065 

 1.27454 0.040207 0.051246 

Ba 0.356 0.073259 0.02608 

 

 

 

Figure 3.8 Measurement results of FWHM 

 

The relationship between FWHM and energy observed in our experiments is 

expressed in Equation (3.20). 

 

                                                                   𝛤 = 0.0451𝐸0.5625                                          (3.20) 

 

3.6 Design of phantom 

Figure 3.9 illustrates the human head phantom used in the experiments. A cylindrical 
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phantom with a diameter of 20 cm and a height of 20 cm, made of acrylic and water, 

was developed. This phantom was placed on a stage that allowed for free adjustment of 

its position and rotation. Since the position of the detector could not be altered due to 

the setup of the experimental system, the stage was utilized to change the position of 

the simulated tumor, effectively replicating the position change of the detector. An 

adjustable acrylic platform was incorporated into the phantom to enable precise 

placement and height adjustment of the gamma-ray source, simulating a tumor. The 

right-hand portion of the figure depicts the Monte Carlo N-Particle 5 (MCNP5) 

simulation model of the experimental system. MCNP, a general-purpose three-

dimensional Monte Carlo N-particles transport code, is employed to simulate particle 

motion in various environments, replicating natural conditions. Further details on 

MCNP5 will be provided in Chapter 4. 

 

Figure 3.9 Phantom used in the experiments 

 

In this study, we adopted a grid system of n=50, representing the image area, and 

positioned the head phantom within this grid. As shown in Figure 3.10, the black region 

represents the observation area, a square with a side length of 20 cm, resulting in a pixel 

size of 0.42 cm2. The white circle denotes the border of the phantom, which is made of 

acrylic and has a thickness of 0.3 cm. This configuration provides a detailed framework 

for the imaging and analysis of gamma-ray distributions within the phantom. 
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Figure 3.10 Head phantom placed in the observation area 

 

3.7 Experimental procedure 

Based on the head constructed above, the gamma-ray source can be positioned within 

the brain region to simulate cancer cells. For instance, as shown in Figure 3.11, the red 

point represents the gamma-ray source, while the green blocks indicate the GAGG 

scintillator array. The gray area corresponds to the brain, with a diameter of 48 pixels. 

This setup enables a realistic simulation of gamma-ray emissions and their detection 

within the brain region of the phantom. 
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Figure 3.11 A simple schematic view of the detection process for experiments with 

moving angle θ=90 degrees and n=50.  

 

During treatment, the patient is positioned in close contact with the neutron exit wall, 

making it impractical to acquire projections from a full 360 degrees. Instead, the 

projection angle is typically limited to less than 180 degrees. Furthermore, the detector's 

movement is constrained to a 90-degree range due to the physical setup, with the 

detector angle fixed less than 90 degrees. 

Using the Bayesian estimation method, projections are taken m times at every degree 

increment defined as 𝛥𝜃 around the patient's head. For instance, as shown in Figure 

3.11, with 𝑛 = 50, the head is divided into 2500 pixels. This means that each detector 

row, comprising 50 detectors, captures 50 measurements at evenly distributed angles. 

By detecting the emitted gamma rays in this manner, we can reconstruct 𝑛 × 𝑛 pixel 

data from 𝑚 × 𝑛 projection data using the Bayesian estimation method. 

This process involves the calculation of a response function 𝐑, which defines the 
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relationship between the detected projection data and the reconstructed image data, as 

discussed in Chapter 2. This method provides a practical and efficient approach to 

image reconstruction under the constrained conditions of BNCT treatment. 

 

 

Figure 3.12 Comparison between experimental result and MCNP result 

 

We designed and constructed an experimental system and conducted experiments to 

evaluate its performance. MCNP5 simulations were performed to generate limited-

view-angle projection data and compute the response function, enabling successful 

image reconstruction. The experimental system was developed to explore experimental 

specifications for a real BNCT-SPECT system and to validate the measurement 

system's response function, as evaluated by MCNP5. 

The gamma-ray spectra obtained from our experiment and MCNP simulation are 

shown in Figure 3.12. The response of 137Cs was successfully reproduced using the 

MCNP code by placing the 137Cs source at the center of the phantom and detecting 

gamma rays for 2 hours. This confirmed that MCNP can effectively be used in this 

study to evaluate the system's response functions. 

It became evident that directly simulating the real BNCT-SPECT system using the 
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experimental system poses significant challenges. One major limitation is the absence 

of background noise in the experimental system, which fails to replicate the 

complexities of real-world conditions. Moreover, the MCNP simulations do not account 

for background noise, further reducing the accuracy of system replication. 

Additionally, the experimental system lacks the source intensity required to match the 

conditions of an actual BNCT-SPECT system. This limitation significantly impacts its 

ability to achieve the necessary accuracy. To address these issues, we established a 

mock-up system with statistical accuracy and a signal-to-noise ratio comparable to real 

BNCT-SPECT systems. For this purpose, a 137Cs and a 60Co source were employed to 

simulate the gamma rays produced during real treatment, providing more representative 

conditions for testing and validating the system's response. The details of this improved 

experimental mock-up system will be discussed in Chapter 5. 

3.7 Summary 

Chapter 3 provides a comprehensive description of the experimental system designed 

for this study. It begins with an Introduction that outlines the purpose and scope of the 

experimental system, emphasizing its role in testing and validating the performance of 

key components for BNCT-SPECT. 

The Configuration of the Experimental System describes the overall structure and 

integration of the system, focusing on the interconnection of various components to 

achieve accurate gamma-ray detection. 

The chapter then delves into the GAGG Scintillator, a core component of the detection 

system. It first introduces inorganic scintillators and highlights their fundamental 

properties, such as density, energy resolution, and luminescence efficiency. Section 

3.3.3 explains the rationale for selecting GAGG(Ce) scintillators, comparing their 

performance with other options like NaI(Tl) and CsI(Tl). The chapter further evaluates 

the detection efficiency and energy resolution of the GAGG(Ce) scintillator, providing 

experimental results and discussions on its suitability for BNCT-SPECT. 

The MPPC component is then detailed, starting with an explanation of its operating 

principle based on avalanche photodiode technology and Geiger mode. Section 3.4.2 
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highlights MPPC properties, such as high gain, fast response, and low susceptibility to 

magnetic fields.  

The MCA describes the multichannel analyzer's role in processing and analyzing the 

signals generated by the MPPC, with details on its digital architecture and spectral 

processing capabilities. 

The Design of the Phantom outlines the human head phantom used to simulate 

gamma-ray emissions, including its material composition, dimensions, and adaptability 

for positioning the source. 

Finally, the Experimental Procedure provides a step-by-step explanation of how the 

experiments were conducted, detailing the methodologies used for data collection and 

analysis. This section integrates all components into a cohesive experimental workflow, 

ensuring accurate and reproducible results. 

This chapter lays the foundation for evaluating the performance of the BNCT-SPECT 

system and guides the development of improved detection methodologies in subsequent 

chapters. 
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Chapter 4 MCNP5 

4.1 MCNP 

As mentioned in Section 3.6, MCNP stands for A General Monte Carlo N-Particle 

Transport Code [1]. It is a radiation transport simulation code widely used for 

calculating particle transport and interactions in various environments. 

MCNP was developed in the mid-1970s by the Los Alamos National Laboratory in 

the United States. Initially, it was designed to simulate the transport of neutrons and 

photons. Starting with the fourth version, MCNP4, it was expanded to include electron 

transport calculations. Currently, the code has been updated to version MCNP6. For the 

simulations in this study, version 5, MCNP5, was used. 

MCNP is widely utilized across various fields for design and safety evaluations, such 

as for nuclear reactors, accelerators, and satellites. The code supports a broad energy 

range for calculations: neutrons from 10−5 eV to 20 MeV (up to 150 MeV for certain 

isotopes), photons from 1 keV to 100 GeV, and electrons from 1 keV to 1 GeV. These 

simulations rely on evaluated nuclear data libraries such as JENDL and ENDF for 

transport calculations. 

4.2 Monte-Carlo method 

The transport calculations in MCNP are performed using the Monte Carlo method, a 

numerical simulation technique that tracks individual particle interactions to 

statistically solve complex transport problems. The Monte Carlo method, invented by 

mathematicians J. von Neumann and S. Ulam, was first formally introduced in 1949 in 

a paper titled "The Monte Carlo Method" by N. Metropolis and S. Ulam [2][3]. Initially 

developed to study neutron diffusion in atomic nuclei, the method has since found 

applications in diverse fields such as transportation, financial engineering, and physics. 

In essence, the Monte Carlo method involves performing numerous repetitions of an 

experiment or simulation using random numbers within a computer. Random numbers 

are employed because many real-world phenomena—such as radiation from 

radioactive isotopes, traffic congestion on national highways, or fluctuations in 



 72 

property prices—are inherently random. By utilizing random sampling, the Monte 

Carlo method can generate solutions that closely approximate real-world behaviors, 

making it a powerful tool for solving complex problems.  

The primary advantage of the Monte Carlo method lies in the simplicity of its 

calculation algorithm. In traditional methods, if the desired outcome depends on a 

function of several random variables (e.g., radiation energy or direction), a specific 

program must be written for each stochastic event (e.g., elastic or inelastic scattering). 

In contrast, the Monte Carlo method simplifies this process by using random sampling 

based on a probability distribution defined by the random variables. Radiation events, 

characterized by parameters such as energy and position, are repeatedly simulated 

according to a physical model (e.g., the experimental system). The average result from 

these simulations provides an approximate solution. 

This approach eliminates the need to solve complex equations like the Boltzmann 

transport equation directly. Instead, the Monte Carlo method offers a computationally 

efficient way to obtain approximate solutions that closely represent real-world 

phenomena. 

The Monte Carlo method is used for replicating statistical processes, such as the 

interactions of nuclear particles with materials, and is particularly effective for solving 

complex problems that are beyond the scope of deterministic computational methods. 

