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Abstract

The grasping of general objects by robots plays an important role in many manipula-

tions and is used in a wide range of applications, including industrial settings, logistics

warehouses, and service robots. Grasping is necessary as a preliminary step to enable the

appropriate execution of downstream processes such as transport tasks, assembly, and

tool manipulation; it is essential to grasp objects while satisfying the object’s posture

and operating conditions. Some research has been conducted to date, focusing on stable

grasping methods, including analyses considering both static and dynamic mechanics, as

well as data-driven approaches based on these. Analysis-based methods can guarantee

stable grasping through rigorous calculations that consider the physical properties of

objects, such as shape, hardness, and friction. However, adapting to a wider range of

objects and achieving appropriate grasping in complex scenes, such as random picking,

is challenging due to factors such as the cost of calculations and sensing limitations. In

addition to using sensing to solve these problems, it is necessary to have an approach

that can adapt quickly.

A data-driven approach is used to tackle this problem, and it is possible to adapt to

various situations using data such as the success or failure of grasping without the need

for rigorous analysis. However, there are cases where grasping fails due to insufficient

consideration of the physical properties of the object, and there are instances where the

object is damaged or an inappropriate grasping strategy is used. There is a possibility

of solving this problem by securing data with many variations, but the cost of this is

enormous. Therefore, it is necessary to generate data and learn while reducing the costs

of using data and explicitly considering the physical properties to which you want to

adapt, as well as being able to adapt to this diversity.

The main contributions of this thesis are as follows: First, to account for the soft-

ness of objects, a framework for estimating their characteristics from visual information

is applied to object grasping. Second, to account for the shape of objects, a 3D model

with a complex shape that can efficiently learn grasping is generated and applied to

the grasping model. The proposed method enables fast application to unknown objects



while reducing the cost of data generation through a virtual-emotion learning method.

Finally, by designing a learning model that simultaneously considers shape and softness

characteristics while using a framework that addresses both factors, it is possible to

achieve effective grasping strategies for many types of objects and complex scene set-

tings such as random picking. The effectiveness of these methods was verified in both

simulation and real-world environments for vision-based object grasping.
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Chapter 1

Introduction

1.1 Background and motivation

In the last 20 years, as a result of the development of various services in line with major

changes in consumer needs and population growth, there has been an acceleration in

demand. This has led to a labor shortage [1]. In addition, as competition intensifies,

there is a need for lower costs and greater efficiency at work while also taking into

account the impact on the environment and safety. There is ongoing debate about the

need for automation using robots and other technologies [2].

In industrial settings, such as the automotive industry, some dangerous or physically

demanding tasks, like welding and transporting large objects, are partially automated

and often introduced into the workplace through system integration that repeats a set

of tasks. On the other hand, automation that is not limited to a specific situation but

can also cope with environments or the state of the object being handled changing is

a difficult task. Nevertheless, there have been developments, such as the introduction

of systems that use robot manipulators, hands, and sensors to perform recognition and

manipulation. This includes automating the picking process for single parts [3]. How-

ever, particularly in logistics, there is a demand for systems that can handle a wide

variety of objects and situations, such as product picking. There is also a great need for
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object manipulation technology that works in conjunction with a set of sensors. Many

picking methods that integrate image recognition [4], particularly in competitions such

as the Amazon Picking Challenge [5], have been proposed. However, the issue of stable

grasping remained. There is some research focused on methods that emphasize sta-

ble grasping, which includes data-driven approaches and analyses that consider static

and dynamic mechanics [6, 7]. Analysis-based methods can guarantee stable grasping

through rigorous calculations that consider the physical properties of objects, such as

shape, hardness, and friction. Based on this, stable grasping can be achieved when

the object is limited, with certain shape and physical properties given. However, it is

difficult to achieve proper grasping in complex scenes, like random stacking, due to com-

putation cost and sensing limitations. Besides using sensing to solve these problems, an

approach that can be quickly adapted is also necessary.

Data-driven approaches are being used to tackle this problem, and it is possible to

adapt to various situations using data such as the success or failure of grasping, without

the need for rigorous analysis. Some methods are proposed for collecting a large amount

of robot experience in real environments [8, 9], and there are also for achieving high-

precision picking while reducing costs, such as automatically generating grasping data

for a wide variety of products using simulations [10, 11]. While it is possible to solve

this problem by collecting a large amount of data, there are cases where the physical

properties of the object cannot be fully taken into account due to a lack of information

for grasping, and the object may be damaged or an inappropriate grasping strategy may

be used. There is also the possibility of solving this problem by securing data with many

variations, but the cost of this is enormous. Therefore, it is necessary to generate data

and learn in a way that can adapt to the diversity of the physical properties you want

to accommodate while keeping the cost of using the data down.

The work presented in this dissertation addresses the following challenges: gener-

ating a dataset that can adapt to the diversity of object shapes and deformability. By

utilizing this data, the method can achieve visual grasping in complex scenes such as

random piles and single-object scenes.
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1.2 Objectives

The general objectives of this dissertation are as follows;

1. By generating a database of object deformability and shape, it is possible to achieve

safe grasping of objects with various physical properties. Using visual information

and a virtual experience-based learning method, this can be applied to unknown

objects in the real environment at high speed while reducing the cost of data

generation.

2. By designing a learning model that takes into account both shape and deforma-

bility characteristics, it is possible to reduce damage to objects and increase the

success rate of picking up items with unknown physical characteristics that were

not present during training. This is achieved by using effective grasping force in

complex scene settings, such as picking up various types of objects or retrieving

items from a random pile.

1.3 Dissertation outline

This dissertation is organized as follows.

