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要旨
着桟操船は，風や潮流などの外乱影響，岸壁や他船などの障害物の存在を考慮しつつ，複数の操船装置を適
切に操作する必要があるため，船舶運航の中でも特に船員の負担が大きいオペレーションの一つである．その
ため，本研究では，着桟操船の自動化に向けて，少ない計算資源で船舶の操縦運動をシミュレート可能な操縦
モデルの推定手法と着桟操船シナリオを実行可能な軌道追従のための制御手法に関する研究に取り組んだ．本
論文ではまず，人工ニューラルネットワーク（ANN）を用いた操縦モデルの推定手法を提案した．従来，ANN
を用いた操縦モデルの推定には入出力関係を学習するために加速度計測が必要とされてきたが，実環境では計
測ノイズや誤差が生じやすく，これが操縦モデルの精度低下を招く課題となっていた．そこで本研究では，操
縦シミュレーションによる操縦運動軌道の予測誤差を最小化する最適化問題として定式化し，加速度の計測値
を必要としないパラメータ推定手法を提案した．また，低速操縦運動の予測精度を向上させるため，従来のジ
グザグ操船や旋回操船のデータに加えて，ランダムにアクチュエータを操作した操船試験データを訓練データ
として用いた．さらに，データ量が限定される状況でも推定精度を向上させるため，スライシングとジッタリ
ングと呼ばれるデータ拡張手法の適用を提案した．これらの提案手法により，低速操縦運動を含む着桟操船軌
道の予測精度が向上し，拘束模型試験や経験式に基づくMMGモデルと同等またはそれ以上の予測精度を持
つ着桟操船のための操縦モデルが得られることを示した．本論文では次に，強化学習を用いた着桟操船軌道の
追従ための制御方策の獲得手法を提案した．着桟操船では，障害物との距離が近く，衝突を避けながら多様な
軌道パターンに対応する必要がある．着桟操船で遭遇する可能性のある多様な軌道パターンを学習させるため，
ランダムにアクチュエータを操作された参照軌道を追従させる訓練手法を提案した．その結果，着桟操船軌道
のような高速領域と低速領域の両方を含む軌道を追従可能な制御方策が得られた．また，制御方策に静的擬似
障害物を考慮させ，報酬関数に衝突を引き起こす可能性のある追従誤差に追加のペナルティを反映させること
で，着桟操船軌道の追従実験における衝突確率が減少すること示した．本提案手法は，訓練のための操縦シミ
ュレーション環境を必要とするが，操縦運動データから ANNを用いて推定された操縦モデルを用いることが
可能であることが示されている．そのため，本論文の提案手法により操縦運動データの計測により，着桟操船
のための操縦モデルと軌道追従制御を獲得すること可能となった．本論文は以下の 6章で構成されている．第
1 章は序論であり，研究背景，関連研究および研究目的について述べる．第 2 章では本論文で前提となる数学
的表記法，船舶操縦運動に関する基礎知識，供試模型船の実験システム構成および検証用の拘束模型試験や経
験式に基づくMMGモデルについて説明している．第 3 章では，順伝播型ニューラルネットワークおよび回
帰型ニューラルネットワークに基づく操縦モデル構造，および，加速度の計測値を必要とする回帰問題ベース
のパラメータ推定手法と提案する軌道推定ベースのパラメータ推定手法についてそれぞれ説明し，自由航走模
型試験データを用いた提案手法の検証実験結果を示した．第 4 章では，スライシングおよびジッタリングと呼
ばれるデータ拡張手法と，データ拡張手法の第 3 章で述べた軌道推定ベースのパラメータ推定手法への適用
手法について説明し，自由航走模型試験データを用いてデータ拡張手法の操縦モデルの推定精度に対する影響
を示した．第 5 章では，強化学習の概要を説明した後，操縦シミュレーション環境構成，報酬関数設計，参照
軌道の生成手法，静的擬似障害物の生成手法，を含む軌道追従制御方策の獲得手法について，シミュレーショ
ンおよび模型船における着桟操船軌道の追従実験や 4コーナー DP実験の結果を示した．第 6 章では，以上
の内容を総括し，今後の課題と展望を述べる．
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1

第 1章

序章

本章では，本論文の導入として，まず研究背景である自動運航船の定義やその目的について概説する．その
後，自動運航船における課題の一つである着桟操船および港内操船の自動化に関する問題に触れ，本研究の動
機を示す．また，関連する文献のレビューを通じて，抽出された研究課題と本研究の目的について論じる．最
後に，本論文に含まれる自著論文の一覧を提示する．

1.1 研究背景
1.1.1 自動運航船
近年，海運業界では自動運航船 (Maritime Autonomous Surface Ships: MASS)に関する研究開発が活発
化している．MASSは，国際海事機関 (International Maritime Organization : IMO)によって “人間の介入
が全く，もしくは，ほとんどなしに運航上のさまざまなオペレーションを実行できる船舶”と定義される船舶
の総称である．ただし，MASSには，船舶運航のための作業や意思決定が完全に自動化・自律化された船舶の
みだけではなく，段階的に自動化・自律化された船舶も含まれる．その自動化レベルは以下の 4段階に分類さ
れている．

• レベル 1: 船内作業の一部自動化と操船における意思決定支援．船員の主な役割は船内システムの操作
および管理であり，船内作業は一部自動化されているが必要に応じて船員が代替可能な状態で運行され
る．

• レベル 2: 船員が乗船している遠隔操作船．船舶は別の場所から制御および操作されるが，船員は乗船
しており，必要に応じて作業を代替する．

• レベル 3: 船員が乗船していない遠隔操作船．船舶は別の場所から制御および操作され，船員は乗船し
ていない状態で運行される．

• レベル 4: 完全自律型船．船舶のオペレーティングシステムがすべての意思決定を行い，操船が行わ
れる．

このような自動化・自律化レベルの段階的な向上を目指して，欧州や日本を中心に，多くの企業や研究機関が
実用化に向けた研究開発に取り組んでいる．例えば，日本財団が主導する “MEGURI2040 Fully Autonomous
Ship Program”において，複数のコンソーシアムが完全自律船の開発が実施されている．このプロジェクト
では，貨物船や観光船，フェリーなど多様な船種を対象とした実証実験が行われ，特に自動着桟技術の実用化
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に向けた研究開発が進められている．また，技術的な研究開発に加えて，IMOや各国の船級協会ではMASS
に課される規則やガイドラインに関する議論が進められている．

MASSの実用化は以下のような利点を海運業界にもたらすと考えられている．

• 人件費の削減: 船員の労働負担を軽減することで，乗組員に要する経費を削減できる．
• 安全性の向上: 疲労による人為的ミスを軽減し，危険な環境での作業を削減することにより，海上事故
を減らすことができる．

• 運航の効率化: 航路や船速の最適化により，運航効率や燃費効率が向上させることができる．

現在，日本では高齢化が進行しており，内航海運においても人材不足が深刻化しつつある．船員には高度な知
識とスキルが要求されるが，それらの習得には長い時間が必要であり，ベテラン層のリタイアに伴い人材不足
はさらに深刻になると予想される．この点からも，船員の労働負担を軽減するMASSの実用化は喫緊の課題
である．
着桟操船は船舶運航の中で最も船員が負担に感じるオペレーションの一つである．船舶の衝突事故は致命的

な人的および経済的損害をもたらす可能性が高いが，着桟操船では外洋航行と比較して他船や障害物との距離
が非常に近い．そのため，着桟操船は最新の注意と慎重な操作が求められるセーフティクリティカルなタスク
である．しかし，着桟操船は技術的に難易度の高い作業であるため，熟練した船員であってもミスを犯す可能
性は少なくない．この技術的な難しさの主な要因を以下に示す:

• 操船の複雑さ: 着桟操船では，前進速度が比較的大きく安定した標準的な操縦運動に比べて，大きな斜
航角を取る低速操縦運動が頻繁に発生する．特に，着岸操船ではクラビング (横移動)，旋回，後進など
の特殊な操船操作が要求される場合がある．着桟操船では，そのような操船を実現するために，複数の
アクチュエータを適切に操作することが求められる．

• 外乱影響の強さ: 低速状態では，操舵力や船体流体力の低下により，風のような環境外乱による影響が
比較的大きくなる．

• 障害物との近さ: 障害物との衝突回避だけでなく，適切な距離を保って操船される必要があり，操船の
自由度が制限される．

従って，着桟操船の自動化は船員の負担を軽減する重要な課題であり，本研究ではこの課題に取り組んだ．

1.1.2 着桟操船および港内操船の自動化
着桟操船に関連する用語として港内操船が存在するが，本論文ではまず，着桟操船および港内操船の定義を
行う．船舶の着桟操船は船舶や港湾の種類によって様々な方法が用いられるが，本研究では，タグボートの支
援を受けない大型船舶を想定し，宮内 [1]の定義を基に着桟操船および港内操船に関わる一連の操船を以下の
ように定義する．

• 入港操船: これは水道航路を通って外洋航海および港湾を移動する操船を指す．この操船では，規則で
決められた水路や制限船速を守り，他船との衝突を避けながら，目的地へ向かって航行することが求め
られる．

• アプローチ操船: これは着桟のために目的の接岸位置へ移動する操船を指す．この操船では，船速を適
切に逓減させながら，周囲の他船や障害物との衝突を避け，最終的に接岸位置付近で船舶を停止もしく
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は十分に減速させることが求められる．
• 接岸操船・着岸操船: これは，アプローチ操船の完了後，係留索で船舶が固定可能な位置まで船舶を移
動させる操船を指す．大型船舶では，船首方位を一定に保ったまま平行横移動するように操船されるこ
とが多い．

• 着桟操船: これはアプローチ操船および接岸操船・着岸操船を含む港湾内の船舶を桟橋や岸壁へ移動さ
せる一連の操船を指す．

• 港内操船: これは上述の四つの操船を全て含む港湾内で行われるすべての操船を指す．

したがって，本論文では，アクチュエータ (舵，プロペラ，スラスタなど)を適切に操作して船舶を港湾内のあ
る地点から目標地点まで安全かつ自動的に導くことを “港内操船の自動化”と定義し，特に，目標地点が接岸
位置の場合は “着桟操船の自動化”と定義する．つまり，この “着桟操船および港内操船の自動化”が本論文の
目的となる．
着桟操船および港内操船の自動化のための操船システム開発ではさまざまな要素技術が必要される．ここで
は，必要とされる要素技術のいくつかの例を以下に示す:

• 操船制御アルゴリズム: 与えられるシナリオを実現するようにアクチュエータの動作を決定する技術．
アクチュエータの動作は，船舶の操縦性を考慮した上で，自船の状態（位置，方位，速度，舵角，回転
数など）や外部環境の状態（海岸地形，水深，水路位置，風況，海面状況，他船位置など）に応じて適
切に判断される必要がある．

• 状況認識技術: 自船の状態および外部環境の状態に関する情報を観測するセンシングおよびセンシング
および状態推定技術．従来のセンサに加え，船員の目視から得られる情報を自動的に観測する必要があ
り，また，海底危険物，航路標識などの海図情報や港則法のような航行規制情報も併せた状況の把握が
必要である．

• 操縦モデル（操船シミュレータ）：少ない計算資源で船舶の操縦運動をシミュレート可能な船舶のため
のシステムベース数理モデル．制御アルゴリズムの設計および評価のために使用することが可能で，実
船を用いた検証の回数を減らす可能性があるため，実用的なツールとして広く利用されている．

本研究では，このうち，着桟操船および港内操船の自動化に向けた “操縦モデル”および “操船制御アルゴリ
ズム”の獲得技術に関する研究に取り組んだ．

1.2 関連研究
1.2.1 操縦モデルの推定手法
まず，操縦モデルの推定に関する関連研究について述べる．操縦モデルは船舶の操縦運動をシミュレートす
るためのシステムベースの数理モデルであり，運動学変数に関する常微分方程式や状態遷移関数を通して操縦
運動を表現する．操縦モデルは，数値流体力学（Computational Fluid Dynamics: CFD）に比べて少ない計
算量でシミュレーションが可能であるため，造船設計における操縦性能の予測や，操船制御アルゴリズムの設
計，操船シミュレータの開発など，さまざまな用途で活用されている．以下では，いくつかのアプローチ手法
に基づいた関連研究について述べる．
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(1) 水槽試験に基づくアプローチ
多くの操縦モデルは流体力学に基づいて構築されている．代表的な操縦モデルとして，日本試験水槽委員
会（Japan Towing Tank Conference: JTTC）の研究グループによって提唱されたManeuvering Modeling
Group (MMG)モデルが挙げられる．MMGモデルは船体，プロペラ，舵，その他のアクチュエータによって
生じる流体力を表現するサブモデルから構成される数理モデルである [2]．このモデルはモジュール性を持ち，
造船過程において部分的な設計変更が発生しても，特定のサブモデルの変更のみで対応可能であるという利点
を持つ．通常，MMGモデルは標準的な操船に焦点が当てられているが [3]，低速操縦運動に対応したMMG
モデルに関する研究も多数行われている [4–8]．
操縦モデルに含まれる流体力の大部分は，縮尺模型船を用いた拘束模型試験（Captive Model Tests）で測

定可能である．この試験方法には，平面運動機構（Planar Motion Mechanism: PMM）試験 [9]や Circular
motion tests (CMT) [10]がよく知られている．これらの試験で計測した力を基に，操縦モデルの構造やパラ
メータを決定することができる．さらに，いくつかのパラメータは経験式によって決定可能であり，例えば付
加質量や附加慣性モーメントの決定には元良のチャート [11]が，船体流体力の係数には井上の式 [12]，貴島
の式 [13]，芳村の式 [8]などが使用される．また，舵直圧力勾配には藤井の式 [14]，船体の風圧力には藤原の
式 [15]が利用可能である．
ただし，拘束模型試験を実施するためには，曳航水槽や操縦水槽といった特別な試験設備や，それらを適切

に運用する専門的知識が必要となる．対象船舶によっては，経験式や過去の拘束模型試験データの活用が可能
な場合もあるが，流体力を精密に表現しようとするにつれ，モデルの複雑さが増し，必ずしもすべてのパラメ
ータが決定できるわけではない．そのため，試験水槽を有する造船所や研究機関を介さないと，拘束模型試験
に基づく操縦モデルの獲得は難しい．また，フルスケールの船舶で計測可能な力はほとんどないため，模型ス
ケールでの試験結果を適切にスケーリングする必要があるが，スケール影響の問題に直面する可能性がある．

(2) システム同定に基づくアプローチ
操縦モデリングの異なるアプローチの一つとして，システム同定（System Identification: SI）がある．SI
を用いた操縦モデルの獲得手法は長年にわたり研究が行われてきた [16–24]．SIは，力の計測が必ずしも必要
なく，運動学的変数と制御入力の時系列データからモデル化が可能であるため，既存の船舶であれば，フルス
ケール船であっても，操縦モデルを直接推定できるという利点を持つ．SIでは，データに対してモデルがどの
程度実際の応答結果を表現しているかを評価する関数が定義され，実際の応答結果を十分に説明できるモデル
が作成される．従来の SIに基づく操縦モデリング研究は，以下の 4つの観点に基づいて部分的に分類できる．

操縦モデルがどのように定義されるか
操縦モデルは，大きく離散システムか連続システムの 2種類に分類される．離散システムでは，現在の
状態変数と入力変数から次の時刻の状態変数を予測する状態遷移モデル [25]や，現在および過去の状態
変数や入力変数から次の時刻の状態変数を予測する非線形自己回帰外因性（Nonlinear Autoregressive
Exogenous: NARX）モデル [26–28]が用いられることが多い．これらのモデルには人工ニューラルネ
ットワーク（Artificial Neural Network: ANN）[25, 28]，サポートベクターマシン（Support Vector
Machine: SVM）[29]，ガウス過程（Gaussian Processes: GP）[27]などの機械学習サロゲートモデル
が頻繁に利用される．一方，連続システムでは，常微分方程式によって状態変数とその時間微分の関係
をモデル化する方法が採られ，MMGモデル [22, 23]や Abkowitzモデル [17, 24, 30]が代表的である．
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連続システムでも SVM [31,32]や ANN [28]といった機械学習サロゲートモデルで近似する例がある．
評価関数がどのように定義されるか

SIの評価関数は，モデルの入出力関係の一致度や一連の操縦運動の応答結果の一致度に基づく指標が
使用される．前者の入出力関係に基づく手法は回帰分析に基づき，出力の予測値と観測値の誤差が最適
化基準として用いられるが，連続システムモデルの場合は加速度や力の計測が必要である．後者の応答
結果に基づく手法では，状態遷移関数の繰り返し計算や常微分方程式の数値解法を用い，一連の操縦運
動の応答を求める．この場合，実際の応答データとの二乗誤差 [22]，ハウスドルフ距離 [20]，観測ノイ
ズに対する負の対数尤度 [33]などが最適基準として利用される．この手法は比較的容易に計測可能な
位置や速度のみで評価基準を設定できるため，必ずしも加速度か力に関する計測値を必要としない．

パラメータがどのように最適化されるか
SIにおける最適化手法は，操縦モデルやその用途に応じて選択される．例えば，パラメトリックモデル
には拡張カルマンフィルタ（Extended Kalman Filter: EKF）[16–19]が古くから用いられているが，
パラメータ数が増加するとキャンセレーションの影響を受けやすくなることが報告されている [17]．ま
た，サポートベクター回帰（Support Vector Regression: SVR）[29,31,34,35]のような回帰分析も多
くの研究で採用されており，多重共線性に対処しやすい利点がある．ただし，オンライン同定が不要な
場合，EKFなどのオンライン手法よりもすべての測定データにアクセス可能なオフライン同定の方が
効果的とされる [20]．さらに，遺伝的アルゴリズム（Genetic Algorithm: GA）[20, 23]や共分散行列
適応進化戦略（Covariance Matrix Adaptation Evolution Strategy: CMA-ES）[22, 24, 36]を用いた
進化戦略ベースのオフライン SI手法も提案され，その有効性が示されている．

どのようなデータが与えられるか
SIには，実船や模型船による自由航走試験から得られる操縦運動データが用いられ，データの質や分布
が SIの結果に大きな影響を与える．データ分布は，自由航走試験の操縦運動内容に応じて変化するが，
多くの研究でジグザグ試験や旋回試験が使用される．また，ランダム操舵による操縦運動を使用する研
究 [19]や，フィッシャー情報行列に基づきパラメータ同定誤差の分散を最小化する D-最適化による操
舵運動を利用する研究 [37]もある．

また，いくつかの文献 [32, 38]では，従来の SIに基づく操縦モデリング研究を以下のように分類している．

• パラメトリック SI: 対象システムに関する先験的な情報に基づく SI．先験的な情報はしばしば数理モデ
ルに組み込まれており，例えばMMGモデル [22,23,36,39]や Abkowitzモデル [17,24,29,30]が挙げ
られる．この手法は，先験的な情報を基に簡潔かつ効率的にシステムを表現できる場合には，物理的仮
定の恩恵により比較的少ないデータでパラメータを決定する可能性がある．しかし，システムの表現が
不適切であると精度の低下を招く．

• ノンパラメトリック SI: 対象システムの先験的な情報を用いない SI．ANN やカーネル関数を用いた
SVMや GPといった機械学習ベースのサロゲートモデルが利用される．この手法では，多くのデータ
が要求される可能性が高いが，モデル構造を先験的に決定する必要がなく，あらゆるアクチュエータ構
成に適用可能であるため，流体力学の知識が浅いユーザにも実用的な手法といえる．

いずれの SI手法にも利点と欠点があり，一般的にどちらが優れているかについての明確な結論は得られてい
ない．よって，事前知識や与えられるデータに応じて選択されるべきと考えられるが，本研究ではさまざまな
アクチュエータ構成に適用可能なノンパラメトリック SI手法に焦点を当てる．
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操縦モデルの推定のためのノンパラメトリック SI 手法において，ANN は最も代表的な手法の一つであ
る．ANNは強力な関数近似能力を有し [40, 41]，操縦モデルの非線形性を十分に表現できることが多くの研
究 [25, 28,38,42–44]で示されている．Moreiraら [25, 42]は，ANNで表された操縦モデルを再帰的に用いる
操船シミュレーションモデルを提案し，シミュレーションデータおよび実スケールデータによる検証を実施し
た．Rajeshら [43]は，3自由度の操縦方程式の非線形項を ANNで表現し，大型タンカーの非線形操縦モデ
ルを推定した．Zhang ら [44] は Chebyshev 直交基底関数を持つ ANN を用いて非線形流体力を表現する関
数を推定した．Heら [38]は，ベイズ最適化を用いたハイパーパラメータ探索による ANNモデルの自動設計
手法を提案している．また，履歴影響を考慮するため，回帰型ニューラルネットワーク（Recurrent Neural
Network: RNN）[26,28,45]や Long Short Term Memory（LSTM）[46,47]を適用した操縦モデル推定に関
する研究も行われている．
カーネル関数に基づく SVM [31, 37]や GP [27, 48, 49]も，操縦モデルの推定において代表的なノンパラメ
トリック SI手法である．Luoら [31]は実船試験のデータを用いて双胴船の特定の旋回円操縦運動を推定する
SVMベースの操縦モデルを提案した．Wangら [37]は，𝜈-SVRに基づくノンパラメトリックモデリング手
法を提案し，KVLCC2型タンカーの模型実験データで検証を行った．Ramirezら [48]は，多出力 GPを用い
てコンテナ船の 4自由度操縦モデルを推定する手法を提案した．Xueら [27]は，操縦モデルの推定精度の向
上を目的にノイズ入力を考慮した GP回帰手法を提案した．これらの手法はカーネルトリックを活用し，低い
計算コストで操縦モデルの非線形パターンを捉えることが可能であり，構造リスク最小化を通じてオーバーフ
ィッティングを緩和する [37]．また，モデルの適応向上を目指したオンライン学習に関する研究も進められて
いる [49]．
港内操船には，比較的大きな前進速度による安定した操縦運動に加え，大きな斜航角の運動やアクチュエー

タの使用頻度が増加する低速操縦運動も含まれる．そのため，港内操船に適した操縦モデルは，状態変数の範
囲や行動変数の次元が増大する傾向にある．ノンパラメトリック SI手法の中でも ANNは高次元かつ大規模
なデータに対応できる能力を持っており，港内操船のための操縦モデル推定に適していると考えられる．しか
し，これまでの ANNを用いた操縦モデルのノンパラメトリック SI手法に関する研究は，主に標準的な操縦運
動に限定されており，港内操船向け操縦モデル推定における ANNの有効性を示す研究例は見当たらない．そ
こで，本研究では，ANNを用いた着桟操船および港内操船に適した操縦モデルの推定手法を検討している．

1.2.2 操船制御アルゴリズム
船舶の操船制御アルゴリズムに関する関連研究について述べる．与えられた計画を実行する操船制御アルゴ
リズムは，輸送のみならず，測量や地図作成など多様な用途に対応する重要な技術として注目されており，離
着桟操船 [50–54]，衝突回避 [55,56]，定点保持 [57,58]などのさまざまなシナリオに適用されている．本研究
の目的は着桟操船および港内操船の自動化であるため，ここでは，着桟操船の自動化に関する関連研究を示し
た後，本研究で取り組む軌道追従制御に関する研究について述べる．

(1) 着桟操船制御
近年，MASSの研究開発の進行に伴って着桟操船の自動化に関する研究が活発化しているが [59]，日本では，

小山ら [60]による最適レギュレーター問題の適用を契機に，早期から高度自動運航システムの開発を目指した
着桟操船の研究が多く報告されている [61–65]．例えば，小瀬ら [61]は二つの操船パターンの参照軌道を決定
し，フィードバック制御及びフィードフォワード制御により着桟操船制御を試みている．ここではセーフティ
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ファーストの原則から，計画において，岸壁から少し離れた仮のゴールを目標点とし，また，操作量余裕を持
たせることで安全性の向上を試みている．さらに，小山ら [62]は着桟制御問題をアプローチ操船と着岸操船へ
分割して取り組んでいる．特に着岸操船では，線形化した操縦モデルに対し最適レギュレーター問題として定
式化しており，加えて，操船者の経験による着桟パターンのルールを活用し，評価関数の定義を行なっている．
着桟操船の自動化には，モデル予測制御（Model Predictive Control: MPC）を用いた最適制御問題（Optimal

Control Problem: OCP）の解法 [66–68]や，適切な制御入力を ANNに学習させる手法 [53,69–72]が提案さ
れているが，多くの研究では自律航法問題を計画（Planning）と制御（Control）に分離している．例えば，正
司ら [50,73–75]は着桟制御問題を非線形の 2点境界値問題として定式化し，Sequential Conjugate Gradient
Restoration Method [76]により数値的に最適解を求めた．その後，最適制御解をフィードフォワード情報，最
適軌道の状態誤差をフィードバック情報として用いた追従制御により着桟操船の自動化を行なった．Ahmed
ら [53]は Imaginary lineと呼ばれる基準線を導入し，PD制御により基準線に沿うことでアプローチ操船の自
動制御を行っている．また，Martinsenら [77]は OCPに基づく着桟航路計画手法を提案し，Bitarら [51]や
Martinsenら [52]は DPSを用いて計画軌道の追従することで着桟操船の自動化を実現している．澤田ら [21]
は PD制御による Pure Pursuit法と 3段階クラッチ制御でベジェ曲線を追従し，着桟操船の自動化を実現し
ている．着桟操船の自動化において，計画と制御の分割はアルゴリズムの簡素化とリアルタイム性能の向上に
効果があるため，多くの研究で採用されている．
着桟操船の自動化のための航行計画では，船舶を目標地点へどのように到達させるかを決定する必要があり，

計画航路の定義方法は大きく以下に分類できる．

• 経路計画 (Path planning)：船舶が通過すべき位置と方位の集合を定義する方法で，Ahmedら [53]や
澤田ら [21]の研究で用いられている．直線や曲線で定義されるため，計算量が少なくシンプルに実行可
能だが，動的制約を考慮していないため実現可能な計画とならない場合がある．

• 軌道計画 (Trajectory planning)：位置や方位に加えて時間的情報を含む計画手法であり，正司ら [50]
の研究では，操縦モデルによる動的制約を考慮した実現可能な軌道が得られている．また，空間制約も
考慮され，Martinsenら [77]は安全マージンをポリゴンで定義し，空間制約を OCPに組み込んでいる．
さらに，宮内ら [78]は牧ら [79, 80]の最適軌道計画手法を拡張し，Ship Domainを導入して障害物か
らの安全距離を確保している．ただし，非線形計画法を解く必要があり，計算コストが高くなる．

着桟操船では，外洋航海から入港とアプローチ操船を経て着岸操船に至るまで，船舶の減速能力を踏まえ船速
を段階的に低下させる必要がある [81]．本論文では，船舶の操縦性やアクチュエータの限界が考慮された実現
可能な軌道計画が与えられると仮定し，軌道追従制御（Trajectory Tracking Control）に関する研究に取り組
んでいる．

(2) 軌道追従制御
軌道追従制御は，船舶を与えられた軌道計画に従わせるためアクチュエータの動作を指示する役割を担っ
ており，高い追従精度を保持するためには，操縦モデルの非線形性，モデル化誤差，環境外乱に応じた適切
な判断が必要である．軌道追従制御に関する研究も多く進められており，非線形 MPC [47, 82, 83] やバック
ステッピング制御 [84–86]を用いたアプローチが検討されている．また，波，風，潮流といった外乱下での姿
勢維持や修正を目的とした低速操船・定点保持に特化した制御システムである Dynamic Positioning System
(DPS) [57,58]を活用し，着桟操船シナリオにおける軌道追従制御を実施する研究も存在する [51, 52,87]．
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強化学習 (Reinforcement Learning: RL) [88]は，環境の不確実性を考慮できる特性から，船舶の運動制御
において注目を集めている [55, 89–93]．RLは，環境制約および不確実性の下で，与えられた報酬関数に基づ
き最適な制御方針を探索するために利用される．また，RLと ANNを組み合わせることで，性能の大幅な向
上が得られることも知られている [94]．例えば，Martinsen らは，RL を用いて直線経路 [95] および曲線経
路 [90]に対する追従誤差を最小化する制御器を構築し，その後，軌道追従のための制御器について検討してい
る [91, 93]．
軌道追従制御は，動的制約や空間制約，環境外乱などの不確実性などを考慮した上で，リアルタイム性を保

ったまま，実行され続けれなければならなず，リアルタイムでの反復試行を伴う最適化計算は好ましくない．
RLは軌道追従制御のための ANNを訓練することが可能であり，訓練された ANNは繰り返し計算処理をす
ることなく最適な制御入力を決定することができる．そのため，本研究では軌道追従制御のための ANN の
RL訓練手法について焦点を当てる．

1.3 研究目的
本研究では，ANNを用いた着桟操船および港内操船に適した操縦モデルの推定手法と，船舶の軌道追従制

御を実現するための ANNの RL訓練手法について検討する．本節では，それぞれの研究テーマに関連する残
された課題と本研究の目的を整理する．

(1) ANNを用いた着桟操船および港内操船のための操縦モデルの推定手法
1.2.1 節で述べたように，ANNを用いた操縦モデルのノンパラメトリック SIの有効性は多くの研究で示さ

れているが，低速操縦運動のための操縦モデル推定における ANNの有効性が確認された研究は知る限り存在
しない．そのため，本研究の目的の一つは ANNを用いた港内操船のための操縦モデル推定手法を提案するこ
とである．最終的な目標は実船の操船モデルの予測であるが，ここでは，研究の第一段階として模型試験デー
タを用いた検証実験を実施する．以下に，本研究で取り組む具体的な課題とその貢献を示す．

• これまで操縦モデルの入出力関係を学習するために加速度の計測が必要とされてきたが，実環境におけ
る加速度データはノイズや計測誤差の影響を受けやすい．そのため，本研究では ANNおよび RNNを
用いた操縦モデルの推定手法として，操縦運動軌道の予測誤差を最小化する加速度を必要としない訓練
手法を導入することを提案する．

• 多くの SIに関する既存研究では，ジグザグ操船や旋回操船のデータを用いて操縦モデル推定が行われ
ているが，これらのデータは必ずしも港内操船や着桟操船の操縦モデル推定に適しているとは言えない．
ジグザグや旋回操船は比較的大きな船速での標準的な操縦運動を計測するものであり，クラビング，旋
回，後進運動のような低速かつ大きな斜航角を伴う操縦運動データは取得できない．そのため，本研究
では低速操縦運動の効率的な計測を目的としてランダムにアクチュエータを操作する操船試験（以下，
“ランダム操船試験”と称す）を実施し，その有効性を検証する．

• 過去の履歴を考慮するため先行研究では過去の全履歴を考慮する無限インパルス応答型 RNN [25, 96]
または特定時点以前の記憶を無視する有限インパルス応答型 RNN [26] のいずれかが用いられてきた
が，どちらがより操縦モデルの推定に適しているかを直接比較した例はない．そのため，本研究では，
無限インパルス応答型 RNNと有限インパルス応答型 RNNの比較実験結果を示す．

この内容は，自著論文１ [28]で発表されている内容に該当し，本学位論文では第 3 章で詳述される．
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(2) ANNを用いた操縦モデル推定のためのデータ拡張手法
操縦モデルの推定精度向上のため，本研究では加速度を用いないパラメータ訓練手法や操縦運動データ収集
のためのランダム操船試験の導入などの提案している．しかし，ANNを用いたノンパラメトリック SIは，流
体力学的背景を持たないため，操縦モデルの精度がデータの分布と質に依存しやすい．港内操船には標準操船
だけでなく，低速操船時のさまざまなアクチュエータ操作や運動パターンが含まれ，結果として，取り得る状
態空間の領域が広がり必要な運動データも増加する．一方，実船試験には高いコストがかかる．既存船の場合，
日々のオペレーションデータが主要なデータ源となる可能性があるが，決まったパターンに従って操船される
場合，データ分布に偏りが生じやすい．そのため，ランダム操船試験を用いたとしても，港内操船におけるあ
らゆる状況を網羅する操縦運動データを収集することは現実的に難しく，収集されるデータの内容はユーザに
より異なり，必ずしも十分な操縦運動データが収集可能であるとは限らない．
そこで，本研究では操縦モデルの汎化性能向上のため，データ拡張（Data Augmentation: DA）手法の適
用を検討する．DA手法は，既存データから合成データを生成することで，訓練に使用するデータ量を増加さ
せることが可能である．時系列データに適用する DA手法については多くの研究 [97, 98]が存在するが，船舶
の操縦モデル推定における適用例は知る限り存在しない．DA手法には様々な種類があり，すべての手法が操
縦モデルの汎化性能向上に寄与するわけではない．例えば，window wrapping [99–101]は，時系列データを
圧縮または伸長して合成データを生成する手法であるが，この方法では操縦モデルによって予測される状態変
数の時間微分が大きく変動する可能性があり，本研究には適していない．こうした DA手法は元のデータとは
異なる特性を持つデータを生成するため，かえって汎化性能を劣化させる恐れがある．
したがって，本研究の目的の一つは，ANN を用いた着桟操船および港内操船のための操縦モデル推定に

DA 手法を導入し，その汎化性能を向上させることである．そのため，データ補強手法としてスライシング
（slicing）法とジッタリング（jittering）法を採用し，効果的なデータ補強手法とその有効性を示す．この内容
は自著論文 2 [33]で発表した内容に該当し，本学位論文では第 4 章で詳述される．

(3) RLを用いた軌道追従制御方策の獲得手法
1.2.2 節で述べたように，RLは与えられた環境制約および不確実な状況下で最適な制御方策を見つけるこ
とが可能で，軌道追従制御問題へも適用可能である．しかし，最適なポリシーを獲得するためには RLにおい
て探索が必要であり，𝜖-greedy法 [94]や行動にランダムノイズ [102]を付加する方法が採用されるが，こう
した探索方法では物理環境における安全性確保が難しい場合がある．また，トレーニングに必要な時間は環境
や問題の複雑さに依存し，長時間を要することもあるため，物理環境における探索は安全性と経済性の観点か
ら実用的でない可能性がある．
実環境での探索を避ける方法の一つとして，事前に強化学習のための操縦シミュレーション環境を構築する

モデルベース強化学習 [103]が挙げられる．そのため，本研究では，MMGモデルに基づく操縦シミュレーシ
ョン環境，または，操縦運動データから ANNで推定された操縦モデルに基づく操縦シミュレーション環境を
構築し，着桟操船および港内操船の追跡制御方策に対応する RL訓練手法を提案する．

RLによる追従制御のための ANN訓練に関する先行研究では，直線経路 [95]および曲線経路 [90]に対す
る訓練が実施されてきたが，港内操船や着桟操船に適応するためには，旋回，停止，後進，横移動など多様な
操縦運動軌道を追従できるように訓練する必要がある．さらに，岸壁付近の障害物に接近する着桟操船では，
わずかな追従誤差が衝突リスクを引き起こす可能性があるが，環境外乱を含む不確実な環境下では追従誤差を
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完全にゼロに保つことは困難である．そのため，少なくとも衝突リスクのある追従誤差を回避することが有効
であると考えられる．これらの課題解決のため，提案手法には以下の工夫が含まれている．

• 港内操船でとり得るさまざまな操縦運動軌道に対して訓練が行われるように，参照軌道生成のためのラ
ンダム操船を導入する．

• 障害物に対する衝突回避の訓練を可能にするために，参照軌道に応じた静的な擬似障害物の生成方法を
提案する．

• 障害物と船舶間の距離を表す尺度を導入し，衝突を引き起こす可能性のある追従誤差回避させる報酬関
数を提案する．

この内容は自著論文３ [104]および自著論文４ [105]で発表した内容に該当し，本学位論文では第 5 章で詳述
される．

1.4 自著論文 (学術雑誌掲載論文および学会論文)
本学位論文に含まれる内容に関連する自著論文を以下にまとめる．

自著論文１ [28]
題名: On neural network identification for low-speed ship maneuvering model
著者名: Kouki Wakita, Atsuo Maki, Naoya Umeda, Yoshiki Miyauchi, Tohga Shimoji, Dimas M
Rachman, Youhei Akimoto
出版物の種類: 学術雑誌 (全文査読付)
出版物の名称: Journal of Marine Science and Technology
出版社: Springer Nature
出版年月: 2022年 3月 1日

自著論文２ [33]
題名: Data Augmentation Methods of Dynamic Model Identification for Harbor Maneuvers using
Feedforward Neural Network
著者名: Kouki Wakita, Yoshiki Miyauchi, Youhei Akimoto, Atsuo Maki
出版物の種類: 学術雑誌 (全文査読付)
出版物の名称: Journal of Marine Science and Technology
出版社: Springer Nature
出版年月: 承認済み (2024年 10月 27日)

自著論文３ [104]
題名: Collision probability reduction method for tracking control in automatic docking/berthing
using reinforcement learning
著者名: Kouki Wakita, Youhei Akimoto, Dimas M Rachman, Yoshiki Miyauchi, Atsuo Maki
出版物の種類: 学術雑誌 (全文査読付)
出版物の名称: Journal of Marine Science and Technology
出版社: Springer Nature
出版年月: 2023年 12月 1日
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自著論文４ [105]
題名: Model-based reinforcement learning for trajectory tracking control of autonomous surface
ship
著者名: Kouki Wakita
出版物の種類: 国際会議論文集 (全文査読付)
出版物の名称: Proceedings of the 34th International Society of Offshore and Polar Engineers
出版年月: 2024年 6月 16日
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第 2章

事前知識

本章では，本論文の前提となる数学的表記法および船舶の操縦運動に関する基礎知識について述べる．また，
提案手法の検証実験に使用した供試模型船についても詳述する．以降，2.1 節で数学的表記法について説明し，
2.2 節では船舶の操縦運動に関連する座標系および運動方程式について述べる．さらに，2.3 節及び2.4 節で本
研究に使用された二隻の供試模型船について詳述し，最後に2.5 節で供試船を用いた試験が実施された実験池
について述べる．

2.1 表記法
本節では，本論文を通して用いる数学的表記法についてまとめる．Rは実数の集合，S = [0, 2𝜋] は角度の集
合を表す．𝑛次元のユークリッド空間は R𝑛 と表記される．ある実数ベクトルを 𝒙 ∈ R𝑛，実数行列を 𝑨 ∈ R𝑛×𝑛

とすると，‖𝒙‖ は 𝒙 のユークリッドノルム (𝒙T𝒙)1/2，‖𝒙‖𝑨 は 𝑨で重み付けされた 𝒙 のユークリッドノルム
(𝒙𝑇 𝑨𝒙)1/2 を表す．また，diag(𝒙) ∈ R𝑛×𝑛 は 𝒙 を対角要素に持つ対角行列，arctan2は二つの引数を取る逆
正接関数であり，arctan2 (𝑥, 𝑦) は 𝑥𝑦直交座標における点 (𝑥, 𝑦) の偏角を示す．さらに，1𝑎 は 𝑎 が真であれ
ば 1，そうでなければ 0を取る指示関数を表し，b·c は床関数を表す．

2.2 平水中における 3自由度の操縦運動
本研究では，主に港湾内の操縦運動および操船制御に焦点を当てているため，風外乱を考慮した穏やかな水
面における 3自由度の操縦運動を扱う．港湾内であっても，船舶の操縦運動は波や潮流などの環境外乱に影響
を受ける可能性があるが，これらの外乱状態は無視されるか，観測されない変数として扱われる．本節では，
2.2.1 節で船舶の操縦運動を表現するための座標系や変数の定義について詳述し，2.2.2 節で船舶の操縦運動を
表現する操縦運動方程式について述べる．

2.2.1 座標系
Fig. 2.1に示されるように，空間固定座標系O0−𝑥0𝑦0𝑧0と，ミッドシップを原点とする船体固定座標系O−𝑥𝑦𝑧
を考える．船舶の運動は，姿勢ベクトル 𝜼 ≡ (𝑥0, 𝑦0, 𝜓)T ∈ R2 × Sおよび速度ベクトル 𝝂 ≡ (𝑢, 𝑣m, 𝑟)T ∈ R3 に
よって表現される．ここで，(𝑥0, 𝑦0) は地球固定座標系 O0 − 𝑥0𝑦0𝑧0 におけるミッドシップの位置，𝜓 は回頭
角，(𝑢, 𝑣m) はそれぞれ船体の縦方向および横方向の速度，𝑟 は回頭角速度を意味する．さらに，簡略化のため，
船の運動状態変数をまとめて 𝒙 ≡

(
𝜼T, 𝝂T)T と定義する．



2.2 平水中における 3自由度の操縦運動 13

Fig. 2.1: Coordinate Systems of ship maneuvering motion.