This approach involves sequentially simulating the individual probabilistic events that 

make up a process. By statistically sampling from the probability distributions that 

govern these events, the method provides a comprehensive representation of the overall 

phenomenon. 

Due to the large number of trials required to accurately model these processes, 

simulations are typically conducted on digital computers. The statistical sampling relies 

on the use of random numbers, akin to rolling dice in a casino, which is why the 

technique is named "Monte Carlo." 

In particle transport, the Monte Carlo method offers a highly realistic numerical 

experiment. It involves tracking numerous particles individually, from their initial 

emission to their eventual termination in outcomes such as absorption or escape. At 



 73 

each step, transport data is used to randomly sample probability distributions, 

determining the particle's behavior and trajectory. This step-by-step simulation ensures 

a detailed and accurate depiction of particle interactions. 

 

Figure 4.1 Various particles random walks 

 

Figure 4.1 illustrates the random trajectory of a neutron interacting with a slab of 

material capable of undergoing fission. Random numbers between 0 and 1 are generated 

to determine the type and location of interactions based on the governing physics and 

probabilistic transport data for the materials involved. [4] 

In this example, the neutron undergoes a collision at event 1, where it is scattered in a 

randomly selected direction, derived from the physical scattering distribution. A photon 
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is also produced during this interaction and is temporarily stored, or banked, for later 

analysis. At event 2, a fission reaction occurs, resulting in the termination of the initial 

neutron and the creation of two new neutrons and one photon. One of these neutrons 

and the photon are banked for subsequent analysis. 

The first fission neutron is captured and terminated at event 3. The banked neutron is 

then retrieved and, through random sampling, is shown to leak out of the slab at event 

4. The photon produced during the fission event collides at event 5 and subsequently 

escapes the slab at event 6. Finally, the photon generated at event 1 is tracked and 

captured at event 7. 

It is important to note that MCNP retrieves banked particles using a last-in, first-out 

(LIFO) method, meaning the most recently stored particle is the first to be processed. 

This example demonstrates the sequential random sampling process that underpins the 

Monte Carlo method in particle transport simulations. 

This neutron history is now complete. As more individual histories are simulated, the 

distributions of neutrons and photons become increasingly well-defined. The quantities 

of interest, as specified by the user, are systematically tallied during the simulation. 

Additionally, the statistical precision (uncertainty) of the results is calculated, providing 

an estimate of the reliability of the computed data. 

4.3 Tallies 

 We can configure MCNP to perform diverse tallies, such as those for particle currents, 

flux distributions, and energy deposition. In most scenarios, these tallies are normalized 

per initial particle, with exceptions primarily in cases involving criticality sources. 

Particle currents can be recorded based on directionality and calculated for any 

combination of surfaces, surface segments, or an aggregate of surfaces within the 

simulation. Additionally, the code supports tallying charges specifically for electrons 

and positrons. It also supports flux tallies across various configurations, including 

specific surfaces, surface segments, aggregated surfaces, cells, cell segments, or 

combinations of cells. Standard tallies include flux measurements at designated 

detector points or rings, as well as radiography detectors. Additionally, fluxes can be 
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recorded on a mesh grid overlaid on the problem's geometry. Energy deposition can be 

assessed using heating and fission tallies, which provide energy values for specified 

cells. A pulse height tally records the energy distribution of pulses generated in a 

detector by radiation. Particles can also be flagged upon crossing specified surfaces or 

entering designated cells, and their contributions to the tallies are reported separately. 

 MCNP enables the calculation of a wide range of parameters, such as the number of 

fissions, absorption events, total helium production, or any product of the flux and 

approximately 100 standard ENDF reaction types, along with several nonstandard 

reactions, using its tally system. In essence, any quantity expressed in the form 𝐶 =

∫ 𝜙(𝐸)𝑓(𝐸) 𝑑𝐸  can be calculated using MCNP's tally capabilities. 

Here, 𝜙(𝐸) represents the energy-dependent fluence, while 𝑓(𝐸) can be any product or 

summation of values derived from the cross-section libraries or a specified response 

function. Tallies in MCNP can account for line-of-sight attenuation, allowing for more 

precise simulation results. It is possible to calculate tallies for specific segments of cells 

or surfaces without incorporating these segments directly into the problem geometry. 

All tallies are user-defined as functions of time and energy and are normalized per initial 

particle. Similarly, mesh tallies are energy-dependent and are also normalized on a per-

particle basis, ensuring consistency across simulations. 

 

Table 4.1 Tally mnemonic 

 
 

Table 4.2 Tally quantities scored 
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MCNP offers seven standard tally types shown in Table 4.1, encompassing seven 

neutron tallies, six photon tallies, and four electron tallies. These standard tallies serve 

as the foundation for simulation data collection and can be customized extensively by 

the user to suit specific requirements. 

All tally results are normalized on a per-starting-particle basis, with the exception 

of KCODE criticality calculations, where tallies are normalized per fission neutron 

generation. To facilitate the interpretation of results, MCNP includes a tally 

plotter feature, which provides graphical visualizations of the tally outputs, making it 

easier to analyze and present the data. In this study, we utilized the F8 tally, which is 

used for energy deposition in detectors. 

4.4 Variance reduction 

The estimated relative error 𝑅  in MCNP simulations is inversely proportional 

to 1/√𝑁, where 𝑁 represents the number of particle histories. Since the computational 

time 𝑇 is directly proportional to 𝑁, the relationship 𝑅 = 𝐶/√𝑇  holds, where 𝐶 is a 

positive constant. 

Reducing 𝑅 can be achieved in two ways: (1) increasing the computational time 𝑇 or 

(2) decreasing the constant 𝐶 . However, practical constraints, such as limited 
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computational resources, often restrict the first option. For instance, 

achieving R=0.10 might take 2 hours, but reducing 𝑅  to 0.01 would require 200 

hours—a prohibitive increase. 

To address this, MCNP provides specialized variance reduction techniques to 

minimize 𝐶, which represents the variance divided by the number of samples. The value 

of 𝐶 depends on the tally choices and sampling strategy, making variance reduction an 

essential tool for improving simulation efficiency without excessive computational 

costs. 

4.4.1 Tally choices 

An example of how the tally choice impacts results can be seen in estimating the 

fluence within a cell. This can be achieved using either a collision estimates or a track 

length estimate. 

The collision estimate involves tallying 1/∑  𝑡  (where ∑  𝑡  is the macroscopic total 

cross-section) at each collision within the cell. Conversely, the track length 

estimate calculates the fluence by tallying the distance a particle travels inside the cell. 

When ∑  𝑡 is very small, collisions become infrequent, but each collision contributes 

disproportionately large tallies, leading to high variance in the results. In contrast, the 

track length estimate contributes a tally for every particle that passes through the cell, 

regardless of whether a collision occurs. This difference significantly reduces variance 

in most scenarios. 

For this reason, MCNP includes track length tallies as a standard option, while collision 

tallies are generally not standard, except when used for specific calculations like 

estimating 𝑘𝑒𝑓𝑓 . This preference reflects the efficiency and reliability of track length 

tallies in minimizing variance. 

4.4.2 Variance reduction tools in MCNP 

Variance reduction techniques in MCNP can be categorized into four distinct classes, 

ranging from straightforward methods to more advanced and complex approaches. 

These techniques are designed to enhance simulation efficiency by reducing statistical 



 78 

variance without requiring an impractical increase in computation time. 

 

1. Truncation Methods are the most straightforward variance reduction techniques. 

These methods accelerate calculations by excluding portions of the phase space that 

have minimal impact on the solution. A common example is geometry truncation, 

where irrelevant sections of the geometry are omitted from the model. 

In MCNP, specific truncation methods include: 

• Energy cutoff: Eliminates particles with energies below a specified 

threshold, as their contribution to the tally is negligible. 

• Time cutoff: Stops tracking particles after a certain time, focusing only on 

interactions within the timeframe of interest. 

These truncation methods reduce the computational load by streamlining the 

simulation to focus on the most significant aspects of the problem. 

 

2. Population Control Methods are variance reduction techniques that use particle 

splitting and Russian roulette to regulate the number of samples tracked in different 

regions of phase space. These methods aim to concentrate computational effort on 

regions of greater importance while reducing it in less significant areas. 

In important regions, particles are split into multiple lower-weight samples to increase 

statistical sampling. Conversely, in less important regions, fewer particles are tracked, 

but they are assigned higher weights. This approach ensures the solution remains 

unbiased through proper weight adjustments. 

Specific Population Control Methods in MCNP include: 

• Geometry splitting and Russian roulette: Particles entering critical regions 

are split into several tracks, while those in less critical regions may be 

eliminated probabilistically. 

• Energy splitting/roulette: Particles are split or eliminated based on their 

energy levels to emphasize specific energy ranges. 

• Time splitting/roulette: Particles are split or terminated based on their time 

of existence, focusing on relevant timeframes. 
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• Weight cutoff: Particles with weights below a threshold are eliminated. 

• Weight windows: A range of acceptable weights is defined, and particles 

are adjusted to fit within this range using splitting or roulette. 

These methods allow simulations to achieve high efficiency and reduced variance by 

tailoring sampling efforts to the most impactful regions of the problem. 

 

3. Modified Sampling Methods adjust the statistical sampling process to increase the 

number of meaningful tallies per particle. In Monte Carlo simulations, particles can be 

sampled from distributions that differ from their physical probabilities, provided that 

their weights are appropriately adjusted to maintain the unbiased nature of the solution. 

With these methods, particles are preferentially directed toward desired regions of 

phase space—such as specific directions, time intervals, energy ranges, or collision 

locations/types—thereby enhancing the efficiency of the simulation. This targeted 

sampling ensures that the simulation focuses on regions or events of higher significance. 

Modified sampling techniques available in MCNP include: 

• Exponential transform: Alters the sampling of particle paths to favor 

specific directions or reduce particle attenuation in exponential decays. 

• Implicit absorption: Avoids particle termination after capture by 

redistributing the particle's weight to other interactions, increasing the tally 

contribution. 

