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1.1 &

plil

L11 JRITMER & RIS

SRR O - B S DIEE D L ITIEFIC KL 0 AT D V. EFIC L HFEE
B, o HEMEPIEET 57D, WHMENBET LI e x % r—A T &I
ELL BT AMERD D, WHIE, MPEHTI AT 20K L oS I IRIE 2SO I 55 58
EEBZDHZETRETD. IS, AN RETDIETE, INTORERRIZED
AT HEYST), MErORERFR X O OM L CRAET 2KEIS KBS b.
ZORTHNDOFRAT LICHE, MEBAFEPYIab—raildoT, ORBEE
BRICHET DN TED. £, IRERE T RO OEE L IR HAMICER T 5L
Nix, MEERLT 7TV r—va UREESH —Err— 2R FIRESNTERY, Y
RIS RN O XIRBEA TN D EEZXHND. L LR s, #Eko Rl
FRds L OB S O L CHAT DRI TR < Bk x M BHIAFET DI b b b
P, AN ALDOBEHES ISV I ab—ra NI AHEEOHEMAKHEARON TV D |
2, FEOFRINC L > THEUTLHIZ EARPELWGELZ . 2O X5 RERND,
JEFWIEDOTRNIBNT, FHEISOREBEZLT L HICBETE T,

FBHR N R T IR IS DB O\ TC, — I %%Fﬁiﬁﬂ@ T A I
HEL, JEREI T 7R A2 9~ 5 2. iR ZB L3 2720121, BHEOER &
725 &5 7esgE, B 2 X E SIS L Fm@%mﬁﬁ%ﬁﬁb LA O Sy
THIRIE N EZ TR ENEE L.

P IS 1 ORI T H 2 M TS I3k~ RAEENTET 5. i, JEEST L AR 7 &
RENITERGBEZIED b O, RESCTERR CMM 28467500, BULERIZ X > THHM
DOFRECH T Z AL EZE D 6 O, BN O E 7 E~HEZAED 2 ORECH S %2
miéﬁéﬁw,yayb8~:y7,ﬂ:yyf,ﬁ?x@%k@ﬁ@f%ﬁ&%’
L BDHEER AN b DR ETHD Y. 29 LIEMLIZ X » THMICBEEOT 22 EA
S, TOPEOT HENT AT D LD ITEHMBAHIEETR L, FREICP AT 5 &
W BRN, BRIGTIREDA D =ALTHD 0, O~ /LT A NERE CIRFER
RNAEL D E Vo ARED, REISHOBERTHS V. iz, IRESACHIZREIREL

DEWVICERT2BUEN L, BEISHBNRAETL2HEBO—>2THY Y, LM 72T
FRARELER LR D, ZEOMLTIEIINOBNEAETIHEL1HD. o



RRTRRIZBWTIE, tRRA, LR, mATORESAMSCEELT 2 L% < OB
WEET 570, RIS ORI THMETH 5.

1.1.2 ER23 Y Ehs ORERE

HR23 0 #1532 1E, Fig. 1-1"1R 7 &L 9 ICEER O #LE R O ISR — /00 2 1 OERE AR 4 Fil
BT L2 EICED, FHEEN NIRRT H 2 V19 EHEA & fuEsmiT A
WIS WEFE CHEAR T 5 2 & CTEEEA R L, [FEREE) 3§ 208 )L 2P < 2
ENTE D, WA EZ OMBIEIZIE, X< B, B, B, 1R, BiffE%, £<
ORFENFET S . ZORTHREN D A ZRICHIN D 1T < B, #9728 RE
RPN EFT > TOTH, MR LORRS Y Bl X - TRAET HIARENRBESRTH Y,
B 0 sz ORERW 2 BERETH D W10,

BLER-CEREN R OIG DIRREITIER ICEMECTH D, T, vy 7 b 7ok
I 72 HED TR N T 2§21 X0 A VIG DB RBAET 5 9. F7-, B & HuEmix
HRHS 0 $2fi U 7e 3 DARHEEN 95 72, il & & OFHTIZiE Fig. 12277 L9 12
¥ GPa |23 K Sl E &AM I NFAET H. S 6IZ, EfE TOMGR L OFEH
DRI X 2 728D, HEHY 0 B2 O I mAEE & 72 D X O BMAER A S L, £ O
CTERAIS I FAT 2 10720, BRSNS M B LT Z ERNA<ALNTE
D, Fio, BB ORE T - BRI L D REUT, B30 15 O SRR IR 7o 4
bbb 720, TOX I BRI 7 aRZYRIERT 2ISIREOE(LEEZE X HILD.
JEFNTEMNAER T 25712 L - THEIT T 5 O T, #8523 0 il 05 ke % E &IC T
WA B7-DI21E, 2o OEANRISINIREEZBRT S Z LR NS,

— R 72 EAZ A BHE SUT2 EFFIEN D 1%C-1.5%Cr DiERFE 7 2 ATHY, hk
BEAAL L2 ZICRIR CTRER LT 5 2 & T, M b Bl S 25 shp D202 =
D X 9 e IR 7oz BRI, mVOBRRE & AR PENE A AN X D EN MBI TR DY, FE
BB IRICB WIS & b L— A7 ORI H D iEEME NI 2R D54
LD, T T, BAVEZOPTHEEE L U CIHERMEZ KD b D sz 1XIR R &
AV, i A i UE 5758 - TEEREME 2 [ B &, DT o0 REE 528 T
5z R0 UAMZ ] ESE TS 19202 #5730 57 02 RAERE, EiRORR Y
AN RRFIRIE S D H ARIRDFRE S D . AR RAIT— 2% < O L& LB
THIENTE, MOWENLZELTNDEWVNI AV v "R3B 2D P, —FHT, IFOEIR
REFERRHT ABRDOEITIZE > TEL D CO, BN END 2D, h—Rr=a2—F
TIVDERE VI B DITREAN LS. ZOFT A ) v MIX LT, BREROE
e, AP~ DOBEE X Y, (EROBRLENS OEFERHFHEN TS, 2
NOOERZKM L 2o, FEEOE WG A2 L T < 72oIix, EBEOMERE
ERAEIN T H M S TR RS AR R TH 5.



BB - BRI OB B ISR bk B R E OB T D, Wik & [RIM L
AT AR DR RIS 11 AR5 . FREIS I RN T 2N T B, £
T OO FERRR RIS ) DR IS, P B ISR RIS 1) 096 Ak kT 5 29, 3R OO JEAR TR
B X REFSCREICHIE T X 5 DIk L, IR0 BRI B 1 P TS ml
SOFERFIET 5 HO0, WRLTVBREL ZE LRV, 72, BAYMZO L5
PRAEBYR R 2T 2 WKL, RS S & ATS % & B S BT &
B LIMAT, BEAFPAGBEEOBE & RFH 2 2% L B0 45 5 %)
ST B, Lo TIOX D AREN D BIZ ORI X % MR % T L7 Bl i3t % A 15
F2IT I, BRI b — F I T < BE O R R 5 LER S, —
T, TSR RIE T S RIS AR O S, Hes L FEATEE LT
BOT TN, Tabh, SHIEHFC, Sl RORRIG I & RO %
AV RTFHMMICEE LT, #8230 52 (20 L7 FIEOMSLDB ML ETH 5.
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Fig. 1-1 Appearance and components of rolling bearings.
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Fig.1-2 Schematic diagram of the contact stress state of a rolling bearing'®.