船舶にはプロペラや舵といったアクチュエータによって外力が与えられる．船舶に搭載されるアクチュエー
タは船種によって異なるが，本研究では主にプロペラ，舵，サイドスラスタを考慮する．すなわち，アクチュ
エータ状態はプロペラ回転数，舵角，サイドスラスタ回転数で表される．アクチュエータ状態の詳細な定義に
ついては，2.3 節及び2.4 節においてそれぞれの供試船に応じて述べるが，本節では 𝑁𝒖 次元のアクチュエー
タ状態ベクトルを 𝒖 ∈ U と表記する．ここで，アクチュエータ状態 𝒖 の 𝑖 番目の成分の上下限をそれぞれ

¯
𝑢𝑖，

𝑢𝑖 として，U =
∏𝑁𝒖
𝑖 [

¯
𝑢𝑖 , 𝑢𝑖] と定義する．

次に，船舶が風から受ける力を考慮する．風の状態は，真風速および真風向を成分とするベクトル
𝒘T ≡ (𝑈T, 𝜉T)T ∈ R × Sで表され，𝑈T は真風速，𝜉T は真風向を示す．ここで，真風向の基準方向は風が 𝑥0

軸の正の方向から負の方向に吹く向きと定義される．本研究では，真風速および真風向は時刻 𝑡 に応じて変動
するものの，空間的には均一であると仮定する．また，船舶が直接受ける影響は真風ではなく相対風によるも
のであり，相対風の状態は相対風速および相対風向を成分とするベクトル 𝒘A ≡ (𝑈A, 𝛾A)T ∈ R × Sで表され
る．ここで，𝑈A は相対風速，𝛾A は相対風向を示し，相対風向の基準方向は風が船首から船尾に向かって吹く
向きと定義される．
真風と相対風は，ミッドシップの速度 (𝑢, 𝑣m) と回頭角 𝜓 が与えられれば，相互に変換可能である．船舶固

定座標系における真風状態ベクトルを 𝒘′
T ≡ (𝑈T cos (𝜉T − 𝜓) ,𝑈T sin (𝜉T − 𝜓))T ∈ R2，相対風状態ベクトル

を 𝒘′
A ≡ (𝑈A cos 𝛾A,𝑈A sin 𝛾A)T ∈ R2 とそれぞれ定義し，船舶の速度ベクトル 𝒗 ≡ (𝑢, 𝑣m)T ∈ R2 と定義す

ると，真風と相対風の関係は
𝒘′

A = 𝒘′
T − 𝒗 (2.2.1)

と表される．よって，船の速度 (𝑢, 𝑣m) と回頭角 𝜓 が与えられれば，相対風速𝑈A および相対風向 𝛾A は𝑈A =
√
(𝑈T cos (𝜉T − 𝜓) − 𝑢)2 + (𝑈T sin (𝜉T − 𝜓) − 𝑣m)2

𝛾A = arctan2 (𝑈T sin (𝜉T − 𝜓) − 𝑣m,𝑈T cos (𝜉T − 𝜓) − 𝑢)
(2.2.2)
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と表現される．

2.2.2 操縦運動方程式
本研究では，船舶の操縦運動は主に船体の運動学的変数ベクトル 𝒙，アクチュエータ状態変数ベクトル 𝒖，
真風速風向ベクトル 𝒘T によって決定されると仮定する．しかし，実際には波や潮流といった環境外乱や，斜
航角が大きい低速操縦運動における渦に起因する流体力の変動などの影響を受ける可能性があり，船体の運動
学的変数ベクトル 𝒙，アクチュエータ状態変数ベクトル 𝒖，真風速風向ベクトル 𝒘T のみでは船舶の操縦運動
を必ずしも十分に説明できないことがある．一般に，渦や潮流の計測には特別な計測機器が必要であるため，
本研究ではこれらは観測されないものとした．このように観測可能な変数が限られる部分観測問題では，観測
不可能な現在の状態を過去の観測履歴から推定する必要が生じる可能性がある．
従って，現在時刻を含む過去 𝑁m ステップ間の離散時刻における状態変数 𝒙，𝜼，𝝂，𝒖，𝒘T，𝒘A をまとめ
たベクトルをそれぞれ

𝑿 (−)
𝑁m

(𝑡) ≡
(
𝒙T (𝑡) , 𝒙T (𝑡 − Δ𝑡) , · · · , 𝒙T (𝑡 − (𝑁m − 1)Δ𝑡)

)T
∈ R6𝑁m

𝑯 (−)
𝑁m

(𝑡) ≡
(
𝜼T (𝑡) , 𝜼T (𝑡 − Δ𝑡) , · · · , 𝜼T (𝑡 − (𝑁m − 1)Δ𝑡)

)T
∈ R3𝑁m

𝑵 (−)
𝑁m

(𝑡) ≡
(
𝝂T (𝑡) , 𝝂T (𝑡 − Δ𝑡) , · · · , 𝝂T (𝑡 − (𝑁m − 1)Δ𝑡)

)T
∈ R3𝑁m

𝑼 (−)
𝑁m

(𝑡) ≡
(
𝒖T (𝑡) , 𝒖T (𝑡 − Δ𝑡) , · · · , 𝒖T (𝑡 − (𝑁m − 1)Δ𝑡)

)T
∈ R𝑁𝒖𝑁m

𝑾 (−)
T,𝑁m

(𝑡) ≡
(
𝒘T

T (𝑡) ,𝒘T
T (𝑡 − Δ𝑡) , · · · ,𝒘T

T (𝑡 − (𝑁m − 1)Δ𝑡)
)T

∈ R2𝑁m

𝑾 (−)
A,𝑁m

(𝑡) ≡
(
𝒘T

A (𝑡) ,𝒘T
A (𝑡 − Δ𝑡) , · · · ,𝒘T

A (𝑡 − (𝑁m − 1)Δ𝑡)
)T

∈ R2𝑁m ,

(2.2.3)

と定義する．ただし，Δ𝑡 はタイムステップを表す．このとき，船舶の操縦運動は常微分方程式

¤𝜼 = 𝑹 (𝜼) 𝝂 , (2.2.4a)

¤𝝂 = 𝑭
(
𝑵 (−)
𝑁m
,𝑼 (−)

𝑁m
,𝑾 (−)

A,𝑁m

)
(2.2.4b)

で表現可能であると仮定される．ただし，𝑭は操縦モデルを表す未知のベクトル関数，𝑹 (𝜼) ∈ R3×3 はO− 𝑥𝑦𝑧
からO0 − 𝑥0𝑦0𝑧0 への回転行列であり

𝑹 (𝜼) =

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1

 (2.2.5)

と定義される．表記の簡略化のため，以降では，Eq. (2.2.4b)と Eq. (2.2.2)の合成関数を

¤𝝂 = 𝑭′
(
𝑿 (−)
𝑁m
,𝑼 (−)

𝑁m
,𝑾 (−)

T,𝑁m

)
(2.2.6)

と表記し，また，Eq. (2.2.4a)および Eq. (2.2.6)はまとめて

¤𝒙 = 𝒇
(
𝑿 (−)
𝑁m
,𝑼 (−)

𝑁m
,𝑾 (−)

T,𝑁m

)
(2.2.7)

と表記する．ただし，Eq. (2.2.4b)がマルコフ特性を持つと仮定する場合は，𝑁m = 0となり 𝑿 (−)
𝑁m
，𝑯 (−)

𝑁m
，𝑵 (−)

𝑁m
，

𝑼 (−)
𝑁m
，𝑾 (−)

T,𝑁m
，𝑾 (−)

A,𝑁m
はすべて 𝒙，𝜼，𝝂，𝒖，𝒘T，𝒘A に置き換わることに注意する．
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Fig. 2.2: Subject ship 1 (M.V. Esso Osaka).

Table 2.1: Actuator state limitations of subject ship 1.

Item Symbol Range

Rudder angle (degree) 𝛿 [−35◦, 35◦]
Propeller revolution (rps) 𝑛P [−20, 20]

2.3 供試船１: 一軸一舵を搭載した模型船
本研究では異なる二つの供試模型船が利用された．本節では，一つ目の供試船について詳述する．一つ目の
供試船は，Fig. 2.2に示す，M.V. Esso Osakaの 3メートル模型船である．この模型船は，一つのプロペラと
一枚の舵が搭載されている．よって，この船のアクチュエータ状態変数は舵角およびプロペラ回転数であり，
それぞれ，𝛿 および 𝑛P と表記する．アクチュエータ状態変数のとり得る値を Table 2.1に示す．

2.3.1 自由航走試験のため計測および操船システム
この模型船には，和田らによって開発された自由航走試験のための操船システムが搭載されており，Robot

Operating System (ROS)に基づいて動作する [106]．本研究では，この模型船を用いて操縦運動データ集合
の計測および操船制御実験を行った．
この模型船には，光ファイバージャイロ（Fiber Optic Gyroscope: FOG）1 台，全球測位衛星システム

（Global Navigation Satellite System: GNSS）受信機 3台，および超音波風速計 2台が搭載されており，こ
れらの計測値を基に船体状態 𝒙 および風状態 𝒘A が観測される．
船体位置 (𝑥0, 𝑦0)は，GNSSで得られる位置情報をミッドシップ位置へ変換することで観測しており，GNSS
にはセンチメートル級測位補強サービス（Centimeter Level Augmentation Service: CLAS）を用いた精密
な位置測定が採用されている．船体速度 (𝑢, 𝑣m) は，ミッドシップ位置の数値時間微分から計測され，その後，
線形カルマンフィルタで平滑化を行った．回頭角速度 𝑟 は光ファイバージャイロで直接計測し，回頭角 𝜓 はド
リフトの影響を避けるため，FOGではなく，複数の GNSS受信機の相対位置から算出している．さらに，舵
角 𝛿およびプロペラ回転数 𝑛P も逐次計測しており，これらすべての値は 10 Hzの周波数でサンプリングされ
ている．
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2.3.2 操縦シミュレーションのためのMMGモデル
操縦運動データの生成および操縦シミュレーション環境として使用する供試船１のMMGモデルについて

述べる．本研究は港内操船に焦点を当てているため，斜航角を大きくとる運動やプロペラ逆転を考慮したサブ
モデルが選択されている．MMGモデルの係数は経験式もしくは拘束模型試験により推定された．
標準的なMMGモデルで使用される 3自由度の運動方程式は

(𝑚 + 𝑚𝑥) ¤𝑢 −
(
𝑚 + 𝑚𝑦

)
𝑣𝑚𝑟 − 𝑥𝐺𝑚𝑟2 = 𝑋(

𝑚 + 𝑚𝑦
)
¤𝑣𝑚 + (𝑚 + 𝑚𝑥) 𝑢𝑟 + 𝑥𝐺𝑚 ¤𝑟 = 𝑌(

𝐼𝑧𝑧 + 𝐽𝑧𝑧 + 𝑥2
𝐺𝑚

)
¤𝑟 + 𝑥𝐺𝑚 (¤𝑣𝑚 + 𝑢𝑟) = 𝑁

(2.3.1)

と表される．ここで，𝑚, 𝑚𝑥 , 𝑚𝑦 はそれぞれ船体質量，Surge 方向の付加質量，Sway 方向の付加質量を表
し，𝐼𝑧𝑧，𝐽𝑧𝑧 はそれぞれ慣性モーメント，付加慣性モーメントを表し，𝑥𝐺 は Surge 方向の重心位置を表す．
Eq. (2.3.1)の右辺の 𝑋，𝑌，𝑁 はそれぞれ縦力，横力，Yaw方向のモーメントを表す．これらの力およびモー
メントは船体，プロペラ，舵，風に起因する力およびモーメントに分解され，

𝑋 = 𝑋H + 𝑋P + 𝑋R + 𝑋A

𝑌 = 𝑌H + 𝑌P + 𝑌R + 𝑌A

𝑁 = 𝑁H + 𝑁P + 𝑁R + 𝑁A

(2.3.2)

と表される．ここで，下付き文字の H,P,R,Aはそれぞれ船体，プロペラ，舵，風に起因する力であることを
示している．これらの力についてそれぞれ以降で詳述する．

2.3.2.1 船体に起因する力およびモーメント
まず，船体に働く力およびモーメントは，芳村ら [8]が提案した外洋および港湾操船の統一数理モデルを用

いて表現する．つまり，船体に働く力およびモーメントは

𝑋H =
( 𝜌
2

)
𝐿pp𝑑

[{
𝑋 ′

0(F) +
(
𝑋 ′

0(A) − 𝑋
′
0(F)

)
(𝛽/𝜋)

}
𝑢𝑈 + 𝑋 ′

𝑣𝑟𝐿pp · 𝑣m𝑟
]

𝑌H =
( 𝜌
2

)
𝐿pp𝑑

[
𝑌 ′
𝑣 𝑣m |𝑢 | + 𝑌 ′

𝑟 𝐿pp · 𝑟𝑢 −
(
𝐶D
𝐿pp

) ∫ 𝐿pp/2

−𝐿pp/2
|𝑣m + 𝑟𝑥 | (𝑣m + 𝐶𝑟𝑌𝑟𝑥) d𝑥

]
𝑁H =

( 𝜌
2

)
𝐿2

pp𝑑

[
𝑁 ′
𝑣𝑣m𝑢 + 𝑁 ′

𝑟𝐿pp · 𝑟 |𝑢 | −
(
𝐶D

𝐿2
pp

) ∫ 𝐿pp/2

−𝐿pp/2
|𝑣m + 𝐶𝑟𝑁 𝑟𝑥 | (𝑣m + 𝐶𝑟𝑁𝑟𝑥) 𝑥d𝑥

] (2.3.3)

と表現される．ただし，𝜌 は水の密度，𝐿pp は船の垂線間長，𝑑 は喫水，𝑋 ′
0(F) および 𝑋 ′

0(A) はそれぞれ前進
および後進の抵抗係数，𝐶D は横流れ抗力係数，𝐶𝑟𝑌 および 𝐶𝑟𝑁 は横力と Yawモーメントの補正係数，𝑋 ′

0(F)，
𝑌 ′
𝑣，𝑌 ′

𝑟，𝑁 ′
𝑣, および 𝑁 ′

𝑟 はそれぞれ無次元の流体力微係数である．Eq. (2.3.3)に本来含まれるはずであった付
加質量項は Eq. (2.3.1)に移動されていることに注意する．抵抗係数と線形流体力微係数はキャプティブモデ
ル試験により決定され，残りの係数は経験式 [8]を用いて推定された．

2.3.2.2 プロペラに起因する力およびモーメント
本研究では，後進運動やプロペラ逆転が取られることが想定される．そのため，標準MMGモデル [3]で使

用されるプロペラモデルに加えて，前進速度およびプロペラ回転数に応じたサブモデルが追加されている．
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(1) 𝑛P > 0のとき
プロペラに起因する Surge方向の力は

𝑋p = 𝜌𝑛2
P𝐷

4
p
(
1 − 𝑡p

)
𝐾T (2.3.4)

と表現される．ここで，𝐾T は前進係数 𝐽p = (1−𝑤p)𝑢
𝑛P𝐷p

の多項式で表現される推力係数である．また，𝑤p は有
効プロペラ伴流係数であり，

1 − 𝑤p = 1 − 𝑤p0 + 𝜏
��𝑣′m + 𝑥′p𝑟 ′

�� + 𝐶′
p

(
𝑣′m + 𝑥′p𝑟 ′

)2
(2.3.5)

と計算される [107]．ここで，𝑤p0 は 𝑣m = 𝑟 = 0における伴流率，𝜏, 𝐶′
p，𝑥′p は経験係数である．推力減少係数

𝑡𝑝 および伴流率 𝑤p はプロペラ条件によって異なるが，先行研究 [6, 108]と同様に{
𝑡p = 0 for 𝑛P < 0
𝑤p = 0 for 𝑢 < 0 (2.3.6)

と定義された．また，プロペラに起因する横力と Yawモーメントは標準MMGモデルでは無視されるが，上
野ら [109]の拘束模型試験に基づく多項式を参考に


𝑌p =

{
0 for 𝑢 ≥ 0
1
2 𝜌𝐿

2
pp𝑑 (𝑛P𝑃)2 (

𝐴6𝐽
2
s + 𝐴7𝐽s + 𝐴8

)
for 𝑢 < 0

𝑁p =

{
0 for 𝑢 ≥ 0
1
2 𝜌𝐿

2
pp𝑑 (𝑛P𝑃)2 (

𝐵6𝐽
2
s + 𝐵7𝐽s + 𝐵8

)
for 𝑢 < 0 ,

(2.3.7)

と表現する．ここで，𝑃はプロペラピッチ，𝐽s = 𝑢
𝑛P𝐷P

，𝐴6, 𝐴7, 𝐴8 and 𝐵6, 𝐵7, 𝐵8 は多項式係数である．

(2) 𝑛P < 0のとき
プロペラに起因する Surgeおよび Sway方向の力，Yawモーメントは，拘束模型試験 [110]に基づいて



𝑋p =𝜌𝑛2
P𝐷

4
p

{
𝐶6 + 𝐶7𝐽s for (𝐽s ≥ 𝐶10)
𝐶3 for (𝐽s < 𝐶10)

𝑌p =
1
2
𝜌𝐿𝑑

(
𝑛P𝐷p

)2

𝐴1 + 𝐴2𝐽s (−0.35 ≤ 𝐽s ≤ −0.06)
𝐴3 + 𝐴4𝐽s (𝐽s < −0.35)
𝐴5 (−0.06 < 𝐽s)

𝑁p =
1
2
𝜌𝐿2𝑑

(
𝑛P𝐷p

)2

𝐵1 + 𝐵2𝐽s (−0.35 ≤ 𝐽s ≤ −0.06)
𝐵3 + 𝐵4𝐽s (𝐽s < −0.35)
𝐵5 (−0.06 < 𝐽s)

(2.3.8)

と表現した．ここで，𝐴1, 𝐴2, · · · , 𝐴5, 𝐵1, 𝐵2, · · · , 𝐵5, 𝐶3, 𝐶6, 𝐶7 は多項式係数である．

2.3.2.3 舵に起因する力およびモーメント
本研究では，後進運動やプロペラ逆転が取られることが想定される．そのため，標準MMGモデル [3]で使

用されるプロペラモデルに加えて，前進速度およびプロペラ回転数に応じたサブモデルが追加されている．標
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準MMGモデル [3]では，舵のモデルは
𝑋R = − (1 − 𝑡R) 𝐹𝑁 sin 𝛿
𝑌R = − (1 − 𝑎H) 𝐹𝑁 cos 𝛿
𝑁R = − (𝑥R + 𝑎H 𝑥H) 𝐹𝑁 cos 𝛿

(2.3.9)

と表される．ここで，𝑡R は舵による推力減少係数，𝑥R はミッドシップからの舵の Surge方向の位置，𝑎H は
横力の補正係数，𝑥H は舵による船体への横力の作用点の位置，𝐹𝑁 は舵直圧力は

𝐹𝑁 = (1/2)𝜌𝐴R𝑈
2
R 𝑓𝛼 sin 𝛼R (2.3.10)

と定義される．ただし，𝐴R は舵の面積，𝑈R は舵流入速度， 𝑓𝛼 は舵直圧力勾配，𝛼R は有効流入角である．接
岸操作では低船速でも舵が動作するため，舵直圧力勾配 𝑓𝛼 は一定ではなくなる．しかし，本研究では， 𝑓𝛼 は
一定と仮定し，藤井の式 [111]，

𝑓𝛼 = 6.13Λ/(2.25 + Λ) (2.3.11)

によって決定される．ここで Λは舵アスペクト比を表す．
次に，舵流入速度𝑈R と有効流入角 𝛼R は，縦方向の流入速度 𝑢R と横方向の流入速度 𝑣R をもちいて，𝑈R =

√
𝑢2

R + 𝑣2R
𝛼R = 𝛿 − arctan2 (𝑢R, 𝑣R)

(2.3.12)

と表される．ここで，横方向の流入速度 𝑣R は，整流係数 𝛾P, 𝛾N と実験定数 𝑙R を用いて，

𝑣R =

{
−𝛾P (𝑣m + 𝑙R𝑟) for 𝑣m + 𝑥R𝑟 ≥ 0
−𝛾𝑁 (𝑣m + 𝑙R𝑟) for 𝑣m + 𝑥R𝑟 < 0

(2.3.13)

と表される．また，縦方向の流入速度 𝑢R は船の進行方向とプロペラに誘起された流れの影響を大きく受ける
ため，𝑛P ≥ 0, 𝑢R の時，低速域が修正された式 [112]，すなわち，

𝑢R = 𝜀

√√√√√√√
𝜂

𝑢p + 𝑘𝑥
𝜀

©­­«
√
𝑢2

p +
8𝐾T

(
𝑛P𝐷p

)2

𝜋
− 𝑢p

ª®®¬


2

+ (1 − 𝜂)𝑢2
p (2.3.14)

と表現される．ただし，𝑢p = (1 − 𝑤p)𝑢，𝜂 = 𝐷P/𝐻R，𝐻R は舵の高さ，𝜀 は後流割合の比，𝑘𝑥 は経験係数で
ある．𝑢 ≥ 0, 𝑛P < 0のときは，北川のモデル [113]，すなわち，

𝑢R = sgn
(
𝑢Rsq

)
·
√��𝑢Rsq

�� (2.3.15)

と表現される．ただし，
𝑢Rsq = 𝜂 · sgn (𝑢RPR1) · 𝑢2

RPR1 + (1 − 𝜂) sgn (𝑢RPR2) · 𝑢2
RPR2 + 𝐶PR · 𝑢

𝑢RPR1 = 𝑢𝜀
(
1 − 𝑤p

)
+ 𝑛P𝐷p𝑘𝑥𝑃𝑅

√
8 |𝐾T| /𝜋

𝑢RPR2 = 𝑢𝜀
(
1 − 𝑤p

)
.

(2.3.16)

ここで，𝑘𝑥PR と 𝐶PR はそれぞれ速度増加係数とプロペラ反転条件の補正係数である．また，𝑢 < 0, 𝑛P < 0
では，流入は船の運動と等しいと仮定した，つまり，𝑢R = 𝑢 とした [6]．
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Table 2.2: Limitations of the actuator state variables.

Item Symbol Range

Port side rudder angle (degree) 𝛿P [−105◦, 35◦]
Starboard side rudder angle (degree) 𝛿S [−35◦, 105◦]
Propeller revolution (rps) 𝑛P [0, 20]
Bow thruster revolution (rps) 𝑛BT [−30, 30]

2.3.2.4 風に起因する力およびモーメント
風に起因する力およびモーメントは，藤原の回帰式 [15]，つまり，

𝑋A = (1/2)𝜌A𝑈
2
A𝐴T · 𝐶𝑋

𝑌A = (1/2)𝜌A𝑈
2
A𝐴L · 𝐶𝑌

𝑁A = (1/2)𝜌A𝑈
2
A𝐴L𝐿OA · 𝐶𝑁

(2.3.17)

と表現される．ただし，
𝐶𝑋 =𝑋0 + 𝑋1 cos(2𝜋 − 𝛾A) + 𝑋3 cos 3(2𝜋 − 𝛾A) + 𝑋5 cos 5(2𝜋 − 𝛾A)
𝐶𝑌 =𝑌1 sin(2𝜋 − 𝛾A) + 𝑌3 sin 3(2𝜋 − 𝛾A) + 𝑌5 sin 5(2𝜋 − 𝛾A)
𝐶𝑁 =𝑁1 sin(2𝜋 − 𝛾A) + 𝑁2 sin 2(2𝜋 − 𝛾A) + 𝑁3 sin 3(2𝜋 − 𝛾A) .

(2.3.18)

ここで，𝜌Aは空気の密度，𝐴T, 𝐴L, 𝐿OAはそれぞれ船の横断面積，船の横投影面積，船の全長である．𝑋𝑖 , 𝑌𝑖 , 𝑁𝑖
は船舶の幾何学的パラメータを説明変数とする風圧係数であり，これらの係数は多数の縮尺船舶模型の風洞試
験データに基づいて導出された [15]．

2.4 供試船２: VecTwin舵システムを搭載した模型船
二つ目の供試船は，Fig. 2.3に示す，VecTwin 舵システムとバウスラスタを搭載した一軸の３メートル模

型船である．VecTwin 舵システム [114] は，一つの固定ピッチプロペラ（Fixed Pitch Propeller: FPP）の
後ろに二つのフィッシュテール舵が搭載され，それぞれの舵が個別に動作することで高い操縦性能を実現す
る [115]．このシステムは，少なくとも 1つのサイドスラスターがあれば，プロペラを一定の回転数で正転さ
せたまま，ホバリングやクラビング，後進，回転といった特殊な操船が可能である [87, 116]．
この船のアクチュエータ状態変数は，左舷（Port）側の舵角，右舷（Starboard）側の舵角，プロペラ回転

数，バウスラスタの回転数であり，それぞれ 𝛿P, 𝛿S, 𝑛P, 𝑛BT と表記する．これらのアクチュエータ状態変数の
とり得る値は Table 2.2に示す．

2.4.1 自由航走試験のため計測および操船システム
この模型船にも，2.3 節で述べた供試船１と同様に，自由航走試験のための ROSに基づく操船システムが

搭載されている．この模型船には，FOGが 1台，GNSS受信機が 3台，超音波風速計が 1台搭載され，これ
らの計測値を基に船体状態 𝒙 および風状態 𝒘A が観測される．
ただし，観測方法には2.3.1 節との間でいくつかの相違がある．FOGの方位計測精度が向上したため，回頭
角 𝜓 は光ファイバージャイロによって直接計測される．また，船体速度 (𝑢, 𝑣m) は，GNSS受信機で計測され
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Fig. 2.3: Subject ship 2 (VecTwin rudder ship).

た対地速度（Speed Over Ground: SOG），対地針路（Course Over Ground: COG），および FOGで計測さ
れた回頭角 𝜓 を基に算出される．これらのすべてのデータは 10 Hzの周波数で計測されている．

2.4.2 操縦シミュレーションのためのMMGモデル
供試船２のMMGモデルについて述べる．本研究では，供試船１と同様に，港内操船に焦点が当てられてい
るため，斜航角を大きく取る運動やプロペラ逆転などに対応したサブモデルが選択されている．MMGモデル
の係数はそれぞれ，経験式もしくは拘束模型試験によって推定された．
供試船２では，Eq. (2.3.1)の右辺の 𝑋，𝑌，𝑁 は船体，プロペラ，舵，風に起因する力およびモーメントに

分解され， 
𝑋 = 𝑋H + 𝑋P + 𝑋R + 𝑋BT + 𝑋A

𝑌 = 𝑌H + 𝑌P + 𝑌R + 𝑌BT + 𝑌A

𝑁 = 𝑁H + 𝑁P + 𝑁R + 𝑛BT + 𝑁A

(2.4.1)

と表される．ここで，下付き文字の H,P,R,BT,Aはそれぞれ船体，プロペラ，舵，バウスラスタ，風に起因
する力であることを示している．船体流体力は，2.3.2.1 節で述べた芳村のモデル [8]を用い，抵抗係数と線形
流体力学的導関数はキャプティブモデル試験により決定され，残りの係数は経験式 [8] を用いて推定された．
舵とプロペラに起因する力は Kang のモデル [117] が使用され，プロペラの推力係数はプロペラ単独試験か
ら，残りの係数は Kang [117]の VLCCの係数を適用した．2.3.2.4 節で述べた藤原の回帰式を用いて表され
た．そして，スラスタに起因する力およびモーメントについては以降で詳述する．
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Fig. 2.4: Bird’s-eye view of inukai pond.
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Fig. 2.5: Geometry of inukai pond and subject ship.

