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ABSTRACT 
 
This dissertation provides a theoretical elucidation of the structure-property correlation on two-photon 
absorption (TPA) in open-shell electron systems, aiming to establish materials design guidelines for 
controlling these properties. TPA, a third-order nonlinear optical (NLO) phenomenon, has attracted 
significant attention due to its potential applications. Open-shell molecular systems are expected to be 
promising candidates for high-efficiency NLO materials. Our research focuses on neutral π-conjugated 
radicals and their π-stacked molecular aggregates. In such aggregates, tuning the interactions between 
the radicals is crucial to delocalizing the electrons along the stacking direction, giving unique optical 
properties. In addition, the NLO responses, including the TPA cross-sections (a measure of the efficiency 
of TPA), are expected to exhibit a nonlinear enhancement for the number of molecules, potentially 
surpassing the performance of conventional closed-shell NLO systems. Previous theoretical studies for 
open-shell systems have primarily focused on the structure-property correlations for the static second 
hyperpolarizability (γ), which characterizes the third-order NLO response to the static electric field. 
However, theoretical analysis of TPA properties of open-shell molecules and their aggregates remains 
limited due to the complexity of their electronic states. The TPA cross-section, which is an incident light 
frequency-dependent quantity, reflects the ground and excited state electronic structures that are still 
challenging to treat by quantum chemical calculations. This dissertation analyzes the static γ and TPA 
properties of monomers, dimers, and multimers of π-conjugated open-shell molecules using high-
precision electronic structure theories and computational methods. The correlation between these 
properties and the diradical character y, which quantifies the degree of open-shell character in the singlet 
state, is elucidated. Based on the results of calculations and analyses, design guidelines for enhancing 
the TPA properties of molecular aggregates composed of open-shell π-conjugated molecules are 
proposed, providing new insights into the development of advanced NLO materials. 
 This dissertation consists of three parts. PART I introduces the theory, computation, and 
analysis methods for the electronic states of open-shell systems. In PART I-1, the fundamentals of 
quantum chemical theory are described. Analytical expressions for the energies and wavefunctions of 
the ground and excited states of open-shell systems are introduced, derived using the valence 
configuration interaction (VCI) method for the simplest symmetric two-site diradical model. A 
fundamental definition of the diradical character y for diradical systems is then presented, along with its 
extension to N-site multiradical systems, where multiple diradical characters (yi) can be defined. The 
theoretical framework of NLO responses is discussed in PART I-2, which includes the derivation of 
sum-over-states (SOS) and energy derivative expressions for the static and dynamic third-order 
nonlinear optical susceptibility (γ), with the latter being closely related to the TPA cross-section. 
Additionally, the correlation between y and static γ (y-γ correlation) is examined. PART I-3 presents the 
theoretical aspects of TPA, introducing a calculation scheme for evaluating TPA cross-sections and 
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explaining the differences between TPA and one-photon absorption (OPA). 
 In PART II, the static γ of one-dimensional (1D) π-stacked aggregate models of phenalenyl 
molecules is investigated. The dependence of the static γ on the stacking distances (d) and the number 
of molecules (N) is examined. A new y-based index is introduced to characterize the open-shell 
electronic structures of such 1D aggregates, comprising the standard deviation (ySD) of yi, and the 
averaged diradical character (yav). Additionally, to predict the NLO response of 1D crystalline systems, 
the static γ per dimer unit is computed in the limit of N → ∞. The theoretical and computational analyses 
have revealed a range of d where the static γ increases by more than one order of magnitude. These 
findings provide valuable insights and contribute to developing design principles for open-shell 
molecular aggregates that exhibit exceptional third-order NLO properties. 
 PART III discusses the TPA properties of realistic open-shell molecular aggregates. In PART 
III-1, the ground and excited electronic states of π-dimer models of phenalenyl radicals are analyzed 
using the multi-configurational quasi-degenerate second-order perturbation theory. Detailed 
examination of the OPA and TPA spectra has revealed that significant intermolecular electronic 
transitions occur when the π-dimer is formed with a specific short stacking distance. The mechanism of 
such electronic transitions is analyzed in terms of y. The analysis reveals a significant enhancement in 
the intensity of the first TPA peak in the dimer with intermediate y. In PART III-2, the relationship 
between the open-shell electronic structures and the TPA cross-section at the first peak is examined in 
the 1D π-stacked multimer models of phenalenyl radicals. The effects of d and N on the open-shell 
characters, evaluated with yav and ySD, and on the position and intensity of the first TPA peak, are 
elucidated. It is found that a significant increase in the TPA peak is observed at a similar range of d with 
those obtained for the static γ case. This work represents the first detailed elucidation of the TPA 
properties of realistic π-conjugated molecule aggregates, considering their frequency dispersion. These 
findings are expected to contribute to further developing novel open-shell TPA materials with 
performance surpassing conventional systems. 
 Throughout the dissertation, the influence of several structural parameters in the open-shell π-
conjugated molecular aggregates on the positions and intensities of the TPA peaks is elucidated through 
the analysis of open-shell characters of diradical and multiradical systems. The obtained results are 
expected to construct a theoretical basis for elucidating the fundamental structure-property correlations 
for TPA in open-shell systems, which has not been established so far, and to contribute to accelerating 
the future development and applications of novel open-shell NLO materials such as organic crystals. 
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PREFACE 
 
Experimental results are undeniably factual. However, they are invariably influenced by environmental 
and human factors. Even with extensive experimentation, it is often challenging to fully discern the 
underlying causes of the observed results. In such cases, a computational approach based on quantum 
mechanics offer a robust framework for uncovering the microscopic mechanisms behind physical and 
chemical phenomena and for establishing foundational principles for material design. 
 Having begun my academic journey as an experimental researcher, I later resolved to study 
the theoretical foundations of quantum chemistry. I believed that by integrating experimental and 
theoretical methodologies, a deeper understanding of fundamental phenomena could be achieved. This 
dissertation represents a significant milestone in my pursuit of an ideal approach to the development of 
novel photo-functional materials by combining theoretical and experimental approaches. Throughout 
this research, I focused on comparing my computational findings with previously reported experimental 
results to ensure coherence and accuracy. 
 Quantum chemistry has proven to be far more intricate and profound than I initially anticipated, 
and I do not claim to have mastered its entirety. Nevertheless, the research mindset I have developed to 
unravel phenomena through the synergy of theory and experimentation will undoubtedly serve as a 
cornerstone for my future endeavors. I hope that this dissertation contributes to the advancement of 
knowledge through the integration of experimental and theoretical perspectives. Moreover, I am deeply 
grateful for the invaluable growth I have experienced as a researcher through this study. 
 This dissertation study was carried out under the supervision of Professor Dr. Masayoshi 
Nakano, Professor Dr. Yasutaka Kitagawa and Dr. Ryohei Kishi at Division of Chemical Engineering, 
Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka 
University from October 2020 to March 2025.  
 
 

Masako YOKOYAMA (MORIISHI) 
Division of Chemical Engineering Science 

Department of Materials Engineering Science 
Graduate School of Engineering Science, Osaka University 
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GENERAL INTRODUCTION 
 

1. Nonlinear Optics 
Nonlinear optics (NLO) is a research field that treats strong light-matter interaction where the 
polarization of matter shows nonlinear responses to the electromagnetic field of light. Since the magnetic 
field strength is much smaller than the electronic field strength from Maxwell’s equations, it is usually 
enough to consider the interaction between electric fields and materials. When the applied light intensity 
is weak, the dielectric polarization P induced in the substance is proportional to the electric field E:  
 

𝑷 = 𝜀!𝜒(#)𝑬 (1) 
 
Here, 𝜀! is the dielectric constant of the vacuum, and χ(1) is the linear (electric) susceptibility. When 
the applied light intensity becomes stronger, P responds to E nonlinearly due to the strong light-matter 
interaction. The relationship between P and E cannot be described well by the above expression and 
should be expressed by the power series as follows1: 
 

𝑷 = 𝑷(#) + 𝑷(%) + 𝑷(&) +⋯																														 
= 𝜀!,𝜒(#)𝑬 + 𝜒(%)𝑬𝑬 + 𝜒(&)𝑬𝑬𝑬 +⋯- (2) 

 
Here, 𝑷(')  represents the nth-order polarization. 𝜒(%)  and 𝜒(&)  are the second and third-order 
nonlinear susceptibilities that characterize the magnitudes of the second and third-order NLO effects. 

The electrical response of such macroscopic materials can be derived from the polarization of 
materials at the microscopic level, such as atoms and molecules. A similar expression describes the 
microscopic polarization p as Eq. (2), although we should expand it in terms of the local electric field F 
(different from the external electric field E) of the radiation field at the point where the molecule is 
located1: 
 

𝒑 = α𝑭 + β𝑭𝑭 + γ𝑭𝑭𝑭 +⋯ (3) 
 
Here, the polarizability α, first hyperpolarizability β, and second hyperpolarizability γ are the 
microscopic origins of linear optical, second-order NLO, and third-order NLO effects, respectively.  

Several second-order NLO effects, including three-wave mixing [second harmonic generation 
(SHG), sum frequency generation (SFG), and difference frequency generation (DFG)] and nonlinear 
refractive index (Pockels effect, a first-order electro-optic effect), can occur typically in ferroelectrics 
and piezoelectrics. SHG is a typical example of second-order NLO: When the input light frequency is 
ω, an output light with doubled frequency 2ω can be emitted. This phenomenon is utilized for 
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constructing wavelength conversion devices. Third-order NLO effects can occur in any kind of material. 
There are various third-order NLO effects concerning four-wave mixing [third harmonic generation 
(THG) and degenerated four-wave mixing (DFWM)], nonlinear refractive index (second-order electro-
optic effect, the optical Kerr effect), two-photon absorption, and induced scattering. Hereafter, we focus 
on the two-photon absorption phenomenon of molecular materials. 
 
 
2. Two-Photon Absorption 
Two-Photon Absorption Process 
Two-photon absorption (TPA) is a third-order NLO effect where a molecule absorbs two photons to 
become its excited state. In this dissertation, we only discuss the simultaneous TPA process in which 
two photons are absorbed by a molecule simultaneously. Most photochemical reactions caused by UV 
or visible light irradiation are typically initiated by the one-photon absorption (OPA) process in which 
a molecule absorbs a single photon to become an excited state. Figure 1 schematically shows transitions 
of one-photon, non-resonant two-photon and three-photon absorption processes. In the OPA process, the 
excitation can occur when the incident photon energy hν matches the energy difference between the 
excited and ground states ΔE (one-photon resonance condition, ΔE – hν = 0). In the non-resonant TPA 
processes, the excitation can occur even if the incident photon energy hν’ does not meet the one-photon 
resonance condition but satisfies the two-photon resonance condition ΔE – 2hν’ = 0, which means that 
hν’ is half the excitation energy value. This transition appears to occur via a virtual state at the position 
where ΔE’ = hν’ (dashed line). Similarly, the excitation can occur in the three-photon absorption process 
when ΔE – 3hν” = 0 is satisfied. Owing to these features of multiphoton absorption processes, we can 
create electronic excitations of molecules (typical organic molecules tend to exhibit the first OPA band 
around the UV-Vis region) with light of longer wavelengths, such as the near-infrared (NIR) light. The 
non-resonant TPA process occurs when two photons simultaneously collide with the molecule. High 
photon density is necessary to increase the probability of such a process.  
 

 

Figure 1. Schemes of (a) one-photon, (b) two-photon, and (c) three-photon absorption processes. 
Dashed lines represent virtual levels. 
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 Another essential aspect of TPA is the selection rule for optical transition. Consider a 
centrosymmetric molecule to which the Laporte rule applies. Parity-preserving electronic transitions are 
forbidden in OPA and allowed in TPA. Transitions between the states with different parities (gerade and 
ungerade) are allowed in OPA but forbidden in TPA. Gerade and ungerade states have symmetric and 
antisymmetric wavefunctions concerning the inversion center. In contrast, transitions between the states 
with the same parities (gerade and gerade or ungerade and ungerade) are forbidden in OPA but allowed 
in TPA (Figure 2). In other words, OPA and TPA follow opposite selection rules. Namely, there are 
excited states that OPA cannot access, but TPA can. Such excited states are sometimes called “dark states” 
because they are "invisible" electronic states with conventional spectrophotometers. Forbidden 
transitions become allowed for non-centrosymmetric molecules, and both OPA and TPA can access the 
same excited state1.  
 

 

Figure 2. Allowed and forbidden transitions for OPA and TPA in (a) centrosymmetric and (b) non-
centrosymmetric molecules. 
 
A Brief History of Two-Photon Absorption 
TPA is the first NLO effect for which the process was theoretically predicted by Maria Göppert (Maria 
Göppert-Mayer) in 19312. With the invention of the Ruby laser by Maiman in 1960, TPA was first 
observed experimentally by Kaiser and Garrett in 19613. For a while, fundamental research for TPA was 
conducted mainly using continuous-wave (CW) lasers and nanosecond pulsed lasers as a means of 
spectroscopic measurement. As laser technology has evolved, many applications utilizing TPA have 
been proposed. For example, two-photon laser scanning fluorescence microscopy was developed and 
applied to the biological field4. In the 1990s, a Ti:Sapphire laser capable of generating intense ultrashort 
pulses of about 20 femtoseconds (1 fs = 10-15 sec) became commercially available. After that, developing 
highly efficient TPA materials began attracting significant attention. 
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Efficiency of Two-Photon Absorption (Two-Photon Absorption Cross-Section) 
Suppose a laser beam of intensity 𝐼 is irradiated onto and passes through a sample along the z-axis. The 
decrease in the light intensity -dI (Figure 3(a)) after transmission through the area with a sufficiently 
small thickness dz is generally expressed as:  
 

−
𝑑𝐼
𝑑𝑧 = 𝛼(#)𝐼 + 𝛼(%)𝐼% ++𝛼(&)𝐼&…+ 𝛼(')𝐼' +⋯ (4) 

 
Here, 𝛼(") is the linear absorption coefficient (cm-1), 𝛼($)  is the two-photon absorption coefficient 
(cm/W), and 𝛼(%) is the n-photon absorption coefficient, representing the absorption efficiencies of a 
sample. Each absorption coefficient is proportional to the imaginary part of the odd-order nonlinear 
susceptibility: 
 

One-Photon Absorption: 𝛼(#) ∝ Im<𝜒(1)= 
Two-Photon Absorption: 𝛼($) ∝ Im&𝜒(')' 
Three-Photon Absorption: 𝛼(') ∝ Im&𝜒(()' 

 
The linear absorption coefficient 𝛼(")  corresponds to the absorption coefficient α defined by the 
Lambert-Beer law shown in Eq. (5): 
 

𝐴 = − log#! ?
𝐼#
𝐼!
@ = 𝛼𝐿 = 𝜀𝑐𝐿 (5) 

 
I0 and I1 are the input and transmitted light intensities through a sample. The dimensionless quantity A 
is absorbance, defined by the ratio of I0 and I1. It characterizes the degree of light absorption after passing 
through a unit length L of the sample (the optical path length: generally, 1 cm). ε is the molar absorption 
coefficient [(mol/L)-1 cm-1], and c is the molar concentration of the sample as a medium (mol/L). ε 
characterizes the degree of light absorption per mole of material for the optical path length of 1 cm.  
 The relationships between the intensity I and light absorption of OPA and TPA processes given 
in Eq. (4) are illustrated in Figure 3(b). The light absorption of the OPA process is proportional to I and 
more significant than that of the TPA process in the weak I region. The light absorption of the OPA 
process increases nonlinearly with increasing I. For the intensities of I up to 104 W/cm2, almost only the 
OPA process contributes to light absorption. When I becomes strong enough (typically, > 104 W/cm2), 
the light absorption by the TPA process exceeds that by OPA. Figure 3(c) shows an example of laser 
light focused with a convex lens, and a high-intensity region can be prepared around the focal point. 
OPA can occur at any position the light passes, whereas TPA occurs only near the focal point. This 
property is useful for achieving spatially selective excitation. 
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Figure 3. (a) Input light (I) and transmitted light (I – dI) passing through a sample with a sufficiently 
small thickness dz, (b) the light absorption of OPA and TPA processes as a function of light intensity I, 
(c) laser light focused with a convex lens. The red and blue arrows in (b) correspond to the intensities at 
the positions indicated in (c). 
 
 The absorption efficiency per molecule is expressed in a measure called cross-section. The 
photon flux Φ corresponds to the number of flowing photons per unit time and unit area (photon cm-2 s-

1). The light intensity I is expressed as I = ℏωΦ using Φ and the photon energy ℏω (J). When the photon 
flux Φ passes through a sample with a number density of molecules N (molecules cm-3), the decrease in 
photon flux -dΦ after transmission through the area with a thickness dz is expressed as: 
 

−
𝑑Φ
𝑑𝑧 = 𝑁𝜎(#)Φ+𝑁𝜎(%)Φ% +⋯+𝑁𝜎(')Φ' +⋯ (6) 

 
Here, 𝜎(#) is the linear absorption cross-section (cm2 molecule-1), 𝜎(%) is the two-photon absorption 
cross-section (cm4 s photon-1 molecule-1), 𝜎(')  is the n-photon absorption cross-section (cm2n sn-1 
photon-(n-1) molecule-1). 

The relationship between 𝜎(#) and 𝛼(#), and that between 𝜎(%) and 𝛼(%) are expressed as 
follows: 
 

𝛼(#) = 𝜎(#)𝑁 (7) 

𝛼(%) =
𝜎(%)

ℏ𝜔
(8) 

 
The growth rate of the magnitude of 𝜎(') with n is approximately expressed as follows1: 

(("#$)

((")
	~	10)&* cm2 s photon-1 

If 𝜎(#)  = 10-16 cm2 molecule-1, the magnitudes of 𝜎(%)  and 𝜎(&)  are approximately ~10-50 cm4 s 
photon-1. The value of 𝜎(%) (TPA cross-section) is usually expressed in units of GM (1 GM = 1.0×10-
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50 cm4 s photon-1 molecule-1), an acronym for the last name of Maria Göppert-Mayer, who first predicted 
the existence of the TPA process. 
 
 
3. Applications of Two-Photon Absorption Materials 
Here, we briefly introduce various applications of TPA through spatially selective photoexcitation. 
Three-Dimensional Optical Storage 
A three-dimensional (3D) optical storage technique utilizing the TPA process was first proposed in 1989 
by Parthenopoulos et al5. TPA occurs only near the laser focus. This property can be used for high-
density recording in 3D space with sub-μm order resolution. This technique attracted great attention 
because of its potential for enormous recording capacities of 1012 bits/cm3 or more. In this first proposal, 
a photochromic dye, spirobenzo-pyran, was used in the recording layer (Figure 4(a)). TPA excites the 
dye molecule, and the subsequent structural change corresponds to the data-writing process. 
Fluorescence detection from the recorded mark corresponds to the readout process. In 2000, Kawata et 
al. reported a readout image of bits written in 26 consecutive layers, validating the concept of multilayer 
optical storage utilizing TPA (Figure 4(b))6. Materials with large TPA cross-section is required for 
practical use: To date, various new TPA dyes have been proposed to meet the requirements for practical 
use. 
 

 

Figure 4. (a) Scheme of structural change and fluorescence emission of spirobenzo-pyrancorresponding 
to “white” and “read”, (b) Conceptual image of multilayer optical disk data storage feasible by TPA. 
 
Three-Dimensional Microfabrication 
The optical fabrication utilizing TPA pioneered by Kawata et al. in 1997 has attracted significant 
attention. Kawata reported on micro-scale 3D models created by localized curing inside a photo-curable 
resin realized with a TPA initiator using a femtosecond laser and 3D scanning optics techniques (Figure 
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5)7. materials with TPA cross-section are essential for high sensitivity and precision in modeling in this 
application. In 1999, the modeling resolution was greatly improved. An extended π-conjugation system 
exhibiting a large TPA cross-section value (1,250 GM) achieved a length scale of ~1 μm8. In 2010, it 
was reported that line-shaped structures with widths of 65 nm could be created9. The TPP (two-photon 
polymerization) based direct laser writing technology is one of the micro-nano photocurable 3D printing 
technologies that have reached a high degree of commercialization to date and is called PμSL surface 
projection micro stereolithography. 3D printers based on TPP technology have been commercialized in 
Germany and Lithuania and are being applied in various fields, such as photonic material fabrication, 
microfluidic manufacturing, and metamaterials development. 
 

 

Figure 5. Conceptual image of TPA-based 3D microfabrication. 
 
Three-Dimensional Fluorescence Imaging 
Fluorescence imaging techniques combined with the TPA process were first reported in 1990 by Denk 
et al4. Cells labeled with cellular DNA stained with a UV excitation fluorescent stain solution are 
irradiated with a femtosecond laser, and the emitted fluorescence is detected. This two-photon excitation 
(TPE) fluorescence microscopy technique allows localized excitation compared to conventional 
confocal microscopy (Figure 6). With TPA, we can create electronic excited states with long wavelength 
excitation light, such as in the near-infrared region, which is easily transmitted deep into the tissue, has 
low scattering, and causes little photodamage, thus offering the advantages of less fading and 
phototoxicity. Since the publication of this paper, TPE microscopy has been widely adopted in various 
fields, such as neuroscience, developmental biology, and immunology. It has become a powerful tool 
for observing molecular and cellular dynamics in vivo. In recent years, in collaboration with the 
development of highly photostable and low-toxicity fluorescent dyes, which have developed remarkably, 
techniques for observing molecular and cellular dynamics in living tissues continue to evolve10. 
Intravital imaging, which allows noninvasive, real-time observation of biological tissues, contributes 
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greatly to elucidating the mechanisms of unexplained life events. Suppose fluorescent dyes with high 
TPA cross-section are developed. In that case, general-purpose lasers with lower output power will be 
able to be used for observation, and TPE microscopy will be more widely used. 
 

 

Figure 6. Mechanism images of (a) confocal microscopy and (b) two-photon excitation microscopy. 
 
 
4. Measurement of Two-Photon Absorption Cross-Section 
Measurement Techniques 
As described in section 2, TPA is a light intensity-dependent process. Therefore, the spatial and temporal 
distribution of the incident light must be considered in the measurement. Although intense pulsed lasers 
are used for the measurement, their stability also affects the measurement results. Unlike commercially 
available spectrophotometers for OPA spectra in the UV-visible region, no general-purpose 
measurement devices exist. Therefore, the reported values of TPA cross-sections may vary among 
methods and research groups even when measuring the same compound.  

There are three commonly used methods for measuring TPA: two-photon-induced 
fluorescence (TPIF), intensity-dependent transmittance measurement (IDTM), and open aperture Z-scan. 
TPIF is a method to determine TPA cross-section indirectly from the intensity of fluorescence emission 
followed by TPA and its fluorescence quantum yield. Although this method allows measurements with 
relatively high sensitivity, it is necessary to assume that the fluorescence quantum yield is constant 
regardless of the sample's state or surrounding environment. In addition, this method does not apply to 
non-fluorescent samples. IDPM and Z-scan methods are classified as "direct" measurements because 
they measure changes in transmittance (absorption). IDPM measures nonlinear absorption by fixing the 
sample position and changing the incident light intensity. In the Z-scan, the sample is scanned along the 
direction of light propagation (z-axis) near the focal point of the focused incident light, thereby changing 
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the intensity of the light irradiating the sample11. In other words, the laser output is constant, but the 
intensity of light irradiating the sample varies as a function of position z. Since it is necessary to assume 
that the light intensity irradiating the sample is constant over the z direction, the sample thickness must 
be sufficiently thin for the measurement. The following explains the flow up to TPA cross-section 
derivation, using Z-scan measurement as an example. An example of the optical system for Z-scan 
measurement is shown in Figure 7. 
 

 

Figure 7. Schematic of optical experiment system for Z-scan measurement. 
 
If the sample is liquid, a quartz cell with a 1 to 2 mm thickness is often used. For example, the light 
source is a laser beam with a pulse width of ~100 femtoseconds output from a Ti:Sapphire laser. Since 
these lasers have a single wavelength, they cannot be scanned automatically like commercially available 
UV-vis spectrophotometers. Thus, when evaluating the characteristics as a TPA spectrum, it is necessary 
to perform a point-by-point measurement by converting the wavelength of the light each time using a 
wavelength-tunable optical parametric amplifier or the like. 

Furthermore, it should be noted that the change in transmittance obtained from the Z-scan 
measurement may include nonlinear absorption processes other than TPA [e.g., three-photon absorption, 
excited-state absorption (ESA), absorption saturation (SA), etc.]. This can be confirmed by performing 
measurements varying the laser power. The data and analysis image of the transmittance change with 
sample position z obtained from the open aperture Z-scan measurement are shown in Figure 8. 
 

 

Figure 8. (a) Image of Z-scan trace and (b) two-photon absorbance for varying light intensity. 
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The example shown in Figure 8 is an image of a four-step change in laser power. The two-photon 
absorbance shown in Figure 8(b) was obtained by fitting the Z-scan trace in Figure 8(a) with the 
transmittance change formula described next. If the transmittance change is caused solely by TPA, q00 
increases linearly with the laser power. If other nonlinear absorption processes are included, the change 
becomes nonlinear12. 
 
Experimental Evaluation of Two-Photon Absorption Cross-Section 
First, the TPA coefficient 𝛼(%)  is derived from the slope of the plot shown in Figure 8(b). If the 
femtosecond laser pulse shape has a Gaussian shape in space and time, the intensity distribution 𝐼(𝑟, 𝑡) 
can be expressed as follows: 
 

𝐼(𝑟, 𝑡) = 𝐼! expT−
2𝑟%

𝑤!%
−
𝑡%

𝑡!%
V (9) 

 
I0 represents the peak power at the beam center. The relative position of sample ζ concerning the focal 
position z0 normalized by Rayleigh length zR is: 
 

𝜁 =
𝑧 − 𝑧!
𝑧+

(10) 

 
zR, which describes the degree of focusing, is the distance from the focal point to the position where the 
cross-section of the beam is twice that at the focal point. The transmittance at position ζ can be expressed 
as: 
 

𝑇(𝜁) =
1

√𝜋𝑞!(𝜁)
] ln	[1 + 𝑞!(𝜁)𝑒),

&]𝑑𝑥
-

)-
(11) 

 
𝑞!(𝜁) is the two-photon absorbance at position ζ. If the effect of the Fresnel reflection coefficient R 
(reflection on the sample surface) is also considered, 𝑞!(𝜁) is expressed as: 
 

𝑞!(𝜁) = 𝛼(%)(1 − 𝑅)𝐼!(𝜁)𝐿.//									 

=
𝛼(%)(1 − 𝑅)𝐼!!𝐿.//

1 + 𝜁%
=

𝑞!!
1 + 𝜁%

(12) 

 
The numerator q00 = 𝛼(%)(1 − 𝑅)𝐼!!𝐿.// is the two-photon absorbance at the focal point (ζ = 0). Leff is 
the effective sample length (𝐿.// = (1 − 𝑒)0($)1)/𝛼(#)). I00 is the peak power of the laser at the focus 
and is expressed by the following equation: 
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𝐼!! = 4c
ln2
𝜋

𝐸2
𝜆𝑧+𝑡3456

(13) 

 
λ is the wavelength of the beam, Ep is the pulse energy, and tFWHM is the temporal full width at half 
maximum of the pulse. From 𝛼(%) and Eq. (8), we finally obtain TPA cross-section 𝜎(%). 
 Measuring TPA cross-section value requires constructing an extensive experimental system 
and careful analysis of the results. Both experimental approach and theoretical analysis are indispensable 
for efficiently exploring materials exhibiting large TPA cross-sections. As the size and complexity of 
TPA dye molecules increase, the role of theory and computations has become more critical. 
 
 
5. Analytic Expression for Two-Photon Absorption Cross-Section 
The frequency dependence of TPA cross-section, 𝜎(%)(𝜔), relates to the imaginary part of γ for the 
DFWM process, Im〈γ(−𝜔;𝜔,𝜔,−𝜔)〉 by the following equation13,14: 
 

𝜎($)(𝜔) =
24𝜋$ℏ𝜔$

𝑐$𝑛$ 𝐿)Im〈γ(−𝜔;𝜔,𝜔,−𝜔)〉 (14) 

 
where ℏ is Planck's constant divided by 2π, ω is the angular frequency of incident light, c is the speed 
of light, n is the refractive index, and L is the local field factor (equal to 1 for vacuum). 〈γ〉 indicates 
the orientationally averaged value for the hyperpolarizability tensor γ*+,- based on the molecular axes {i, 

j, k, l}. Imγ*+,-(−𝜔;𝜔,𝜔,−𝜔) characterizes the third-order nonlinear optical response of molecule. For 
example, based on the time-dependent perturbation theory, we can obtain the following sum-over-states 
(SOS) expression for Imγ****(−𝜔;𝜔,𝜔,−𝜔)15: 
 

Imγ****(−𝜔;𝜔,𝜔,−𝜔) = Im𝑃

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑀.,

$𝛥𝜇.,*
$

H𝐸., − ℏ𝜔 − 𝑖𝛤.,LH𝐸., − 2ℏ𝜔 − 𝑖𝛤.,LH𝐸., − ℏ𝜔 − 𝑖𝛤.,L

+N
𝑀.,
* $𝑀,,!

* $

H𝐸., − ℏ𝜔 − 𝑖𝛤.,LH𝐸., − 2ℏ𝜔 − 𝑖𝛤.,!LH𝐸., − ℏ𝜔 − 𝑖𝛤.,L,!