1.2 S4TSR

1. 2.1 RIS HREE

PRI INE, MEIOM L7 vt AL TRETHZ EDMBNTWS., L7 vtk
AN, W B, gy hE—= bV o RIS SENEHY, BE
DOERNITFNFNRL D, L, L7 rtE AL > TIEREOTHNIEL, 20
AR THE— TR OIERRIG IR FAET 2RI IGETH D V. BRI T8
DR FTIRE B E 52 5T Th D, FFi %ﬁ@%%#é%ﬁ@;ouﬁﬂmﬁ
(IS E— 2 DBIFAET D K5 B S ORRE O @R EAL DT I, REDOHRRET
WIS DIG T3 A % i D BN B 5

FRREIGD OWEE & LTI Fig 1-32N0R 9 L 918, K& AL, Mgk, JEmkE
BIZRBIEND 22, LIk, ﬁ%m&%mfﬁwm%%mﬂ#é

EEORBIIXOT AT — D0, a2 —ERS 5. ML OB ITRIE S 2mIR
O 2 HETH Y, FREIG) ORERITHIE SR OMGEFI I TE 20,

O BT — N L D UIWHE P ES RO OT A — T 25 L, WExS:
MR DI L 0 OF B2 522k S8, OFTHIBIATHE DOFESIT X0 RIS %23
ETDFETHD. BRI RERHIZHIE x5 2 U L7-6% Fig. 1-4 177, 04
T EOEFNE, FIEOJFREENBPRTH 5 a8, MRS E 2 RIS HIE D AT BE
B B, BEXROMBIREES KT LW 2, B b IIE ATRERPH O LW HIEE TH
HRTHD. BHitER501%, OFTHF—V2E0HS200 L7 vy 7 TORE
THDHI, SRS HOREICIIARME TH D, WEFRBIZARTH S b
D DEBRDOPNENITBREE O & CIWTIZ BT 2B MLE Thd 0 IEMERE L W
HThD.

a2 —ikI, 2001 R, T A Y A Dva AT T AENHFFERTO Prime 12 X o TR
SNTWEETH D 207, WERNG AWK L CUAY—F > hTUErL, YoM
& TR ERE RS CHRIE T 5. MBI X 0 FR IS ) DRI S LT BR IS A LT 48
fThHY, MENGEET VL LTCARERET VI, WE LB ZRfIZE & LT
5.2 %2 &C, WER SRR OGIME - BB /5% IS 1R S Hivb. Figl-5 122y
&~%®£m$ﬁ%fﬁn)%@@ME%&fhév4k~ﬁy%k HDHMEICEBIT D
PARR 2O IC K BBl & OZERMN G, WEBENELDLZ ENMLNTEY, 07
b%%%%mmﬁ&%%mﬁwm@k iz, PIERRERWIERDOY A X, UA ¥ —1RDH
LR L TN,

o A — kI, YIRS & o THERITBR L S 2 Wik (2 T B 220G Tk 5y & SR B 5L T
H5H. ZHUTKE LT Paglialo | ,J@JU?uJ:Uﬁﬁ#ﬁﬁéi}’bfﬁb\%%mﬁﬂﬁﬁﬁ“é;k, 7]
WAl OIS TNIFEIL S VT2 ER BRI ) LRI S L7 WG I OFNCTh 5 Z EIZER LT



P ZLT, 2 F BN CTOIBEIC AT ARy DERREIS STRIEAAT 9 2 LT, Yl
WrisiNIZ 361 5 3 T OERBEIS THER IR TH D Z L AR LTz,

PMEERIE, ZRALYE 29203930 o ZE £ {5 (Deep Hole Drilling %, DHD {£)*Y7723 %
v, WEEMEDO—HEFIAT 2720, WEMEOMEGFI AN HETH D Z L 1R
Ths.

ZEFLIEIX, ASTME837-04 THUE SN TW A REMEDEREIC 12 HET 5 HETH
5. WEMNBRORMMIZELIEFEHOOT AT =V &M F1F, ZHIZ L 20T RO
EHRPEL, B2 AN TERAISNENEST L. FIAT2 75—V oRE &
I > THIEFRERIE S IZHEZR Y, HK4mm ES ETHEFETH 5. Fig.1-6 ITHIE
DA Z 7. JE O A FHN AR R S0 5 5 .

DHD 713 1990 4F-{RIZ 4 % U A D Bristol K#® Smith & 2358% L7z, ZFLIEZ LR L
FRIEFTETH S P, Figl-7T IR T X 512, MEMNRICHEERE BT, ROBEMET
SIZHEL, REDLVZ MU= (FOMZEERLIZAHITIT) 5. FLoX
=V I K WERBISHONBIR S, EERORNET 5720, b LA=r i ok
WREND, REHWTEBICNZHAET S, ZoFETIFLELFRC X DI, EBiH
HOFREICREN KD Z &, ZIIEL BV RS FFMIZ 750mm E THIE P EETH
LRVEFTHS.

FEMEEIRIE, EITHIHBREA VD HIETH Y, KR OMEMIR~DRAGEE N Ee
XMW o ra ba Ui, BPETRR I K DMER S Tn D P JIE
JREFHEE L TR Y, Fig 1-8 [RT X 212, HEMEMIROK TRIOTHEREST D
LI Ko TS AR RIES 2 Y.

XBREIPTIENL, R ORI % FZEBRE L~V O E A W CRRRICHIE T & 5 51k
THY, Fig -7 17T L1, B THOTHOREHF LD D cosa ik L, sin*y IER
HH W 2D, cos a EIE X OB —FHMTH L7280, HEENPHEKTHY,
FEBRE O OIS EWEST S Z LB HEETH DH. XBRIZ X DS OREL,
FFOT HOMEZ LU LAT O 7o D, B)—7efEdbhniREE N E L <, 72 XMoo lEE
I —EHLL EOFESRI NN ETH D 9.

vora ha AT L HHE, PRI E DBER, MBI E TOERRIG T % K
ETHETZDRERH L0, WTHbHEMAEEATORE TH LD, 2L 262
X T 22D HOREEMR KT Z L0, MR T n b AR B HE L LT
T 2 72 OISR EECOREEZ BT O 2 ENBFEMITITE L. 1o T, <&
BISTOREN ST — 2 % ERE L, REIOKLEMITRAET DS 12 HEH L Tl
FEE L THH LR T W EIZE VR0,

AL TRIR E T HHLTH DNV s 1, EAMICKEEETHY, EEISHO
HTE & Y5 - JEMIEIE S CIRE T 2 M ITFFIC /e, —FH T, < OAFEDFET S
728, FERANTITIR & BULBEG M O BB L OBR-BIG I B HE TE D ENEEL

7



VW, OO, T2 %L BT AVENRNLS. Tbh, WENOFRRE G155
TR LT WHIETHIET D FENLETHD.

1. 2.2 RIS IR

AREATIXFREIS IHEENZ DNV T, BAEMATIZ L 5 ik L EAOT AU K D k&R~
5.
1.2.2.1 BAEMRATIC X 5 71k

BAGREATIC & 2 7051, DS - BB E L L IC BRI TW D, MEIOIR
FEOMAR, IR T & OMBHRRME, AR, BT 255813 oREZ2mEyicET v
fbFaZ ik, FARMANZEAEONTHD. FRCEZOLAE, < DvIa
L— 3 B L OENEITV, REEDFEM STV 5. Fig 1-10 I —flZ2rd 4. £o8
ADBEMEBHED T I 2 b—a Y ETWD, 3R LICEREIG ) & EROREIS 18 K< —
BT HRRBHFELNTND.