• Forced collisions: Ensures that a particle interacts within a specified 

region, even if the natural probability of collision is low. 

• Source variable biasing: Adjusts the initial sampling of source particles to 

favor certain energies, directions, or positions. 

• Neutron-induced photon production biasing: Enhances the sampling of 

photon production events caused by neutron interactions. 

These methods allow the simulation to gather more statistically relevant data from 

fewer particle histories, significantly improving computational efficiency while 

maintaining accuracy. 
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4. Partially-Deterministic Methods are the most complex type of variance reduction 

techniques, as they bypass the standard random walk process by incorporating 

deterministic-like strategies. These methods leverage approaches such as next-event 

estimators or control of the random number sequence to improve computational 

efficiency and accuracy. 

In MCNP, partially-deterministic methods include: 

• Point Detectors: Estimate the contribution of radiation to a specific point 

in space by calculating the direct path from the source to the point without 

relying solely on random sampling. 

• DXTRAN: Creates a deterministic path for particles to travel toward a 

predefined region while preserving randomness in other aspects of the 

simulation, allowing for focused analysis of specific areas. 

• Correlated Sampling: Uses a controlled random number sequence to 

analyze variations between different scenarios or parameters efficiently, 

reducing variance in comparative studies. 

These advanced methods are particularly useful for problems requiring precise 

calculations in specific regions or conditions where traditional random sampling would 

be inefficient or yield high variance. 

Variance reduction techniques, when applied correctly, can significantly enhance the 

efficiency of calculations, allowing users to achieve accurate results with reduced 

computational time. However, improper use of these techniques can lead to erroneous 

results with seemingly good statistical precision, often providing few indications that 

the results are flawed. 

Certain variance reduction methods are broadly applicable and relatively 

straightforward to implement, minimizing the risk of misuse. Others, however, are 

highly specialized and carry a greater risk of errors if not applied carefully. 

In many cases, variance reduction is not merely a tool to accelerate simulations but an 

essential requirement to obtain results at all. For instance, simulations involving deep 

penetration scenarios or pipe detector problems would be computationally 

prohibitive—running slower by factors of trillions—without the application of effective 
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variance reduction strategies. [4] 

4.5 Simulation results with MCNP 

Based on the MCNP description provided above, we utilized MCNP in this study to 

simulate and replicate the actual BNCT-SPECT process.  

 

Figure 4.2 Ideal PHS for BNCT-SPECT 

 

Figure 4.2 shows the ideal Pulse Height Spectrum (PHS) for the BNCT-SPECT system. 

At 478 keV, the red region represents the background (BG), while the remainder of the 

peak corresponds to the net count. The background originates from gamma rays emitted 

due to various reactions within the experimental system. 

In addition to the immediate 478 keV gamma rays generated from the 10B(n, α)7Li 

reaction, which reflects the therapeutic effect, background gamma rays are produced by 

other neutron interactions. These include gamma rays from reactions such as 1H(n, γ)2H, 

155Gd(n, γ), 157Gd(n, γ), and natGd(n, γ) within GAGG and water. All these gamma rays 

contribute to the background and are a result of neutron interactions. 

In this study, neutrons are not utilized, so alternative methods are required to simulate 

the background generated by neutron interactions. A 137Cs source is employed to 
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simulate cancer cells, with the gamma rays produced by 137Cs representing those 

emitted during actual BNCT treatments. Additionally, a 60Co source is used to generate 

background gamma rays, replicating the background conditions observed in real BNCT 

scenarios. 

To evaluate the performance of the BNCT-SPECT system, it is crucial to ensure that 

the statistical accuracy remains below 5%. Statistical accuracy is an indicator of the 

reliability of the 478 keV gamma rays produced by the 10B(n,α)7Li reaction obtained 

from calculations. A lower value of statistical accuracy indicates more reliable results. 

The method for determining this statistical accuracy is described below. 

When the counting time is consistent, the net count 𝑁𝑛𝑒𝑡  can be expressed using the 

total count 𝑁𝑡𝑜𝑡𝑎𝑙  and the background count 𝑁𝐵𝐺 , as shown in Equation (4.1). 

Additionally, the standard deviation of the net count, 𝜎𝑛𝑒𝑡, is calculated using Equation 

(4.2) [7]. These equations form the basis for evaluating the reliability of the 

measurement results. 

 

                                                             𝑁𝑛𝑒𝑡 = 𝑁𝑡𝑜𝑡𝑎𝑙 − 𝑁𝐵𝐺                                                (4.1) 

 

                                            𝜎𝑛𝑒𝑡 = √𝜎𝑡𝑜𝑡𝑎𝑙
2 + 𝜎𝐵𝐺

2 =√𝑁𝑡𝑜𝑡𝑎𝑙 + 𝑁𝐵𝐺                                 (4.2) 

 

If the total count 𝑁𝑡𝑜𝑡𝑎𝑙  cannot be obtained, Equations (4.1) and (4.2) can be rewritten 

as Equations (4.3) and (4.4), respectively.  

 

                       𝑁𝑛𝑒𝑡 = (𝑁𝑛𝑒𝑡 + 𝑁𝐵𝐺)- 𝑁𝐵𝐺                                           (4.3) 

 

                                             𝜎𝑛𝑒𝑡 = √𝜎𝑛𝑒𝑡
2 + 𝜎𝐵𝐺

2 + 𝜎𝐵𝐺
2 =√𝑁𝑛𝑒𝑡 + 2𝑁𝐵𝐺                       (4.4) 

 

The statistical accuracy, defined as the ratio of the standard deviation 𝜎𝑛𝑒𝑡 to the net 
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count 𝑁𝑛𝑒𝑡  , is quantified using Equation 4.5. This metric evaluates the relative 

statistical fluctuations in the net count, providing a quantitative measure of the 

reliability and precision of the experimental data. Achieving high statistical accuracy is 

crucial for ensuring precise imaging results, which are essential for the effective 

performance of the BNCT-SPECT system. 

 

                  Statistical accuracy [%] =  
𝜎𝑛𝑒𝑡
𝑁𝑛𝑒𝑡

× 100 =
√𝑁𝑛𝑒𝑡 + 2𝑁𝐵𝐺

𝑁𝑛𝑒𝑡
× 100         (4.5) 

 

To replicate the designed experimental system using the two gamma-ray sources, it is 

essential to achieve an accuracy of 4.39% and a signal-to-noise ratio (S/N) of 0.21. The 

S/N is calculated using Equation (4.2), which defines the relationship between the 

signal and background noise levels in the system. Meeting these criteria ensures the 

experimental setup closely approximates the conditions and performance of the real 

BNCT system. 

 

S

N
=
NET

BG
                                                                (4.2) 
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Figure 4.3 Simulation model in MCNP 

 

The placement of the 60Co source significantly impacts the S/N ratio. To analyze this, 

MCNP simulations were performed based on the model shown in Figure 4.3. In these 

simulations, the 137Cs source was positioned at the center of the phantom [5], while 

the 60Co source was placed at varying distances L to the right of the detector. This setup 

allowed the calculation of different S/N ratios depending on the location of 

the 60Co source relative to the detector [6]. 

Figure 4.4 shows the calculated results for different distances: the upper part 

represents calculations for distances ranging from 2 to 8 cm, while the lower part 

focuses on distances between 4.1 and 5 cm. Table 4.3 provides detailed calculation data 

for distances in the range of 4.1 to 5 cm.  

The S/N ratio reached 0.20798 when the 60Co source was positioned at a distance 

of 4.9 cm from the detector. This value is the closest to the target S/N ratio of 0.21, 

confirming the optimal placement for achieving the desired experimental conditions. 
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Figure 4.4 Calculation results of S/N. 

(Top: Distance range 2-8 cm; Bottom: Distance range 4.1-5 cm) 

 

Table 4.3 Calculation results of S/N for a distance range of 4.1-5 cm 

Distance/cm 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 

S/N ratio 0.1533 0.1604 0.1677 0.1744 0.1819 0.1886 0.1959 0.2027 0.2098 0.2185 

 

After establishing the simulation mock-up system, the counts for various detection 

times were calculated. The optimal accuracy of 4.38% was achieved with a detection 

time of 0.48 hours. Additionally, the net count for 137Cs was 5474, with a background 
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count of 26,024, meeting the specified design criteria. 

 

Table 4.4 Simulation result 

Accuracy 4.38% 

S/N 0.2098 

time 0.48h 

NET 5474.21 

BG 26024.23 

Distance 4.9cm 

 

Under the specified calculation conditions, the MCNP simulation results are presented 

in Figure 4.5. The orange line represents the simulation outcome for the 137Cs source in 

isolation, while the gray line depicts the standalone simulation result for the 60Co source. 

The blue line illustrates the combined simulation results for an experimental setup 

incorporating both 137Cs and 60Co under the previously described experimental 

conditions. These results provide a comprehensive comparison of the individual and 

combined behaviors of the sources within the experimental configuration. 

 

 

Figure 4.5 Simulation result of mock-up system 
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This experimental model successfully reproduces the S/N ratio and accuracy required 

for actual BNCT treatment scenarios. It demonstrates the viability of the system design 

and validates the methodology for achieving the precision and detection conditions 

necessary for practical application in BNCT.  

Furthermore, the results confirm the feasibility and reliability of MCNP simulations 

for use in this study, reinforcing its role as a dependable tool for modeling and analysis. 

 

4.6 Summary 

Chapter 4 provides a detailed exploration of the use of MCNP5, a powerful Monte 

Carlo simulation tool, within the context of this study. It begins with an overview 

of MCNP, outlining its capabilities as a general-purpose Monte Carlo N-Particle 

transport code for modeling particle interactions and transport in various physical 

environments. This section introduces its historical development and the range of 

applications it supports, from nuclear reactor design to medical physics. 

Monte Carlo Simulation discusses the underlying principles of the Monte Carlo 

method, emphasizing its role in solving complex stochastic problems. This section 

elaborates on how particles are tracked through random sampling based on probability 

distributions, ensuring realistic and accurate simulations. 