−
𝑀.,
* )

H𝐸., − ℏ𝜔 − 𝑖𝛤.,LH𝐸., + ℏ𝜔 + 𝑖𝛤.,LH𝐸., − ℏ𝜔 − 𝑖𝛤.,L ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(15) 

 
Here, P corresponds to a permutation operator over the optical frequencies. Migk is the i-component of 
transition dipole moment (TDM) between the ground state |g⟩ and the excited state |k⟩, and Mikk’ is 
the TDM between the excited states |k⟩ and |k′⟩. Δiμgk is the difference in the dipole moments between 
the states |g⟩ and |k⟩. Egk is the excitation energy to |k⟩. ℏω is the photon energy, and Γgk is the 
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damping parameter, typically 0.1 ~ 0.2 eV. The first term in Eq. (15) is called the dipolar term and the 
second term is called the three-state term. The third term gives a negative contribution but can be ignored 
for most TPA peaks, since it has a value when OPA occurs: Spectral shapes at such photon energy regions 
are out of the scope of analysis. 
 First, let us explain the dipolar term. To increase the contribution from this term, it is necessary 
to increase Mgk and Δμgk in the numerator. In the case of a centrosymmetric molecule, if the state |k⟩ is 
OPA-allowed, TPA to this state is symmetry forbidden by the selection rule. In addition, Δμgk becomes 
zero for such systems. Therefore, the dipolar term contributes to non-centrosymmetric molecules. The 
magnitude of Mgk becomes large when the spatial overlap between the wavefunctions of states |g⟩ and 
|k⟩ is large. In addition, Mgk corresponds to the moment of electronic dipole induced by the external 
electric field (field-induced electronic polarization). The length of electronic polarization upon 
excitation is important. On the other hand, Δμgk corresponds to the difference in the permanent dipole 
moment. To increase the magnitude of Δμgk, the change density distributions in the ground and excited 
state should be different. For example, in molecules with a donor (D) and an acceptor (A) at the terminals, 
the directions of the permanent dipole moments in the states |g⟩ and |k⟩ are usually opposed. However, 
the Mgk and Δμgk usually shows reversed trends, i.e., introducing D/A groups to increase Δμgk sometimes 
cause the decrease in Mgk because of the reduction in the wavefunction overlap between |g⟩ and |k⟩. 
Balancing these effects is crucial. Lowering the excitation energy Egk contributes to enhancing the 
magnitude of this term. Introduction of π-conjugated systems and D/A groups are considered to as 
efficient strategies to balance these contributions. 
 Next, the three-state term is explained. To increase the magnitude of the term, it is necessary 
to increase Mkk’ in addition to Mgk. Similarly, it is necessary increase the overlap of the wavefunctions 
of the state |k⟩  (intermediate state: OPA state) and state |k′⟩  (final state: TPA state): Although 
introducing a π-conjugation system is an efficient strategy, the situation is not so simple because we 
must consider the balance of the overlaps between the states |g⟩, |k⟩, and |k′⟩. Sometimes, Mkk’ shows 
an opposite trend to Mgk by chemical modifications. The denominator is important to determine the 
spectral shapes (peak positions). When the photon energy ℏω of the incident light approaches Egk, the 
magnitude of this term increases. At the resonance condition, ℏω = Egk, the spectrum exhibit a peak. The 
difference between ℏω (the energy for the virtual state of TPA) and Egk is called the detuning energy ΔE. 
Reducing ΔE is also known as a point for designing molecules with large TPA cross-sections. 
 We must note that there is another approach to define the TPA cross-section, based on Fermi’s 
golden rule for the two-photon transitions from the initial state |g⟩ to the final state |k′⟩16–19. In this 
dissertation, we employed this formulation to simulate the TPA spectra, because the SOS-based 
formalism based on the Imγ(−𝜔;𝜔,𝜔,−𝜔) is known to ill-behave around the photon energy region 
where OPA and TPA spectra overlap (i.e., ΔE is close to zero)20,21. We introduce the formalism of TPA 
cross-section based on Fermi’s golden rule in Chapter 3 of PART I. 
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6. Design of Highly Efficient Two-Photon Absorption Materials 

Various molecular design strategies have been proposed to increase TPA cross-sections. In this section, 
we introduce several key strategies. 
 
Conjugation Length and Substituent Effects 
As mentioned in the previous section, introducing π-conjugated systems and D/A groups is an effective 
strategy for increasing the TPA cross-sections. Albota et al. reported the TPA measurements of several 
π-conjugated molecules with D-π-A, D-π-D, and A-π-A structures based on a series of phenylene-
vinylene derivatives13. Trans-stilbene derivative introducing the NBu2 groups at the both ends showed a 
15-fold increase in the TPA cross-section compared to the unsubstituted form Bis(styryl)benzene with 
an extended π-conjugated system showed a further enhancement of the TPA cross-sections close to 1,000 
GM (Table 1(a)-(c)) owing to the D/A effect. Further extensions of the π-conjugated system were also 
considered (Table 1(d)). However, since the TPA cross-section is a quantity per molecule (molecule-1), 
it is natural that the TPA cross-section increases to some extent with increasing molecular size, and 
comparisons of the TPA properties between the molecule should be done with a normalized quantity by, 
e.g., the molecular weight. 
 It can also be seen that the TPA peak position (TPA λmax) was red-shifted by extending the π-
conjugated system and introducing the D/A groups. It is important to obtain a large TPA cross-section 
value at a wavelength region suitable for a specific applications. Establishing molecular design strategies 
for tuning the TPA λmax is therefore crucial. 
 
Table 1. Effects of extension of π-conjugation and introduction of donor/acceptor groups on TPA cross-
section (TPACS) values. 

 

 
 

TPACS (GM)TPA λmax (nm)Compound

12514(a)

210605(b)

995730(c)

1420840(d)
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Branched Structures 
In addition to the linearly π-conjugated molecules shown in Table 1, molecules with branched structures 
have also been investigated as candidates for TPA dyes22–31. Several star-shaped and dendritic 
macromolecules have been synthesized, and their TPA properties were evaluated considering their 
solubility in solvents. As mentioned before, TPA cross-section values (per molecule) tend to increase 
with the number of dye units. If the interactions between the units are weak and simple, the rate of 
increase in the TPA cross-section is expected to be linear with the number of units. However, Chung et 
al. reported that the TPA cross-section of a three-branched structure (Figure 9(c)) is about seven times 
larger than that of the linear unit structure (Figure 9(a))22. This result suggests excitonic interaction 
effects between the branches. In addition, the red shift of absorption wavelength was suppressed despite 
the increase in the molecular size. This is due to decoupling the π-conjugation network at the branching 
point where the triphenylamine part has a non-planar twisted structure. The relationship between the 
strength of exciton coupling in the branched molecules and TPA cross-sections has also been examined 
theoretically using DFT simulations32. 
 

 

Figure 9. TPA cross-section values of (a) linear unit conjugated molecule and, (b) two-branched, and 
(c) three-branched conjugated molecules. 
 
Molecular Planarity 
Maintaining the structural planarity of extended π-conjugated molecules is crucial for efficient π-
electron delocalization. Many studies have been conducted for ideally planar cyclic π-conjugated 
molecules such as porphyrins and phthalocyanines33–38. In addition, materials consisting of highly 
transparent multilayered clay were reported in which TPA molecules were inserted between the layers 
to suppress the rotation of aromatic rings. Their TPA cross-sections were increased more than two-fold 
compared to those measured in solvent39,40. These results showed that molecular planarity is a crucial 

(c)(a) (b)

60 (10-20 cm4/GW) 208 (10-20 cm4/GW) 587 (10-20 cm4/GW)
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molecular design for increasing TPA cross-sections and opened up the possibility of hybrid TPA 
materials with inorganic polymer compounds. 
 
Resonance Enhancement Effect 
According to the approximate three-state expression for the TPA cross-section, the TPA cross-section 
increases as the difference between the incident photon energy ℏω (the excitation energy for the virtual 
state) and Egk (the excitation energy for the OPA-allowed state), called the detuning energy ΔE, is small. 
This type of enhancement is called the (double) resonance enhancement effect, where both one-photon 
and two-photon resonance conditions are (nearly) satisfied. The image of the resonance enhancement 
effect in TPA is shown in Figure 10. Enhancement of TPA cross-section has been observed in many 
molecules41,42, although the measurement results are affected significantly by the OPA process: At the 
wavelength region where the OPA and TPA bands significantly overlap, the absorption nonlinearity is 
reduced and may not be possible to take advantage of attractive features of TPA such as spatial selective 
excitation. 

 

Figure 10. Image of the resonance enhancement effect in TPA. When TPA is measured while 
approaching the OPA wavelength region, the TPA cross-section rapidly increases even when 
approaching the foot of the OPA distribution. 
 
Open-Shell Characters 
So far, the design strategies have focused mainly on stable closed-shell molecular systems. Nakano, 
Kubo, Kamada, and their coworkers theoretically predicted and experimentally confirmed the possibility 
of dramatically improved NLO properties in designed open-shell singlet molecules43–50. Drastic changes 
in static (ω = 0) (hyper)polarizabilities (α and γ) during the bond dissociation process were reported 
from several theoretical investigations51,52. Third-order NLO property, γ, was shown to depend on the 
degree of bonding or open-shell character and increase remarkably in the intermediate bonding/open-
shell region.  
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 Such intermediate open-shell systems have been challenging to synthesize and isolate. 
However, recent advances in structural organic chemistry have made it possible to realize such 
intermediate open-shell molecules. Phenalenyl (PLY; Figure 11(a)) is a neutral π-radical compound 
exhibiting high thermodynamic stability owing to the delocalized nature of the radical electron 
(characterized by the spatial distribution of singly occupied molecular orbital [SOMO]). PLYs have been 
used as a building block to design stable open-shell molecular materials53–58. In particular, syntheses and 
measurements and theoretical analyses for s-indaceno[1,2,3-cd;5,6,7-c’d’]diphenalene (IDPL), which 
consists of two phenalenyl groups connected by an aromatic ring and its extension 
dicyclopenta[b;g]naphthalene[1,2,3-cd;6,7,8-c’d’]diphenalene (NDPL) have pioneered a new direction 
for TPA materials59–63. These compounds are singlet diradicaloids (diradical-like molecules) with two 
interacting radical moieties but exhibit sufficient thermodynamic stabilities due to delocalized and 
stabilized radical electrons in the π-conjugated systems. Structures of IDPL and NDPL derivatives are 
shown in Figure 11(b) and their OPA and TPA spectra are shown in Figures 1 and 2 of Ref.60,64 The 
measured maximum TPA cross-section for NDPL (8300 ± 1900 GM at 1050 nm, including resonance 
enhancement effect) is among the largest in pure hydrocarbon systems without hetero elements and D/A 
groups. Such open-shell singlet molecules usually have lower excitation energies for both OPA and TPA 
states than closed-shell molecules of similar molecular size. Even relatively small open-shell singlet 
molecules often show OPA and TPA band wavelengths in the NIR region. Designing open-shell 
molecules with tunable open-shell characters has been a new and attractive strategy to achieve giant 
TPA cross-sections. Still, open-shell singlet molecules are difficult to handle, and thus, their synthesis 
and isolation are challenging. To efficiently explore novel open-shell TPA systems, theoretical and 
computational approaches are essential to predict and analyze TPA properties and to elucidate the 
mechanism of large TPA cross-sections. 
 

 

Figure 11. (a) Structures and SOMO of PLY. (b) Structures of IDPL and NDPL derivatives.  
 
 
 

1a 1b
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7. Design Principle of Efficient Open-Shell NLO Molecules 
Mechanisms of large static γ and TPA cross-section values of intermediate open-shell systems have been 
clarified based on the electronic structures based on the model Hamiltonian involving parameters and 
model and realistic open-shell molecular systems. The advantages of using the model Hamiltonian are 
that we can focus on the fundamental relationship between the physically and chemically meaningful 
parameters and extract its governing factors. For model open-shell molecular systems, various open-
shell electronic structures are artificially prepared by manually changing geometrical parameters (bond 
lengths, dihedral angles) for H2 molecule, methyl radical and 1,3-dipole systems, and p-quinodimethane 
(PQM) molecule65,66. For realistic open-shell molecular systems, electronic structures and properties of 
(simplified or modified) synthesized molecules are investigated by quantum chemical calculations. 
Examples of actual open-shell molecules for which TPA measurements are reported include 
diphenalenyl radical molecules, such as IDPL and NDPL, zethrene derivatives67–73, perylene 
derivatives74–81, polyacenes82, thienoacenes83,84, and fluorenyls85–87. 
 Open-shell characters of these systems can be quantified with a theoretical index, diradical 
character y. y is a measure of chemical bond instability taking a value from 0 to 188. y = 0 corresponds 
to the closed-shell situation, and y = 1 to the fully open-shell limit. The intermediate open-shell situation 
exists between these situations (0 < y < 1). Consider the dissociation process of H2, shown in Figure 12, 
as an example. A covalent bond is formed when the distance between two H atoms is small enough. The 
energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital 
(HOMO-LUMO gap) is sufficiently large in this state. Therefore, the ground state wavefunction is 
described well by a single electron configuration where two electrons occupy HOMO (called the ground 
configuration), which corresponds to the closed-shell electronic structure. When the distance between 
two H atoms is sufficiently large (at the dissociation limit), the HOMO-LUMO gap becomes ideally 
zero. In this situation, the wavefunction should be described by the superposition of two-electron 
configurations: the ground configuration and the double excitation configuration where two electrons 
occupy LUMO. This is the fully open-shell state. Upon dissociation, the covalent bond between the two 
H atoms gradually weakens, and an intermediate open-shell state appears. y is defined as twice the 
weight of the double excitation configuration in the ground state wavefunction. 
 The SOS expressions of static and frequency-dependent γ involve excitation energies and 
TDMs between the electronic states. As the y (weight of double excitation) increases, the excitation 
energies and TDMs change. Based on the two-site diradical model, Nakano et al. derived analytic 
expressions of excitation energies and TDMs in terms of y. By substituting them into the SOS 
expressions of γ and TPA cross-section based on the three-state approximation, they derived analytic 
expressions of γ and TPA cross-section in terms of y. They found that these quantities enhance 
significantly in the intermediate y region.  
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Figure 12. Dissociation process of an H2 molecule. 
 

After that, static γ values of several model open-shell molecules were examined using quantum 
chemical calculations. The relationships between the bond distance r (Å), y, and static γ for the H2 
dissociation model are shown in Figure 1347,65. Static γ increases significantly in the intermediate y 
region (0.5 ~ 0.7). This result was obtained based on the full configuration interaction (CI) method in 
quantum chemistry which gives the exact solution for a given basis function. However, its computational 
effort explosively increases with the system size (numbers of atoms and electrons), making it 
inapplicable to most systems of interest. In general, we must be careful when applying approximate 
solutions of the Schrödinger equation to evaluate static γ. 
 

 

Figure 13. (a) r–y, (b) y-γ correlations for the H2 dissociation model. These plots were reconstructed 
from the data in Table I of the paper by Nakano et al47. 
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The PQM is a key structure in designing open-shell singlet molecules with tunable y. For 
example, IDPL contains two PLY units and a PQM structure. A previous study investigated the static γ 
of this system. By changing the terminal C=C bonds, R1, the calculation results can be compared for the 
same molecule differing in y. The relationships between R1, y, and γ in the bond-stretched PQM model 
are shown in Figure 1465,89. The results at the CCSD(T) (coupled cluster singles and doubles 
substitutions with the perturbative treatment of triples excitation: one of the most sophisticated 
approximation methods of quantum chemistry applicable to small- and medium-size systems) is 
considered to give the best result among the employed approximate calculation methods. Similar to the 
result of the H2 dissociation model, the static γ increases significantly in the intermediate y region, 
although the peak position seems different between the systems.  
 

 

Figure 14. (a) R1–y, (b) y-γ correlations for the PQM model. These plots were reconstructed from the 
data provided by the authors in the paper reported by Kishi et al90. 

We often employ the Kohn-Sham density functional theory (DFT) method for calculations of 
medium- and large-size systems. The B3LYP functional, the most used exchange-correlation functional 
for electronic structure calculations of molecules, is reported to give poor results for predicting the y-γ 
correlation. The long-range corrected functional (LC-UBLYP) reproduced the most reliable UCCSD(T) 
results well.  
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8. Open-Shell Molecular Aggregates as Candidate for Novel Open-Shell NLO Systems 
Several derivatives of PLY have been reported to form stacked π-dimers and multimers in solution and 
crystalline phases91–94. The stacking distance (d) and the stacking configuration between PLY molecules 
in π-dimers can be modulated by substituents (-R) at the 2-, 5-, and 8-positions95–98. For instance, 
derivatives with R = t-Bu and R = C6H5 are known to form anti-type π-dimers in the solid state, with d 
~ 3.31 Å91 and ~ 3.02 Å93, respectively (Figure 15(a), (b)). These experimental findings highlight the 
presence of a multicenter two-electron covalent-like bonding interaction between the PLY units, 
commonly referred to as pancake bonding54. 

Additionally, the formation of one-dimensional (1D) molecular aggregates composed of open-
shell molecules has been observed (Figure 15(c))99. For example, the derivative with R = C6F5 forms 
eclipsed-type 1D π-stacks in the solid state, with a stacking distance of approximately 3.50 Å99. In 
multiradical systems, where the number of radical moieties (N) exceeds two (N = 2n, n = 2, 3, …), 
multiple diradical characters (yi) can be defined. Several theoretical and computational studies have 
investigated the open-shell characters and third-order nonlinear optical (NLO) properties of such 1D 
chains of monoradicals. 
 Nakano et al. employed the simplest 1D chain model of hydrogen atoms and averaged y (yav) 
values to characterize their open-shell characters48. They found that γ per unit in the 1D chains 
(multiradical) takes a maximum in a smaller yav region compared with the diradical systems. Yoneda et 
al. conducted density functional theory (DFT) calculations on eclipsed- and anti-type π-dimer and π-
tetramer of PLY (PLY2 and PLY4, respectively) with varying d in the singlet state100. They found that y 
of the PLY2 decreases as decreasing d, and γ per monomer takes the maximum around d = 2.9 Å, at 
which y is in the intermediate region (Figure 16). Salustro et al. performed the first direct computation 
of γ∞ for 1D chains of PLY101, employing the coupled-perturbed Kohn-Sham (CPKS) analytic derivative 
method under periodic boundary conditions, as implemented in the CRYSTAL package102–106. Matsui et 
al. extended these investigations by examining the effect of increasing the number of monomers (N) on 
γ per unit in 1D chains of hydrogen atoms and cyclic thiazyl radicals107. They extrapolated their results 
to estimate the γ per unit in the limit N → ∞ (γ∞). These studies collectively suggest that the third-order 
NLO properties of closely stacked 1D chains of π-radicals are comparable to those of π-conjugated 
polymers, emphasizing the importance of through-space (TS) conjugation in such systems. Figure 16(a) 
and (b) compare the results of static γ per monomer of PLY2 and PLY4 as a function of d. The peak value 
of static γ per monomer of PLY4 is about five times higher than that of PLY2. In the same study, the d-
dependence of static γ for π-stack aggregates of closed-shell coronene was also investigated for 
comparison. The static γ per monomer was about 1/8 of that of PLY2, regardless of the stacking distance. 
This result indicates that the π-stack aggregates of open-shell molecules are expected to show a 
remarkable change in electronic structure due to covalent intermolecular interactions, which is not 
expected in the closed-shell aggregates.  
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Figure 15. Examples of one-dimensional (1D) molecular aggregates composed of open-shell molecules. 
Molecular structures of anti-type π-dimers of PLY derivatives with (a) R = t-Bu, (b) R = C6H5. (c) 
Eclipsed-type 1D π-stacks of PLY derivatives with R = C6F5. (d) Slip-stack structures obtained from 
IDPL derivatives by recrystallization in chlorobenzene. Image of (a) and (b) was reconstructed from the 
structural data in supporting information of the paper by Mou et al93, (c) was by Uchida et al99, (d) was 
by Shimizu et al62. 
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Figure 16. d-y and d-γ correlations for the (a) PLY2, (b) PLY4 model. These plots were reconstructed 
from the data in Table 1S and 3S of the paper by Yoneda et al100.  
 
 Design and synthesis of single molecules exhibiting multiradical characters are generally 
difficult. Therefore, such multiradical-based novel third-order NLO materials (including TPA materials) 
are potentially realized by molecular aggregate systems in a solid state, such as molecular crystals. 
Indeed, solid-state physical properties of slip-stack structures have been investigated for IDPL 
derivatives that contain PLYs in their structure (Figure 15(d))62. 
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9. Outline of This Dissertation 
The general objective of this dissertation is to theoretically elucidate the structure-property relationship 
of TPA in open-shell molecular systems, which are attracting attention as candidates for NLO materials. 
Among the open-shell molecular systems, we have focused on open-shell π-conjugated molecules and 
their aggregates in the singlet state. The goals of this dissertation work are (i) elucidation of the key 
factors of structures and electronic states that govern the TPA phenomena in open-shell systems and (ii) 
construction of design guidelines for novel open-shell NLO materials. 
(i) Elucidation of the key factors of structures and electronic states that govern the TPA phenomena in 
open-shell systems 
Since the experimental assessment of TPA properties is generally difficult and complex, developing 
theoretical and computational analysis methods with accuracy is strongly desired for exploring efficient 
materials and promising applications. Theoretical treatment of the electronic states open-shell molecular 
systems is extremely complicated for the ground, lower-lying, and higher-lying excited states that 
contribute to the TPA transition. Both experimental and theoretical analyses for such electronic states 
have not been established sufficiently for the open-shell systems. Experimental results of TPA properties 
of open-shell molecular systems have been discussed so far, but there may be a kind of overinterpretation 
of the y-γ and y-TPA correlations, which are derived from the minimal two-site model. The applicability 
of y-based discussion to the analysis of spectral shapes of TPA cross-sections of real open-shell 
molecules is still unclear. Recent advances in the electronic structure theory and computational methods 
have made it possible to analyze these issues, although it is still challenging. In this study, we aim to 
elucidate the TPA properties in open-shell molecular systems and their aggregates in detail by utilizing 
the theoretical analysis methods accumulated by our group. 
(ii) Construction of design guidelines for novel open-shell NLO materials 
Aggregates systems consisting of open-shell molecules have attracted much attention in recent years. 
Due to their electronic structures easily fluctuating by external stimuli, these systems exhibit more 
interesting and unique properties than the closed-shell molecular systems. For the applications in NLO, 
several theoretical studies have been carried out, aiming to establish molecular design guidelines. For 
example, tuning the interactions between open-shell molecular units in the aggregates is an efficient 
strategy. These previous theoretical studies have focused mainly on the static γ. Still, efficient strategies 
for controlling the positions and intensities of TPA peaks in the aggregates of open-shell molecules have 
not been established sufficiently. The potentials of finite-size stacking systems, such as dimers and 
tetramers, and the infinite systems (e.g., assuming real organic crystals) have not yet been explored. In 
molecular aggregates where monomers interact with each other strongly, nonlinear enhancement of TPA 
properties for the number of molecules (N) can be expected. 
 This dissertation covers topics (i) and (ii), focusing on the y-dependence of TPA properties of 
molecular aggregate systems consisting of π-conjugated monoradicals. It is important for future 
development to understand whether the TPA cross-sections in real molecular systems can be increased 
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through the control of y. Also, it is necessary to examine whether the molecular design guidelines 
established for controlling the static γ can also be used for the TPA properties. We assign several TPA 
peaks and then discuss the correlation with y in realistic open-shell molecular aggregates for the first 
time. In addition, we discuss the validity and applicability of quantum chemical methods for treating the 
ground and excited states of open-shell molecular aggregates, which is indispensable for the comparison 
of theoretical results with experiments. Based on these analyses, we will extract optimal conditions and 
structural parameter regions for enhancing the TPA cross-section, and then, we will propose design 
guidelines for novel NLO materials based on open-shell molecular aggregates. 
 This dissertation will also bridge the present gap between the theoretical and experimental 
analyses for the static γ and TPA of open-shell molecular systems. In the theoretical analyses, there are 
several assumptions, hypothetical conditions, and calculation conditions, depending on the size and 
characters of the system. It is necessary to pay attention to whether the theoretical results reproduce the 
actual measurement results both qualitatively and quantitatively. From the experimental side, a wide 
range of factors can influence the quality of the results, such as the measurement conditions and the 
surrounding environment. It is not always easy to identify the parameters that contribute to the observed 
phenomena. To essentially connect both the analysis results together, not only the technical development 
but also a willingness to mutual understanding and collaboration is important. In practice, many steps 
are still needed. Still, organic NLO materials that can be used practically have not yet been created. To 
establish theory-experiment joint research, it is essential to elucidate the mechanism and principle 
describing the physico-chemical phenomena and then obtain materials design guidelines that can be 
incorporated into synthesizable and realistic candidate materials.  

This dissertation is organized as follows: 
PART I. Electronic structure theory, theory of nonlinear optics, and theory of TPA of open-

shell systems 
PART II. Discussion of the N-dependence of static γ, which is fundamental to the discussion 

of TPA of multiradical systems 
PART III. Detailed theoretical analysis of TPA from dimers to multimers of radicals 

This dissertation is expected to connect theory and experiment on TPA properties of open-shell 
molecular aggregates systems, to provide a basis for the theoretical materials design in accordance with 
actual phenomena, and to contribute to the creation of novel optical functional materials. 
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Chapter 1. 

 

Electronic Structures of Open-Shell Singlet Molecules 

 
This chapter introduces the fundamentals of the electronic structure theory of open-shell molecules. First, 
an analytical expression for open-shell character, a quantitative index of instability of chemical bonding, 
is derived using the valence configuration interaction (VCI) approach. Based on this expression, we 
explain the relationship between electronic properties, including excitation energies, and open-shell 
characteristics. Next, we describe a quantitative evaluation method for the open-shell character of 
diradical systems using a two-site model consisting of two-electrons and two-orbitals. The process of 
extending this method to multiradical systems is also described. Finally, we present practical methods 
for evaluating open-shell characteristics by quantum chemical calculations using the spin-unrestricted 
method. 
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1.1. Electronic Structures of Open-Shell Singlet Molecules Based on 
Valence Configuration Interaction Theory 
 
In this section, we use the valence configuration interaction (VCI) method to describe the electronic 
structure of the symmetric two-electron, two-orbital model, which is the simplest model of an open-
shell singlet molecule1–3. This two-site model consists of two atomic sites A and B, with atomic orbitals 
(AOs) χA(r) and χB(r), respectively (Figure I.1.1).  
 

 

Figure I.1.1. Orbital correlation diagram for symmetric two-electron and two-orbital model with 
diatomic molecule. 
 
The bonding and anti-bonding symmetry-adopted molecular orbitals (SA-MOs), g(r) and u(r), are 
represented by a linear combination of these AOs as follows: 
 

𝑔(𝒓) =
1

'2(1 + 𝑆!")
+𝜒!(𝒓) + 𝜒"(𝒓)-, 

𝑢(𝒓) =
1

'2(1 − 𝑆!")
+𝜒!(𝒓) − 𝜒"(𝒓)- (I. 1.1) 

 
Here, SAB is overlap integral between χA(r) and χB(r) (𝑆 = ⟨𝜒!|𝜒"⟩). MOs in the singlet state of open-
shell molecules are given by the unrestricted Hartree-Fock (UHF) method with a mixed parameter θ (0 
≤ θ ≤ π/4) of bonding and anti-bonding orbitals. 
 

𝜓#(𝒓) = 𝑐𝑜𝑠𝜃𝑔(𝒓) + 𝑠𝑖𝑛𝜃𝑢(𝒓),
𝜓$(𝒓) = 𝑐𝑜𝑠𝜃𝑔(𝒓) − 𝑠𝑖𝑛𝜃𝑢(𝒓) (I. 1.2)

 

 
In the case of θ = 0, these MOs are given by the restricted Hartree-Fock (RHF) method. On the other hand, 
in the case of θ = π/4, the MOs are fully localized UHF MOs. The MOs in these cases are expressed using 
localized natural orbitals (LNOs) as follows1: 

Atomic 
orbital
!!

Atomic 
orbital
!"

Anti-bonding
molecular orbitals

Bonding
molecular orbitals

A B
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𝜓#(𝒓) = 𝑐𝑜𝑠𝜔𝑎(𝒓) + 𝑠𝑖𝑛𝜔𝑏(𝒓),
𝜓$(𝒓) = 𝑐𝑜𝑠𝜔𝑏(𝒓) + 𝑠𝑖𝑛𝜔𝑎(𝒓) (I. 1.3)

 

 
where, the LNOs, a(r) and b(r), are obtained by the unitary transformations from the delocalized MOs, 
𝑔(𝒓) and 𝑢(𝒓): 
 

𝑎(𝒓) =
1
√2

*𝑔(𝒓) + 𝑢(𝒓),,

𝑏(𝒓) =
1

√2
(𝑔(𝒓) − 𝑢(𝒓)) (I. 1.4)

 

 
The LNOs are similar to the AOs χA and χB but fulfill the orthogonal condition ⟨𝑎|𝑏⟩ = 0 unlike AOs. 
 
 Consider frontier MOs that can be described by a linear combination of LNO a(r) and b(r). 
Considering the two active electrons, in two valence orbitals and other closed-shell frozen core orbitals, there 
are two neutral determinants (Eq. (I.1.5)) and two ionic determinants (Eq. (I.1.6)) for spin angular momentum 
quantum number MS = 0:  

 

|𝑎𝑏56 ≡ |core	𝑎𝑏56,
|𝑏𝑎5⟩ ≡ |core	𝑏𝑎5⟩ (I. 1.5)

 

 
|𝑎𝑎5⟩ ≡ |core	𝑎𝑎5⟩,
|𝑏𝑏56 ≡ |core	𝑏𝑏56 (I. 1.6) 

 
where "core" represents an inactive orbital (frozen core orbital), the upper bar represents down spin (β 
spin), and the non-bar represents up spin (α spin). These four determinants are shown in Figure I.1.2.  
 

 

Figure I.1.2. Four types of NLO determinants. 
 