2.4.2.1 スラスタに起因する力およびモーメント
スラスタ力は Kobayashiのモデル [118]に基づき以下のようにモデル化した．

𝑋BT = 0

𝑌BT =
(
1 + 𝑎YSB1 + 𝑎YSB2 · Fr + 𝑎YSB3 · Fr2

)
· 𝑇BT

𝑁BT =
(
1 + 𝑎NSB1 + 𝑎NSB2 · Fr + 𝑎NSB3 · Fr2

)
· 𝑇BT · 𝑥BT

𝑇BT = 𝜌𝐷4
BT𝑛

2
BT𝐾T,BT .

(2.4.2)

ただし，𝑎YSB1, 𝑎YSB2, 𝑎YSB3, 𝑎NSB1, 𝑎NSB2, 𝑎NSB3 はスラスタ力の低減と船速の関係を表すフルード数に対
する 2次関数の係数で，𝑥BT はサイドスラスターの縦方向の位置である．これらの係数はキャプティブ模型試
験により決定され，推力係数 𝐾T,BT は実験的に求めた．

2.5 実験池: 犬飼池
自由航走試験のために用いられた実験池について説明する．本研究では，操縦運動データ集合の収集および
制御器の検証のために自由航走試験を実施するが，すべての自由航走試験は大阪大学実験池の犬飼池で実施さ
れている．犬飼池の鳥瞰図を Fig. 2.4に示し，また，犬飼池の形状および座標系を Fig. 2.5に示す．
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第 3章

人工ニューラルネットワークを用いた操縦
モデルの推定手法

本章では，ANNを用いた港内操船のための操縦モデルの推定手法について述べ，模型船の自由航走試験デ
ータを用いた検証実験結果を示す．3.1 節では，順伝播型ニューラルネットワークや回帰型ニューラルネット
ワークの概要を説明し，それらを用いた操縦モデルの構造について述べる．3.2 節では，操縦モデルの入出力
関係を学習する回帰分析ベースの訓練手法と新たに導入する軌道推定ベースの手法についてそれぞれ述べる．
3.3 節で模型船の自由航走試験データを用いた操縦モデルの推定実験の結果を示し，3.4 節で結果を元に考察
を述べ，最後に3.5 節では本章の結言について述べる．

3.1 操縦モデルの構造
本節では，ANNを用いた操縦モデルの構造について詳述する．ANNは人間の神経ネットワークを模擬し
た計算モデルである．ANNは，人工ニューロンと呼ばれる重み付け総和と活性化関数が組み合わされた計算
ユニットで構成されており，ANNは多数の人工ニューロンが相互に接続されて構成されたネットワークであ
る．本研究では順伝播型ニューラルネットワークと回帰型ニューラルネットワークが用いられる．それぞれの
ANNモデルについて3.1.1 節及び3.1.2 節で述べる．

3.1.1 順伝播型ニューラルネットワーク
順伝播型ニューラルネットワーク（Feedforward Neural Network: FNN）は内部に循環を持たない ANN
で，機械学習タスクで頻繁に使用される代表的な ANNモデルの一つである．FNNでは，多くの場合，複数
の人工ニューロンのまとまりを一つの層と考えられる．その層間の結合方法に応じた様々なモデルが存在し，
特に，全結合層のみで構成される FNNは多層パーセプトロンと呼ばれる．FNNは，普遍的な近似能力を持
つことがしられており [40,41]，ミニバッチ学習により大規模なデータに対して学習が可能な [119,120]，非常
に便利で強力なツールである．
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3.1.1.1 全結合層
全結合層では，層中のそれぞれの人工ニューロンが次の層の全ての人工ニューロンと結合している．つまり，

𝑙 層目の潜在変数を 𝒛𝑙 ∈ R𝑁𝒛𝑙 と表記すると，𝑙 層目から 𝑙 + 1層目への全結合層による変換は

𝒛𝑙+1 = 𝒈𝑙 (𝑾𝑙 𝒛𝑙 + 𝒃𝑙) (3.1.1)

と定義される．ここで，𝑾𝑙 ∈ R𝑁𝒛𝑙+1×𝑁𝒛𝑙 と 𝒃𝑙 ∈ R𝑁𝒛𝑙+1 は全結合層に含まれる重み行列とバイアスベクトルを
表し，𝒈𝑙 は

𝒈𝑙 (𝒛) =
(
𝑔𝑙 (𝑧1) , 𝑔𝑙 (𝑧2) , · · · , 𝑔𝑙

(
𝑧𝑁𝒛𝑙+1

))T
(3.1.2)

と定義され，𝑔𝑙 は活性化関数であり，双曲線正接関数 (tanh)や正規化線形関数 (ReLU)などがよく用いられ
る．つまり，全結合層では，𝑙 層目の潜在変数の重み付き和が取られたのちに，全ての変数が活性化関数によ
り変換される．本論文では，この全結合層の処理を

𝒛𝑙+1 = 𝒉 (fcl)
𝑙

(𝒛𝑙) (3.1.3)

と表記する．このとき，𝐿 個の隠れ層を持つ多層パーセプトロンは

𝒚 (FNN) = 𝒉 (fcl)
𝐿+1 ◦ 𝒉 (fcl)

𝐿 ◦ · · · ◦ 𝒉 (fcl)
1

(
𝒙 (FNN)

)
(3.1.4)

と定義される．ここで，◦ は関数の合成を表す演算子，𝒚 (FNN) は出力ベクトル，𝒙 (FNN) は入力ベクトルを
表す．

3.1.1.2 不動点を含む全結合層
通常，船舶は外力や船速が存在しない場合，加速度は発生しない．つまり，船舶の操縦モデルは状態空間の
原点に不動点をもつ不動点方程式と考えられる．本研究では，操縦モデルを表現するために FNNを用いるが，
この現象を効率的に表現するための一つの手法として，入力変数がゼロならば出力変数がゼロとなる，中西
ら [121]が導入した不動点を含む全結合層を利用することが可能である．不動点を含む全結合層は

𝒛𝑙+1 = 𝒈𝑙 (𝑾𝑙 𝒛𝑙 + 𝒃𝑙) − 𝒈𝑙 (𝒃𝑙) (3.1.5)

と定義される．つまり，どのような重み行列𝑾𝑙 とバイアスベクトル 𝒃𝑙 であったとしても，入力変数の原点は
出力変数の原点へ変換される．本論文では，この不動点を含む全結合層の処理は

𝒛𝑙+1 = 𝒉 (fpl)
𝑙

(𝒛𝑙) (3.1.6)

と表現される．よって，不動点を含む全結合層のみで構成される FNNを用いて操縦モデルを表現することに
より，任意のパラメータに対して入力変数がゼロならば出力変数がゼロとなる操縦モデルを表現することが可
能である．ただし，一つでも標準の全結合層が含まれてしまうと，この特性は失われてしまうことに注意する．
このとき，𝐿 個の不動点を含む全結合層を持つ FNNは

𝒚 (FNN) = 𝒉 (fpl)
𝐿+1 ◦ 𝒉 (fpl)

𝐿 ◦ · · · ◦ 𝒉 (fpl)
1

(
𝒙 (FNN)

)
(3.1.7)

と定義される．
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3.1.2 回帰型ニューラルネットワーク
回帰型ニューラルネットワーク（Recurrent Neural Network: RNN）は内部に循環を持つ ANNで，FNN

と同様に機械学習タスクで頻繁に使用される代表的な ANNモデルの一つである．RNNは内部に循環を持つ
ことで内部状態をネットワーク内に保持している．そのため，RNNはシーケンスデータにおける時間的な動
的特性を表現することが可能である．

RNNは FNNと同様に複数の層によって構成されるが，RNNでは前時間ステップで得られた出力結果を再
度入力にとる層で構成される．つまり，ある時刻ステップ 𝑘 における 𝑙 層目の潜在変数を 𝒛𝑘,𝑙 ∈ R𝑁𝒛𝑙 と表記
すると，𝑙 層目から 𝑙 + 1層目への変換は

𝒛𝑘,𝑙+1 = 𝒈𝑙
(
𝑾𝑙 𝒛𝑘,𝑙 +𝑾′

𝑙 𝒛𝑘−1,𝑙+1 + 𝒃𝑙
)

(3.1.8)

と定義される．ここで，𝑾𝑙 ∈ R𝑁𝑙+1×𝑁𝑙 および𝑾′
𝑙 ∈ R𝑁𝑙+1×𝑁𝑙+1 は重み行列，𝒃𝑙 ∈ R𝑁𝑙+1 はバイアスベクトルを

表す．本論文では，この RNN層の処理を

𝒛𝑘,𝑙+1 = 𝒉 (rl)
𝑙

(
𝒛𝑘,𝑙 , 𝒛𝑘−1,𝑙+1

)
(3.1.9)

と表現する．これにより，ある時刻ステップの入力に基づいて計算された中間層の演算結果を内部状態として
次のステップへ引き継ぐことが可能となる．そのため，RNNは過去の入力履歴に基づく出力を表現すること
が可能である．
また，3.1.1.2 節で不動点を含む全結合層について述べたが，Eq. (3.1.8)においても不動点を取り入れるこ

とが可能である．不動点を含む RNN層は

𝒛𝑘,𝑙+1 = 𝒈𝑙
(
𝑾𝑙 𝒛𝑘,𝑙 +𝑾′

𝑙 𝒛𝑘−1,𝑙+1 + 𝒃𝑙
)
− 𝒈𝑙 (𝒃𝑙) (3.1.10)

と表現できる．本論文では，この不動点を含む RNN層の処理を

𝒛𝑘,𝑙+1 = 𝒉 (frl)
𝑙

(
𝒛𝑘,𝑙 , 𝒛𝑘−1,𝑙+1

)
(3.1.11)

と表現する．
船舶の操縦運動は，船体の運動学的変数ベクトル 𝒙，アクチュエータ状態変数ベクトル 𝒖，真風速風向ベク
トル 𝒘T などの観測可能な変数によって，必ずしも表現可能であるとは限らない．例えば，斜航角が大きな運
動では渦によって流体力が変化する可能性があるが，渦は観測することは難しい．しかし，このような部分観
測問題では，過去の履歴を考慮することによって，いくらか改善できる可能性がある．そのため，RNNを用
いた操縦モデル推定に関する研究がこれまで多く実施されている．
しかし，先行研究において操縦モデルのために用いられてきた RNNは，大きく無限インパルス応答 (Finite

Impulse Response: FIR)型と有限インパルス応答 (Infinite Impulse Response: IIR)型の二つに分けること
ができる．前者は過去の全ての入力を通して保持された内部状態に基づいて出力される標準的な RNNで，後
者はある一定ステップ数の過去の入力を通して保持された内部状態に基づいて出力される NARXモデルと似
た構造を持つ RNNである．
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3.1.2.1 無限インパルス応答型 RNN
まず，無限インパルス応答型 RNNについて詳述する．ある時刻ステップ 𝑘 における 𝐿 個の隠れ層を持つ無

限インパルス応答型 RNNは 

𝒛𝑘,1 = 𝒉 (rl)
1

(
𝒙 (RNN)
𝑘 , 𝒛𝑘−1,1

)
𝒛𝑘,2 = 𝒉 (rl)

2
(
𝒛𝑘,1, 𝒛𝑘−1,2

)
...

𝒚 (RNN)
𝑘 = 𝒉 (rl)

𝐿

(
𝒛𝑘,𝐿−1, 𝒚

(RNN)
𝑘−1

) (3.1.12)

と定義される．ここで，𝒙 (RNN)
𝑘 と 𝒚 (RNN)

𝑘 はそれぞれ時刻ステップ 𝑘 における入力変数と出力変数で，
𝒛𝑘,2, 𝒛𝑘,3, · · · , 𝒛𝑘,𝐿+1 は時刻ステップ 𝑘 における内部状態変数である．この RNNモデルは，初期時刻ステッ
プにおいて適切な内部状態変数が与えられると，以降全ての時間ステップにおいて過去の全ての入力変数に基
づいた値を出力することが可能である．任意の層は必要に応じて，𝒉 (frl)

𝑙 や 𝒉 (fcl)
𝑙 などに置きかえることも可

能である．

3.1.2.2 有限インパルス応答型 RNN
次に，有限インパルス応答型 RNNについて詳述する．過去 𝑁m ステップの入力が与えられた，ある時刻ス

テップ 𝑘 における 𝐿 個の隠れ層を持つ有限インパルス応答型 RNNは

𝒛𝑘,−𝑁m+1,1 = 𝒉 (fcl)
1

(
𝒙 (RNN)
𝑘−𝑁m+1

)
𝒛𝑘,−𝑁m+2,1 = 𝒉 (rl)

1

(
𝒙 (RNN)
𝑘−𝑁m+2, 𝒛𝑘,−𝑁m+1,1

)
...

𝒛𝑘,0,1 = 𝒉 (rl)
1

(
𝒙 (RNN)
𝑘 , 𝒛𝑘,1,1

)


first layer process

𝒛𝑘,−𝑁m+1,2 = 𝒉 (fcl)
2

(
𝒛𝑘,−𝑁m+1,1

)
𝒛𝑘,−𝑁m+2,2 = 𝒉 (rl)

2
(
𝒛𝑘,−𝑁m+2,1, 𝒛𝑘,−𝑁m+1,2

)
...

𝒛𝑘,0,2 = 𝒉 (rl)
2

(
𝒛𝑘,0,1, 𝒛𝑘,1,2

)


second layer process

...

𝒛𝑘,−𝑁m+1,𝐿+1 = 𝒉 (fcl)
𝐿

(
𝒛𝑘,−𝑁m+1,𝐿

)
𝒛𝑘,−𝑁m+2,𝐿+1 = 𝒉 (rl)

𝐿

(
𝒛𝑘,−𝑁m+2,𝐿 , 𝒛𝑘,−𝑁m+1,𝐿+1

)
...

𝒚 (RNN)
𝑘 = 𝒉 (rl)

𝐿

(
𝒛𝑘,0,𝐿 , 𝒛𝑘,1,𝐿+1

)


last layer process

(3.1.13)

と定義される．ここで，𝒙 (RNN)
𝑘−𝑁m+1, 𝒙

(RNN)
𝑘−𝑁m+2, 𝒙

(RNN)
𝑘 は時刻ステップ 𝑘 から過去 𝑁m ステップまでの入力変数，

𝒚 (RNN)
𝑘 は時刻ステップ 𝑘 における出力変数，𝒛𝑘,𝑘′ ,1, 𝒛𝑘,𝑘′ ,2, · · · , 𝒛𝑘,𝑘′ ,𝐿+1 は時刻ステップ 𝑘 において 𝑘 ′ 前の
内部状態変数を表す．ここで，内部状態変数は時刻ステップ 𝑘 が更新されると，すべての内部状態変数が再度
計算されることに注意する．従って，この RNNモデルは，過去 𝑁m ステップの入力変数に基づいた値を出力
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することが可能である．任意の層は必要に応じて，𝒉 (frl)
𝑙 や 𝒉 (fcl)

𝑙 などに置きかえることも可能である．

3.1.3 入出力変数の前後処理
3.1.1 節及び3.1.2 節で述べたの FNNや RNNは Eq. (2.2.4b)の右辺を表現可能である．しかし，FNNや

RNNは入力および出力変数の周期性や悪スケール性により影響を受けることが知られている．本節では，そ
れらの影響を軽減するため FNNや RNNの入力および出力変数に施した処理について詳述する．

3.1.3.1 周期変数の除去
Eq. (2.2.4b)の右辺を表す操縦モデルは 𝑵 (−)

𝑁m
,𝑼 (−)

𝑁m
,𝑾 (−)

A,𝑁m
を入力にとるが，これらの中に周期変数である

相対風向 𝛾A が含まれる．ある相対風向 𝛾A に対して，2𝜋 を加えた相対風向 𝛾A + 2𝜋 は同じ状態を表している
が，ANNからは異なる入力変数として扱われてしまう．そのため，ANNの入力変数から周期変数の除去を行
い，相対風速風向ベクトル 𝒘A の代わりに船体固定座標系における相対風状態ベクトル 𝒘′

A を ANNの入力変
数として使用する．つまり，現在時刻を含む過去 𝑁m ステップ間の離散時刻における相対風状態ベクトル 𝒘′

A
をまとめたベクトルを

𝑾′(−)
A,𝑁m

(𝑡) ≡
(
𝒘′T

A (𝑡) ,𝒘′T
A (𝑡 − Δ𝑡) , · · · ,𝒘′T

A (𝑡 − (𝑁m − 1)Δ𝑡)
)T

∈ R2𝑁m (3.1.14)

と定義すると，与えられた入力変数 𝑵 (−)
𝑁m
,𝑼 (−)

𝑁m
,𝑾 (−)

A,𝑁m
のうち，𝑾 (−)

A,𝑁m
は𝑾′(−)

A,𝑁m
に置き換えられる．

3.1.3.2 標準化
入力変数の各成分間でスケール差によって ANNの性能低下を引き起こす可能性がある．そのため，ANN

の入力変数に前処理として訓練データ集合の平均及び標準偏差を用いて標準化を実施する．つまり，入力変数
ベクトルの中のある一つの変数を 𝑥ANN，標準化された変数を 𝑥ANN と表記すると，標準化された変数は

𝑥ANN =
𝑥ANN − 𝜇𝑥ANN

𝜎𝑥ANN

(3.1.15)

と定義される．ただし，𝜇𝑥ANN と 𝜎𝑥ANN はそれぞれ変数 𝑥ANN の訓練データ集合における平均と標準偏差を
表す．従って，Eq. (3.1.15)によって標準化された船体の速度変数ベクトル 𝝂，アクチュエータ状態変数ベク
トル 𝒖，相対風状態ベクトル 𝒘′

A をそれぞれ 𝝂̄，𝒖̄，𝒘̄′
A と表記すると，ANNの入力変数は


𝑵̄ (−)
𝑁m

(𝑡) ≡
(
𝝂̄T (𝑡) , 𝝂̄T (𝑡 − Δ𝑡) , · · · , 𝝂̄T (𝑡 − (𝑁m − 1)Δ𝑡)

)T
∈ R3𝑁m

𝑼̄ (−)
𝑁m

(𝑡) ≡
(
𝒖̄T (𝑡) , 𝒖̄T (𝑡 − Δ𝑡) , · · · , 𝒖̄T (𝑡 − (𝑁m − 1)Δ𝑡)

)T
∈ R𝑁𝒖𝑁m

𝑾̄′(−)
A,𝑁m

(𝑡) ≡
(
𝒘̄′T

A (𝑡) , 𝒘̄′T
A (𝑡 − Δ𝑡) , · · · , 𝒘̄′T

A (𝑡 − (𝑁m − 1)Δ𝑡)
)T

∈ R2𝑁m

(3.1.16)

と定義される．
また，出力変数の各成分間におけるスケール差によっても ANNの性能低下を引き起こす可能性がある．そ
こで，ANNの出力変数に訓練データ集合の平均と標準偏差に基づく逆標準化を実施する．これにより，操縦
モデルの出力変数である船体の加速度変数ベクトル ¤𝝂 の各成分間でスケール差が大きかったとしても，ANN
の出力変数がとり得る値のスケール差を軽減することが可能である．具体的には，出力変数ベクトルの中のあ
る一つの変数を 𝑦ANN，操縦モデルの出力変数ベクトルの中のある一つの変数を ¤𝜈 と表記すると，操縦モデル
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の出力変数は
¤𝜈 = 𝑦ANN · 𝜎 (train)

¤𝜈 + 𝜇 (train)
¤𝜈 (3.1.17)

と定義される．ただし，𝜇 (train)
¤𝜈 と 𝜎 (train)

¤𝜈 は ¤𝜈 の平均と標準偏差を表す．¤𝝂 が直接計測されない場合，𝝂 の数
値時間微分により算出されることに注意する．

3.1.4 操縦モデルの表記方法
本研究では，3.1.1 節及び3.1.2 節で述べた ANNモデルと3.1.3 節で述べた入出力変数の前後処理によって

Eq. (2.2.4b)で表される操縦モデルを表現する．以降では，ANNにより表された操縦モデルは

¤𝝂 = 𝑭𝜽

(
𝑵 (−)
𝑁m
,𝑼 (−)

𝑁m
,𝑾 (−)

A,𝑁m

)
(3.1.18)

と表記する．ここで，𝜽 は FNNもしくは RNNに含まれるすべての層の重み行列とバイアスベクトルをまと
めたパラメータベクトルである．また，Eq. (3.1.18)に基づく Eq. (2.2.6)や Eq. (2.2.7)はそれぞれ

¤𝝂 = 𝑭′
𝜽

(
𝑿 (−)
𝑁m
,𝑼 (−)

𝑁m
,𝑾 (−)

T,𝑁m

)
, (3.1.19)

¤𝒙 = 𝒇𝜽
(
𝑿 (−)
𝑁m
,𝑼 (−)

𝑁m
,𝑾 (−)

T,𝑁m

)
(3.1.20)

と表記する．ただし，Eqs. (3.1.18)−(3.1.20)がマルコフ特性を持つと仮定する場合は，𝑁m = 0となり 𝑿 (−)
𝑁m
，

𝑯 (−)
𝑁m
，𝑵 (−)

𝑁m
，𝑼 (−)

𝑁m
，𝑾 (−)

T,𝑁m
，𝑾 (−)

A,𝑁m
はすべて 𝒙，𝜼，𝝂，𝒖，𝒘A，𝒘T に置き換わることに注意する．

3.2 操縦モデルの推定手法
本節では，3.1 節で述べた操縦モデルに含まれるパラメータの推定手法について詳述する．一般に，SIでは，

計測データに対してモデルがどの程度実際の応答結果を表現できているかを表す損失関数が定義され，そして，
その損失関数を最適化することによって計測データを十分に説明可能なモデルが作成される．

ANN を用いた船舶の操縦モデル推定に関するいくつかの研究 [25, 38, 42–44] では，回帰分析の形式論に
還元されることで操縦モデルが同定されている．つまり，対象システムの入出力変数の計測データを用いて
操縦モデルのパラメータが決定されている．しかし，このような同定手法は加速度の情報が必要不可欠ある．
Sutuloら [20,23]が言及しているように，加速度の記録は加速度計や速度の数値的な導出によって取得するこ
とも可能であるが，加速度記録は外乱に敏感で，通常，ノイズで大きく汚染されている．
そこで，本研究では，加速度の計測値を必要とせず，計測が容易な船体の運動学的変数ベクトル 𝒙 と操縦運

動に影響を与えるその他の入力変数に関する計測値のみを用いた ANNを用いた船舶の操縦モデル推定手法を
提案する．この手法では，船体の運動学的変数ベクトル 𝒙 に関する計測軌道と操縦モデルを用いてシミュレー
トされた推定軌道の誤差を最小化することでパラメータが同定される．
以降，3.2.1 節で回帰分析ベースの手法，3.2.2 節で軌道推定ベースの手法について述べる．その後，3.2.3

節で ANNパラメータの最適化手法について述べる．

3.2.1 回帰分析ベースの手法
まず，回帰分析問題を解くことにより操縦モデルの同定を行う手法について詳述する．この手法では，操縦
モデルの入出力変数，すなわち，船体の速度変数ベクトル 𝝂，船体の加速度変数ベクトル ¤𝝂，アクチュエータ
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状態変数ベクトル 𝒖および相対風速風向ベクトル 𝒘A に関する計測値が要求される．ここでは，𝑁 個の計測デ
ータの組み合わせが与えられると仮定され，データ集合は

D (reg) =
{(
¤𝝂𝑛, 𝑵 (−)

𝑁m ,𝑛
,𝑼 (−)

𝑁m ,𝑛
,𝑾 (−)

A,𝑁m ,𝑛

)}
𝑛=1, · · · ,𝑁

(3.2.1)

と定義される．ここで，下付き文字 𝑛の順序は時間的な制約を持たないが，𝑵 (−)
𝑁m ,𝑛

に含まれる変数の順序には
時間的な制約を持つことに注意する．
このとき，操縦モデルの損失関数は

L (reg)
(
𝜽;D (reg)

)
=

1
𝑁

𝑁∑
𝑛=1




¤𝝂𝑛 − 𝑭𝜽

(
𝑵 (−)
𝑁m ,𝑛

,𝑼 (−)
𝑁m ,𝑛

,𝑾 (−)
A,𝑁m ,𝑛

)


2

𝑾¤𝝂
(3.2.2)

と定義される．ここで，𝑾¤𝝂 ∈ R3×3 は重み行列を表すハイパーパラメータである．この重み行列𝑾¤𝝂 の選択手
法にはいくつかの候補が考えられ，適切に選択される必要がある．

• 一つ目は最も簡単に単位行列を選択する方法である．この場合，損失関数は単なる二乗誤差の形となる．
しかし，船体の加速度変数ベクトル ¤𝝂 の要素はそれぞれ単位が異なり，また，分布している範囲も異な
る可能性がある．そのため，単位行列を選択すると，単位の選び方やデータ集合の分布によって大きく
結果が変化する可能性がある．

• 二つ目の方法はそれぞれの変数の分散に応じた重み付けを行う方法である．この方法
では，船体の加速度変数ベクトル ¤𝝂 の成分毎の分散の逆数を対角成分に持つ行列を選
択される．つまり，与えられたデータ集合 D (reg) における船体の加速度変数ベクトル
¤𝝂 の成分毎の標準偏差をそれぞれ 𝜎 (train)

¤𝑢 , 𝜎 (train)
¤𝑣m , 𝜎 (train)

¤𝑟 と表記すると，重み行列は
𝑾¤𝝂 = diag

((
𝜎 (train)

¤𝑢

)−2
,
(
𝜎 (train)
¤𝑣m

)−2
,
(
𝜎 (train)
¤𝑟

)−2
)
と選択される．この場合，損失関数は標準

化された船体の加速度変数ベクトル ¤𝝂 に関する計測値と推定値の二乗誤差に相当する．3.3 節で述べら
れる検証実験ではこの方法が用いられた．

• 三つ目の方法はそれぞれの変数の観測誤差の大きさに応じた重み付けを行う方法である．船体の
加速度変数ベクトル ¤𝝂 の成分毎の観測誤差がゼロ平均ガウス分布に従うと仮定し，船体の加速
度変数ベクトル ¤𝝂 の成分毎の標準偏差をそれぞれ 𝜎 (obs)

¤𝑢 , 𝜎 (obs)
¤𝑣m , 𝜎 (obs)

¤𝑟 と表記すると重み行列は
𝑾¤𝝂 = diag

((
𝜎 (obs)

¤𝑢

)−2
,
(
𝜎 (obs)
¤𝑣m

)−2
,
(
𝜎 (obs)
¤𝑟

)−2
)
と選択される．この場合，損失関数は最尤推定におけ

る負の対数尤度に相当する．

3.2.2 軌道推定ベースの手法
次に，船体の運動学的変数ベクトル 𝒙 に関する計測軌道と操縦モデルを用いてシミュレートされた推定軌道
の誤差を最小化することで操縦モデルの同定を行う手法について詳述する．この手法では，船舶の操縦運動に
おける船体の運動学的変数ベクトル 𝒙，アクチュエータ状態変数ベクトル 𝒖，真風速風向ベクトル 𝒘T に関す
る観測値の時系列データが要求される．ここで，𝑁 個の時系列データが与えられると仮定し，𝑛番目の時系列
データはある時刻 𝑡𝑛 を初期時刻とし，Δ𝑡 の時間間隔を持つ 𝐾 個の時刻点 {𝑡𝑛 + 𝑘Δ𝑡}𝐾−1

𝑘=0 で計測されたものと
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する．まず，𝒙，𝒖 および 𝒘T に関する 𝑛番目の計測変数列をそれぞれ
𝑿 (+)
𝐾,𝑛 =

(
𝒙T (𝑡𝑛) , 𝒙T (𝑡𝑛 + Δ𝑡) , · · · , 𝒙T (𝑡𝑛 + (𝐾 − 1)Δ𝑡)

)T
∈ R6𝐾

𝑼 (+)
𝐾,𝑛 =

(
𝒖T (𝑡𝑛) , 𝒖T (𝑡𝑛 + Δ𝑡) , · · · , 𝒖T (𝑡𝑛 + (𝐾 − 1)Δ𝑡)

)T
∈ R𝑁𝒖𝐾

𝑾 (+)
T,𝐾,𝑛 =

(
𝒘T

T (𝑡𝑛) ,𝒘T
T (𝑡𝑛 + Δ𝑡) , · · · ,𝒘T

T (𝑡𝑛 + (𝐾 − 1)Δ𝑡)
)T

∈ R2𝐾

(3.2.3)

と定義する．このとき，与えられるデータ集合は

D (traj) =
{(
𝑿 (+)
𝐾,𝑛,𝑼

(+)
𝐾,𝑛,𝑾

(+)
T,𝐾,𝑛

)}
𝑛=1, · · · ,𝑁

(3.2.4)

と定義される．以降では，このデータ集合 D (traj) を用いて操縦運動軌道が行われる．

3.2.2.1 操縦運動軌道の推定
ここでは，入力変数列 𝑼 (+)

𝐾,𝑛,𝑾
(+)
T,𝐾,𝑛 から運動学的変数列 𝑿 (+)

𝐾,𝑛 を操縦モデルによって推定する問題を考え
る．操縦モデルによって推定された運動学的変数を 𝒙𝜽 とし，運動学的変数列を

𝑿 (+)
𝜽,𝐾,𝑛 =

(
𝒙T
𝜽 (𝑡𝑛) , 𝒙T

𝜽 (𝑡𝑛 + Δ𝑡) , · · · , 𝒙T
𝜽 (𝑡𝑛 + (𝐾 − 1)Δ𝑡)

)T
∈ R6𝐾 (3.2.5)

と表記する．以降において，この運動学的変数 𝒙𝜽 の推定手法について詳述する．

(1) 操縦モデルがマルコフ特性を持つ場合
ある時刻 𝑡 における運動学的変数 𝒙𝜽 は

𝒙𝜽 (𝑡) = 𝒙𝜽 (𝑡𝑛) +
∫ 𝑡

𝜏=𝑡𝑛
𝒇𝜽 (𝒙𝜽 (𝑡) , 𝒖 (𝑡) ,𝒘T (𝑡)) d𝜏 for 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛 + (𝐾 − 1)Δ𝑡 (3.2.6)

を解くことによって求められる．ただし，𝒙𝜽 (𝑡𝑛) は与えられる必要があり，通常，計測値が代入される，つま
り 𝒙𝜽 (𝑡𝑛) = 𝒙 (𝑡𝑛) とされることが多い．しかし，操縦モデルパラメータと同時に最適化されるパラメータとし
て扱うことも可能であることに注意する．また，Eq. (3.2.6)の積分は 4次の Runge–Kutta法や Euler法など
を用いて数値的に解くことが可能であるが，本研究では Euler法を用いる．つまり，運動学的変数 𝒙𝜽 は

𝒙𝜽 (𝑡𝑛 + 𝑘Δ𝑡) = 𝒙 (𝑡𝑛) +
𝑘−1∑
𝑖=0

Δ𝑡 · 𝒇𝜽 (𝒙𝜽 (𝑡𝑛 + 𝑖Δ𝑡) , 𝒖 (𝑡𝑛 + 𝑖Δ𝑡) ,𝒘T (𝑡𝑛 + 𝑖Δ𝑡)) (3.2.7)

を解くことによって求められる．

(2) 操縦モデルが過去の有限ステップの履歴を考慮している場合
ある時刻 𝑡 における運動学的変数 𝒙𝜽 は

𝒙𝜽 (𝑡𝑛 + 𝑘Δ𝑡) =


𝒙 (𝑡𝑛 + 𝑘Δ𝑡) for 𝑘 < 𝑁m
𝒙 (𝑡𝑛 + (𝑁m − 1)Δ𝑡) +

𝑘−1∑
𝑖=𝑀−1

Δ𝑡 · 𝒇𝜽
(
𝑿 (−)
𝑁m ,𝜽

(𝑡𝑛 + 𝑖Δ𝑡) ,𝑼 (−)
𝑁m

(𝑡𝑛 + 𝑖Δ𝑡) ,𝑾 (−)
T,𝑁m

(𝑡𝑛 + 𝑖Δ𝑡)
) for 𝑁m ≤ 𝑘

(3.2.8)

と表される．ここで，𝒙 (𝑡𝑛) , 𝒙 (𝑡𝑛 + Δ𝑡) , · · · , 𝒙 (𝑡𝑛 + (𝑁m − 1)Δ𝑡) をパラメータとして置き換えることも可能
であるが，本研究では，パラメータ数が多くなるためこの手法では計測値が直接代入されることに注意する．
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(3) 操縦モデルが過去の全ての履歴を考慮している場合
ある時刻 𝑡 における運動学的変数 𝒙𝜽 は

𝒙𝜽 (𝑡𝑛 + 𝑘Δ𝑡) = 𝒙 (𝑡𝑛) +
𝑘−1∑
𝑖=0

Δ𝑡 · 𝒇𝜽
(
𝑿 (−)
𝑖,𝜽 (𝑡𝑛 + 𝑖Δ𝑡) ,𝑼 (−)

𝑖 (𝑡𝑛 + 𝑖Δ𝑡) ,𝑾 (−)
T,𝑖 (𝑡𝑛 + 𝑖Δ𝑡)

)
(3.2.9)

と表される．ここで，履歴ステップ数 𝑁m が進行した時間ステップ数 𝑖 に応じて変化しており，過去全ての履
歴が操縦モデルに入力されていることに注意する．また，この手法でも 𝒙 (𝑡𝑛) をパラメータとして置き換える
ことも可能であるが，本研究では，計測値が直接代入されることに注意する．

3.2.2.2 損失関数
運動学的変数の計測軌道と操縦モデルを用いてシミュレートされた運動学的変数の推定軌道の誤差の大きさ
を表す損失関数について詳述する．操縦モデルの損失関数は

L (traj)
(
𝜽;D (traj)

)
=

1
𝑁𝐾

𝑁∑
𝑛=1

𝐾∑
𝑘=1

‖𝒙 (𝑡𝑛 + 𝑘Δ𝑡) − 𝒙𝜽 (𝑡𝑛 + 𝑘Δ𝑡)‖2
𝑾𝒙

(3.2.10)

と定義される．ここで，𝑾𝒙 ∈ R6×6 は重み行列を表すハイパーパラメータである．この重み行列𝑾𝒙 の選択手
法は Eq. (3.2.2)の重み行列と同様に以下の三つの候補が考えられる．

• 一つ目は単位行列を選択する方法である．この場合，3.2.1 節でも述べたが，要素毎の単位の選び方や
データ集合の分布によって大きく結果が変化する可能性があることに注意したい．

• 二つ目の方法はそれぞれの変数の分散に応じた重み付けを行う方法である．この方法では，船
体の運動学的変数ベクトル 𝒙 の成分毎の分散の逆数を対角成分に持つ行列を選択される．つま
り，与えられたデータ集合 D (traj) における船体の運動学的変数ベクトル 𝒙 の成分毎の標準偏
差をそれぞれ 𝜎 (train)

𝑥0 , 𝜎 (train)
𝑦0 , 𝜎 (train)

𝜓 , 𝜎 (train)
𝑢 , 𝜎 (train)

𝑣m , 𝜎 (train)
𝑟 と表記すると重み行列は 𝑾𝒙 =

diag
((
𝜎 (train)
𝑥0

)−2
,
(
𝜎 (train)
𝑦0

)−2
,
(
𝜎 (train)
𝜓

)−2
,
(
𝜎 (train)
𝑢

)−2
,
(
𝜎 (train)
𝑣m

)−2
,
(
𝜎 (train)
𝑟

)−2
)
と選択される．

この場合，損失関数は標準化された船体の運動学的変数ベクトル 𝒙 に関する計測値と推定値の二乗誤差
に相当する．3.3 節で述べられる検証実験ではこの方法が用いられた．

• 三つ目の方法はそれぞれの変数の観測誤差の大きさに応じた重み付けを行う方法である．船体の運動
学的変数ベクトル 𝒙 の成分毎の観測誤差がゼロ平均ガウス分布に従うと仮定し，船体の運動学的変
数ベクトル 𝒙 の成分毎の標準偏差をそれぞれ 𝜎 (obs)

𝑥0 , 𝜎 (obs)
𝑦0 , 𝜎 (obs)

𝜓 , 𝜎 (obs)
𝑢 , 𝜎 (obs)

𝑣m , 𝜎 (obs)
𝑟 と表記する

と，重み行列は𝑾𝒙 = diag
((
𝜎 (obs)
𝑥0

)−2
,
(
𝜎 (obs)
𝑦0

)−2
,
(
𝜎 (obs)
𝜓

)−2
,
(
𝜎 (obs)
𝑢

)−2
,
(
𝜎 (obs)
𝑣m

)−2
,
(
𝜎 (obs)
𝑟

)−2
)

と選択される．この場合，損失関数は最尤推定における負の対数尤度に相当する．4.2 節で述べられる
検証実験ではこの方法が用いられた．

3.2.3 ANNパラメータの最適化手法
本研究では，3.2.1 節及び3.2.2 節で述べた損失関数を最小化することで操縦モデルの推定を行う．この最小

化のため，データ集合を小さなバッチに分割して勾配を計算するミニバッチ学習と勾配降下法ベースの最適化
手法である Adam [122]が用いられる．ただし，過学習回避のため，与えられたデータ集合は訓練データ集合
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と評価データ集合の二つに分けられる．そして訓練データ集合は最適化のために使用され，評価データ集合は
オーバーフィッティングの開始を検出するために使用される．つまり，訓練が終了すると，エポック毎に記録
されたパラメータの中から，評価データ集合に対する損失関数が最も小さくなるパラメータを最適なパラメー
タ 𝜽★ とした．つまり，過学習が発生する前のパラメータを採用することで過学習を回避している．本研究で
は，ANNモデルの構築および訓練の実装には，Pythonの機械学習ライブラリの一つである PyTorchが使用
された．

3.3 模型試験データを用いた検証実験
本節では，3.1 節で述べた RNNモデルと3.2 節で述べた訓練手法を用いた操縦モデルの推定実験の結果を

示す．ここで示す内容は，自著論文 1 [28]で示された内容と同様である．この実験では，2.3 節で述べた供試
船１が対象船舶とされている．以降，3.3.1 節で使用された操縦運動データ集合について詳述し，3.3.2 節で実
施した実験内容について，3.3.3 節でその結果について示す．

3.3.1 操縦運動データ集合
本実験で用いられる操縦運動データは2.5 節で述べた大阪大学の実験池である犬飼池にて実施された供試船

１の自由航走試験により収集された．自由航走試験の詳細を以降に述べる．
操縦モデルのシステム同定に関する多くの研究では，主に，十分大きく安定した船速を持つ標準的な操船運
動を推定することが目的とされている．そのため，多くの研究はジグザグ操船試験と旋回試験で計測された操
縦運動データを採用している．一方で，本研究の目的は標準的な操船運動に加えて低速操縦運動を推定可能な
操縦モデルを獲得することであり，操縦モデルは斜航角の大きな運動や後進運動もしくはプロペラ逆転などの
状態に対する操縦運動を適切に推定することが求められる．そこで，本研究では，低速操縦運動でとり得る様
々な運動状態を計測するため，ジグザグ操船試験と旋回試験に加えて，ランダム操船試験と仮想岸壁を考慮し
た手動着桟操船試験が実施された．
ランダム操船試験は，船舶がとり得る船体の運動学的変数ベクトル 𝒙 およびアクチュエータ状態変数ベクト
ル 𝒖 に関するデータを効率的に収集することを目的に，アクチュエータ状態変数ベクトル 𝒖 がランダムに決
定された自由航走試験である．本実験では，時々刻々のアクチュエータ状態変数ベクトル 𝒖 はゲームコントロ
ーラを通して人間により決定された．ランダム操船試験の操縦運動軌道を Fig. 3.1に示し，ランダム操船試験
で入力されたアクチュエータ状態変数ベクトル 𝒖 のヒストグラムを Fig. 3.2に示す．Fig. 3.1を見ると，ラン
ダム操船試験では標準的な操船運動には含まれない，斜航角の大きな運動や後進運動などが計測されているこ
とがわかる．また，Fig. 3.2を見るとアクチュエータ状態変数ベクトル 𝒖 は一様に分布しているわけでないこ
とが分かる．これは，人間のオペレータが実験池の形状を考慮しつつ，入力を決定したためである．しかし，
偏りはあるものの幅広いアクチュエータ状態変数ベクトル 𝒖 のパターンが入力されていることが分かる．
本実験で用いられるデータは，2.3.1 節で述べた計測システムによって得られる．D (reg) は船体の加速度変

数ベクトル ¤𝝂 に関するデータを必要とするが計測システムでは直接計測されない．そのため，船体の速度変数
ベクトル 𝝂 の数値時間微分によって得られていることに注意されたい．
実施された自由航走試験の操縦運動を Table 3.1にまとめる．これらの操縦運動データを用いて訓練および

検証のためのデータ集合を用意した．本実験では，Table 3.2に示す三つの訓練データ集合および一つの検証
データ集合を用意した．ここで，Train-TZBおよび Train-TZRBは同程度のデータ量を持ち，前者は旋回操
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Fig. 3.1: An example of maneuvering motions in a random maneuvering test. The arrows indicate the
wind speed and direction at that moment.
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Fig. 3.2: Histgram of actuator state 𝒖 in a random maneuvering test. In this test, propeller revolution
𝑛P is limited in [−10, 10].