BULH DY I 2L —ra b ITNETES ERINTEY, FilR S IXMEZ KRG LT
BADIGHEY I ab—yay BiELTWb Y, £72, AL, By 2 21—
3 VOBERENFEE LD O F I RIFFEOMFIERTER T & 5 filsz 8 O BVLBLFEAT ©
ITo72 ™. 2 b OBAEMNTIE, BVLERFR R IS TR & 7o 2% T IR E R I 4 1 E,
FRIIHEEATRE/RDIRRE CTH B 720, BUH TR Z » - H B 2 mUIce T ML TE 2 &
Z 65, IRERERIETEER 2R B2 2 LIAA TIT ). BVLEL 2/ NI OIF TFT 5
A, WA ILREATREZIREE TH 203, EREOREHRE CHEH S TV A REIDAE
PEIFCEVERH 2 AT 7o F EAVLER 2 i L, SRR OIRERBEAWET 2 Z L IXRS T
F72. 207, BULBLICIE 2 2 & SERBG % T T /Wb T D EAEMAT O RS 1
ELTWL D0, EEROWGOREIS T ZEEIZY I 2 b — 3 T DBEMEICITE-
TWRVORBUIRTH 5. 51, WEOBULELH OmAERE 2521 - Tl 2 T 215
HZ LT, LoERTELETHRINS.

1222 BEHOTAHE

FHBIZE S TRRESINTEAOT A LIE, WHESCEWLIE L WS T8 7L, £
KA ORI THETHRAET 2L OTHORKETH 5 2. HAOT 2L, BIEOGIE<,
HIEDOIIRENTH L LR W B 5 2.

EA O REE, ATEHOEY A 7 L OB % 1E L < FEMICET b LB 2 SfEfig
Mrogik & 1380, IEFGERBEOT AN LEAOT AN EZHE L, BEIEI0E
BaTRT 2 HETHD Y. BHAEOTAHIEL, BFNETEARWEMNE OIS %, Fig.
-NNTRT L9 SO X 0 JEFRE R RIS T L CHIE L, ZORERNL AR
BRIEICCHEAOT AN EHEET D2 LT, b EOMKROER-EIE %2 THIT 5 H1ET
b5 0. BIEROEEERFNE ORI EHET 2 FiEE LTHRELTE

8



V. EE LA EOREMEDRD B D FRTIE OB EMEE OSBRI IS & B A OF A
FEIZED PRILIZHRE DS STV D 2020 BULE OIS ) TRl 9>, vay bE—
U IRV RAET DA TR, wE e — AN T K SIS T b EA
OFHEFIHNLONTEY, ARRRBISHTHTFETHLEFA5.

1. 2. 3 JE TR ERETE

AIFFEDORI G T DR 0 32 1L, 203 0 #EA0IZ X 0 A NS TR ERE IS ) & A
Wil IR D95 Z ERFHE TR D . AFFE THWIEMBHIIR R TH Y, R b
NEBIZTRREIE S 0540 « MPBIBREE 3 Am 2 BEo. A, RIRE{LE ORREE, 8RB LB~
DEEZHZ %5 2512020, 5280 Bl X 2RO A L BAEY A7 &3
T BN DH L. L LR 5, 5250 il N2 H 212 RES DI O U A 7 % 1t
L7EBNEZNETRYET SR, —F5 T, [ CHRA Y HEil 252 1F 5 5 Th 5= R i
IZBIT DAY 2 7 EtliiZ < 5. RIREEOMAR Y 2 7 Et FiES R R IZ S
HWHTX AR H D LB 2, WEOHMBIZOW TR EIT .

1961 2% ¥ ¥ 7 LD Pedersen, Rice 1%, {RREHD LI SIRET HME 2 7
— A7 T w37 (Case crushing) & £ fHTHE LT . 7r—27 7 v v 7 O IL,
Fig. I-12(0)D X 9 1Z/R &N 5. FEH HIL Fig. 1-12G)2 T XK 9 BRI\ T, Mk
NEICAE T D 45° 710 D AWTIIE T t4se = (0x — 0y)/2 LB O® AKIRE D2 15
A=K L L, BIRELIIHR T —R2 7 T v v T ORAESRMN 2 ERICTE VKD
7z. Fig. 1-12GI0 R T EREREN S, MENEICAE T D 45° 51 OF AWIE ST, &4
Bt AMBRE DAY 0.55 L EDOSEIZr — A7 T o v U IREAETDHZ LR LN
L. Tbb, =R 7 v T EBIET H7010iE, EiS1E/ NS LT 5,
WLBESS 2 B L DM BHZ %, RIRETEL L, IRHHRE D@D 2803 2 & 23 Y)
ThHhbdERLTZ., —H T, Pedersen LN, WHIHRTHDL T —AT T v T gk
AT TTR0IE DARIE TIE72 <, Tage CRbAM L72BHITSCHFTHH LTV, Lk,
Ty WD Z E TSN 7 —A 7 T v v TOREFERNE LTEETE 5801348
wThHD.

2000 4, A — b U 7 ESLTRKZO Olsson H1E, 2R HEHICHREAET D ITMED —
JHE & L CINHL K 97 ik B2 (Tooth interior fatigue fracture, TIFF)(Z- DT L7z 9999,
TIFF X8 oC O T AEE, MmO BAELAN OEE — RTH Y, KIEMITIX Fig. 1-
130)D L H WO R & OFRAHT DR BLIE T DRHEN B 5. Z ORI RET ]
HE0D L O AR O (idler gean)lCBIZE SN 256032 <, EAITRKRIEIT OIER
IRIBIZAFAES D, TIFF 3AEOHER E LT, #ilic X 50671 &R RBICTFET 551
OIS THDH L FEE ST RTWD. TIFF (2L D24V R 7 25l 5729
35 51X Findley £:%% F\ 7=, Fig. 1-13(ii)(Z Findley J&¥ECHE L 7= J-fl[aldx & & {f][a]
LD X ZFEAE Y 27 (CIRF) 2T . EBEOHHEFI LR UL, HomS O RAHE, =R

9



JEfHEDIRIREIZIHB W TRKEL &V, WAlEER O ##. J5 28 RO E L v Y
AT PENZ EPRIILTN S, Findley 134K L VIZL AWML & ZDE I
B) < PSS 2 B fE LT A IR ) O G7R EERET 7 15 Td D 72, Hi275 0 H2fih 73 16 H]
DOFPAT I 5 0NIMFTO RN H 5 & Bph 5.

2010 FELARE, X = >~ TRVKREFD Stahl 5 1307 o HLSCIR Ik S (Lt B, s J] R ol B
THE L DWED B3 AT 5 EIN & TFF(Tooth flank fracture) & 44 f11F, FAEHERE & Z D%t
WERE L7227, Fig. 1-143G)IZ TFF OB %74, TFF 37— A7 7 v 37X TIFF
ERBRICIRIREEOIERIRE Z LA E LT, Rl & 0 IRWIS ) TNERICA U 29 578
ThdEEFR L. REEEONEMEIAOREAEICET AL, 2000 412 Hohn <°
Hertter (X > T FZG ET LV ZFH L TREZEIN TS HDOD P, WA EE T—KIZ
FIFA LI W, 2070, 2012 42 Witzig [XH0)E « St =R - Aot E s -
YT RE S SN RLME EHEN S, HEONEENORAEY 27 AFF %
BHTE 2RARER LY. Fig. 1-14(G)IC AFF %2R 242 4. B oofd fi 4
EWPED Dt N AAALE T O /T IS SDIREE & R EFTERERE A KD, NA-1)2 5,
TFF O¥4Y 227 AFF %R 5.

T
App = eI + 0.04 (1-1)
Tper(y)

T, BRI ORBIIEROHEBET H. RIS MEITAEELERE S bR T
Kk v EESN, RITEMIG I DORTA—=FD—2Lro> TEBINTNDS. MEN
HDOIRRIE N AT FEERICHE LIS WIBE R Z W2, i S5 FEME O TR i /15370
EWET DRI TLEMNCHATOL EE 2D, o, EMBE-IC OB EBET 5 A
[ZOWTII/NEDR K TIXMER W E B X b D b OO, KIEDIR R E CIIgGET
IZ X DWHENDOZENRE LT < 220 B ERJE AT OIER RIS RIS S35 43 2 vl helk
Wn. A%, JIRKEBIG 2 BB T _XEWEDOY A ZZHONWTHRADPLETHD LT
BEns.