The chapter then focuses on Tally, explaining how MCNP tallies are used to collect 

statistical data about particle interactions. Subsection 4.3.1 introduces tally choices, 

detailing the various standard tallies available for neutrons, photons, and electrons, as 

well as the flexibility to customize them for specific applications. Subsection 4.3.2 

introduces the variance reduction tools in MCNP, which improve computational 

efficiency by focusing simulation efforts on important regions and interactions. 

Methods such as truncation, population control, and modified sampling are discussed, 

highlighting their practical applications. 

Variance Reduction elaborates on techniques designed to reduce statistical 

uncertainties and enhance simulation performance. Examples include energy and time 
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cutoffs, track-length tallies, and advanced tools like point detectors and DXTRAN. 

These methods ensure that simulations are both computationally efficient and accurate. 

Finally, Simulation Results with MCNP presents the outcomes of the MCNP 

simulations conducted in this study. It includes detailed analyses of the signal-to-noise 

ratio (S/N) and detection precision, showcasing the effectiveness of the mock-up 

system and its ability to replicate conditions relevant to real BNCT treatment scenarios. 

The results confirm the feasibility and reliability of MCNP as a tool for modeling and 

validating experimental designs. 

This chapter serves as a comprehensive guide to the application of MCNP5 in this 

research, demonstrating its critical role in achieving accurate simulations, optimizing 

experimental designs, and validating theoretical models. 
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Chapter 5 Design of mock-up system 

5.1 Introduction 

The construction of a mock-up system was undertaken to replicate the experimental 

specifications of the actual BNCT-SPECT system. A 137Cs source was used to simulate 

the gamma-rays emitted by 10B during actual BNCT treatment, while a 60Co source was 

utilized to mimic the background radiation present in the designed BNCT system. The 

following content provides an overview of the developed mock-up system for BNCT-

SPECT. This setup served as the foundation for validating the experimental and 

simulation methodologies developed in this study. 

 

5.2 Design of collimator 

5.2.1 Spatial Resolution 

Spatial resolution refers to the ability of an imaging system to distinguish between two 

closely spaced objects or details. In the context of BNCT-SPECT systems, it is a critical 

parameter that determines the system's capability to accurately reconstruct the 

distribution of gamma-ray sources within the target area. Higher spatial resolution 

implies finer detail and more precise localization of the gamma-ray emissions, which 

is essential for effective imaging and treatment planning. Achieving the required spatial 

resolution involves optimizing factors such as detector design, pixel size, and system 

configuration. 

The BNCT-SPECT system requires a spatial resolution of 5 mm or less to meet the 

precision standards necessary for treatment. Figure 5.2 illustrates a scenario where the 

pitch length of the scintillator exceeds the spatial resolution requirement. In such cases, 

gaps occur where the scintillators fail to capture any information. Specifically, if the 

spacing between detectors is greater than the field of view of a single detector, there 

will be regions within the system that remain undetected, creating blind spots in the 

imaging process. This highlights the importance of optimizing detector placement and 
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spacing to ensure comprehensive coverage and accurate data acquisition. 

 

 

Figure 5.2 Relationship between spatial resolution and scintillator pitch [1] 

 

5.2.2 Construction of collimator 

Based on previous research, the collimator length is 26 cm, with a single circular hole 

of 0.35 cm in diameter. The spatial resolution, as shown in Figure 5.3, is 0.42 cm. In 

this study, to design and produce a collimator suitable for actual BNCT treatment, we 

opted for a design featuring 64 square holes. Each square hole is designed to have the 

same area as the circular hole in previous studies, calculated as (
0.35

2
)
2
∙ 𝜋 = 0.31 𝑐𝑚. 

 

 

Figure 5.3 System Configuration for Calculating Spatial Resolution 

 

However, during the manufacturing process, achieving an exact precision of 0.31 cm 

proved highly challenging. To ensure manufacturability while maintaining the required 

spatial resolution, the collimator holes are square-shaped with a side length of 0.3 cm, 

and the spacing between adjacent holes is 0.1 cm. This configuration results in a 

scintillator pitch of 0.4 cm, as illustrated in Figure 5.4. This adjustment ensures both 

production feasibility and compliance with the spatial resolution requirements. 
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Figure 5.4 Size of holes in the collimator 

 

The production of the collimators, as shown in Figure 5.5, involves a modular design 

consisting of tungsten plates and tungsten rods. These components are engineered to be 

stacked on top of each other, allowing for precise assembly and alignment to achieve 

the desired collimator configuration. 
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Figure 5.5 Design of collimator 

 

The details of the manufactured collimator are shown in Figure 5.6 below, providing 

a comprehensive view of its design and construction. 
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Figure 5.6 Detailed Design of the Manufactured Collimator 
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5.3 Design of gamma-ray 

5.3.1 137Cs 

137Cs is a radioactive isotope of cesium with significant applications in medicine, 

industry, and scientific research due to its unique properties. It is a fission product of 

uranium and plutonium, making it one of the prominent radionuclides in nuclear waste 

and fallout. 

 

1. Physical and Nuclear Properties 

Atomic Number: 55 (Cesium) 

Atomic Mass: 137.91 u 

Decay Mechanism: 

o 137Cs undergoes beta decay (β−) to form a metastable state of 

barium, 137mBa (Barium-137m). 

o The transition from 137mBa to stable 137Ba is accompanied by the 

emission of a gamma photon with an energy of 662 keV. 

o This two-step decay process accounts for its usefulness as a 

gamma-ray source. 

Half-Life: 

o 137Cs has a half-life of approximately 30.17 years. 

o 137mBa, its decay product, has a half-life of about 2.55 minutes, 

ensuring a consistent gamma-ray emission. 

Radiation Type: 

o Beta Particles (from 137Cs decay). 

o Gamma Rays (from 137mBa a decay, primarily at 662 keV). 

 

2. Applications of 137Cs 

Medical Applications: 

o Historically used in radiotherapy for cancer treatment, 

particularly in cesium-based teletherapy units. 
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o Its gamma-ray emission at 662 keV is ideal for penetrating tissues 

while maintaining a localized treatment effect. 

Industrial Applications: 

o Non-destructive Testing (NDT): Used in industrial radiography 

to inspect welds and materials for structural integrity. 

o Moisture and Density Gauges: Widely applied in construction, 

agriculture, and petroleum industries for density and moisture content 

measurement. 

Scientific and Research Applications: 

o Calibration Source: Frequently used for calibrating gamma 

spectrometers and radiation detection equipment due to its well-defined 

energy emission. 

o Environmental Monitoring: 

▪ Traces of 137Cs in the environment are used as markers to 

study soil erosion, sedimentation, and the effects of nuclear 

fallout. 

▪ It is one of the key radionuclides monitored after nuclear 

accidents, such as Chernobyl and Fukushima. 

o Educational Use: Demonstrates principles of radioactive decay 

and gamma-ray detection in laboratories. 

Environmental Significance: 

o 137Cs is a major component of nuclear fallout due to its high 

fission yield. 

o Its long half-life and mobility in the environment make it a 

critical isotope for assessing long-term radiological contamination. 

 

3. Safety Considerations 

137Cs poses both external and internal radiation hazards: 

o External Hazard: Its gamma-ray emission (662 keV) requires adequate 

shielding, typically with lead or concrete. 
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o Internal Hazard: If ingested or inhaled, it accumulates in soft tissues, 

especially muscles, and poses a significant health risk. 

Handling 137Cs requires adherence to strict safety protocols: 

o Use of protective equipment and remote handling tools. 

o Proper containment and shielding during storage and transportation. 

o Regulatory compliance for disposal of radioactive waste. 

 

4. Role of 137Cs in This Study 

In this study, the primary objective is to investigate image reconstruction 

techniques and validate the ability of the BNCT-SPECT system to reproduce 

the desired signal-to-noise ratio (S/N) as defined in the system's design. A key 

focus is on accurately replicating the net count and background count associated 

with the 478 keV gamma-rays emitted during the 10B(n,α)7Li reaction, as these 

parameters are critical for effective image reconstruction and system 

performance evaluation. 

However, directly handling the 478 keV gamma rays from the neutron 

interaction poses significant practical challenges in experimental conditions. 

Instead, 137Cs is employed as a substitute gamma-ray source, emitting 662 keV 

gamma-rays. This substitution is justified because the absolute energy 

resolution for 478 keV is inherently superior to that for 662 keV, making it 

reasonable to conclude that if the system performs adequately with 662 keV 

gamma rays, it will also perform well for 478 keV gamma rays. 

In this setup, 137Cs is used as the primary source to simulate the net count, 

representing the gamma-rays of interest in BNCT. To reproduce the background 

contribution and achieve a realistic S/N ratio, another radioactive source that 

does not emit interfering gamma-rays at or near 662 keV is selected. This 

secondary source provides background radiation that complements the 137Cs 

emissions, ensuring the background levels are accurately modeled according to 

the design criteria. 
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By substituting the neutron-induced gamma-rays with those from 137Cs, this 

study effectively bypasses the complexities of neutron handling while 

maintaining the integrity of experimental objectives. The use of 137Cs as a 

controlled and stable gamma-ray source enables precise replication of the S/N 

ratio and energy resolution required for BNCT-SPECT system validation, 

highlighting its critical role in ensuring the feasibility and accuracy of this 

research. 

 

5.3.2 60Co 

60Co is a synthetic radioactive isotope of cobalt widely used in industrial, medical, and 

scientific applications due to its stable gamma-ray emissions and high-energy radiation. 

It is produced by neutron activation of 59Co in nuclear reactors and plays a crucial role 

in radiation-based technologies. 

 

1. Physical and Nuclear Properties 

Atomic Number: 27 (Cobalt) 

Atomic Mass: 59.933 u 

Decay Mechanism: 

o 60Co undergoes beta decay (β−), transforming into stable 60Ni (Nickel-

60). 

o This decay process emits two primary gamma rays with energies 

of 1.173 MeV and 1.332 MeV. 