船，ジグザグ操船，着桟操船のみで構成された訓練データ集合で，後者はランダム操船が含まれている．ここ
で，Train-TZBおよび Train-TZRBのデータ量は実船スケール換算では約 7時間程度となるよう，データ量
が制限されている．一方で，データ量の増減による操縦モデルの推定精度の変化を確認するため，5倍程度の
データ量を持つ Train-TZRB+を用意した．

3.3.2 実験内容
実施した操縦モデルの推定実験の詳細な設定について述べる．3.3.1 節で述べた訓練データ集合を用いて操
縦モデルの推定を行い，いくつかの比較検証を実施した．本実験では無限インパルス応答型 RNNおよび有限
インパルス応答型 RNNのそれぞれを用いた操縦モデルの推定結果の比較を実施した．実験に用いられた無限
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Table 3.1: Notations for maneuvers.

Notation Description

Z A zigzag maneuver.
T A turning maneuver.
R A random maneuver.
B A berthing maneuver.

Table 3.2: Training and test datasets and its duration.

Name T (s) Z (s) R (s) B (s) Total (s)

Train-TZB 1490.0 737.1 0.0 335.8 2562.9
Train-TZRB 556.4 342.9 1301.2 335.8 2536.3
Train-TZRB+ 5674.7 1151.0 5861.2 788.9 13475.8
Test-TZRB 424.6 193.8 717.9 380.6 1716.9

インパルス応答型 RNNは 

𝒛𝑘,2 = 𝒉 (frl)
1

(
𝒙 (RNN)
𝑘 , 𝒛𝑘−1,2

)
𝒛𝑘,3 = 𝒉 (fpl)

2
(
𝒛𝑘,2

)
𝒛𝑘,4 = 𝒉 (fpl)

3
(
𝒛𝑘,3

)
𝒚 (RNN)
𝑘 = 𝒉 (fpl)

4
(
𝒛𝑘,4

)
(3.3.1)

と定義され，また，有限インパルス応答型 RNNは
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)
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)
𝒚 (RNN)
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(3.3.2)

と定義される．ここで，𝒉 (frl)
1 , 𝒉 (fpl)

1 , 𝒉 (fpl)
2 , 𝒉 (fpl)

3 , 𝒉 (fpl)
4 は Table 3.4で定義される不動点を含む RNN層およ

び不動点を含む全結合層である．
また，本実験では，3.2.1 節で述べた回帰分析ベースおよび3.2.2 節で述べた軌道推定ベースの操縦モデルの

訓練手法の比較が実施される．つまり，Eq. (3.2.2)および Eq. (3.2.10)でそれぞれ定義される損失関数の最
小化によって得られた操縦モデルの比較を行う．ただし，損失関数における重み行列𝑾¤𝝂 および𝑾𝒙 はそれぞ
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Table 3.3: The experiment patterns for estimation of maneuvering model

Name RNN model Training method Dataset

Type-1 FIR-RNN (Eq. (3.3.2)) Trajectory estimation (3.2.2 節) Train-TZRB+
Type-2 IIR-RNN (Eq. (3.3.1)) Trajectory estimation (3.2.2 節) Train-TZRB+
Type-3 FIR-RNN (Eq. (3.3.2)) Regression (3.2.1 節) Train-TZRB+
Type-4 FIR-RNN (Eq. (3.3.2)) Trajectory estimation (3.2.2 節) Train-TZB
Type-5 FIR-RNN (Eq. (3.3.2)) Trajectory estimation (3.2.2 節) Train-TZRB

れの変数成分の訓練データ集合における分散に応じた重み付け方法によって決定される．つまり，

𝑾¤𝝂 = diag
((
𝜎 (train)

¤𝑢

)−2
,
(
𝜎 (train)
¤𝑣m

)−2
,
(
𝜎 (train)
¤𝑟

)−2
)
,

𝑾𝒙 = diag
((
𝜎 (train)
𝑥0

)−2
,
(
𝜎 (train)
𝑦0

)−2
,
(
𝜎 (train)
𝜓

)−2
,
(
𝜎 (train)
𝑢

)−2
,
(
𝜎 (train)
𝑣m

)−2
,
(
𝜎 (train)
𝑟

)−2
) (3.3.3)

と定義された．ここで，𝜎 (train)
𝑥0 ，𝜎 (train)

𝑦0 ，𝜎 (train)
𝜓 ，𝜎 (train)

𝑢 ，𝜎 (train)
𝑣m ，𝜎 (train)

𝑟 ，𝜎 (train)
¤𝑢 ，𝜎 (train)

¤𝑣m ，𝜎 (train)
¤𝑟

は成分毎の訓練データ集合における標準偏差であることに注意する．
本実験では，Table 3.3に示す Type-1から Type-5までの五通りの設定で実験が行われた．また，実験で用

いられたハイパーパラメータを Table 3.5に示す．この実験の目的を以下に示す:

• 3.1.2.1 節で述べた無限インパルス応答型 RNN と3.1.2.2 節で述べた有限インパルス応答型 RNN を
用いた予測精度の違いを比較し，履歴影響の長さによる精度の違いを確認する．これは，Type-1 と
Type-2を比較することで確認する．

• 3.2.1 節で述べた回帰分析ベースの操縦モデル推定手法と3.2.2 節で述べた軌道推定ベースの操縦モデル
推定手法を用いた予測精度の違いを比較する．これは，Type-1と Type-3を比較することで確認する．

• 与えられるデータ集合の違いによる予測精度の違いを比較する．特に，データ量の違いとランダム操船
試験の有無による精度の違いを確認する．これは，Type-1，Type-4および Type-5を比較することで
確認する．

• 2.3.2 節で述べた拘束模型試験および経験式によって係数が決定されたMMGモデルと RNNモデルの
予測精度の違いを比較し，RNNモデルの有効性を確認する．これは，Type-1から Type-5の中で最も
良い予測精度を持つ結果をMMGモデルの予測精度と比較することで確認する．

一般に，ANNモデルの訓練結果はパラメータの初期値のような訓練過程に含まれるランダム性に影響を受
ける可能性がある．そのため，本研究では全ての実験に対して，異なる五つの初期パラメータに対して同じ訓
練を実施した．訓練では，3.2.3 節で述べたように，与えられたデータ集合が訓練データ集合と評価データ集
合に分割され，訓練データ集合を用いて損失関数の最小化が行われ，評価データ集合を用いて過学習の検出が
行われる．本実験の訓練における評価データ集合に対する損失関数の値を Fig. 3.3に示す．Fig. 3.3から，評価
データ集合に対する損失関数の値は訓練過程に含まれるランダム性によって大きく変動していないため，操縦
モデルの訓練結果も変動していないことがわかる．
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Table 3.4: The used network layers for maneuvering model.

Dimension of 𝑾𝑙 Dimension of 𝑾′
𝑙 Dimension of 𝒃𝑙 Activation function 𝑔

𝒉 (frl)
1 R200×7 R200×200 R200 hyperbolic tangent

𝒉 (fpl)
1 R200×7 None R200 hyperbolic tangent

𝒉 (fpl)
2 R200×200 None R200 hyperbolic tangent

𝒉 (fpl)
3 R200×200 None R200 hyperbolic tangent

𝒉 (fpl)
4 R3×200 None R3 None

Table 3.5: Hyperparameters in training.

Item Value

Batch size 512
Learning rate for trajectory estimation method (3.2.2 節) 2.0 × 10−5

Learning rate for regression method (3.2.1 節) 1.0 × 10−4

Duration of time step: Δ𝑡 0.1 (s)
Number of time steps: 𝐾 60 (6 (s))
Number of memory steps: 𝑁m 10 (1 (s))
Number of Epochs 20, 000
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Fig. 3.3: Validation loss for each epoch during training. Note that the Type-3 values are on the secondary
vertical axis because they use a different loss function.

3.3.3 実験結果
3.3.2 節で訓練された操縦モデルの検証データ集合に対する予測精度を示す．本実験では，得られた全ての

操縦モデルの予測精度を確認するため，検証データ集合に含まれるランダム操船，旋回操船，ジグザグ操船，
三つの着桟操船に対して，拘束模型試験および経験式によって係数が決定されたMMGモデルと訓練された
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Table 3.6: Mean and standard deviation of L (traj) for a test trajectory (mean ± std).

Traj. EDF-MMG Type-1 Type-2 Type-3 Type-4 Type-5

R 0.272 0.236 ± 0.003 0.241 ± 0.005 4834 ± 4041 0.488 ± 0.022 0.262 ± 0.007
T 0.858 0.713 ± 0.011 0.728 ± 0.017 0.864 ± 0.100 0.701 ± 0.019 0.785 ± 0.024
Z 1.015 0.086 ± 0.063 0.124 ± 0.141 761.1 ± 1519 0.122 ± 0.054 0.856 ± 0.288
B1 0.036 0.052 ± 0.024 0.058 ± 0.031 634.8 ± 1264 0.144 ± 0.053 0.055 ± 0.030
B2 0.189 0.069 ± 0.014 0.140 ± 0.101 91.76 ± 124.6 0.246 ± 0.107 0.182 ± 0.047
B3 0.100 0.138 ± 0.023 0.167 ± 0.053 1.163 ± 0.617 0.302 ± 0.062 0.294 ± 0.043

RNNモデルを用いて軌道予測を行った．ただし，ランダム操縦および旋回操船は計測時間が長いため，操縦
モデルを用いた軌道予測は 100 s毎に計測値へ初期化された．Eq. (3.3.1)の RNNモデルを用いた軌道予測で
は初期時刻ステップの入力のみを必要とするが，Eq. (3.3.2)の RNNモデルは初期時刻から 𝑁m ステップ後
までの入力を必要とする．そのため，RNNモデルの推定時間幅を統一するため，Eq. (3.3.1)の RNNモデル
は初期時刻から 𝑁m ステップ後から推定を開始した．
予測結果を定量的に評価するためL (traj) の値を求めた．ただし，重み行列𝑾𝒙 を構成する 𝜎 (train)

𝑢 ，𝜎 (train)
𝑣m ，

𝜎 (train)
𝑟 ，𝜎 (train)

¤𝑢 ，𝜎 (train)
¤𝑣m ，𝜎 (train)

¤𝑟 は成分毎の検証データ集合における標準偏差が用いられている．得られ
た結果を Table 3.6に示す．この結果を基に，予測精度の比較結果を以下に述べる．

(1) 操縦モデルの比較
まず，操縦モデルに用いられた RNN モデルの比較結果について述べる．Type-1 と Type-2 では，同一

の訓練データ集合および訓練手法が用いられたが，使用された操縦モデルがそれぞれ異なる．Type-1 では
Eq. (3.3.1)で定義される無限インパルス応答型 RNNが用いられ，Type-2では Eq. (3.3.2)で定義される有
限インパルス応答型 RNNが用いられた．そのため，ここでは Type-1と Type-2の比較結果に焦点を当てる．

Table 3.6から，検証データ集合に含まれるいずれの軌道に対しても，Type-1のL (traj) の値は Type-2のも
のより小さいことがわかる．つまり，有限インパルス応答型 RNNの検証データ集合に対する予測精度は無限
インパルス応答型 RNNに比べて高い精度であった．

(2) 訓練手法の比較
3.2.1 節で述べた回帰分析ベースおよび3.2.2 節で述べた軌道推定ベースの操縦モデルの訓練手法の比較結

果について述べる．Type-1と Type-3では，同一の操縦モデルおよび訓練データ集合が用いられたが，訓練
方法がそれぞれ異なる．Type-1では軌道推定ベース，Type-3では回帰分析ベースの訓練手法が用いられた．
そのため，ここでは Type-1と Type-3の比較結果に焦点を当てる．

Table 3.6から，検証データ集合に含まれるいずれの軌道に対しても，Type-3 は Type-1 に比べて極め
てL (traj) の値が大きく，特に，ランダム操船の結果に対して大きくなっていることがわかる．つまり，軌道予
測ベースの手法で訓練された操縦モデルは回帰分析ベースの手法で訓練されたものと比べて，検証データ集合
に対して高い予測精度を持っていた．ここで，訓練された操縦モデルの予測結果をより詳細に示すため，予測
された操縦運動軌道を Fig. 3.4に示す．Fig. 3.4から，Type-3では時刻が 100 sから 200 sの間に誤差が累積
し，船体の姿勢変数ベクトル 𝜼 に関する誤差が指数的に増加していることがわかる．その結果，Type-3にお
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Fig. 3.4: Predicted trajectories of random maneuver using trained maneuvering model.

いてL (traj) の値が大きく評価されていることがわかる．
また，Fig. 3.4から，船体の運動学的変数ベクトル 𝒙 に関しては高い精度で予測できているものの，船体の
加速度変数ベクトル ¤𝝂 については高精度な予測が達成されていないことが確認できる．2.3.1 節で述べたよう
に，船体の縦速度 𝑢 および横速度 𝑣m は，GNSSの位置座標データを数値的に時間微分することで求められて
いる．さらに，縦加速度 ¤𝑢 および横加速度 ¤𝑣m は，それぞれの速度データに対してさらに数値的な時間微分を
行うことで観測されている．このため，本実験で使用された加速度データにはノイズやスパイクが含まれる可
能性が高く，Fig. 3.4からもその影響が読み取れる．

(3) 訓練データ集合の比較
訓練データ集合の比較結果について述べる．Type-1，Type-4および Type-5では，同一の操縦モデルおよび
訓練手法が用いられたが，訓練データ集合がそれぞれ異なる．Type-1の訓練データ集合である Train-TZRB+
は Type-4および Type-5の訓練データ集合にくらべ約 5倍以上のデータ量を持っている．また，Type-4お
よび Type-5の訓練データ集合は同程度のデータ量を持つが，Type-5にはランダム操船試験データが含まれ
ており，Type-4には含まれない．

Table 3.6から，検証データ集合に含まれるいずれの軌道に対しても，Type-1は Type-4および Type-5に
比べてL (traj) の値が小さいことがわかる．このことから，データ量の多さに応じて操縦モデルの予測精度が
向上することがわかる．ANNモデルは高い表現能力を持っているため，訓練データ集合が多いほど訓練され
ていない操縦運動が減少し，結果として検証データ集合に対する予測精度が向上していると考えられる．しか
し，必ずしも大量のデータ量を持つ訓練データ集合が与えられるわけではないことに注意が必要である．
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Type-4と Type-5のみに焦点を当てると，Type-4は Type-5に比べてジグザク操船および旋回操船に対す
るL (traj) の値が小さくなっているが，ランダム操船に対しては逆に大きくなっていることがわかる．この結果
は，Type-4の訓練データ集合である Train-TZBには，Train-TZRBに比べ，より多くのジグザク操船および
旋回操船のデータが含まれており，Type-5の訓練データ集合である Train-TZRBには，Train-TZBには含ま
れない，ランダム操船のデータが含まれているためであると考えられる．しかし，Train-TZBと Train-TZRB
に含まれる着桟操船のデータ量は同じであるにもかかわらず，Type-5 は Type-4 に比べて着桟操船に対す
るL (traj) の値が小さくなっていることがわかる．

(4) MMGモデルとの比較
最後に，MMGモデルとの比較結果について述べる．ここでは，拘束模型試験および経験式によって係数が
決定されたMMGモデルの結果と，Type-1および Type-5の結果にに焦点を当てる．

Table 3.6から，ランダム操船，旋回操船，ジグザグ操船に対しては，Type-1と Type-5のいずれもMMG
モデルに比べてL (traj) の値が小さいことがわかる．このことから，訓練データ集合に類似するデータが含ま
れていれば，MMGモデルより高い精度で操縦運動を予測可能であることがわかる．一方で，着桟操船では，
必ずしも Type-1 と Type-5 が MMG モデルに比べL (traj) の値が小さいわけではなく，B1 および B3 では
MMGモデルがより小さい値を獲得していることがわかる．このことから，ランダム操船試験により着桟操船
に対する予測精度を向上させる可能性があるが，本実験で用意された訓練データ集合では着桟操船の操縦運動
を十分に網羅することができなかった可能性がある．また，MMGモデルおよび訓練された操縦モデルの予測
結果をより詳細に示すため，予測された着桟操船の運動軌道を Fig. 3.5に示す．Fig. 3.5から，Type-1の予測
精度は訓練時のランダム性に依存しており，訓練された操縦モデルの全てがMMGモデルに劣っているわけ
ではないことがわかる．

3.4 議論
3.3.3 節で得られた結果と結果から判明した点を以下にまとめる．

• 無限インパルス応答型 RNNは有限インパルス応答型 RNNに比べより長い期間の履歴影響を考慮した
RNNモデルであるが，検証データ集合に対する予測精度が有限インパルス応答型 RNNに比べて向上
はしなかった．よって，より長い期間の履歴影響を考慮することが，必ずしも操縦モデルの軌道推定精
度を向上させるわけではないことがわかる．逆に言えば，必要以上に遠い過去の履歴影響を考慮するこ
とが，軌道推定精度を低下させる可能性があることを示している．例えば，ジグザグ操船は周期的な操
縦運動であるため，遠い過去の履歴影響を考慮した RNNはジグザグ操船の周期性までも学習すること
が可能である．しかし，船舶の操縦モデルにはそのような周期性の学習は必要ではない．したがって，
操縦モデルが考慮すべき履歴の長さは物理的に影響を受ける可能性のある有限値であることがより適切
であると考えられる．

• 軌道推定ベースの提案訓練手法によって得られた操縦モデルは，回帰分析ベースの訓練手法によるもの
と比較して，検証データ集合に対する予測精度が大幅に向上した．本実験では，縦加速度 ¤𝑢 および横加
速度 ¤𝑣m の観測値が数値時間微分によりノイズやスパイクの影響を受けやすく，加速度に関する計測値
の使用が操縦モデルの予測精度を低下させる要因となっていたと考えられる．一方で，加速度計測値を
用いずに操縦モデルを推定可能な軌道推定ベースの訓練手法は，計測ノイズの影響を比較的軽減でき，
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Fig. 3.5: Predicted trajectories of berthing maneuver using MMG model and trained maneuvering model.

その結果，操縦モデルの操縦運動予測精度が大幅に向上したと考えられる．
• より多くの訓練データを用いることで操縦モデルの予測精度が向上すること，また，ランダム操船試験
データを用いることで，ジグザク操船および旋回操船に比べて，低速操縦運動を含む着桟操船軌道の予
測精度を向上させることがわかった．一方で，ランダム操船試験はジグザク操船および旋回操船の検証
データ集合に対する予測精度を向上させることはなかった．よって，検証データ集合に近いデータで訓
練されていれば RNNモデルの予測精度は向上し，低速操縦運動を効率的に計測するランダム操船試験
が着桟操船のための操縦モデルの同定において有効なデータ収集方法であることがわかった．

• RNNで表現された操縦モデルは，拘束模型試験や経験式から得られたMMGモデルに比べ，検証デー
タ集合のランダム操船，旋回操船，ジグザグ操船に対する予測精度が高かったが，着桟操船では必ずし
も RNN モデルの予測精度が高いとは限らなかった．よって，分布が近い訓練データが与えられれば，
RNNモデルは拘束模型試験や経験式から得られたMMGモデルと同等かそれ以上に高い精度で，船舶
の低速操縦運動を推定可能であることが分かった．

しかし，本実験では，高精度な操縦モデルの獲得のため，十分な量の操縦運動データを使用している．その
ため，提案手法をより現実的で精度の高いものにするためには，適切な訓練データの十分な量の準備が不可欠
である．この点の詳細な検討は今後の課題の一つである．
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3.5 結言
本章では，ANNを用いた港内操船のための操縦モデルの推定手法を提案し，模型船の自由航走試験データ
を利用した検証実験結果を示した．本研究では，主に以下の 5つの成果が得られた．

• 加速度の計測値を必要としない軌道推定ベースの訓練手法を RNNを用いた操縦モデルへ導入し，従来
の回帰分析ベースの訓練手法によるものと比較して，検証データ集合に対する予測精度が大幅に向上す
ることを示した．

• 低速操縦運動の予測精度を向上させるため，標準的な操縦運動を計測する旋回試験やジグザグ試験に加
えて，ランダム操船試験を操縦モデルの推定のために使用した．その結果，低速操縦運動を含む着桟操
船軌道の予測精度が向上することを示した．

• 有限インパルス応答型 RNNに比べより長い期間の履歴影響を考慮した無限インパルス応答型 RNNが，
必ずしも操縦モデルの軌道推定精度を向上させるわけではなく，むしろ，軌道推定精度を低下させる可
能性があることを示した．

• RNNを用いた操縦モデルは，分布が近い訓練データが与えられれば，拘束模型試験や経験式から得られ
たMMGモデルと同等かそれ以上に高い精度で，船舶の低速操縦運動を推定可能であることを示した．

しかし，この手法は高精度な操縦モデルの獲得のために十分な量の操縦運動データを必要とする．1.3 節で述
べたように必ずしも大量の操縦運動データを収集できるとは限らない．そのため，提案手法をより実用的にす
るためには，使用可能な操縦運動データが限られている場合の検討が必要である．
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人工ニューラルネットワーク用いた操縦モ
デル推定のためのデータ拡張手法

本章では，前節の ANNを用いた操縦モデルの推定手法に導入するデータ拡張手法について述べる．4.1 節
では，本研究で導入するいくつかのデータ拡張手法について詳述し，4.2 節で模型船の自由航走試験データを
用いた操縦モデルの推定実験の結果を示し，3.4 節で結果を元に議論を行う．最後に，3.5 節では本章の結言
について述べる．

4.1 データ拡張手法
データ拡張とは，元のデータ集合を変換することで合成データを生成することである．本研究では，先行研
究 [98]で紹介されているランダム変換に基づくデータ拡張のうち，空間および時間領域の変換に焦点を当て
る．空間および時間領域の変換に基づくデータ拡張は，それぞれ，時系列の値か時間軸を変換することで行わ
れ，ジッタリング (Jittering), 回転 (Rotation), スケール変換 (Scaling), 空間の変形 (Magnitude warping)，
スライシング (Slicing), 並び替え (Permutation), 時間の変形 (Time warping)などがある
このうち，船舶の操縦モデル推定において適用可能な手法としてスライシングとジッタリングが考えられる．

スライシングは元の時系列データから連続したスライスを抽出して合成データを生成する手法であるが，時系
列データの時間変化量を変化させないので，オリジナルデータの意味を歪ませることはない．また，ジッタリ
ングは時系列データにノイズを加えて合成データを生成する手法である．ジッタリングは，観測精度程度の大
きさのノイズを用いることで，センサーデータの異なる実現に似たデータを生成することができる．ジッタリ
ングもまた，適切なノイズを用いていれば，オリジナルデータを大きく歪ませることはない．そのため，本研
究ではデータ拡張手法としてスライシングとジッタリングを用いた．
本研究では，Fig. 4.1に示すような，データ拡張を行わない部分列で構成される操縦運動データ集合，スラ

イシングを用いて拡張された操縦運動データ集合，ジッタリングを用いて拡張された操縦運動データ集合を考
える．これらの操縦運動データ集合に関する定義をそれぞれ4.1.1 節，4.1.2 節，4.1.3 節で詳述する．

4.1.1 部分列
まず，データ拡張を行わない基準となるデータ集合を定義する．3.2.2 節では，一定のタイムステップ数 𝐾

を持つ時系列データが与えられると仮定される．しかし，自由航走試験から得られる時系列データの計測時間
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Fig. 4.1: Illustration of data augmentation methods.

は必ずしも一定とは限らない．そのため，実用的には，計測された時系列データが一定のタイムステップ数 𝐾

で分割され，分割された部分列によってデータ集合がしばしば構成される．
ここで，𝑁 個の時系列データが与えられ，𝑛番目の時系列データはある時刻 𝑡𝑛 を初期時刻とし，Δ𝑡 の時間間

隔を持つ 𝐾 ′
𝑛 (> 𝐾) 個の時刻点 {𝑡𝑛 + 𝑘Δ𝑡}𝐾

′
𝑛−1
𝑘=0 で計測されたとする．この時，𝑛番目の時系列データは b𝐾 ′

𝑛/𝐾c
個に分割することが可能で，分割された 𝑖 番目の時系列データの初期時刻を 𝑡𝑛 + 𝑖𝐾Δ𝑡 とすると，𝒙 と 𝒖，𝒘T

に関する 𝑛番目の時系列データから分割された 𝑖 番目の計測変数列はそれぞれ
𝑿 (sub)
𝐾,𝑛,𝑖 =

(
𝒙T (𝑡𝑛 + 𝑖𝐾Δ𝑡) , 𝒙T (𝑡𝑛 + (𝑖𝐾 + 1)Δ𝑡) , · · · , 𝒙T (𝑡𝑛 + (𝑖𝐾 + 𝐾 − 1)Δ𝑡)

)T
∈ R6𝐾

𝑼 (sub)
𝐾,𝑛,𝑖 =

(
𝒖T (𝑡𝑛 + 𝑖𝐾Δ𝑡) , 𝒖T (𝑡𝑛 + (𝑖𝐾 + 1)Δ𝑡) , · · · , 𝒖T (𝑡𝑛 + (𝑖𝐾 + 𝐾 − 1)Δ𝑡)

)T
∈ R𝑁𝒖𝐾

𝑾 (sub)
T,𝐾,𝑛,𝑖 =

(
𝒘T

T (𝑡𝑛 + 𝑖𝐾Δ𝑡) ,𝒘T
T (𝑡𝑛 + (𝑖𝐾 + 1)Δ𝑡) , · · · ,𝒘T

T (𝑡𝑛 + (𝑖𝐾 + 𝐾 − 1)Δ𝑡)
)T

∈ R2𝐾

(4.1.1)

と表される．このとき，Eq. (3.2.4)のデータ集合は

D (traj) =

{{(
𝑿 (sub)
𝐾,𝑛,𝑖 ,𝑼

(sub)
𝐾,𝑛,𝑖 ,𝑾

(sub)
T,𝐾,𝑛,𝑖

)}
𝑖=0,1, · · · ,

⌊
𝐾′
𝑛
𝐾

⌋
−1

}
𝑛=1, · · · ,𝑁

(4.1.2)

と再定義することが可能である．

4.1.2 スライシング
次に，スライシングによるデータ集合の拡張方法を示す．スライシングは元の時系列データから一定長さの
時系列データを抜き出すことでデータを生成する．そして，抜き出す時系列データはランダムに選択される
か [99]，開始時間ステップをスライドさせて選択される [123]．スライシングを用いると，異なる時系列デー
タ間でデータの重複して使用するため，より多くの時系列データを生成することが可能となる．特に，本論文
で扱うモデル同定手法では，モデルの推定精度は運動学的変数の初期値に含まれる観測誤差に大きく影響を受
ける．スライシングは特定の初期値に含まれる観測誤差の影響を相対的に小さくできる可能性を持つ．
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ここで，4.1.1 節と同様に，𝑁 個の時系列データが与えられ，𝑛番目の時系列データはある時刻 𝑡𝑛 を初期時
刻とし，Δ𝑡 の時間間隔を持つ 𝐾 ′

𝑛 (> 𝐾) 個の時刻点 {𝑡𝑛 + 𝑘Δ𝑡}𝐾
′
𝑛−1
𝑘=0 で計測されたとする．本研究では，初期時

刻を一定のタイムステップ間隔 𝑆 でスライドさせながら，一定のタイムステップ数 𝐾 を持つ時系列データを
抽出する．この時，𝑛 番目の時系列データから b

(
𝐾 ′
𝑛 − 𝐾

)
/𝑆c 個だけ抽出することが可能で，抽出された 𝑖 番

目の時系列データの初期時刻を 𝑡𝑛 + 𝑖𝑆Δ𝑡 とすると，𝒙 と 𝒖，𝒘T に関する 𝑛番目の時系列データから抽出され
た 𝑖 番目の計測変数列はそれぞれ

𝑿 (sli)
𝐾,𝑛,𝑖 =

(
𝒙T (𝑡𝑛 + 𝑖𝑆Δ𝑡) , 𝒙T (𝑡𝑛 + (𝑖𝑆 + 1)Δ𝑡) , · · · , 𝒙T (𝑡𝑛 + (𝑖𝑆 + 𝐾 − 1)Δ𝑡)

)T
∈ R6𝐾

𝑼 (sli)
𝐾,𝑛,𝑖 =

(
𝒖T (𝑡𝑛 + 𝑖𝑆Δ𝑡) , 𝒖T (𝑡𝑛 + (𝑖𝑆 + 1)Δ𝑡) , · · · , 𝒖T (𝑡𝑛 + (𝑖𝑆 + 𝐾 − 1)Δ𝑡)

)T
∈ R𝑁𝒖𝐾

𝑾 (sli)
T,𝐾,𝑛,𝑖 =

(
𝒘T

T (𝑡𝑛 + 𝑖𝑆Δ𝑡) ,𝒘T
T (𝑡𝑛 + (𝑖𝑆 + 1)Δ𝑡) , · · · ,𝒘T

T (𝑡𝑛 + (𝑖𝑆 + 𝐾 − 1)Δ𝑡)
)T

∈ R2𝐾

(4.1.3)

と表現できる．このとき，Eq. (3.2.4)のデータ集合は

D (traj) =

{{(
𝑿 (sli)
𝐾,𝑛,𝑖 ,𝑼

(sli)
𝐾,𝑛,𝑖 ,𝑾

(sli)
T,𝐾,𝑛,𝑖

)}
𝑖=0,1,...,

⌊
𝐾′
𝑛−𝐾
𝑆

⌋}
𝑛=1,2,...,𝑁

(4.1.4)

と再定義することが可能である．

4.1.3 ジッタリング
ここでは，ジッタリングによるデータ集合の拡張方法を示す．ジッタリングは時系列データに対してノイズ
を加えることで合成データを生成する．ニューラルネットワークでは入力にノイズを加えることにより汎化性
能を向上させることで知られている [124]．また，ジッタリングは時系列データにノイズが含まれていること
を前提としており，この手法はセンサーデータに適用されることが多い [100,125]．
本研究では，時間及び空間に対して独立なゼロ平均正規分布に従うノイズを船体の運動学的変数ベク
トル 𝒙 に加える．船体の運動学的変数ベクトル 𝒙 の成分毎に加える正規ノイズの標準偏差をそれぞれ
𝜎

(jit)
𝑥0 , 𝜎

(jit)
𝑦0 , 𝜎

(jit)
𝜓 , 𝜎

(jit)
𝑢 , 𝜎

(jit)
𝑣m , 𝜎

(jit)
𝑟 と表記すると， 𝑗 番目の正規ノイズを

𝑬 𝑗 ∼ N
(
0, diag

((
𝜎

(jit)
𝑥0

)2
,
(
𝜎

(jit)
𝑦0

)2
,
(
𝜎

(jit)
𝜓

)2
,
(
𝜎

(jit)
𝑢

)2
,
(
𝜎

(jit)
𝑣m

)2
,
(
𝜎

(jit)
𝑟

)2
))

(4.1.5)

と定義する．この時，ジッタリングにより 𝐽 通りのノイズを Eq. (4.1.2)のデータ集合へ加える場合，拡張さ
れたデータ集合は

D (traj) =

{{(
𝑿 (sub)
𝐾,𝑛,𝑖 + 𝑬 𝑗 ,𝑼

(sub)
𝐾,𝑛,𝑖 ,𝑾

(sub)
T,𝐾,𝑛,𝑖

)}
𝑖=0,1, · · · ,b𝐾 ′

𝑛/𝐾 c−1

}
𝑛=1, · · · ,𝑁 , 𝑗=1,2, · · · ,𝐽

(4.1.6)

と定義される．また，同様にノイズを Eq. (4.1.4)のデータ集合へ加える場合，拡張されたデータ集合は

D (traj) =

{{(
𝑿 (sli)
𝐾,𝑛,𝑖 + 𝑬 𝑗 ,𝑼

(sli)
𝐾,𝑛,𝑖 ,𝑾

(sli)
T,𝐾,𝑛,𝑖

)}
𝑖=0,1,...,

⌊
𝐾′
𝑛−𝐾
𝑆

⌋}
𝑛=1,2,...,𝑁 , 𝑗=1,2, · · · ,𝐽

(4.1.7)

と定義される．この手法では，発生するノイズの数に比例してデータを増やすことができ，所望の大きさのノ
イズを加えることが可能である．しかし，不必要に大きなノイズは推定精度を悪化させる．そこで，本研究で
は，測定器の観測精度に応じて，付加するノイズの標準偏差を決定することとした．
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Table 4.1: Trajectory data collected by free-running model tests. The sampling frequency is 1 Hz.

Trajectory No. Duration Maneuver

No. 1 500.5 (s) Random
No. 2 1801.8 (s) Random
No. 3 500.5 (s) Random
No. 4 1801.8 (s) Random
No. 5 1201.2 (s) Random
No. 6 1201.2 (s) Random
No. 7 100.0 (s) Berthing
No. 8 100.0 (s) Berthing

4.2 模型試験データを用いた検証実験
本節では，4.1 節で述べたデータ拡張手法の有効性を示すため，軌道推定ベースの訓練手法にデータ拡張手

法を組み込んだ場合の船舶操縦モデルの推定実験の結果を示す．ただし，操縦モデルは3.1 節で述べた FNN
モデルによって表現される．ここで示す内容は，自著論文 2 [33]で示された内容と同様である．本実験では，
2.4 節で述べた供試船２が対象船舶とされた．以降，4.2.1 節で使用された操縦運動データ集合について詳述
し，4.2.2 節で訓練結果について，4.2.3 節で操縦運動の推定結果について示す．

4.2.1 操縦運動データ集合
本実験で用いられる操縦運動データ集合は，2.5 節で述べた大阪大学の実験池である犬飼池にて実施された

供試船２の自由航走試験により収集された．自由航走試験の詳細を以降に述べる．

(1) データ集合
本実験では，ランダム操船試験と仮想岸壁を考慮した手動着桟操船試験で計測された操縦運動データ集合を
使用する．3.3.1 節で述べたように，ランダム操船試験では，港内操船のような低速状態での大きな斜航角を持
つ運動を含む，広範囲に分布するデータを測定することを目的とし，操船者が制御入力を手動で選択する．た
だし，プロペラ回転数は 𝑛P (rps) ∈ [0.0, 12.5] の範囲で選択され，バウスラスタ回転数は 𝑛BT = 0.0 (rps) で
固定された．
計測された操縦運動データ集合を Table 4.1に示す．ただし，自由航走試験では 10 Hzの周波数で計測され

たが，操縦運動データ集合は 1 Hzにダウンサンプリングされたデータで構成されていることに注意する．計
測された軌道のうち，軌道 1から 4は訓練データ集合のため，軌道 5は評価データ集合のため，軌道 6から
8は検証データ集合のために使用された．本実験では，データ拡張手法の適用の有無による違いを確認するた
め，Table 4.2に示すように 8種類の訓練データ集合を用意した．D (sub) はデータ拡張手法を用いない基準と
なる訓練データ集合 D (sli2) 及び D (jit2) はそれぞれのデータ拡張手法により 2倍のデータ量，D (sli10) 及び
D (jit10) は 10倍のデータ量に拡張した訓練データ集合である．また，D (sli2×jit2) はスライシングおよびジッ
タリングを併用して 4倍のデータ量，D (sli10×jit10) は 100倍のデータ量に拡張されている．また，D (d-sub)
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Table 4.2: Training, validation and test datasets.