Fig. 1-14(iii)lZ Lk D FZG &7 /v & Witzig DIREE L7I- HIETO X HBAEY R 7 % g
LR A 7T, BHENDEZZORRAE) ZAVEESAD S, 7T 7Nt RAE Y
AT DEKE L ZDFRARI VPR HEBTREMEL 0D, Witzig OFHMERFHHRFIEIC X
DHFERIL FZG OBMERFRE O R LFAETH Y, FUREESIZFE UHEELRL T,
ZX, Witzig O FEOFRAMEZ R LTS, Witzig D 5 1EITBLE 1SO/TS6334-4(2019)
DR LT TIX W SO NI L L TR STV D,

Witzig DI 1EOHES & [FIRFAIZ, Octure & Ghribi 1%, MR OIRREH O TFF %4V
A7 (CHRHFCILTFB E AL TV 523, TFF L [R—OHRETH 5. )& HHEHE O S filE 55
FEATE CTREAM L T2 % Fig. 1-15OICAFHMIE T TFF 4 Y 2 7 OFHlifs R % R

10



F. kiR L7 FZG €7 /v CToh % Hertter &%, % L T Dang Van JEHE 2 D2 = &
CTFF ORAEN TR TE D ERRTWVDH. 51T, 2018 4T % Octure & Ghribi 1325
I 57 HME Crossland #FAM2EUE & Dang Van RHMIEYEIC X 23R R HOMAR U R 7 FEAMRS
A f L, Dang Van sPlidEELZ W5 Z &L CTFF O34EV A7 2 PATE S Lk
T2 Y. Fig. 1-15Gi)IZ 2 D D8l 55 54 /715 T TFF U 2 27 %5 L 7= R a2 ow .

2% 57\ B3 2 FEAMVE D Crossland FHIEHEX, I A 7 VR DRERORZERT &
R OFKITEIS T 2N TERFEA Y A7 23 L, Dang Van sHli3EHETIS 41 2
IHIZEAL T DR ZEIG ST & FKIEIS ) OFn 2 VTR 9% . Crossland FFAM RS E D Bt
KRORESIBEDZ A I T LR ROFEKFEIGIIEAEDZ A IV 7303 Lo —K
L2V DIkt L, Dang Van #HMEHEITA R 2 T OMRAEIS ST & §KERS T OF O i KAE
ERAWTEZIAEY 27 23T 5. 725, Dang Van s FEED &L T OIS Ik
a2 XM BERETE 5720, TFF OFHMBICAMTH D LlfrEn/c L HETE 5.

FREOSCERIZ X Y, TFF OFAEY A7 X FZG €7 /v, Witzig ®J5{k, Dang Van #FAfl
KECHMTE L2 EPRHLMNIIRoT2. ZRHDOFEDOH T, FZG E7 )V, Witzig D
HEFELLLHEELZEAT 7Y r—a VICEDTE Y, WHELSORREICIHE
T 5 NERIE J7 IR O FHMIZ S H T & 50323 T72\ . —J5C, Dang Van #Fli 248
FRATEL7 AU r—oa U EZRELTWARY. £, Witzig DF71ETIERNE O 5B
D)% B & L2\ A%, Dang Van aFATEHEILZR E 2> © N E TORRBE IR 2 [EHE - 515EBR
R BEARETH D, Lo T, =k LIZim)s 0 il O E IR H & 5 Hik
LC, Dang Van iMli EHENH ) TH 5.

Dang Van ¥ 13X Zdih)% 57 12 B9 2 5F MMk D —->C, 1989 #FI27 T v 2D Ecole
Polytechnique @ Dang Van & SKF @ Griveau, Message (Z & > THEZR iz 9. j@ifo
MPBE« 77U r—3 a VITHERICED BILTWRV. 2 O FEME IR 30 D ER KIS /)
&AW SIS, IR OWE SR L%Da“é ELTEDERORBAEY AT & EREOICHE
35 HETHD. KRENIEZIX, —fhoRE 758 E T HINZHW 5 EE Goodman #R[X|
@%%mﬁﬂ—ya/fkét%wzé“l@miﬁ%m IR CTH D DKL T, E
BROFM 1L L LTI TH 5. IS S1h A 7 VR OB RZ T O IG ) % & D12t )
AT B EKEIS IRy EARZEIS Ty 2 F U, & OB G750 EE &2 U Y JE 5758
JENGRDT-FEMREMEE R L, TOHN 1.0 B2 5 EmbA 7 VR TEXEEEADY
RN D ERIT . ARZEISIIRE, EREICIE —B RIS TH D 03 {H| \—Hij(ﬂ‘/u
WS hazAnTh e 5nT\W5.  Fig. 1-16 D27 F 7% Dang Van J:%E(Z
XEEAD Y AT PRI N EHEEINTB, FIXEHEBEDOY R 8D D EHIE énUﬁJ
Thb. ST A 7 o7y SR IERERE LRSS DRET HGEICEEFEAED
YR WAL D, ZOXLERICBWTIE, Kl 0BT, é“ﬁ”%éébﬁ*ﬁ 7L
EEFEBMCEXAHDBAE LIERD —E L EDNBRENTWD Z 2D, 523D S
ICHEHTE 2FHMERETHL L5 X 5.

11



Z OFHEIEAEDO R & LT, 2011 4 SKF O Fritzson HIEE#IZ O 7 Ly F o 7%
A= 454t % Dang Van ZE¥E% I CREA L 72 0. SCHERHP CIIEfilfir i & BRI A B8 L, 7
Ly F o7 PHTDETAEERL TS, ZOETIVIRERDO 7 L v F 2 7 Ol
SHRICE D PRET AEREO 22 TRREZ S 6, S HIZFHED 100~1000 % & &
BRHZ LMD, SHROEEOT Ly F U7 PRI — L E LTOFAREFI TV S.
Fig. 1-17TOICEFEDO 7 Ly F o 7 X &L, Fig. 1-17G)IC 7 L v F o VR AETRIOR R %2R
T BEMATOMR L, BRI 07T A K DEROM ) % Dang Van FEARFEHEE
THHEZLTW5S. BT 1 7T LOARMEERGET 5 72912 Dang Van FEAREEAEZ
D2 &, TRbb MO ORIl OTEE UTRHMEEE LTIELWE WD
AN D EHERI XD, S BIT, 2009 FIZEERMF OIS I1X, Sl s M4 T
DERDN D I K B ZEIEAED Y A7 % Dang Van FEHEZ VTR L, FEERAE R &b
B L 72 %, Fig. 1-18(1) D EBRAS R & Fig. 1-18Gi) D U A 7 fHlifE RIT L < s L TERY,
BEE S5 SR VIl WL BRE L — MCEZ 5 7 7 v ME L BEOF A TN $ Dang Van
FHENE L TWD EIRRHRTWVS.

L B2 Dang Van 3 EEAE IR AR 8 D K SN EREIAL D 70 3, K@) 5712
LD EEREY AT B EENDOBHEICRO L FIELELTHEHEL TS EBSIOND.

ZIVET, RIS S150A0 - BRI 540 & H DIRIREI DR 0 132 123 T 57 2
Y A7 % BARINRGET L7 B RS 72 B 70, A%, FRlEbE b L7z#iz23 v sz o6
BIERR G R E 2 AT O LTRSS 0040 « MBHREE 34T 2 b DL JPIRREOBHR U 2 7
THITEEIC D EBEZLND.

12



FEFEE(mm)

ooot 004 01 i 10 100
] | I
bR Xeray || Synchrotron | Meutron
Magnetic || Ultrasonic |
Clnter Hole Drilligg
#IETETH Ring Caore
Deep Hole Drilling
EHREE | e |
Saqmmg
T
Slitting, Contour I
I

SURFACE SUB-SURFACE

Fig. 1-3 Various residual stress measurement methods.’