The configuration interaction (CI) matrix 𝑯 based on Eqs. (1.1.5) and (1.1.6) is expressed as: 
 

|"#$%

A B A B A B A B

|#"$⟩ |##$%|""$⟩
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𝑯 =

⎝

⎜
⎛
C𝑎𝑏5D𝐻FD𝑎𝑏56 C𝑎𝑏5D𝐻FD𝑏𝑎56 C𝑎𝑏5D𝐻FD𝑎𝑎56 C𝑎𝑏5D𝐻FD𝑏𝑏56
C𝑏𝑎5D𝐻FD𝑎𝑏56 C𝑏𝑎5D𝐻FD𝑏𝑎56 C𝑏𝑎5D𝐻FD𝑎𝑎56 C𝑏𝑎5D𝐻FD𝑏𝑏56
C𝑎𝑎5D𝐻FD𝑎𝑏56 C𝑎𝑎5D𝐻FD𝑏𝑎56 C𝑎𝑎5D𝐻FD𝑎𝑎56 C𝑎𝑎5D𝐻FD𝑏𝑏56
C𝑏𝑏5D𝐻FD𝑎𝑏56 C𝑏𝑏5D𝐻FD𝑏𝑎56 C𝑏𝑏5D𝐻FD𝑎𝑎56 C𝑏𝑏5D𝐻FD𝑏𝑏56⎠

⎟
⎞

(I. 1.7) 

 
To simplify 𝑯, it can be rewritten as follows:  
 

C𝑎𝑏5D𝐻FD𝑎𝑏56 = C𝑎𝑏5D𝐻FD𝑏𝑎56 = 0, (I. 1.8) 
 

C𝑎𝑎5D𝐻FD𝑎𝑎56 = C𝑏𝑏5D𝐻FD𝑏𝑏56 = 𝑈## − 𝑈#$ ≡ 𝑈, (I. 1.9) 
 

C𝑎𝑏5D𝐻FD𝑏𝑎56 = C𝑏𝑎5D𝐻FD𝑎𝑏56 = C𝑎𝑎5D𝐻FD𝑏𝑏56 = C𝑏𝑏5D𝐻FD𝑎𝑎56 = 𝐾#$ (I. 1.10) 
 

C𝑎𝑎5D𝐻FD𝑎𝑏56 = C𝑎𝑎5D𝐻FD𝑏𝑎56 = C𝑎𝑎5D𝐻FD𝑏𝑎56 = C𝑏𝑏5D𝐻FD𝑏𝑎56								
= C𝑎𝑏5D𝐻FD𝑎𝑎56 = C𝑎𝑏5D𝐻FD𝑏𝑏56 = C𝑏𝑎5D𝐻FD𝑎𝑎56 = C𝑏𝑎5D𝐻FD𝑏𝑏56 = 𝑡#$ (I. 1.11)

 

 
𝑈 is the on-site coulomb repulsion, 𝐾#$  is the exchange integral, and 𝑡#$  is the transfer integral. 
From the above, CI matrix in 𝑯 can be written in simplified form as follows:  
 

𝑯 = P

0 𝐾#$ 𝑡#$ 𝑡#$
𝐾#$ 0 𝑡#$ 𝑡#$
𝑡#$ 𝑡#$ 𝑈 𝐾#$
𝑡#$ 𝑡#$ 𝐾#$ 𝑈

Q (I. 1.12) 

 
Furthermore, the dimensionless CI matrix of the 𝑯%& by dividing 𝑯 by 𝑈, is expressed using the 
dimensionless parameters 𝑟' and 𝑟( as follows: 
 

𝑯%& = P

0 𝑟(/2 𝑟' 𝑟'
𝑟(/2 0 𝑟' 𝑟'
𝑟' 𝑟' 1 𝑟(/2
𝑟' 𝑟' 𝑟(/2 1

Q (I. 1.13) 

𝑟' and 𝑟( are the following: 
 

𝑟' ≡
|𝑡#$|
𝑈 ,			and			𝑟( ≡

2𝐾#$
𝑈

(I. 1.14) 

 
The diagonalization of the CI and dimensionless CI matrix shown in Eqs. (I.1.12) and (I.1.13) gives the 
analytical expressions for the eigenvalues [E(S1g), E(S2g), E(S1u), E(T1u)] of the four eigenstates [S1g, S2g, 
S1u, T1u]. S1g is the singlet state with g (gerade) symmetry and lower energy, S2g is the singlet state with 
g symmetry and higher energy, S1u is the ionic singlet state with u (ungerade) symmetry, and T1u is the 
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neutral triplet state with u symmetry. These wave functions and energies (and dimensionless energies, 
𝐸)* ≡ 𝐸/𝑈) are each expressed as follows: 
 
(1) S1g state 
 

|𝑆+,6 = 𝜅*|𝑎𝑏56 + |𝑏𝑎5⟩, + 𝜂*|𝑎𝑎5⟩ + |𝑏𝑏56, (I. 1.15) 
 

𝐸*𝑆+,, = 𝐾#$ +
𝑈 − \𝑈- + 16𝑡#$-

2
, 		𝐸*𝑆+,,)* = 𝑟( +

1 −\1 + 16𝑟'-

2
(I. 1.16) 

 
(2) S2g state 
 

|𝑆-,6 = −𝜂*|𝑎𝑏56 + |𝑏𝑎5⟩, + 𝜅*|𝑎𝑎5⟩ + |𝑏𝑏56, (I. 1.17) 
 

𝐸*𝑆-,, = 𝐾#$ +
𝑈 + \𝑈- + 16𝑡#$-

2
, 		𝐸*𝑆-,,)* = 𝑟( +

1 +\1 + 16𝑟'-

2
(I. 1.18) 

 
The coefficients 𝜅 and 𝜂 are 
 

𝜅 =
1
2]

1 +
𝑈

\𝑈- + 16𝑡#$-
=
1
2]

1 +
1

\1 + 16𝑟'-
(I. 1.19) 

 

𝜂 =
2|𝑡#$|

^_𝑈 + \𝑈- + 16𝑡#$-`\𝑈- + 16𝑡#$-
=

2𝑟'

^_1 + \1 + 16𝑟'-`\1 + 16𝑟'-
(I. 1.20) 

 
with relationships 
 

2(𝜅- + 𝜂-) = 1,			and			𝜅 > 𝜂 > 0 (I. 1.21) 
 
2𝜅-  and 2𝜂-  correspond to the weights of the covalent and ionic contributions, respectively. The 
introduction of dimensionless parameters 𝑟'  and 𝑟(  simplifies the expressions for κ and η and the 
properties of the diradicals. 
 
(3) S1u state 
 

|𝑆+.⟩ =
1
√2

*|𝑎𝑎5⟩ − |𝑏𝑏56, (I. 1.22) 
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𝐸(𝑆+.) = 𝑈 − 𝐾#$ , 		𝐸(𝑆+.))* = 1 − 𝑟( (I. 1.23) 
 
(4) T1u state 
 

|𝑇+.⟩ =
1
√2

*|𝑎𝑏56 − |𝑏𝑎5⟩, (I. 1.24) 

 
𝐸(𝑇+.) = −𝐾#$ , 		𝐸(𝑇+.))* = −𝑟( (I. 1.25) 

 
These equations provide a simple way to understand the relationship between the ground and excited 
states of the diradical system. 
 
 

1.2.  Diradical Character: a Quantitative Indicator of Open-Shell 
Characteristics 
 
In this section, we describe a quantitative evaluation of the properties of open-shell molecules. Open-
shell character can be paraphrased as bond instability, represented by the diradical character (y)4. y is the 
square of the weight of the double excitation configuration in the singlet ground state, defined as 
follows5: 
 

|𝜓⟩ = 𝐶/|𝐺⟩ + 𝐶%|𝐷⟩, and							𝑦 = 2|𝐶%|- (I. 1.26) 
 
where |𝐺⟩ and |𝐷⟩ denote the ground and double excitation configurations respectively. 
 To obtain the analytical expression for y, rewrite the eigenstates obtained in Eqs. (I.1.15), 
(I.1.17), (I.1.22) and (I.1.24) using MO basis. The four electron configurations shown in Figure I.1.3 
represent, respectively, |𝑔𝑔̅⟩ as the ground configuration, |𝑔𝑢5⟩ and |𝑢𝑔̅⟩ as the singly excitation 
configurations from HOMO to LUMO, and |𝑢𝑢5⟩ as the doubly excitation configuration from HOMO 
to LUMO. 
 

 

Figure I.1.3. Electron configurations on MO basis. 
 
Using these configurations, eigenstates expressed in the LNO basis can be rewritten as follows: 
 

|""̅⟩

LUMO (u)

HOMO (g)

|"%&⟩ |%"̅⟩ |%%&⟩
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|𝑆+,6 = 𝜉|𝑔𝑔̅⟩ − 𝜁|𝑢𝑢5⟩ (I. 1.27) 
 

|𝑆-,6 = 𝜁|𝑔𝑔̅⟩ + 𝜉|𝑢𝑢5⟩ (I. 1.28) 
 

|𝑆+.⟩ =
1
√2

(|𝑔𝑢5⟩ + |𝑢𝑔̅⟩) (I. 1.29) 

 

|𝑇+.⟩ =
1
√2

(|𝑔𝑢5⟩ − |𝑢𝑔̅⟩) (I. 1.30) 

 
where, 𝜉- + 𝜁- = 1  and 𝜉 ≥ 𝜁.  Also, from Eqs. (I.1.15), (I.1.19), (I.1.20) and (1.1.27), the 
coefficients 𝜉 and 𝜁 can be derived as follows: 
 

𝜉 = 𝜅 + 𝜂 =
1
2]

1 +
1

\1 + 16𝑟'-
+

4𝑟'

^_1 + \1 + 16𝑟'-`\1 + 16𝑟'-
(I. 1.31) 

 

𝜁 = 𝜅 − 𝜂 =
1
2]

1 +
1

\1 + 16𝑟'-
−

4𝑟'

^_1 +\1 + 16𝑟'-`\1 + 16𝑟'-
(I. 1.32) 

 
As shown in Eq. (I.1.26), y is defined as twice the weight of the doubly excitation configuration in the 
S1g state, which leads to the following analytical expression for y: 
 

𝑦 = 2𝜁- = 2(𝜅 − 𝜂)- = 1 − 4𝜅𝜂				(∵ 2(𝜅- + 𝜂-) = 1		*Eq. (I. 1.21),)

= 1 −
4𝑟'

\1 + 16𝑟'-
																																																																																								 (I. 1.33) 

 
From the above, it can be seen that y can be expressed only by dimensionless parameter 𝑟'  and y 
decreases with increasing 𝑟' (Figure I.1.4). 𝑟' is the transfer integral between two sites (sites A and B) 
|𝑡#$| divided by the coulomb repulsion 𝑈, as shown in Eq. (1.1.14), and represents the ease of electron 
transfer. In other words, a large 𝑟' represents a system in which electrons are delocalized to sites A and 
B, and y is small. Conversely, a small 𝑟' indicates a system in which electrons are localized to sites A 
and B, and y is large. In summary, y is related to the degree of electron localization or the strength of 
electron correlation (chemical bonding). 
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Figure I.1.4. 𝑟'-dependence of diradical character y. 
 
 The electronic structure of a singlet open-shell molecule to obtain 𝐶%  must be obtained 
strictly on the basis of high-precision ab initio calculation methods such as multi-configurational self-
consistent field (MC-SCF) theory. However, this may be impractical to apply to real molecular systems 
because of the extremely high computational cost. In practice, spin-unrestricted single determinant 
approach such as the spin-unrestricted HF (UHF) or density functional theory (UDFT), which are less 
computationally expensive, can be used, although it should be noted that they include spin-
contamination errors6,7. In the spin-unrestricted single determinant approach, y is defined by the 
occupation number (nk, where k denotes the natural orbitals label) of the lowest unoccupied natural 
orbitals (LUNO)8. 
 

𝑦 ≡ 𝑛*012 (I. 1.34) 
 
The k-th NOs (𝛷3) and nk are obtained by diagonalizing the spin-less first-order reduced density matrix9: 
 

𝜌(𝒓; 𝒓4) = 𝑁wΨ∗(𝒓, 𝒓-, ⋯ , 𝒓6; 𝝈)Ψ(𝒓4, 𝒓-, ⋯ , 𝒓6; 𝝈)𝑑𝒓-⋯𝑑𝒓𝑵𝑑𝝈

=|𝑛3𝛷∗
3(𝒓)

3

𝛷3(𝒓4)																																																			 (I. 1.35)
 

 
where N is the number of all electrons, and 𝒓8 and 𝝈 are the space variables for the i-th electron and 
spin variable of all electrons, respectively. For the two-site diradical model in the VCI method, the 
expression for y in Eq. (I.1.34) is equivalent to the originally defined Eq. (I.1.26). From Eq. (I.1.27), the 
wave function in the ground state can be expressed using 𝒓8 and 𝝈 as: 
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Ψ = 𝐶/|𝑔𝑔̅⟩ + 𝐶%|𝑢𝑢5⟩																																																																																																																 

= 𝐶𝐺
1
√2

?𝑔
(𝒓1)𝛼(𝝈1) 𝑔(𝒓1)𝛽(𝝈1)
𝑔(𝒓2)𝛼(𝝈2) 𝑔(𝒓2)𝛽(𝝈2)

?+ 𝐶𝐷
1
√2

?𝑢
(𝒓1)𝛼(𝝈1) 𝑢(𝒓1)𝛽(𝝈1)
𝑢(𝒓2)𝛼(𝝈2) 𝑢(𝒓2)𝛽(𝝈2)

?									 

=
1
√2

{𝐶/𝑔(𝒓+)𝑔(𝒓-) + 𝐶%𝑢(𝒓+)𝑢(𝒓-)}{𝛼(𝝈+)𝛽(𝝈-) − 𝛽(𝝈+)𝛼(𝝈-)} (I. 1.36) 

 
Substituting Eq. (I.1.36) into Eq. (I.1.35) yields the following equation: 
 

𝜌(𝒓; 𝒓4) = 	2wΨ∗(𝒓, 𝒓-; 𝝈+, 𝝈-)Ψ(𝒓4, 𝒓-; 𝝈+, 𝝈-)𝑑𝒓-𝑑𝝈𝟏𝑑𝝈𝟐 

= 2|𝐶/|-𝑔∗(𝒓)𝑔(𝒓4) + 2|𝐶%|-𝑢∗(𝒓)𝑢(𝒓4)						 (I. 1.37) 
 
To organize Eq. (I.1.37), the orthonormal orthogonality conditions ⟨𝑔|𝑢⟩ = 0  and ⟨𝛼|𝛽⟩ = 0  for 
spatial orbitals and spin functions were applied. Here, 𝑔(𝒓) is HONO and 𝑢(𝒓) is LUNO, and the 
occupation numbers are expressed as follows: 
 

𝑛?212 = 2|𝐶/|-, and								𝑛*012 = 2|𝐶%|- (I. 1.38) 
 
From this and Eq. (I.1.34): 
 

𝑦 = 2|𝐶%|- (I. 1.39) 
 
This formula is consistent with Eq. (I.1.26). 
 Broken symmetry (BS-)MOs in UHF and UDFT with α and β-spins are defined as linear 
combinations of SA-MOs (𝜑(𝒓)). 
 

𝜑?@(𝒓) = cos 𝜃 𝜑?(𝒓) + sin 𝜃 𝜑*(𝒓),  
𝜑?
A(𝒓) = cos 𝜃 𝜑?(𝒓) − sin 𝜃 𝜑*(𝒓),  

𝜑*@(𝒓) = −sin 𝜃 𝜑?(𝒓) + cos 𝜃 𝜑*(𝒓), 
𝜑*
A(𝒓) = sin 𝜃 𝜑?(𝒓) + cos 𝜃 𝜑*(𝒓) (I. 1.40) 

 
where the labels H and L mean HOMO and LUMO, respectively. H-i (HOMO-i) and L+i (LUMO+i) 
are defined similarly: 
 

𝜑?B8@ (𝒓) = cos 𝜃 𝜑?B8(𝒓) + sin 𝜃 𝜑*C8(𝒓),  
𝜑?B8
A (𝒓) = cos 𝜃 𝜑?B8(𝒓) − sin 𝜃 𝜑*C8(𝒓),  

𝜑*C8@ (𝒓) = −sin 𝜃 𝜑?B8(𝒓) + cos 𝜃 𝜑*C8(𝒓), 
𝜑*C8
A (𝒓) = sin 𝜃 𝜑?B8(𝒓) + cos 𝜃 𝜑*C8(𝒓) (I. 1.41) 
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These MOs can be transformed to the corresponding orbitals 𝜒8 and 𝜂8 by unitary transformations6. 
 

𝜒8 =|𝜑D@𝑈D8
D

, 

𝜂8 =|𝜑D
A𝑉D8

D

(I. 1.42) 

 
The overlap matrix of these corresponding orbits 𝜒8 and 𝜂8 is as follows: 
 

𝑇8E = C𝜒8D𝜂E6 = 𝑇8𝛿8E (I. 1.43) 
 
where 0 ≤ 𝑇8 ≤ 1 . As in Eq. (I.1.1), other orbitals are obtained by linear combination with the 
corresponding orbitals and orbital overlap 𝑇8: 
 

𝜆8 =
1

\2(1 + 𝑇8)
(𝜒8 + 𝜂8), 

𝜈𝑖 =
1

'2(1 − 𝑇𝑖)
+𝜒𝑖 − 𝜂𝑖- (I. 1.44) 

 
where these orbitals satisfy the orthogonal conditions of C𝜆8D𝜈E6 = 0 and C𝜆8D𝜆E6 = C𝜈8D𝜈E6 = 𝛿8E. The 
corresponding orbitals are given by 
 
 

𝜒8 = 𝑐𝑜𝑠𝜔8𝜆8 + 𝑠𝑖𝑛𝜔8𝜈8 , 
𝜂8 = 𝑐𝑜𝑠𝜔8𝜆8 − 𝑠𝑖𝑛𝜔8𝜈8 (I. 1.45) 

 
where denotes a mixing parameter, descrived by 
 

𝑐𝑜𝑠𝜔8 =
\2 + 2𝑇8

2
,

𝑠𝑖𝑛𝜔8 =
\2 − 2𝑇8

2
(I. 1.46)

 

 
The overlap 𝑇8 is expressed by 
 

𝑇8 = 𝑐𝑜𝑠-𝜔8 − 𝑠𝑖𝑛-𝜔8 = 𝑐𝑜𝑠2𝜔8 (I. 1.47) 
 
𝜌(𝒓; 𝒓4) of the UHF wave function is invariant under the unitary transformation in Eq. (I.1.42). Thus, 
𝜌(𝒓; 𝒓4) is calculated as follows: 
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𝜌(𝒓; 𝒓4) =|𝜑8@∗(𝒓)𝜑8@(𝒓4)
8

+|𝜑8
A∗(𝒓)𝜑8

A(𝒓4)
8

																																					

=|𝜒8∗(𝒓)𝜒8(𝒓4) +
8

|𝜂8∗(𝒓)𝜂8(𝒓4)
8

																															

= |2𝑐𝑜𝑠-𝜔8𝜆8∗(𝒓)𝜆8(𝒓4) +
8

|2𝑠𝑖𝑛-𝜔8𝜈8∗(𝒓)𝜈8(𝒓4)
8

=|(1 + 𝑇8)𝜆8∗(𝒓)𝜆8(𝒓4) +
8

|(1 − 𝑇8)𝜈8∗(𝒓)𝜈8(𝒓4)
8

		 (I. 1.48)

 

 
𝜆8 and 𝜈8 in Eq. (I.1.48) are the natural orbitals (NOs) of HONO-i and LUNO+i, respectively, and 𝑇8 
affects the occupation numbers of NOs as follows: 
 

𝑛G! = 𝑛?212B8 = 1 + 𝑇8 ,
𝑛H! = 𝑛*012C8 = 1 − 𝑇8 (I. 1.49) 

 
Diradical character y related to HONO and LUNO and yi related to HONO-i and LUNO+i are expressed 
as follows: 
 

𝑦 = 𝑛*012 = 2 − 𝑛?212 = 1 − 𝑇I,
𝑦8 = 𝑛*012C8 = 2 − 𝑛?212B8 = 1 − 𝑇8 (I. 1.50) 

 
The above equation allows us to quantitatively evaluate the open-shell nature of not only diradicals but 
also multiradicals. 
 
 

1.3.  Description of Singlet Open-Shell Characteristics Using Spin-
Unrestricted Methods 
 
In spin-unrestricted methods such as UHF and UDFT, higher spin states such as triplet can be mixed 
into the singlet wavefunctions, resulting in spin-contamination errors that lead to inaccurate 
wavefunctions. In this section, we describe the solution to this problem. The approximate spin projection 
(ASP) scheme can be used to solve this problem10. For simplicity, consider the UHF wave function of 
the diradical model with two electrons and two orbitals; the UHF ground state is expressed using the 
corresponding orbitals (𝜒? and 𝜂?) and NOs (𝜆? and 𝜈?) as follows: 
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Φ0?J = |𝜒H𝜂5H6																																																																																																																																																								 

= 𝑐𝑜𝑠-𝜔|𝜆H𝜆5H⟩ − 𝑠𝑖𝑛-𝜔|𝜈L𝜈5L⟩ − 𝑐𝑜𝑠𝜔𝑠𝑖𝑛𝜔(|𝜆H𝜈5L⟩ − |𝜈L𝜆5H⟩)																										

=
1 + 𝑐𝑜𝑠2𝜔

2 |𝜆H𝜆5H⟩ −
1 − 𝑐𝑜𝑠2𝜔

2 |𝜆L𝜆5L⟩ − ]
1 − 𝑐𝑜𝑠-2𝜔

2
(|𝜆H𝜈5L⟩ − |𝜈L𝜆5H⟩)

=
1 + 𝑇
2

|𝜆H𝜆5H⟩ −
1 − 𝑇
2

|𝜆L𝜆5L⟩ − ]
1 − 𝑇-

2
(|𝜆H𝜈5L⟩ − |𝜈L𝜆5H⟩)																													 (I. 1.51)

 

 
The first term in Eq. (I.1.51) is the singlet ground configuration and the second term is the doubly excited 
configuration. |𝜆H𝜈5L⟩ − |𝜈L𝜆5H⟩, in the third term, is the triplet component from Eq. (I.1.30). Rewritten 
as follows: 
 

Φ0?J = 𝐶𝐺|𝐺⟩ + 𝐶𝐷|𝐷⟩ + 𝐶𝑇|𝑇⟩ (I. 1.52) 
 
which satisfy the following normalized condition. 
 

𝐶𝐺- + 𝐶𝐷- + 𝐶𝑇- = 0 (I. 1.53) 
 
Thus, the UHF wave function of the diradical model consisting of two-electrons and two-orbitals 
contains only the triplet component. This triplet configuration can be removed by the ASP scheme. The 
spin-projected UHF (PUHF) wave function obtained by renormalizing the wave function while 
preserving the ratio of the coefficient of the singlet ground configuration and the doubly excited 
configuration, 𝐶* and 𝐶+, is as follows: 
 

ΦK0?J = 𝐶′𝐺|𝐺⟩ + 𝐶′𝐷|𝐷⟩ (I. 1.54) 
 

𝐶-* =
1 + 𝑇

'2 + 2𝑇2
	, 

𝐶′𝐷 = −
1 − 𝑇

\2 + 2𝑇-
(I. 1.55) 

 
Therefore, the spin-projected occupation numbers 𝑛?212!LK  and 𝑛*012!LK  and 𝑦!LK are as follows: 
 

𝑛?212!LK = 2D𝐶′𝐺D
-
= 2

(1 + 𝑇)-

2 + 2𝑇-
=
𝑛?212-

1 + 𝑇-
		

= 1 +
2𝑇

1 + 𝑇-
= 2 − 𝑦!LK, (I. 1.56)
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𝑛*012!LK = 2D𝐶′𝐷D
-
= 2

(1 − 𝑇)-

2 + 2𝑇-
=
𝑛*012-

1 + 𝑇-
		

= 1 −
2𝑇

1 + 𝑇-
= 𝑦!LK										 (I. 1.57)

 

 
These equations can be extended to any pair of HONO-i and LUNO+i and are applicable to multiradical 
systems. 
 

𝑛?212B8!LK =
𝑛?212B8-

1 + 𝑇8-
= 1 +

2𝑇8
1 + 𝑇8-

= 2 − 𝑦8!LK									 (I. 1.58)
 

 

𝑛*012C8!LK =
𝑛*012C8-

1 + 𝑇8-
= 1 −

2𝑇8
1 + 𝑇8-

= 𝑦8!LK																	 (I. 1.59)
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Chapter 2. 

 

Theory of Nonlinear Optics 

 
In this chapter, we will discuss the general theory of the second hyperpolarizability γ, which is closely 
related to TPA. γ is the microscopic origin of the third-order NLO. γ can be computed in two main ways. 
One is the Sum-Over-States (SOS) method, which is a perturbative approach, and the other is the Finite-
Field (FF) method, which is a variational approach. After a brief description of each method, the 
correlation between static γ and the diradical character y representing open-shell nature will be discussed. 
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2.1.  Two Approaches to Derive the Second Hyperpolarizability γ: SOS and 
FF Methods 
 
It was mentioned earlier that γ is the coefficient of the third-order term (FFF) in the expression (Eq. (3)) 
for the molecular polarization p due to the local electric field F. Eq. (3) can be expressed in component 
form as follows: 
 

𝑝! =#𝛼!"𝐹"
"

+#𝛽!"#𝐹"𝐹#
"#

+#𝛾!"#$𝐹"𝐹#𝐹$
"#$

+⋯ (I. 2.1) 

 
As is clear from the above equations, these are tensor quantities. i, j, k, and l denote the components of 
the molecular coordinate system. 
 
2.1.1. SOS method 
The SOS method is calculated considering all excited states based on time-dependent perturbation 
theory1,2. The time-dependent Schrödinger equation for all Hamiltonians is shown below: 
 

𝐻1(𝑡)Ψ(𝑡) = 𝑖ℏ
𝜕
𝜕𝑡 Ψ

(𝑡) (I. 2.2) 

 
The Hamiltonian can be expressed in terms of a time-dependent term and a time-independent term: 
 

𝐻1(𝑡) = 𝐻1% +𝐻1′(𝑡) (I. 2.3) 
 
The time-independent Hamiltonian 𝐻1% has been resolved: 
 

𝐻1%|𝑛⟩ = 𝐸&|𝑛⟩ = ℏ𝜔&|𝑛⟩ (I. 2.4) 
 
where 𝐸& is the eigenvalue of 𝐻1%, |𝑛⟩ is the eigenstate, 𝜔& is the frequency. The time-dependent 
wave function is expressed as: 
 

Ψ(𝑡) =#𝐶&(𝑡)|𝑛⟩𝑒'!(!)
&

(I. 2.5) 

 
𝐶&(𝑡) is a time-dependent coefficient that can be extended as follows: 
 

𝐶&(𝑡) =#𝐶&
($)(𝑡)

$

(I. 2.6) 
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Here, l is the order of perturbation expansion. From Eqs. (I.2.2), (I.2.5) and (I.2.6), we obtain the time 

differential equation for 𝐶&
($): 

 

𝑑𝐶&
(%)(𝑡)
𝑑𝑡

= 0,																																																																															 

𝑑𝐶&
($)(𝑡)
𝑑𝑡

=
1
𝑖ℏ
#𝐶#

($',)(𝑡)F𝑛H𝐻1′(𝑡)H𝑘J𝑒'!(!)
#

				(𝑙 ≥ 1) (I. 2.7) 

 
Solving Eq. (I.2.7) yields 𝐶&(𝑡) under the following conditions: 
 

𝐶&
(%)(𝑡) = 𝛿&%,				and					𝐶&

($)(0) = 0			(𝑙 ≥ 1) (I. 2.8) 
 
This condition indicates that the unperturbed molecule is in the ground state. 
 Next, we consider the second hyperpolarizability of the molecule using the time-dependent 
wave function and the perturbation Hamiltonian. In the dipole approximation, the perturbation 
Hamiltonian 𝐻1-, which is generated by the interaction between the molecule and the external electric 
field, is: 
 

𝐻1- = −𝝁U𝑭(𝑡) (I. 2.9) 
 
The expectation value of 𝝁U with Ψ(t) is approximately expressed as: 
 

⟨Ψ(𝑡)|𝝁U|Ψ(t)⟩ = 𝝁(𝑡)																																																																																											 
= 𝝁% + 𝒑(𝑡)																																																				 
= 𝝁% + 𝒑(,)(𝑡) + 𝒑(.)(𝑡) + 𝒑(/)(𝑡) + ⋯ (I. 2.10) 

 
𝝁% is the perturbation-less, and 𝒑(𝑡) is the perturbation term. 𝒑(,)(𝑡), 𝒑(.)(𝑡), and 𝒑(/)(𝑡) are the 
linear, the second-order nonlinear, and the third-order nonlinear polarizations, respectively. The detailed 
expression for 𝝁(𝑡) is obtained using Eq. (I.2.5): 
 

𝝁(𝑡) =#𝐶0∗(𝑡)𝐶2(𝑡)⟨𝑎|𝝁U|𝑏⟩𝑒!("#)
0,2

(I. 2.11) 

 
where ⟨𝑎|𝝁U|𝑏⟩ is the transition dipole moment and 𝜔02 is the energy difference between states a and 
b. The i-axis component of 𝝁(𝑡) is given by: 
 

𝝁!(𝑡) =#𝐶0∗(𝑡)𝐶2(𝑡)𝜇02! 𝑒!("#)
0,2

(I. 2.12) 
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𝝁02!  is the i-axis component of the transition dipole moment vector. Since the perturbation Hamiltonian 
is described by the first order of the electric field, the nth-order perturbation term is proportional to the 
nth-order of the electric field. Therefore, 𝝁%, 𝒑(,)(𝑡), 𝒑(.)(𝑡), and 𝒑(/)(𝑡) are obtained as follows: 
 

𝜇%,! = 𝜇%%! ,																																																																																																													 (I. 2.13) 
 

𝑝!
(,)(𝑡) =#𝐶0

(,)(𝑡)𝜇%0! 𝑒!($")
0

+ c. c,																																																											 (I. 2.14) 

 

𝑝!
(.)(𝑡) =#𝐶0

(,)∗𝐶2
(,)(𝑡)𝜇02! 𝑒!("#)

02

+#(𝐶0
(.)∗(𝑡)𝜇%0! 𝑒!($")

0

+ c. c), (I. 2.15) 

 

𝑝!
(/)(𝑡) =#𝐶0

(,)∗𝐶2
(,)(𝑡)𝜇02! 𝑒!("#)

02

+#𝐶0
(/)∗(𝑡)𝜇%0! 𝑒!($")

0

+ c. c				 (I. 2.16) 

 
The "c.c." refers to complex conjugate. Based on time-dependent perturbation theory, the primary 

coefficient 𝐶&
($)(𝑡) is expressed as: 

 

𝐶&
(,)(𝑡) = _

0				(𝑛 ≠ 0)																																																																															
1
ℏ
#𝜇&%

" (𝑡) a
𝐹"𝑒!((!$'())

𝜔&% −𝜔
+
𝐹"∗𝑒!((!$4())

𝜔&% +𝜔
b

"

				(𝑛 ≠ 0) (I. 2.17) 

 
Substituting Eq. (I.2.17) into Eq. (I.2.14), we obtain: 
 

𝑃!
(,)(𝑡) =

1
ℏ
##𝜇0%

"

"05%

a
𝐹"𝑒!(("$'())

𝜔0% −𝜔
+
𝐹"∗𝑒!(("$4())

𝜔0% +𝜔
b𝜇%0! 𝑒!($") + c. c 

=
1
ℏ
##𝜇0%

" 𝜇%0!
"05%

a
𝐹"𝑒'!()

𝜔0% −𝜔
+

𝐹"∗𝑒!()

𝜔0% +𝜔
b + c. c												 

=#
1
ℏ
# d

𝜇%0! 𝜇0%
"

𝜔0% −𝜔
+
𝜇%0
" 𝜇0%!

𝜔0% +𝜔
e𝐹"𝑒'!() + c. c

05%"

											 (I. 2.18) 

 
By comparing the above equation with the first-order term in Eq. (I.2.1), the tensor of polarizability, 
α!", can be expressed as: 
 

α!"(−𝜔;𝜔) =
1
ℏ
# h

𝜇",0%𝜇!,%0
𝜔0% −𝜔

+
𝜇!,0%𝜇",%0
𝜔0% +𝜔

i
05%

(I. 2.19) 



 

 49 

By a similar process, the tensors β!"#  and γ!"#$  for the first and second hyperpolarizabilities are 
expressed as follows: 
 

β!"#(−(𝜔, +𝜔.); 𝜔,, 𝜔.) = 	
1
2ℏ.