Symbol Trajectory No. Augmentation method Dataset definition

D (sub) No. 1 and 2 Subsequence Eq. (4.1.2) where 𝐾 = 100
D (sli2) No. 1 and 2 Slicing Eq. (4.1.4) where 𝐾 = 100, 𝑆 = 50
D (sli10) No. 1 and 2 Slicing Eq. (4.1.4) where 𝐾 = 100, 𝑆 = 10
D (jit2) No. 1 and 2 Jittering Eq. (4.1.6) where 𝐾 = 100, 𝐽 = 2
D (jit10) No. 1 and 2 Jittering Eq. (4.1.6) where 𝐾 = 100, 𝐽 = 10
D (sli2×jit2) No. 1 and 2 Slicing and Jittering Eq. (4.1.7) where 𝐾 = 100, 𝑆 = 50, 𝐽 = 2
D (sli10×jit10) No. 1 and 2 Slicing and Jittering Eq. (4.1.7) where 𝐾 = 100, 𝑆 = 10, 𝐽 = 10
D (d-sub) No. 1, 2, 3 and 4 Subsequence Eq. (4.1.2) where 𝐾 = 100
D (valid) No. 5 Subsequence Eq. (4.1.2) where 𝐾 = 100
D (test-R) No. 6 Subsequence Eq. (4.1.2) where 𝐾 = 100
D (test-B) No. 7 and 8 Subsequence Eq. (4.1.2) where 𝐾 = 100

はデータ拡張手法を用いず 2倍のデータ量を持つ訓練データ集合である．
用意された訓練データ集合，評価データ集合，検証データ集合の分布を確認するため，船体の速度変数
ベクトル 𝝂 のヒストグラムを Fig. 4.2に，アクチュエータ状態変数ベクトル 𝒖 の散布図を Fig. 4.3に，相
対風速風向ベクトル 𝒘A の二次元ヒストグラムを Fig. 4.4に示す．Fig. 4.2から，D (sub) + D (valid) および
D (d-sub) +D (valid) のいずれも D (test-B) をカバーできているが，D (test-R) を完全にカバーできていないこと
がわかる．例えば，D (sub) + D (valid) は D (test-R) に存在する 1.5 (m/s) 以上の横速度のデータをカバーでき
ていない．また，D (test-R) では𝑈A = 5.0 (m/s)，𝛾A = 300 (deg.) の風が発生しているが，D (sub) にはその
ようなデータはまったく含まれない．
本実験は模型船が用いられるため，検証データ集合を完全にカバーするデータを収集することは可能であ

る．しかし，これは実スケールの船舶では容易ではない．特に，実船試験では風速を制御することが不可能で
あり，発生頻度の少ない強風データを収集することは難しい．よって，実用的には，状態変数の発生しうる全
ての状態を訓練データ集合に含めることが難しいため，訓練データ集合に含まれない状態変数に遭遇する可能
性は高い．そのため，本研究では訓練データ集合に含まれない外挿データに対する推定精度について検証を行
っている．

(2) 港内操船との比較
ランダム操船試験で計測されたデータの分布が，用意した着桟操船の操縦データのみならず，実際の港湾の
操縦運動の分布の多くの範囲をカバーしていることを示すため，ランダム操船試験で計測されたデータと入出
港時の実船計測データとの比較結果を示す．宮内らは，本研究で用いた対象船舶の港湾航行と操船の統計解析
に関する研究を行っている [126]．彼らは，フルスケール船の入出港時の操船運動データを記録し，このデー
タを基に入港時と出港時の操船運動の統計的特徴を示している．よって，宮内らの解析結果と計測データの統
計的特徴を比較する．ただし，ランダム操縦試験データは実船データとは縮尺が異なるため，相似則または無
次元値を用いて比較する．
まず，着桟点付近における対地船速と斜航角について焦点を当てる．文献 [126] では，繋留位置からのユ
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Fig. 4.2: Histograms of ship state variables. Note that the vertical axes, which show the frequency, are
scaled logarithmically.
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(b) Validation and test datasets.

Fig. 4.3: Scatter plots of 𝛿P, 𝛿S. The color bar shows the propeller revolution number 𝑛P.

ークリッド距離が 2.0𝐿pp より小さい場合，大斜航角が取られることが多いと示されている．そして，その
範囲における対地速度 𝑈 =

√
𝑢2 + 𝑣2m のヒストグラムが文献 [126] の Figure 5 に示されており，同様の図を

Fig. 4.5aに示す．ただし，𝛽は斜航角を示している．この結果から，離着桟操船では，𝑈 < 1.5 (knot) の場合
に大斜航角が取られることがわかる．
用意したデータ集合を用いて同様のヒストグラムを作成し，Fig. 4.5に示した．ただし，相似則により，速度が

フルスケールに変換された．Fig. 4.5から，ランダム操縦試験では低速の操縦データが測定され，𝑈 < 1.5 (knot)
の場合，斜航角の大きい操縦運動が測定されていることがわかる．
また，𝛽と 𝑟 の関係について焦点を当てる．文献 [126]では，𝑟 は小瀬の方法 [4]により無次元化され，その
無次元値は 𝑟★ = 𝑟

√
𝐿pp/𝑔と定義されている．𝑟★と 𝛽の散布図を [126]の Figure 6に，同じ図を Fig. 4.6aに

示す．Fig. 4.6aから，船速が速い場合，𝑟 と 𝛽の間には，斜航角の小さい範囲で強い正の相関が見られる．こ
の特徴はジグザグや旋回のデータにも見られる．一方，1ノット以下の低速域では，広い範囲の斜航角が測定
されている．特に接岸データでは，無次元ヨー速度 𝑟★は-0.02～0.02の範囲に分布し，𝑟 と 𝛽の間には緩やか
な傾きを持つ正の相関が見られる．
さらに，Figs. 4.6bと4.6cに 𝑟★ と 𝛽 に関する操縦運動データ集合の散布図を示す．Figs. 4.6bと4.6cに示す
ように，D (test-R) も，船速が速い場合には 𝑟 と 𝛽 の間に強い正の相関があった．低速域では，幅広い斜航角
の操縦運動データ集合が測定されている．特に，データ量の多い D (d-sub) の 𝑟★は，どの斜航角でも広く分布
している．
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Table 4.3: The used network layers for maneuvering model.

Dimension of 𝑾𝑙 Dimension of 𝒃𝑙 Activation function 𝑔

𝒉 (fcl)
1 R256×7 R256 hyperbolic tangent function

𝒉 (fcl)
2 R256×256 R256 hyperbolic tangent function

𝒉 (fcl)
3 R256×256 R256 hyperbolic tangent function

𝒉 (fcl)
4 R256×256 R256 hyperbolic tangent function

𝒉 (fcl)
5 R3×256 R3 None

従って，計測されたデータには，𝑟 と 𝛽の間に強い相関を持っている船速が高い運動データのみならず，低
速状態における広い範囲の斜航角を持つ運動も多く計測されており，計測されたデータの分布は港湾の操縦運
動のフルスケールデータの分布の大部分をカバーしていた．

4.2.2 実験内容
実施した訓練内容の詳細な設定について述べる．本実験では，全結合層のみで構成される多層パーセプトロ
ンを用いて操縦モデルの推定が行われた．具体的に，使用された FNNモデルは

𝒚 (FNN) = 𝒉 (fcl)
5 ◦ 𝒉 (fcl)

4 ◦ 𝒉 (fcl)
3 ◦ 𝒉 (fcl)

2 ◦ 𝒉 (fcl)
1

(
𝒙 (FNN)

)
(4.2.1)

と定義される．ここで，𝒉 (fcl)
1 , 𝒉 (fcl)

2 , 𝒉 (fcl)
3 , 𝒉 (fcl)

4 , 𝒉 (fcl)
5 は Table 4.3で定義される全結合層である．

また，3.2.2 節で述べた軌道推定ベースの訓練手法が用いられたが，本実験で用いられた損失関数は
Eq. (3.2.10)と少し異なる．本実験では，正則化項が加えられ，損失関数は

L (traj)
(
𝜽;D (traj)

)
=

1
𝑁

𝑁∑
𝑛=1

∫ 𝑡𝑛+(𝐾−1)Δ𝑡

𝑡=𝑡𝑛
‖𝒙 (𝑡) − 𝒙𝜽 (𝑡)‖2

𝑾𝒙
d𝑡 + 𝜆 ‖𝜽 ‖2

≈ 1
𝑁

𝑁∑
𝑛=1

𝐾−2∑
𝑘=0

‖𝒙 (𝑡𝑛 + (𝑘 + 1)Δ𝑡) − 𝒙𝜽 (𝑡𝑛 + (𝑘 + 1)Δ𝑡)‖2
𝑾𝒙

+ ‖𝒙 (𝑡𝑛 + 𝑘Δ𝑡) − 𝒙𝜽 (𝑡𝑛 + 𝑘Δ𝑡)‖2
𝑾𝒙

2
Δ𝑡 + 𝜆 ‖𝜽 ‖2

(4.2.2)
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Fig. 4.5: Histograms of |𝛽 | for 𝑈. Histograms are normalized so that the sum of their areas equals 1 in
each figure.

と定義された．ここで，𝜆は正則化パラメータである．損失関数における重み行列𝑾𝒙 は速度成分に関する観
測誤差の分散に応じた重み付け方法によって決定される．つまり，

𝑾𝒙 = diag
((
𝜎 (obs)
𝑥0

)−2
,
(
𝜎 (obs)
𝑦0

)−2
,
(
𝜎 (obs)
𝜓

)−2
,
(
𝜎 (obs)
𝑢

)−2
,
(
𝜎 (obs)
𝑣m

)−2
,
(
𝜎 (obs)
𝑟

)−2
)

(4.2.3)

とされた．ここで，𝜎 (obs)
𝑥0 ，𝜎 (obs)

𝑦0 ，𝜎 (obs)
𝜓 ，𝜎 (obs)

𝑢 ，𝜎 (obs)
𝑣m ，𝜎 (obs)

𝑟 は成分毎の観測誤差に関する標準偏差
であり，本実験では船体の姿勢変数ベクトル 𝜼 に関する観測誤差を無視するため

(
𝜎 (obs)
𝑥0

)−2
=

(
𝜎 (obs)
𝑦0

)−2
=(

𝜎 (obs)
𝜓

)−2
= 0.0とされた．

本実験では，Table 4.2に示す全ての訓練データ集合から得られた操縦モデルの推定精度に関する比較を行
う．ただし，乱数を変更して最適化をそれぞれ 10回実施され，最適なパラメータは各学習データセットと各
乱数についてそれぞれ求められた．各エポックにおける検証データセットを使用した損失関数の指数移動平均
値を Fig. 4.7に示す．ただし，損失関数の指数移動平均値は

L̂ (traj)
(
𝜽𝑖;D (valid)

)
=

{
𝛼L (traj) (

𝜽𝑖;D (valid) ) + (1 − 𝛼) L̂ (traj) (
𝜽𝑖−1;D (valid) ) (𝑖 ≠ 0)

L (traj) (
𝜽0;D (valid) ) (𝑖 = 0) , (4.2.4)

と定義される．ここで，𝛼 = 0.1で，𝜽𝑖 は 𝑖 番目のエポックのパラメータベクトル，L̂ (traj) は指数移動平均の
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Fig. 4.6: Scatter plots of 𝛽 and non-dimensionalized yaw velocity 𝑟∗ = 𝑟
√
𝐿pp/𝑔.

Table 4.4: Hyperparameters in training.

Item Value

Learning rate 1.0 × 10−4

Regularization coefficient: 𝜆 1.0 × 10−2

Duration of time step: Δ𝑡 1.0 (s)
Standard deviation of 𝑢 noise: 𝜎 (obs)

𝑢 and 𝜎 (jit)
𝑢 0.01 (m/s)

Standard deviation of 𝑣m noise: 𝜎 (obs)
𝑣m and 𝜎 (jit)

𝑣m 0.01 (m/s)
Standard deviation of 𝑟 noise: 𝜎 (obs)

𝑟 and 𝜎 (jit)
𝑟 0.1 (deg./s)

損失関数値を意味する．また，訓練は 10, 000 Epochを超えた後，

L (traj)
(
𝜽𝑖;D (valid)

)
> 0.1 × L (traj)

(
𝜽0;D (valid)

)
+ 0.9 × min

0≤ 𝑗≤𝑖
L (traj)

(
𝜽 𝑗 ;D (valid)

)
(4.2.5)

を満たしたときに訓練が終了された．Fig. 4.7を見ると，ほとんどのケースで，Eq. (4.2.5) を満たすことで，
訓練が終了していることがわかる．よって，このことから訓練データに対するオーバーフィッティングが発生
していることがわかる．



50 第 4章 人工ニューラルネットワーク用いた操縦モデル推定のためのデータ拡張手法

600

800

1000

1200

1400 D(sub)

D(d-sub)

D(jit2)

D(jit10)

0 5000 10000 15000 20000 25000 30000
600

800

1000

1200

1400 D(sli2)

D(sli10)

0 5000 10000 15000 20000 25000 30000

D(sli2×jit2)

D(sli10×jit10)

L̂(
tr

a
j)
( D

(v
a
li

d
) ;
θ
i)

i : Epoch

Fig. 4.7: Exponential moving average values of the evaluation function in the validation dataset. The
legend implies the used training dataset. Ten training results with different random numbers for each
dataset are presented.

4.2.3 実験結果
得られた最適パラメータを用いた操縦モデルの検証データ集合に対する予測精度を示す．検証データ集合に
おける操縦モデルの予測誤差を表す損失関数を求めた．得られた損失関数の値と乱数に対するその平均値を
Fig. 4.8に示す．また，Fig. 4.9に検証データ集合のアクチュエータ状態変数ベクトル 𝒖及び相対風速風向ベク
トル 𝒘A の時系列を示し，Figs. 4.10a−4.10dに予測された船体の速度変数ベクトル 𝝂 の時系列を示す．特に，
Fig. 4.10aでは D (sub) と D (double)，Fig. 4.10bでは D (sub) と D (sil10)，Fig. 4.10cでは D (sub) と D (jit10)，
Fig. 4.10dでは D (sub) と D (sli10×jit10) の結果を示している．ただし，数値シミュレーションのタイムステッ
プ数は訓練時と同様であり，𝐾 = 100毎に計測データに初期化されている．
スライシングで拡張された訓練データ集合について焦点を当てる．Fig. 4.8を見ると，スライシングで拡張

された D (sli2) と D (sli10) の損失関数値の平均値はデータ拡張されていない D (sub) のそれに比べて小さくな
っていることがわかる．よって，スライシングが検証データ集合に対する予測精度を向上させていることがわ
かる．しかし，D (sli10) と D (sli2) の差が小さいことから，データ拡張量を大きくすればするほど予測精度が
必ずしも向上するわけではないことがわかる．
ジッタリングで拡張された訓練データ集合について焦点を当てる．ジッタリングで拡張された D (jit2) は

D (sub) の損失関数値の平均値に比べて少し小さくなっており，ジッタリングで拡張された D (jit10) の損失関
数値の平均値はさらに小さくなっている．よって，ジッタリングもまた検証データ集合に対する予測精度を向
上させていることが分かる．
スライシングとジッタリングが併用された訓練データ集合について焦点を当てる．D (sli2×jit2) および

D (sli10×jit10) もまたの損失関数値の平均値はデータ拡張されていない D (sub) のそれに比べて小さくなってい
ることがわかる．また，スライシングとジッタリングのいずれか一方を使用した場合に比べ，少しではあるが
損失関数値の平均値が減少していることがわかる．よって，スライシングとジッタリングは併用しても検証デ
ータ集合に対する予測精度を向上させていることが分かる．
しかし，データ拡張を行なったどのデータ集合よりも D (d-sub) の損失関数値が小さい．つまり，D (sli10) や
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D (jit10) はD (d-sub) より多くのデータ量を含んでいるにも関わらず，検証データ集合における推定誤差は小さ
くなっていない．この原因の一つとして，850 s付近から 900 sにかけて発生している推定誤差の違いがある．
Fig. 4.10aから，D (d-sub) では推定誤差が小さくなっていることがわかるが，一方で，Figs. 4.10b−4.10dか
ら，拡張されたデータセットでは推定誤差を減らせておらず，横速度の符号が逆転してしまっている．このと
き，Fig. 4.9を見ると，𝛾A = 300 (deg.),𝑈A = 5.0 (m/s) 程度の左前方からの比較的強い風が吹いていること
がわかる．
ここで，Fig. 4.4から，D (sub) と D (d-sub) には，𝛾A = 300 (deg.),𝑈A = 5.0 (m/s) に近い範囲のデータ量
に大きく差が存在することがわかる．スライシングとジッタリングは，元のデータセットのどのデータにも近
くないデータを合成することはできません．その結果，これらのデータ拡張方法では 850秒から 900秒に発生
する予測誤差を低減することができなかったと考えられる．また，1100秒から 1200秒にかけて発生する予測
誤差も，同様の理由によるものと考えられる．
最後に，船体の姿勢変数ベクトル 𝜼の軌跡を Fig. 4.11に示す．ここで，Fig. 4.11では，700秒から 1000秒
までのシミュレーション結果を示している．まず，Fig. 4.11aでは，Surge速度が比較的大きく，トラジェク
トりは Yaw 速度の誤差の累積により乖離する傾向が見られる．特に，D (sub) の乖離が大きく，D (d-sub) と
D (sli10×jit10) の乖離は比較的小さい．次に，Fig. 4.11bでは，Surge速度が大きく減少しており，比較的 850 s
付近から強い風が吹いている．D (d-sub) の軌道は実験と比較的よく一致しているが，D (sub) と D (sli10×jit10)

の軌道は 850 s以降で実験とは逆方向へ𨓜れてしまっているそして，Fig. 4.11cでは，Surge速度がゼロに近
く，Sway方向に移動する運動が行われているところから始まっている．．このケースでは D (d-sub) が最も良
い実験結果との一致を示しており，D (sli10×jit10) の軌道は D (sub) よりも実験結果に近い．以上のことから，
船体運動軌道においても，D (d-sub) の船体運動軌道が実験結果と比較的良い一致を示していることがわかり，
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Fig. 4.10: Prediction result of ship state variables 𝝂 and error 𝑑 (𝒙sim, 𝒙) in random maneuver D (test-R) .

また，D (sub) に比べて D (sli10×jit10) がより良く一致するケースが存在することがわかる．
最後に，着桟操船における獲得した操縦モデルの精度を示すため，検証データ集合 Fig. 4.12に D (test-B)

の予測結果を示す．ただし，L
(
𝜽opt;D (test) ) の値が最も小さい最適パラメータを用いたモデルが使用され

た．Trajectory No.7 では，いずれの訓練データセットが用いられたモデルも縦速度 𝑢 と横速度 𝑣m は高い精
度で予測されているが，回頭角速度 𝑟 は，𝑡 = 30 (s) 付近で，計測データと乖離してしまっている．そのため，
Trajectoryでも 𝑡 = 30 (s) 以降から乖離してしまっている．Trajectory No.8 では，D (sub) で訓練されたモ
デルは，横速度 𝑣m と回頭角速度 𝑟 は高い精度で予測されているが，縦速度 𝑢 は徐々に計測データから乖離し
てしまっている．そのため，船体運動軌道が計測データと大きく乖離してしまう結果となっている．一方で，
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Fig. 4.11: Predicted results of trajectories in random maneuver D (test-R) . Dynamic models with optimal
parameters trained by D (sub) , D (d-sub) and D (sli10×jit10) are used.

D (d-sub) と D (sli10×jit10) で訓練されたモデルは，縦速度 𝑢 も高い精度で予測し続けられているため，船体運
動軌道も計測データと近い挙動を示している．

4.3 議論
4.2 節では，港内操船のための操縦モデルの同定問題におけるデータ拡張手法の比較実験の結果を示した．

本実験では，FNNにより操縦モデルが表現され，ランダム操船試験で計測された操縦運動データ集合が用い
られた．実験結果から，スライシングやジッタリングにより検証データ集合に対する操縦モデルの予測精度が
向上することが確認できた．また，スライシングとジッタリングは併用することでも予測精度を向上させるこ
とも示した．したがって，与えられる操縦運動データ集合が限られている場合には，スライシングとジッタリ
ングは効果的なデータ補強法であることがわかった．
しかし，スライシングとジッタリングはデータセットのどのデータとも近接していないデータを合成するこ

とはできず，元のデータセットの外挿領域内で操縦モデルの予測精度を向上させることはできなかった．その
ため，例えば訓練データには現れなかった強い風に遭遇すると予測精度が大きく低下する可能性がある．従っ
て，ランダム操縦試験を用いる場合は，広く分布し，外挿領域の少ないデータを計測することが望ましい．た
だし，実船試験では風などの外乱に関する状態量は制御できないため，計測時間が限られている場合，期待す
る望ましいデータを観測することは難しい．そのため，観測データの外挿状態の推定精度を向上させるために
は，データから得られる情報に加えて物理的または流体力学的な知識を利用するアプローチも検討する必要が
あるかもしれない．
また，得られた操縦モデルは，着桟操船軌道を高精度に推定可能であることがわかった．これは，Fig. 4.2や

Fig. 4.4を見てわかるように，ランダム操船の訓練データの分布が，着桟操船の分布をカバーしていることが
一つの理由と考えられる．よって，ランダム操船によるデータ収集は港内操船のための操縦モデルの同定問題
において有効な手段の一つであることがわかる．
しかし，ランダム操船試験は広範囲に分布する操縦データを収集可能であるが，手作業であるため，再現性

に欠ける．従って，今後の研究では，データ収集方法に着目する必要があり，ジグザグ試験，旋回試験といっ
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(a) Trajectory No. 7 of manual berthing maneuver. The diagonal hatch means an imaginary berth.
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(b) Trajectory No. 8 of manual berthing maneuver. The diagonal hatch means an imaginary berth.

Fig. 4.12: Prediction results of manual berthing maneuver with an imaginary berth D (test-B) using
dynamic models with optimal parameters trained by D (sub) , D (d-sub) and D (sli10×jit10) .

た従来の試験方法を取り入れ，再現性の高い試験手法の検討が必要であると考えられる．

4.4 結言
本章では，使用可能な操縦運動データ量が限られる場合に操縦モデルの推定精度を向上させることを目的に，

ANNを用いた操縦モデルの推定にデータ拡張手法を導入し，模型船の自由航走試験データを利用した検証実
験結果を示した．検証実験では，ランダム操船試験で計測された操縦運動データ集合を用いて，スライシング
とジッタリングよって拡張された複数の訓練データ集合に対して操縦モデルの推定を行った．その結果，以下
の点が判明した．
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• 操縦運動データ量が限られている場合，スライシングとジッタリングにより操縦モデルの予測精度が改
善された．

• スライシングとジッタリングは計測された操縦運動データに類似しないデータを合成することができな
いため，元のデータセットの外挿領域における操縦モデルの予測精度を改善することはできなかった．

そのため，本実験では，スライシングとジッタリングは操縦モデルの推定精度を向上させる可能性のある有効
なデータ拡張手法であることが分かった．一方で，ランダム操船を離着桟制御のための操縦モデルの同定に用
いる場合，予測精度を向上させるためにはデータの分布が広く分散していて，外挿が少ないデータを用意する
ことが好ましいことがわかった．
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第 5章

強化学習を用いた軌道追従制御方策の獲
得手法

本章では，船舶の軌道追従のための強化学習を用いた制御方策の獲得手法について詳述する．本手法では，
モデルフリー強化学習アルゴリズムにより制御方策の訓練を実施するが，物理環境における試行錯誤を避ける
ため，船舶の操縦運動のシミュレーション環境をあらかじめ構築する．この操縦シミュレーション環境は，主
に，操縦モデル，アクチュエータ応答モデル，風の確率過程モデルで構成される．
本節では，5.1 節で強化学習の概要を簡単に述べた後，5.2 節で軌道追従制御方策の獲得手法について述べ

る．また，5.3 節では訓練された軌道追従制御方策を未知の環境への適用方法について述べる．5.4 節及び5.5
節で提案手法の実験結果を示す．最後に，3.5 節では本章の結言について述べる．

5.1 強化学習の概要
まず，強化学習に関して簡単に説明する．強化学習 [88]は，エージェントが環境と相互作用し，試行錯誤を

通じて累積報酬を最大化する行動方針を学習するフレームワークである．多くの強化学習アルゴリズムは環境
の動的システムがマルコフ決定過程 (Markov Decision Process: MDP)としてモデル化されることを仮定し
ている．MDPは以下の要素で構成される確率制御過程である．

• 状態集合 S: 環境がとり得る状態の集合を意味する．エージェントは環境からある離散時間ステップ 𝑡𝑘

の 𝒔𝑘 ∈ S を観測する．
• 行動集合 A: エージェントが選択できる行動の集合を意味する．エージェントは，通常，観測された状
態変数 𝒔𝑘 に基づいて行動変数 𝒂𝑘 ∈ A を選択する．

• 状態遷移確率 𝑝 (𝒔𝑘+1 | 𝒔𝑘 , 𝒂𝑘): エージェントが状態 𝒔𝑘 で行動 𝒂𝑘 を選択した場合，次に状態 𝒔𝑘+1 に遷
移する確率密度を表す．この状態遷移確率モデルは環境の動的システムによって決まる．

• 報酬関数 𝑟 (𝒔𝑘+1, 𝒔𝑘 , 𝒂𝑘): エージェントが状態 𝒔𝑘 で行動 𝒂𝑘 を選択したことで状態 𝒔𝑘+1 に遷移した結
果，得られる報酬を表す．

• 𝛾 ∈ [0, 1]: 割引率は将来の報酬にどの程度の重みを与えるかを決定するパラメータを意味する．𝛾 が 1
に近いほど，遠い将来の報酬を重視し，𝛾 が 0に近いほど現在の報酬を重視する．

本研究では，決定論的な制御方策関数を用いて行動変数が決定され，この制御方策関数を 𝝁と表記する．つ



5.2 軌道追従制御方策の獲得手法 57

まり，行動変数ベクトル 𝒂 は
𝒂 = 𝝁 (𝒔) (5.1.1)

と表される．状態変数ベクトル 𝒔 の初期分布 𝑝 (𝒔0) が与えられた時，制御方策関数 𝝁 によって得られた一連
の状態変数ベクトル 𝒔および行動変数ベクトル 𝒂 を 𝜏 = (𝒔0, 𝒂0, . . . , 𝒔𝐾−1, 𝒂𝐾−1, 𝒔𝐾 ) と定義すると，一連の変
数 𝜏 が従う分布は

𝜌𝝁 = 𝑝 (𝒔0)
𝐾−1∏
𝑘=1

𝑝 (𝒔𝑘+1 | 𝒔𝑘 , 𝝁 (𝒔𝑘)) (5.1.2)

と定義される．この時，強化学習の目的は，期待割引累積報酬

𝐽𝝁 = 𝐸𝜏∼𝜌𝝁

[
𝐾−1∑
𝑘=1

𝛾𝑘−1𝑟 (𝒔𝑘+1, 𝒔𝑘 , 𝒂𝑘)
]

(5.1.3)

を最大化させる制御方策関数 𝝁を見つけることである．強化学習は，環境と相互作用を通してこの期待割引累
積報酬 𝐽𝝁 を最大化する最適制御方策関数 𝝁★の探索をすることが可能である．
本研究では，最適制御方策関数 𝝁★を見つけるため，アクター・クリティックベースの強化学習アルゴリズ
ムである twin-delayed deep deterministic (TD3) policy gradient algorithm [102] を使用する．アクター・
クリティックベースの強化学習アルゴリズムでは，制御方策関数 𝝁 を表すアクターネットワークと価値関数
を表すクリティックネットワークで構成される．クリティックネットワークは試行錯誤の経験を基にベルマン
方程式の解である価値関数を学習し，アクターネットワークはクリティックネットワークを基に推定された方
策勾配を用いてより多くの報酬を獲得するように改善される．

5.2 軌道追従制御方策の獲得手法
本節では，強化学習を用いた軌道追従制御のための制御方策関数 𝝁の獲得手法について詳述する．本研究で
は，時間 𝑡 でパラメータ化された参照軌道が与えられると仮定する．与えられる参照軌道を 𝒙 (des) (𝑡) と表記
すると，軌道追従制御の目的は与えられた参照軌道 𝒙 (des) (𝑡) に船を追従させることであり，この制御目的を
実現させる制御方策関数 𝝁を強化学習を通して獲得する．ただし，物理環境での強化学習の試行錯誤を回避す
るため，訓練のための操縦シミュレーション環境をあらかじめ構築する．この操縦シミュレーション環境は操
縦モデル，アクチュエータ応答モデル，風の確率過程モデルで構成されるが，操縦モデルは2.3.2 節及び2.4.2
節で述べられたMMGモデルを用いるか，もしくは，操縦運動データ集合があたえられ第 3 章で述べた ANN
を用いたシステム同定アプローチなどを用いて推定される必要がある．

5.2.1 操縦運動のシミュレーション環境
本手法では，物理環境における試行錯誤を避けるため，制御方策関数 𝝁の訓練は操縦シミュレーション環境
で実施される．この操縦シミュレーション環境は，操縦モデル，アクチュエータ応答モデル，風の確率過程モ
デルで構成される．以降では，それぞれのモデルおよびシミュレーション手法について詳述する．

5.2.1.1 操縦モデル
船舶の操縦運動は Eq. (2.2.4)を数値的に解くことによってシミュレートすることが可能である．本論文で

は，Eq. (2.2.4b)は，水槽試験によって係数を求められたMMGモデル，もしくは，システム同定によって推定
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された ANNモデルによって表現される．ただし，操縦モデルはマルコフ特性を持つと仮定され，Eq. (2.2.4b)
の入力変数 𝑿 (−)

𝑁m
，𝑯 (−)

𝑁m
，𝑵 (−)

𝑁m
，𝑼 (−)

𝑁m
，𝑾 (−)

T,𝑁m
，𝑾 (−)

A,𝑁m
はすべて 𝒙，𝜼，𝝂，𝒖，𝒘T，𝒘A に置き換わる．

5.2.1.2 アクチュエータ応答モデル
バウスラスタの回転数や舵角は急激に変化させることはできず，指示値に対して遅れが発生する．本手法で
は，実際の応答特性を考慮して制御方策関数 𝝁 の訓練を実施するため，アクチュエータの応答特性が表すモ
デルが操縦シミュレーション環境へ組み込まれている．本研究では，供試船の応答特性を考慮した結果，舵角，
プロペラ回転数，バウスラスタ回転数の時間変化率の大きさが一定であると仮定した．つまり，アクチュエー
タの状態変数 𝒖のある一つの成分を 𝑦とし，その指示値を 𝑟 と表記すると，応答特性はスロープを持つ階段関
数でモデル化され，

¤𝑦 =

𝐾 (act)
𝑦 for 𝜖 ≤ 𝑦

𝐾 (act)
𝑦 (𝑟 − 𝑦) /𝜖 for − 𝜖 < 𝑟 − 𝑦 < 𝜖

−𝐾 (act)
𝑦 for 𝑦 ≤ −𝜖

(5.2.1)

と表される．ここで，𝐾 (act)
𝑦 は変数 𝑦の時間変化率の大きさを表す定数で，𝜖 は定数である．ここで，スロー

プは数値シミュレーションにおけるアクチュエータ状態変数の振動を回避するために導入されており，𝜖 は数
値シミュレーションのタイムステップに等しい値が使用される．
したがって，制御方策関数 𝝁 はアクチュエータ状態変数ベクトル 𝒖 ∈ R𝑁𝒖 を直接選択するのではなく，そ

の指示値を選択することができる．簡単のために，制御方策関数 𝝁 の行動変数を 𝒂 ∈ R𝑁𝒖 と表記すると，考
慮される応答特性をまとめて

¤𝒖 = 𝒇 (act) (𝒖, 𝒂) (5.2.2)

と表記する．

5.2.1.3 風外乱の確率過程モデル
風は，通常，不規則に変動するため，制御方策関数 𝝁は様々な風状態に対して最適な行動を選択する必要が

ある．そのため，訓練では変動する風を考慮する．風の過程は牧ら [127, 128]によって提案された方法を用い
て生成される．この方法では，風速および風向の過程は 1次元フィルタ方程式{

d𝑈T = 𝛼𝑈
(
𝑈T −𝑈T

)
d𝑡 + 𝜎𝑈d𝑊

d𝜉T = 𝛼𝜉
(
𝜉T − 𝜉T

)
d𝑡 + 𝜎𝜉d𝑊 (5.2.3)

で表されると仮定される．ここで，𝛼𝑈 < 0, 𝛼𝜉 < 0, 𝜎𝑈 , 𝜎𝜉 はフィルター係数，𝑈T および 𝜉T はそれぞれ風速
および風向の平均値，d𝑊 はウィーナー過程の増加分である．風速に関するフィルター係数は日野スペクトラ
ムで近似された風速スペクトルを用いて決定され，風向に関するフィルター係数は桑島らが提案した平均風速
に対する風向変動の標準偏差の回帰式を用いて決定される．フィルター係数の詳細は文献 [127, 128]を参照さ
れたい．

5.2.1.4 離散化とシステムノイズ
連続時間モデルの離散化手法について説明する．本研究では，操縦モデルおよびアクチュエータ応答モデル
は前進オイラー法により離散化され，風外乱の確率過程モデルは，オイラー・丸山法によって離散化される．
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離散化された差分方程式は

𝜼 (𝑡 + Δ𝑡) = 𝜼 (𝑡) + Δ𝑡 · 𝑹 (𝜼 (𝑡)) 𝝂 (𝑡)
𝝂 (𝑡 + Δ𝑡) = 𝝂 (𝑡) + Δ𝑡 · 𝑭′ (𝝂 (𝑡) , 𝒖 (𝑡) ,𝒘T (𝑡)) + 𝜺 (sys)

𝒖 (𝑡 + Δ𝑡) = 𝒖 (𝑡) + Δ𝑡 · 𝒇 (act) (𝒖 (𝑡) , 𝒂 (𝑡))
𝑈T (𝑡 + Δ𝑡) = 𝑈T (𝑡) + Δ𝑡 · 𝛼𝑈

(
𝑈T (𝑡) −𝑈T

)
+ 𝜎𝑈Δ𝑊

𝜉T (𝑡 + Δ𝑡) = 𝜉T (𝑡) + Δ𝑡 · 𝛼𝜉
(
𝜉T (𝑡) − 𝜉T

)
+ 𝜎𝜉Δ𝑊

(5.2.4)

と定義される．ここで，𝜺 (sys) ∼ N
(
0, diag

((
𝜎

(sys)
𝑢

)2
,
(
𝜎

(sys)
𝑣m

)2
,
(
𝜎

(sys)
𝑟

)2
))
で，𝜎 (sys)

𝑢 , 𝜎
(sys)
𝑣m , 𝜎

(sys)
𝑟 はシ

ステムノイズの標準偏差，Δ𝑊 はウィーナー過程の増加分を表し，𝜉 ∼ N(0, 1) とすると Δ𝑊 =
√
Δ𝑡𝜉 である．

また，𝑭′ は Eq. (2.2.4b)と Eq. (2.2.2)の合成関数であることに注意する．

5.2.1.5 観測ノイズ
エージェントは操縦シミュレーション環境から船体の運動学的変数ベクトル 𝒙，アクチュエータ状態変数
ベクトル 𝒖，真風速風向ベクトル 𝒘T を観測し，行動変数ベクトル 𝒂 を決定する．物理環境では，GNSS や
アネモーメータなどの計測機器を通してこれらの変数が観測されるため，観測値には観測誤差が含まれる可
能性が高い．そこで，物理環境でとり得る誤差を操縦シミュレーション環境で再現するため，船体の運動学
的変数ベクトル 𝒙 に関して観測ノイズを考える．具体的には，船体の運動学的変数ベクトル 𝒙 の観測値は
𝜺 (obs) ∼ N

(
0, diag

((
𝜎 (obs)
𝑥0

)2
,
(
𝜎 (obs)
𝑦0

)2
,
(
𝜎 (obs)
𝜓

)2
,
(
𝜎 (obs)
𝑢

)2
,
(
𝜎 (obs)
𝑣m

)2
,
(
𝜎 (obs)
𝑟

)2
))
で表される観測ノイ

ズが付加される．

5.2.2 軌道追従制御問題
軌道追従制御の目的は与えられた参照軌道 𝒙 (des) (𝑡) に船を追従させることであり，この制御目的を実現さ

せる制御方策関数 𝝁を強化学習を通して獲得する．制御方策関数 𝝁は参照軌道 𝒙 (des) (𝑡) および観測可能な船
体の運動学的変数ベクトル 𝒙，アクチュエータ状態変数ベクトル 𝒖，真風速風向ベクトル 𝒘T に関する情報を
基に行動変数を決定する．本手法では，軌道追従制御をあらかじめ決められた条件を満たすまでのエピソディ
ックタスクとして定式化され，訓練時に与えられる参照軌道 𝒙 (des) (𝑡) は自動的に生成される．以降，5.2.2.1
節で制御方策関数 𝝁 の状態変数について，5.2.2.3 節で報酬関数 𝑟 とエピソードの終了条件について，5.2.2.2
節では，訓練時における参照軌道の自動生成手法について詳述する．

5.2.2.1 観測状態変数
エージェントが観測する状態変数について詳述する．エージェントは与えられた参照軌道 𝒙 (des) (𝑡) と操縦

シミュレーション環境から現在時刻で観測された船体の運動学的変数ベクトル 𝒙，アクチュエータ状態変数ベ
クトル 𝒖，真風速風向ベクトル 𝒘T を入力として受け取ることが可能である．軌道追従制御を実現させるため
には，制御方策関数 𝝁への入力変数をこれらの情報から適切に選択する必要がある．以降では，制御方策関数
𝝁へ与える状態変数について詳述する．