Fig. 1-4 Example of sectioning method using strain gauge.*®
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y < 0-X(y)
« + is tension
+

- is compression

A Qriginal residual stress distribution.

=B

Part cut in half,
stresses relieved
on face of cut.
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Force cut surface
back to original state.
3t

All stresses back to
original values (A).

Fig. 1-5 Residual stress measurement procedure by contour method™”.
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Fig. 1-6 Residual stress measurement by drilling method*?.
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Step 1
drill reference hole

gundrill net sample -i -hack bush

Step 2

diametral measurement of the reference hole

air probe

Step 3
trepannin

endmill

Step 4

remeasure diameter of the reference hole

Il

air pmi}e

Fig. 1-7 Residual stress measurement method of DHD method*®.
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Fig. 1-8 Principle of residual stress measurement by X-ray diffraction®”.
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1) Conceptual diagram of residual stress measurement by siny2 method.
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(ii) Conceptual diagram of residual stress measurement by cos o method.

Fig. 1-9 Stress measurement method by X-ray diffraction*?.
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(i1) Residual stress verification result.

Fig. 1-10 Example of simulation of multi-layer welding of dissimilar material joints
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XY-plane ( Li-speciren )

Fig. 1-11 Inherent strain method (T-L method)®.
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(1) Damage Example.

CASE CRUSHING OF CARBURIZED AND HARDENED GEARS

Table 1 - Summary of Differences Between Pitting
and Case Crushing Failures

Pitting Case Crushing
Physical appearance Shallow Deep; ridged
Cccurreiice Gradual Sudden
General shape V-shape Longitudinal gouge
Distribution iMany teeth  Cne or two teeth
Direction of Acute angle  Normal to surface
surface cracks to surface

(ii) Features.

ZONE | ZONE 2 ZONE 3
MIXTURE
CRUING MIXTURE CF
*——u"u'é"r‘-fr—'- AND [T PITTING AMD ]
8 PITTING RUNCUTS

-

MAX STRESS/STRENGTH RATIO
-

(ii1) Occurrence conditions.

Fig. 1-12 Case crushing on carburized gears™®.
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15 20mm____
-

05 10

Single stage usage Idler usage

Fig. 11. Companson between CIRF of the studied gear used as an idler and in a single stage gear. Matenial 1s 92506 and nomunal tooth load

(i) Damage risk calculation results.

Fig. 1-13 Tooth interior fatigue fracture, TIFF (in carburized gear )*" >,
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(1) Damage Example

Local material exposure
AFF
1 1
Local equivalent stress Local material shear
state strength
Tyr Tper
L R —— T
Local Normal radius
Hertzian of relative
contact stress [« curvature Material:
. Material
Py Prea constants
¥ — ¥ . Hardness
Depth
Tooth flank Profile
External load Eeom:::cvr:o ¢ Residual
(Torque, K- - Stress
Factors) g Y Profile
. Macro
geometry

Fig. 8 Influence parameters on the local material exposure

(i1) Flow of calculating the risk Afr of occurrence of TFF
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Anwendungsbereich Windkraft

Getriebe 1 (Ausfall durch Flankenbruch)

Getriebe 2 (kein Ausfall durch FB dokumentiert)

1| — Ergebnis hinenseriger Ansatz nach FZG-Model| y.4| ~ Ergebnis hiherweriger Ansaiz nach FZG-Modell
L P Warsiiade F20 1ot * 100 TR oy g2tz pinig ® 2T MM o e Wittt 526 ot ™ 050 1 THRIR o i g 22 OM
g 12 - Ergebais normiShiger, praxisorentiener Ansatz ? 1z Ergebnis nosmiahiger, prasisonentiener Anssiz
H Pros Wttt = o o ® 008/ Tiekey oy =31 mm z‘ Ars, waihtctiate w o 4 " 063/ Thele, o, o, 3.2 MM
g 10 AnsbengungSgTenze 2 o Anstrengungagrenze
g hinsichilich Flankenbrch 5 hinsichilich Flankenbrich

...................... A o e 1 sl ol sl e o el i R i

E 0B é L1
5 06 n
4 ©
i i

04 ¥
: :
% ozt 3 oz
' =

o i . i i I ) i i . A
] 1 2 E] 4 5 & 7 B [: o 1 2 3 4 5 & 7 i g
Bezogens Werkstofiete b, [-] Bazngens Werkstofitete yiby, [
Anwendungsbereich Industriegetriebe

Getriebe 1 (Ausfall durch Flankenbruch) Getriebe 2 (kein Ausfall durch FB dokumentiert)

14| — Emetnis hehenwertiger Ansatz nach F2G-hode 1.4 — Ergetnis henerwertiger Ansatz nach FZG-Modsl
T A i P e * 53 Tiete,, e i ® 10.Tmm = B oo 136 s ™ 0,70 Tt s s ® L6 MM
E' 12 " Ergebnats nomilEniger, praxisoseniener Ansatz g 12 Evngednta normitahiger, praxisonent ener Ansstz
g A atsiotiuia. = p 4 % 0,00 Tileyru a2 ® 10,1 e g‘ Arras, nskaiciiadn v o ® 0720 Theleyy o oa ® 11,1 mm

10 Anstrengungagrenze = L Anatrengungagrenze
é hirrsichilich Flankenteuch | | # hinsichilich Flankenbich

ik, b 3 os = -
! :
; o5 ]
5 =
3 !

a4
1 |
H H

a2 0z
2 2

P . . ) " . L )
] 1 Fl 3 & 5 [ 7 8 [ o 1 2 3 4 5 [ T & g

Bezogens Werksiofftate yiby |-]

Bezogene ‘Werksioffiete yhoy [+

(iii) Comparison of breakage risk between Arr and FZG models

Fig. 1-14 Tooth Flank Fracture, TFF ((in carburized gear )°"~%.
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Matalke’s criterion

4 8 & W i2{mm)

apadoupoles’s eriterion

¢ & & 0 i2(mm)

Hertter's criterion

4 [ 2 0 12(mm)
Cut lines (used in Figure 10)

(i) 2013 study conducted by Octure and Ghribi>”.
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Fig. 1-15

—— Crossland’s criterion [-]
—+— Dang Van’s criterion [-]
= Residual compressive stresses [MPa]

.

Damage [-]

0.2 L r r
1] 3

e
L

S|

.

L
5

8]
&b

Dimensionless normal depth

(i1) 2018 study conducted by Octure and Ghribi.

Risk assessment of TFF by various evaluation criteria
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01 T
\ no damage
430 ]

- Bied +
2. \
- = on

40
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] A e e
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Fig 8 Loading pathin a (7, ph) diagram ofa peint Inthe critical zone for two cases: (a) no inil intion;
(b} inlttation (see also Fig, 10)

Fig. 1-16 Damage prediction by Dang Van criteria®®.

26



(i1) Left, Numerical calculations. Right, development program (BEAST).

Fig. 1-17 Risk assessment of fretting occurrence in ball bearings using the Dang Van

criteria®.
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o £ 150 — 5000cycles : 20000cycles —
=
s 2 b | ——
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o #
w € 75% | 7504
o % I
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Fig. 7 Percentage of white layer crack mitiated in RCF tests.

(i) Rolling contact fatigue(RCF) test results

B 7C-S
25 FlmTCL

Van parameter

Dang

Fig. 18 Comparison of Dang Van parameter in RCF tests.