𝑃(𝑖, 𝑗, 𝑘; −(𝜔, +𝜔.); 𝜔,, 𝜔.)																																															

× # #
𝜇%&! 𝜇&6

" 𝜇6%#

{𝜔&% − (𝜔, +𝜔.)}(𝜔&% −𝜔.)65%&5%

, (I. 2.20)
 

 

γ!"#$(−(𝜔, +𝜔. +𝜔/); 𝜔,, 𝜔., 𝜔/) = 	
1
6ℏ/

𝑃(𝑖, 𝑗, 𝑘, 𝑙; −(𝜔, +𝜔. +𝜔/); 𝜔,, 𝜔., 𝜔/)							

× # # #
𝜇%&! 𝜇̅&6

" 𝜇̅6&%
# 𝜇&%%

$

{𝜔&% − (𝜔, +𝜔. +𝜔/)}(𝜔6% −𝜔. −𝜔/)(𝜔&%% −𝜔/)&%5%65%&5%

−# #
𝜇%&! 𝜇&%

" 𝜇%6# 𝜇6%$

{𝜔&% − (𝜔, +𝜔. +𝜔/)}(𝜔6% −𝜔. −𝜔/)(𝜔&%% −𝜔/)65%&5%

								 (I. 2.21)

 

 
where P represents the permutation operator and 𝜇̅&6 ≡ 𝜇&6 − 𝜇%%𝛿&6. These are the SOS expressions 
for the frequency-dependent hyperpolarizabilities; the limit values of 𝜔6 → 0 (m = 1, 2, 3) are the 
static (hyper)polarizabilities. Discussing the NLO properties using the static γ, frequency-independent 
parameter, has the advantage of uniquely defining the values associated with the second 
hyperpolarizability of the molecule. In this way, the discussion can be simplified. The diagonal 
component of the static second hyperpolarizability γ!!!! is given by: 
 

γ!!!!(0) = 4r# # #
𝜇%&! 𝜇̅&6! 𝜇̅6&-! 𝜇&-%!

𝐸&%𝐸6%𝐸&-%&-5%65%&5%

−# #
s𝜇&%! t

.s𝜇6%! t.

(𝐸&%).𝐸6%65%&5%

u																																															 

= 4

⎝

⎜
⎜
⎛ #

s𝜇&%! t
.
s𝛥𝜇&&! t

.

𝐸&%/&5%

−# #
s𝜇&%! t

.
s𝜇6%! t

.

(𝐸&%).𝐸6%65%&5%

+2# #
𝜇%&! 𝛥𝜇6&! 𝜇&6! 𝜇6%!

(𝐸&%).𝐸6%65%
65&

&5%

+# # #
𝜇%&! 𝜇&6! 𝜇6&-! 𝜇&-%!

𝐸&%𝐸6%𝐸&-%&-5%
&-56

65%
65&

&5% ⎠

⎟
⎟
⎞

(I. 2.22) 

 
where 𝐸&% and 𝛥𝜇00!  are the difference in excitation energy and transition dipole moment between the 
ground state and the nth excited state, respectively. 𝐸&% = ℏ𝜔&%, and 𝛥𝜇00 = 𝜇00 − 𝜇%%. The four 
terms in Eq. (I.2.22) correspond to the unique virtual transition processes through the excited states that 
contribute to the third-order optical response, respectively, as shown in Figure I.2.13,4. The first term 
corresponds to a transition process through the nth excited state only. Such transition paths are classified 
as type I (0-n-n-n-0), where the symbol "0" represents the ground state. Similarly, the other three terms 
are classified as type II (0-n-0-m-0), type III-1 (0-n-m-m-0), and type III-2 (0-n-m-n'-0) pathways. From 
Eq. (I.2.22), we see that the type I term gives a positive contribution, and the type II term gives a negative 
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contribution to γ!!!!. The type III terms generally give positive contributions. The type I and type III-1 
contributions disappear in centrosymmetric molecules because of the dipole moment difference between 
the states involved4,5. Type II is negative in the frequency range where there is no first one-photon 
resonance, but the contribution to the TPA cross-section is small because there is no two-photon 
resonance term6,7. In the case of TPA, the type III-2 contribution is dominant. As can be seen from Eq. 
(I.2.22), molecules with smaller excitation energies, larger transition dipole moments between states, 
and larger dipole moment differences tend to exhibit larger γ values. The total value of γ!!!!  is 
determined by the relative balance of these terms. 
 

 
 
Figure I.2.1. Four types of virtual transition processes of the static γ. 
 
2.1.2. FF method 
In the case of the SOS method, it is necessary to obtain the transition dipole moments between the 
eigenstates of the system, which requires high-precision calculations, but in the FF method, the static γ 
can be obtained only by calculating the ground state8. From the Hellmann-Feynman theorem, the 
derivative of energy with respect to the electric field F is: 
 

𝜕𝐸
𝜕𝐹!

= }Ψ~ 𝜕𝐻
1

𝜕𝐹!
~Ψ� (I. 2.23) 

 
Substituting Eqs. (I.2.3) and (I.2.9) into the above equation, we obtain: 
 

𝜕𝐸
𝜕𝐹!

= ⟨Ψ|−𝜇̂!|Ψ⟩ = −𝜇! 																																																																												

= −𝜇%,! − 𝑝! 																																																																																			

= −𝜇%,! −#𝛼!"𝐹"
"

−#𝛽!"#𝐹"𝐹#
"#

−#𝛾!"#$𝐹"𝐹#𝐹$
"#$

+⋯ (I. 2.24)
 

 
Transposing yields the following equation: 
 

𝜇! = 𝜇%,! +#𝛼!"𝐹"
"

+#𝛽!"#𝐹"𝐹#
"#

+#𝛾!"#$𝐹"𝐹#𝐹$
"#$

+⋯ (I. 2.25) 
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If the Hellmann-Feynman theorem is satisfied, the dipole moment is associated with the energy, so from 
Eq. (I.2.25): 
 

𝐸(𝑭) = 𝐸(0) −#𝜇%,!𝐹!
!

−
1
2
#𝛼!"𝐹!𝐹"
!"

−
1
3
#𝛽!"#𝐹!𝐹"𝐹#
!"#

−
1
4
#𝛾!"#$𝐹!𝐹"𝐹#𝐹$
!"#$

+⋯ (I. 2.26) 

 
Taylor expansion of the energy when an electric field is applied around 𝐹 = 0 yields the following 
equation: 
 

𝐸(𝑭) = 𝐸(0) +#
𝜕𝐸(𝑭)
𝜕𝐹!

�
78%!

𝐹! +
1
2!
#

𝜕.𝐸(𝑭)
𝜕𝐹!𝜕𝐹"

�
78%!"

𝐹!𝐹" 																																																																		 

+
1
3!#

𝜕/𝐸(𝑭)
𝜕𝐹!𝜕𝐹"𝜕𝐹#

�
78%!"#

𝐹!𝐹"𝐹# +
1
4!#

𝜕9𝐸(𝑭)
𝜕𝐹!𝜕𝐹"𝜕𝐹#𝜕𝐹$

�
78%!"#$

𝐹!𝐹"𝐹#𝐹$⋯ (I. 2.27) 

 
Thus, the static (hyper)polarizabilities are obtained as follows: 
 

α!" = −
𝜕.𝐸(𝑭)
𝜕𝐹!𝜕𝐹"

�
78%

													 (I. 2.28) 

 

β!"# = −
1
2
𝜕/𝐸(𝑭)
𝜕𝐹!𝜕𝐹"𝜕𝐹#

�
78%

						 (I. 2.29) 

 

γ!"#$ = −
1
6

𝜕9𝐸(𝑭)
𝜕𝐹!𝜕𝐹"𝜕𝐹#𝜕𝐹$

�
78%

(I. 2.30) 

 
The analytical expression for 𝐸(𝑭) is not implemented in the usual quantum chemical calculation 
program packages, but the static γ!!!! can be obtained by calculating the diagonal components using 
higher-order numerical derivatives: 
 

γ!!!! =
{𝐸(3𝐹!) + 𝐸(−3𝐹!)} − 12{𝐸(2𝐹!) + 𝐸(−2𝐹!)} + 39{𝐸(𝐹!) + 𝐸(−𝐹!)} − 56𝐸(0)

36𝐹!9
(I. 2.31) 
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2.2.  Dependence of the Static γ on Open-Shell Characteristics 
 
In open-shell singlet systems, the second hyperpolarizability γ, the microscopic origin of NLO, strongly 
depends on the open-shell character (y). The value of the static γ increases markedly in the intermediate 
region of y. For increasing NLO properties, including TPA, theoretical studies using the static γ are very 
important for understanding phenomena and obtaining molecular design guidelines. In this section, we 
derive the relationship between the static γ and y in a two-site VCI diradical model. 
 It was explained in the previous section that for systems with symmetric centers, the terms for 
type I and type III-1 shown in Figure I.2.1 disappear from Eq. (I.2.22). Therefore, in the two-site 
diradical model, the system reduces to the three-state approximation shown in Figure I.2.2, and in the 
static limit, the diagonal γ!!!! components are expressed as follows: 
 

γ = γ:: + γ:::'. = −4# #
(𝜇&%).(𝜇6%).

(𝐸&%).𝐸6%65%&5%

+ 4# # #
𝜇%&𝜇&6𝜇6&-𝜇&-%
𝐸&%𝐸6%𝐸&-%&-5%

&-56
65%
65&

&5%

 

= −4
�𝜇;&',;&(�

9

�𝐸;&(,;&'�
/ + 4

�𝜇;&',;&(�
.
�𝜇;&(,;)'�

.

�𝐸;&(,;&'�
.
𝐸;)',;&'

							 (I. 2.32) 

 

 
Figure I.2.2. Three singlet states {|𝑆,<J, |𝑆,=⟩, |𝑆.<J} of the two-site diradical model. 
 
The dimensionless excitation energies 𝐸>?	;&(,;&'  and 𝐸>?	;)',;&'  are derived using Eqs. (I.1.16), 

(I.1.18), (I.1.23) and (I.1.33) as follows9: 
 

𝐸>?	;&(,;&' =
𝐸(𝑆,A) − 𝐸s𝑆,Bt

𝑈
=
1
2r

1 − 𝑟C −
1 − �1 + 16𝑟).

2 u

=
1
2�
1 − 2𝑟C +

1
�1 − (1 − 𝑦).

�																 (I. 2.33)
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𝐸>?	;)',;&' =
𝐸s𝑆.Bt − 𝐸s𝑆,Bt

𝑈
= �1 + 16𝑟).																																	

=
1

�1 − (1 − 𝑦).
																																												 (I. 2.34)

 

 
The dipole moment operator is given by the following equation: 
 

𝜇̂ = −#𝒓&
&

(I. 2.35) 

 
where 𝒓! is the position vector of the nth electron. The transition dipole moment between the 𝑆,B and 
𝑆,A states is expressed as follows: 
 

𝜇;&',;&( = −F𝑆,BH ∑ 𝒓&& H𝑆,AJ = −F𝑆,BH(𝑟, + 𝑟.)H𝑆,AJ																																																				 

= −
1
√2

�𝜅sF𝑎𝑏�|+⟨𝑏𝑎�|t + 𝜂s⟨𝑎𝑎�H+F𝑏𝑏�Ht�(𝑟, + 𝑟.)s|𝑎𝑎�⟩ − |𝑏𝑏�Jt

= −
1
√2

𝜅sF𝑏�H𝑟H𝑎�J + ⟨𝑎|𝑟|𝑏⟩ − ⟨𝑏|𝑟|𝑎⟩ + F𝑎�H𝑟H𝑏�Jt																											

−
1
√2

𝜂s⟨𝑎|𝑟|𝑎⟩ + ⟨𝑎�|𝑟|𝑎�⟩ − ⟨𝑏|𝑟|𝑏⟩ − F𝑏�H𝑟H𝑏�Jt																						

= −√2𝜂{⟨𝑎|𝑟|𝑎⟩ − ⟨𝑏|𝑟|𝑏⟩}																																																																			
= √2𝜂𝑅DE																																																																																																			 (I. 2.36)

 

 
where 𝑅DE = (𝑏|𝑟|𝑏) − (𝑎|𝑟|𝑎) represents the effective distance between unpaired electrons, thus 
multiplying by the electron charge results in a dipole. The transition dipole moment between the 𝑆,A 
and 𝑆.B states is then expressed as: 
 

𝜇;&(,;)' = −F𝑆,AH(𝑟, + 𝑟.)H𝑆.BJ																				 

= √2𝜅{⟨𝑏|𝑟|𝑏⟩ − ⟨𝑎|𝑟|𝑎⟩} 
= √2𝜅𝑅DE																												 (I. 2.37) 

 
Dimensionless transition dipole moments (𝜇>? ≡ 𝜇/𝑅DE) are respectively: 
 

𝜇>?	;&',;&( = √2𝜂, 

𝜇>?	;&(,;)' = √2𝜅 (I. 2.38) 
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Thus, the transition probability is expressed using the diradical character y as follows: 
 

�𝜇>?	;&',;&(�
.
= 2𝜂. =

8𝑟).

�1 + �1 + 16𝑟).��1 + 16𝑟).
 

=
1 −�1 − (1 − 𝑦).

2
						 (I. 2.39) 

 

�𝜇>?	;&(,;)'�
.
= 2𝜅. =

1
2
�1 +

1
�1 + 16𝑟).

�																		 

=
1 +�1 − (1 − 𝑦).

2
						 (I. 2.40) 

 
The y-dependence of the dimensionless excitation energies and transition moments for 𝑟C = 0  is 
shown in Figure I.2.3 both 𝐸>?	;&(,;&' and 𝐸>?	;)',;&' decrease rapidly with increasing y in the small 
y region, but the decrease rate is found to be greater for 𝐸>?	;&(,;&'. In addition, both of them hardly 
change in the region of large y. It can also be seen that (𝜇>?	;&(,;)')

. increases with increasing y, 
approaching 1, and (𝜇>?	;&',;&()

. decreases with increasing y, approaching 0. 
 

 
Figure I.2.3. Diradical character dependence of the dimensionless (a) excitation energies (b) transition 
moments for 𝑟C = 0. 
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To consider the y-dependence of γ>?, we consider γ>?::  and γ>?:::'., which from Eqs. (I.2.33), (I.2.34), 
(I.2.39) and (I.2.40), respectively, are expressed as follows: 
 

γ>?:: = −4
�𝜇>?	;&',;&(�

9

�𝐸>?	;&(,;&'�
/ = −

8(1 − 𝑦)9

s1 + �1 − (1 − 𝑦).t
.
�1 − 2𝑟C +

1
�1 − (1 − 𝑦).

�
/ (I. 2.41) 

 

γ>?:::'. = 4
�𝜇>?	;&',;&(�

.
�𝜇>?	;&(,;)'�

.

�𝐸>?	;&(,;&'�
.
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4(1 − 𝑦).

1
�1 − (1 − 𝑦).

�1 − 2𝑟C +
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�1 − (1 − 𝑦).
�
. (I. 2.42) 

 
The y-dependence of (𝐸>?	;&(,;&')

/ and (𝜇>?	;&',;&()
9, the components of γ>?::  in Eq. (I.2.41), and 

γ>?::  are shown in Figure I.2.4(a), (b), respectively. The y-dependence of (𝐸>?	;&(,;&')
/𝐸>?	;)',;&'and 

(𝜇>?	;&',;&()
.(𝜇>?	;&(,;)')

., the components of γ>?:::'. in Eq. (I.2.42), and γ>?:::'. are shown in Figure 
I.2.4(c), (d), respectively. Both are for the case 𝑟C = 0. The components related to the dimensionless 
excitation energies and transition moments both tend to decrease with increasing y, with (𝐸>?	;&(,;&')

/, 
(𝜇>?	;&',;&()

9 and (𝐸>?	;&(,;&')
/𝐸>?	;)',;&' decreases steeply in the region of small y (y < 0.2). γ>?::  

shows a negative maximum at y = 0.134, and γ>?:::'. shows a positive maximum at y = 0.307. 
 

 
Figure I.2.4. Diradical character dependence of (a) components of γ>?:: , (b) γ>?:: , (c) components of 
γ>?:::'., (d) γ>?:::'. for 𝑟C = 0. 
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Eqs. (I.2.32), (I.2.41) and (I.2.42), the dimensionless γ in the two-site VCI diradical model is expressed 
as: 
 

γ>? = −
8(1 − 𝑦)9

�1 + �1 − (1 − 𝑦).�
.
�1 − 2𝑟C +

1
�1 − (1 − 𝑦).

�
/

+
4(1 − 𝑦).

1
�1 − (1 − 𝑦).

�1 − 2𝑟C +
1

�1 − (1 − 𝑦).
�
. (I. 2.43)

 

 
The y-dependence of γ>? for 𝑟C = 0 is shown in Figure I.2.5. γ>? shows a positive maximum at y 
= 0.359, reflecting the character of γ>?:::'. . Thus, the second hyperpolarizability γ and the diradical 
character y show a strong correlation, which is called the "y-γ correlation"; a system with intermediate 
y between 0 and 1 will have a closed shell (y = 0) and pure diradicals (y = 1) of similar size, which is 
the source of the giant NLO property. 
 

 
Figure I.2.5. Diradical character dependence of γ>?, γ>?::  and γ>?:::'. for 𝑟C = 0. 
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Chapter 3. 

 

Theory of Two-Photon Absorption 

 
In this chapter, the theoretical equation for two-photon absorption will be explained. There are two main 

ways to obtain the frequency-dependent two-photon absorption (TPA) cross-section 𝜎(")(𝜔) by 
calculation. One is to obtain Imγ (see Chapter 2), as mentioned earlier (Eq. (14)) that 𝜎(")(𝜔) is 
correlated with the imaginary part of the second hyperpolarizability (Imγ) in degenerate four-wave 

mixing (DFWM). However, previous studies that have used Imγ to calculate the spectrum of 𝜎(")(𝜔) 
have shown that it does not exhibit the correct dispersion behavior in the frequency region near the one-
photon resonance1,2. Another method is to calculate two-photon transition matrix elements from Fermi's 
golden rule. After a brief discussion of this method in comparison with the theoretical equation for one-
photon absorption cross-section, we derive an equation relating the TPA cross-section, simplified to a 
three-state model, to the open-shell character (y). 
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3.1.  Theoretical Formula for Light Absorption 
 
The change from the steady state due to light absorption is a transition between levels in quantum theory. 
The probability 𝑤!→# of a transition from an unperturbed state a to an unperturbed state b is expressed 
from Fermi's golden rule as follows: 
 

𝑤!→# =
2𝜋
ℏ &𝑏(𝐻*′(𝑡)(𝑎0

$𝛿(𝐸# − 𝐸! − ℏ𝜔) (I. 3.1) 

 
Here, ℏ is the Dirac’s constant (ℏ = ℎ/2𝜋, where ℎ is Planck's constant), E is the eigenenergy of the 
unperturbed Hamiltonian, and ℏ𝜔 is the photon energy. 
 
3.1.1. Theoretical formula for one-photon absorption 
From Eq. (I.3.1), the strength of the one-photon absorption (OPA) transition from the ground state g to 
the excited state f (oscillator strength; 𝑓%&) is defined as3: 

 

𝑓%& =
2𝑚𝒆𝜔%&
3𝑛$ℏ𝑒$

〈(𝛍()(
$〉 (I. 3.2) 

 
where 𝑚𝒆  is the electron mass, 𝑛  is the refractive index of the medium, and 𝑒  is the charge 
elementary quantity. 𝛍()  is the transition dipole moment that gives the probability of OPA. The 
frequency-dependent molar absorption coefficient 𝜀(𝜔) of OPA is expressed using 𝑓%& as: 

 

𝜀(𝜔) =
10*+

ln10𝑁,
2𝜋$𝑛𝑒$

𝑚𝑐 𝑓%&𝑔(𝜔) (I. 3.3) 

 
𝑁, is Avogadro's number, 𝑐 is the speed of light in vacuum, and 𝑔(𝜔) is the normalized spectral 

shape function. Eqs. (I.3.2) and (I.3.3) show that the spectral of OPA cross-section 𝜎(.)(𝜔) is given 
by4,5: 
 

𝜎(.)(𝜔) =
4𝜋$𝜔
𝑐𝑛ℏ

〈(𝛍()(
$〉 𝑔(𝜔) (I. 3.4) 

 
Here, 𝜔 is the angular frequency of the incident light, 𝛍() is the transition dipole moment between 
the states g and f. (𝛍()( is expressed using the polarization vector 𝒆 of the incident light as follows: 
 

(𝛍()( = ⟨𝑓|𝒆 ∙ 𝝁|𝑔⟩ (I. 3.5) 
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 〈⋯ 〉 means the orientational average, i.e.,  
 

〈(𝛍()(
$〉 = Q⟨𝑓|𝜇0|𝑔⟩$

1,3,4

0

=
STµ()5 V

$
+ Tµ()6 V

$
+ Tµ()7 V

$
X

3
(I. 3.6) 

 
where µ()0  represents the α-axis component of the transition dipole moment 𝛍() . In addition, the 

following Lorenz function is used as 𝑔(𝜔) in this doctoral thesis: 
 

𝑔(𝜔) =
1
𝜋

Γ()
T𝜔() −𝜔V

$ + Γ()$
(I. 3.7) 

 
where 𝐸() = ℏ𝜔(), and Γ() is damping constant from state g to f. 

 
3.1.2. Theoretical formula for two-photon absorption 

The spectrum of the TPA cross-section 𝜎($)(𝜔) is given by4,6: 
 

𝜎($)(𝜔) =
4𝜋+𝜔$

𝑐$𝑛$
〈\𝑴()

($)\
$
〉 𝑔(2𝜔) (I. 3.8) 

 

where, 𝑴()
($) is two-photon transition matrix element tensor, having the same dimension as the dipole 

polarizability, expressed as: 
 

𝑴()
($) =

1
ℏ
Q

⟨𝑓|𝒆 ∙ 𝝁|𝑘⟩⟨𝑘|𝒆 ∙ 𝝁|𝑔⟩
𝜔8) −𝜔8

(I. 3.9) 

 
The transition dipole moment of OPA shown in Eq. (I.3.5) relates to the transition from the initial state 
g to the final state f, whereas the two-photon transition matrix element of TPA shown in Eq. (I.3.9) is 
the transition through the intermediate state k. The denominator, 𝜔8) −𝜔, is the difference between 

the energy of the intermediate state k and the energy of the incident photon and is called the detuning 
energy. Figure I.3.1(a) shows an image of the sum-over-states (SOS) expression for adding up all 
intermediate states k. According to Feynman path integral, the actual process can be represented by the 
SOS expression that adds all possible routes together, taking into account their weights. This means that 
an expression equivalent to the transition of TPA via the virtual state, as shown in Figure I.3.1(b), is also 
possible. 
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Figure I.3.1. Image of the representation of TPA transitions: (a) SOS expression, (b) via the virtual state. 
 

〈|𝑴()
($)|$〉 in Eq. (I.3.8) is orientationally averaged TPA probability. 〈|𝑴()

($)|$〉 can be expressed for the 

linearly polarized incident light using each component of the two-photon transition matrix element 𝑀09 

as follows: 
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1
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(I. 3.10) 

 
𝑀09 is expressed using transition dipole moments as follows: 

 

𝑀09 =
1
2ℏ
Qb

⟨𝑓|𝜇0|𝑘⟩&𝑘(𝜇9(𝑔0
𝜔8) −𝜔 − 𝑖Γ8)

+
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𝜔8) −𝜔 − 𝑖Γ8)

d
8

				(𝛼, 𝛽 = 𝑋, 𝑌, 𝑍) (I. 3.11) 

 
Γ8) is damping constant from state 𝑔 to 𝑘. We used the Lorentzian function for the normalized shape 

function 𝑔(2𝜔): 
 

𝑔(2𝜔) =
1
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(I. 3.12) 
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 Next, we discuss a simplification of the SOS expression, the idea of which is to take the sum 
of all transitions to which the intermediate state k contributes, but it is not realistic to actually consider 
an infinite number of states. Therefore, one method that can be employed is the single intermediate state 
approximation. This method considers only one of the intermediate states with the largest contribution 
(in most cases, the lowest energy OPA state). In the case of TPA for centrosymmetric system, the 
minimum required are the initial, intermediate, and final states. For a simplified model that considers 
only these three singlet states, the initial state corresponds to state |𝑆.)0, the intermediate state to state 
|𝑆.;⟩, and the final state to state |𝑆$)0 (see Figure I.2.2), the two-site diradical model can be applied. 
 
 

3.2.   Open-Shell Character Dependence of One- and Two-Photon 
Absorption Cross-Sections 
 
3.2.1. Open-shell character dependence of one-photon absorption cross-section 

From Eqs. (I.2.33), (I.2.39) and (I.3.4), the dimensionless OPA peak cross-section σ<=
(.)T𝜔()V  is 

expressed as5:  
 

σ<=
(.)T𝜔()V ≡

𝜎(.)T𝜔()V

o 4𝜋
3ℏ𝑐𝑛p (𝑒𝑅>?)

$
=
1 − r1 − (1 − 𝑦)$

2𝐶()
(I. 3.13) 

 
𝑅>? depicts the effective distance between A and B (see Eq. (I.2.36)). 𝐶() is the coefficient defined to 
represent the energy dependence of Γ() and is expressed by the following equation: 

 
Γ() = 𝐶()𝐸()		(0 ≤ 𝐶() ≤ 1) (I. 3.14) 

 

Eq. (I.3.13) shows that σ<=
(.)T𝜔()V decreases inversely with 𝐶(). Figure I.3.2 shows the y-dependence 

of σ<=
(.)T𝜔()V  with 𝐶()  as a fixed constant (𝐶() = 0.1 ). σ<=

(.)T𝜔()V  is found to decrease with 
increasing y. 
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Figure I.3.2. Diradical character dependence of dimensionless OPA peak intensity σ<=

(.)T𝜔()V 
 
3.2.2. Open-shell character dependence of two-photon absorption cross-section 
From Eqs. (I.2.33), (I.2.34), (I.2.39), (I.2.40) and (I.3.8), the dimensionless TPA peak cross-section 

σ<=
($)T𝜔()V is expressed as7: 
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(I. 3.15)
 

 
where p is the coefficient ratio that satisfies the following equation: 
 

𝑝 = 𝐶8)/𝐶()		(0 ≤ 𝑝 ≤ 1),
Γ8) = 𝐶8)𝐸8)		(0 ≤ 𝐶8) ≤ 1) (I. 3.16) 

 

As 𝐶() is decreased, the value of y increases when σ<=
($)T𝜔()V is maximized, and its y-value increases 

rapidly as 𝑟A is moved closer to 0.57. In case of 𝑟A = 0.5, σ<=
($)T𝜔()V follows from Eq. (I.3.15): 

 

σ<=
($)T𝜔()V =

1
4𝑝$𝐶()+

(1 − 𝑦)$r1 − (1 − 𝑦)$ (I. 3.17) 

 

Eq. (I.3.17) shows that an increase in 𝐶8)  or 𝐶()  decreases σ<=
($)T𝜔()V , but y-dependence is 

unchanged by these coefficients. y-dependence of σ<=
($)T𝜔()V is shown in Figure I.3.3 when 𝐶() is a 

fixed constant (𝐶() = 0.1) and p is varied in the range 1.0 ~ 0.6 with interval = 0.1. It can be seen that 
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σ<=
($)T𝜔()V peaks at y = 0.184, independent of p. As described above, it is theoretically possible to derive 

that the TPA cross-section increases in systems that exhibit intermediate open-shell character. 
 

 
Figure I.3.3. Diradical character dependence of dimensionless TPA peak intensity σ<=

($)T𝜔()V for p = 
1.0 ~ 0.6 under the condition of 𝐶() = 0.1 and 𝑟A = 0.5. 
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Structures and Third-Order Nonlinear Optical 

Properties in One-Dimensional Chains 
of π-Radicals 
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The correlation between open-shell electronic structure and third-order nonlinear optical (NLO) 
properties of one-dimensional (1D) stacked chains of π-radicals was investigated theoretically. By 
employing the finite N-mer models consisting of methyl or phenalenyl radicals with different stacking 
distances, the average and standard deviation of diradical characters yi for N-mer models of π-radicals 
(yav and ySD) were evaluated. Then, these diradical characters were estimated at the limit N → ∞. These 
y-based indices were helpful in discussing the correlation between the open-shell electronic structures 
and the second hyperpolarizability per dimer at the limit N → ∞, γ∞, for the 1D chains with stacking 
distance alternation (SDA). The calculated γ∞ values and the polymer/dimer ratio γ∞/γ(N = 2) were 
enhanced significantly when both the stacking distance and the SDA are small. It was also found that 
the spin-unrestricted long-range corrected (LC-)UBLYP method with the range-separating parameter μ 
= 0.47 bohr-1 reproduced well the trend of γ∞ of this type of 1D chains estimated at the spin-unrestricted 
coupled-cluster levels. The present study is expected to contribute to establishing the design guidelines 
for future high-performance open-shell molecular NLO materials. 
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1. Introduction 
 
For the past two decades, molecular materials exhibiting large third-order nonlinear optical (NLO) 
responses have been actively explored because such materials are essential for establishing future 
photonic and optoelectronic devices1. Molecular third-order NLO materials have advantages in their fast 
response time and molecular design feasibility compared with inorganic crystals. Numerous theoretical 
and experimental studies have been carried out to clarify design guidelines for molecular third-order 
NLO materials2–8. In addition to the molecular materials based on the stable closed-shell molecules, 
open-shell systems9–14, such as diradicals, multiradical systems, and high-spin species, have recently 
been focused on as candidates for novel third-order NLO materials. Nakano et al. theoretically clarified 
the relationship between the diradical character y (a theoretical index characterizing the degree of open-
shell in the singlet state) and the molecular second hyperpolarizability γ (the third-order NLO property 
at the molecular scale)13. They found that singlet diradicals and diradical-like molecules with 
intermediate y exhibit enhanced γ compared to closed-shell and complete open-shell counterparts. 
Recent advances in synthesis and measurement techniques have contributed to establishing open-shell 
third-order NLO materials15–19. 

The (partially) unpaired electrons in the open-shell molecules are sensitive to external stimuli, 
leading to their significant NLO property and high chemical reactivity. These highly active unpaired 
electrons often contribute to σ-bond formation with other open-shell molecules, which results in 
reducing their high response properties. Therefore, practical design strategies are needed to suppress the 
formation of σ-bonds while maintaining the activity and sensitivity of the unpaired electrons. In such 
situations, these unpaired electrons can be utilized to achieve huge response properties in their molecular 
assembly that cannot be achieved with single molecules alone. Several π-dimers exhibiting open-shell 
electronic structures have been realized by tuning the balance between the attractive and repulsive 
interactions between the open-shell π-conjugated molecules20. Notably, derivatives of phenalenyl 
radicals21–23 and cyclic thiazyl radical24–27, typical neutral π-radicals with high thermodynamic stabilities, 
were reported to form one-dimensional (1D) π-stacked chains in the crystalline phase, in which each 
monomer interacts with each other via the pancake bonding interaction28–32. Their stacking distances 
and relative configurations can be controlled by chemical modifications while maintaining the high 
activity of the unpaired electrons28–32. 