(1) 追従誤差
まず，追従誤差に関する変数について述べる．参照軌道 𝒙 (des) (𝑡) は時刻 𝑡 の関数であり，全時刻における

参照軌道 𝒙 (des) (𝑡) を直接制御方策関数 𝝁 へ入力することは難しい．また，参照軌道 𝒙 (des) (𝑡) の姿勢変数成
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分を 𝜼 (des) (𝑡) ∈ R3 と表記すると，参照姿勢変数ベクトル 𝜼 (des) および船体の姿勢変数ベクトル 𝜼 は空間固
定座標 O0 − 𝑥0𝑦0𝑧0 で定義されているため，それぞれの絶対的な位置および角度に関する情報に意味はない．
そのため，参照軌道 𝒙 (des) (𝑡) を直接制御方策関数 𝝁へ入力されない．
本研究では，軌道追従制御の制御目的は現在および未来の追従誤差を最小化することであると言い換えるこ

とができる．そのため，ある時刻 𝑡 の船体の運動学的変数ベクトル 𝒙 と現在時刻 𝑡 から 𝑇 時間先の参照軌道
𝒙 (des) (𝑡) の誤差へ変換された後，制御方策関数 𝝁 へ入力される．ただし，本研究では，船体の速度変数に関
する成分の追従誤差は使用されず，代わりに将来時刻の船体の姿勢変数に関する追従誤差が与えられる．具体
的には，参照軌道 𝒙 (des) (𝑡) の姿勢変数成分を 𝜼 (des) (𝑡) ∈ R3 と表記すると，ある時刻 𝑡 の船体の姿勢変数ベ
クトル 𝜼 と現在時刻 𝑡 から 𝑇 時間先の参照姿勢変数ベクトル 𝜼 (des) の誤差は

𝒆 (des)
𝑇 (𝑡) = 𝑹−1 (𝜼 (𝑡))

(
𝜼 (des) (𝑡 + 𝑇) − 𝜼 (𝑡)

)
(5.2.5)

と定義される．このとき，追従誤差に関する変数は

𝒔 (des) =

((
𝒆 (des)

0

)T
,
(
𝒆 (des)
𝑇1

)T
,
(
𝒆 (des)
𝑇2

)T
, · · · ,

(
𝒆 (des)
𝑇𝑁

)T
)T

∈ R(3(1+𝑁 ) ) (5.2.6)

と定義される．ここで，𝑇1, 𝑇2, · · · , 𝑇𝑁 は制御方策関数 𝝁 に与える参照状態の将来時刻を表す．従って，制御
方策関数 𝝁には有限個の将来時刻点における参照状態との追従誤差が与えられる．

(2) その他の状態変数
船舶の操縦運動は Eq. (2.2.7)で定義されるように船体の運動学的変数ベクトル 𝒙，アクチュエータ状態変

数ベクトル 𝒖 および真風速風向ベクトル 𝒘T に影響を受ける．参照軌道 𝒙 (des) (𝑡) および船体の姿勢変数ベク
トル 𝜼 に関連した状態変数は Eq. (5.2.6)で定義されるが，その他の船舶の操縦運動に影響を与える状態変数
についても制御方策関数 𝝁へ入力される必要がある．従って，本研究では，船体の速度変数ベクトル 𝝂，アク
チュエータ状態変数ベクトル 𝒖 および相対風速風向ベクトル 𝒘A が制御方策関数 𝝁へ入力される．

5.2.2.2 参照軌道生成
軌道追従制御のための制御方策関数 𝝁 を訓練するには参照姿勢変数ベクトル 𝜼 (des) が与えられる必要があ
るが，与えられる参照姿勢変数ベクトル 𝜼 (des) は目的に応じて決定される必要がある．これは，エージェン
トに追従させたい軌道を追従する経験を訓練で積ませることで，目的の制御方策関数 𝝁 を獲得できるためで
ある．
本研究の目的は港内操船の自動化であるため，訓練では港内操船でとり得る軌道を参照軌道として与えられ

る必要がある．対象港湾における港内操船のオペレーションデータを訓練時の参照軌道として使用可能である
かもしれないが，必ずしも十分なデータを用意できるわけではなく，少数の特定の軌道に基づく学習は望まし
くない．そのため，低速操縦運動を含む港内操船でとり得るさまざまな運動軌道を与えるため，訓練では以下
の軌道を与える:

• 定点保持軌道: 𝒙 (des) (𝑡) = (0, 0, 0, 0, 0, 0)T

• ランダムに制御入力が決定された操縦運動軌道: 追従可能な参照姿勢変数ベクトル 𝜼 (des) を生成するた
め，5.2.1 節で述べた操縦シミュレーション環境を用いて，操縦シミュレーションを行う．操縦シミュ
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レーションでは，真風速風向は平均風速風向に固定され，行動変数ベクトル 𝒂 は

𝒂 (𝑡) =
𝐾−1∑
𝑘=0

1𝑡∈[𝑡𝑘 ,𝑡𝑘+1 ) 𝒂
(rand)
𝑘 (5.2.7)

で与えられた．ここで 𝒂 (rand)
𝑘 はランダムに決定される変数である．また，船体の運動学的変数ベクト

ル 𝒙，アクチュエータ状態変数ベクトル 𝒖 および真風速風向ベクトル 𝒘T の初期値は，目的の港内操船
で取りうる状態変数を中心にランダムに選択される．もしくは，与えられた操縦運動データ集合の中か
らランダムに選択される．

ただし，港内操船でとり得るさまざまな運動軌道を生成するためには，𝒂 (rand)
𝑘 をアクチュエータの種類に応

じて適切に決定する必要がある．本論文では，5.4 節及び5.5 節で VecTwin舵システムとバウスラスタが搭載
されている供試船２を用いた検証実験の結果を示す．そのため，供試船 2のための 𝒂 (rand)

𝑘 の決定方法例につ
いて述べる．

(1) 供試船 2のためのランダム制御入力の決定方法例
供試船 2には，2.4節で述べたように，VecTwin舵システムとバウスラスタが搭載されている．VecTwin舵シ
ステムは左右の舵角に応じてさまざまな推力を発生させられるが，プロペラと舵の推力が釣り合い，全体的な
合力が見かけ上ゼロになる舵角が存在する．この舵角はホバー角と呼ばれ，この舵角は (𝛿P, 𝛿S) ' (−75◦, 75◦)
である．よって，VecTwin舵システムで低速を中心にした操縦運動を実現するためには，このホバー角を中心
に左右の舵角を分布させる必要がある．
そのため，5.4 節に述べる検証実験では 𝒂 (rand)

𝑘 の 𝛿P 成分は N
(
−75◦, (30◦)2)，𝛿S 成分は N

(
75◦, (30◦)2)

に従って生成され，𝑛BT 成分は [−30, 30] における一様分布に従って生成された．
また，5.5 節に述べる検証実験では，𝒂 (rand)

𝑘 は多変量ガウス分布 N
(
𝝁 (act) ,𝚺 (act)

)
に従って生成され，平

均ベクトル 𝝁 (act) および共分散行列 𝚺 (act) は

𝝁 (act) = ©­«
−80
80
0.0

ª®¬ , 𝚺 (act) =


302 0.0 0.0
0.0 302 0.0
0.0 0.0 152

 (5.2.8)

とされた．実験では，プロペラ回転数は 𝑛P = 10.0 (rps) で固定されていることに注意する．
港内操船は前進速度が十分大きい標準的な操縦運動も含まれるため，左右の舵角がゼロに近い領域で分布す
る参照軌道の生成もまた生成される必要がある．そのため，5.5 節に述べる検証実験では，Eq. (5.2.8)で定義
される平均ベクトル 𝝁 (act) および共分散行列 𝚺 (act) の値の他に

𝝁 (act) = ©­«
−40
40
0.0

ª®¬ , 𝚺 (act) =


302 −0.3 × 302 0

−0.3 × 302 302 0
0 0 102

 (5.2.9)

および

𝝁 (act) = ©­«
0.0
0.0
0.0

ª®¬ , 𝚺 (act) =


152 0.75 × 152 0.0

0.75 × 152 152 0.0
0.0 0.0 1

 (5.2.10)

が用いられた．
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5.2.2.3 報酬関数と終了条件
次に，報酬関数 𝑟 とエピソードの終了条件について説明する．すでに述べたように，強化学習の目的は追従
誤差を最小化する制御方策関数 𝝁を獲得することである．よって，報酬関数 𝑟 は追従誤差が小さいほど大きな
報酬が与えられるように設計される必要がある．本研究では，報酬関数 𝑟 は正の定数から追従誤差ペナルティ
を引くことで定義される．検証実験で用いられた詳細な定義はそれぞれ5.4.1 節及び5.5.2 節で示すが，ここで
は，使用される追従誤差ペナルティについて述べる．また，実用的に発生する可能性の高い状態 (追従誤差)を
中心に訓練を実施するため，エピソードを終了させる追従誤差の閾値を設定する．

(1) 追従誤差ペナルティ
まず，追従誤差に関する報酬のペナルティについて述べる．追従姿勢誤差ベクトル 𝒆 (des)

0 は Eq. (5.2.5)で
定義されるが，報酬のペナルティとするにはスカラーへ変換される必要がある．この変換方法として，L2ノ
ルム




𝒆 (des)
0




やある行列𝑾 ∈ R3×3 で重み付けされた L2ノルム



𝒆 (des)

0





𝑾
などが考えられる．座標と回頭角

は単位が異なるため，重みの調整が可能な重み付き L2ノルムがより適切ではあるものの，適切な重みの調整
には試行錯誤が必要である．特に，回頭角誤差を過剰に重視するように重みが設定されている場合，一時的に
回頭角誤差を大きく取ることで位置座標誤差が効率的に減少させる手段が選ばれなくなる可能性があり，結果
として位置座標誤差の減少が遅れてしまう可能性がある．
そこで，本研究では，船体長さに応じた追従誤差を表すスカラー指標として，Fig. 5.1に示すような船首お

よび船尾位置におけるユークリッド距離誤差を導入する．ある船体の姿勢変数ベクトル 𝜼に対する船首船尾位
置はそれぞれ 

𝒑 (bow) (𝜼) =
[
1 0 0
0 1 0

] ©­«𝜼 + 𝑹 (𝜼) ©­«
𝐿ship/2

0
0

ª®¬ª®¬
𝒑 (stn) (𝜼) =

[
1 0 0
0 1 0

] ©­«𝜼 + 𝑹 (𝜼) ©­«
𝐿ship/2

0
0

ª®¬ª®¬
(5.2.11)

と表される．ここで，𝐿ship は船体長さを表す．この時，船首と船尾におけるユークリッド距離誤差はそれぞれ
𝑒 (bow) (𝑡) =




 𝒑 (bow)
(
𝜼 (des) (𝑡)

)
− 𝒑 (bow) (𝜼 (𝑡))





𝑒 (stn) (𝑡) =




 𝒑 (stn)
(
𝜼 (des) (𝑡)

)
− 𝒑 (stn) (𝜼 (𝑡))




 (5.2.12)

と定義される．本研究ではこれらのユークリッド距離誤差が追従誤差ペナルティとして使用される．
𝑒 (bow) および 𝑒 (stn) の 𝒆 (des)

0 に関する変動を示す．𝒆 (des)
0 の要素をそれぞれ 𝑥, 𝑦, 𝜓 と表記したとき，位置

座標誤差
√
𝑥2 + 𝑦2/𝐿ship と回頭角誤差 𝜓 に関する 𝑒 (bow) および 𝑒 (stn) の平均値の変化を Fig. 5.2に示す．こ

の結果から，位置座標誤差が船体長さに対して十分大きい場合，回頭角誤差に対して 𝑒 (bow) および 𝑒 (stn) の
平均値は大きく変化しないことがわかる．一方，位置座標誤差が船体長さに対して小さい場合，𝑒 (bow) および
𝑒 (stn) の平均値は回頭角誤差に大きく依存することが分かる．

(2) 終了条件
エピソードを終了させる追従誤差の閾値について述べる．この閾値は一定以上の追従誤差を持つ状態におけ
る訓練を除外させることができ，エージェントが遭遇する可能性の高い状態を中心に訓練を実施するため，こ
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e(bow)

e(stn)

Current Pose

Desired Pose

Fig. 5.1: Euclidean distance error at the bow and stern positions.

(a) 0 ≤
√
𝑥2 + 𝑦2/𝐿ship ≤ 0.1: The

area where the positional error is
small in relation to ship length.

(b) 0 ≤
√
𝑥2 + 𝑦2/𝐿ship ≤ 1: The

area where the positional error is
close to ship length.

(c) 0 ≤
√
𝑥2 + 𝑦2/𝐿ship ≤ 10: The

area where the positional error is
large in relation to ship length.

Fig. 5.2: Mean Euclidean distance of tracking errors at bow and stern positions
(
𝑒 (bow) + 𝑒 (stn) ) /2.

の閾値が設定される．また，より多くの累積報酬の獲得のため，より長い時間の間，常に追従誤差を小さく保
つような制御方策関数 𝝁 を獲得するため，閾値はエピソード時間に応じて減少するように設計される．よっ
て，𝑒 (bow) および 𝑒 (stn) の閾値を 𝑒 (tol) と表記すると，閾値 𝑒 (tol) はエピソード時間 𝑡 を用いて

𝑒 (tol) (𝑡) =
(
𝑒 (tol)

0 − 𝑒 (tol)
∞

)
exp (−𝜆𝑒𝑡) + 𝑒 (tol)

∞ (5.2.13)

と定義される．ここで，𝑒 (tol)
0 , 𝑒 (tol)

∞ , 𝜆𝑒 はそれぞれ，上限値の初期値，終端値，時間減少率を表す定数である．
従って，𝑒 (bow) および 𝑒 (stn) が閾値 𝑒 (tol) より大きくなると，エピソードが終了され，それ以降の時刻では報
酬が与えられない．

5.2.2.4 アクターネットワーク構造
本研究では TD3を用いて最適制御方策関数 𝝁★ の探索が行われる．この手法では，制御方策関数 𝝁 が順伝
播型ニューラルネットワークによって表現されるが，この順伝播型ニューラルネットワークは全ての行動変数
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Fig. 5.3: Threshold for tracking error that decreases with episode time.

𝒂 ∈ U を表現可能である必要がある．そのため，𝑁𝒖 次元へ変換された出力層の活性化関数にはシグモイド関
数が用いられ，その後，

𝑎𝑖 = (𝑢𝑖 − ¯
𝑢𝑖) 𝑦𝑖 + ¯

𝑢𝑖 for 𝑖 = 1, . . . , 𝑁𝒖 (5.2.14)

により線形変換される．ここで，𝑎𝑖 および 𝑦𝑖 はそれぞれ 𝑖 番目成分の行動変数および順伝播型ニューラルネ
ットワークの出力変数である．

5.2.3 静的障害物の考慮
港湾内での船舶運航は，通常の航行に比べて複雑な環境にあり，周囲には静的な障害物が多数存在する．特
に，離着桟操船では，港内の岸壁や桟橋，係留設備などの固定された障害物との距離が小さくなるが，環境外
乱下でそれらの障害物との衝突を避けるように制御されることが必要不可欠である．通常，軌道追従制御のた
めに与えられる参照軌道 𝒙 (des) (𝑡) には空間制約が考慮されているため，少なくとも静的障害物との衝突は発
生しない．しかし，離着桟操船のように障害物との距離が小さい操船のための参照軌道 𝒙 (des) (𝑡) が与えられ
た場合，少しの追従誤差が障害物との衝突を引き起こす可能性がある．従って，船舶が目標地点へ安全に到達
するためには，軌道追従制御でもまた障害物を考慮した上で適切に操船制御される必要がある．具体的には，
実環境ではモデル化誤差や未知外乱影響により追従誤差を無くすことは不可能であるが，少なくとも追従誤差
により引き起こされる障害物との衝突を回避することが求められる．そこで，本研究では，モデル化誤差や未
知外乱の影響により，追従誤差の発生を避けられない場合であったとしても，障害物との衝突の可能性の高く
なる追従誤差は避ける軌道追従制御のための制御方策関数 𝝁を獲得手法を提案する．
ここで，静的障害物の位置情報は観測可能であると仮定され，静的障害物の形状は 𝑥0𝑦0 平面における複数

の多角形で表現されるとする．このとき，ある多角形領域集合は

𝑃 =

{
𝒑 ∈ R2 | 𝒑 = 𝜆1𝒗1 + 𝜆2𝒗2 + · · · + 𝜆𝑁𝑣𝒗𝑁𝑣 ,

𝑁𝑣∑
𝑖=1

𝜆𝑖 = 1, 𝒗𝑖 ∈ R2, 𝜆𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑁𝑣

}
(5.2.15)
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と定義される．ここで，𝒗𝑖 ∈ R2 は多角形のある頂点である．そして，全ての障害物領域は

O =
𝑁𝑃⋃
𝑖=1

𝑃𝑖 (5.2.16)

と定義される．ここで，𝑃𝑖 はある多角形領域集合を表し，𝑁𝑃 は多角形の総数を表す．この静的障害物領域集
合 O があらかじめ与えられるものと仮定される．

5.2.3.1 観測状態変数
静的障害物に関して，エージェントが観測する変数について詳述する．エージェントは静的障害物領域集合

O が観測可能であると仮定されるが，静的障害物領域集合 O は次元が大きいため，制御方策関数 𝝁 の入力変
数には適していない．そこで，参照姿勢変数ベクトル 𝜼 (des) から最も近い障害物の位置座標と船体位置座標の
誤差を静的障害物領域集合 O と船体との位置関係に関する特徴量として用いる．ここで，ある時刻 𝑡 において
参照姿勢変数ベクトル 𝜼 (des) から最も近い障害物の点は

𝒐 (near) (𝑡) = argmin
𝒐∈O





𝒐 −
[
1 0 0
0 1 0

]
𝜼 (des) (𝑡)





 (5.2.17)

と定義される．このとき，時刻 𝑡 の 𝑇 時間先の参照姿勢変数ベクトル 𝜼 (des) から最も近い障害物点と船体位置
の誤差は

𝒆 (obs)
𝑇 (𝑡) =

[
cos𝜓 (𝑡) sin𝜓 (𝑡)
− sin𝜓 (𝑡) cos𝜓 (𝑡)

] (
𝒐 (near) (𝑡 + 𝑇) −

[
1 0 0
0 1 0

]
𝜼 (𝑡)

)
(5.2.18)

と定義される．よって，静的障害物領域集合 O に関する制御方策関数 𝝁の入力変数を

𝒔 (obs) =

((
𝒆 (obs)

0

)T
,
(
𝒆 (obs)
𝑇1

)T
,
(
𝒆 (obs)
𝑇2

)T
, · · · ,

(
𝒆 (obs)
𝑇𝑁

)T
)T

∈ R2(1+𝑁 ) (5.2.19)

と定義する．ここで，𝑇1, 𝑇2, · · · , 𝑇𝑁 は参照姿勢変数ベクトル 𝜼 (des) の将来時刻である．

5.2.3.2 静的障害物生成
制御方策関数 𝝁 を訓練するためには，参照姿勢変数ベクトル 𝜼 (des) と同様に静的障害物領域集合 O が与え

られる必要がある．ただし，参照姿勢変数ベクトル 𝜼 (des) は5.2.2.2 節で述べた手法によって自動的に生成さ
れるため，静的障害物領域集合 O は生成された参照姿勢変数ベクトル 𝜼 (des) と衝突が発生しないように生成
される必要がある．ここでは，生成された参照姿勢変数ベクトル 𝜼 (des) に応じた静的障害物領域集合 O の生
成手法について述べる．この手法で生成される障害物は船舶長さよりも長い線分のみで構成される．具体的に，
以下の手順により障害物は生成される．

• まず，𝑥0𝑦0 平面に格子点を設定する．ただし，格子点の間隔は 2𝐿ship，参照姿勢変数ベクトル 𝜼 (des)

の初期位置座標が格子点の一つとなるように設定される．生成される擬似障害物と目的の軌道との距離
は格子点の間隔によって制御することができるが，環境が厳しくなりすぎないように格子点の間隔を
2𝐿ship とする．

• 次に，障害物が存在しない領域を参照姿勢変数ベクトル 𝜼 (des) に基づいて格子点で囲まれた領域の中か
ら選択する．ここでは，船体の擬似的な形状が長軸半径が 0.75𝐿ship，短軸半径が 𝐵ship の楕円で表現
されると仮定し，参照姿勢変数ベクトル 𝜼 (des) にしたがって船体が運動した場合に，船体が通過する領
域を障害物が存在しない領域とする．また，初期追従誤差に起因する衝突を避けるため，参照姿勢変数
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Fig. 5.4: The generation method of static pseudo-
obstacles.

Fig. 5.5: An example of a desired trajectory with
the static pseudo-obstacles used in training.

ベクトル 𝜼 (des) の初期位置座標を中心とする半径 1.9𝐿ship の円形領域においても障害物が存在しない
領域とする．

この生成手順の概略図を Fig. 5.4に示す．また，この手法によって得られた静的障害物領域集合 O の例を
Fig. 5.5に示す．

5.2.3.3 報酬関数と終了条件
次に，報酬関数 𝑟 における静的障害物に関するペナルティとエピソードの終了条件について説明する．軌道
追従制御のための制御方策関数 𝝁 に静的障害物を考慮させる目的は，追従誤差の発生を避けられない場合で
あったとしても障害物との衝突を引き起こす可能性のある追従誤差を優先的に回避する制御方策関数 𝝁 を獲
得するためである．よって，障害物との衝突につながる可能性のある追従誤差に応じた報酬のペナルティを定
義する．

(1) 衝突につながる追従誤差ペナルティ
まず，Fig. 5.6に示すような仮想の障害物線を導入する．この線は 𝒐 (near) を通り，参照姿勢変数ベクトル

𝜼 (des) で表される船体と並行な直線である．また，この仮想の障害物線に直行する 𝑥0𝑦0 平面の法線ベクトル
を 𝒏 ∈ R2 と表記すると，この法線ベクトルは[

𝒏 (𝑡)
0

]
=

[
𝒑 (bow) (

𝜼 (des) (𝑡)
)
− 𝒑 (stn) (

𝜼 (des) (𝑡)
)

0

]
× ©­«

0
0
1

ª®¬ , (5.2.20)

と表される．ここで，×は外積を表していることに注意する．このとき，仮想の障害物線と参照姿勢変数ベク
トル 𝜼 (des) の距離は

𝑙 (des) (𝑡) =

��������
𝒏 (𝑡) ·

( [
1 0 0
0 1 0

]
𝜼 (des) (𝑡) − 𝒐 (near) (𝑡)

)
‖𝒏 (𝑡)‖

�������� (5.2.21)
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Fig. 5.6: Length between ship and static obstacle.

と表される．また，仮想の障害物線と船首および船尾の距離は
𝑙 (bow) (𝑡) =

�����𝒏 (𝑡) ·
(
𝒑 (bow) (𝑡) − 𝒐 (near) (𝑡)

)
‖𝒏 (𝑡)‖

�����
𝑙 (stn) (𝑡) =

�����𝒏 (𝑡) ·
(
𝒑 (stn) (𝑡) − 𝒐 (near) (𝑡)

)
‖𝒏 (𝑡)‖

�����
(5.2.22)

と表される．よって，障害物との衝突につながる可能性のある追従誤差の尺度は
𝑐 (bow) (𝑡) = max

{
0, 𝑙

(des) (𝑡) − 𝑙 (bow) (𝑡)
𝑙 (des) (𝑡)

}
𝑐 (stn) (𝑡) = max

{
0, 𝑙

(des) (𝑡) − 𝑙 (stn) (𝑡)
𝑙 (des) (𝑡)

} (5.2.23)

と定義される．本研究ではこれらの尺度が衝突につながる可能性のある追従誤差ペナルティとして使用される．

(2) 終了条件
エピソードを終了させる追従誤差の閾値について述べる．エピソードは障害物との衝突が発生するか，もし
くは，𝑐 (bow) および 𝑐 (stn) が閾値を超えた場合に終了させる．ただし，閾値はエピソード時間に応じて減少
するように設計される．𝑐 (bow) および 𝑐 (stn) の閾値を 𝑐 (tol) と表記すると，エピソード時間 𝑡 を用いて閾値
𝑐 (tol) は

𝑐 (tol) (𝑡) =
(
𝑐 (tol)

0 − 𝑐 (tol)
∞

)
exp (−𝜆𝑐𝑡) + 𝑐 (tol)

∞ , (5.2.24)
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と定義される．ここで，𝑐 (tol)
0 , 𝑐 (tol)

∞ , 𝜆𝑐 はそれぞれ，上限値の初期値，終端値，時間減少率を表す定数である．
従って，𝑐 (bow) および 𝑐 (stn) が閾値 𝑐 (tol) より大きくなると，エピソードが終了され，それ以降の時刻では報
酬が与えられない．

5.3 未知の参照軌道および静的障害物への適用
5.2 節では，強化学習を用いた軌道追従制御のための制御方策の獲得手法について述べた．獲得された最適

制御方策関数 𝝁★は順伝播型ニューラルネットワークによって表現されている．そのため，訓練で経験しなか
った未知の状態変数ベクトル 𝒔 に遭遇すると最適制御方策関数 𝝁★の制御性能が低下する可能性がある．本節
では，未知の参照軌道および静的障害物が与えられた場合であって，訓練で経験したものに近い状態変数ベク
トル 𝒔を最適制御方策関数 𝝁★へ与えるための工夫について詳述する．

5.3.1 参照状態の選択方法
最適制御方策関数 𝝁★は参照姿勢変数ベクトル 𝜼 (des) を追従するように訓練されているが，必ずしも追従誤

差を吸収可能であるとは限らない．例えば，外乱による力が船舶が生み出せる推力より大きい場合，訓練で経
験しないような大きな追従誤差が発生してしまう可能性がある．このような状況では，最適制御方策関数 𝝁★

には未知の状態変数ベクトル 𝒔 が入力され，最適制御方策関数 𝝁★の制御性能が低下する可能性がある．した
がって，本研究では，制御性能低下の可能性を軽減するため，参照姿勢変数ベクトル 𝜼 (des) は時刻 𝑡 によって
決定せず，船体の姿勢変数ベクトル 𝜼に最も近い状態を時刻 𝑡 の参照姿勢変数ベクトル 𝜼 (des) を常に選択する．
ある離散時間ステップ 𝑡𝑘 における船体の姿勢変数ベクトル 𝜼 に最も近い参照姿勢変数ベクトル 𝜼 (des) の時
刻を 𝜏𝑘 と表記すると，𝜏𝑘 は

𝜏𝑘 = argmin
𝜏𝑘−1<𝜏<𝜏𝑘−1+𝑇 (des)




𝜼 (des) (𝜏) − 𝜼 (𝑡𝑘)



2

𝑊
(5.3.1)

と定義される．ただし，𝑇 (des) = 1.0 (s) で，𝑊 = diag (1, 1, 0) とし，回頭角の誤差は無視する．このとき，
Eq. (5.2.5)は

𝒆 (des)
𝑇 (𝑡𝑘) = 𝑹−1 (𝜼 (𝑡𝑘))

(
𝜼 (des) (𝜏𝑘 + 𝑇) − 𝜼 (𝑡𝑘)

)
(5.3.2)

と再定義される．従って，最適制御方策関数 𝝁★の入力変数は Eq. (5.3.2)で求められた𝑇 時間先の追従姿勢誤
差ベクトル𝒆 (des)

𝑇 によって構成される．

5.3.2 擬似障害物の生成
最適制御方策関数 𝝁★は5.2.3.2 節で述べた手法で生成された障害物に対して訓練されている．よって，訓練

では𝑇 時間先の参照姿勢変数ベクトル 𝜼 (des) から最も近い障害物点との位置誤差ベクトル𝒆 (obs)
𝑇 のノルムは大

きくとも 2𝐿ship 程度の値であるが，与えられる静的障害物領域集合 O に依るがより大きな値が入力される可
能性がある．そのため，本研究では，制御性能低下の可能性を軽減するため，与えられる静的障害物領域集合
O に加えて5.2.3.2 節で述べた手法で生成された擬似障害物を考慮した．ただし，5.2.3.2 節で述べた手法を直
接使用すると，最適制御方策関数 𝝁★の制御性能に影響を与える擬似障害物を生成する可能性がある．そのた
め，障害物が存在しない領域を選択するために用いられる船体の擬似的な形状を半径が 1.9𝐿ship の円に変更
する．また，ここで述べた手法により生成された擬似障害物の例を Fig. 5.7に示す．
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Fig. 5.7: A sample of the generated pseudo-obstacles in the target harbor.

5.4 MMGモデルを用いた検証実験
本節では，5.2 節で述べた軌道追従制御方策の訓練手法の有効性を示すため，MMGモデルで構成される操

縦シミュレーション環境を用いて軌道追従制御方策を獲得し，シミュレーションおよび模型試験における与え
られた着桟操船軌道の追従実験結果を示す．2.4 節で述べた供試船２を対象船舶とした．ただし，プロペラ回
転数が 𝑛P = 10.0 (rps) で固定された．使用されたMMGモデルはの詳細は2.3.2 節を参照されたい．ここで
示される内容は，自著論文３ [104]で示された内容と同様である．以降，5.4.1 節で軌道追従制御方策の訓練結
果について，5.4.2 節で与えられる着桟操船軌道について，5.4.3 節で与えられた着桟操船軌道の追従実験結果
について示す．

5.4.1 追従制御方策の訓練結果
本実験では，静的障害物領域集合 O を考慮しない制御方策関数 𝝁 と考慮した制御方策関数 𝝁 の訓練を実施
した．ここでは，前者を Ctrl-w/o-OBST，後者を Ctrl-w/-OBSTと表記する．静的障害物領域集合 O を考慮
するかどうかによって，それぞれ使用された状態変数ベクトル 𝒔および報酬関数 𝑟 が異なる．Ctrl-w/o-OBST
では，状態変数ベクトル 𝒔は以下のように定義された．

𝒔 ≡
((
𝒔 (des)

)T
, 𝝂T, 𝒖T

)T
, (5.4.1)

また，報酬関数 𝑟 は以下のように定義された．

𝑟 (𝒔𝑘+1, 𝒔𝑘 , 𝒂𝑘) ≡ 2 − 𝑒 (bow) (𝑡𝑘) + 𝑒 (stn) (𝑡𝑘)
𝑒 (tol) (𝑡𝑘)

− 𝜆
𝑁𝒖∑
𝑖=1

(
𝑎𝑖 − 𝑢c,𝑖
𝑢std,𝑖

)2
, (5.4.2)

一方で Ctrl-w/-OBSTでは，状態変数ベクトル 𝒔は以下のように定義された．

𝒔 ≡
((
𝒔 (des)

)T
,
(
𝒔 (obs)

)T
, 𝝂T, 𝒖T

)T
, (5.4.3)
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Table 5.1: Hyperparameters for Ctrl-w/o-OBST and Ctrl-w/-OBST.

Δ𝑡 = 0.1 (s) 𝜎 (obs)
𝑥0 = 0.03 (m) 𝑒 (tol)

0 = 2𝐿ship (m) 𝑢c,1 = −75 (deg.)
𝑡𝑘+1 − 𝑡𝑘 = 5.0 (s) 𝜎 (obs)

𝑦0 = 0.03 (m) 𝑒 (tol)
∞ = 𝐵ship/2 (m) 𝑢c,2 = 75 (deg.)

𝛾 = 0.99 𝜎 (obs)
𝜓 = 0.2 (deg.) 𝜆𝑒 = (log 2)/50 𝑢c,3 = 0.0 (deg.)

𝜆 = 1/300 𝜎 (obs)
𝑢 = 0.02 (m/s) 𝑐 (tol)

0 = 1.0 𝑢std,1 = 110 (deg.)
𝑇1 = 5.0 (s) 𝜎 (obs)

𝑣m = 0.02 (m/s) 𝑐 (tol)
∞ = 0.5 𝑢std,2 = 110 (deg.)

𝑇2 = 10.0 (s) 𝜎 (obs)
𝑟 = 0.2 (deg./s) 𝜆𝑐 = (log 2)/50 𝑢std,3 = 30.0 (deg.)

𝑇3 = 20.0 (s) 𝜎
(sys)
𝑢 = 1.0−4 (m/s)

𝑇4 = 40.0 (s) 𝜎
(sys)
𝑣m = 1.0−4 (m/s)
𝜎

(sys)
𝑟 = 1.0−3 (deg./s)

また，報酬関数 𝑟 は以下のように定義された．

𝑟 (𝒔𝑘+1, 𝒔𝑘 , 𝒂𝑘) ≡ 4 − 𝑒 (bow) (𝑡𝑘) + 𝑒 (stn) (𝑡𝑘)
𝑒 (tol) (𝑡𝑘)

− 𝑐 (bow) (𝑡𝑘) + 𝑐 (stn) (𝑡𝑘)
𝑐 (tol) (𝑡𝑘)

− 𝜆
𝑁𝒖∑
𝑖=1

(
𝑎𝑖 − 𝑢c,𝑖
𝑢std,𝑖

)2
, (5.4.4)

また，訓練で用いられたハイパーパラメータを Table 5.1に，操縦シミュレーション環境の初期状態変数の決
定方法を Table 5.2に示す．ここで，𝑒 (tol)

0 の値は，初期追従誤差のほぼ 2倍に設定されている．また，𝜆𝑒 と
𝜆𝑐 の値は，50 秒後に許容範囲が半分になるように設定した．さらに，TD3 のハイパーパラメータは，バッ
チサイズは 512，他は文献 [102]の Table 3の値が使用され，アクターネットワークとクリティックネットワ
ークの構造を Table 5.3に示す．訓練過程に含まれるランダム性が訓練結果に与える影響を確認するため，訓
練は Ctrl-w/-OBSTと Ctrl-w/o-OBSTのそれぞれ 5回ずつ実施した．訓練時間はシミュレーション時間で
3.0 × 107 秒である．
本実験では，学習中に取得した全ての NNのパラメータを保存し，それぞれのパラメータについて評価を行

った．評価では，学習エピソードで使用したのと同じ環境で 20エピソードをシミュレーションし，平均累積報
酬を算出した．5つの学習に対する平均累積報酬を Fig. 5.8に示す．この結果から，最適制御方策関数 𝝁★ は
訓練に含まれるランダム性に大きく依存しないことがわかる．そこで，5つの訓練の中で最も高い累積報酬を
得たパラメータが，最も適切な方法として選択された．Ctrl-w/-OBSTと Ctrl-w/o-OBSTの累積報酬は，報
酬関数 𝑟 が異なるため，直接比較に意味はないことに注意する．

5.4.2 着桟操船の軌道計画
軌道追従制御方策に与える着桟操船軌道について述べる．着桟操船の参照軌道は宮内ら [78]によって提案

された着桟操船の軌道計画手法に従って生成された．このアルゴリズムでは，着桟操船の軌道計画は時間最小
化問題としてモデル化され，空間制約と終端条件は目的関数に組み込まれている．そして，この数理最適化問
題は CMA-ES [129]を用いて解かれる．
本実験では，4つの異なる終端条件と 11の異なる初期条件を持つ 44の軌道を準備した．使用した初期条件

および終端条件は Table 5.4に示す．終端条件の目標姿勢は，バースから 1.5𝐵ship だけ離れた地点で定義され，
異なるヘディング角を持つ．初期条件の船舶姿勢は，目標姿勢から約 8𝐿ship 離れた地点に設定された．初期
条件の船舶速度は，目標地点に到達する前に十分に減速できる速度として決定された．終端条件の許容値は，
文献 [78]に基づいて決定された．軌道計画では，アクチュエータ指令値の限界値を，制御力の余裕を十分に持
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Table 5.2: Initial state of maneuvering simulation environments.

Item Definition

𝑥 (des)
0 (m) is set to 0.0
𝑦 (des)

0 (m) is set to 0.0
𝜓 (des) (deg.) is set to 0.0
𝑢 (des) (m/s) is given by uniform distribution whose interval is [−0.072, 0.437]
𝑣 (des)
m (m/s) is given by uniform distribution whose interval is [−0.07, 0.07]
𝑟 (des) (deg./s) is given by uniform distribution whose interval is [−0.1, 0.1]
𝑥0 (m) is given by uniform distribution whose interval is [𝑥 (des)

0 − 𝐿ship, 𝑥
(des)
0 + 𝐿ship]

𝑦0 (m) is given by uniform distribution whose interval is [𝑦 (des)
0 − 𝐿ship, 𝑦

(des)
0 + 𝐿ship]

𝜓 (deg.) is given by uniform distribution whose interval is [𝜓 (des) − 10, 𝜓 (des) + 10]
𝑢 (m/s) is given by uniform distribution whose interval is [𝑢 (des) − 0.036, 𝑢 (des) + 0.036]
𝑣m (m/s) is given by uniform distribution whose interval is [𝑣 (des)

m − 0.007, 𝑣 (des)
m + 0.007]

𝑟 (deg./s) is given by uniform distribution whose interval is [𝑟 (des) − 0.1, 𝑟 (des) + 0.1]
𝑈T (m) is given by Weibull distribution whose shape and scale parameter are 2.0 and 1.0
𝜉T (deg.) is given by uniform distribution in S

Table 5.3: Used Layers for networks. Values in brackets express the inputs into Ctrl-w/o-OBST.