Half-Life: Approximately 5.27 years, making it a relatively long-lived source 

suitable for extended use. 

Radiation Type: 

o Beta Particles: Emitted during the decay to 60Ni. 

o Gamma Rays: High-energy photons at 1.173 MeV and 1.332 MeV, 

which are particularly useful in various applications. 
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2. Applications of 60Co 

Medical Applications: 

o Radiotherapy: Historically used in external beam radiation therapy 

(teletherapy) for treating cancer. The high-energy gamma rays 

from 60Co are effective in delivering precise doses to deep-seated tumors. 

o Sterilization of Medical Equipment: Used to sterilize disposable medical 

devices such as syringes, surgical instruments, and implants, due to its 

high penetration and efficiency in destroying microorganisms. 

Industrial Applications: 

o Non-destructive Testing (NDT): Employed in industrial radiography to 

inspect welds, castings, and structural materials for defects. 

o Irradiation of Materials: Used in food preservation and to prevent 

spoilage by killing bacteria and insects in agricultural products. 

o Thickness Gauging: Helps measure material thickness in industries such 

as steel and paper production by monitoring gamma-ray attenuation. 

Scientific and Research Applications: 

o Calibration Source: Serves as a standard gamma-ray source for 

calibrating detectors and spectrometers due to its well-defined energy 

emissions. 

o Environmental Tracer: Used in studies to trace the movement of 

particles or materials in ecosystems or industrial processes. 

Environmental and Safety Monitoring: 

o Frequently employed in studies assessing radiation exposure risks, 

including those associated with nuclear facilities or accidents. 

 

3. Safety Considerations 

60Co poses both external and internal radiation hazards due to its high-energy 

gamma rays: 

o External Hazard: Requires significant shielding, typically using lead or 

concrete, to protect against its penetrating gamma radiation. 
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o Internal Hazard: If inhaled or ingested, 60Co accumulates in tissues and 

presents a serious health risk. 

Safe handling involves strict adherence to radiation safety protocols, including: 

o Proper containment and transport in shielded containers. 

o Remote handling tools to minimize direct exposure. 

o Monitoring and compliance with disposal regulations for radioactive 

waste. 

 

4. Role of 60Co in This Study 

In this study, 60Co serves a critical role in simulating the background radiation 

required to evaluate the signal-to-noise ratio (S/N) and validate the performance 

of the BNCT-SPECT system. For this purpose, it was essential to select a 

radioactive source that meets specific criteria: it must produce gamma rays that 

do not interfere with the emissions from 137Cs, and it must contribute an 

appropriate level of background radiation to accurately replicate the conditions 

of a real BNCT treatment environment. 

The gamma-ray emissions of 60Co, at energies of 1.173 MeV and 1.332 MeV, 

are significantly higher than the 662 keV gamma-rays emitted by 137Cs. This 

clear separation in energy ensures that the background radiation from 60Co does 

not overlap or interfere with the 137Cs signal, preserving the integrity of the 

experimental measurements. Additionally, the high-energy photons from 60Co 

provide a stable and consistent background source that effectively mimics the 

scattering and noise present in a clinical BNCT scenario. 

By incorporating 60Co as the background source, the study achieves a realistic 

approximation of the radiation environment encountered during BNCT. This 

enables the experimental system to replicate the design conditions accurately, 

ensuring the validity of the S/N ratio and energy resolution measurements. 

Furthermore, the use of 60Co demonstrates its reliability and effectiveness in 

creating a controlled and realistic testing environment, reinforcing its role as an 

indispensable component in this research. 
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5.4 Design results 

The development and construction of an advanced mock-up system were undertaken 

to replicate the experimental specifications of the actual BNCT-SPECT system. In this 

system, a 137Cs source was utilized to simulate the gamma-rays emitted by 10B during 

actual BNCT treatment, while a 60Co source was employed to generate the background 

radiation. This design was informed by the research above and tailored to reproduce the 

conditions necessary for evaluating the system's performance under realistic treatment 

scenarios. Figure 5.7 shows the front and top views of the actual developed mock-up 

system. 
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Figure 5.7 Mock-up system: front view (A) and top view (B). 

 

A 137Cs source was positioned at the center of a head phantom composed of acrylic 

and water [2], while a 60Co source was placed at various distances (𝑑 ) above the 

detector to evaluate the statistical accuracy and signal-to-noise (S/N) ratio of the system. 

Given its critical role in cancer treatment, the BNCT-SPECT system is designed to 

achieve a spatial resolution of 0.5 cm or finer, ensuring precise imaging capabilities. 

Based on previous studies, the collimator’s optimal length was established at 26 cm [1]. 

A detailed summary of the specifications for the developed mock-up system, along with 

a comparison to the designed BNCT-SPECT system, is provided in Table 5.1, offering 

a clear overview of the system's parameters and performance alignment. 
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Table 5.1 Specifications of the experimental system compared to the designed BNCT-

SPECT system. 

Design item 
Present mock-up 

system 
Designed BNCT-SPECT 

Scintillator 

Material → GAGG(Ce) 

Dimensions → 
0.35 cm × 0.35 cm × 3 cm 

[1] 

Collimator 

Material Pb W 

Thickness → 26cm 

Hole size 0.3 cm × 0.3 cm×64 ∅ 0.35 cm×64 

Phantom 
Material Acryl and water - 

Dimensions ∅20 cm × 20 cm - 

Statistical accuracy 4.39% 4.39% 

(S/N) 0.21 0.21 [8] 

 

Subsequently, experiments were conducted using the aforementioned designed system 

to evaluate its performance under the specified conditions. In parallel, the MCNP 

simulation code was utilized to construct a virtual system identical to the designed 

mock-up system, enabling detailed computational analyses and validation of the 

experimental results. 
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Figure 5.8 Comparison between experimental result and MCNP5 result. 

Figure 5.8 presents a comparison of the pulse height spectra obtained from the mock-

up experiments and MCNP5 simulations, showing agreement between the two. Clear 

and distinct peaks corresponding to 60Co and 137Cs gamma-ray emissions are observed, 

effectively replicating the designed BNCT-SPECT conditions. These peaks serve as the 

background and signal components necessary for testing the system’s performance. 

Table 5.2 provides the intensities of the 137Cs and 60Co gamma-ray sources used in the 

study. As described in Chapter 4, the 137Cs source, with an activity of 1×107 Bq, is 

placed at the center of the head phantom, while the 60Co source, with an intensity of 

1.06×106 Bq, is positioned 4.9 cm above the detector. The intensities of 137Cs and 60Co 

were chosen based on the most suitable sources available in our laboratory to ensure an 

optimal balance between experimental conditions and measurement duration. This 

setup ensures realistic replication of the experimental and simulation conditions for 

validating the BNCT-SPECT system. 

 

Table 5.2 Simulation condition. 

137Cs intensity 1×107 Bq 

60Co intensity 1.06×105 Bq 
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Based on the findings from Chapters 4 and 5, the mock-up system demonstrated 

remarkable performance, achieving a statistical accuracy of 4.39% within a counting 

time of just 0.48 hours, which is less than one hour. This result closely aligns with the 

design specifications of the BNCT-SPECT system. Furthermore, the count rate per hour 

for 137Cs confirmed that the mock-up system is suitable for practical measurements 

under experimental conditions. 

Notably, the mock-up system achieved a statistical accuracy of 4.4% and an S/N ratio 

of 0.21, both of which are consistent with the expected performance of the designed 

BNCT-SPECT system. These results highlight the mock-up system's ability to closely 

replicate the statistical accuracy and signal quality required for effective BNCT-SPECT 

imaging, making it a reliable platform for further experimental validation and system 

development. 

5.5 Summary 

Chapter 5 provides a detailed account of the design and development of the mock-up 

system for the BNCT-SPECT experiment, focusing on its key components such as the 

collimator and gamma-ray sources. The purpose of the mock-up system is to replicate 

the performance of the designed BNCT-SPECT system, ensuring its suitability for 

practical applications and experimental validation. 

The spatial resolution of the BNCT-SPECT system, critical for accurate imaging, is 

designed to be 0.5 cm or finer. The chapter discusses the impact of collimator pitch and 

geometry on achieving the desired resolution, highlighting adjustments made to 

eliminate undetected regions. Based on prior studies, the optimal collimator length was 

set to 26 cm. The collimator features square holes with a side length of 0.3 cm, 

redesigned from a circular hole of equivalent area to ensure manufacturability while 

maintaining spatial resolution. 

For gamma-ray sources, a 137Cs source with an activity of 1×107 Bq was placed at the 

center of an acrylic and water phantom to simulate the gamma-rays emitted by 10B 

during BNCT treatment. Its 662 keV gamma-ray emissions closely approximate the 
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conditions required for evaluating system performance. Additionally, a 60Co source 

with an intensity of 1.06×106 Bq was positioned 4.9 cm above the detector to simulate 

background radiation. The high-energy gamma emissions of 60Co (1.173 MeV and 

1.332 MeV) ensured non-interference with the 137Cs signal, effectively replicating the 

S/N ratio observed in real BNCT-SPECT systems. 

The mock-up system demonstrated excellent performance, achieving a statistical 

accuracy of 4.39% within a counting time of 0.48 hours, closely matching the design 

results of the BNCT-SPECT system. Additionally, the system achieved a favorable S/N 

ratio of 0.21, confirming its ability to replicate the designed system's specifications. 

These results underscore the reliability of the mock-up system as a platform for 

experimental validation and further development, ensuring all components align with 

the requirements of the BNCT-SPECT system. 
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Chapter 6 Image reconstruction 

6.1 Introduction 

In this chapter, we focus on the process of image reconstruction for the BNCT-SPECT 

system using two distinct methodologies. The first involves employing an idealized 

response function, constructed mathematically and implemented through Python, to 

perform image reconstruction under theoretically perfect conditions. The second 

approach utilizes the experimentally derived response function obtained from the 

mock-up system designed and constructed in Chapter 5. 