Several theoretical and computational studies have evaluated the third-order NLO properties 
of such 1D chains of monoradicals. Nakano et al. employed the simplest 1D chain model of hydrogen 
atoms and averaged y (yav) values to characterize their open-shell characters33. They found that γ per unit 
in the 1D chains (multiradical) takes a maximum in a smaller yav region compared with the diradical 
systems. Yoneda et al. performed the density functional theory (DFT) calculations for π-dimers of 
phenalenyl radicals with different stacking distances d in the singlet state29. They found that y of the 
dimer decreases as decreasing d, and γ per monomer takes the maximum around d = 2.9 Å, at which y 
is in the intermediate region. Salustro et al. evaluated the γ∞ of 1D chains of phenalenyl radicals32 by 
extending the coupled-perturbed Kohn-Sham (CPKS) analytic derivative method under the periodic 
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boundary condition implemented in the CRYSTAL package34,35, which was the first direct computation 
of γ∞ of this type of 1D chain. In a series of theoretical studies, Matsui et al. investigated the effects of 
increasing the number of monomers (N) on the γ per unit based on the 1D chains of hydrogens and cyclic 
thiazyl radicals31. They estimated the γ per unit in the limit N → ∞ (γ∞) by extrapolating the results of 
N-mers. These studies predicted that the third-order NLO properties of closely stacked 1D chains of π-
radicals are comparable to those of π-conjugated polymers, suggesting through-space (TS) conjugation 
in such systems. 

It is expected that yav can fairly characterize the degree of open-shell in the 1D chains of π-
radicals with the uniform stacking distance d. Of course, realizing 1D chains of π-radicals with a uniform 
stacking distance is challenging. Even if 1D chains are formed successfully in crystalline, alternations 
of the stacking distance often appear. In such a situation, yav may not always uniquely characterize their 
open-shell electronic structures related to the third-order NLO responses. Here, another y-based index, 
ySD, corresponding to the standard deviation of y, was introduced and examined how yav and ySD can help 
characterize the open-shell electronic structure of the stacked 1D chains of π-radicals where two types 
of stacking distance, d1 and d2, appear alternately. The dependence of stacking distance alternation 
(SDA) on yav, ySD, and γ∞ in 1D chain models of π-radicals was then investigated based on quantum 
chemical calculations.   
 
 

2. Methods 
 
2.1. Model systems 
The sp2 methyl radical36 and the phenalenyl radical were employed as monomer units (the 1D chains 
composed of each are shown in Figure II.1(a) and (b), respectively). Figure II.1(c) illustrates their 
dimer's frontier orbital energy levels (N = 2) and tetramers (N = 4). It is known that there is a good 
negative correlation between y and the energy gap between the highest occupied and lowest unoccupied 
molecular orbitals (HOMO and LUMO) for diradicaloids. The HOMO and LUMO are constructed by 
bonding and anti-bonding interactions of the singly occupied MOs (SOMOs) of the monomers. Thus, 
the HOMO-LUMO gap of the dimer tends to increase with decreasing the stacking distance d1 in the 
dimer unit. 

For the multiradicaloids (N ≥ 4), plural diradical characters yi can be defined from the 
occupation numbers of the i-th pair of natural orbitals (NOs), i.e., HONO-i and LUNO+i. Roughly, yi (i 
= 0, 1, … N/2–1) is negatively correlated with the energy gap between the HOMO-i and LUMO+i. 
When the tetramer is composed of two almost non-interacting dimers with d2 >> d1, the orbital 
interaction between the HOMOs (LUMOs) of the dimer can be negligible. As a result, the HOMO and 
HOMO-1 (LUMO and LUMO+1) of the tetramer with d2 >> d1 are nearly degenerated. Thus, y0 ~ y1 
will be obtained in such a situation. When d2 ~ d1 (and they are sufficiently small), the orbital interaction 
between the HOMOs (LUMOs) of the dimer becomes considerable, resulting in y0 >> y1. Since yav is 
defined by the arithmetic average of {yi}, situations can be found where y0 and y1 are different but yav is 
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similar. Thus, in addition to yav, another y-based index, the standard deviation of yi, denoted as ySD, is 
introduced here. It can be expected that, for example, ySD ~ 0 for the non-interacting dimers, but ySD > 0 
for the interacting dimers. For N → ∞, if the conduction and valence bands are constructed primarily 
from the SOMOs of the monomers, these indices can be considered at N → ∞, i.e., yav(N → ∞) and 
ySD(N → ∞). These indices are related to the averaged band gap and widths. Generally, the band gap and 
widths are essential for characterizing the optical response properties.  
 

 

Figure II.1. Structures of 1D chain models consisting of (a) methyl radicals, and (b) phenalenyl radicals, 
and (c) orbital interaction diagram for the tetramers with different staking distance alternations. 
 
2.2. Computational details 
The molecular geometry of methyl radical optimized at the UCCSD(T)/aug-cc-pVDZ level under the 
D3h symmetry constraint was employed36. Then, eclipsed-stacking 1D N-mer models [(CH3)N] were 
constructed, keeping the intramolecular geometries fixed.  
The yi values for the N-mer were calculated at the projected unrestricted Hartree-Fock (PUHF) level 
using Yamaguchi’s equation [Eq. (II.1)]37, 
 

𝑦! = 1 −
2𝑇!

1 + 𝑇!"
(II. 1) 

 
Here 𝑇! is calculated from the occupation numbers n of NOs at the UHF level 
 

𝑇! =
𝑛#$%$&! − 𝑛'(%$)!

2
(II. 2) 
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 The yav for the N-mer is defined by the following equation. 
 

𝑦av(𝑁) = - 𝑦𝑖(𝑁)

𝑁/2−1

𝑖=0

(II. 3) 

 
Note that there are N/2 radical pairs in the N-mer. Then, the standard deviation ySD is defined by the 
following equation. 
 

𝑦SD(𝑁) = /
1
𝑁/2

- 0𝑦𝑖(𝑁) − 𝑦av(𝑁)1
2𝑁/2−1

𝑖=0
(II. 4) 

 
For N = 4, yav and ySD are expressed by the following equations, 
 

𝑦av(𝑁 = 4) =
𝑦0 + 𝑦1

2
(II. 5) 

 

𝑦SD(𝑁 = 4) =
𝑦0 − 𝑦1

2
(II. 6) 

 
The stacking direction component of the static γ values of N-mer γ(N) = γzzzz(N) was then computed. 
The γ(N) values were evaluated using the finite-field method. The fourth-order numerical derivative of 
total energy under the static electric field in the range from 5.0 × 10-4 a.u. to 6.0 × 10-3 a.u. was employed, 
which gives the relative errors of about 1 % for γ.  

The total energies in the presence of an electric field were evaluated at the spin-unrestricted 
coupled-cluster singles and doubles with triples corrections [UCCSD(T)] and the long-range corrected 
(LC-)UBLYP38,39 levels. Previous studies usually evaluated the γ values at the LC-UBLYP level with μ 
= 0.33 bohr-1. This range-separating parameter μ is known to reproduce the results based on the highly 
correlated UCCSD(T) for several intramolecular diradicaloids and dimers of π-radicals40. In this study, 
the calculation results of LC-UBLYP using μ = 0.33 bohr-1 and 0.47 bohr-1 were compared with the 
UCCSD(T) results for N-mers. During the calculations, an initial guess for the singlet state with the all-
antiparallel spin alignment was prepared. The 6-31+G basis set used in the previous studies for 1D 
stacked systems consisting of a methyl radical model was employed. All these calculations were 
conducted by Gaussian 09 rev. D.41 
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After that, an attempt was made to estimate yav, ySD, and γ at the limit of N → ∞. The calculation 
results of 
 

𝛥γ(𝑁) =
𝛾(𝑁 + 2)− 𝛾(𝑁)

2
(II. 7) 

 
were fitted with the form of 
 

𝛥γ(𝑁) = γ∞ − 𝑏exp	(−𝑐𝑁) (II. 8) 
 
and then estimated γ∞31. The results of yav(N) and ySD(N) were fitted using the same exponential form as 
Eq. (II.8) to calculate these values at the limit of N → ∞, yav,∞ and ySD,∞.  
 The 1D stacked chains of phenalenyl radicals were also considered. The geometry 
optimization for the phenalenyl monomer was performed at the UB3LYP/6-31G* level. Then, π-stacked 
N-mer models (PLY)N in the anti-parallel configuration (see Figure II.1(a)) were constructed to evaluate 
yi of the N-mers at the PUHF level. γ∞ of the infinite 1D chain was directly computed at the LC-
UBLYP(μ = 0.47 bohr-1)/6-31G* level using the CRYSTAL 17 package. Details of the DFT calculations 
under the periodic boundary condition for 1D chains of phenalenyl radicals are discussed in the later 
section. 
 
 
3. Results and Discussion 
 
3.1. 1D chains of methyl radicals 
Figure II.2 shows the stacking distance (d1) dependences of y0 and γ(N = 2) for the methyl radical π-
dimer calculated at the PUHF/6-31+G and UCCSD(T)/6-31+G levels, respectively. y0 decreased 
monotonically with decreasing d1. γ(N = 2) showed a bell-shaped dependence on d1 with a maximum 
[γ(N = 2) = 31 × 103 a.u.] around d1 = 2.8-2.9 Å where y is in the intermediate region (y0 = 0.45 at d1 = 
2.8 Å, and y0 = 0.51 at d1 = 2.9 Å).  

1D N-mer models of methyl radicals with different d1 and d2 were constructed: A1(2.5 Å, 2.5 
Å), B1(3.0 Å, 3.0 Å), C1(3.5 Å, 3.5 Å), A2(2.5 Å, 3.0 Å), B2(3.0 Å, 3.5 Å), and C2(3.5 Å, 4.0 Å). Note 
that, for the dimer, y0 = 0.27 and γ(N = 2) = 21 × 103 a.u. at d1 = 2.5 Å, y0 = 0.56 and γ(N = 2) = 29 × 
103 a.u. at d1 = 3.0 Å, and y0 = 0.75 and γ(N = 2) = 16 × 103 a.u. at d1 = 3.5 Å, respectively. A1-C1 are 
the SDA-less (d2 = d1) models whereas A2-C2 exhibit the SDA pattern with d2 = d1 + 0.5 Å. Figure II.3 
shows the yav(N) and ySD(N) variations for these models with increasing N calculated at the PUHF/6-
31+G level. The convergence behavior of ySD(N) is relatively slow compared to yav(N). Table II.1 shows 
the results of yav,∞ and ySD,∞ estimated by the fitting scheme. yav,∞ was almost determined by d1. Namely, 
the yav,∞ values of An were almost the same. On the other hand, ySD,∞ was in the order of A1 > B1 > (A2, 
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C1, B2) > C2. From this result, ySD,∞ depends on the ratio d2/d1 as well as d1 itself. A1 and A2 exhibited 
similar yav,∞ but different ySD,∞.  

 

 

Figure II.2. Stacking distance [d1 (= d2)] dependences of y0 and static γ(N = 2) for the methyl radical π-
dimer calculated at the PUHF and UCCSD(T) levels, respectively, using the 6-31+G basis set. 
 

In Figure II.3(c) shows the convergence behaviors of Δγ(N) with increasing N for these models. 
A1 showed a slow convergence behavior of with N. A2 also showed a relatively slow convergence 
behavior compared with other systems. These features reflected that the intermolecular interactions 
become significant when the stacking distances are small. Table II.1 also summarizes the results of γ∞ 
and the ratio of γ∞ from the γ of the dimer with the same d1, i.e., γ∞/γ(N = 2). The “polymer/dimer” ratio 
γ∞/γ(N = 2) was in the order of A1 > A2 > B1 > (C1, B2) > C2. From these results, the polymer/dimer 
ratio γ∞/γ(N = 2) tends to be enhanced significantly when i) yav,∞ is in the small-medium region and then 
ii) ySD,∞ is large. The condition i) was already discussed in the previous paper33. For the condition ii), 
effect of the SDA ratio d2/d1 was usually discussed33. However, different situations, such as the relative 
orientations of monomers in 1D chains, can influence the tendency of ySD,∞.  

The exchange-correlation (xc-)functional dependence of γ∞ was next examined when the 
Kohn-Sham DFT method is employed to calculate γ∞. The applications of the UCCSD(T) method to the 
1D chains of phenalenyl radicals and other realistic systems are usually infeasible. Among the xc-
functionals, the LC-UBLYP with the range-separating parameter μ = 0.33 bohr-1 [denoted as LC-
UBLYP(0.33)] is known to reproduce well the γ values at the UCCSD(T) level for several diradical(oid)s 
with medium-large y40. However, it was also suggested that the LC-UBLYP(0.33) tends to overestimate 
the UCCSD(T) results for systems with small y, where γ∞ is expected to increase significantly in the 1D 
chains (multiradicals). LC-UBLYP calculations with different μ values (0.33 bohr-1 and 0.47 bohr-1) 
were performed for the 1D chain models of methyl radicals and compared the results with those of 
UCCSD(T). 
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Figure II.3. N dependence of (a) yav and (b) ySD calculated at the PUHF/6-31+G level, and (c) Δγ 
calculated at the UCCSD(T)/6-31+G level. 
 
Table II.1. Results of yav∞, ySD,∞ and γ∞ were obtained by fitting the results in Figure II.3. 

Model (d1, d2) yav,∞ ySD,∞ γ∞ [103 a.u.] γ∞/γ(N = 2) [-] 
A1 (2.5Å, 2.5Å) 0.26 0.25 740 36.0 
A2 (2.5Å, 3.0Å) 0.27 0.15 200 9.6 
B1 (3.0Å, 3.0Å) 0.48 0.22 128 4.4 
B2 (3.0Å, 3.5Å) 0.54 0.13 72 2.4 
C1 (3.5Å, 3.5Å) 0.69 0.14 42 2.7 
C2 (3.5Å, 4.0Å) 0.73 0.08 28 1.8 

 
 Figure II.4 presents a comparison of the results of Δγ(N) of B1 calculated at the UCCSD(T), 
LC-UBLYP(0.47), and LC-UBLYP(0.33) levels with the 6-31+G basis set. In this model, the LC-
UBLYP(0.33) overestimated the Δγ(N) values of UCCSD(T) significantly for N ≥ 4, although the result 
was close to the reference value for N = 2 [39.9 × 103 a.u. at the UCCSD(T), 35.3 × 103 a.u. at the LC-
UBLYP(0.33), and 19.2 × 103 a.u. at the LC-UBLYP(0.47), respectively]. The LC-UBLYP(0.47) 
underestimated the Δγ(N) values of UCCSD(T) to some extent, but their convergence behaviors look 
similar. Since the Δγ(N) values and their convergence behaviors depend on the model, Table II.2 
provides a summary of the results of γ∞ and the polymer/dimer ratio γ∞/γ(N = 2) for all the models. The 
γ∞ values and the polymer/dimer ratio γ∞/γ(N = 2) at the LC-UBLYP(0.33) level were more than twice 
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as large as those at the UCCSD(T) level for all these models. Overestimations of the LC-UBLYP(0.33) 
became especially significant when d1 was small. On the other hand, the LC-UBLYP(0.47) results 
reproduced better the UCCSD(T) results for both the γ∞ and γ∞/γ(N = 2) compared with the LC-
UBLYP(0.33).  
 

 

Figure II.4. N dependence of Δγ [103 a.u.] of B1 calculated at the UCCSD(T), LC-UBLYP(0.33) and 
LC-UBLYP(0.47) levels with the 6-31+G basis set. 

 
Table II.2. Results of γ∞ [103 a.u.] calculated at the UCCSD(T), LC-UBLYP(0.47) and LC-
UBLYP(0.33) levels with the 6-31+G basis set. Values in round parenthesis are the polymer/dimer ratio 
γ∞/γ(N = 2) [-] where γ(N = 2) was calculated at d1 at the same level of approximation. 

Model (d1, d2) UCCSD(T) LC-UBLYP(0.33) LC-UBLYP(0.47) 
A1 (2.5Å, 2.5Å) 740 (36) 3200 (110) 550 (23) 
A2 (2.5Å, 3.0Å) 200 (9.6) 590 (21) 180 (7.4) 
B1 (3.0Å, 3.0Å) 130 (4.4) 300 (8.4) 84 (4.4) 
B2 (3.0Å, 3.5Å) 72 (2.5) 140 (4.1) 49 (2.6) 
C1 (3.5Å, 3.5Å) 42 (2.7) 84 (3.2) 30 (2.5) 
C2 (3.5Å, 4.0Å) 28 (1.8) 55 (2.1) 22 (1.8) 

 
The hyperpolarizability (γ-)density analysis42 was conducted to examine the third-order 

electronic polarizations at these DFT levels. The γ-density, 𝜌***
(,) (𝒓), is defined as the third-order field-

induced response of charge density: 
 

𝜌𝑧𝑧𝑧
(3)(𝒓) =

𝜕3𝜌(𝒓, 𝐹𝑧)
𝜕𝐹𝑧3
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where 𝜌(𝒓, 𝐹*) is the electron density at the position r in the presence of static electric field along the 
z-axis, 𝐹*. 𝜌***

(,) (𝒓) relates to γzzzz by the following spatial integration. 
 

γ𝑧𝑧𝑧𝑧 = −
1
3!
= 𝑧𝜌𝑧𝑧𝑧

(3)(𝒓)𝑑𝒓3 (II. 10) 

 
Thus, the γ-density represents the spatial contributions of γ. Unfortunately, the electron density at the 
UCCSD(T) level is not available from the Gaussian program package, and the γ-density analysis was 
instead performed at the UCCSD level. Table II.A1 summarizes the results of γ∞ at the UCCSD/6-31+G 
level and the ratio γ∞(UCCSD)/γ∞(UCCSD(T)). The UCCSD (with the 6-31+G) underestimated the 
UCCSD(T) results when d1 was small, and their results were close to the LC-UBLYP(0.47) ones. 

Figure II.5 shows the γ-density maps of A2 with N = 2 and 4 calculated at the UCCSD, LC-
UBLYP(0.33), and LC-UBLYP(0.47) (Figure II.A2 also includes the plotted results for N = 12). Yellow 
and blue surfaces represent the increase and decrease of electron density when the static electric field 
Fz is applied to the system toward the direction illustrated in Figure II.5. Thus, a pair of positive (yellow) 
and negative (blue) γ-densities represents the field-induced third-order electronic polarization (dipole 
moment). When the direction of the dipole moment vector of the pair is the same as that of the external 
field Fz, it contributes positively to the total γ (see the relation between 𝜌***

(,)(𝒓) and γzzzz). For N = 2, 
although the amplitudes of positive and negative γ-densities on the carbon atoms were slightly more 
prominent in the LC-UBLYP(0.33) result than the other methods, the differences in the γ-density maps 
were very slight. For N = 4, positive and negative γ-densities are distributed alternately on each monomer. 
Similar alternation patterns of γ-densities were observed in tetramers of phenalenyl radicals29. The 
direction of the field-induced dipole moment of the inner monomers is opposite to that of the outer 

 

 

Figure II.5. γ-density maps of A2 (N = 2 and 4) at the UCCSD, LC-UBLYP(0.33), and LC-
UBLYP(0.47) levels. Yellow and blue surfaces represent the isosurfaces of 𝜌***

(,)(𝒓) with the contour 
values of ± 100 a.u. 
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monomers. Thus, the total γ becomes significant when the amplitudes of γ-density on the inner 
monomers are reduced, the situation of which indicates the delocalization of electrons over the whole 
system. In the UCCSD and LC-UBLYP(0.47) results, the amplitudes of γ-density on the inner monomers 
were slightly reduced compared with those of the outer monomers. The reduction of γ-densities on the 
inner monomers were more apparent in the LC-UBLYP(0.33) result. These results indicated that the LC-
UBLYP(0.33) overestimated the delocalization of electrons over the dimer pairs when the external field 
was applied. Thus, the optimal value of μ for the 1D chains of interacting π-radicals can be more 
significant than that for the dimers to suppress the over-delocalization.  
 
3.2. 1D chains of phenalenyl radicals 
The open-shell characters and third-order NLO properties of 1D chains of phenalenyl radicals were also 
investigated. Initially, y and γ(N = 2) were calculated as a function of d1 for the dimer (PLY)2 (Figure 
II.6), even though their behaviors have already been discussed in several previous studies29,32. Like the 
case of (CH3)2, y decreased monotonically with decreasing d1, and γ(N = 2) showed a bell-shaped 
dependence on d1. γ(N = 2) attained a maximum around d1 = 2.8 Å where y is in the intermediate region 
[at d1 = 2.8 Å, γ(N = 2) = 7.3 × 104 a.u. and y0 = 0.36].  
 

 

Figure II.6. Stacking distance (d1) dependences of y0 and static γ(N = 2) for the phenalenyl radical π-
dimer calculated at the PUHF and LC-UBLYP(0.47) levels, respectively, using the 6-31G* basis set. 
 

The results at the limit N → ∞ for models with different d1 and d2 were compared (Figure 
II.1(b)). Calculations of γ for the N-mers of phenalenyls with large N, needed for estimating γ∞, were 
time-consuming and numerically complex even with the DFT. γ∞ were directly calculated based on the 
band structure calculations. In CRYSTAL 17, the fourth-order analytic derivative of total energy can be 
calculated based on the coupled-perturbed Kohn Sham (CPKS) method under the parodic boundary 
condition35,43–45. Salustro et al. evaluated the γ∞ of 1D chains of phenalenyl radicals using the LC-
UBLYP(0.33) functional using a development version of CRYSTAL32. They also proposed a rough 
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estimation of γ∞ at the UCCSD level by combining the results of the dimer at the UCCSD level with the 
polymer/dimer ratio [i.e., γ∞/γ(N = 2)] estimated from the UHF and LC-UBLYP(0.33) calculations (15.0 
± 4.0). The LC-UBLYP(0.47) was employed to calculate γ∞. In the CRYSTAL 17 package, the single 
particle crystalline orbitals are expressed as a linear combination of Bloch functions defined in terms of 
atomic orbital (AO) basis functions. The 6-31G* basis set, without the diffuse function, was used as the 
local AO basis. Salustro et al. employed a modified 6-31+(0.08)G* basis set (with a diffuse exponent of 
0.08 upscaled from the original 0.04 value) to obtain the converged results of γ∞ of the 1D chains of 
phenalenyl radicals32. Matsui et al. compared the LC-UBLYP(0.33) results with the 6-31+G* and 6-
31G* basis sets for the 1D N-mer models of cyclic thiazyl radicals (DTDAs) with d = 3.1 Å and showed 
that the 6-31G* underestimated the 6-31+G* results less than 10 %31. They also mentioned that the basis 
set superposition error (BSSE) effects on γ were negligible. The LC-UBLYP(0.47) γ values for the dimer 
with different basis sets were compared (Figure II.A3), demonstrating that the 6-31G* is sufficient for 
our purpose. Parameter settings suitable for the band structure calculations using the CRYSTAL 17 
package were also verified (see Appendix). 

Figure II.7 shows calculated yav,∞, ySD,∞, and γ∞ for the infinite 1D chains as a function of d1 
with different SDA ratios d2/d1 (= 1.0, 1.2, and 2.0). It should be noted the geometries of the infinite 1D 
chains were optimized by Salustro et al. at the RB3LYP-D/6-31G* level [(d1, d2) = (3.05Å, 3.19Å); d2/d1 
~ 1.05] and UB3LYP-D/6-31G* [(d1, d2) = (3.11Å, 3.12Å); d2/d1 ~ 1.00] levels. The results were plotted 
here for the range 2.8 Å ≤ d1 ≤ 4.0 Å32. yav,∞ of these models were almost independent of the ratio d2/d1, 
whereas ySD,∞ for d2/d1 = 1.0 is about twice as large as that for d2/d1 = 1.2. ySD,∞ for d2/d1 = 2.0 were 
almost zero. γ∞ enhanced significantly when d1 is small and d2/d1 approached 1.0. These tendencies were 
similar to those obtained in the 1D chains of methyl radicals. 

So far, there have been several reports of the synthesis of 1D stacked chains of phenalenyl 
radicals. For example, Uchida et al. reported the formation of the uniform 1D chains of 2,5,8-
tris(pentafluorophenyl) phenalenyl radicals in the parallel stacking with d = 3.503 Å22. The distance is, 
however, larger than the vdW contact distance of the carbon atom (3.4 Å), and yav,∞ at d1 = 3.5 Å, is 
estimated to be more than 0.7. Although d2/d1 = 1.0 was achieved, this 1D chain may not drastically 
enhance γ. Designing and synthesizing such uniform 1D chains requires tuning the balance between the 
attractive and repulsive interactions acting on each monomer and considering the entropic effects, which 
is challenging. However, from the stacking distances realized in the π-dimers of several derivatives of 
phenalenyl radicals, it may be possible to achieve the 1D chains with distances of about 3.1-3.2 Å20. If 
d1 can be reduced to about 3.2 Å without the SDA, γ can be enhanced by about one order of magnitude 
compared with the dimer as a unit. Even if the SDA patterns appear, an enhancement of γ can still be 
expected when the d2/d1 ratio is less than 1.2 [at d1 = 3.2 Å, γ∞/γ(N = 2) = 9.5 for d2/d1 = 1.0 and γ∞/γ(N 
= 2) = 3.5 for d2/d1 = 1.2]. The obtained polymer/dimer ratio around d1 = 3.2 Å is consistent with that 
predicted by Salustro et al. Regarding diradical characters, yav,∞ ≤ 0.6 and ySD,∞ ≥ 0.1 would be the target 
region for achieving severalfold enhancement of γ as a rough estimation from these results.  
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Figure II.7. Stacking distance (d1) dependences of (a) yav,∞, (b) ySD,∞, (c) γ∞ and (d) γ∞/γ(N = 2) for the 
phenalenyl radical π-dimer calculated at the PUHF (for y) and LC-UBLYP(0.47) (for γ) levels, 
respectively, using the 6-31G* basis set. 
 

On the other hand, although the present study focused on the dependence on the ratio of 
distances, the orbital interactions between the monomers tend to become smaller when the monomers 
are relatively slipped or rotated. Calculations and analysis based on yav and ySD are expected to work for 
such cases. As an example, in Figure II.8, 1D chain models introducing alternating misalignment (Δdy) 
in the y-direction and calculated yav,∞, ySD,∞, and the polymer/dimer ratio γ∞/γ(N = 2) were calculated 
with fixed d1 = 3.2 Å and d2/d1 = 1.0. When Δdy was increased, the orbital interactions between the 
monomers became weak, and as a result, yav,∞ increased while ySD,∞ decreased. In this case, γ∞/γ(N = 2) 
was kept high when yav,∞ ≤ 0.6 and ySD,∞ ≥ 0.1. Thus, the combination of yav,∞ and ySD,∞ is expected to 
help characterize the open-shell electronic structures in 1D chains with several different configurations.  
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Figure II.8. (a) Side and top views of 1D chain models with alternating misalignment (Δdy) in the y-
direction and calculation results of yav,∞, ySD,∞, and (b) the polymer/dimer ratio γ∞/γ(N = 2)  with fixed 
d1 = 3.2 Å and d2/d1 = 1.0. 
 
 

4. Conclusion 
 
In this paper, the correlation between the open-shell electronic structure and third-order nonlinear optical 
(NLO) properties of 1D chains of π-radicals was theoretically investigated. The calculations of 1D chain 
models consisting of methyl radicals revealed that considering both yav,∞ and ySD,∞ was essential for 
characterizing their open-shell electronic structures and discussing the γ∞ values in relation to the 
stacking distance alternation (SDA). Additionally, the exchange-correlation (xc-) functional dependence 
of γ∞ was examined, and it was found that LC-UBLYP(0.47) reproduced the γ∞ values and their 
polymer/dimer ratio predicted at the UCCSD(T) level with good accuracy. By employing the LC-
UBLYP(0.47) method, the γ∞ values of 1D chains of phenalenyl radicals were also evaluated. The results 
indicated that 1D chains with yav,∞ ≤ 0.6 and ySD,∞ ≥ 0.1 are promising candidates for novel third-order 
NLO materials with enhanced properties. These conditions are satisfied when the primary stacking 
distance is d1 ≤ 3.2 Å with a small SDA (d2/d1) ratio. The SDA and the relative configurations between 

・・・

z

y
Δdy

・・・

(a)

x

y

Δdy

side top

(b)

γ ∞
/γ

(N
= 

2)
 (-
)

γ∞/γ (N = 2)
yav,∞
ySD,∞

Δdy (Å)

yav,∞ , y
SD
,∞
(-)



 82 

monomers significantly influence γ∞ through variations in y. Consequently, the combined use of yav,∞ 
and ySD,∞ proves to be a valuable tool in elucidating the relationship between open-shell electronic 
structures and third-order NLO properties in 1D chains of π-radicals. 
 On the other hand, the estimation of yav,∞ and ySD,∞ at the PUHF level requires careful 
preparation of the initial guess for large N, along with a thorough examination of the convergence 
behaviors of total energy and wavefunction to ensure the acquisition of physically meaningful 
calculation results. Alternatively, it is suggested that yav,∞ and ySD,∞ can be roughly estimated from the 
yav,∞ and ySD,∞ values of N = 4 using Eqs. (II.5)-(II.6), as demonstrated by the convergence behaviors of 
yav(N) and ySD(N) in Figure II.3. It would, of course, be advantageous to compute yav,∞ and ySD,∞ (or their 
equivalents) directly from quantum chemical calculations under periodic boundary conditions46, 
ensuring consistency with the band gap and width results. The y-based indices introduced in this study 
are expected to further contribute to the advancement of data-driven approaches in the search for novel 
open-shell functional materials47. 
 Additionally, the present results suggest that enhanced third-order NLO properties can be 
expected for 1D chains of phenalenyl radicals with d1 ≤ 3.2 Å while maintaining a small SDA. The 
exploration of appropriate substituent groups that facilitate the stabilization of the uniform π-stacking 
configuration in the crystal phase is highly desirable. In this context, a comprehensive investigation of 
the stabilization mechanisms of 1D chains with substituents is necessary, utilizing a variety of analysis 
methods for intermolecular interactions, similar to those conducted for the dimers of phenalenyl 
radicals48–52. 
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Appendix 
 
Basis set dependence of γ at the UCCSD(T) for the methyl radical dimer. 
The basis set dependence of γ for the π-stacked multimer models of methyl radicals was investigated. 
Figure II.A1 compared the static γ (γzzzz) results for the methyl radical π-dimer calculated at the 
UCCSD(T) level using the aug-cc-pVDZ and 6-31+G basis sets. Even though the results with the 6-
31+G tend to overestimate those with the aug-cc-pVDZ basis set, it can reproduce the stacking distance 
(d1) dependencies calculated with the aug-cc-pVDZ basis set. Consequently, the 6-31+G basis set was 
employed for the evaluation of γ and y in the 1D chains of methyl radicals. 