In Chapter 3, a grasp pose detection method for unknown deformable objects is pre-

sented, based on visual information. The model generates a stiffness map that indicates

the object’s stiffness for each pixel in an image using generative adversarial networks

(GAN) for pix2stiffness estimation and grasp pose detection, which adapts the stiff-

ness map to minimize the object’s deformation and avoid any potential damage. The

framework can plan how to grasp an object using a few 3D models of objects.

In Chapter 4, using 3D mesh models generated from a single formula based on

fractal geometry, we propose a database for robotic picking. We construct a database

of paired images and grasp performance values generated from the 3D models based on

Dex-net’s generation rules and train a GQ-CNN. In single-object pick-up experiments,
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we compared the performance with the case of using digitized 3D models. The time

required to generate 3D models was also computed.

Chapter 5 is a method for estimating simultaneous deformability and instance seg-

mentation from depth images, as well as enhancing grasp pose detection for deformable

objects under specific conditions using the outcomes of our deformability assessments.

The efficacy is verified in a variety of challenging settings involving cluttered scenes with

various deformable objects.

Finally, in Chapter 6, the achievements and limitations of the proposed methods

presented in this dissertation are discussed, as well as open challenges and ideas for

future work.
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Chapter 2

Literature Review

2.1 Physics-based grasp quality evaluation

Grasp quality is often defined by considering some properties of rigid objects, such as

disturbance resistance and stability, etc. [6]. These metrics usually adopt grasping force

and torque when analyzing grasp candidates, such as grasp wrench space (GWS) [7],

and the expanded method for task completion, known as task wrench space (TWS) [7].

Using these measures for non-rigid objects is difficult because they must consider the

deformation generated by the grasping wrench. Moreover, various methods have been

proposed to evaluate grasp quality by examining the object’s deformation [12,13].

In addition, the grasp quality evaluation is successful for grasping, deformability,

and preventing damage. Xu et al. [14] proposed quality metrics that consider task

completion of deformable objects, including liquids. Using an elastic 3D model, the grasp

quality is defined as the minimal grasping wrench, which reduces resistance according

to Hooke’s law. Also, there are some metrics considering contact dynamics [15] based

on the Finite Element Method (FEM) that can simulate grasping in a more realistic

way than static analytical methods. However, these methods are difficult to apply to

unknown objects (re-calculation is needed) and to objects with material properties like

nonuniform stiffness (FEM assumes homogeneity).
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2.2 Grasp pose detection from vision

Several approaches have introduced 6DoF pose estimation methods based on 3D models

of objects for applications in assembly and parts-supply processes in manufacturing [16,

17]. Deep learning-based methods are highly generalizable to multi-species objects and

are suitable for applications in domains where various items are handled, such as logistics

warehouses.

In addition, owing to the evolution of object recognition using deep learning, many

research have presented methods for efficiently grasping several types of objects [9,10,18,

19]. For instance, Levine et al. [9], established a relationship between robot commands

(motion vectors) and the grasp success rate observed before and after picking an object

using a deep learning model. This model was trained using 800, 000 grasps performed

by real robots and could generalize to grasp several tbjects. This method sequentially

determines robot actions in a closed-loop system using a reinforcement learning frame-

work [20] and includes approaches that involve learning from human demonstrations [21].

Alternatively, an approach that generates the grasp pose without prior scene informa-

tion has been proposed. Although learning a robot’s behavior in complex scenarios,

such as environments containing piles of objects, is technically feasible, the associated

costs are prohibitive. Consequently, an approach that focuses exclusively on grasp pose

generation has proven to be more effective.

In simulation-based approaches, several datasets that utilize a diverse array of three-

dimensional models have been proposed. These models are employed to analytically

determine the posture of a robotic hand capable of achieving a stable grasp, thereby

facilitating the automatic generation of various scenes [10, 22]. Mahler et al. [10] com-

puted suitable grasps for the three-dimensional models of specific objects in advance,

evaluated the similarity of the object (in appearance) to those previously calculated, and

determined the grasp pose using one of the most similar objects. Furthermore, adopting

simulation methods extending to six degrees of freedom (DoF) has facilitated object

picking in complex scenes [23]. These methods do not require manual annotation, allow-

ing the use of large datasets of clean and accurately generated data based on numerical
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evaluations of the grasping performance. However, bridging the gap between real and

simulated environments in terms of noise and physical discrepancies remains challenging.

Approaches such as configuring the real environment to mirror the simulated conditions

and employing domain randomization [24] are necessary to address these issues.

For applications involving real-world data, the use of manually or automatically

annotated data for selecting corresponding to a specific scene has been proposed. Bench-

marks that derive grasp positions for a single object from RGB images [8] demonstrate

that accurate picking is achievable [25]. For complex scenarios, such as piled objects,

datasets with a large number of candidate grasp points have been suggested to be de-

rived from point clouds [26,27]. One approach processes related tasks in parallel, such as

instance segmentation and collision detection [28], while the other approach is tailored

for small-scale environments and objects characterized by limited data availability [29].

These methods were designed to enhance the adaptability and efficiency of handling

intricate tasks simultaneously. Domae et al. [18] convoluted a 2D model of a robotic

hand with the depth image of an object to estimate a grasp pose that does not result in

a collision with other objects and is close to the center of gravity of the object. Several

small parts were successfully selected.

All of these methods can be used to grasp various objects, regardless of their type or

shape. However, as mentioned previously, in the case of deformable objects, grasping can

fail, and the object can be squashed and/or damaged due to its inherent deformability.

However, these methods do not provide intrinsic solutions for deformable objects.