(i1)) Risk assessment results

Fig. 1-18 Risk assessment of railway wheel steel using Dang Van criteria®®.
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Structure of this thesis.
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Non-carburized layer Carburized
layer

e

Young’s modulus : 210000 MPa
Poisson’s ratio  : 0.3 S
Yield stress  : 400 MPa 5
Work-hardening rate  : 100 MPa
Thermal expansion coefficient
* Carburized layer : 1.0 X10/K
* Non-carburized layer : 1.5 %X 10°/K
AQ MM
(i) Finite element model.
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(i1) Heat loads history

Fig. 2-1 Finite element model used for numerical analysis.
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Fig. 2-2 Residual stress measurement method combining the extended contour method

reproduced by numerical experiments, at y = 0 position.

43



400

200

o

o, + Ad, MPa
8
S
[«)
T

400 |

’

,~~ Isoline
1

1 1

-600

-600 -400 -200 0 200 400
Oy, MPa

(i) x-direction component

400

200 |

(=]

o, + 40'y, MPa
)
()
S

400 |

" Isoline
1 1 1

-600

-600 -400 -200 0 200 400
oy, MPa

(i1) y-direction component

44



400 >

20001 Caleulat
3 points - on o
&, | )
‘\bN ”’I
Q ’I,
+ 200 |
bN /”

A
S
=)
T
‘\

.~ Isoline
d 1

-600
-600 -400 -200 0 200 400

o,, MPa

(i1) z-direction component

400 . . : >
200 F Calculation 4 _
pomts _|
o]
=¥
= d
S P
< ”I
+ 2200 1
2 ,'
.‘N "I'
400 7 .
,/',Isoline
-600 ¥ ' : L
-600 -400 -200 0 200 400
Tyy» MPa

(iii) xy-direction component
Fig. 2-3 Residual stress measurement method combining the extended contour method

reproduced by numerical experiments, in the cut surface.
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300~450 HV T~ AT A FEa EIRE T HMMBEONTND Z & 2R L.

2.3.2 HBBISHRETT 5

Fig. 2-8 |2k = v & —E % W 7o FIERBRIR D = 1 O FRE IS ) 5348 ORI E FNA %
AT FET, () BRI RS A2 OB )N DK D BER, VA Y —Ay MTED,
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AY—T1y MZXY, GO T NICEET 5. Wik o & SHEICIERER NS D0
X #REHTIEREOFREIC ) 2 WET D728, FERNIZEIEE O LEEE A RET 24
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7o EEROWria & Fig. 2-9, 1% biv7om S /04 % Fig. 2-10 1237, EERIZIT UM OIE 7
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FITHIEZIT>TWA. £, @ ENMOFEAMEIIMEE CTh 572w, LW DL 5
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Fig. 2-10 O & S AT OFER NG, T mIC I X EXFRRIR E 72> T D LT L
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%, RREADTRREIC AL B R Ll SIKFET 2720 9, M8 R=40mm OFEH L
NBIRDOIERGE 12D 2L, TROLEROEmESERDIZENTRENS. 22T, #l
ELT@E S OMOFHITR=0~39mm £TE L, R=40 mm (LEDMEIX, R=30~39
mm D% A L—X|TERICE 72 3 IREEIZ K » THME L 7-.

47



HER LOSME LTom S i Wi I OZ & L TER)ORRERET VICE R,
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Table 2-1 Chemical composition (mass%).

C‘Si‘Mn’P’S‘Cr‘Cu‘Ni‘MO [O]

’ 6ppm

0.16 ‘ 0.23 ‘ 0.55 ’ 0.006 ’ 0.001 ‘ 1.11 ‘ 0.10 ‘ 3.25 ‘ 0.10

¢ 80 mm

240 mm

Fig. 2-4 Specimen shape.
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Temperature

[ Carburization )

1233K, [Heating ]
65hr | )
Cp 1.33% 1093K,
2.8hr
[Annealing ]
0.Q. 368K
713‘K,
4hr ¥ 2 [Temparing ]
453K,
5.5hr
Time

Fig. 2-5  Heat treatment history.

Fig. 2-6  View of test specimen packing.
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(1) Measurement results of carbon concentration distribution using EPMA
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(i) Vickers hardness distribution

Fig. 2-7 Heat treatment quality.
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_________ 7
v
(i) Specimen cutting (ii) Contour method: (ii1) Residual stress

Shape measurement of measurement of X-ray

cutting surface diffraction

Residual stress;

{0,,00,0,} =  {Ad,Aog A0} + {004, (0, =0)}

Fig. 2-8 Procedure of 3D residual stress distribution measurement
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Fig. 2-9 Cutting surface with height distribution measured by ECM

0.030
0.020
0.010

-0.010
-0.020
-0.030

(mm)

Fig. 2-10 Contour drawing of cut surface
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Distance from surface, mm

40 20 0
0.020 F-——- Measured data
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Fig. 2-11 Contour of the cut surface (z-direction), considering axial symmetry.

displacement

Fig. 2-12 Axisymmetric finite element models used in the contour method.
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Fig. 2-13  Stresses reproduced by the contour method.
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Fig. 2-14 Specimen with cross section machined to measure residual stress in the cross

section.
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Residual stress, MPa
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Fig. 2-15 Residual stress not released by cutting, measured with X-rays.
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Fig. 2-16 Three direction residual stresses in carburized cylinders measured by the extended

contour method(XCM).
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Fig. 3-1
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Inherent strain distribution of a carburized cylinder obtained by inverse analysis.
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70



200 .
<
e
= -
5 A
é 0
E
S
§ 200 | i
Strain gauge
-400 '
0 20 40
Radius, mm
(iii) Axial component, Og
Residual stress reproduced by the inherent strain
----- Residual stress measurement result by the extended contour method
Residual stress distribution reproduced from inherent strain distribution.

71



34 BRBUEOBEAFOTHARE A I =X LT

341 fEGIE

RIRBEANTAE L DEAOT 2L, BRROT A, BREBEOT A, BHEOTHOMO
FIRZETHD Z b, ERERIZLLTO — 22 KBIE, O~ADDOEHRIZKSFTE
5. F7, —OBIESAT U A FMZERBIZHE D EREOT A2 RACEIC K D Zd 5
BaThd. BEMITIE, ORRIZEDRFREEOWEMTER L7z M ERROT HDH
m, & 2WiE, ADMAEEIZER L7z M EBROE(NE 2 bd. IDIZ DWW T Fig.
VISR LB SRR LEETIES DN TWDE Z Eb b, A A MR L T T
REMEDR B 5. F7o, MERBOT HOFA Ll U CERBPEHEOT & & O3 74 b 384
T5.

ORI, MEENEETHRMZEICLDLOTHY, WDERGHNOHEIEE D5y
TR T 2O T 2B L OERBEHEOTHARE L HND.

IO OBEROFEMEZMERT D720, BB £ L7, £7, O~UDDE
HOT AR RIETEREIS ) OB Z EMERICH S 00M2 T 5 BT, [RBIRE & HH
W, M AREREZ (bS8, B2kl A LT vE X OISRt of & %
Fig. 111”73, 9, O)IF R 40mm, £ X 240 mm O FFEZ kbR, 2ofrmic b
KFRE LT 2 IRTIEIRZ R TET L TH SH. T2, IR RO 2 FEIR IR FEL 0.2 mass%
C, AMEMOIRRFEIT 6 mm JE S T—4EIC 1.0 mass% C &9 A5 " EEeT &
L7z. Zone 1~3 TIHHHEED/XT A —X VI~V3 Z2{LSHETWDH. 22T, XA
A MEENEI ST MEROANE Z D255 DWAREL Ve L EDH 5. (1i)1%, Zone
1~3 OHHGEEILR—TH 0, ERAMOREZEZE L 720 GE (VI=V2=V3> V)
THDH. (i) 1 FLEEFOWEBEEN Zone 1 & 2 B LV Zone3 X T M ERED
WETDHEHANT KECEILSEIZSGE (VI>V2=V3>V,) ThHD. (v) 1F¥ES
BIOHEEE % Zone 1l BL N2 TM ZHENA U H/KUE, Zone3 TXA A MERENAE
U2 KBS EIGE (VI> V2> Ve > V3) Thd. 28, KRB CIRRES G
g T EATRICEE L2y, X0 EE7e T iE, BMEEMNT 217\ 2 EOKREIG ) % H
BT DRENAEZHBET LI LICLVARETHD.