 

 

Figure II.A1. Stacking distance (d1) dependences of static γ (γzzzz) for the methyl radical π-dimer 
calculated at the UCCSD(T) level using the aug-cc-pVDZ and 6-31+G basis sets. 
 
γ values at the UCCSD level for the 1D chain models of methyl radicals. 
Table II. A1. Results of γ∞ [103 a.u.] at the UCCSD/6-31+G level and the ratio γ∞(UCCSD)/ 
γ∞(UCCSD(T)) for the 1D chain models of methyl radicals. 

 γ∞  
γ∞(UCCSD) / 

γ∞(UCCSD(T)) [-] 

A1 506 0.66 

A2 152 0.77 

B1 098 0.76 

B2 060 0.83 

C1 042 1.00 

C2 024 0.86 
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Figure II.A2. γ-density maps of A2 (N = 12) at the UCCSD, LC-UBLYP(0.33), and LC-UBLYP(0.47). 
Yellow and blue surfaces represent the isosurfaces of 𝜌***

(,) (𝒓) with the contour values of ± 100 a.u. 
 
Parameter settings suitable for the CPKS analytic derivative calculations of 1D chains of phenalenyl 
radicals using CRYSTAL 17 program package. 
Several parameters must be set in the CRYSTAL 17 program package during the calculations of γ∞. The 
most important ones are the five cut-off parameters Ti (i = 1-5) for the Coulomb and exchange series 
(details of Ti are given in the user’s manual of CRYSTAL1). In the paper by Salustro et al., they set: 
 

𝑇1 = 𝑇2 = 𝑇3 = 𝑇4 =
1
2
𝑇5 (II. A1) 

 
with T1 = 8. The convergence behaviors of γ∞ with T1 under the condition Eq. (II.A1) at the LC-
UBLYP(0.47) level were checked using the 1D chain models of methyl radicals. However, using the 6-
31+G basis set, including the diffuse function, SCF convergence was not achieved in some cases due to 
the linear dependency in this basis set. Consequently, the Ti dependences of γ∞ for 1D chains of methyl 
radicals were examined using the 6-31G basis set instead. Table II.A2 compared the results of Δγ at the 
LC-UBLYP(0.47) with the 6-31+G and 6-31G basis sets. The XXLGRID option was employed for grid 
option, the bielectronic integrals were computed exactly with the NOBIPOLA option, IS = 12 was used 
for k-point sampling. From these results, the 6-31G results gave ~70 % of the 6-31+G results for N = 4-
12. The dimer unit was considered as the repeating unit structure.  
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Table II.A2. Results of Δγ at the LC-UBLYP(0.47) with the 6-31+G and 6-31G basis sets for model B1 
of 1D chain of methyl radicals. 

N Δγ(6-31+G) [103 a.u.] Δγ(6-31G) [103 a.u.] Δγ(6-31G)/Δγ(6-31+G) [-] 
4 78 52 0.67 
6 107 73 0.69 
8 117 80 0.68 
10 121 83 0.69 
12 122 83 0.68 

 
Table II.A3 summarizes the T1 dependences of γ∞ for the 1D chain models of methyl radicals. The 
convergence of γ∞ was slow in the case of A1, but it is found that T1 = 40 seems sufficient to give the 
relative errors less than ~1 %. The results using these parameters were compared based on the fitting-
extrapolation scheme and the band structure calculation (Table II.A4). Although the results of A1 
differed by ~2 %, these results agreed nicely with each other.  
 
Table II.A3. T1 dependences of γ∞ under the constraint of Eq. (II.A1) calculated at the LC-
UBLYP(0.47)/6-31G level 

T1 A1 A2 B1 B2 C1 

10 393 55.2 15.3 117 28.4 
20 434 57.1 15.3 125 28.8 
30 465 57.1 15.4 127 28.8 
40 471 57.6 15.4 129 28.9 
50 472 57.6 15.4 129 28.9 
60 472 57.6 15.4 129 28.9 
70 476 57.6 15.4 129 28.9 

 
Table II.A4. Calculation results of γ∞ [103 a.u.] based on the fitting-extrapolation scheme (using 
Gaussian 09) and the band structure calculation (using CRYSTAL 17) at the LC-UBLYP(0.47)/6-31G 
level. 

 A1 A2 B1 B2 C1 

Fitting-extrapolation 460 57 15 127 29 
Band structure 470 58 15 129 29 

 
Following these analyses, the LC-UBLYP(0.47) with these parameters was employed for the band 
structure calculations of 1D chains of phenalenyl radicals. In this case, the 6-31G* basis set was used. 
The results for the phenalenyl radical π-dimers with different basis sets are compared in Figure II.A3. 
From this figure, the 6-31G* basis set reproduced well the results of aug-cc-pVDZ. 
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Figure II.A3. Stacking distance (d1) dependences of static γ for the phenalenyl radical π-dimer (anti-
parallel stacking) calculated at the LC-UBLYP(0.47) level using the 6-31+G*, 6-31G*, and aug-cc-
pVDZ basis sets. 
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Chapter 1. 

 

Stacking Distance Dependence of Two-Photon Absorption 

Properties of Phenalenyl π-Dimer Models 

 
Stacking distance (d)-dependence of the peak positions and intensities of one-photon absorption (OPA) 
and two-photon absorption (TPA) spectra of phenalenyl π-dimer models was investigated theoretically. 
Calculations of excitation energies and transition dipole moments necessary for simulating the OPA and 
TPA spectra were performed using the extended multi-configurational quasi-degenerate second-order 
perturbation theory (XMC-QDPT2) approach. A two-order magnitude enhancement in the first TPA 
peak intensity was observed for the model with d = 3.0 Å, attributed to an electronic transition along the 
stacking direction, compared to the model with d = 6.0 Å. The diradical character (y) was found to 
influence the TPA properties of the first TPA peak of phenalenyl π-dimer models, as predicted by the 
valence-bond configuration interaction method based on a two-site model. 
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1.1. Introduction 
 
As discussed in the section 3 of the General Introduction, two-photon absorption (TPA), a third-order 
nonlinear optical (NLO) process, holds significant potential for industrial applications across various 
fields1–8. The realization of such applications requires materials exhibiting a high TPA efficiency, 
characterized by the TPA cross section (𝜎(")(𝜔) expressed in units of GM (1 GM = 1 x 10-50 cm4 s 
photon-1), at a given input photon energy ( ℏ𝜔 ). According to time-dependent perturbation 
theory, 𝜎(")(𝜔)  for a centrosymmetric molecular system can be approximated by the following 
expression, referred to as the three-state approximation9: 
 

𝜎(")(𝜔) ∝
𝛍$%"𝛍%&"

(𝐸%$ −
𝐸&$
2 ,

"
Γ%$

(III. 1.1) 

 
where the 𝑔 is the ground state, 𝑘 is a one-photon allowed excited state, and 𝑓 is a two-photon 
allowed excited state. 𝛍$% (𝛍%&) denotes the transition dipole moment between the states. 𝐸%$ and 
Γ%$ represent the excitation energy and the damping factor for the state k. 𝜎(")(𝜔) reaches a peak when 
the numerator 𝛍$%"𝛍%&" is non-zero and a two-photon resonant condition (𝐸&$/2 = ℏ𝜔) is fulfilled. 
Optimizing the magnitudes of the transition dipole moments (|𝛍$%| and |𝛍%&|) and minimizing the 
energy difference (7𝐸%$ − 𝐸&$/27) are essential for enhancing the TPA peak intensity. 

The design and synthesis of molecular systems exhibiting large 𝜎(")  values have been 
variously reported for closed-shell molecular systems9–13, but recently, open-shell singlet systems, which 
are novel third-order NLO materials, have attracted much attention14–20. As discussed in Chapter 1 of 
PART I, diradical character y is useful both as a theoretical index to characterize the degree of open-
shell nature in the singlet ground (S0) state and as a factor controlling the third-order NLO properties of 
the open-shell singlet system14,21–23. 

y assumes values between 0 and 1, reflecting bond instability, while 1 – y corresponds to an 
effective bond order. A value of y = 0 indicates a closed-shell configuration, whereas y = 1 represents a 
fully diradical state. As illustrated in Figures I.2.5 and I.3.3, the static second hyperpolarizability (γ) and 
the intensity of the lowest energy peak in TPA spectra (the cross-section of the first TPA peak) exhibit 
significant increases in the intermediate y based on the valence-bond configuration interaction (VBCI) 
method within the simplest symmetric two-site diradical model14,20. 

This chapter presents a theoretical analysis of the optical properties of the π-dimer of 
phenalenyl radicals, which demonstrates the potential for a significant enhancement in TPA cross-
sections by modulating y through adjustments in the stacking distance (d). The structure of the 
unsubstituted phenalenyl radical (PLY) is illustrated in Figure III.1.1, 1a. PLYs are the smallest units in 
polycyclic aromatic hydrocarbons (PAHs) that exhibit open-shell properties. Owing to its triangular 
framework and possession of 13 π-electrons, the PLY cannot achieve a fully closed-shell configuration 
based on the Hückel rule24,25. Consequently, its ground state contains a non-bonding orbital, the singly 
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occupied molecular orbital (SOMO). The delocalization of the SOMO contributes to the high thermally 
stability of PLY, making it a versatile building block for open-shell molecular systems. Examples include 
IDPL and NDPL with p-quinodimethane linkers26–28, as well as zethrene with an acene linker29–35. The 
open-shell nature of these systems can be fine-tuned through various chemical modifications.  

The π-stacking aggregates (dimer-multimer) of PLY investigated in this study have also been 
synthesized in both solution and crystalline phases36–38. d of these systems can be tuned by introducing 
various substituent groups (-R) at 2-, 5-, and 8-positions of PLY. For instance, derivatives 1b (R = t-Bu) 
and 1c (R = C6H5) have been reported as anti-type π-dimers, with d values of approximately ~3.31 Å36 
and ~3.02 Å38, respectively, as determined by X-ray crystal structure analysis. These results suggest the 
presence of the multi-center two-electron covalent-like bonding interaction between the PLYs, often 
referred to as pancake bonding39. These stabilization mechanisms have been investigated by analyzing 
the electronic structure and potential energy surface of the ground state (S0)40–43. See section 8 of the 
General Introduction for additional details. 

 

 

Figure III.1.1. Molecular structure of the unsubstituted phenalenyl molecule (1a) and examples of 
derivatives modified with substituent groups (-R) reported in actual synthesis and analysis (1b, 1c) 

 
Theoretical analyses of these open-shell molecular systems have primarily focused on the 

calculation of static γ, which serves as the microscopic origin of NLO properties. Yoneda et al. conducted 
a theoretical investigation into the relationship between d, y, and static γ for the π-dimer of 1a model 
(1a2 in Figure III.1.2(a)) at the broken-symmetry density functional theory (DFT) approach44. Their 
findings revealed that y decreases monotonically as d decreases, while the static γ, as a function of d, 
reaches its maximum at approximately d = 2.9 Å with y attaining an intermediate value at this d (Figure 
16). Large values of these static γ, when compared to those of closed-shell molecules, have led to the 
expectation of pronounced NLO properties, particularly in open-shell molecular systems exhibiting 
intermediate y (Yoneda et al. compared the static γ of the 1a2 model with that of the closed-shell coronene 
dimer44)20. However, the relationship between y and TPA properties remains insufficiently explored and 
has not been fully elucidated. 

The theoretical prediction of TPA properties in open-shell singlet systems presents significant 
challenges due to the necessity of achieving a balanced description of both static and dynamic 
correlation effects. For instance, Nanda and Krylov developed computational and analytical frameworks 
for TPA spectra based on the spin-flip equation-of-motion coupled-cluster method with single and 
double substitutions (EOM-SF-CCSD)45. This approach has been successfully applied to several 

R

R R
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diradical molecules. Additionally, they introduced the natural transition orbital (NTO) analysis, which 
provides a visual representation of two-photon electronic transitions. This methodology is both 
sophisticated and reliable for investigating the TPA properties of small- to medium-sized diradical 
molecules where EOM-SF-CCSD calculations are computationally feasible. In contrast, multi-reference 
perturbation theory (MRPT) methods have been extensively employed to study the electronic structures 
of the ground and low-lying excited states in open-shell PAHs, provided that an appropriate active space 
can be defined. For example, the multi-configurational quasi-degenerate second-order perturbation 
theory (MC-QDPT2) method46 has been applied to analyze the excited states of aromatic excimers, 
demonstrating its utility for systems requiring detailed multi-reference treatments47. 

To date, TPA properties of π-dimers and multimers of open-shell polycyclic aromatic 
hydrocarbons (PAHs) have not been thoroughly investigated, either theoretically or experimentally, 
despite their significant potential as promising candidates for novel open-shell nonlinear optical (NLO) 
materials. A comprehensive theoretical analysis of their TPA properties could provide valuable insights 
and serve as a foundation for developing design guidelines for innovative open-shell NLO materials. 
 
 

1.2. Methods 
 
1.2.1. Model systems 
The d-dependence of the peak positions and intensities of the one-photon absorption (OPA) and TPA 
spectra of 1a2 was analyzed based on ab initio quantum chemical calculations. Geometry optimization 
for the monomer 1a was performed at the UB3LYP/6-31G* level under the constraint of D3h symmetry, 
resulting in the structure shown in Figure III.1.2(a). The anti-type π-dimer models 1a2 with different d 
(2.8 Å ≤ d ≤ 6.0 Å) were constructed, as illustrated in Figure III.1.2(b), with each monomer geometry 
kept fixed. 
 

 

Figure III.1.2. Structures of (a) phenalenyl monomer 1a optimized by UB3LYP/6-31G* level and (b) 
anti-type π-dimer model 1a2. 
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1.2.2. Quantum chemical calculations for the excitation energies and properties 
Consequently, the dimer systems belong to C2h symmetry regardless of d. For a given d, y was evaluated 
at the spin-projected (P)UHF/6-31G* level based on the following Yamaguchi’s formula22,23: 
 

𝑦 = 1 −
2𝑇

1 + 𝑇"
(III. 1.2) 

 

𝑇 =
𝑛'()( − 𝑛*+)(

2
(III. 1.3) 

 
Here, 𝑛'()( and 𝑛*+)( are the occupation numbers of the highest occupied and lowest unoccupied 
natural orbitals (HONO and LUNO) derived from the UHF solutions. These calculations were 
performed using the Gaussian 09 program package48. 

The extended (X)MC-QDPT2 method46,49, implemented in the GAMESS-US program 
package50, was employed in this study to calculate the excitation energies and transition dipole moments 
of 1a2, despite reports indicating that (multi-reference) second-order perturbation theory methods may 
overestimate the binding energy of PLY π-dimers in the S0 state42. 

To express the open-shell nature in the S0 state of diradical systems, the two-electron and two-
orbital complete active space [i.e., CAS(2,2)] is the minimal choice of the active space, which is 
consistent with the VBCI method within the two-site model developed by Nakano et al14,20. Expanding 
the active space is necessary to simulate the spectral shapes of OPA and TPA spectra over a wide range 
of wavelengths. However, the full π-valence space for 1a2 is CAS(26,26), which is challenging to treat. 
State-averaged (SA-)CASSCF(10,10) calculations with the 6-31G* basis set were performed to solve 
for the twenty lowest singlet states. The 6-31G* basis set, without diffuse functions, is expected to 
provide sufficient accuracy in describing the vertical excitation energies of π-dimers of aromatic 
molecules when combined with MC-QDPT47. As the GMC-QDPT routine in GAMESS-US allows 
specification of up to three irreducible representations, calculations were limited to the Ag, Bu, and Au

states, which are essential for describing the OPA and TPA spectra. Excitation energies were evaluated 
at the XMC-QDPT2 level using an intruder state avoidance parameter of 0.02. Transition dipole 
moments between states were determined using the eigenvectors of the XMC-QDPT2 effective 
Hamiltonian. 
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1.2.3. Spectral simulations 
The OPA cross-section, 𝜎(,)(𝜔), was evaluated by the following equation51: 
 

𝜎(,)(𝜔) =
4𝜋"𝜔
𝑐𝑛ℏ

〈7𝛍&$7
"〉 𝑔(𝜔) (III. 1.4) 

 
Here, 𝑐 is the speed of light in vacuum, 𝜔 is the angular frequency of the incident light, 𝑛 is the 
refractive index of the medium (set to 1.0 in this study). 𝛍&$ is the transition dipole moment between 

the states 𝑔  and 𝑓 . 〈⋯ 〉  means the orientational average, i.e., 〈7𝛍&$7
"〉 = CDµ&$- F" + Dµ&$. F" +

Dµ&$/ F"G /3 where 𝜇&$0  represents the α-axis component of the transition dipole moment 𝛍&$ . The 

following Lorentzian function was used for the normalized shape function 𝑔(𝜔): 
 

𝑔(𝜔) =
1
𝜋

Γ&$
D𝜔&$ −𝜔F

" + Γ&$"
(III. 1.5) 

 
where 𝐸&$ = ℏ𝜔&$ and Γ&$ is the damping parameter. This study employed ℏΓ = 0.1 eV for all the 
damping parameters.  

The TPA cross-section, 𝜎(")(𝜔), was evaluated by the following equation51,52: 
 

𝜎(")(𝜔) =
4𝜋1𝜔"

𝑐"𝑛"
〈J𝑴&$

(")J
"
〉 𝑔(2𝜔) (III. 1.6) 

 

Here, 𝑴&$
(") is the two-photon transition matrix element tensor with each component expressed as: 

 

𝑀&$,03
(") =

1
ℏ
NO

µ&%0 µ%$
3

𝜔%$ −𝜔
+
µ&%
3 µ%$0

𝜔%$ −𝜔
P

%

(𝛼, 𝛽 = 𝑋, 𝑌, 𝑍) (III. 1.7) 

 

The orientational average, 〈7𝑴(")
&$7

"〉, was calculated assuming linearly polarized incident light51,52. 

For the actual calculation, we replaced 𝜔%$  in the denominator with 𝜔%$ − 𝑖Γ%$ . The Lorentzian 
function was again used for the normalized shape function 𝑔(2𝜔): 
 

𝑔(2𝜔) =
1
𝜋	

Γ&$
D𝜔&$ − 2𝜔F

" + Γ&$"
(III. 1.8) 

 



 96 

1.3.  Results and Discussion 
 
1.3.1. Correlation between stacking distance (d) and diradical characters (y) for 1a2 
Figure III.1.3 shows the calculation results of y at the PUHF/6-31G* level as a function of d for 1a2. The 
π-dimer 1a2 exhibited y = 0.49 (an intermediate open-shell nature) at d = 3.0 Å and y = 1.00 (an almost 
fully open shell nature) at d = 6.0 Å. In other words, the former situation corresponds to an intermediate 
covalent-bonded π-dimer, whereas the latter can be regarded as non-interacting monomers. Therefore, a 
comparison the OPA and TPA spectra was conducted for the models with d = 3.0 Å and 6.0 Å.  
 

 

Figure II.1.3. Diradical character (y) as a function of the stacking distance (d) for the phenalenyl dimer 
model 1a2 calculated at the PUHF/6-31G* level. 
 
1.3.2. Comparison of OPA and TPA spectra between the 1a2 models with d = 3.0 Å and d = 6.0 Å 
Figure III.1.4 presents the simulated OPA and TPA spectra, 𝜎(,)(𝜔) and 𝜎(")(𝜔), for 1a2 with d = 3.0 
Å and d = 6.0 Å. Each OPA spectrum was normalized to the peak intensity observed at approximately 5.1 
eV for 1a2 with d = 6.0 Å. Additionally, the X-, Y-, and Z-axis components of OPA and TPA spectra, 
𝜎(,),0(𝜔) and 𝜎("),00(𝜔) (α = X, Y, Z) are plotted to provide a detailed analysis of the directional 
contributions. For the molecular coordinate system employed in this study (see Figure III.1.2(b)), the 
X-, Z-axes and Y-axis directions correspond to the in-plane and stacking directions, respectively. For the 
OPA spectra, 𝜎(,)(𝜔) = 𝜎(,),-(𝜔) + 𝜎(,),.(𝜔) + 𝜎(,),/(𝜔) is satisfied. However, the off-diagonal 

terms, like 𝑀&$,-.
(")  and 𝑀&$,.-

(") , contribute to the orientational averaged TPA spectra, 𝜎(")(𝜔)52,53. 

The discussion begins with the results of OPA spectra. As shown in Figure III.1.4(a) and (b), 
a peak is observed at approximately 5.1 eV for the model with d = 6.0 Å. This peak is characterized by 
significant contributions from the X-axis and Z-axis (in-plane) components, as the (𝜎(,),-(𝜔) and 
𝜎(,),/(𝜔) components nearly overlap at this energy. These findings suggest that the peak originates from 
a local intramolecular π-π∗ transition within each monomer 1a. For comparison, excited-state 
calculations for 1a were performed at the time-dependent UCAM-B3LYP level (Table III.1.A1), 
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yielding a first OPA peak at approximately 4.2 eV. Additionally, the SA-CASSCF(5,5) + XMC-QDPT2 
calculations for 1a were conducted to simulate the OPA and TPA spectra (Figure III.1.A4), predicting 
the first OPA peak position at approximately 3 eV. These results indicate that the excitation energy for 
the first OPA peak of 1a2 with d = 6.0 Å may be overestimated to some extent. 
 The OPA spectrum for 1a2 with d = 6.0 Å exhibited two peaks at ~2.47 eV (~502nm) 
and ~3.75 eV (~330nm). The higher energy peak was characterized by significant contributions from 
the X- and Z-axis (in-plane) components (𝜎(,),-(𝜔)  and 𝜎(,),/(𝜔)  components were overlapped 
almost completely at the peak). In contrast, the lower energy peak was primarily described by the Y-axis 
(stacking) component, 𝜎(,),.(𝜔). These results suggest that the second OPA peak at ~3.75 eV originates 
from a local intramolecular π-π∗ transition, while the first OPA peak at ~2.47 eV arises from covalent-
like intermolecular interactions. 

 

 

Figure III.1.4. Simulated OPA spectra of 1a2 with (a) d = 3.0 Å and (b) d = 6.0 Å and the TPA spectra 
of 1a2 with (c) d = 3.0 Å and (d) d = 6.0 Å. Spectra for the orientationally averaged 𝜎(,)(𝜔) and 
𝜎(")(𝜔) as well as their X-, Y-, and Z-axis direction components, 𝜎(,),0(𝜔) and 𝜎("),00(𝜔) (α = X, 
Y, Z), were presented. 
 
 The discussion now turns to the results of TPA spectra. For 1a2 with d = 6.0 Å, three peaks 
were observed at ~1.6 eV, ~2.4 eV, and ~5.1 eV (Figure III.1.4(d)), although their intensities were 
relatively weak. In contrast, 1a2 with d = 3.0 Å exhibited strong TPA bands at ~1.5 eV, ~2.2 eV, and ~2.5 
eV (Figure III.1.4(c)). The higher energy TPA peaks for 1a2 with d = 3.0 Å overlapped substantially with 
the first OPA band. Such overlap leads to enhanced 𝜎(")(𝜔) values, as both one-photon and two-photon 
resonance conditions are nearly satisfied54,55. It is called the resonance enhancement effect (for details, 
see Figure 10 and its description in the section 6 of the General Introduction). This phenomenon has 
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been theoretically predicted, though experimental determination of 𝜎(")(𝜔) values in the vicinity of 
OPA bands remains challenging. These TPA bands were primarily attributed to the Y-axis (stacking) 
direction component, 𝜎("),..(𝜔). However, the 𝜎("),..(𝜔) values around 2.2 eV were smaller than the 
total 𝜎(")(𝜔), indicating significant contributions from off-diagonal terms to the second peak.  

To analyze the spectral shapes of 𝜎(")(𝜔), a comparison was conducted between the calculated 
excitation energies and transition dipole moments for 1a2 with d = 3.0 Å and d = 6.0 Å. Figure III.1.5 
and Table III.1.1 present the excitation energies and transition dipole moments of the excited states 
contributing to the first and second OPA and TPA peaks. Hereafter, the one-photon allowed excited states 
corresponding to the first and second OPA peaks are referred to as the OPA1, OPA2, and OPA3 states. 
For 1a2 with d = 6.0 Å, the excitation energies of the OPA1, OPA2, and OPA3 states were calculated 
to be 3.23 eV, 5.06 eV, and 5.08 eV, respectively, with the OPA2 and OPA3 states were nearly 
degenerated. The transition dipole moment vectors for the S0-OPA2 and S0-OPA3 transitions were 
found to align predominantly with the X- and Z-axis (in-plane) directions, possessing magnitudes of 
approximately 5 D. In contrast, the transition dipole moment vector for the S0-OPA1 transition was 
oriented along the Y-axis (stacking) direction, but its magnitude was an order of magnitude smaller than 
those of the S0-OPA2 and S0-OPA3 transitions. Consequently, no distinct peak was observed 
around 3.23 eV in the OPA spectrum. 

 

 

Figure III.1.5. Calculated excitation energies of the excited states (OPA1-3 and TPA1-3) contributing 
to the OPA and TPA peaks for 1a2 with d = 3.0 Å and d = 6.0 Å. Two upward arrows and a dashed line 
between them indicate the virtual state for the two-photon transition to the TPA target state. 
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Table III.1.1. Magnitudes of the X-, Y-, and Z-axis direction components of transition dipole moments 
[D] for 1a2 with (a) d = 3.0 and (b) d = 6.0 Å. 

 

 
For the 1a2 model with d = 3.0 Å, the transition dipole moment vector for the S0-OPA2 and 

S0-OPA3 transitions were predominantly aligned with the X- and Z-axis (in-plane) directions exhibiting 
magnitudes of ~5 D, similar to the case of 1a2 with d = 6.0 Å. Consequently, the second OPA peak in 
this model corresponds to the OPA peak observed at ~5.1 eV in the d = 6.0 Å model. However, the 
excitation energies for the OPA2 and OPA3 states decreased to 3.74 eV and 3.76 eV, respectively, 
resulting in a red-shift of the peak position. In contrast, the transition dipole moment vector for the S0-
OPA1 transition in the d = 3.0 Å model was primarily oriented along the Y-axis (stacking) direction, 
with a magnitude of approximately 5D. This differs from the situation in the d = 6.0 Å model, where the 
S0-OPA1 transition exhibited a much smaller magnitude. The first OPA peak, observed at ~2.47 eV in 
the d = 3.0 Å model, originated from this S0-OPA1 transition. 

To understand the trends in the TPA spectra, it is essential to examine the balance between 𝛍$%, 
𝛍%&, and 7𝐸% − 𝐸&/27. The two-photon allowed Ag states corresponding to the first and second TPA 
peaks are denoted as the TPA1 and TPA2 states. For 1a2 with d = 6.0 Å, the excitation energies of the 
TPA1 and TPA2 states were 3.28 eV and 4.76 eV, respectively. Weak TPA peaks were observed at ~1.6 
eV and ~2.4 eV, corresponding to half of these excitation energies. The transition dipole moment vectors 
for the S0-OPA2-TPA1 and S0-OPA3-TPA1 transitions were almost parallel to the Z- and X-axis 
directions, respectively, with magnitudes of ~5 D. Consequently, the transition paths S0-OPA2-TPA1 
and S0-OPA3-TPA1 can contribute to the TPA peak at ~1.6 eV. However, 7𝐸% − 𝐸&/27 was large in this 
case (> 3 eV), resulting in a reduced peak intensity due to the large denominator in Eq. (III.1.1). Similarly, 
although the transition dipole moment for the S0-OPA3-TPA2 transition exhibited a considerable 
magnitude (~14 D), the transition path S0-OPA2-TPA2 contributed weakly to the TPA peak at ~2.4 eV 
because of the large 7𝐸% − 𝐸&/27 (> 3 eV). 

µ!µ"µ#
0.000 5.708 0.058 S0-OPA1
4.736 0.000 0.000 S0-OPA2
0.000 0.015 4.741 S0-OPA3

0.000 12.119 0.029 OPA1-TPA1
0.000 0.156 3.592 OPA1-TPA2
0.000 0.594 0.260 OPA1-TPA3

2.208 0.000 0.000 OPA2-TPA1
0.056 0.000 0.000 OPA2-TPA2
0.583 0.000 0.000 OPA2-TPA3

0.000 0.000 2.198 OPA3-TPA1
0.000 3.312 0.037 OPA3-TPA2
0.000 0.427 0.577 OPA3-TPA3

µ!µ"µ#
0.000 0.353 0.034 S0-OPA1
4.903 0.000 0.000 S0-OPA2
0.000 0.040 4.944 S0-OPA3

0.000 27.777 0.013 OPA1-TPA1
0.000 0.231 6.210 OPA1-TPA2

5.432 0.000 0.000 OPA2-TPA1
0.165 0.000 0.000 OPA2-TPA2

0.000 0.057 5.441 OPA3-TPA1
0.000 13.679 0.064 OPA3-TPA2

(a) d = 3.0 Å (b) d = 6.0 Å
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The excitation energies of the TPA1, TPA2, and TPA3 states for 1a2 with d = 3.0 Å were 2.96 
eV, 4.37 eV, and 4.96 eV, respectively. The positions of the first, second, and third TPA peaks at ~1.5 eV, 
~2.2 eV, and ~2.5 eV correspond to half of these excitation energies. The intensities of these peaks were 
significantly enhanced compared to those observed in the model with d = 6.0 Å, although the shifts in 
their peak positions were minimal. The transition dipole moment vector for the OPA1-TPA1 transition 
was almost parallel to the Y-axis (stacking) direction with a magnitude of approximately 12 D. 
Additionally, 7𝐸% − 𝐸&/27 decreased to a small value (0.99 eV) when the TPA1 state was the target 
state 𝑓. Consequently, the transition path S0-OPA1-TPA1 became predominant in the TPA peak at ~1.5 
eV, where both 𝛍$% and 𝛍%& were oriented along the Y-axis (stacking) direction. 