In recent approaches to grasp pose detection, the focus has shifted to objects that

had not been previously handled. Matsumura et al. [30] proposed a deep learning model

to establish the relationship between a specific grasp pose and the likelihood of creating

a tangle with potentially complex-shaped objects in a bin. Sajjan et al. [31] proposed a

deep learning model for estimating the depth maps of transparent objects. Transparent

objects can be selected by combining this model with a grasp-pose detection method.

Objects that are difficult to recognize and manipulate optically and/or physically con-

tinue to pose an important problem.
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2.3 Physical property estimation

Several approaches have focused on estimating the stiffness and other physical properties

of objects. For example, Lu et al. [32] proposed a method for estimating the damage

conditions of fruits based on the amount of water in hyperspectral images. Fujiwara et

al. [33] proposed a method to estimate the stiffness of an object based on the deforma-

tion generated on its surface by applying ultrasonic waves. In both of these research, a

relatively specialized sensor was necessary; hence, these methods were difficult to imple-

ment. In addition, Tanaka et al. [34] estimated the material composition of an object

by measuring different distortions on its surface generated by applying light of different

cycles using a time-of-flight sensor (ToF). Meka et al. [35] estimated the material com-

position of an object by extracting its diffuse and specular reflection components using

a deep learning model.

As mentioned previously, the necessary information for estimating the physical

properties of materials related to stiffness is included in the images of the object and/or

range imagery. Under certain conditions, it is possible to estimate the stiffness. The

stiffness map was proposed by Xu et al. [14], who mapped the surface of a 3D model

with a stiffness score measured based on Hooke’s law to analyze the quality of the sam-

pled grasp poses while considering the stiffness of the object. However, this method

can only be adopted for objects with fully known 3D models and not for unknown

objects. Adapting to unknown objects requires visual sensors to determine their tex-

ture and shape. However, values based on physical deformation measurements, such as

the stiffness of a material, are difficult to estimate from images alone; therefore, only

approximate values of deformability are used.

2.4 Grasp datasets

There have been many proposals for datasets using deep learning to input images and

achieve grasping, and methods have been developed using real environments or simula-

tions to provide correct labels for grasping positions and grasping performance to input
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into models specialized for grasping. In real-world datasets, labels are often provided

manually or analytically [8,9], and while they are accurate, the cost of constructing them

is high. On the other hand, a major advantage of methods using simulations is that

they can automatically generate a large number of variations [11,23,36]. It is difficult to

generate labels and images for grasping that match real-world phenomena, but the large

number of data variations makes it possible to effectively achieve learning for grasping.

When using simulations, 3D models are required, and there are many proposed

scanned 3D models, such as the YCB dataset [37], ShapeNet [38], and Objverse [39],

and the variations are quite large. On the other hand, the time and effort required for

3D scanning must be considered. In response to this, there are also several initiatives to

automatically generate 3D mesh models, such as Procedual [40], which generates data

by randomly combining patterns from primitive shapes, and EGAD! [41], which enables

automatic generation based on the evolution of biological shape patterns. However,

Procedual uses some information from ShapeNet, and EGAD! has many parameters

that need to be set in advance, and the dataset is specialized for hand shapes, so its

range of application is limited.

2.5 Deep Learning models

Deep learning can achieve high performance in estimating targeted tasks by generating

and learning from training data. It is also applicable to a variety of tasks beyond object

recognition, including image generation. A generative adversarial network (GAN) [42]

can be considered a type of image generation model, so methods based on a GAN or

other simpler image-generating models can be utilized. The pix2pix [43] improved image

generation accuracy by learning the relationship between a pair of images (original and

conditional). The pix2pixHD [44] has also improved pix2pix to adapt to high-resolution

images. Additional external methodologies include ASAPNet [45], which accelerates the

conversion of high-resolution images, and CoCosNet-v2 [46], which enhances accuracy

through a multistage conversion process at various resolutions. pix2stiffness [47] pro-

posed an image translation from a depth image to a deformability map. Training data
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were obtained as paired images from simulations.

Moreover, in bin-picking scenes where several objects are mixed, each object must

be segmented. He et al. [48] proposed a Mask R-CNN, which can perform instance

segmentation. In addition, this method can multitask, allowing for complementary

improvements in task recognition. In the segmentation models, a Cascade Mask R-

CNN was proposed by modifying the model architecture, and the vision transformer

architecture (ViT) [49] was used as the backbone by scaling the data and model size. For

example, Mask2Former [50], Mask DINO [51], and EVA [52] have successfully obtained

strong features for segmentation tasks by learning the visual representation focused on

the mask of the object. InternImage [53] adapts an existing CNN for training large-scale

data.

2.6 Formula-driven supervised learning

Formula-driven supervised learning (FDSL) is one of the most promising concepts that

can solve the problem of dataset construction costs, and it has been applied to various

tasks, including not only image recognition [54] but also video recognition [55], multi-

view recognition [56], 3D object detection [57], and multi-modal recognition [58]. In

addition to fractals, the FDSL framework is also used to design circular harmonics [59]

that change by focusing on the contours of objects, and it is also used in datasets

consisting of primitive shapes for medical image segmentation [60].

FDSL reduces the time required to construct datasets by automatically generating

data and teacher labels based on mathematical formulas, eliminating the need for human

intervention. The datasets proposed in the FDSL framework have been used for pre-

training in each recognition task and have achieved performance equivalent to that of

pre-training on real image datasets despite not using real images.
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2.7 Foundation model in Robotics

Increasing the amount of data, computational power, and model size can improve various

tasks in natural language processing and image recognition [61]. Consequently, methods

that leverage large-scale data and resources—often referred to as base models have

emerged primarily in the field of language, leading to the proposal of numerous large

language models (LLM). In addition to closed-source models such as GPT [62] and

Gemini [63], various open-source models like LLaMA [64] and models specialized for

specific languages have been developed for different use cases.