(a) The actor network (policy function).

𝑾𝑙 𝒃𝑙 𝑔

𝒉 (fcl)
1 R256×32 (R256×22) R256 tanh

𝒉 (fcl)
2 R256×256 R256 tanh

𝒉 (fcl)
3 R256×256 R256 tanh

𝒉 (fcl)
4 R3×256 R3 Sigmoid

(b) The critic network (Q function).

𝑾𝑙 𝒃𝑙 𝑔

𝒉 (fcl)
1 R256×35 (R256×25) R256 tanh

𝒉 (fcl)
2 R256×256 R256 tanh

𝒉 (fcl)
3 R256×256 R256 tanh

𝒉 (fcl)
4 R1×256 R1 None

った軌道を生成するために，Table 5.5で示される限界値が用いられた．この考え方は，小瀬ら [61]によって
提案されている．得られた軌道を Fig. 5.9に示す．

5.4.3 着桟操船軌道の追従結果
訓練で得られた最適制御方策関数 𝝁★ を用いた着桟操船起動の追従制御の結果を示す．本実験では，MMG
モデルベースの操縦シミュレーション環境と物理環境での検証を実施した．ただし，検証における意思決定間
隔は 𝑡𝑘+1 − 𝑡𝑘 = 1.0 (s) に変更された．以降，操縦シミュレーション環境の結果を5.4.3.1 節で，物理環境の結
果を5.4.3.2 節で述べる．

5.4.3.1 操縦シミュレーション環境における検証
操縦シミュレーション環境，つまり，訓練時と同じ環境における Ctrl-w/-OBSTおよび Ctrl-w/o-OBSTの
評価結果を示す．操縦シミュレーションは衝突が発生したとき，またはシミュレーションの経過時間が 250秒
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Fig. 5.8: Average cumulative reward of the 20 episodes used for the evaluation.

Table 5.4: Initial and terminal conditions, and tolerances
used in trajectory planning.

Symbol Value

𝒙init,1
(
8𝐿ship,−5.0, 𝜋, 0.291, 0.0, 0.0

)T

𝒙init,2
(
8𝐿ship,−4.0, 𝜋, 0.291, 0.0, 0.0

)T

...
...

𝒙init,10
(
8𝐿ship, 4.0, 𝜋, 0.291, 0.0, 0.0

)T

𝒙init,11
(
8𝐿ship, 5.0, 𝜋, 0.291, 0.0, 0.0

)T

𝒙term,1
(
−3.00,−1.5𝐵ship, 𝜋, 0.0, 0.0, 0.0

)
𝒙term,2

(
−3.00,−1.5𝐵ship, 0.0, 0.0, 0.0, 0.0

)
𝒙term,3

(
1.5𝐵ship, 3.0, 3𝜋/2, 0.0, 0.0, 0.0

)
𝒙term,4

(
1.5𝐵ship, 3.0, 𝜋/2, 0.0, 0.0, 0.0

)
𝒙tol (0.02, 0.02, 0.0175, 0.0141, 0.0141, 0.0094)

Table 5.5: Limitations of the actuator
state variables used in trajectory plan-
ning.

Symbols Range
𝛿P (deg.) [−105,−45]
𝛿S (deg.) [45, 105]
𝑛BT (rps) [−15, 15]

に達したときに終了した．ただし，衝突検出において，船体の形状は長軸半径が 0.75𝐿ship，短軸半径が 𝐵ship

の楕円であると仮定された．

(1) 無風状態𝑈T = 0.0 (m/s) における追従結果
まず，無風状態𝑈T = 0.0 (m/s) における追従結果を Figs. 5.10−5.13に示す．ここで，𝑦0 軸方向の初期誤差
は 3.0 (m) であり，初期条件が 𝒙init,1 の着桟操船軌道が与えられている．

Fig. 5.10を見ると，終端条件が 𝒙term,1 の着桟操船軌道に対して，Ctrl-w/-OBSTおよび Ctrl-w/o-OBST
のいずれも初期誤差を吸収し，参照姿勢変数ベクトル 𝜼 (des) に沿った操船を実現していることがわかる．しか
し，Ctrl-w/o-OBSTを用いたシミュレーションは衝突により終了している．衝突は接岸に最も近い目標姿勢
の付近で発生し，衝突直前に船首方位角の誤差が増加した．船首スラスタは 𝑦0 軸の誤差を低減するために右
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Fig. 5.9: Desired trajectories generated by the trajectory planning procedure.

舷方向の力を発生させ，舵角は船速を低減するために後進力を発生させるように選択された．特に，舵角の上
限と下限（𝛿P = −105 (deg.), 𝛿S = 105 (deg.)）が継続して選択され，𝑦0 軸方向の力を制御しなかった．その
結果，バウスラスタによって発生したモーメントは舵によって相殺されず，方位角の誤差の原因となった．一
方，Ctrl-w/-OBSTでは衝突することなくシミュレーションが終了し，方位角の誤差も小さく抑えられている．

Fig. 5.12から，終端条件が 𝒙term,1 の着桟操船軌道に対して，Ctrl-w/o-OBSTを用いたシミュレーションは
衝突により終了した．この場合，コントローラは動揺とヨー速度をゼロに近づけたが，速度がゼロに達する前に
衝突が発生した．つまり，𝑥0と 𝜓の小さなオーバーシュートが発生し，衝突を引き起こした．したがって，接岸
操船では，追従制御器の性能が高くても，わずかな追従誤差により衝突が発生する．また，Figs. 5.11と5.13を
見ると，いずれの制御器が接岸軌道を追従でき，衝突することなくシミュレーションが終了したことがわかる．

(2) 衝突確率の比較結果
衝突の発生は，与えられる参照姿勢変数ベクトル 𝜼 (des)，真風速風向ベクトル 𝒘T，初期追従誤差によって

異なる可能性がある．これらの変化による影響を示すため，Ctrl-w/-OBSTと Ctrl-w/o-OBSTの着桟制御に
おける衝突確率を比較し，Ctrl-w/-OBSTの有効性を示す．ここで，衝突確率は，シミュレーションの終了前
に静的障害物と衝突する確率として定義される．
衝突確率は，着桟操船軌道の終端条件と平均風速を固定し，初期追従誤差と平均風向を変化させて計算した．
具体的には，100回の着桟操船軌道の追従制御の試行を行い，初期追従誤差と平均風向を変化させ，着桟操船
軌道の 11種類の初期条件を用いて衝突確率を算出した．初期追従誤差および平均風向は Table 5.2に示され
た方法によって確率的に決定され，観測ノイズおよびシステムノイズは Table 5.1に示された通りに決定され
る．サンプルサイズが十分でない可能性があるため，衝突確率は 5回計算し，その平均値と標準偏差を求めた．
衝突確率の平均値と標準偏差は Table 5.6に示す．ここでは，風圧や船舶が停止状態で生成可能な推力の上限
を考慮し，平均風速が 1.5 m/s以下の場合で衝突確率を計算した．

Ctrl-w/o-OBSTを使用した場合，終端条件が 𝜼term,1 または 𝜼term,3 の着桟操船軌道で衝突確率が比較的高
いことが確認された．小さな追従誤差によって衝突が発生し，平均風速が低い場合でも衝突確率が高くなるこ
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(a) Trajectories and actions using Ctrl-w/-OBST

(b) Trajectories and actions using Ctrl-w/o-OBST

(c) The time series of the pose and velocity vector

Fig. 5.10: Tracking results of the berthing trajec-
tory in no wind condition. The terminal condition
of the berthing trajectory is 𝜼term,1.

(a) Trajectories and actions using Ctrl-w/-OBST

(b) Trajectories and actions using Ctrl-w/o-OBST

(c) The time series of the pose and velocity vector

Fig. 5.11: Tracking results of the berthing trajec-
tory in no wind condition. The terminal condition
of the berthing trajectory is 𝜼term,2.

とが Figs. 5.10bと5.12bに示されている．
一方で，Ctrl-w/-OBSTを使用した場合，終端条件が 𝜼term,2 の着桟操船軌道で衝突確率が比較的高いこと

が確認された．この原因の一つとして，旋回時に船首側の衝突検知領域が障害物に接触することが挙げられる
(Fig. 5.14)．これらの着桟操船軌道は，5.2.3.2 節で述べた衝突検知領域を考慮して生成されているため，旋回
時のわずかな追従誤差が衝突を引き起こす．このため，衝突検知楕円の長軸を 0.5𝐿 に変更し，衝突確率を再
計算した．その結果についても Table 5.6に示されており，この条件下では他の終端条件と同様の衝突確率が
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(a) Trajectories and actions using Ctrl-w/-OBST

(b) Trajectories and actions using Ctrl-w/o-OBST

(c) The time series of the pose and velocity vector

Fig. 5.12: Tracking results of the berthing trajec-
tory in no wind condition. The terminal condition
of the berthing trajectory is 𝜼term,3.

(a) Trajectories and actions using Ctrl-w/-OBST

(b) Trajectories and actions using Ctrl-w/o-OBST

(c) The time series of the pose and velocity vector

Fig. 5.13: Tracking results of the berthing trajec-
tory in no wind condition. The terminal condition
of the berthing trajectory is 𝜼term,4.

得られた．
Ctrl-w/-OBST と Ctrl-w/o-OBST の衝突確率を比較すると，終端条件が 𝜼term,2 の場合を除いて，Ctrl-

w/-OBSTの方が衝突確率が低いことが分かる．しかし，𝜼term,2 の終端条件の場合でも，Ctrl-w/-OBSTの
衝突確率は他の終端条件と同程度である．したがって，報酬関数で障害物との衝突につながる追従誤差に対し
てペナルティを与えることで，着桟操船軌道の追従制御における衝突確率を低減できることが示された．
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Fig. 5.14: A tracking result of the berthing trajectory using the Ctrl-w/-OBST. The terminal condition
of the desired trajectory is 𝜼term,2, and mean wind speed 𝑈T is 0.0 (m/s).

Table 5.6: The mean values and standard deviations of the collision probabilities. Probabilities are
expressed as percentages. Note that the second 𝒙term,2 represents the collision probability with the semi-
major axis of the collision detection ellipse changed to 0.5𝐿.

Terminal condition of planned trajectory
𝑈T (m/s) 𝒙term,1 𝒙term,2 𝒙term,3 𝒙term,4 𝒙term,2

Ctrl-w/-OBST 0.0 7.9 ± 1.1 37.8 ± 0.7 0.0 ± 0.0 0.4 ± 0.1 0.1 ± 0.1
0.5 6.7 ± 2.0 39.0 ± 1.8 0.0 ± 0.0 0.3 ± 0.2 0.5 ± 0.2
1.0 20.2 ± 5.2 42.6 ± 4.2 1.1 ± 0.8 3.7 ± 0.9 17.6 ± 3.2
1.5 45.2 ± 7.3 48.7 ± 4.7 38.4 ± 4.1 37.5 ± 2.8 40.9 ± 4.5

Ctrl-w/o-OBST 0.0 94.3 ± 0.6 1.0 ± 0.2 95.4 ± 0.9 3.2 ± 0.4 0.0 ± 0.0
0.5 90.8 ± 1.1 6.4 ± 0.5 92.7 ± 0.7 3.1 ± 0.6 0.0 ± 0.0
1.0 72.6 ± 3.9 30.0 ± 3.4 70.1 ± 3.6 6.4 ± 1.4 2.2 ± 0.5
1.5 63.6 ± 5.6 48.9 ± 4.4 73.2 ± 5.6 52.6 ± 4.1 36.6 ± 4.7

5.4.3.2 模型試験による検証
次に，模型船を用いた物理環境における Ctrl-w/-OBSTの評価結果を示す．実験は2.5 節で述べた実験池で

実施され，2.4.1 節で述べた計測システムによって観測と制御が行われた．
ここでは，終端条件が 𝜼term,1および 𝜼term,2の着桟軌道が使用され，それらに関連する追従結果は Fig. 5.15お

よび Fig. 5.16に示されている．
Fig. 5.15の場合，模型船は 𝑡 = 100 (s) までの接近フェーズで着桟軌道を追従することができた．しかし，

𝑡 = 100 (s) 以降，模型船は軌道から𨓜脱したことが観察された．ただし，Ctrl-w/-OBSTは VecTwin舵によ
る後進力とバウスラスタによる負の横力を生成し，模型船を所望の軌道に戻すことを試みていることがわかる．
したがって，この追従誤差は風速の増加に起因するものと考えられる．
この場合，模型船は衝突せずに着桟地点に到達したが，風向が異なる場合には衝突の確率が増加する可能性
がある．そのため，この風速では着桟操作を中止する決定が必要となる．今後，安全な着桟操作が可能な風速
に関するさらなる研究が求められる．
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(a) Trajectories and the time series of control inputs

(b) The time series of the pose and velocity vector

Fig. 5.15: A result of model experiments tracking
the berthing trajectory using the Ctrl-w/-OBST
algorithm. The terminal condition of the desired
trajectory was 𝜼term,1, and wind conditions were
𝑈T = 1.19 (m/s), 𝜉T = 0.69𝜋 (rad).

(a) Trajectories and the time series of control inputs

(b) The time series of the vessel pose and velocity

Fig. 5.16: A result of model experiments tracking
the berthing trajectory using the Ctrl-w/-OBST
algorithm. The terminal condition of the desired
trajectory was 𝜼term,2, and wind conditions were
𝑈T = 0.60 (m/s), 𝜉T = −0.62𝜋 (rad).

一方，Fig. 5.16では，Ctrl-w/-OBSTが旋回を含む着桟軌道を追従し，着桟地点付近で船速を許容速度 𝒗tol

に近い値まで減少させることができたことが示されている．この場合，風の条件は比較的穏やかであった．

5.5 操縦運動データを用いた実験
本節では，第 3 章で述べた ANNを用いた SI手法を用いて操縦運動データから操縦モデルを推定し，得ら

れた操縦モデルで構成される操縦シミュレーション環境を用いて軌道追従制御方策を獲得し，着桟操船軌道の
追従実験および 4コーナー DP試験の結果を示す．本実験では，MMGモデルを用いた操縦シミュレーション
環境を Target system (TS)としたことに注意する．ここで示される内容は，自著論文３ [104]で示された内
容と同様である．
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Table 5.7: Informations for given dataset D (traj) .

Item Symbol Value

Number of observed trajectories 𝑁 24
The time step of a trajectory Δ𝑡 1.0 (s)
Number of time steps in a trajectory 𝐾 250
Total time of the dataset 6, 000 (s)

本実験で与えられる操縦運動データは TS環境における複数回の操縦シミュレーションで生成された．シミ
ュレーションは停止状態から開始され，5.2.2.2 節で説明された舵角およびバウスラスタ回転数がランダムに
選択される操船方法が用いられた．獲得した操縦運動データ D (traj) に関するパラメータを Table 5.7に示す．
使用されたデータ集合 D の総時間は 6, 000 (s) である．操縦モデルの予測精度が制御方策の性能に与える影
響を確認するため，提案手法で得られた制御方策に加えて，TS環境で直接訓練された軌道追従のための制御
方策を獲得し，比較を行う．
以降，5.5.1 節では操縦運動データ集合D (traj) を用いた操縦モデルの推定結果について，5.5.3 節で与えら

れた軌道追従実験の結果について示す．

5.5.1 操縦モデルの推定結果
操縦モデルの推定結果を示す．本実験では，4.2 節で用いられた FNNと訓練手法によって操縦モデルが推

定された．つまり，Table 4.4に示されたハイパーパラメータが使用され，Table 4.3に示された全結合層のみ
で構成される多層パーセプトロンが用いられた．また，FNNの初期パラメータやミニバッチの順序のような
訓練における不確実性による，最適モデルの変化の大きさを確認するため，10, 000 Epochsの訓練を 5回実施
し，5つの最適操縦モデルを獲得した．
対象システムと操縦モデルの操縦運動軌道を，ジグザグ操船および着桟操船を通して，比較する．ただし，

着桟操船とは，フルケール版の対象船の着桟のための港湾内ナビゲーションデータ [126]を基にして，舵およ
びバウスラスタの指示値が決定された操船のことであり，対象システムを用いて着桟のための制御が行われて
いるわけではないことに注意する．
ジグザグ操船のシミュレーション結果を Fig. 5.17に示す．30◦-30◦ のジグザグ操船では，最適モデルは 𝑢 を

やや大きく推定しており，その結果，軌道の推定誤差が時間経過とともに増大している．しかしながら，𝑟 と
𝑣m の推定値は対象システムのものと高い精度で一致しており，短期的には軌道の推定誤差も十分に高い精度
で推定できている．また，訓練ケース間で比較しても，特定のケースの推定精度が他に比べて大きく異なるこ
ともないことがわかる．
次に，着桟操船のシミュレーション結果を Fig. 5.18に示す．ジグザグ操船に比べて着桟操船ではアクチュ

エータ状態が頻繁に変更されており，複雑な操縦運動が行われている．そのため，𝑟 と 𝑣m の推定値は対象シ
ステムのものと高い精度で常に一致しているわけではなかったが，大きく乖離することはないことがわかる．
また，着桟操船では，船速が約 0.5 (m/s) から約 0.0 (m/s) まで減少しているが，最適モデルはその船速の減
少を適切に評価できている．したがって，低速運動を含む着桟操船でも最適モデルは十分な推定精度を持って
いることがわかる．
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Fig. 5.17: The predicted trajectories of maneuvering simulation for zigzag maneuvers in calm wind
condition 𝑈T = 0.0 (m/s). The solid colored lines represent the results using the identified maneuvering
model in each case. The pentagons represent ship positions and headings.

5.5.2 追従制御方策の訓練結果
本実験では，操縦運動データ集合D (traj) を用いて得られた操縦モデルで構成される操縦シミュレーション
環境と TS環境のそれぞれで軌道追従制御方策の訓練を実施した．ここでは，問題を簡単化するため，静的障
害物領域集合 O は考慮されなかった．使用された状態変数ベクトル 𝒔 および報酬関数 𝑟 もまた5.4 節と異な
り，状態変数ベクトル 𝒔は以下のように定義された．

𝒔 ≡
((
𝒔 (des)

)T
, 𝝂T, 𝒖T,

(
𝒘′

A
)T

)T
, (5.5.1)

また，報酬関数 𝑟 は以下のように定義された．

𝑟 (𝒔𝑘+1, 𝒔𝑘 , 𝒂𝑘) ≡ 1 −
(
𝑒 (bow) (𝑡𝑘+1) + 𝑒 (stn) (𝑡𝑘+1)

)
2𝑒 (tol) (𝑡𝑘+1)

− (𝒂𝑘 − 𝒖 (𝑡𝑘))T 𝑹 (𝒂𝑘 − 𝒖 (𝑡𝑘)) , (5.5.2)

ここで，𝑹 = diag (𝑅P, 𝑅S, 𝑅BT) はアクチュエータコストの重み係数である．訓練で用いられたハイパーパ
ラメータを Table 5.8に，操縦シミュレーション環境の初期状態変数の決定方法を Table 5.9に示す．ここで，
D (traj) に含まれる状態を中心に訓練するため，生成される参照軌道の初期状態の決定方法が5.4.1 節から変更
されていることに注意する．さらに，TD3のハイパーパラメータは，バッチサイズは 256，他は文献 [102]の
Table 3の値が使用され，アクターネットワークとクリティックネットワークの構造は Table 5.10に示される．
訓練過程に含まれるランダム性が訓練結果に与える影響を確認するため，5つの操縦モデルそれぞれに対して
軌道追従制御方策の訓練を実施し，5つの最適方策を獲得し，また，TS環境からも 5つの最適方策を訓練し
た．訓練時間はシミュレーション時間で 1.5 × 107 秒である．
本実験では，学習中に取得した全ての NNのパラメータを保存し，それぞれのパラメータについて評価を行

った．評価では，学習エピソードで使用したのと同じ環境で 10エピソードをシミュレーションし，平均累積



80 第 5章 強化学習を用いた軌道追従制御方策の獲得手法

−2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

y0/Lpp

0

2

4

6

8

x
0
/L

p
p

Maneuvering Model

Case 1 ∼ 5 Target System

0.2

0.4

u
(m
/s

)

−100

−50

0

50

δ P
(d

eg
.)

−0.025

0.000

0.025

v m
(m
/s

)

−50

0

50

100

δ S
(d

eg
.)

−1

0

1

r
(d

eg
./

s)

−30

0

30

n
B

T
(r

p
s)

0 100 200

t (s)

0.4

0.6

U
T

(m
/s

)

0 100 200

t (s)

0

180

360

γ
T

(d
eg
.)

(a) Berthing pattern 1.

0 2 4 6 8

y0/Lpp

−2

−1

0

1

2

x
0
/L

p
p

Maneuvering Model

Case 1 ∼ 5 Target System

0.2

0.4

u
(m
/s

)

−100

−50

0

50

δ P
(d

eg
.)

0.00

0.05

v m
(m
/s

)

−50

0

50

100

δ S
(d

eg
.)

0

2

r
(d

eg
./

s)

−30

0

30

n
B

T
(r

p
s)

0 50 100

t (s)

0.5

0.6

0.7

U
T

(m
/s

)

0 50 100

t (s)

0

180

360

γ
T

(d
eg
.)

(b) Berthing pattern 2.

Fig. 5.18: The predicted trajectories and time histories of maneuvering simulation for a berthing ma-
neuver under wind disturbance, 𝑈T = 0.5 (m/s), 𝜉T = 90 (deg.). The solid colored lines represent the
results using the identified maneuvering model in each case. The pentagons represent ship positions and
headings.

報酬を算出した．5つの学習に対する平均累積報酬を Fig. 5.19に示す．この結果から，最適制御方策関数 𝝁★

は訓練に含まれるランダム性に大きく依存しないことがわかる．

5.5.3 参照軌道の追従結果
訓練で得られた最適制御方策関数 𝝁★を用いた着桟操船軌道の追従実験および 4コーナー DP試験の結果を
示す．本実験では，TS環境で検証を実施した．ただし，検証における意思決定間隔は 𝑡𝑘+1 − 𝑡𝑘 = 0.5 (s) に変
更された．以降，4コーナー DP試験の結果を5.5.3.1 節で，着桟操船軌道の追従結果を5.4.3.1 節で述べる．

5.5.3.1 4コーナー DP試験結果
4コーナー DP試験の結果を示す．4コーナー DP試験結果は，DPSの評価のためによく実施される試験で
あり [91, 93]，surge, sway, yawのそれぞれ独立した運動に加えて，それらの連成運動における追従性能を示
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Table 5.8: Hyperparameters for RL training.

Δ𝑡 = 0.5 (s) 𝜎 (obs)
𝑥0 = 0.03 (m) 𝑒 (tol)

0 = 2𝐿ship (m) 𝑅P = 10−6

𝑡𝑘+1 − 𝑡𝑘 = 5.0 (s) 𝜎 (obs)
𝑦0 = 0.03 (m) 𝑒 (tol)

∞ = 𝐵ship/2 (m) 𝑅P = 10−6

𝛾 = 0.99 𝜎 (obs)
𝜓 = 0.1 (deg.) 𝜆𝑒 = 0.01 𝑅P = 10−4

𝑇1 = 5.0 (s) 𝜎 (obs)
𝑢 = 0.02 (m/s) 𝜎

(sys)
𝑢 = 0.0 (m/s)

𝑇2 = 10.0 (s) 𝜎 (obs)
𝑣m = 0.02 (m/s) 𝜎

(sys)
𝑣m = 0.0 (m/s)

𝑇3 = 20.0 (s) 𝜎 (obs)
𝑟 = 0.1 (deg./s) 𝜎

(sys)
𝑟 = 0.0 (deg./s)

𝑇4 = 40.0 (s)

Table 5.9: Initial state of maneuvering simulation environments.

Item Definition

𝑥 (des)
0 (m) is set to 0.0
𝑦 (des)

0 (m) is set to 0.0
𝜓 (des) (deg.) is set to 0.0
𝑢 (des) (m/s) is randomly selected from D (traj)

𝑣 (des)
m (m/s) is randomly selected from D (traj)

𝑟 (des) (deg./s) is randomly selected from D (traj)

𝑥0 (m) is given by uniform distribution whose interval is [𝑥 (des)
0 − 𝐿ship, 𝑥

(des)
0 + 𝐿ship]

𝑦0 (m) is given by uniform distribution whose interval is [𝑦 (des)
0 − 𝐿ship, 𝑦

(des)
0 + 𝐿ship]

𝜓 (deg.) is given by uniform distribution whose interval is [𝜓 (des) − 10, 𝜓 (des) + 10]
𝑢 (m/s) is equal to 𝑢 (des)

𝑣m (m/s) is equal to 𝑣 (des)
m

𝑟 (deg./s) is equal to 𝑟 (des)

𝑈T (m) is randomly selected from D (traj)

𝜉T (deg.) is randomly selected from D (traj)

すことが可能である．本研究で実施された 4コーナー DP試験は以下に述べる 5ステップで構成される．

1. 𝜓 = 0 (deg.) の停止状態から，𝑥0 軸の正の方向に 5 (m) 移動する．
2. 方位角を保ったまま (𝜓 = 0 (deg.))，𝑦0 軸の正の方向に 5 (m) 移動する．
3. 位置を保ったまま，方位角を時計回りに 45 (deg.) だけ変針させる．
4. 方位角 𝜓 = 45 (deg.) を保ったまま，𝑥0 軸の負の方向に 5 (m) 移動する．
5. 方位角を反時計回りに 45 (deg.) だけ変針させつつ，並行して 𝑦0 軸の負の方向に 5 (m) 移動する．

これらの各 step の時間は 300 (s) である．これらの参照姿勢は離散的に与えられているため，本実験では
Reference Fileter [58]を使用して，中間の連続的な参照姿勢変数ベクトル 𝜼 (des) を生成した．各ステップで
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Table 5.10: Used Layers for networks.

(a) The actor network (policy function).

𝑾𝑙 𝒃𝑙 𝑔

𝒉 (fcl)
1 R256×23 R256 ReLU

𝒉 (fcl)
2 R256×256 R256 ReLU

𝒉 (fcl)
3 R3×256 R3 Sigmoid

(b) The critic network (Q function).

𝑾𝑙 𝒃𝑙 𝑔

𝒉 (fcl)
1 R256×26 R256 ReLU

𝒉 (fcl)
3 R256×256 R256 ReLU

𝒉 (fcl)
4 R1×256 R1 None
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Fig. 5.19: Average cumulative reward of the 10 episodes used for the evaluation (Exponential Moving
Average Value).

あたえられる参照姿勢を 𝜼 (ref ) と表記すると，参照姿勢変数ベクトル 𝜼 (des) は微分方程式

©­«
¤𝜼 (des)

¥𝜼 (des)
...
𝜼 (des)

ª®¬ =


0 𝑰 0
0 0 𝑰

−𝛀3 − (2𝚫 + 𝑰)𝛀2 − (2𝚫 + 𝑰)𝛀

 ©­«
𝜼 (des)

¤𝜼 (des)

¥𝜼 (des)

ª®¬ +


0
0
Ω3

 𝜼 (ref ) , (5.5.3)

を解くことで生成される．ここで，𝑰 = diag (1.0, 1.0, 1.0) は 3 次元単位行列であり，𝚫 = 𝑰 と 𝛀 =

diag (0.03, 0.03, 0.03) はそれぞれ減衰係数と固有周波数を表す．これらのパラメータは参照姿勢変数ベク
トル 𝜼 (des) が実現可能なものとなるよう試行錯誤により決定した．
獲得された 5つの最適制御方策のうちの 1つを用いた 4コーナー DP試験の結果を Fig. 5.20に示す．この

結果から，対象船舶の発生させられるスラストが小さいため，軌道追従のために長い時間を必要とするものの，
提案手法により得られた最適制御方策は風外乱の下において，surge, sway, yawの独立運動および連成運動の
追従を可能にしていることがわかる．また，得られた 5つの最適制御方策のそれぞれの追従誤差を Fig. 5.21に
示す．提案手法の追従誤差のばらつきはほとんどの時間で大きな違いはないが，5番目のステップで比較的大
きな誤差を発生させた最適制御方策が存在することがわかる．また，MMGモデルを用いて訓練された最適制
御方策と比較すると，追従誤差の大きさに大きな違いはないが，提案手法で観察された比較的大きなエラーは
発生しなかった．この違いは操縦モデルの推定の有無によると推測されるが，ほとんどの場合，操縦モデルの
同定に起因するばらつきの影響は大きくないことを確認した．
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Fig. 5.20: Tracking results of the four corner DP test under wind disturbance, 𝑈T = 0.5 (m/s), 𝜉T =

90 (deg.), using an optimal control policy obtained by the proposed method.
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5.5.3.2 着桟操船軌道データの追従結果
着桟操船軌道の追従実験結果を示す．ここで用いられた着桟操船軌道はフルケール版の対象船の着桟のため
の港湾内ナビゲーションデータから得られ，相似則により模型スケールへ変換された軌道である．使用された
港湾内ナビゲーションデータに関する詳細は文献 [126]を参照されたい．
獲得された 5つの最適制御方策のうちの 1つを用いて行った着桟操船軌道の追従試験結果を Fig. 5.22に示

す．提案手法により得られた最適制御方策は参照軌道に船を追従させることができていることがわかる．ドッ
キング軌道は，船速が約 0.4 (m/s) から約 0.0 (m/s) まで低下しているが，制御方策はそれぞれの速度域で
適切に追従可能であるように訓練されていることがわかる．例えば，船速が約 0.4 (m/s) の時は二つの舵が
0 (deg.) に近い角度で制御されており，一方で，船速が約 0.0 (m/s) の時は二つの舵が，Hover角と呼ばれる
プロペラが正回転していても全体のスラストが発生しない舵角に近い角度で制御されており，訓練による経験
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Fig. 5.22: Tracking results of the port navigation data under wind disturbance, 𝑈T = 0.5 (m/s), 𝜉T =

90 (deg.), using an optimal control policy obtained by the proposed method.
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Fig. 5.23: Tracking error of the port navigation data for each of the five different optimal policies
obtained by the proposed method. The solid line represents the result of Fig. 5.20 and the dashed line
represents the result using the other four policies.

から適切な操船制御方策が獲得されている．
ランダムシードの異なる 5つの最適制御方策を用いた着桟操船軌道の追従試験の追従誤差を Fig. 5.23に示

す．提案手法の追従誤差のばらつきについて，ドッキング軌道のアプローチフェーズ (0 (s) < 𝑡 < 150 (s))で
は，一つのケースで約 0.5𝐿 の比較的大きな誤差が発生している．しかし，この誤差は次第に減少しており，ま
た，他のケースと時間では追従誤差の結果が大きくばらつくことがないことを確認した．また，MMGモデル
を用いて訓練された最適制御方策と比較すると，4コーナー DP試験結果と同様に，追従誤差の大きさに大き
な違いはないが，提案手法で観察された比較的大きなエラーは発生しなかった．しかし，ほとんどの場合，操
縦モデルの同定に起因するばらつきの影響は大きくないことを確認した．
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5.6 議論
5.4 節及び5.5 節では，提案手法による軌道追従制御方策の訓練結果および軌道追従結果を示した．それら

の結果から判明した点を以下にまとめる．

• 5.4 節及び5.5 節のいずれの実験においても得られた軌道追従制御方策が着桟操船軌道を追従可能であ
ることを示し，5.5 節では 4コーナー DP試験を実現可能であることを示した．従って，訓練環境設定，
報酬関数設計，参照軌道のランダム生成手法を含む提案手法が，高速領域と低速領域の両方を含む着桟
操船軌道に対応した軌道追従制御方策の獲得に有効であることが確認できた．特に，参照軌道のランダ
ム生成手法は，制御方策が着桟操船軌道の追従で遭遇する可能性のある状態パターンを網羅的に経験さ
せ，着桟操船軌道で直接訓練することなく着桟操船軌道の追従を可能にする．この手法は，5.2.2.2 節で
述べたようにアクチュエータ構成に応じて制御入力のランダム生成手法が適切に決定される必要がある
が，異なるアクチュエータ構成や船舶にも適用することが可能である．

• 5.4 節では，軌道追従制御方策に静的擬似障害物を考慮させることで，着桟操船軌道の追従実験におけ
る衝突確率が減少することを示した．よって，提案する報酬関数と静的擬似障害物の生成方法が，衝突
を引き起こす可能性のある追従誤差を低減するのに有効であったことがわかる．しかし，得られた衝突
確率は実用化するには依然として高い．そのため，風やモデル化誤差などの不確実性を考慮し，追従性
能の向上が必要であり，また，フェンダー等の影響を考慮し，着桟操船の成功の定義を明確にした上で，
より詳細な検討が必要である．

• 5.4 節では，MMGモデルで構成される操縦シミュレーション環境によって得られた軌道追従制御方策
が，物理環境における模型実験でも着桟操船軌道を追従できることを示した．使用したMMGモデル
は VecTwin舵によって誘起される流体力などが一部簡略化されている．しかし，軌道追従制御方策は
フィードバック制御を行うことに加えて，訓練ではシステムノイズが導入されているため，得られた軌
道追従制御方策が一定のモデル化誤差を吸収可能であったと考えられる．

• 5.5 節では，操縦運動データ集合D (traj) を用いて得られた操縦モデルで構成される操縦シミュレーショ
ン環境によって得られた軌道追従制御方策が 4コーナー DP試験や着桟操船軌道の追従が可能である
ことを示した．よって，操縦運動データ集合が与えられるならば第 3 章で提案されたシステム同定手法
を利用可能であり，必ずしも高精度なMMGモデルを用意する必要はない．しかし，3.4 節で述べたよ
うに操縦モデルの推定精度は与えられる操縦運動データに大きく依存し，操縦モデルの推定精度は軌道
追従制御方策の追従精度に直結することから，提案手法は，与えられた操縦運動データ集合の分布外の
状態における性能が低下する可能性を含んでおり，目的に対して十分に広く分布した操縦運動データ集
合が必要となる．

以上のように，いくつかの限界が残されているものの，提案手法はMMGモデルのような操縦モデルもしく
は操縦運動データ集合が与えられれば，高速領域と低速領域の両方を含む着桟操船軌道の追従制御方策を獲得
することが可能である．実用上，風外乱は制御できないが，風外乱の力がアクチュエータの発生できる力の最
大値を上回ると，アクチュエータをどのように制御しても接岸操作は困難になる．このような状況におけるア
プローチも今後は検討する必要がある．
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5.7 結言
本章では，強化学習を用いた軌道追従のための制御方策の獲得方法を提案した．提案手法では，まず，操縦
モデル，アクチュエータ応答モデル，風の確率過程モデルで構成される操縦シミュレーション環境を構築され
る．そして，軌道追従のための制御方策がその操縦シミュレーション環境を用いた強化学習により獲得される．
この訓練では，着桟操船軌道のような高速領域と低速領域の両方を含む軌道を追従可能な制御方策を獲得する
ために，ランダムに生成された参照軌道が用いられる．また，静的障害物との衝突を引き起こす追従誤差を優
先的に回避するため，擬似障害物の自動生成を行い，制御方策に障害物との距離に関するペナルティが考慮さ
れる．提案手法は，操縦モデルもしくは操縦モデル推定のための操縦運動データ集合が与えられれば，着桟操
船軌道のデータや障害物の地形データなどは不要で，また，物理環境における試行錯誤は行われない．シミュ
レーションおよび模型船を用いた実験では，提案手法により得られた軌道追従のための制御方策は着桟操船軌
道の追従や 4コーナー DP試験を実現可能であることが示された．また，提案手法で制御方策が静的障害物を
考慮することで着桟操船軌道の追従実験における衝突確率を低下させることができることを示した．
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最後に，本学位論文の総括を述べる．本研究では港内操船および着桟操船の自動化に向けた操縦モデルおよ
び軌道追従制御に関する研究に取り組み，第 3 章では ANNを用いた港内操船および着桟操船のための操縦モ
デルの推定手法，第 4 章では ANNを用いた操縦モデル推定のためのデータ拡張手法，第 5 章では RLを用
いた軌道追従制御方策の獲得手法について説明した．
第 3 章では，模型船の自由航走試験データを用いた実験により，(i) 加速度の計測値を必要としない軌道推
定ベースの訓練手法は従来の回帰分析ベースの訓練手法と比較して RNNを用いた操縦モデルの推定精度を向
上させること，(ii) ランダム操船試験を操縦モデルの推定へ用いることで低速操縦運動を含む着桟操船軌道の
予測精度が向上すること，(iii) より長い期間の履歴影響を考慮した無限インパルス応答型 RNNが必ずしも操
縦モデルの推定精度を向上させるわけではないこと，(iv) RNNを用いた操縦モデルは，分布が近い訓練デー
タが与えられれば，拘束模型試験や経験式から得られたMMGモデルと同等かそれ以上に高い精度で低速操
縦運動を予測可能であることが示された．ただし，実験では，最小でも実船スケール換算で約 7時間程度のデ
ータが使用されており，提案手法は十分な量の操縦運動データを必要とすることに注意が必要である．
しかし，実船データ収集はコストが高いため，実用的には使用可能な操縦運動データ量が限られる可能性が
高い．そのため，第 4 章では，操縦運動データ量が限られたとしても操縦モデルの推定精度を向上させるた
め，第 3 章で述べた操縦モデルの推定手法にスライシングとジッタリングと呼ばれる二つのデータ拡張手法
を適用にも取り組んだ．模型船の自由航走試験データを用いた実験から，(v) 操縦運動データ量が限られてい
る場合，スライシングとジッタリングは操縦モデルの推定精度を向上させる可能性のある有効なデータ拡張手
法であること，(vi) スライシングとジッタリングはデータ集合の外挿領域の入力に対する操縦モデルの予測精
度は改善できないことが示された．したがって，限界はあるもののデータ拡張手法により操縦モデルの推定精
度を向上させることができ，さらに予測精度を向上させるためにはデータの分布が広く分散していて，外挿が
少ないデータを用意することが好ましいと考えられる．
また，第 5 章では，軌道追従制御方策の獲得手法を提案している．提案手法では，操縦モデル，アクチュエ
ータ応答モデル，風の確率過程モデルで構成される操縦シミュレーション環境を構築し，その操縦シミュレー
ション環境で軌道追従のための制御方策がモデルフリー強化学習により獲得される．シミュレーションと模型
実験から，(vii) 訓練環境設定，報酬関数設計，参照軌道のランダム生成手法を含む提案手法で訓練された軌道
追従制御方策は着桟操船軌道のような高速領域と低速領域の両方を含む軌道を追従可能であること，(viii) 軌
道追従制御方策に静的障害物を考慮させることで着桟操船軌道の追従実験における衝突確率が減少すること，
(ix) MMG モデルを用いて得られた軌道追従制御方策が物理環境における模型実験でも着桟操船軌道を追従
できること，(x) 操縦運動データ集合を用いて得られた操縦モデルを用いて得られた軌道追従制御方策が 4コ
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ーナー DP試験や着桟操船軌道の追従が可能であることが示された．
上記の通り，本研究では，ANNを用いた操縦モデルの推定精度向上のための手法改善に取り組み，適切な

操縦運動データ集合が利用可能であれば，標準船速と低船速の両方を含む操縦運動を表現する操縦モデルを獲
得可能であることを示した．また，港内操船および着桟操船のための RLを用いた軌道追従制御方策の獲得手
法を提案し，標準船速と低船速の両方を含む軌道を追従可能な制御方策を獲得可能であることを示した．さら
に，二つの手法を組み合わせることで，操縦運動データから軌道追従制御方策を得られる可能性を示した．し
たがって，更なる検証が必要ではあるものの，本研究で提案する手法は，物理環境で計測された操縦運動デー
タが与えられれば，どのようなアクチュエータ構成を持つ船舶であったとしても，港内操船および着桟操船の
ための操縦モデルと軌道追従制御方策を可能することが可能となった．しかし，いまだ操縦モデルの推定精度
は与えられる操縦運動データの分布に依存するため，港内操船および着桟操船の自動化に向け，操縦モデルの
予測の不確実性の定量化などに取り組むことが期待される．



89

参考文献

[1] Yoshiki Miyauchi. Optimizing Dynamic Model and Reference Trajectory on Berthing and Unberthing
for a Maritime Autonomous Surface Ship. PhD thesis, Osaka Univercity, 3 2023. eng.