By comparing the reconstructed images from these two methods, we aim to evaluate 

the practicality and accuracy of the experimental system against the theoretically ideal 

conditions. This comparison highlights the strengths and limitations of the mock-up 

system, providing insights into the feasibility of achieving accurate image 

reconstruction in real-world BNCT applications. 

The chapter proceeds as follows: Section 6.2 discusses the reconstruction process 

using a mathematically ideal response function, providing a foundation for 

understanding theoretical image reconstruction. Section 6.3 details the experiments 

conducted using the designed mock-up system to collect experimental data, while 

Section 6.4 focuses on reconstructing images based on the experimentally derived 

response function. Finally, Section 6.5 summarizes the findings and outlines the 

implications of these results for the development of BNCT-SPECT systems. 

6.2 Reconstruction with the mathematically ideal process 

Based on the content introduced in Chapter 2, pseudo-projection data was generated 

to evaluate the performance of the image reconstruction methods. A true image of 

size 50 × 50  pixels was used, with 50 detectors per projection angle. This setup 

allowed for the acquisition of projection data across multiple angles, resulting in a 

comprehensive sinogram comprising 50 × 𝑚 (𝑚 = 90/∆𝜃) data points. 

Figure 3.1 illustrates the portion of the detector system used for image reconstruction 

in a single cross-section. In this setup, multiple detectors arranged in a straight line 
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simultaneously measure gamma-rays to determine the intensity of radiation emitted by 

the source inside the head phantom at the respective positions of each detector. In the 

actual measurement system, detector arrays, such as those shown in Figure 3.1, are 

vertically stacked at different heights. These stacked arrays collect data that is 

subsequently used to reconstruct cross-sectional images for each height. 

The majority of the radiation detected by each detector originates from the source 

directly in front of the collimator hole. As a result, radiation from sources positioned 

above or below a given detector row has minimal impact on the reconstruction results. 

However, the effects of cross-talk, a phenomenon in which radiation entering one 

detector undergoes Compton scattering and is subsequently detected by adjacent 

detectors, must be considered. This is particularly important when multiple scintillator 

detectors are placed in close proximity. 

When cross-talk occurs, a single incident radiation event may result in detections by 

multiple detectors, causing the total detection count to exceed the expected number 

based on the calculated detection efficiency. According to prior research conducted in 

the author’s laboratory, this issue can be mitigated by considering coincident counting 

of radiation detected simultaneously by neighboring detectors. This approach not only 

resolves the cross-talk problem but also improves the statistical accuracy of the 

measurements. 

In BNCT-SPECT, cross-sectional images are reconstructed for each height, and the 

resulting slices are stacked to estimate the three-dimensional distribution of the 

radiation source. This method enables accurate reconstruction of the spatial distribution 

of gamma-ray sources, critical for BNCT applications. 
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Figure 6.1 Overall Diagram of the Detector System Assumed in the Image 

Reconstruction Program 

 

The sinogram was subsequently utilized to reconstruct the image using the proposed 

method. Each reconstruction was iteratively refined over 100 iterations to ensure 

convergence and accuracy. Following the reconstruction process, a Gaussian filter [1] 

was applied to the images to enhance quality by smoothing out noise and improving 

visual clarity. 

The performance of the reconstructed images was quantitatively assessed using two 

evaluation metrics: Mean Absolute Error (MAE) and Structural Similarity Index 

(SSIM). MAE measured the pixel-wise difference between the true and reconstructed 

images, while SSIM provided an assessment of structural and perceptual fidelity. This 

analysis enabled a comparative evaluation of the proposed method against ML-EM, 

demonstrating the effectiveness of the techniques in achieving high-quality image 

reconstruction. 

6.2.1 Reconstruction at 𝛥𝜃 = 30° with a single model 

According to the calculations by our research group in 2021, the optimal choice is to 

irradiate four times with 𝜃 = 90°  and 𝛥𝜃 = 30° . This conclusion is based on a 
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comprehensive evaluation of the SSIM and MAE results, which demonstrate that this 

configuration yields the best performance. [2] The mean MAE values, calculated from 

the estimated results over 50 iterations for each Δθ, are presented in Figure 3. Similarly, 

the mean SSIM values obtained under the same conditions are displayed in Figure 4. 

These results provide a comprehensive evaluation of the reconstruction performance 

for different Δθ settings. 

 

 

Figure 6.2 Relationship between projection angle ∆𝜃 and MAE. 

 

Figure 6.2 shows that the MAE reached its lowest value of 0.0568±0.0002 at 𝛥𝜃 =

30° . Across all Δθ values, the MAE trends highlight that 𝛥𝜃 = 30°  offers optimal 

accuracy for image reconstruction, making it a key parameter choice for achieving 

precise results. This result underscores the importance of carefully selecting Δθ in 

ensuring minimal error in the reconstructed images. 
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Figure 6.3 Relationship between projection angle ∆𝜃 and SSIM. 

 

Figure 4 demonstrates that the highest SSIM values are achieved at 𝛥𝜃 = 30°. This 

finding suggests that 𝛥𝜃 = 30° is the optimal setting for balancing structural similarity 

and accuracy, particularly when prioritizing precise estimates in normal cells, as 

supported by the MAE trend. 

Based on these findings, it can be concluded that, under the expected conditions of 

BNCT-SPECT, performing image reconstruction on projection data captured with a 30-

degree angular step achieves optimal results. 

Figure 6.4 presents the true image, the corresponding sinogram, and the reconstructed 

images obtained from the initial calculations with a projection angle 𝛥𝜃 = 30°. The 

captions accompanying each figure detail the number of estimation iterations required 

to generate the images, along with the MAE and SSIM values for the respective 

reconstructions. 
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Figure 6.4 Simulation results (𝛥𝜃 = 30°): 

Top left: True image (the black areas: regions outside the head, the grey areas: normal 

cells, the white areas: tumor cells.) 

Top right: Sinogram created by projection 

Bottom left: Image reconstructed using the Bayesian estimation method (iter =9, MAE 

=0.0560, SSIM =0.3560) 

Bottom right: Image reconstructed using the ML-EM method (iter =3, MAE =0.1223, 

SSIM =0.3934). 

 

Additionally, Figure 6.5 illustrates the absolute error distributions for each method, 

visualized as images, providing a clear depiction of the error patterns across the 

reconstructed images. 
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Figure 6.5 Absolute error distribution (𝛥𝜃 = 30°): 

Top left: Proposed method, before smearing 

Top right: ML-EM method, before smearing 

Bottom left: Proposed method, after smearing 

Bottom right: ML-EM method, after smearing. 

 

Based on the results, for normal cells (1,408 pixels), the proposed method yielded an 

average estimated value of 0.3154±0.0005, compared to the true value of 0.31. The 

MAE for normal cells was calculated as 0.0481±0.0004. 

For tumor cells (16 pixels), the proposed method produced an average estimated value 

of 0.5317±0.0051, whereas the true value was 1.00. Consequently, the Tumor-to-
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Normal (T/N) ratio achieved by the proposed method was approximately 1.7, falling 

short of the expected ratio of 3.2 in this study.  

In BNCT-SPECT, the accuracy of pixel values in normal cells is a critical factor for 

reliable treatment planning and assessment. To evaluate this, the relative error of the 

reconstructed image was defined as the ratio of the average pixel value of normal cells 

in the reconstructed image to the true pixel value of normal cells, considering only the 

normal cells. Using this metric, the relative error for the reconstructed image based on 

projection data obtained at a 30-degree projection angle was determined to be 

approximately 16% for the proposed method. A detailed summary of these results is 

presented in Table 1. 

 

Table 1. Comparison of MAE, SSIM, and average pixel values for estimated images. 

Δθ ＝

30 

MAE 

(Entire 

image) 

SSIM 

(Entire 

image) 

Average 

value of 

tumor 

cells 

(=1.0) 

MAE 

(tumor 

cells) 

Average 

value of 

normal 

cells 

(=0.31) 

MAE 

(normal 

cells) 

Propo

sed 

metho

d 

0.0568±0.0

0021 

0.3624±0.

0026 

0.5317±0.

0051 

0.4683±0.

0051 

0.3154±0.

0005 

0.0481±0.

0004 

 

Considering the statistical errors inherent in BNCT-SPECT measurements, including 

constraints on projection angles and measurement times, projections performed 

with 𝛥𝜃 = 30° and image reconstruction using the proposed method yielded promising 

results. The MAE for the entire estimated image was 0.0568±0.0021, and for normal 

cells alone, it was 0.3154±0.0005, both demonstrating minimal error. These values 

were derived from the standard errors of data obtained through 50 numerical 

experiments, reinforcing the reliability of the findings. 
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Thus, it can be concluded that "under the conditions anticipated for BNCT-SPECT, 

performing a total of four projections with a projection angle of 𝛥𝜃 = 30° and using 

the proposed method for image reconstruction represents the optimal approach." 

However, when defining the relative error of the estimated image as the MAE of normal 

cells divided by the true pixel value of normal cells (=0.31), the relative error was 

approximately 16%, which is relatively high. Additionally, the T/N ratio remained 

around 1.7, significantly lower than the expected value of 3.2. 

These findings indicate that while the proposed method shows promise, process 

improvements are required to address the high relative error and suboptimal T/N ratio 

to ensure practical and effective implementation of BNCT-SPECT in clinical settings. 

6.2.2 Reconstruction at 𝛥𝜃 = 20° with six models 

 The reconstructed results presented in the previous section show there can be 

substantial improvement in our image reconstruction method. In this study, based on 

the principles of Bayesian estimation, we developed a Split-TV-EM approach. 

 The TV-EM （Total Variation Expectation Maximization） method is a technique 

that incorporates total variation (TV) norm regularization into the ML-EM (Maximum 

Likelihood Expectation Maximization) algorithm to achieve more accurate data 

reconstruction. 