For the second TPA peak at ~2.2 eV, three possible transition paths were identified: S0-OPA1-
TPA2, S0-OPA2-TPA2, and S0-OPA3-TPA2. The corresponding values of 7𝐸% − 𝐸&/27  for these 
transitions were 0.285 eV, 1.555 eV, and 1.575 eV, respectively. Therefore, the S0-OPA1-TPA2 
transition predominantly contributed to the second TPA peak at ~2.2 eV. The transition dipole moment 
vector for the OPA1-TPA2 transition was almost parallel to the X-axis (in-plane) direction, with a 
magnitude of approximately 3.5 D. As a result, 𝛍$% and 𝛍%& were nearly perpendicular to each other, 

indicating that the off-diagonal terms, 𝑀&$,-.
(")  and 𝑀&$,.-

(") , contributed to this peak. For the prominent 

third TPA peak at ~2.5 eV, the transition path S0-OPA1-TPA3 made the dominant contribution. The 
peak intensity was strong due to the extremely small denominator 7𝐸% − 𝐸&/27 = 0.01 eV. However, the 
magnitudes of 𝛍$% and 𝛍%& for this transition were not particularly large. Consequently, the TPA1 and 
TPA2 states were considered as the key target states. 

To elucidate the origin of the d-dependence in the OPA and TPA spectra, a further analysis of 
the wavefunctions of these electronic states was performed. Table III.1.2 summarizes the major electron 
configurations in both the ground and excited states that contribute to the first and second OPA and TPA 
peaks. Figure III.1.6 presents the energy diagrams and spatial distributions of the frontier molecular 
orbitals (MOs) for 1a2 with d = 3.0 Å and d = 6.0 Å, as obtained from the SA-CASSCF calculations 
(i.e., the effective orbital energies derived from the state-averaged density matrix). In each model, the 
HOMO and LUMO were constructed as linear combinations of the SOMOs of the individual monomers. 
The S0, OPA1, and TPA1 states were primarily characterized by the configurations within the CAS(2,2) 
space, suggesting that the results obtained using the VBCI method based on the two-site model could 
qualitatively explain the excitation properties between the S0, OPA1, and TPA1 states. In other words, 
the positions and intensities of the first OPA and TPA peaks can be discussed based on their y-dependent 
expressions derived from the VBCI approach14,20. 
 In contrast, the OPA2/OPA3 and TPA2 states were described by excitation configurations 
involving HOMO-2, HOMO-3, LUMO+2, LUMO+3, and LUMO+4, indicating that a clear y-
dependence cannot be expected for the optical transition processes via OPA2/OPA3 and TPA2. 
Therefore, the focus is placed solely on the S0-OPA1-TPA1 transition path, which corresponds to the 
first TPA peak. 
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Table III.1.2. Configurations of the electronic states describing the OPA and TPA peaks for the 1a2 

models with (a) d = 3.0 Å and (b) d = 6.0 Å, derived from the eigenvectors of the XMC-QDPT effective 
Hamiltonian. H and L represent for HOMO and LUMO, respectively. 

 

 

Figure III.1.6. Energies and spatial distributions of frontier MOs for the models 1a2 with (a) d = 3.0 Å 
and (b) d = 6.0 Å. 
 
 Based on the weight of each configuration summarized in Table III.1.2, the wavefunctions of 
S0, OPA1, and TPA1 states can be expressed as follows14,20: 
 

|𝐒𝟎⟩ = 𝐶5|𝐺⟩ + 𝐶6|H, H → L, L⟩ + ⋯ (III. 1.9) 
 

|𝐎𝐏𝐀𝟏⟩ = 𝐶7|H → L⟩ +⋯ (III. 1.10) 
 

|𝐓𝐏𝐀𝟏⟩ = 𝐶6
8|','→*,*⟩ + 𝐶5

8|5⟩ +⋯ (III. 1.11) 
 

Weight [%]ConfigurationState
79.5
11.0

Ground conf.
H,H → L,LS0

92.5H → LOPA1
59.7
17.4

H → L+2
H–1 → LOPA2

60.7
16.8

H → L+3
H–2 → LOPA3

11.4
77.2

Ground conf.
H,H → L,LTPA1

85.8H–2,H → L,LTPA2

Weight [%]ConfigurationState
44.7
47.2

Ground conf.
H,H → L,LS0

94.1H → LOPA1
42.8
42.4

H-3 → L
H → L+4OPA2

46.0
39.4

H → L+3
H–2 → LOPA3

46.5
44.7

Ground conf.
H,H → L,LTPA1

48.6
41.7

H–2,H → L,L
H,H → L,L+3TPA2
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Here, |𝐺⟩, |H → L⟩ and |H, H → L, L⟩ denote the ground configuration, HOMO-LUMO single and 
double excitation configurations, respectively. By applying the Slater-Condon rule53, the transition 
dipole moment between these states can be approximately expressed as follows (for details, see 
Appendix): 
 
 

𝛍𝐒𝟎,𝐎𝐏𝐀𝟏 ∝ (𝐶5 + 𝐶6)𝐶7𝛍'* (III. 1.12) 
 

𝛍𝐎𝐏𝐀𝟏,𝐓𝐏𝐀𝟏 ∝ (𝐶68 + 𝐶5 ′)𝐶7𝛍'* (III. 1.13) 
 
where 
 

𝛍'* = −𝑒l𝒓ρ'*(𝒓)𝑑𝒓 (III. 1.14) 

 
ρ'*(𝒓) ≡ 𝜑'(𝒓)𝜑*(𝒓)  is the one-electron transition density between the HOMO and LUMO at 
position r56. Note that 𝐶6 has an opposite sign to 𝐶5 , whereas 𝐶68  and 𝐶58  have the same sign because 
of the configuration interaction between |𝐺⟩  and H,H → L, L⟩  (see Appendix17–19). In addition, 
|𝐶5|" + |𝐶6|"~1, |𝐶58 |" + |𝐶68 |"~1, and |𝐶7|~1 for both the models14,20. Consequently, |𝐶5 + 𝐶6|~0 
for 1a2 with d = 6.0 Å (see Table III.1.2), and the magnitude of the transition dipole moment for the S0-
OPA1 transition became almost zero. In contrast, |𝐶5 + 𝐶6| > 0 for the model with d = 3.0 Å. The 
spatial distribution and phase of 𝜌'*(𝒓) determined the direction of the transition dipole moment. 
Positive (white) and negative (blue) regions of 𝜌'*(𝒓) are well-separated on each monomer 1a (Figure 
III.1.7), resulting in the large transition dipole moment along the Y-axis (stacking) direction. 
Consequently, |µ.| for the transition S0-OPA1 increased with decreasing d because of an increase in 
|𝐶5 + 𝐶6| from ~0.  
 

 

Figure III.1.7. One-electron transition density map for the HOMO and LUMO, ρ'*(𝒓) = 𝜑'(𝒓)𝜑*(𝒓), 
for the model with d = 3.0 Å. White and blue surfaces represent the positive and negative ρ'*(𝒓). 
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For the OPA1-TPA1 transition [Eq. (III.1.13)], |𝐶68 + 𝐶5 ′| was expected almost unchanged 
regardless of d (see Figure III.1.A1). However, |𝛍'*| depends on the distance between the positive and 
negative regions of ρ'*(𝒓), which is almost proportional to d. Thus, |µ.| of the model with d = 6.0 Å 
(~28 D) was almost twice as that of the model with d = 3.0 Å (~12 D). 
 
1.3.3. d-dependence of the excitation properties 
Figure III.1.8(a) presents the excitation energies of the OPA1, OPA2, OPA3, TPA1, and TPA2 states 
as a function of d. Half of the excitation energies for the TPA1 and TPA2 states (corresponding to 𝐸&/2) 
are also shown. The excitation energies of the OPA1 and TPA1 states decrease as d decreases from 6.0 
Å, reaching a minimum around d ~ 3.5 Å, after which they increase. It should be noted that the 
experimental UV-vis absorption bands of 1b2 were observed at ~610 nm (~2.0 eV) and ~340 nm (~3.6 
eV) when d = 3.1-3.2 Å20,54. It has been reported that multi-reference second-order perturbation theory 
methods tend to overestimate the binding energy of PLY π-dimers in the S0 state42, which may result in 
an overestimated excitation energy for the first peak at ~2.5 eV. Despite this overestimation, it is 
expected that the condition 7𝐸%$ − 𝐸&$/27~0 is nearly satisfied around d ~ 3.0 Å for the TPA2 state as 
the final state 𝑓. 
 

 

Figure III.1.8. d-dependence of (a) excitation energies, (b) |µ-|, |µ.| and |µ/| for the S0-OPA1 and 
(c) those for the OPA1-TPA1 transition, and (d) y-dependence of the ratio of the increase 
𝜎(")(𝑑)/𝜎(")(𝑑 = 6.0	Å) for the first TPA peak targeted to the TPA1 state. 
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 Figure III.1.8(b) and (c) display the magnitudes of the transition dipole moments, |µ-|, |µ.| 
and |µ/|, for the S0-OPA1 and OPA1-TPA1 transitions. The magnitude of |µ.| for the S0-OPA1 
transition increased with decreasing d, and |µ.|  for the OPA1-TPA1 transition decreased with 
decreasing d. These trends in the excitation energies and transition dipole moments were consistent with 
those obtained from the VBCI method based on the two-site model. Therefore, it is anticipated that the 
intensity of the first TPA peak exhibits a similar y-dependence as predicted by the VBCI method, as both 
an increase in 𝛍$%"𝛍%&" and a decrease in 7𝐸%$ − 𝐸&$/27 are expected in the intermediate y region20. 
These conditions are satisfied when d ≤ 3.4 Å (i.e., y < 0.7, as shown in Figure III.1.3). Figure III.1.8(d) 
illustrates the y-dependence of the intensity enhancement ratio of the first TPA peak relative to that at d 
= 6.0 Å (y = 1.00). The peak intensity at y = 0.49 (d = 3.0 Å) was enhanced by approximately 15 times 
compared with that at y = 1.00 (d = 6.0 Å). The observed trend for the TPA peak was consistent with the 
prediction from the VBCI method based on the two-site model20,44,57. These results suggest that reducing 
d of 1a2 can serve as an efficient strategy for modulating the TPA properties. 
 
 
1.4.  Conclusion 
 
In summary, the effect of the stacking distance d in the PLY π-dimer models on the OPA and TPA 
properties was theoretically analyzed using the XMC-QDPT2 method. It was found that the first OPA 
and TPA peaks in the PLY π-dimer models correspond to electronic transitions along the stacking 
direction. The intensity of the first TPA peak was enhanced at small d (≤ 3.4 Å), where both an increase 
in 𝛍$%"𝛍%&"  and a decrease in 7𝐸%$ − 𝐸&$/27 were observed. Additionally, it was found that the 
electronic states associated with the first TPA peak are described by configurations within the CAS(2,2) 
space, which aligns with the assumptions of the VBCI method based on the two-site model used to 
derive the y-dependent expressions for the TPA properties. A well-defined correlation between y and the 
first TPA peak is expected. However, such a correlation is not anticipated for the second (or higher) TPA 
peaks. In this chapter on the PLY π-dimer models, the first TPA peak was the most important, and the 
discussion focused consequently on the corresponding S0-OPA1-TPA1 transition pathway. The set of 
findings described in this chapter are expected to advance both theoretical and experimental analyses of 
the optical response properties of open-shell singlet systems with complex electronic structures and to 
contribute to the establishment of molecular design principles for novel open-shell NLO materials. 
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Appendix 
 
Stacking distance (d-)dependence of the CI coefficients and transition dipole moments calculated with 
symmetry constraint for the excited states 

 

Figure III.1.A1. d-dependence of amplitude of CI coefficients for main configuration(s) in the (a) S0, 
(b) OPA1, (c) TPA1 states for the phenalenyl dimer model 1a2 with d = 2.8 ~ 6.0 Å with Ag, Bu, and Au 
symmetries. H and L stand for HOMO and LUMO, respectively. Note that, the CI coefficients of the 
ground and H,H→L,L configurations in the S0 state have opposite sign whereas those in the TPA1 state 
have the same sign. 
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Figure III.1.A2. d-dependence of |µ-|, |µ.| and |µ/| for the (a) OPA1-TPA2, (b) S0-OPA2, (c) S0-
OPA3, (d) OPA2-TPA1, (e) OPA3-TPA1, (f) OPA2-TPA2, and (g) OPA3-TPA2 transitions for the 
phenalenyl dimer model 1a2 with d = 2.8 ~ 6.0 Å with Ag, Bu, and Au symmetries.  
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Brief explanations for the relative signs of 𝐶5 , 𝐶6 𝐶58  and 𝐶68  
For simplicity, the symmetric two-electron and two-site model is considered here. The configurations 
|𝐺⟩ and |𝐷⟩ are represented by the following Slater determinants: 
 

|𝐺⟩ =
1
√2

𝜓B(𝒓,)𝜓B(𝒓"){𝛼(1)𝛽(2) − 𝛼(2)𝛽(1)} 

|𝐷⟩ =
1
√2

𝜓C(𝒓,)𝜓C(𝒓"){𝛼(1)𝛽(2) − 𝛼(2)𝛽(1)} 

 
Here, HOMO and LUMO are constructed by the linear combinations of (real) site-localized natural 
orbitals a and b (where a and b are defined such that ∫𝑎(𝒓)𝑏(𝒓) 𝑑𝒓 = 0, although the following 
discussion remains unchanged if the orbitals are defined with the non-zero overlap integral S): 
 

𝜓B(𝒓) =
1
√2

D𝑎(𝒓) + 𝑏(𝒓)F 

𝜓C(𝒓) =
1
√2

D𝑎(𝒓) − 𝑏(𝒓)F 

 
Substituting them into the Slater determinants |𝐺⟩ and |𝐷⟩ gives the following formulae: 
 

|𝐺⟩ =
1
2√2

D𝑎(𝒓,)𝑎(𝒓") + 𝑏(𝒓,)𝑏(𝒓") + 𝑎(𝒓,)𝑏(𝒓") + 𝑏(𝒓,)𝑎(𝒓")F{𝛼(1)𝛽(2) − 𝛼(2)𝛽(1)} 

|𝐷⟩ =
1
2√2

D𝑎(𝒓,)𝑎(𝒓") + 𝑏(𝒓,)𝑏(𝒓") − 𝑎(𝒓,)𝑏(𝒓") − 𝑏(𝒓,)𝑎(𝒓")F{𝛼(1)𝛽(2) − 𝛼(2)𝛽(1)} 

 
The first two terms correspond to the ionic configuration, in which both electrons occupy the same site 
(either a or b). The latter two terms correspond to the covalent (diradical) configuration, where the 
electrons occupy different sites (a and b). 
 
|𝐺⟩ and |𝐷⟩ are the approximate wavefunctions for the ground and doubly excited states without 
considering the configuration interactions. Then, consider mixing of these configurations (note that 
|H → L⟩ = |𝑆⟩ does not mix because it belongs to the different symmetry): 
 

𝐶5|𝐺⟩ + 𝐶6|𝐷⟩ 
 
When 𝐶5  and 𝐶6 take opposite signs to each other, the ionic contribution is attenuated whereas the 
covalent (diradical) contribution is reinforced (see the signs of the ionic and covalent configurations in 
|𝐺⟩  and |𝐷⟩ ). As a result, this type of configuration mixing increases the covalent (diradical) 
contribution and reduces the (on-site) Coulomb repulsion energy in the ground state |𝑺𝟎⟩. Thus, 𝐶5  
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and 𝐶6 take opposite signs in |𝑺𝟎⟩ due to the configuration interaction. The excited state |𝐓𝐏𝐀𝟏⟩ is 
orthogonal to |𝑺𝟎⟩ . Considering the configuration interaction (i.e., diagonalization of the CI 
Hamiltonian) within the vector space spanned by the bases |𝐺⟩ and |𝐷⟩ corresponds to the rotation of 
the basis vectors (unitary transformation) within the space, keeping the orthogonal relationship between 
them, and as illustrated in the following figure, 𝐶58  and 𝐶68  have the same sign. 
 

 

Figure III.1.A3. Illustration for understanding the configuration interaction between |𝐺⟩ and |𝐷⟩ in 
the ground and doubly excited state of symmetric diradical systems. 
 
Brief explanations for Eqs. (III.1.12) and (III.1.13) 
Based on the Eqs. (III.1.9)-(III.1.11), transition dipole moments between the S0 and OPA1 states and 
between the OPA1 and TPA1 states are 
 

𝛍𝐒𝟎,𝐎𝐏𝐀𝟏 = ⟨𝐒𝟎|𝛍�|𝐎𝐏𝐀𝟏⟩ = 𝐶5𝐶7⟨𝐺|𝛍�|H → L⟩ + 𝐶6𝐶7⟨H, H → L, L|𝛍�|H → L⟩ +⋯ 
and 

𝛍𝐎𝐏𝐀𝟏,𝐓𝐏𝐀𝟏 = ⟨𝐎𝐏𝐀𝟏|𝛍�|𝐓𝐏𝐀𝟏⟩ = 𝐶68 𝐶7⟨H → L|𝛍�|H, H → L, L⟩ + 𝐶58𝐶7⟨H → L|𝛍�|𝐺⟩ + ⋯ 
 
Here, 𝛍� = −∑ 𝑒𝒓�𝒊E

FG, + ∑ 𝑒𝑍H𝑹HI
HG,  is the dipole operator for the N-electron system (𝒓�𝒊  is the 

position operator for the i-th electron. ZA is the atomic number of nucleus A at RA, but the matrix element 
of the second term for the orthogonal wavefunctions will vanish). 𝛍� is expressed as the sum of one-
electron operator. The Slater-Condon rules describe how integrals of one-electron operators over 
wavefunctions constructed as Slater determinants of orthonormal orbitals, like ⟨𝐴|∑ 𝑜�,(𝑖)F |𝐵⟩, reduce 
to (the sum of) one-electron integrals. Applying the rules and then integrating the spin coordinates, the 

matrix element ⟨𝐺|𝛍�|H → L⟩ = ,
√"
⟨⋯𝜑'𝜑'����|𝛍�|⋯𝜑'𝜑*����⟩ +

,
√"
⟨⋯𝜑'𝜑'����|𝛍�|⋯𝜑*𝜑'����⟩  reduces to an 

one-electron integral of the HOMO and LUMO, √2 × −𝑒 ∫𝜑'(𝒓)𝒓𝜑*(𝒓)𝑑𝒓. The same rule can also 

be applied to the matrix element ⟨H → L|𝛍�|H, H → L, L⟩ = ,
√"
⟨⋯𝜑'𝜑*����|𝛍�|⋯𝜑*𝜑*����⟩ +

,
√"
⟨⋯𝜑*𝜑'����|𝛍�|⋯𝜑*𝜑*����⟩, leading to the same one-electron integral √2 × −𝑒 ∫𝜑'(𝒓)𝒓𝜑C(𝒓)𝑑𝒓.  

|"⟩

|$⟩

|S!⟩

|TPA1⟩*"#

*$# *$
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Simulated OPA and TPA spectra of PLY monomer 1a 
State-averaged (SA-)CASSCF(5,5) calculations were conducted using 6-31G* basis set for the 
monomer 1a to solved for the low-lying 20 singlet states within C1 point group (no symmetry) under 
the doublet spin multiplicity conditions. The excitation energies were subsequently evaluated at the 
XMC-QDPT2 level. However, direct comparison with the dimer calculations presented in Figure III.1.4 
is not straightforward due to discrepancies in spin multiplicity, CAS space, and symmetry conditions. 
 

 

Figure III.1.A4. Simulated (a) OPA and (b) TPA spectra of 1a for each orientationally averaged cross-
sections (𝜎(,)(𝜔) and 𝜎(")(𝜔)), X-axis (in-plane) direction components (𝜎(,),-(𝜔) and 𝜎("),--(𝜔)), 
Y-axis (stacking) direction components (𝜎(,),.(𝜔) and 𝜎("),..(𝜔)), and Z-axis (stacking) direction 
components (𝜎(,),/(𝜔) and 𝜎("),//(𝜔)). Each OPA spectrum was normalized to the peak intensity at 
~3 eV. 
 
Table III.1.A1. Excitation energies and transition dipole moments for the low-lying excited states of 
the monomer 1a calculated at the time-dependent (TD-)UCAM-B3LYP/6-31G* level. 

Excited State   1:  2.095-E      3.0169 eV  410.97 nm  f=0.0012  <S**2>=0.848 

     44A -> 45A        0.65509 

     43B -> 44B        0.73545 
 

 Excited State   2:  2.095-E      3.0169 eV  410.97 nm  f=0.0012  <S**2>=0.848 

     44A -> 46A        0.65509 
     42B -> 44B        0.73545 

 

 Excited State   3:  2.131-A2     3.3698 eV  367.93 nm  f=0.0000  <S**2>=0.886 
     44A -> 47A        0.71233 

     41B -> 44B       -0.67153 

 
 Excited State   4:  2.183-A2     3.6183 eV  342.66 nm  f=0.0000  <S**2>=0.941 

     41A -> 45A        0.10099 

     42A -> 46A        0.10099 
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     44A -> 47A        0.66879 

     41B -> 44B        0.70883 

     42B -> 46B       -0.10838 
     43B -> 47B       -0.10838 

 

 Excited State   5:  2.157-E      4.1563 eV  298.30 nm  f=0.2174  <S**2>=0.913 
     43A -> 46A        0.17778 

     44A -> 45A        0.71821 

     42B -> 45B       -0.19595 
     43B -> 44B       -0.63405 

 

 Excited State   6:  2.157-E      4.1563 eV  298.30 nm  f=0.2174  <S**2>=0.913 
     43A -> 45A       -0.17778 

     44A -> 46A        0.71821 

     42B -> 44B       -0.63405 
     43B -> 45B        0.19595 
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Chapter 2. 

 

Two-Photon Absorption Properties of π-Stacked Multimer Models 

of Phenalenyl Radicals 

 
The influence of the number of monomers (N) on the two-photon absorption (TPA) properties of π-
stacked multimer models composed of phenalenyl radicals was investigated through theoretical analysis. 
Spectral simulations were performed for π-stacked N-mer models (N = 2, 4, and 6) with varying stacking 
distances (d₁) and alternation patterns (d₂/d₁). Excitation energies and transition dipole moments were 
calculated using extended multi-configurational quasi-degenerate second-order perturbation theory 
(XMC-QDPT2) based on complete active space self-consistent field (CASSCF) wavefunctions within 
the active space orbitals constructed from the singly occupied molecular orbitals (SOMOs) of the 
monomers. The TPA cross-section per dimer unit at the first peak, corresponding to the electronic 
transition along the stacking direction, was predicted to increase substantially as the d₂/d₁ ratio 
approached one, as d₁ decreased, and as N increased from 2 to 6. These trends closely align with the 
calculated results for static second hyperpolarizabilities (γ). 
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2.1. Introduction 
 
In PART III, the investigation of the two-photon absorption (TPA) properties of open-shell one-
dimensional (1D) π-aggregates systems composed of phenalenyl radicals (PLY), the smallest units of 
polycyclic aromatic hydrocarbons (PAHs) exhibiting open-shell characteristics, is presented in detail. 
An actual example of a synthesized 1D π-aggregates is a chain composed of TPFPPLYs (monomers 
functionalized with C₆F₅ groups at 2-, 5-, and 8- positions of PLYs)1,2 illustrated in Figure 15(c). The 1D 
chain of TPFPPLYs was synthesized using a straightforward process: heating the σ-dimer of TPFPPLY 
to 572 K in a sealed, degassed tube, melting the material, and subsequently cooling it. The resulting 
dark-purple crystals were analyzed by X-ray crystallography and identified as an eclipsed-type π-
stacked aggregates with a stacking distance (d) of approximately 3.50 Å. Previous studies on the π-
dimer of PLY derivatives have demonstrated that the d can be modulated by the choice of substituents, 
highlighting variations in structural configurations1–5. While the crystalline π-stacked systems represent 
a promising subject for exploration, fewer examples of its synthesis and characterization exist compared 
to the well-studied π-dimer systems. Nevertheless, the potential applications of this crystalline systems 
in advanced material science continue to be an area of significant interest. 
 Theoretical investigations of open-shell 1D π-aggregates have advanced significantly, building 
on the foundational studies by Yoneda et al.6, Salustro et al.7, and Matsui et al.8,9 Subsequent 
investigations by the authors demonstrated a substantial increase in the static γ value per monomer 
within the 1D chain of PLYs as the number of layers increased, establishing an evidence for the 
anticipated exceptional NLO properties (refer to PART II)10. Regarding TPA properties, the close 
proximity of two PLYs causes pancake bonding, which induces large electronic transitions along the 
molecular stacking direction. As detailed in the previous chapter, PLY π-dimers in such a state exhibit 
intermediate diradical character (y), leading to a pronounced increase in the cross-section of the first 
TPA peak within this region11 (here, y is based on the valence-bond configuration interaction (VBCI) 
method within the simplest symmetric two-site diradical model12,13). Furthermore, the y-dependence of 
the TPA properties closely aligns with trends observed in static γ, suggesting that static γ may serve as 
a useful indicator for designing systems with enhanced TPA properties. The next critical step involves 
determining whether an increase in the number of monomer in the π-aggregates can effectively enhance 
TPA properties and identifying the structures of the systems that maximize this enhancement. 

In contrast, theoretical investigations into TPA properties of open-shell π-aggregates remain 
scarce. A primary challenge lies in the accurate calculation of excitation energies and transition dipole 
moments between electronic states in open-shell singlet systems, owing to their inherently 
multiconfigurational character in the ground state. Moreover, the assignment and interpretation of 
spectral peaks in systems with complex interactions, such as π-aggregates, demand meticulous attention 
and a comprehensive accumulation of multifaceted analyses. The investigation of TPA properties, 
focusing on the effect of adding one additional pair of stacked PLY units (dimer), utilizing the y-based 
index proposed for describing the electronic structure of infinite 1D chains10, provides a critical 
foundation for predicting the optical properties of multiradical systems. 



 117 

2.2. Methods 
 
2.2.1. Model systems 
The effects of the number of monomers (N) on the TPA properties of π-stacked N-mer models consisting 
of 1a with different primary stacking distances (1aN; see Figure III.2.1) were investigated. Geometry 
optimization of monomer 1a was performed at the UB3LYP/6-31G* level under the constraint of D3h 
symmetry, consistent with previous studies (see Figure III.1.2(a) in this previous chapter)6,10. Anti-type 
π-stacked N-mer models (N = 2, 4, and 6) consisting of 1a with different stacking distances d1 (2.8 Å ≤ 
d1 ≤ 4.0 Å) were then constructed while maintaining each monomer geometry frozen. For tetramer (N = 
4), the effects of stacking distance alternation between d1 and d2 were further examined by varying the 
ratio for SDA, d2/d1, from 1.0 to 2.0, as illustrated in Figure III.2.1(b). For simplicity, the N-mer model 
with the ratio d2/d1 is referred to as 1aN(d2/d1). 
 
2.2.2. Quantum chemical calculations for the excitation energies and properties 
The extended multi-configurational quasi-degenerate second-order perturbation theory (XMC-QDPT2) 
method14,15 was applied to evaluate the excitation energies and transition dipole moments. Calculations 
were performed up to hexamer (N = 6) due to the high demands of computational resources in such 
calculations. However, the present study provides valuable information for experimental investigations 
on the TPA properties of open-shell molecular aggregates. 

 

Figure III.2.1. (a) Top view of the molecular structure of 1a4 and (b) side views of anti-type dimer 
model 1a2, tetramer model 1a4(d2/d1), and hexamer model 1a6(1.0) (d2 = d1). 
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 For a given N-mer system consisting of monoradicals (N = 2m; m = 1, 2, …), N/2 diradical 
characters, yi (i = 0, 1, …, N/2–1; 1 ≥ y0 ≥ y1 ≥ … yN/2–1 ≥ 0) can be defined. The yi values of each system 
were evaluated at the spin-projected (P)UHF/6-31G* level based on the following Yamaguchi’s formula, 
which efficiently removes spin-contamination errors in the occupation numbers16: 
 

𝑦! = 1 −
2𝑇!

1 + 𝑇!"
, (III. 2.1) 

 

𝑇! =
𝑛#$%$&! − 𝑛'(%$)!

2
(III. 2.2) 

 
Here, Ti is the orbital overlap between corresponding orbital pairs, and nHONO–i and nLUNO+i are the 
occupation numbers of UHF natural orbitals (UNOs). The averaged diradical character yav was 
calculated using the following formula17,18: 
 

𝑦*+(𝑁) = / 𝑦!(𝑁)

%
"	&-

!./

(III. 2.3) 

 
Note that there are N/2 radical orbital pairs in the N-mer. The standard deviation, ySD, was also computed, 
defined by the following equation10: 
 

𝑦01(𝑁) = 1 1
𝑁/2 /

{𝑦!(𝑁) − 𝑦*+(𝑁)}"

%
"	&-

!./

(III. 2.4) 

 
These y-based indices help characterize open-shell electronic structures of N-mers10. yav is sensitive to 
the change in the primary stacking distance d1 but insensitive to the change in the SDA ratio. ySD can 
efficiently characterize the open-shell electronic structures of 1D chains of radicals with different SDA 
ratios. Note that 𝑦23(4) = (𝑦/ + 𝑦-)/2  and 𝑦45(4) = (𝑦/ − 𝑦-)/2  for N = 4. The occupation 
numbers of UNOs were calculated using the Gaussian 09 program package19. 
 
2.2.3. Excited state calculations and spectrum simulations 
Multi-reference methods should be used to examine the ground and excited states of diradical molecules 
and assemblies in principle for a balanced description of both the static and dynamical electron 
correlations. In this study, the extended (X)MC-QDPT2 method implemented in the GAMESS-US 
program package (ver. 2014)20 was employed to calculate the excitation energies and transition dipole 
moments, although it is reported that the (multi-reference) second-order perturbation theory methods 
tend to overestimate the binding energy of PLY π-dimers in the S0 state21. To express the open-shell 
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nature in the S0 state and two-photon transition of diradical systems, the two-electron and two-orbital 
complete active space [i.e., CAS(2,2)] is the minimal choice of the active space. For the dimer, the 
HOMO and LUMO constructed from the SOMOs of monomers are the minimal active orbitals. 
Accordingly, state-averaged (SA-)CASSCF calculations were performed based on the CAS(N, N) space, 
where the active orbitals are the frontier MOs constructed from the SOMOs of monomers. The low-
lying three singlet states for N = 2 (all the electronic states derived from CAS(2,2) space) and for the 
low-lying ten singlet states with the Ag and Bu symmetries for N = 4 and 6 were solved for. This 
symmetry constraint is expected to efficiently describe the one-photon absorption (OPA) and TPA peaks 
of N-mers concerning the intermonomer electronic transitions. 

Although the basis sets including diffuse functions can improve the description of excitation 
energies and binding energies of π-dimers, the 6-31G* basis set was used since it is reported to describe 
the vertical excitation energies of several π-dimers with sufficient accuracy in combination with the MC-
QDPT22. The excitation energies were then evaluated at the XMC-QDPT2 level with the intruder state 
avoidance parameter of 0.02. It should be noted that the transition dipole moments between the states 
were evaluated using the eigenvectors of the XMC-QDPT2 effective Hamiltonian. 