In the field of image processing, there are models that handle images exclusively

(e.g. ViT-22B [65]), as well as numerous Vision-and-Language Models (VLM), includ-

ing GPT-4V [62], Gemma [66], and LLaVA [67], that accept both text and images as

inputs and can solve many language processing and image recognition tasks with high

performance. For robotics applications, knowledge of LLM and VLMs is increasingly

being utilized in robotic manipulation [68]. Efforts are also being made to collect and

fine-tune new types of knowledge, such as physical knowledge [69, 70]. However, their

application remains largely limited to high-level planning, like scenario planning, while

essential data for grasping and manipulation still needs to be supplemented [71]. In ad-

dition, End-to-End action models such as RT-1 [72] and RT-2 [73], which are based on

imitation learning, have been proposed and are referred to as Vision-Language-Action

models (VLA). VLA are input language instructions and images from the robot’s per-

spective as input and output for the subsequent action. Although these datasets are

smaller than those for language or image tasks, it has been reported that performance

on robotic tasks improves when pre-trained on millions of episodes (RT-X [74]).

RT-X [74] and RH20T [75] are proposed as large-scale datasets, but training with

all of them simultaneously does not necessarily improve performance in robot tasks. A

key issue is that, although large amounts of data are collected in specific environments,

these data often lack diversity. Hence, methods to ensure diversity—such as carefully

sampling the data used for pre-training are required [76,77].
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There are also reports that collecting approximately 10,000 hours of behavioral data

improves performance in numerous tasks [78], yet such large-scale data collection incurs

substantial costs. Because models relying on language, image, and behavioral informa-

tion require vast datasets, it is critical to develop efficient methods for data collection

and utilization, explicitly considering the physical properties of the environment and

target objects. Moreover, minimizing the cost of real-world data collection and usage by

leveraging data that are difficult to obtain in actual environments remains an important

objective.
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Chapter 3

Grasp pose detection for deformable

daily items by pix2stiffness estimation

This thesis chapter originally appeared in the literature as

Makihara, K., Domae, Y., Ramirez-Alpizar, I. G., Ueshiba, T., and Harada,

K. (2022). Grasp pose detection for deformable daily items by pix2stiffness

estimation. Advanced Robotics, 36(12), 600–610. 1

3.1 Introduction

Recently, robots are expected to work in household environments, where there are several

objects with different shapes, materials, mass, and other properties. In particular, robots

have to grasp several types of deformable objects, such as paper boxes containing snacks.

Although these objects are easy for a human to grasp, they are very difficult for robots

that need to search for a grasp pose and control each finger’s force. In most robotic

grasping research, the main focus has been placed on rigid objects, where the problem

can be simplified by assuming a point contact model [79]. These methods exhibit optimal

performance for several types of shapes, sizes, and other complexities. However, it

1https://doi.org/10.1080/01691864.2022.2078669.
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remains difficult to successfully grasp deformable objects because these rigid-body-based

approaches do not consider the object’s deformation.

Recent studies have proposed grasping methods for deformable objects, such as an-

alyzing grasp quality, considering the surface deformation by a contact wrench [14, 80],

and effectively controlling a grasp wrench by sensing the contact wrench [6]. Addition-

ally, some simulation-based methods that compute deformation using physics engines

and then apply the grasp in the real world [15, 81, 82] have been proposed. In these

cases, they assumed that the grasping force is controllable by an electric unit and can

grasp various deformable objects using some force and/or tactile sensor. However, in

most cases of industrial applications, a constant force is used to grasp objects (e.g.,

pneumatic gripper). Also, sometimes it is impossible to control the grasp of slippery

objects, even if the slip is detected. Therefore, there is a need to consider stiffness to

avoid damaging the object without force control, which can be accomplished by consid-

ering pre-grasping motion before any contact occurs. In addition, many objects have

inhomogeneous stiffness, such as daily items, or are unknown, making it difficult, even

though it might be possible, to apply force control. We propose a grasp pose detec-

tion method for unknown deformable objects using an image as input. This method

comprises two parts: (1) stiffness estimation, which generates a ”stiffness map” that

indicates the object’s stiffness for each pixel in an image using generative adversarial

networks (GAN) [42] as an image translation method, and (2) grasp pose detection,

which generates a grasp pose, thereby avoiding damage to the object from the robot’s

gripper, using the stiffness map and executing the grasping motion. The overview of the

proposed method is shown in Figure 3.1. Our contributions are as follows:

1. Our proposed pix2stiffness method can convert the image of objects to a map of the

stiffness score for each pixel by adapting the pix2pix [43]. The image translation

can be performed by training semi-automatically generated images using a physics

simulator.

2. By combining the obtained stiffness map with the grasp pose detection method,

we can detect a grasp pose that can prevent damages to unknown (same category
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Stiffness map

pix2stiffness
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Before

After

Figure 3.1: Overview of the proposed grasp pose detection method via stiffness estima-

tion: we adopt an image as the input, and utilize it for image translation by pix2stiffness.

After image translation, a stiffness map that indicates the object’s stiffness score for each

pixel is generated. Finally, grasp pose detection is executed using the map for the case

of a 2-finger gripper (the red lines represent the grasp candidate).

of a bottle or a box, but has different shape and size) deformable objects with

fewer 3D object models used adopted in training the GAN.

This paper is organized as follows. First, we review related works in section 2. Next,

we comprehensively present an overview of the proposed method (pix2stiffness and grasp

pose detection) in section 3. In section 4, we evaluate these method in simulation. In

section 5, we describe the experimental setup and compare the real-world results with

the simulation results obtained in section 4. Finally, we conclude this study in section

6.
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3.2 Proposed method

In this section, we introduce the proposed methods for stiffness estimation and grasp

pose detection. To estimate the object’s stiffness, a stiffness map is constructed, which

indicates a score of the stiffness for each pixel in an image using image translation with

GAN. Using this map, a grasp point is detected for the object to be grasped.