 The ML-EM method is a widely used iterative algorithm for image reconstruction in 

emission tomography. It estimates the most likely distribution of the radioactive source 

by maximizing the likelihood function based on measured projection data. However, 

ML-EM often suffers from noise amplification, particularly in low-count regions, 

leading to degraded image quality. 

 To address this issue, the TV-EM method introduces TV norm regularization into the 

ML-EM framework. The TV norm helps suppress noise and preserve edge structures 

by minimizing excessive intensity variations in the reconstructed image. By 

incorporating this regularization term, TV-EM enhances image quality while 

maintaining spatial resolution, making it particularly suitable for limited-view-angle 

reconstruction scenarios. 
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 To effectively reduce noise and enhance the clarity of tumor shape reproduction, this 

study develops the Split-TV-EM method based on the aforementioned approach. Figure 

6.6 illustrates the workflow of the Split-TV-EM method. A distinctive feature of Split-

TV-EM is its ability to utilize measured sinogram data obtained from FBPA-PET, which 

is conducted prior to BNCT treatment to predict therapeutic effects. This method 

separates the normal cell region and tumor cell region within the sinogram and performs 

image reconstruction for each region independently. By doing so, it aims to improve 

reconstruction accuracy and better preserve tumor morphology. 

 

 

Figure 6.6 The workflow of the Split-TV-EM 

 

Further research revealed that due to equipment design constraints in BNCT-SPECT, 

the projection moving angle θ must be less than 90°. When measuring gamma rays in 

BNCT-SPECT, the detector system rotates around the center of the head phantom, as 

shown in Figure 6.7. Since BNCT-SPECT requires measurements to be conducted 

during treatment, various treatment equipment, such as the patient bed and neutron 

source, restrict the rotation path of the detector. As a result, as illustrated in Figure 6.8, 

the projection angle is limited to less than 180 degrees, and the projection moving angle 

itself is further constrained to less than 90 degrees. 
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Figure 6.7 Overall diagram of the detection system 

 

 

Figure 6.8 Illustration of projection angles and projection moving angle 

 

Although larger projection angles generally improve reconstruction accuracy, smaller 

projection angles simplify the design and implementation of the system. Therefore, it 

is crucial to determine the minimum detection angle that can maintain reconstruction 

accuracy at a level sufficient for diagnostic purposes. Therefore, based on the 
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computational studies by our research group in 2024, the projection parameters were 

set to 𝜃 = 60° and 𝛥𝜃 = 20°. [3] 

In this numerical experiment, image reconstruction was performed using a total of six 

source models. These models are referred to as Models 1 to 6, and their details are 

described below. The projection directions are illustrated in Figure 6.9. 

 

 

Figure 6.9 Projection direction 

 

Model 1 represents a scenario where a single circular tumor exists within a uniform 

field of normal cells. This model was designed to evaluate whether the source 

concentration in both normal and tumor cells could be accurately reproduced when a 

small tumor is located in the deep brain. The tumor was positioned near the projection 

direction in the upper right region, with its minimum depth from the head surface set at 

5.2 cm. The tumor's shape was modeled as a circle with a diameter of 4 pixels (=1.6 

cm). 

In the figure, the black areas indicate regions outside the head, the red areas represent 

normal cells, and the white areas represent tumor cells. If the brightness levels of the 

black and white areas are set to 0 and 1, respectively, the brightness level of the red 

areas is set to 0.31. This brightness difference corresponds to the T/N ratio, which 
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reflects the relative boron accumulation in tumor cells compared to normal cells. In this 

system, the T/N ratio is approximately 1/0.31≈3.23. 

Model 2 replaces the circular tumor in Source Model 1 with an elliptical shape. This 

model was developed to evaluate whether the source concentration in normal and tumor 

cells can be accurately reproduced when a larger tumor exists in the deep brain. The 

elliptical tumor was positioned such that its center coincided with the center of the 

circular tumor in Source Model 1. In this configuration, the minimum depth from the 

head surface to the tumor is 4.5 cm. The ellipse representing the tumor has a major axis 

of 7 pixels (=2.4 cm) and a minor axis of 5 pixels (=1.6 cm).  

Models 3 and 4 are variations of Models 1 and 2, respectively, with the tumor positions 

moved closer to the head surface. These models were designed to evaluate whether the 

source concentrations in normal and tumor cells can be accurately reproduced when 

smaller or larger tumors are located in more superficial regions of the brain. 

For Model 3, the tumor shape is identical to that of Model 1, with a minimum depth 

of approximately 2.1 cm from the head surface. Similarly, for Model 4, the tumor retains 

the elliptical shape of Model 2, but its minimum depth is reduced to approximately 1.7 

cm. These configurations enable the assessment of reconstruction accuracy for tumors 

located closer to the surface. 

Models 5 and 6 are extensions of Models 1 and 2, respectively, with an additional 

elliptical region introduced to simulate the leakage of boron from the tumor into 

surrounding normal cells. This elliptical region has a brightness value of 0.5 and 

dimensions of 20 pixels for the major axis and 16 pixels for the minor axis. 

The elliptical region is positioned slightly to the right within the circular area 

representing normal cells, at a minimum depth of 3.2 cm from the head surface. These 

models aim to evaluate the ability of the proposed method to reproduce distributions 

with smaller variations in normal cells compared to tumors. Additionally, they assess 

the impact of tumor shape on the reproducibility of these distributions. This 

configuration enables a deeper understanding of the method's performance under more 

complex conditions. 

The six source models themselves are depicted in Figure 6.10. 
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Figure 6.10 Model 1-6 

 

The reconstruction results are shown in Figures 6.11 to 6.16. 

 

 

Figure 6.11 Model 1: true image and reconstructed image 
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Figure 6.12 Model 2: true image and reconstructed image 

 

 

Figure 6.13 Model 3: true image and reconstructed image 

 

 

Figure 6.14 Model 4: true image and reconstructed image 
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Figure 6.15 Model 5: true image and reconstructed image 

 

 

Figure 6.16 Model 6: true image and reconstructed image 

 

Using the six models, image reconstruction was performed with the proposed Split-

TV-EM method, and the results were compared to evaluate its performance. The 

evaluation revealed two significant strengths of the proposed method. 

The first strength lies in its exceptional noise reduction capability in normal cells. This 

is primarily due to the creation of sinograms for normal cells through polynomial fitting, 

which not only interpolates the missing peaks in the sinogram of normal cells but also 

effectively eliminates noise. 

The second strength addresses a common issue arising when the sampling density of 

the sinogram is low—namely, the distortion of tumor regions in the projection direction 
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and the associated underestimation of pixel values. By separating the tumor and normal 

cell regions within the sinogram, the proposed method reconstructs the tumor region 

without the influence of background signals from normal cells. As a result, pixel values 

originating from the tumor region are not dispersed into the normal cell area, allowing 

the pixel values to remain concentrated in the tumor region and preventing 

underestimation. 

On the other hand, the proposed method has five challenges, albeit some of them are 

minor: 

First, slightly Enlarged Tumor Shape: The reconstructed tumor shape may appear 

approximately one pixel larger in diameter than its actual size. However, since the total 

pixel value of the tumor region remains unchanged, this issue is not significant in 

BNCT-SPECT, where pixel values are more critical than precise shape accuracy. 

Second, the formation of Artificial Peaks: A one-pixel-wide false peak may sometimes 

form at the outer edge of the tumor region. This peak becomes less noticeable when a 

Gaussian blur is applied, making it a minor concern. 

Third, loss of Fine Features in Normal Cells: Fine details in the distribution of the 

normal cell region may be lost during reconstruction. However, in BNCT-SPECT, these 

fine details are not a priority, as the average pixel value representing the therapeutic 

effect is the primary focus. Hence, this issue is not a significant concern. 

Fourth, distortion in Tumor Shape for Larger Tumors: When the tumor is larger, the 

peaks in the sinogram may split into multiple peaks, leading to distortions in the tumor 

shape in the reconstructed image. Although the distortion can often be mitigated by 

applying a Gaussian blur, the number of pixels occupied by the tumor generally does 

not change significantly. Consequently, the impact on the Tumor-to-Normal (T/N) ratio 

is minimal, making this issue less critical. 

Fifth, sensitivity to Noise in Tumor Reconstruction: Tumor reconstruction is more 

susceptible to noise, especially for small and deep-seated tumors. This can result in 

frequent distortions in the tumor shape and increased variance in the tumor’s average 

pixel value and the T/N ratio. This issue could be addressed by pre-estimating the 

number of pixels occupied by the tumor using auxiliary examinations such as FBPA-
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PET. However, this approach would require additional prior information, which should 

be considered carefully. 

By performing image reconstruction using the proposed method, it is possible to 

address the major challenges associated with image reconstruction in BNCT-SPECT. 

Therefore, the proposed method can be considered well-suited as a reconstruction 

algorithm specifically designed for BNCT-SPECT. However, the method still faces the 

issue of tumor shape distortion, which leads to increased variance in the Tumor-to-

Normal (T/N) ratio. Hence, further improvements are necessary to resolve these 

challenges and enhance the method's performance. 

 

6.3 Reconstruction with experimental data 

In this section, we conduct experiments using the mock-up system established in 

Chapter 5. The experimental procedure follows the sequence described in the previous 

section. 

A suitable volumetric gamma-ray source could not be prepared for this study; instead, 

a point source was utilized for the measurements. However, measuring a pulse height 

spectrum for a point source with collimators posed significant challenges due to the 

large variability in count numbers with slight positional changes. To address this, the 

measurements were conducted without collimators, and the results will be subsequently 

corrected through simulation to account for the absence of collimation. 