BAHYAVEREAT XL 7 1 77 & (MSC.Marc 2014. 1.0) ZFIH L, ##0oo IU 7 5
F, BEYVA X 2mm & Lz, 7, LR, BREROFHEIZIL, IMatPro (Ver. 8.0,
Sente Software) % H\\ 7o, B Z & OZAREZR I, Koisiten-Marburger HIl W& 2512, X
G)DERIZH D & L, IMatPro DERERDIE L —E+ 5 & 5 BKIE, EREREDOHRE o
ENZEIRDT.

72



f=1-exp{la(Mg —T)} 5)

Z 2T, MsIIERBAEEK), TIXEERBEZOREXK) THD. ZEMMATIT
RCH—=RATFA b, BERBBITEEIECTCM EA—2TF A FO2HTHD &
L CH R ZRE L.

R fRIS 01 Fig. 3-4 12779 SCrd20 @ 0.2%Ii /1 % 28 |2 E Z & OfE & FH 4312 &
DEDIZ . KIEHTIX, BEEOTHOEREBOREEEEZTHHNTH LD, ¥
> TROIREARFIESCBNEIRRE, IS, BEIRIG O R B AT, 7&K
TEAAEE OB AIREO MR = & OFFFITBE L TR, £z, ZRRFP O CIE, £
REMMEICRET 2R T A =2 OWM O BN EE TH L. AREEMEITIERE RIS I
TOERIS I THUEOTAREL LB THD. £ 2 THEIE, MHORERIET) %
BT A2 L LEMTHD EE R, RICTHMED 0.4 2L UTEMMAREE 21T -
7-.

342 fROTRER L B

(1) BEIGS EEREOTACRIETRRBBREEE LEEROTHORE

F9, Fig. 3-3G)ICR LIZiBRIAN OIRE MR — 1R HE (VI=V2=V3>V,) 128
T, BARIPERRAT CoR O TR BRI ) 3 A b6 L OVEA ONT 445 4f % Fig. 3-5 12”7, gy,
o, OV, RIRBNICIEMEERZISINEL, ERRBITIE—RRBIRIE AR 5
nd. £z, BRBIZEDHEAOTHNEL, TOKE ZgNbOTMDIIRKRENT L2V
b, ThuE, HFHNE M ERBOTAHOREIZL > TRIRLZEGATH, BIRO
WETHAET LEAOTHIEGELZRD, SENTHEG 1 ~OEEHE 7R &0 R E
NielebeNeg LV RELS AL EEXBND. LLEORRIT, ERRORROKFZRE
HANCER Lz M ERBOTHOHINC LV A CZEROTHATHS.

(2) BREEHEEFEOTAIRIETEROT HAELEDRMZEDE

Fig. 3-3(iii) (2R3 R SG M OMEIEE 2 M AREDO H3ME U 2 #iBHN T K ¥EIC£1L
SHIGE (VI>V2=V3> V) IZBWT, BBMARNT CRDO RIS A L O
B A O A4 & Fig. 3-6 (2”7, 0y, 0,O\WV T4, Fig. 3-5 & [FIERIC Zone 1 DR IR
BN CIXERMEER RIS A T, 2 C Zone 1| OIFRRIBIZEBROMBAMENFED HiLd.
SHIZNETIE Bl E o> TS, £, g, eOWVTILH Zone 1| DIRREIZINT
EDQBEAOTHBEL, Zone | DIFRIKEIZENWTRADEAOTHBBKE 72D, &,
gL HIEAIIFRILCTHL DD, WINLbe OMRHMENRKE 2o TDH. ZOFH

73



1%, DIZBWTIRIKE Deyidey L 0 KE Do -8R & RIERIZ, 5O E 7 &

DHRESNTEAEOT AR FERBAE L2 ENB2615.

LLED Zone 1 OIERIREDOSIEIST), Zh kT 5A0EAOTHOMEIL, E
LI FENOMEAEEDOSMITER T 26D THLZLEAEKRL TV D.

B) BEISHLEAOTAHRIRIETAT VA NEBROEILOKE

Fig. 3-3(iv)D PR OHBHEEE 2 M ERERL LA 1 NERENAE U 5 ZKHIC
AL S WA (VI> V2> Ve > V3) I8\ T, BHPMERRNT TR O -G )01 8
K OEA OT 25940 % Fig. 3-7 2”9, Zone 3 TlX, <A 74 FOLRERE EMITE
BT 2HAMTMAREIERELZ 095 LTWA. FD7=®), Zonel IZBWT, EHIN
S EEAHOT HO55ARIL Fig. 3-6 £ [FEETH D753, Zone 2 12T, MJE A &l /5w
DERIRIERMEIS ), EQBEAOTHBET TS, O, BEAONTHDORE Side
EHART, e DFFNRRENT 0353005, 788, Fig.3-1 TRLEEAOT H0mIE, M
JAJ5 1, 5 T@ER T DORE SN2 L. FRROBRGHERND, & >efmb 2 LI
EVERNICHEE TE TV LD, BESRLLEZELH Y, +3ICHIt TE o 7o e
MEZ LMD, ZORMBIZEFRADOHHEEEIZER L7 M ARBROZEMICE D DT
bodrLtBZILND.

Fig. 3-7 DFRRIC 13 A01%, Fig. 3-2 OFRBEICITRIERE R & BRI —F L TV D723,
ERMIZ-HL TS LIEE 2. 2, fid L7ERIEollEREL IEL &
[Nz, RETOBICIRIRMEZ 2O ET NV E LT Z &, 3B N OEGER 72 4
LEBEL TWRWD &, ARSI HGIT 2 ZBEEOT %% M AHDRERIS /1% 0.4
FIC L CRIc Sl & Al L2 2 L CAEUZBRENER EHESRD.

UL b, BEEEPERRSG A2 T, BRSO RIR & 72 5 EA O A AT M E T A
TEPALNCLEE. £, BRHBTIE, RFBEEIKFT DM EREOT A, Mz TH
RIRER DG ENREE IR L7z M ARBORFEZE, & HITLEO M ERBEORD O %
ZFTEAEOTHOMBIRESND Z ENRpnoic. KIBEORRMIZHLTIE, b
DHERZBRELICEFOTAOMERBERELRT D2 LN TEUL, EERROEE
ST DD R ATREIZ /R D L ZE 2 HiLD.

74



(1) (i)

Vi=h=V>V,

z
1073 K
0.2 mass% C 1.0 mass% C
> <> -
120 Carburized g
: : layer : 6 mm (&
Zone Zong Zone Vi=V=V;
3 0201 RT293K _
: : time
20mm @ | 12 mm (111)
A ,E\ ,l\ Vi=h=r>V,
v, Vi W 1073 K
o =
I I E
! ! (]
b &=
— v SNERLERTY
0 40 F{T.ZE}’: K
{ime
) (iv)
2D axial symmetry model Vi>V,> V. >V,
Radius = 40 mm 073K
Length = 240 mm £
s [
Young’s modulus = RT
: 208000 MPa v, V3\2\93K
Poisson’s ratio : 0.3 time

Ms : 1.0 mass% C 388 K
0.2 mass% C 606 K

Fig. 3-3 Analytical model used for qualitative thermal-elastic-plastic analysis.
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Fig. 3-4  0.2% proof stress value of SCr420.
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Fig. 3-5 Results of thermal—elastic—plastic analysis to reproduce inherent strain distribution
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Fig. 3-6 Results of thermal—elastic—plastic analysis to reproduce inherent strain distribution

due to transformation expansion and timing of transformation of carburized steel.
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to the factors causing the intrinsic strain, and
the distribution is estimated by making the
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Fig.4-1 Diagram of residual stress estimation by numerical analysis.
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Fig. 4-2  Carburization analysis model and cooling conditions used to establish the inherent

strain estimation method.
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Fig. 4-3  Residual stress distribution in 6mm carburized area by thermo-elastic-plastic

analysis.
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Fig.4-4 Inherent strain distribution in 6mm carburized region by thermo-elastic-plastic
analysis.
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Fig. 4-6 Inherent strain and approximate formula for carburizing affected zone, r..
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Fig. 4-7 Inherent strain and approximate equation for cooling rate affected region, rq.
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Fig. 4-8 Inherent strain in constant inherent strain region, 1.
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Fig. 4-9 Inherent strain distribution at 4mm carburizing area.
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Estimated value by approximate formula

----- Thermal-elastic-plastic analysis
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Fig. 4-10 Inherent strain distribution at 8mm carburizing area.
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Comparison of residual stress distribution in 4mm carburized area.