3.2.1 Stiffness map generation (pix2stiffness)

In this study, we employ pix2pix [43] network architecture to generate a stiffness map.

We solely adopt one image as input; however, the representation of an object’s stiffness

depends not only on its texture, but also on its shape, material, and other physical

properties. Therefore, other information is also required as input. If we consider them

as conditions when using cGAN, then there is no need to train a new network, as we

would simply need to adjust the inputs. For executing pix2stiffness, we employ the

pix2pix architecture because the pair of images required for translation (for the tasks

considered in this dissertation) can be generated via simulations.

Data Collection

To train the pix2pix network, we need pairs of before and after translation images. To

prepare the stiffness map, the annotation of a stiffness score for each pixel is required,

and the cost of doing it manually is high. In addition, because stiffness can change in

some parts of the object, it is necessary to prepare stiffness maps for various poses of

each object, which further increases the cost of doing it manually. To address these

problems, we propose a method that semi-automatically generates synthetic data via

simulations. We adopt the 3D object model with its texture attached, as well as the

Blender physics engine [83]; accordingly, data is prepared as follows:

I. Coloured stiffness map:

For each 3D model, we decide to divide a green color gradation into 10 tones, as
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a guideline for understanding the effect of damage triggered by grasping, and for

representing the stiffness score of each object’s surface. Accordingly, this approach

generates a 3D stiffness map as a texture attached to the object’s surface (Figure

3.2a). The stiffness scores are based on manual measurements by a hardness meter.

II. Execute simulation:

After preparing a white bin (Figure 3.2b), a simulation that involves dropping

objects with random positions and postures from above the bin is computed by

Blender.

III. Capture images:

We took images from the top of the bin when using the original texture of the

object (Figure 3.2c) and also when using the stiffness map texture (Figure 3.2d).

Accordingly, we obtained a pair of images. In the stiffness map, because the element

value of green indicates the stiffness score for each position, we convert the map

from 3-channel to 1-channel (green). And we use this map for training.

We semi-automatically generated the training data by repeating the above steps.

Because we generated a clutter scene, the synthetic data exhibited various scenes with

randomized object poses. The green tone solely represents the stiffness score of the

created stiffness map.

GAN Training

We employ the pix2pix architecture for pix2stiffness translation. The objective adver-

sarial loss is defined by pix2pix [43]:

LGAN = Es[log(D(x, s))] + Ex[log(1−D(x, G(x)))] , (3.1)

where G is trained to minimize this objective and D is trained vice versa. x and s

indicate the input (RGB or Depth) and stiffness map images, respectively. In addition,

the loss function is also based on the L1 distance to obtain a generated image G(x)

closer to the ground truth s:

LL1 = Ex,s[||s−G(x)||1] , (3.2)
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(a) Coloured stiffness map and map image of

3D object model

(b) Initial state and background image

(c) Dropped state and original image (d) Dropped state and stiffness map image

(same state as Figure 3.2c)

Figure 3.2: Data collection using a physics simulator

Our problem is

G∗ = arg min
G

max
D

LGAN + λLL1 . (3.3)

The image input and stiffness map output have a size of 256 × 256, the generator

has a U-Nets structure [84], which has a seven-layer encoder and a seven-layer decoder

with skip-connection and dropout for all layers. The discriminator value is calculated

using PatchGAN, which judges True/False for each small region of an image (Figure

3.3). To train the network, we can use an arbitrary number of pair of image-stiffness

map images (described in the previous section).

3.2.2 Grasp pose detection using stiffness map

In this section, we describe the grasp pose detection method using the stiffness map

generated by pix2stiffness. This stiffness map can be easily applied to a method that

indicates a grasp score for each pixel in an image. In this study, we propose a 4-DoF
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Figure 3.3: Image translation network architecture of pix2stiffness referenced by pix2pix

grasp pose detection using a stiffness map and a depth image constrained to a grasping

pose vertical to a plane located in the target objects. The proposed method adopts the

stiffness score as the grasp quality score for each grasp candidate in an image.

Overview of the FGE [18]

The FGE is a method that detects a 4-DoF grasping pose using a single depth image.

Using these depth and template images, FGE calculates contact and collision regions of

the hand and a target object, then it computes a non-collision region that represents

grasp pose candidates. Subsequently, a graspability map that indicates the points that

are closer to the object’s center of mass is generated by convoluting a Gaussian filter

with the non-collision region. The optimal grasping pose is detected as the position with

the highest graspability value. The contact Tt and collision Tc templates are predefined,

while the contact It and collision Ic images are obtained from a single depth image.

Then, the contact region At can be calculated by convoluting Tt with It:

At = Tt ⊗ It , (3.4)

⊗ denotes the convolution. The collision region Ac can be calculated by convoluting Tc

with Ic:

Ac = Tc ⊗ Ic . (3.5)

To compute the non-collision region and the graspability score of each pixel, the gras-

pability map is calculated as the region where the gripper does not interfere with the
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Figure 3.4: Processing pipeline of the grasp pose detection method

surrounding area near the center of gravity of the object region (each image can be seen

in Figure 3.4).

Finally, the graspability map is calculated for each angle of the hand model, and

the optimal grasp pose is the point with the highest graspability score.

Grasp pose detection using stiffness map

FGE can select the grasp pose nearest to the position of the object’s center of mass;

however, for deformable objects, it may cause a large deformation that triggers perma-

nent damages. By using a stiffness map, we can detect a grasp pose that addresses these

problems.