 In this setup, the 137Cs gamma-ray source was positioned at the center of the head 

phantom, corresponding to the four central pixel locations. The head phantom was 

divided into sections, and for each position, measurements were conducted at four 

projection angles: 0, 20, 40, 60 degrees. An illustration of the projection angles is shown 

in Figure 6.17. 
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Point gamma ray souse: 137Cs 
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Figure 6.17 Projection angles: 0, 20, 40, 60 degrees 
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Simulation calculations were performed using MCNP5 to replicate the experimental 

setup accurately. The simulation was conducted twice under the same conditions: once 

with collimators and once without collimators. This process produced two distinct 

response functions. The corrected count, 𝑁𝐶  , corresponding to a system with 

collimators, can be calculated using the following Equation (6.1): 

 

                                                                   𝑁𝐶 = 𝑁𝑁𝐶 ×
𝑅𝐶
𝑅𝑁𝐶

                                                (6.1) 

 

where 𝑁𝑁𝐶  is the number of counts measured in the experiment without collimators, 

𝑅𝐶 is the simulated response function with collimators, 𝑅𝑁𝐶 is the simulated response 

function without collimators. 

This corrected count value serves as an effective proxy for the true system response 

and can be utilized for image reconstruction, ensuring that the results more accurately 

reflect the conditions of a system with collimators. 
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Figure 6.18 Results of image reconstruction 

 

Figure 6.18 illustrates the initial image reconstruction results obtained using the new 

response function derived from prototype measurements. 

• Panel (a): The true image represents the experimental setup, featuring four 

centrally located sources, each occupying a single pixel with an initial value of 

1.0 (orange). The background pixels are assigned a value of 0.31 (purple), 

reflecting the relative contrast between the sources and the surrounding area. 

• Panel (b): The sinogram, generated using the Radon Transform algorithm, 

simulates the data as it would be captured by the SPECT system during 

measurements. 
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• Panel (c): The reconstructed image is presented, derived from the sinogram data, 

showing meaningful information confined to the Region of Interest (ROI). This 

focus is a direct result of the tailored design of the response function. 

• Panel (d): The calculated sinogram is produced by applying a second Radon 

Transform to the reconstructed image, providing a comparative analysis with 

the initial sinogram. 

This approach highlights the accuracy and functionality of the new response function 

in reconstructing data within the ROI. 

The measurements were performed exclusively for the four central pixels. As a result, 

the rest of the response function, even after applying the correction, contains zero values. 

Consequently, in this simulation, only signals originating from the centrally located 

pixels are detectable. This limitation confines the reconstructed image to represent only 

the central region, restricting the scope of the reconstructed data to the area covered by 

the measured response function. 

This initial result confirms that our image reconstruction system can successfully 

reproduce the original image, even with limited-view angle projection data. The values 

of all four individual pixels deviate by approximately 10% from the actual γ-ray source 

intensity. Moving forward, the objective is to reduce these deviations to less than 5%. 

Both individual pixel accuracy and ROI accuracy are critical for effective treatment 

monitoring in BNCT. Significant discrepancies or systematic errors in individual pixel 

values could result in misinterpretations of the boron distribution, potentially 

compromising treatment efficacy. To address this, future experiments should replicate 

this study for other pixel locations to assess the consistency of discrepancies between 

the true and reconstructed images and identify any potential systematic errors. 

Extending these evaluations to include tumors located in various positions within the 

phantom will aid in validating the image reconstruction method for the prototype, 

ensuring its reliability and accuracy in practical applications. Conducting experiments 

with tumors placed at different locations, rather than solely at the center of the phantom, 

is essential for a more comprehensive and meaningful evaluation of this image 



 129 

reconstruction method in future studies. 

6.4 Summary 

In this chapter, we present the results of image reconstruction using both 

mathematically ideal response functions and experimental data derived from the mock-

up system established in Chapter 5. The focus is on evaluating the effectiveness and 

accuracy of the proposed Bayesian estimation method under conditions relevant to 

BNCT-SPECT. 

Section 6.1 introduces the chapter, explaining the two distinct reconstruction scenarios: 

using an ideal response function and employing experimental data. The aim is to 

compare the reconstruction quality across these methods and explore how well the 

experimental setup replicates the designed BNCT-SPECT system. 

Section 6.2 explores the reconstruction process using a mathematically ideal response 

function. This section is further divided into two parts: Section 6.2.1 investigates 

reconstruction using a single model at a projection angle of Δθ=30°. This configuration, 

based on previous studies, demonstrates promising results, achieving minimal MAE 

and a well-defined T/N ratio. Section 6.2.2 introduces the Split-TV-EM method, which 

is developed based on the Bayesian estimation principles discussed in Chapter 2. This 

section examines reconstruction using six different models at a projection angle of 

Δθ=20°. By applying multiple models, this section evaluates the robustness of the 

reconstruction process and the impact of varying tumor shapes and locations on 

reconstruction quality. 

Section 6.3 shifts focus on experimental data obtained through the mock-up system. 

Utilizing corrected response functions derived from MCNP simulations, this section 

validates the practicality of the proposed method under real experimental conditions. It 

highlights the challenges of limited-view angle projection data and discusses the 

system's performance in reconstructing images for central pixel locations. 

The results in this chapter confirm the efficacy of the proposed Bayesian estimation 

method for BNCT-SPECT image reconstruction. While reconstruction accuracy is 

promising, particularly for central regions, challenges remain in achieving consistent 
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results for tumors positioned at various locations within the phantom and reducing 

systematic discrepancies. These findings emphasize the need for further experiments to 

validate the method across varying pixel locations and projection conditions, paving 

the way for improvements in clinical applications. 
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Chapter 7 Conclusion 
This study explores the image reconstruction technique for BNCT-SPECT systems, 

aiming to address critical challenges of reconstruction images from limited-view-angle 

projection data- a key constraint in real-time BNCT monitoring. The research 

systematically investigates the design, simulation, and experimental validation of a 

BNCT-SPECT prototype, focusing on achieving accurate image reconstruction under 

practical constraints. Below, the major contributions and findings of each chapter are 

summarized, culminating in key conclusions and future directions. 

Chapter 1 introduces the fundamental principles of BNCT and SPECT, tracing their 

development and integration into BNCT-SPECT systems for real-time treatment 

monitoring. The unique challenges in BNCT, such as the need for high precision and 

overcoming constraints like limited projection angles, are highlighted. This chapter 

establishes the motivation for adopting a hybrid imaging system and outlines the 

structure of the paper. 

Chapter 2 discusses the theoretical basis of Bayesian estimation, emphasizing its 

application in image reconstruction for BNCT-SPECT. The chapter compares Bayesian 

estimation with the widely-used ML-EM method, demonstrating the suitability of 

Bayesian estimation methods for limited-view-angle data. Performance evaluation 

metrics, such as Mean Absolute Error (MAE) and Structural Similarity Index (SSIM), 

are introduced to quantify image quality. 

Chapter 3 details the experimental setup for the study, including the selection and 

evaluation of key components like the GAGG(Ce) scintillator, MPPC, and MCA. The 

design and construction of a head phantom with precise geometric and material 

properties are presented. Experimental procedures are outlined to validate the imaging 

system, with emphasis on achieving realistic experimental conditions to replicate 

BNCT-SPECT scenarios. 

Chapter 4 introduces MCNP5 simulations to model the BNCT-SPECT system. The 

Monte Carlo method is employed to calculate response functions and simulate complex 

interactions between radiation and matter. Variance reduction techniques and tally tools 
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are utilized to optimize computational efficiency, and simulation results validate the 

feasibility of the proposed imaging system under controlled conditions. 

Chapter 5 focuses on the design and construction of a mock-up system, integrating 

components such as collimators, 137Cs, and 60Co sources. Key design parameters, 

including spatial resolution and gamma-ray intensity, are meticulously optimized to 

ensure compatibility with BNCT-SPECT requirements. The chapter highlights the 

success of the mock-up system in replicating key experimental specifications. 

Chapter 6 presents the results of image reconstruction using both mathematically ideal 

response functions and experimental data. Reconstructions were conducted under 

various projection angles (Δθ=30° and Δθ=20°) using single and multiple source 

models. The results demonstrate the efficacy of Split-TV-EM method in achieving high 

reconstruction accuracy, with minimal MAE and acceptable SSIM values under 

constrained experimental conditions. Challenges related to tumor shape distortion and 

noise sensitivity are also discussed, paving the way for future improvements. 

Key Findings and Contributions 

1. Addressing Limited-view-angle projection angle: The study confirms the 

viability of Bayesian estimation for reconstructing images with high accuracy 

under limited projection angles. The method outperforms traditional approaches, 

particularly in noise reduction. 

2. Development of Mock-Up System: The developed mock-up system 

successfully simulates BNCT-SPECT conditions, with results demonstrating its 

ability to reproduce key experimental parameters such as S/N ratio and 

statistical accuracy. 

3. Integration of Simulation and Experimentation: MCNP5 simulations 

complement experimental measurements, enabling corrections for collimator 

effects and enhancing the reliability of the reconstructed images. 

Challenges and Future Directions 

While the study demonstrates significant advancements in BNCT-SPECT imaging, 

several challenges remain: 

• Tumor Shape Distortion: Reconstruction inaccuracies in tumor shape, 
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particularly for smaller or deeper tumors, require further refinement of the 

response function. 

• Noise Sensitivity: Improved noise reduction techniques are essential for 

enhancing the reliability of reconstructed images under realistic conditions. 

• Tumor Position Diversification: Future studies should focus on reconstructing 

images for tumors located in various positions within the phantom to ensure 

consistent accuracy across all regions of interest. 

In conclusion, this research tackles the critical problem of reconstructing images using 

limited-view-angle projection data in BNCT-SPECT systems, offering promising 

insights into real-time treatment monitoring. By integrating Bayesian estimation 

methods with experimental and simulation-based validations, the study establishes a 

robust foundation for real-time treatment efficacy monitoring during BNCT 

treatments.  By developing and validating a BNCT-SPECT system capable of 

reconstructing images with high precision, this study provides a reliable image 

reconstruction technique. Addressing the identified challenges and refining the system 

further will strengthen its potential to reliably monitor and guide BNCT treatments, 

ultimately contributing to safer and more effective clinical applications. 
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