= Estimated using approximate equation for intrinsic strain
——— Thermal-elastic-plastic analysis
----- Reproduced from intrinsic strain
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Fig. 4-12 Comparison of residual stress distribution in 8mm carburized area.
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== Without considering the difference in martensitic transformation rate

----- Obtained from actual measurements
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Fig. 4-13 Inherent strain distribution used for residual stress estimation.
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Inherent strain formulation for carburized region, re.
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Fig. 4-15 Inherent strain distribution in the cooling affected region, rq.
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Fig. 4-16  Inherent strain distribution for 4 mm carburized area obtained using approximate

equation.
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Fig. 4-17 Intrinsic strain distribution of 8 mm carburized area obtained by using

approximate equation.
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Fig. 4-18 Residual stress distribution of 4 mm carburized area obtained by using

approximate equation.
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Calculate radius with high risk of crack initiation

Determine the direction of crack initiation from
material defects present at the above locations

Investigate crack propagation from the defect and
initial crack

Fig. 5-1 Conceptual diagram of chapter 5.
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Fig. 5-2 Finite element model used to reproduce residual and contact stresses in a bearing.
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» : Radius position in the cylinder
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Fig. 5-3 Schematics of between the cylinder and the cavity.

Fig. 5-4 Observation of grain size at 31mm radius with high risk of crack initiation to

determine virtual crack initiation length.
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Residual stress reconstructed from inverse analyzed inherent strain
(r-0 plane)

Residual stress reconstructed from inverse analyzed inherent strain
(7-z plane)

Measured residual stress by the extended contour method
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Residual stress reconstructed from inverse analyzed inherent strain
(r-0 plane)

Residual stress reconstructed from inverse analyzed inherent strain
(r-z plane)

Measured residual stress by the extended contour method
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Fig. 5-5 Residual stresses in the previous report and the present one.
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(1) Evaluation of Dang Van criterion
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Carburized layer, 6mm
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(i) Dang Van criteria evaluation results for each radius position

Fig. 5-6  Evaluation results of Dang Van criterion.
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Dang Van criterion d

0 45 90 135 180

Angular position in a cavity 6, , deg

Fig. 5-7  The results of the Dang van criterion are used to evaluate the angular position of
high risk of crack initiation by introducing a cavity at the depth position with high

risk of crack initiation.
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Fig. 5-8 Stress amplitude at the angular position with high risk of crack initiation.

Fig. 5-9  Analytical model with virtual initial crack introduced on the cavity (cavity

diameter 0.1 mm, virtual initial crack 0.05 mm).
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Table 5-1 Stress intensity factor amplitude for each cavity.

Mode I Mode 11
Hole
Diameter Koax Kmin Knax | Kmin
og=0 | 18 2.7
®.0.1 mm 3.4 -3.4
or#0 | 5.1 0.6
OR = 0 34 -3.1
®.0.2 mm 33 33
or#0 | 75 0.9
ar = 0 55 -3.4
@, 0.4 mm 2.3 23
r#0 | 106 1.7
(MPay/m )
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7o, Z OISR - BN ESREH & LTS0S 2D Aman B, NG -
MUNE RHORMPIL, —BTHERBEI MRS L Z L E2R L, A TIE Aman
O OFEBRFERIG, WUNKHE - /N & R WPRIE £ 2NEB T DVarea Rt 2D, S
& DBMRE T, WERA Fig. 5-10 (R 7. 77 7 hosfix, RXE sy, 2ok
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HHZ D, RE-DIFEHTHD & HleT.
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ENTEY W, MKy (RS H1F ERWEMRIS NS T2 Y. —F T, SR0OK Tk
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KN DEEOKNRLEELRIFTEEZ, ZOKBOKEKgaicE L2, AN
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TCHRAT OFE R B ERIR D ZE L & dil 7 AN HEBR IS AR R W22 FLIS DWW T, B VRRIG )
ZBELT2G6H & LBRWGE OIS IIERGR A KD 7. Z 2T, Fig. 5-13 OJRIRGREIE,
& |EFTIHERT 2T 0B O IIx L TREEL 72 b D TH 5. RBFFEOfiFE
BB W TZEN DA U ER/HOE— R LS IEREEE, SHmICEE L 0 Hmos|
BRIG TS T, EREEE T r TROEMIEINC X DIRNEFROMFEEZATND
(Fig. 7). BB IZITERF MOEREICBET 2 TRBEEZRERD D MERH SH. 7272 L,
2RICH B 3RIC~DILRIAYE: D BALOWMK 2 BFET 5 &, SRHEWN r F A OEMEC &
LIRARE OB, Fig. 10 LFRIT 2 LH#RTE 5. 22T, Bl mstozo
(2, 2 RICDFHRTRD IS NIRRT — KRB IR GOTERR 2R L5 2 & T3 %ot
EHDISTILRBEE K 2 HH LT,

ROk DD, THROMBRBRAHRT D LT, PRGNS IERREEFAK ot i
ZHLNIT HRENH L. TRKOBAAESICHEH LIZAKegrm!E, Y 7R EDOHE
BB ERMHEINTND D, S|, AKege & AK & BT 2 2 L1080 X 2512
T AHRE AT o 7o, dhsz 8l & AW CHWIZIRIRENE Y > 7R PMTIERSE & Rew s 2
EnD, JEE DL NERCTEG LS8 OAK efr =26 MPavmZ I L7z, £72, &
ZBAPA N RKLIZ DWW TTEATEIE L TR WS OO, AREFFEO B I35 22 8 E R
MFEORREICH D7D, Ko =08 LHEEITo/. 72720, FEEOSHBM DA%
HEST D LT, EEEICXZERIBFICOVTHREEZIT) 2N TE L0, 2H
PO 2B OB A% OE & T 5.

AKjegn DFER & @ = 0.1, 0.2, 0.4 mm OERIRDZEALDOHA L dil iz V22 4L T
o D86 OIS L RRBIRBAKG O FAERD O H, AT 07, FEIGZ5E
L7285 AD oo =02mm LSO 7 1 v k% Fig. 5-14 (233, KIEE 0 ISEA L= {A8Y)
W &= RO T RIS IIERIRILZ Knaxinitial & U CHEZ, (1 — Riniia) ZHE#IZ & o7z, L
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Fig. 5-12  Explanation of cavity and crack shape.
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Fig. Al1-1 Location and number of elements, boundary conditions, and elastic strain in

axisymmetric models.
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Fig. A1-2 Element and number of inherent strain.
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Fig. A1-3 Image of unit inherent strain in circumferential direction uniformly in axial

direction.
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Fig. A1-4 Radial elastic strain in column a used in the elastic response matrix.
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Fig. A1-5 Composition of the elastic response matrix [Hé—mi j].
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