At first, a stiffness map Spre that indicates G(x) for each pixel is generated by

pix2stiffness, normalization and some pre-processing are used. In Spre, a larger value
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denotes that it is more difficult to deform. When a grasp pose with a high score is

detected, this implies that it is possible to grasp and prevent damage simultaneously.

By using this stiffness map, we proposed a modified FGE that fits the objectives of this

study.

Secondly, the stiffness contact image Ist is calculated by multiplying the generated

stiffness map Spre and the contact image It:

Ist = Spre ◦ It , (3.6)

◦ denotes the Hadamard product. Then, it is convoluted with the contact template

(It is replaced with Ist). Subsequently, the stiffness contact region Ast is generated;

Ast = Tt ⊗ Ist , (3.7)

Ast represents the average stiffness score of each pixel in the rectangular region

surrounded by the 2-finger gripper (in the contact template Tt). Via this convolution,

this stiffness score differs from the original one, and the score of the locations near the

object’s silhouette is slightly lower than those closer to its center. Additionally, the

contact region At and the collision region Ac are also generated in the same way as

FGE.

The grasp candidates which are collision free, are obtained using a logical AND

operation between At and Ac, thus, the non-collision stiffness region Gst (similar to the

graspability map) is generated as:

Gst = Ast ◦ (At ∩Ac) , (3.8)

where Gst(h, w) denotes the element value of the position (h, w) in Gst. The objective

function is defined as:

f(h, w, θ) =

 Gst(h, w) if Ac(h, w) = 0

0 otherwise
, (3.9)

where θ denotes the rotation angle of the detected grasp candidate, and Ac(h, w)

denotes the element value of the position (h, w) in Ac. The calculated coordinate index
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is expressed as:

[H, W, Θ] = arg max
h,w,θ

f(h, w, θ) . (3.10)

Here, we only utilize a two-finger gripper’s hand template; hence, we can apply Eq. (6)

as the objective function (described in Figure 3.4).

3.3 Simulation results

In this section, we evaluate the accuracy of pix2stiffness estimation and the effectiveness

of our grasp pose detection method in simulation scenes. For training, we prepared

fifteen models of 3D objects in Figure 3.5a and stiffness maps annotated as explained in

section 3.2.1. For validation, seven unknown (we define some categories such as bottle

and box, then we target objects in the same category but with different shapes) models

(Figure 3.5b) are prepared.

(a) Training (b) Validation

Figure 3.5: Dataset of 3D object models used in simulation.

3.3.1 Image quality evaluation

Using the training data presented above, we evaluate the results obtained with differ-

ent input data types (RGB and Depth). The quantitative evaluation metrics of the

adopted pix2stiffness estimation are: 1) root mean square error (RMSE) and 2) struc-

tural similarity index measure (SSIM) [85] between the ground truth stiffness map S
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and the predicted map Ŝ using pix2stiffness. Especially, SSIM considers changes in

brightness, contrast and the entire structure. These metrics are usually used for depth

estimation [86]. RMSE is calculated as:

RMSE(S, Ŝ) =

√√√√ 1
M

M∑
i=1

(si − ŝi)2 , (3.11)

where M denotes the number of S pixels (same as Ŝ). si and ŝi denote each element i-th

value of S and Ŝ, respectively. The closer RMSE is to zero, the lower the pixel-wise

error is. SSIM is a metric based on appearance, which is computed for each of the

evenly divided small areas. This metric can analyze spatial similarity. We adopt the

mean of SSIM (MSSIM) to evaluate the entire image quality:

MSSIM(S, Ŝ) = 1
N

N∑
j=1

SSIM(Sj , Ŝj) . (3.12)

SSIM(Sj , Ŝj) is calculated between Sj and Ŝj (N is the number of areas, and we use

N = 100) for each region j. The closer MSSIM is to one, the better the similarity

of the entire image. For evaluation, the predicted stiffness map Ŝ is preprocessed map

Spre. The obtained results are summarized in Table 3.1. It can be observed that higher

accuracy is obtained with depth as input.

Table 3.1: Estimation results for different training dataset types

Dataset type RMSE MSSIM

RGB 47.68 0.7250

Depth 32.91 0.8552

3.3.2 Effectiveness of grasp pose detection

Furthermore, we also evaluate the influence of pix2stiffness on the grasp pose detection

by calculating the mean of stiffness score in the rectangular space surrounded by a

two finger gripper (grasp region) when using the ground truth stiffness map s. In this

evaluation, we adopt the segmentation image from simulation as the contact and collision
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images, assuming a picking scene with an object placed on the table. After cropping the

grasp region from Ist, The mean of stiffness score (the higher the better) is calculated

as:

R =
L∑

k=1

 1 if sk > 0

0 otherwise
, (3.13)

Mean of stiffness = 1
R

L∑
k=1

sk . (3.14)

where L denotes the number of pixels in the grasp region, and R is calculated as the size

of the object’s region. The proposed grasp pose detection method described in section

3.2.2 is adopted in this evaluation, to demonstrate the validity of the proposed method for

grasping deformable objects while preventing damage. Using the model of pix2stiffness

with the depth image as input, Figure 3.6 presents examples of detected grasp poses

in simulations, where the red line represents the detected pose for a two-finger gripper

(the blue one is detected by FGE). Table 3.2 presents the evaluation of seven images

for each single object when using the proposed method and FGE. The result of each

object and the mean of stiffness are relatively higher than FGE’s result. In the result

of “Bottle 3”, the score of FGE is close to the proposed method. The reason is that the

lowest stiffness of this object is 0.7 which has overall a high stiffness. In the result in

Figure 3.6, the grasp poses were detected far from the center of gravity, therefore it has

some possibility of failure to grasp. Because we only verified the possibility to prevent

damages by considering grasping to the hard part, more evaluation that the grasp pose

can be executed successfully in the real-world is needed.