[2] A Ogawa and H Kasai. On the mathematical model of manoeuvring motion of ships. International
Shipbuilding Progress, Vol. 25, pp. 306–319, 1978.

[3] H Yasukawa and Y Yoshimura. Introduction of mmg standard method for ship maneuvering
predictions. Journal of Marine Science and Technology, Vol. 20, No. 1, pp. 37–52, 2015.

[4] Kuniji Kose, Hiroyoshi Hinata, Yasuhisa Hashizume, and Eijiro Futagawa. On a mathematical
model of maneuvering motions of ships in low speeds. Journal of the Society of Naval Architects
of Japan, Vol. 1984, No. 155, pp. 132–138, 1984.

[5] Masataka Fujino, Hiroshi Kagemoto, Yuji Ishii, and Hiroaki Joraku. Stopping ability of a ship in
shallow water. Journal of the Society of Naval Architects of Japan, Vol. 1990, No. 168, pp. 117–129,
1990.

[6] Hiroaki Kobayashi, Atsushi Ishibashi, Kenji Shimokawa, and Yuichi Shimura. A study on mathe-
matical model for the maneuvering motions of twin-propeller twin-rudder ship : In reference to the
maneuvering motion from ordinary speed range to low speed range. The Journal of Japan Institute
of Navigation, Vol. 91, pp. 263–270, 1994.

[7] Atsushi Ishibashi, Hiroaki Kobayashi, and Teruo Ugajin. A study on ship maneuvering character-
istics in shallow water : On the harbor maneuvering at low speed range. The Journal of Japan
Institute of Navigation, Vol. 95, pp. 371–380, 1996.

[8] Yasuo Yoshimura, Ikao Nakao, and Atsushi Ishibashi. Unified Mathematical Model for Ocean and
Harbour Manoeuvring. In Proceedings of MARSIM2009, pp. 116–124. International Conference on
Marine Simulation and Ship Maneuverability, aug 2009.

[9] M S Chislett and J Strom-Tejsen. Planar motion mechanism tests and full-scale steering and
manoeuvring predictions for a Mariner class vessel. International Shipbuilding Progress, Vol. 12,
pp. 201–224, 1965.

[10] Takeo Koyama, Jyong Hoe Chyu, Seizo Motora, and Masashiro Koyanagi. On the circular motion
test technique (cmt) for the maneuverability model test. Journal of the Society of Naval Architects
of Japan, Vol. 1975, No. 138, pp. 151–157, 1975.

[11] Seizo Motora. On the measurement of added mass and added moment of inertia for ship motions.
Journal of Zosen Kiokai, Vol. 1959, No. 105, pp. 83–92, 1959.

[12] S. Inoue, M. Hirano, and K. Kijima. Hydrodynamic derivatives on ship manoeuvring. International



90 参考文献

Shipbuilding Progress, Vol. 28, pp. 112–125, 1 1981.
[13] Katsuro Kijima, Toshiyuki Katsuno, Yasuaki Nakiri, and Yoshitaka Furukawa. On the manoeu-

vring performance of a ship with theparameter of loading condition. Journal of the Society of
Naval Architects of Japan, Vol. 1990, No. 168, pp. 141–148, 1990.

[14] Hitoshi Fujii and Tatuo Tuda. Experimental researches on rudder performance. (2). Journal of
Zosen Kiokai, Vol. 1961, No. 110, pp. 31–42, 1961.

[15] Toshifumi Fujiwara, Michio Ueno, and Tadashi Nimura. Estimation of Wind Forces and Moments
acting on Ships. Journal of the Society of Naval Architects of Japan, Vol. 1998, No. 183, pp. 77–90,
1998.

[16] K.J. Åström and C.G. Källström. Identification of ship steering dynamics. Automatica, Vol. 12,
No. 1, pp. 9–22, 1976.

[17] Martin A Abkowitz. Measurement of hydrodynamic characteristics from ship maneuvering trials
by system identification. In Transactions of Society of Naval Architects and Marine Engineers 88,
pp. 283–318, 1980.

[18] C.G. Källström and K.J. Åström. Experiences of system identification applied to ship steering.
Automatica, Vol. 17, No. 1, pp. 187–198, 1981.

[19] Hyeon Kyu Yoon and Key Pyo Rhee. Identification of hydrodynamic coefficients in ship maneu-
vering equations of motion by estimation-before-modeling technique. Ocean Engineering, Vol. 30,
No. 18, pp. 2379–2404, 2003.

[20] Serge Sutulo and C. Guedes Soares. An algorithm for offline identification of ship manoeuvring
mathematical models from free-running tests. Ocean Engineering, Vol. 79, pp. 10–25, 2014.

[21] Ryohei Sawada, Koichi Hirata, Yasushi Kitagawa, Eiko Saito, Michio Ueno, Katsuji Tanizawa,
and Junji Fukuto. Path following algorithm application to automatic berthing control. Journal of
Marine Science and Technology (Japan), Vol. 26, pp. 541–554, 6 2021.

[22] Yoshiki Miyauchi, Atsuo Maki, Naoya Umeda, Dimas M Rachman, and Youhei Akimoto. System
parameter exploration of ship maneuvering model for automatic docking/berthing using CMA-ES.
Journal of Marine Science and Technology, Vol. 27, No. 2, pp. 1065–1083, 2022.

[23] Serge Sutulo and C. Guedes Soares. Application of an offline identification algorithm for adjusting
parameters of a modular manoeuvring mathematical model. Ocean Engineering, Vol. 279, p.
114328, 2023.

[24] Yoshiki Miyauchi, Youhei Akimoto, and Atsuo Maki. Development of a mathematical model for
harbor maneuvers to realize modeling automation. Journal of Marine Science and Technology,
2024.

[25] L. Moreira and C. Guedes Soares. Dynamic model of manoeuvrability using recursive neural
networks. Ocean Engineering, Vol. 30, No. 13, pp. 1669 – 1697, 2003.

[26] Dmitry A. Oskin, Alexander A. Dyda, and Vasily E. Markin. Neural network identification of
marine ship dynamics. IFAC Proceedings Volumes, Vol. 46, No. 33, pp. 191 – 196, 2013. 9th IFAC
Conference on Control Applications in Marine Systems.

[27] Yifan Xue, Yanjun Liu, Chen Ji, Gang Xue, and Shuting Huang. System identification of ship
dynamic model based on gaussian process regression with input noise. Ocean Engineering, Vol.



91

216, p. 107862, 2020.
[28] Kouki Wakita, Atsuo Maki, Naoya Umeda, Yoshiki Miyauchi, Tohga Shimoji, Dimas M Rachman,

and Youhei Akimoto. On neural network identification for low-speed ship maneuvering model.
Journal of Marine Science and Technology, Vol. 27, No. 1, pp. 772–785, 2022.

[29] W. L. Luo and Z. J. Zou. Parametric Identification of Ship Maneuvering Models by Using Support
Vector Machines. Journal of Ship Research, Vol. 53, No. 01, pp. 19–30, 03 2009.

[30] Xin-guang Zhang and Zao-jian Zou. Identification of Abkowitz Model for Ship Manoeuvring Motion
Using 𝜖 -Support Vector Regression. Journal of Hydrodynamics, Vol. 23, No. 3, pp. 353–360, 2011.

[31] Weilin Luo, Lúcia Moreira, and C. Guedes Soares. Manoeuvring simulation of catamaran by using
implicit models based on support vector machines. Ocean Engineering, Vol. 82, pp. 150–159, 2014.

[32] Wenhe Shen, Jianxi Yao, Xinjue Hu, Jialun Liu, and Shijie Li. Ship dynamics model identification
based on semblance least square support vector machine. Ocean Engineering, Vol. 287, p. 115908,
2023.

[33] Kouki Wakita, Yoshiki Miyauchi, Youhei Akimoto, and Atsuo Maki. Data augmentation methods
of parameter identification of a dynamic model for harbor maneuvers, 2023.

[34] Man Zhu, Axel Hahn, Yuan-Qiao Wen, and Wu-Qiang Sun. Optimized support vector regression
algorithm-based modeling of ship dynamics. Applied Ocean Research, Vol. 90, p. 101842, 2019.

[35] Zihao Wang, Zaojian Zou, and C. Guedes Soares. Identification of ship manoeuvring motion based
on nu-support vector machine. Ocean Engineering, Vol. 183, pp. 270–281, 2019.

[36] Rin Suyama, Rintaro Matsushita, Ryo Kakuta, Kouki Wakita, and Atsuo Maki. Parameter fine-
tuning method for mmg model using real-scale ship data. Ocean Engineering, Vol. 298, p. 117323,
2024.

[37] Zihao Wang, Haitong Xu, Li Xia, Zaojian Zou, and C. Guedes Soares. Kernel-based support vector
regression for nonparametric modeling of ship maneuvering motion. Ocean Engineering, Vol. 216,
p. 107994, 2020.

[38] Hong-Wei He, Zi-Hao Wang, Zao-Jian Zou, and Yi Liu. Nonparametric modeling of ship maneu-
vering motion based on self-designed fully connected neural network. Ocean Engineering, Vol. 251,
p. 111113, 5 2022.

[39] Lijia Chen, Peiyi Yang, Shengwei Li, Yanfei Tian, Guangqiang Liu, and Guozhu Hao. Grey-box
identification modeling of ship maneuvering motion based on ls-svm. Ocean Engineering, Vol. 266,
p. 112957, 2022.

[40] G Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, Vol. 2, No. 4, pp. 303–314, 1989.

[41] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks,
Vol. 4, No. 2, pp. 251 – 257, 1991.

[42] L Moreira and C Guedes Soares. Recursive neural network model of catamaran manoeuvring.
International Journal of Maritime Engineering, Vol. 154, , 2012. Copyright The University of
Buckingham Press 2012.

[43] G. Rajesh and S.K. Bhattacharyya. System identification for nonlinear maneuvering of large tankers
using artificial neural network. Applied Ocean Research, Vol. 30, No. 4, pp. 256–263, 2008.



92 参考文献

[44] Xin-Guang Zhang and Zao-Jian Zou. Black-box modeling of ship manoeuvring motion based on
feed-forward neural network with chebyshev orthogonal basis function. Journal of Marine Science
and Technology, Vol. 18, pp. 42–49, 3 2013.

[45] Lizhu Hao, Yang Han, Chao Shi, and Ziying Pan. Recurrent neural networks for nonparametric
modeling of ship maneuvering motion. International Journal of Naval Architecture and Ocean
Engineering, Vol. 14, p. 100436, 1 2022.

[46] Joohyun Woo, Jongyoung Park, Chanwoo Yu, and Nakwan Kim. Dynamic model identification
of unmanned surface vehicles using deep learning network. Applied Ocean Research, Vol. 78, pp.
123–133, 2018.

[47] Yan Jiang, Xian-Rui Hou, Xue-Gang Wang, Zi-Hao Wang, Zhao-Long Yang, and Zao-Jian Zou.
Identification modeling and prediction of ship maneuvering motion based on lstm deep neural
network. Journal of Marine Science and Technology, Vol. 27, pp. 125–137, 3 2022.

[48] Wilmer Ariza Ramirez, Zhi Quan Leong, Hung Nguyen, and Shantha Gamini Jayasinghe. Non-
parametric dynamic system identification of ships using multi-output gaussian processes. Ocean
Engineering, Vol. 166, pp. 26–36, 2018.

[49] Yifan Xue, Gang Chen, Zhitong Li, Gang Xue, Wei Wang, and Yanjun Liu. Online identification
of a ship maneuvering model using a fast noisy input gaussian process. Ocean Engineering, Vol.
250, p. 110704, 2022.

[50] Kouichi Shouji and Kohei Ohtsu. A study on the optimization of ship maneuvering by optimal
control theory (1st report). Journal of the Society of Naval Architects of Japan, Vol. 1992, No. 172,
pp. 365–373, 1992.

[51] Glenn Bitar, Andreas B. Martinsen, Anastasios M. Lekkas, and Morten Breivik. Trajectory plan-
ning and control for automatic docking of asvs with full-scale experiments. IFAC-PapersOnLine,
Vol. 53, No. 2, pp. 14488–14494, 2020. 21st IFAC World Congress.

[52] Andreas B. Martinsen, Glenn Bitar, Anastasios M. Lekkas, and SÃ©bastien Gros. Optimization-
based automatic docking and berthing of asvs using exteroceptive sensors: Theory and experiments.
IEEE Access, Vol. 8, pp. 204974–204986, 2020.

[53] Yaseen Adnan Ahmed and Kazuhiko Hasegawa. Consistently trained artificial neural network for
automatic ship berthing control. TransNav, the International Journal on Marine Navigation and
Safety of Sea Transportation, Vol. 9, No. 3, pp. 417–426, 2015.

[54] Ryohei Sawada, Koichi Hirata, and Yasushi Kitagawa. Automatic berthing control under wind
disturbances and its implementation in an embedded system. Journal of Marine Science and
Technology (Japan), Vol. 28, pp. 452–470, 6 2023.

[55] Eivind Meyer, Amalie Heiberg, Adil Rasheed, and Omer San. Colreg-compliant collision avoidance
for unmanned surface vehicle using deep reinforcement learning. IEEE Access, Vol. 8, pp. 165344–
165364, 2020.

[56] Ryohei Sawada, Keiji Sato, and Takahiro Majima. Automatic ship collision avoidance using deep
reinforcement learning with lstm in continuous action spaces. Journal of Marine Science and
Technology, Vol. 26, pp. 509–524, 6 2021.

[57] Asgeir J. SÃ¸rensen. A survey of dynamic positioning control systems. Annual Reviews in Control,



93

Vol. 35, pp. 123–136, 4 2011.
[58] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, 4 2011.

Wiley Online Books.
[59] Simon J. N. Lexau, Morten Breivik, and Anastasios M. Lekkas. Automated docking for marine

surface vessels―a survey. IEEE Access, Vol. 11, pp. 132324–132367, 2023.
[60] 小山健夫, 野本謙作. 自動操縦について―海上交通の制御―. 第２回操縦性シンポジウム, 1970.
[61] 小瀬邦治, 福戸淳司, 菅野賢治, 赤木茂, 原田美秀子. 船の自動離着棧システムに関する研究. 日本造船学

会論文集, Vol. 1986, No. 160, pp. 103–110, 1986.
[62] 小山健夫, 金雁, 金奎煥. 船の自動離着棧のシステム的考察 (第 1報). 日本造船学会論文集, Vol. 1987,

No. 162, pp. 201–210, 1987.
[63] 吉久英昭. 高信頼度知能化船 (高度自動運航システム) : (その 3)自動離着桟システム. 日本造船学会誌,

Vol. 722, No. 0, pp. 498–502, 1989.
[64] 高井忠夫, 大津皓平. 汐路丸による自動離着桟実験について. 日本航海学会論文集, Vol. 83, No. 0, pp.

267–276, 1990.
[65] 長谷川和彦, 山本郁夫, 正司公一. 港内操船への自動化への挑戦. 運動性能研究委員会第１３回シンポジ

ウム（船体運動及びその制御と海象）, 1997.
[66] Naoki Mizuno, Yosuke Uchida, and Tadatsugi Okazaki. Quasi real-time optimal control scheme

for automatic berthing. IFAC-PapersOnLine, Vol. 48, No. 16, pp. 305–312, 2015. 10th IFAC
Conference on Manoeuvring and Control of Marine Craft MCMC 2015.

[67] Shijie Li, Jialun Liu, Rudy R. Negenborn, and Qing Wu. Automatic docking for underactuated
ships based on multi-objective nonlinear model predictive control. IEEE Access, Vol. 8, pp. 70044–
70057, 2020.

[68] Dimas M. Rachman, Atsuo Maki, Yoshiki Miyauchi, and Naoya Umeda. Warm-started semionline
trajectory planner for ship’s automatic docking (berthing). Ocean Engineering, Vol. 252, p. 111127,
2022.

[69] Namkyun Im, Seong-Keon Lee, and Do Bang Hyung. An application of ann to automatic ship
berthing using selective controller. TransNav, the International Journal on Marine Navigation and
Safety of Sea Transportation, Vol. 1, No. 1, pp. 101–105, 2007.

[70] Nam-Kyun Im and Van-Suong Nguyen. Artificial neural network controller for automatic ship
berthing using head-up coordinate system. International Journal of Naval Architecture and Ocean
Engineering, Vol. 10, No. 3, pp. 235–249, 2018.

[71] Yaseen Adnan Ahmed and Kazuhiko Hasegawa. Automatic ship berthing using artificial neural
network trained by consistent teaching data using nonlinear programming method. Engineering
Applications of Artificial Intelligence, Vol. 26, No. 10, pp. 2287–2304, 2013.

[72] Yonghui Shuai, Guoyuan Li, Xu Cheng, Robert Skulstad, Jinshan Xu, Honghai Liu, and Houxiang
Zhang. An efficient neural-network based approach to automatic ship docking. Ocean Engineering,
Vol. 191, p. 106514, 2019.

[73] Kouichi Shouji, Kohei Ohtsu, and Sumitoshi Mizoguchi. An automatic berthing study by optimal
control techniques. IFAC Proceedings Volumes, Vol. 25, pp. 185–194, 4 1992.

[74] Kouichi Shouji, Kohei Ohtsu, and Toshiyuki Hotta. A study on the optimization of ship maneu-



94 参考文献

vering by optimal control theory (2nd report). Journal of the Society of Naval Architects of Japan,
Vol. 1993, No. 173, pp. 221–229, 1993.

[75] Kouichi Shouji and Kohei Ohtsu. A study on the optimization of ship maneuvering by optimal
control theory (3rd report). Journal of the Society of Naval Architects of Japan, Vol. 1993, No.
174, pp. 339–344, 1993.

[76] A. K. Wu and A. Miele. Sequential conjugate gradient-restoration algorithm for optimal control
problems with non-differential constraints and general boundary conditions, part i. Optimal Control
Applications and Methods, Vol. 1, No. 1, pp. 69–88, 1980.

[77] Andreas B. Martinsen, Anastasios M. Lekkas, and Sebastien Gros. Autonomous docking using di-
rect optimal control. IFAC-PapersOnLine, Vol. 52, No. 21, pp. 97–102, 2019. 12th IFAC Conference
on Control Applications in Marine Systems, Robotics, and Vehicles CAMS 2019.

[78] Yoshiki Miyauchi, Ryohei Sawada, Youhei Akimoto, Naoya Umeda, and Atsuo Maki. Optimization
on planning of trajectory and control of autonomous berthing and unberthing for the realistic port
geometry. Ocean Engineering, Vol. 245, p. 110390, 2022.

[79] Atsuo Maki, Naoki Sakamoto, Youhei Akimoto, Hiroyuki Nishikawa, and Naoya Umeda. Applica-
tion of optimal control theory based on the evolution strategy (CMA-ES) to automatic berthing.
Journal of Marine Science and Technology, Vol. 25, No. 1, pp. 221–233, 2020.

[80] Atsuo Maki, Youhei Akimoto, and Umeda Naoya. Application of optimal control theory based on
the evolution strategy (CMA-ES) to automatic berthing (part: 2). Journal of Marine Science and
Technology, Vol. 26, No. 3, pp. 835–845, 2021.

[81] Kinzo INOUE, Hiroaki SETA, and Kenji MASUDA. Guidelines for speed reduction in berthing
manoeuvre. The Journal of Japan Institute of Navigation, Vol. 107, pp. 169–176, 2002.

[82] Huarong Zheng, Rudy R. Negenborn, and Gabriel Lodewijks. Trajectory tracking of autonomous
vessels using model predictive control. IFAC Proceedings Volumes, Vol. 47, No. 3, pp. 8812–8818,
2014.

[83] Chenguang Liu, Huarong Zheng, Rudy R Negenborn, Xiumin Chu, and Le Wang. Trajectory
tracking control for underactuated surface vessels based on nonlinear model predictive control.
In Francesco Corman, Stefan Voß, and Rudy R Negenborn, editors, Computational Logistics, pp.
166–180. Springer International Publishing, 2015.

[84] Fuguang Ding, Yuanhui Wang, and Yong Wang. Trajectory-tracking controller design of underac-
tuated surface vessels. In OCEANS’11 MTS/IEEE KONA, pp. 1–5, 2011.

[85] Yang Yang, Jialu Du, Hongbo Liu, Chen Guo, and Ajith Abraham. A trajectory tracking robust
controller of surface vessels with disturbance uncertainties. IEEE Transactions on Control Systems
Technology, Vol. 22, No. 4, pp. 1511–1518, 2014.

[86] Guoxing Wen, Shuzhi Sam Ge, C. L. Philip Chen, Fangwen Tu, and Shengnan Wang. Adaptive
tracking control of surface vessel using optimized backstepping technique. IEEE Transactions on
Cybernetics, Vol. 49, No. 9, pp. 3420–3431, 2019.

[87] Dimas M. Rachman, Yusuke Aoki, Yoshiki Miyauchi, Naoya Umeda, and Atsuo Maki. Experimental
low-speed positioning system with vectwin rudder for automatic docking (berthing). Journal of
Marine Science and Technology, Vol. 28, pp. 689–703, 9 2023.



95

[88] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018.

[89] Yin Cheng and Weidong Zhang. Concise deep reinforcement learning obstacle avoidance for un-
deractuated unmanned marine vessels. Neurocomputing, Vol. 272, pp. 63–73, 1 2018.

[90] Andreas B. Martinsen and Anastasios M. Lekkas. Curved path following with deep reinforcement
learning: Results from three vessel models. OCEANS 2018 MTS/IEEE Charleston, OCEAN 2018,
2019.

[91] Andreas B. Martinsen, Anastasios M. Lekkas, Sébastien Gros, Jon Arne Glomsrud, and Tom Arne
Pedersen. Reinforcement learning-based tracking control of usvs in varying operational conditions.
Frontiers in Robotics and AI, Vol. 7, , 2020.

[92] Ning Wang, Ying Gao, Hong Zhao, and Choon Ki Ahn. Reinforcement learning-based optimal
tracking control of an unknown unmanned surface vehicle. IEEE Transactions on Neural Networks
and Learning Systems, Vol. 32, pp. 3034–3045, 7 2021.

[93] Andreas B. Martinsen, Anastasios M. Lekkas, and SÃ©bastien Gros. Reinforcement learning-based
nmpc for tracking control of asvs: Theory and experiments. Control Engineering Practice, Vol.
120, p. 105024, 2022.

[94] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, Vol. 518, pp. 529–533, 2 2015.

[95] Andreas B. Martinsen and Anastasios M. Lekkas. Straight-path following for underactuated marine
vessels using deep reinforcement learning. IFAC-PapersOnLine, Vol. 51, pp. 329–334, 2018.

[96] Forng-Chen Chiu, Tun-Li Chang, Jenhwa Go, Shean-Kwang Chou, and Wei-Chung Chen. A
recursive neural networks model for ship maneuverability prediction. In Oceans ’04 MTS/IEEE
Techno-Ocean ’04 (IEEE Cat. No.04CH37600), Vol. 3, pp. 1211–1218 Vol.3, Nov 2004.

[97] Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu.
Time series data augmentation for deep learning: A survey. In Zhi-Hua Zhou, editor, Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4653–4660.
International Joint Conferences on Artificial Intelligence Organization, 8 2021. Survey Track.

[98] Brian Kenji Iwana and Seiichi Uchida. An empirical survey of data augmentation for time series
classification with neural networks. PLOS ONE, Vol. 16, No. 7, pp. 1–32, 07 2021.

[99] Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. Data Augmentation for Time Series
Classification using Convolutional Neural Networks. In ECML/PKDD Workshop on Advanced
Analytics and Learning on Temporal Data, Riva Del Garda, Italy, September 2016.

[100] Terry T. Um, Franz M. J. Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang, Sandra Hirche, Ur-
ban Fietzek, and Dana Kulić. Data augmentation of wearable sensor data for parkinson’s disease
monitoring using convolutional neural networks. In Proceedings of the 19th ACM International
Conference on Multimodal Interaction, ICMI ’17, p. 216â��220, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery.



96 参考文献

[101] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Data augmentation using synthetic data for time series classification with deep residual
networks. In International Workshop on Advanced Analytics and Learning on Temporal Data,
ECML PKDD, 2018.

[102] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th Inter-
national Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research,
pp. 1587–1596. PMLR, 10–15 Jul 2018.

[103] Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M. Jonker. Model-based rein-
forcement learning: A survey. Foundations and TrendsÂ® in Machine Learning, Vol. 16, pp. 1–118,
2023.

[104] Kouki Wakita, Youhei Akimoto, Dimas M. Rachman, Yoshiki Miyauchi, and Atsuo Maki. Collision
probability reduction method for tracking control in automatic docking/berthing using reinforce-
ment learning. Journal of Marine Science and Technology, Vol. 28, pp. 844–861, 12 2023.

[105] Kouki Wakita. Model-Based Reinforcement Learning for Trajectory Tracking Control of Au-
tonomous Surface Ship. In The 34th International Ocean and Polar Engineering Conference,
International Ocean and Polar Engineering Conference, pp. ISOPE–I–24–524, 06 2024.

[106] Suisei Wada, Naoya Umeda, and Atsuo Maki. Development of general purpose free-running model
ship with ros : Enhanced model ship experiments system. Conference proceedings, the Japan
Society of Naval Architects and Ocean Engineers (in Japanese), No. 28, pp. 587–594, jun 2019.

[107] H. Kobayashi, J.J. J Blok, R. Barr, Y. S. Kim, and J. Nowicki. The Specialist Committee on Esso
Osaka Final Report and Recommendations to the 23rd ITTC. 23rd International Towing Tank
Conference, Vol. II, pp. 581–743, 2002.

[108] Hironori YASUKAWA and Kuniji KOSE. Simulation of Stopping Maneuver of a Tanker in Wind
and Waves. In Transactions of the West-Japan Society of Naval Architects, Vol. 106, pp. 57–68,
2003.

[109] Michio Ueno, Tadashi Nimura, Hideki Miyazaki, Toshifumi Fujiwara, Koji Nonaka, and Hideo
Yabuki. Model Experiment and Sea Trial for Investigating Manoeuvrability of a Training Ship.
Journal of the Society of Naval Architects of Japan, Vol. 2001, No. 189, pp. 71–80, 2001.

[110] Kazuhiko Hasegawa and Takeshi Fukutomi. On Harbour Manoeuvring and Neural Control System
for Berthing with Tug Operation. In Proc. of 3rd International Conference Manoeuvring and
Control of Marine Craft (MCMC’94), pp. pp.197–210, 1994.

[111] Hitoshi FUJII and Tatuo TUDA. Experimental Researches on Rudder Performance. (2). Journal
of Zosen Kiokai, Vol. 1961, No. 110, pp. 31–42, 1961.

[112] Yasuo Yoshimura and Kensaku Nomoto. Modeling of manoeuvring behaviour of ships with a
propeller idling, boosting and reversing. Journal of the Society of Naval Architects of Japan, Vol.
1978, No. 144, pp. 57–69, 1978.

[113] Yasushi Kitagawa, Yoshiaki Tsukada, and Hideki Miyazaki. A Study on Mathematical Models of
Propeller and Rudder under Maneuvering with Propeller Reverse Rotation. Conference Proceedings
The Japan Society of Naval Architects and Ocean Engineers, Vol. 20, pp. 117–120, 2015.



97

[114] Japan Hamworthy & Co., Ltd. Steering systems: New VecTwin system. https://www.japanham.
com/en/service/new_vectwin.html, 2022. Accessed on 12 July 2023.

[115] Kazuhiko Hasegawa, Donghoon Kang, Masaaki Sano, and Kenjiro Nabeshima. Study on the
maneuverability of a large vessel installed with a mariner type super vectwin rudder. Journal of
Marine Science and Technology, Vol. 11, pp. 88–99, 6 2006.

[116] Hironori YASUKAWA, Noritaka HIRATA, Susumu TANAKA, and Hiroki HATA. Tank tests on
low speed maneuvering of a ship with vectwin rudder. The Journal of Japan Institute of Navigation,
Vol. 124, pp. 265–271, 2011.

[117] Donghoon Kang, Vishwanath Nagarajan, Kazuhiko Hasegawa, and Masaaki Sano. Mathematical
model of single-propeller twin-rudder ship. Journal of Marine Science and Technology, Vol. 13, pp.
207–222, 2008.

[118] Eiichi Kobayashi. A simulation study on ship manoeuvrability at low speeds. Akishima Laboratory,
Ocean Engineering Research Section, Mitsubishi Heave Industries Ltd. Published in: Mitsubishi
Technical Bulletin No. 180, 1988.

[119] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, Vol. 25. Curran Associates, Inc., 2012.

[120] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine, Vol. 29, No. 6, pp. 82–97, 2012.

[121] Hiroaki NAKANISHI, Takehisa KOHDA, and Koichi INOUE. A design method of optimal state
feed-back control systems by use of neural network. Transactions of the Society of Instrument and
Control Engineers, Vol. 33, No. 9, pp. 882–889, 1997.

[122] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[123] Zhicheng Cui, Wenlin Chen, and Yixin Chen. Multi-scale convolutional neural networks for time
series classification. 2016.

[124] Chris M. Bishop. Training with Noise is Equivalent to Tikhonov Regularization. Neural Compu-
tation, Vol. 7, No. 1, pp. 108–116, 01 1995.

[125] Khandakar M. Rashid and Joseph Louis. Times-series data augmentation and deep learning for
construction equipment activity recognition. Advanced Engineering Informatics, Vol. 42, p. 100944,
2019.

[126] Yoshiki Miyauchi, Taichi Kambara, Naoya Umeda, Kazuyoshi Hosogaya, and Astuo Maki. Sta-
tistical analysis of port navigation and maneuver of a japanese merchant vessel. In Conference
proceedings, the Japan Society of Naval Architects and Ocean Engineers, Vol. 35, pp. 77–87, 2022.
(in Japanese).

[127] Atsuo Maki, Yuuki Maruyama, Leo Dostal, Masahiro Sakai, Ryohei Sawada, Kenji Sasa, and Naoya
Umeda. Practical method for evaluating wind influence on autonomous ship operations. Journal

https://www.japanham.com/en/service/new_vectwin.html
https://www.japanham.com/en/service/new_vectwin.html


98 参考文献

of Marine Science and Technology, Vol. 27, pp. 1302–1313, 12 2022.
[128] Atsuo Maki, Yuuki Maruyama, Leo Dostal, Kenji Sasa, Ryohei Sawada, and Kouki Wakita. Prac-

tical method for evaluating wind influence on autonomous ship operations (2nd report). Journal
of Marine Science and Technology, 2024.

[129] Naoki Sakamoto and Youhei Akimoto. Modified box constraint handling for the covariance ma-
trix adaptation evolution strategy. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO ’17, pp. 183–184, New York, NY, USA, 2017. Association for
Computing Machinery.


	要旨
	謝辞
	序章
	研究背景
	自動運航船
	着桟操船および港内操船の自動化

	関連研究
	操縦モデルの推定手法
	操船制御アルゴリズム

	研究目的
	自著論文(学術雑誌掲載論文および学会論文)

	事前知識
	表記法
	平水中における3自由度の操縦運動
	座標系
	操縦運動方程式

	供試船１: 一軸一舵を搭載した模型船
	自由航走試験のため計測および操船システム
	操縦シミュレーションのためのMMGモデル

	供試船２: VecTwin舵システムを搭載した模型船
	自由航走試験のため計測および操船システム
	操縦シミュレーションのためのMMGモデル

	実験池: 犬飼池

	人工ニューラルネットワークを用いた操縦モデルの推定手法
	操縦モデルの構造
	順伝播型ニューラルネットワーク
	回帰型ニューラルネットワーク
	入出力変数の前後処理
	操縦モデルの表記方法

	操縦モデルの推定手法
	回帰分析ベースの手法
	軌道推定ベースの手法
	ANNパラメータの最適化手法

	模型試験データを用いた検証実験
	操縦運動データ集合
	実験内容
	実験結果

	議論
	結言

	人工ニューラルネットワーク用いた操縦モデル推定のためのデータ拡張手法
	データ拡張手法
	部分列
	スライシング
	ジッタリング

	模型試験データを用いた検証実験
	操縦運動データ集合
	実験内容
	実験結果

	議論
	結言

	強化学習を用いた軌道追従制御方策の獲得手法
	強化学習の概要
	軌道追従制御方策の獲得手法
	操縦運動のシミュレーション環境
	軌道追従制御問題
	静的障害物の考慮

	未知の参照軌道および静的障害物への適用
	参照状態の選択方法
	擬似障害物の生成

	MMGモデルを用いた検証実験
	追従制御方策の訓練結果
	着桟操船の軌道計画
	着桟操船軌道の追従結果

	操縦運動データを用いた実験
	操縦モデルの推定結果
	追従制御方策の訓練結果
	参照軌道の追従結果

	議論
	結言

	総括
	参考文献