The OPA cross-section, 𝜎(-)(𝜔), was evaluated by the following equation23: 
 

𝜎(-)(𝜔) =
4𝜋"𝜔
𝑐𝑛ℏ

〈<𝝁89<
"〉 𝑔(𝜔) (III. 2.5) 

 
Here, 𝑐 is the speed of light in vacuum, 𝜔 is the angular frequency of the incident light, 𝑛 is the 
refractive index of the medium (set to 1.0 in this study). 𝛍89 is the transition dipole moment between 

the states 𝑔  and 𝑓 . 〈⋯ 〉  means the orientational average, i.e., 〈<𝛍89<
"〉 = DEµ89: G" + Eµ89; G" +

Eµ89< G"H /3 where 𝜇89=  represents the α-axis component of the transition dipole moment 𝛍89. Since 

only for the Ag and Bu states were solved for, the Z-axis component of 𝛍89 is zero. The following 
Lorentzian function was used for the normalized shape function 𝑔(𝜔): 
 

𝑔(𝜔) =
1
𝜋

𝛤89
E𝜔89 −𝜔G

" + 𝛤89"
(III. 2.6) 

 
where 𝐸89 = ℏ𝜔89 and Γ89 is the damping parameter. This study employed ℏΓ = 0.1 eV for all the 
damping parameters. 

The TPA cross-section, 𝜎(")(𝜔), was evaluated by the following equation23,24: 
 

𝜎(")(𝜔) =
4𝜋>𝜔"

𝑐"𝑛"
〈N𝑴89

(")N
"
〉 𝑔(2𝜔) (III. 2.7) 
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Here, 𝑴89
(")  is the two-photon transition matrix element tensor with each component expressed as 

follows: 
 

𝑀89,=@
(") =

1
ℏ
/R

𝜇8A= 𝜇A9
@

𝜔A9 −𝜔
+
𝜇8A
@ 𝜇A9=

𝜔A9 −𝜔
S

A

							(𝛼, 𝛽 = 𝑋, 𝑌, 𝑍) (III. 2.8) 

 

For the orientational average, 〈<𝑴(")
89<

"〉, we assumed the linearly polarized incident light. For the 

actual calculation, we replaced 𝜔A9  in the denominator with 𝜔A9 − 𝑖ΓA9 . Again, the Lorentzian 
function was used for the normalized shape function 𝑔(2𝜔): 
 

𝑔(2𝜔) =
1
𝜋
	

𝛤89
E𝜔89 − 2𝜔G

" + 𝛤89"
	 (III. 2.9) 

 
 

2.3.  Results and Discussion 
 
2.3.1. Correlation between stacking distances and diradical characters 
Figure III.2.2 shows the calculation results of yav and ySD as a function of d1 (2.8 Å ≤ d1 ≤ 4.0 Å) for 
each model. yav decreased monotonically as the d1 decreased, reaching intermediate values (~0.5) at 
d1~3.0 Å. The ratio d2/d1 did not affect the results of yav for 1a4(d2/d1) model. Furthermore, yav values of 
1a2, 1a4(1.0), and 1a6(1.0) for the considered d1 were almost the same, although their open-shell 
characters are different. ySD can characterize such differences in the open-shell characters between the 
models at each d1. The calculated ySD values of 1a4(2.0) were almost zero regardless of d1, whereas those 
of the other models increased monotonically with decreasing d1. ySD metric effectively characterized 
these orbital interaction between the dimer units. The value of yi increases as the energy gap between 
the HOMO-i and LUMO+i decreases. The orbital interaction between the dimer units is weak for the 
tetramer when d2 >> d1. The HOMO and HOMO-1 (LUMO and LUMO+1) are nearly degenerated, 
resulting in y0~y1 (i.e., ySD~0). As the d2 approached d1 (and as the d1 became small), the orbital 
interaction between the dimer units resulted in the splitting of HOMO and HOMO-1 (LUMO and 
LUMO+1) and the increase in ySD. ySD of 1a6(1.0) was slightly larger than 1a4(1.0) at each d1, but it is 
expected to converge to a certain value as increasing N10. 
 
2.3.2. One-photon and two-photon absorption properties of tetramers 
Figure III.2.3 shows the simulated OPA spectra for the tetramer models 1a4(d2/d1) with d1 = 3.0 Å. To 
compare the results with 1a2, 𝜎(-)(𝜔) and 𝜎(")(𝜔) values per dimer unit were presented. The OPA 
spectra were normalized to that at the first peak of the model 1a4(1.0). 
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Figure III.2.2. Calculation results of yav (a) for the models with the uniform stacking distance d1 for 1a2, 
1a4(1.0), and 1a6(1.0), (b) for 1a4(d2/d1) with different ratios d2/d1 = 1.0, 1.1, 1.2, 1.3, 1.5, and 2.0, results 
of ySD, (c) for 1a4(1.0) and 1a6(1.0), and (d) for 1a4(d2/d1). 
 

 

Figure III.2.3. Simulated (a) OPA and (b) TPA spectra of 1a2 and 1a4(d2/d1) at d1 = 3.0 Å with different 
ratios d2/d1 = 1.0, 1.1, 1.2, 1.3, 1.5, and 2.0. The OPA spectra were normalized to that at the first peak of 
the model 1a4(1.0). 
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The first OPA and TPA peaks exhibited red-shifted as d2/d1 decreased (i.e., d2 approached d1) 
and d1 decreased. For instance, the first OPA peak was observed at approximately 2.5 eV for 1a2, 2.4 eV 
for 1a4(2.0), and 1.9 eV for 1a4(1.0). The intensity of the first OPA peak remained nearly constant with 
changes in d2/d1. However, the peak intensities per dimer of 1a4(d2/d1) were stronger than those of 1a2, 
indicating the delocalization of wavefunction across dimers in the excited state. 

For the TPA spectra, only a single peak appeared at ~1.7 eV for 1a2, attributed to the limited 
active space size [CAS(2,2)]. For the tetramer models 1a4(d2/d1), increased TPA cross-section values 
(per dimer) were obtained as the incident photon energy approached the excitation energy of the OPA 
band. This enhancement can be attributed to the near-satisfaction of both one-photon and two-photon 
resonance conditions in this energy region25,26. However, the current level of approximation for the 
excited state calculations may inadequately describe the higher-lying excited states relevant to TPA 
transitions in this energy range. In the lower-energy region of incident photon energy (<1.7 eV), a single 
TPA peak identified at ~1.6 eV for 1a4(2.0) and 1a4(1.5). As d2/d1 decreased, this peak position was red-
shifted, and another peak appeared at ~1.4 eV. The intensity of the lower-energy peak at ~1.4 eV 
increased drastically as d2/d1 approached one. 
 Tables III.2.1 and III.2.2 present a summary of the excitation energies (𝐸89) and the Y-axis 
components of the transition dipole moments (<µ!B; <), respectively, which are essential for characterizing 
the described OPA and TPA peaks. The 1Ag→1Bu transition for all cases characterized the OPA peak. 
The <µ!B; < value for the 1Ag→1Bu transition of the tetramer models 1a4(d2/d1) slightly increased as the 
d2/d1 decreased, the feature of which was reflected in the OPA peak intensities. The TPA peak at ~1.6 
eV was primarily described by the virtual transition via 1Ag→1Bu→5Ag. The <µ!B; < value for the 
1Bu→5Ag transition decreased whereas the <µ!B; < value for the 1Bu→4Ag transition increased as the 
d2/d1 decreased. Therefore, the virtual transition via 1Ag→1Bu→4Ag primarily described the lower-
energy TPA peak at ~1.4 eV. The excitation energy of the 4Ag state was almost unchanged in the range 
of 1.0 ≤ d2/d1 ≤ 1.3, while the excitation energy of the 1Bu state decreased, which led to a decrease in 
<𝐸A9 − 𝐸89/2<  (k: 1Bu state, f: 4Ag state) as the d2/d1 approached to one. These tendencies were 
attributed to the enhancement of 𝜎(")(𝜔) values per dimer at ~1.4 eV. 

Table III.2.A1 summarizes the weights of electron configurations for these electronic states of 
1a4(1.0), 1a4(1.2), 1a4(1.5), and 1a4(2.0) with d = 3.0 Å. In addition, Figure III.2.A1 illustrates the 
HOMO-1, HOMO, LUMO, and LUMO+1 of 1a4(1.0) with d = 3.0 Å. It is noteworthy that the bonding 
and anti-bonding characteristics of these frontier MOs remain unchanged across all considered d1 and 
d2 values. For all these models, the 1Ag and 1Bu states were primarily described by the ground electron 
configuration and the HOMO–LUMO single excitation configuration, respectively. However, the 1Ag 
state of 1a4(1.0) exhibited a relatively large weight for the HOMO–LUMO double excitation 
configuration. For 1a4(1.5) and 1a4(2.0), the 5Ag state was described by the linear combination of 
HOMO-1–LUMO and HOMO–LUMO+1 single excitation configurations. In contrast, the 4Ag state of 
these models was described by the linear combinations of the ground and several single and double 
excitation configurations. For 1a4(1.2), the characters of 4Ag and 5Ag were reversed from those for 
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1a4(1.5) and 1a4(2.0). For 1a4(1.0), the 4Ag state was described primarily by the ground and HOMO–
LUMO double excitation configurations. 
 
Table III.2.1. Calculation results for excitation energies of 1a4(d2/d1), 𝐸89 (in eV), at d1 = 3.0 Å with 
different ratios d2/d1 = 1.0, 1.1, 1.2, 1.3, 1.5, and 2.0. Results for the 1a2 are also provided for reference. 

System yav ySD 
𝑬𝒇𝒈 

1Bu 2Ag 3Ag 4Ag 5Ag 
1a4(1.0) 0.474 0.189 1.921 1.120 2.375 2.708 3.164 
1a4(1.1) 0.482 0.126 2.076 1.273 2.369 2.727 2.999 
1a4(1.2) 0.486 0.081 2.213 1.400 2.379 2.713 3.030 
1a4(1.3) 0.488 0.051 2.298 1.465 2.388 2.760 3.063 
1a4(1.5) 0.490 0.018 2.357 1.500 2.400 2.927 3.087 
1a4(2.0) 0.490 0.001 2.381 1.501 2.410 3.091 3.271 

        
1a2 0.490 – 2.573 3.452 – – – 

 
Table III.2.2. Calculation results for the Y-axis (stacking direction) component of transition dipole 
moment between the states i and j <µ!B; < (in Debye) for 1a4(d2/d1) at d1 = 3.0 Å with different ratios d2/d1 

= 1.0, 1.1, 1.2, 1.3, 1.5, and 2.0. Results for the 1a2 are also provided for reference. 

System yav ySD 
<𝛍𝒊𝒋𝒀 <  

1Ag→1Bu 1Bu→2Ag 1Bu→3Ag 1Bu→4Ag 1Bu→5Ag 
1a4(1.0) 0.474 0.189 11.6 1.0 1.1 21.2 2.3 
1a4(1.1) 0.482 0.126 10.6 2.7 0.1 19.2 7.4 
1a4(1.2) 0.486 0.081 10.2 2.1 0.4 14.8 12.1 
1a4(1.3) 0.488 0.051 10.2 0.9 1.0 10.4 13.2 
1a4(1.5) 0.490 0.018 10.1 0.1 1.4 4.1 13.7 
1a4(2.0) 0.490 0.001 10.0 0.0 1.0 0.1 13.5 

        
1a2 0.490 – 7.3 12.4 – – – 

 
The effects of the primary stacking distance d1 and the ratio d2/d1 on the intensity of the first 

TPA peak investigated. Figure III.2.4 shows the 𝜎(")(𝜔) values per dimer for 1a4(d2/d1) with different 
d1 (2.8 Å ≤ d1 ≤ 4.0 Å) as a function of the ratio d2/d1. The intensity of the first TPA peak increased with 
decreasing d1 and as d2/d1 approached 1. Similar trends were observed for the calculation results of static 
γ per unit of finite and infinite 1D stacks of 1a10. The results indicate that both the static γ and 𝜎(") 
value of the first TPA peak are likely to be enhanced in uniform 1D stacks of PLYs. Such enhancements 
of the third-order NLO responses are expected when d1 is less than the van der Waals contact distance 
for the carbon atoms (3.4 Å). 
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Figure III.2.4. Calculation results of 𝜎(")(𝜔) values per dimer for 1a4(d2/d1) with different d1 (2.8 Å 
≤ d1 ≤ 4.0 Å) as a function of the ratio d2/d1. 
 

Figure III.2.A2 presents the variations in the excitation energies and transition dipole moments 
associated with key transitions in 1a4(d2/d1) models for different d1 (2.8 Å ≤ d1 ≤ 4.0 Å) as a function of 
the ratio d2/d1. As the d1 decreased, the excitation energy for the TPA target (4Ag or 5Ag) state increased 
more significantly than that for the OPA target (1Bu) state. As a result, the detuning energy, 
<𝐸A9 − 𝐸89/2<, which inversely contributes to the 𝜎(") value at the peak, became small. The magnitude 
of the transition dipole moment for the 1Ag→1Bu transition increased as the d1 decreased, whereas that 
for the 1Bu→4Ag(5Ag) transition showed somewhat complicated behaviors because the characters of 
4Ag and 5Ag states exchanged at d2/d1 = 1.2–1.3. 

Finally, the TPA properties of the hexamer model 1a6(1.0) were calculated to investigate the 
effects of increasing N. Figure III.2.5 shows the calculation results of 𝜎(") value per dimer at the first 
TPA peak as a function of yav for the 1a2, 1a4(1.0), and 1a6(1.0) (for the relationship between d1 and yav, 
see Figure III.2.2(a)). The 𝜎(") values per dimer increased as the yav decreased (i.e., as the d1 decreased) 
for all the models. The enhancement of 𝜎(") values per dimer was more significant in N = 6 than in N 
= 4: At d0 = 3.0 Å, 𝜎(") values per dimer of 1a4(1.0) and 1a6(1.0) were 5.1 and 8.4 times higher than 
that of 1a2. Further enhancement of the 𝜎(") values per dimer unit can be expected when N approaches 
to ∞ (i.e., for the infinite 1D π-stacks), although the value will converge to a specific value as was 
observed for the calculation results of static γ per unit10. Figure III.2.A3 compares the excitation energies 
and transition dipole moments of key transitions for 1a2, 1a4(1.0), and 1a6(1.0) as a function of yav. As 
N increased, the excitation energies for both the OPA and TPA target states decreased, and the detuning 
energy, <𝐸A9 − 𝐸89/2< , became smaller, which is identified the primary factor contributing to the 
enhancement of 𝜎(") values at the first peak. 
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Figure III.2.5. Calculation results of 𝜎(") value per dimer at the first TPA peak as a function of yav for 
the 1a2, 1a4(1.0), and 1a6(1.0). 
 
 
2.4.  Conclusion 
 
In this study, the low-energy OPA and TPA properties of π-stacked N-mer models, 1aN(d2/d1) (N = 2, 4, 
and 6), composed of unsubstituted phenalenyl radicals with varying stacking distances d1 and d2, were 
theoretically examined. CASSCF(N,N) and XMC-QDPT2/6-31G* calculations were performed for the 
excitation energies and transition dipole moments, which were subsequently used to simulate the OPA 
and TPA spectra of these models. The 𝜎(") value per dimer unit at the first peak, originating from the 
electronic transition along the stacking direction, was predicted to increase significantly as d2/d1

 approaches one, as d1 decreases, and as N increases from 2 to 6. For the 1D chains of unsubstituted 
phenalenyl (1a), sufficiently enhanced TPA properties are anticipated when d1 ≤ 3.2 Å. The optimal d1

 value and d2/d1 ratio for achieving significantly enhanced TPA properties will depend on the specific 
monomer species. 
 The calculation of y-based indices, yav, and ySD will facilitate the identification of suitable 
regions for these parameters. However, it is generally challenging to fully characterize the electronic 
structures and excitation properties of 1D π-stacks using only a few indices. Accurate calculations and 
analyses are essential for predicting the OPA and TPA properties of more realistic models that 
incorporate substituent groups. Nonetheless, the present findings offer valuable insights into the 
relationship between the structural characteristics and linear/nonlinear optical responses of actual 1D π-
stacked chains of open-shell molecular species. 
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Appendix 

 

Figure III.2.A1. Frontier MOs involved in the active space of CASSCF calculations for (a) 1a2, (b) 
1a4(1.0) and (c) 1a6(1.0) with d1 = 3.0 Å. 
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Figure III.2.A2. d2/d1 dependences of the excitation energies for (a) OPA target state, (b) first TPA target 
state, and magnitudes of the transition dipole moments (TDM)s (per dimer) for (c) 1Ag-1Bu transition, 
(d) 1Bu-TPA target (4Ag or 5Ag) state, and (e) inverse of the detuning energy. 
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Figure III.2.A3. yav dependences of the excitation energies for (a) OPA target state, (b) main TPA target 
state, and magnitudes of the transition dipole moments (TDM)s (per dimer) for (c) 1Ag-1Bu transition, 
(d) 1Bu-TPA target state, and (e) inverse of the detuning energy. 
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Table III.2.A1. Electron configurations describing the crucial electronic states of 1a4(1.0), 1a4(1.2), 
1a4(1.5) and 1a4(2.0) with d1 = 3.0 Å. 

 
1a4(1.0) 1a4(1.2) 1a4(1.5) 1a4(2.0) 

Conf. Weight [%] Conf. Weight [%] Conf. Weight [%] Conf. Weight [%] 
1Ag 2200 83 2200 85 2200 85 2200 85 

 2020 8       
         

1Bu 2-+0 44 2-+0 44 2-+0 29 2-+0 24 
 2+-0 44 2+-0 44 2+-0 29 2+-0 24 
     -20+ 19 -20+ 23 
     +20- 19 +20- 23 
         

2Ag 2020 32 2020 28 2020 21 2020 19 
 -2+0 11 0220 17 0220 19 0220 19 
 +2-0 11 2002 14 2002 18 2002 19 
 0220 10 0202 9 0202 17 0202 19 
 2-0+ 10 --++ 6 --++ 8 --++ 8 
 2+0- 10 ++-- 6 ++-- 8 ++-- 8 
 2002 6       
         

3Ag -2+0 24 -2+0 25 -2+0 23 -2+0 23 
 2-0+ 24 +2-0 25 +2-0 23 +2-0 23 
 2-0+ 21 2-0+ 20 2-0+ 22 2-0+ 23 
 2+0- 21 2+0- 20 2+0- 22 2+0- 23 
         

4Ag 2200 14 2-0+ 20 2200 13 2200 14 
 2020 27 2+0- 20 2020 14 0022 13 
 +--+ 9 -2+0 17 0022 12 2020 10 
 -++- 9 +2-0 17 -+-+ 11 -+-+ 10 
 2-0+ 7 0202 11 +-+- 11 +-+- 10 
 2+0- 7   0220 9 0202 10 
 -+-+ 5   0202 8 0220 8 
 +-+- 5   +--+ 7 +--+ 8 
     -++- 7 -++- 8 
     2002 7 2002 8 
         

5Ag 0220 25 2200 12 2-0+ 23 2-0+ 24 
 2002 9 2020 24 2+0- 23 2+0- 24 
 0202 6 0220 12 -2+0 23 -2+0 24 
 2-0+ 6 -+-+ 11 +2-0 23 +2-0 24 
 2+0- 6 +-+- 11 0202 5   
 --++ 6 0022 9     
 ++-- 6 2002 6     
 -+-+ 5       
 +-+- 5       
 2020 5       
 -2+0 5       
 +2-0 5       
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GENERAL CONCLUSION 
 

This dissertation theoretically investigated the structure-property correlations for TPA of open-shell π-
conjugated molecules and their molecular aggregates to establish materials design guidelines for 
controlling the peak positions and intensities of TPA. PART II clarified the relationship between the 
static γ and open-shell character in the one-dimensional (1D) infinite stacks of π-radicals. PART III 
elucidated the correlation between the TPA properties, the structural parameters, and the number of 
molecules in the π-stacked aggregates of phenalenyl radicals. Here, the author summarizes the outcomes 
and conclude this dissertation. 
 
Correlation between Open-shell Electronic Structures and Third-order Nonlinear Optical Properties in 
One-dimensional Chains of π-radicals 
In PART II, the static γ values of one-dimensional (1D) molecular aggregates were thoroughly analyzed, 
focusing on their dependence on the stacking distance and the number of constituent molecules. The 1D 
chain composed of π-conjugated radicals, phenalenyls, was used as a model system. It was not easy to 
characterize the open-shell electronic structures of such aggregates only by a single index since multiple 
radical pairs exist in the N-mer systems. Therefore, the author employed two y-based indices: the 
average (yav) and standard deviation (ySD) of diradical characters yi. yav is known to help evaluate the 
“averaged” open-shell character. ySD, which the authors introduced, is shown to help assess the “inter-
dimer” interactions in the 1D molecular aggregates where the stacking distance alternation (SDA) is 
introduced. These y-based indices allow us to describe the open-shell electronic structure of realistic 
aggregate systems in which the stacking distance is not uniform.  
 Accurate theoretical prediction of the optical response properties of molecular aggregates and 
crystals is challenging. Conducting highly accurate quantum chemistry calculations to analyze 
aggregates of real π-conjugated molecules is still not feasible due to its explosive computational cost. 
Therefore, the author first compared the results of computationally less expensive density functional 
theory (DFT) methods with the highly accurate UCCSD(T) results for 1D aggregates of methyl radicals, 
the simplest model molecules of π-radicals. It is found that the long-range corrected (LC-)UBLYP 
functional with a range-separating parameter μ = 0.47 bohr-1 reproduced well the results of γ∞ (static γ 
at the limit of N → ∞) and its polymer/dimer ratio at the UCCSD(T) level. The selected LC-
UBLYP(0.47) method was used to estimate the γ∞ value of the 1D chain of phenalenyl radicals. As a 
result, the author found that enhanced γ∞ values were obtained when yav,∞ ≤ 0.6 and ySD,∞ ≥ 0.1. These 
open-shell character conditions can be obtained for systems with a uniform stacking distance of less 
than 3.2 Å. These results contribute to developing novel materials designed for open-shell molecular 
aggregates that exhibit remarkable third-order NLO effects. 
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Two-Photon Absorption Properties of Open-shell Molecular Aggregates 
Chapter 1 of PART III analyzed the effect of the stacking distance on the OPA and TPA spectra for the 
π-dimers of phenalenyl radicals. To obtain the excitation energies and transition dipole moments 
required for the spectral simulations, the author applied the extended multiconfigurational quasi-
degenerate second-order perturbation theory (XMC-QDPT2), a highly accurate electronic structure 
calculation method. The author assigned the lowest-energy TPA peak (the first TPA peak), which 
typically appears in a window region of the OPA spectrum, and the higher-energy TPA peaks. The OPA 
and TPA cross-sections were decomposed into the contributions from the stacking and in-plane 
directional components since the enhancement of the former contribution would reflect the degree of 
intermolecular electronic transition that can be increased upon the dimer formation. It is found that linear 
combinations of the SOMOs of phenalenyl monomers construct the HOMO and LUMO. The intensity 
of the first TPA peak is enhanced in the region of small stacking distance around 2.8-3.0 Å (intermediate 
open-shell nature: y ~ 0.5). The primary contribution to the first TPA peak was the stacking directional 
component. Namely, the enhanced TPA cross-section in the 1D aggregates of π-radicals at the low-
energy region can signify strong intermolecular interactions and electron delocalizations in the low-
lying excited states. This result confirms the plausibility of obtaining large TPA cross-sections by 
aggregating open-shell molecules. It suggests the feasibility of achieving large TPA cross-sections by 
appropriate molecular design of 1D aggregates. 
 Chapter 2 of PART III examined the position and intensity of the first TPA peak of multimers 
(up to hexamer) of phenalenyl radicals. The author discussed how the stacking distance and the number 
of molecules (N) affect the open-shell electronic structures, which were evaluated with yav and ySD, and 
TPA properties. It is found that the TPA cross-section at the first peak increased as the stacking distance 
decreased for multimers. This trend is similar to the static γ shown in PART II. In addition, the position 
of the first TPA peak shifted to the lower energy region as N increased. We have clarified the mechanism 
of peak shift. Furthermore, the TPA cross-section per dimer was 5.1 times higher for the tetramer and 
8.4 times higher for the hexamer than for the dimer with a stacking distance of 3.0 Å. This is also 
consistent with the trend of static γ. The TPA cross-section value per dimer is considered to converge to 
a specific value when N approaches ∞. These results are the first detailed elucidation of TPA properties 
of aggregate systems of realistic open-shell π-conjugated molecules and contribute to creating novel 
open-shell TPA materials that outperform conventional systems. 
 
 In summary, this dissertation clarified the structure-property correlations in TPA properties of 
open-shell π-conjugated molecules and their molecular aggregates from the open-shell character 
viewpoint. Based on the results, several design guidelines are proposed for efficient TPA materials 
consisting of assemblies of open-shell molecules. The results and conclusions in this dissertation will 
contribute to accelerating the development and application of real open-shell TPA materials such as 
organic crystals and, at the same time, establishing the theoretical foundation for NLO material design. 
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FUTURE PROSPECTS 
 

In this dissertation, we have investigated the structure-property correlations and the contribution of 
open-shell nature for TPA of open-shell π-conjugated molecule and their molecule aggregates through 
high-precision electronic structure computations and theoretical analysis. The analysis methods and the 
obtained results can be extended in several directions. We propose some topics as prospects. 
 
Creation of new open-shell TPA molecular materials 
In recent years, the usefulness of artificial intelligence (AI), machine learning (ML), and materials 
informatics (MI) in the screening and exploration of new materials that meet several conditions for 
applications has become widespread. Examples of the application of such data-driven research to the 
discovery of novel TPA materials and the prediction of TPA properties are beginning to be reported1–3. 
However, no mention of open-shell molecules has been made in such studies, even though many reports 
show huge TPA cross-sections in open-shell molecules: The targets of data-driven research on TPA 
materials have focused on closed-shell molecules. Plenty of data sets for structures and properties of 
closed-shell molecular systems have been available for data-driven research, the performance of which 
is generally improved as the data becomes rich. However, data describing the structures and properties 
of open-shell molecules and their aggregates is still poor in number and quality and has not been 
included sufficiently in the data sets. Descriptors that adequately represent the characters of open-shell 
molecular systems are essential in regression analysis and statistical modeling. The y-based indices, yav, 
and ySD, introduced in this dissertation, may be used as descriptors in the data-driven searches for open-
shell functional molecular aggregates. 
 
Toward realization of novel open-shell molecular systems through experimental synthesis 
We have suggested that monomers be arranged with a uniform stacking distance to achieve large TPA 
cross-sections in open-shell 1D chains. In practice, it is still challenging to stabilize such uniform 1D 
chains of open-shell molecules by experimental synthesis. Introducing optimal substituents can help 
stabilize a specific arrangement by steric effects4–8. Bulky side chains have been reported to change the 
potential surface profile, stabilizing an energetically unfavorable geometry9. Another effective 
stabilization strategy is to introduce substituents that contribute to attractive interactions. For example, 
the perfluorophenyl-phenalenyl attractive interaction is stronger than the phenalenyl-phenalenyl one10,11. 
We must find optimal combinations of the open-shell core molecule and substituent groups to balance 
the attractive and repulsive interactions. 
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Applications utilizing TPA properties unique to open-shell 1D aggregates 
The 1D aggregates studied in this dissertation consist of π-conjugated radicals. These open-shell 1D 
aggregates suggest the presence of through-space (TS) interactions between the open-shell monomers. 
This effect is predicted to result in NLO properties comparable to those of π-conjugated polymers12. The 
degree of electron delocalization in the TS-interacting systems is usually less than that in the through-
bond (TB) conjugated systems, like π-conjugated polymers. The peak positions of the lowest allowed 
OPA and TPA bands in the open-shell aggregates are expected to appear in a relatively higher energy 
(shorter wavelength) region. In fact, for example, the wavelengths of the first TPA peaks of IDPL and 
NDPL derivatives are reported to be 1425 nm13 and 1610 nm14, while PLY2 and PLY4 with a uniform 
stacking distance of 3.0 Å were predicted to be 718 nm (3.452 eV as TPA state energy) and 916 nm 
(2.708 eV as TPA state energy) as described in PART III (see Figure III.2.3 and Table III.2.1). Since the 
wavelength of incident light contributes to the size of the irradiated spot, this characteristic can be an 
advantage in some applications. The minimum spot size (beam waist) 𝑤! of the laser is given by: 
 

𝑤! ∝
𝜆
𝑁𝐴

(16) 

 
Here, 𝜆 is the wavelength of the laser, and 𝑁𝐴 is the Numerical Aperture. From Eq. (16), a smaller 
𝑤! can be achieved with a shorter 𝜆 for the same 𝑁𝐴 optical experimental system. There are a wide 
variety of applications where a small 𝑤! is required. For example, in TPA-based microfabrication, the 
small 𝑤! allows for a smaller minimum structure size (see Figure 5). In fluorescence imaging with 
TPE, a small 𝑤! can increase the resolution of the observation (see Figure 6). Even in TPA-based 
multilayer data storage (in the R&D stage), the small 𝑤! allows for increased recording density (see 
Figure 4(b)). 
 
Structure-property correlation of open-shell π-conjugated polymers and the contribution of open-shell 
nature 
The remaining issue in this dissertation is the incomplete analysis of TPA properties of open-shell singlet 
π-conjugated molecules, which have a different structure from that of open-shell π-stacking molecules. 
Consider open-shell systems involving two phenalenyl radicals as an example. The HOMO and LUMO 
of the π-stacked dimer are simply constructed by linear combinations of the SOMOs of the two 
monomers. This feature of TS-interacting systems validated the application of the two-site model to the 
analysis of the ground and low-lying excited states (Figure 17(a)). However, in open-shell π-conjugated 
molecules, radical moieties are directly connected with a bridging part. Therefore, the HOMO and 
LUMO are constructed from the SOMOs of the radical centers and the orbitals of the bridging part. This 
feature of TB-interacting systems may make it challenging to apply the two-site model to analyze the 
electronic structures (Figure 17(b)). The electronic structures of such open-shell π-conjugated molecules 
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depend on the structures of radical species and bridging units. Detailed analysis of various open-shell π-
conjugated molecules, such as IDPL and NDPL, should also be performed. Such analysis will contribute 
to extracting the control factors for the structure-property correlations of TPA properties of real open-
shell molecules. Completing this research will contribute to creating innovative functional materials, 
whether the approach is experiment-driven or data-driven. 
 

 

Figure 17. HOMO and LUMO of (a) π-conjugated, (b) π-stacking dimer by two phenalenyl radicals 
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