3.4 Real-world experiments

In this section, we evaluate the predicted stiffness map and detected grasp pose using

the map for real images (adopt depth image as input, same as in section 3.3.2). Because

real depth images have some noise, missing values, and errors, the estimation networks

are trained with only simulation images, and it is inadequate to adopt raw images as

the input for pix2stiffness. To address this problem, raw images are preprocessed via

fast digital inpainting [87] and contrast emphasis. By using these simple pre-processing
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Figure 3.6: Detected grasp pose using the proposed method for seven objects in simu-

lation: in the top row, the red line represents the detected pose for a two-finger gripper.

In the middle row, the images represented the stiffness maps generated by pix2stiffness.

In the bottom row, the images represent the ground truth stiffness maps generated via

simulations.

methods, the stiffness map can be generated more clearly. The target objects in grasping

experiments are presented in Figure 3.7. The hardware used in the experiments are a

UR5, a Robotiq 2-finger gripper (140mm stroke), and a Realsense SR305 attached to

the gripper.

Figure 3.7: Target objects in real experiments that are not included in training data

CHAPTER 3. PIX2STIFFNESS ESTIMATION 25



Table 3.2: Mean of stiffness (Mean of stiffness) for single object in simulations. Each

object’s name is as described in Figure 3.6

Name
Mean of stiffness

FGE [18] Proposed method

Bottle 1 0.6141 0.7149

Bottle 2 0.6293 0.6896

Bottle 3 0.7710 0.8138

Bottle 4 0.6043 0.7977

Box 1 0.5446 0.7207

Box 2 0.5897 0.7129

Box 3 0.6011 0.7125

Mean 0.6220 0.7374

3.4.1 Grasp experiments for single object scene

In this section, we evaluate the effectiveness of the proposed method on real-world images

via grasping experiments. The experimental scene is assumed to be a single object placed

on a table (same as in simulation). In addition, we manually set the height of the gripper

from the table in the proposed 4-DoF grasping pose detection, where the silhouette of

the object’s region can be almost obtained in the contact/collision image.

Figure 3.8 presents the grasp pose detection results, generated stiffness map, and

grasping behavior for each object. It can be observed that the proposed method can

grasp the hard part of each of the objects. However, for “Object 1” and “Object 6”,

the poses of these objects changed during the lifting motion. This result indicates that

the proposed method can fail to stably grasp the object, as the grasp pose for most of

the objects is detected far from their center of gravity. However, because we adopt the

strategy of grasping the hard part of the object, it can be considered to be successful

because few deformations are generated by a posture change of the object.
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As a quantitative evaluation, we analyze the deformation the object sustains by

grasping. To evaluate the mean of stiffness in the simulation results, we adopt the

stiffness map of the ground truth; however, it is difficult to prepare the same map for

real-world experiments. Therefore, we use the grasping width after performing grasping

for the evaluation. First, we manually measure the grasping width at the moment of

contact with the object (called lc), then, we measure the grasping width after grasping

with a certain grasping force (called lg). The grasping force can be determined by using

Robotiq’s gripper function (10-125 [N]) provided by URCaps [88]. In this experiment,

we set the constant grasping force to 62.5 [N] assuming the case of no-force control, this

value is the smallest force that can grasp the heaviest object (Object 1 in Figure 3.8)

in our experiments. After measuring the two grasping widths (lc and lg), we define the

deformation rate using the following equation.

Deformation rate = lc − lg
lc
∗ 100 [%] . (3.15)

Table 3.3 presents the deformation rate by grasping in Figure 3.8 for each object. For

most of the results, the deformation rate is lower than FGE, which indicates that the

proposed method can prevent the deformation of the object. However, in the result for

“Object 2”, the deformation rate is higher than FGE. The reason is that the grasping

force is applied to a narrower surface than FGE’s result because the finger surface was

slightly inclined to the object’s surface. By addressing this problem, it is expected that

the object’s deformation can be prevented.

3.4.2 Grasp experiments for clutter scene

Similarly to section 3.4.1, we evaluate the deformation rate and success rate in a cluttered

scene, and compare it with FGE. The robot repeats the trial until all eight objects are

grasped successfully in the given cluttered scene. Although it is necessary to determine

the grasping height in the proposed method, it is not trivial in a cluttered scene. In this

experiment, the candidate grasping height is set at regular intervals (each of 10 [mm]

), and the grasp pose is searched from the height where there is a certain amount of

one object area in the contact image to a height five steps lower. This method is also
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Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Object 7 Object 8

Grasp result

Stiffness map(generated)

Detected grasp pose

FGEProposed

Low High

Figure 3.8: Detected grasp pose using the proposed method for eight objects in real-

world: in the top row images, the red line represents the detected pose for a two-finger

gripper. In the middle row, the stiffness maps generated by pix2stiffness are presented.

In the bottom row, results obtained for grasping and lifting a single object placed on a

table are presented.

Table 3.3: Deformation rate results for single objects in real-world

Name
Deformation rate

FGE [18] Proposed method

Object 1 25.13 12.44

Object 2 7.913 9.428

Object 3 14.25 9.757

Object 4 13.74 7.610

Object 5 13.69 8.885

Object 6 18.18 10.91

Object 7 18.33 14.47

Object 8 66.14 21.64

Mean 22.17 11.89

applied to the FGE, and the grasp pose with the highest graspability score is selected. As

explained in section 3.2.2, the score map Gst in our proposed method does not represent

the original stiffness score; hence, it is difficult to select a relatively high score in all grasp
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Object 5 Object 2 Object 4

Figure 3.9: Some examples of successful grasping results in clutter scene. There are

three successful cases of grasping each target object while preventing deformation and

avoiding collision with other objects during grasping.

candidates. Instead of the score, we calculate a new score, same as the mean of stiffness

(described in Eq. (3.15)), and delete the grasp pose candidate whose size difference

between the contact image and collision image (cropped grasping area) is higher than

a threshold value (eliminating failure cases owing to the slippage of the hand and the

object).

Figure 3.9 shows some of the successful grasping results. The deformation rate

evaluation is presented in Table 3.4. Here, it can be observed that the deformation

of the object is suppressed in several cases. For “Object 2”, the grasping result is

not optimal because the grasping direction differs from the object’s surface; hence, the

grasping force is applied to a narrower surface than the FGE’s result. Regarding the

success rate of grasping, FGE succeeded in all attempts, and the proposed method failed

in three attempts. It is necessary to improve the method specifically introduced for the

cluttered scene, as well as expand the method for 3D because the stiffness of the contact

point with the gripper cannot be properly measured using only 2D images.

3.4.3 Discussion

In the two experiments in section 3.4.1 and 3.4.2, when the deformation rate is more than

20%, the damage was caused by large deformation in the FGE case (Figure 3.10), which

suggests that the proposed method can reduce damage. The reason for the three failures

in the experiments of section 3.4.2 is that the grasping pose selected was often close to

CHAPTER 3. PIX2STIFFNESS ESTIMATION 29



Table 3.4: Deformation rate results for each cluttered object in real-world

Name
Deformation rate

FGE [18] Proposed method

Object 1 12.19 8.373

Object 2 14.80 15.39

Object 3 24.35 12.42

Object 4 13.09 6.144

Object 5 16.59 9.129

Object 6 17.45 9.191

Object 7 19.10 16.14

Object 8 64.58 29.69

Mean 22.77 13.31

Figure 3.10: Some examples of grasping with significant deformation in the FGE case.

Each deformation rate was more than 20%.

the edge of the object. This makes the contact surface smaller, and the possibility of

failure was increased by a small disturbance or error in the grasp pose control. Therefore,

we need to accurately determine the grasping depth in the clutter scene, and determine

the grasping pose based on the grasp stability.
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3.5 Conclusion

In this study, we proposed a pix2stiffness estimation method, which generates a stiffness

map that indicates the object’s stiffness for each pixel on an image using the pix2pix

architecture. We demonstrated that the stiffness estimation has a higher accuracy when

using depth images as input data than when adapting RGB. Furthermore, we introduced

a grasp pose detection method using a stiffness map based on FGE. This method can

robustly detect grasp poses in clutter scenes in the real-world. However, more experi-

ments are required for various objects, and generating the stiffness map (data collection

in section 3.2.1) is time consuming and cumbersome because it is manually done. In the

future, we would like to automatically generate the annotated stiffness map using con-

tact force (e.g. grasped distance for each object [14]). Also, we would like to introduce

a force-adjustable method that can grasp with the smallest deformation by considering

contact dynamics.
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Chapter 4

Formula-based grasping datasets

without digitized 3D assets

4.1 Introduction

Research on image-based detection of suitable grasp pose has spawned various ap-

proaches, ranging from methods targeting known and unknown objects [16, 18] to deep

learning-based techniques [8,36,89]. With the rapid advancement of deep learning tech-

nology, approaches employing Convolutional Neural Networks (CNNs) and depth images

have received increasing attention. However, these methods generally rely on large-scale

3D datasets tailored for object grasping tasks, necessitating a wide range of geometric

shapes and complexities to ensure robust performance across diverse scenarios.

As with image datasets, there is a growing trend toward large-scale open-source

repositories of 3D datasets, which are increasingly being utilized for applications such

as 3D object generation and spatial understanding [39]. However, compiling diverse

3D models with complex geometries demands substantial manual effort. In addition,

copyright-related challenges persist—similar to those in the image domain—and conse-

quently, a robust system for managing large-scale 3D data is also essential.
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Moreover, it remains unclear whether one can consistently prepare sufficient quan-

tities of training data in precisely the shapes required for grasping a target object.

Current practices typically rely on selecting numerous 3D models at random for train-

ing. Therefore, leveraging generative 3D models capable of shape manipulation emerges

as an effective approach to address this need.

One such approach is EGAD! [41], which facilitates automatic dataset generation

for grasping by leveraging an evolutionary model of biological morphology. However, it

relies solely on a single global shape complexity metric and does not address the specific

geometric requirements essential for robust grasping. Consequently, a dataset generation

method capable of capturing a broader spectrum of shape complexities is needed.

In this dissertation, we employ fractal geometry to generate 3D models from a

single mathematical formula and thereby construct training data for robotic grasping.

By leveraging the intrinsic complexity of fractals, which exhibit both locally and globally

intricate structures, we enhance deep learning-based grasp pose detection for improved

accuracy and robustness.

The contributions of this dissertation are as follows.

1. Building on fractal geometry, we generate 3D models from a single formula and

create a dataset for robotic grasping that spans a wide range of shape complexities.

This dataset satisfies the variation in object geometry required for effective grasp

learning.

2. In a grasping performance evaluation using GQ-CNN, our method demonstrates

accuracy on par with approaches that utilize scanned 3D models for single-object

grasping.

3. 3D model generation methods and techniques that can rapidly produce models

with a minimal set of parameters, while enabling shape complexity to be controlled

through a single parameter.
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Figure 4.1: Overview of Grasp-MeshFractalDB. A single fractal-based formula is used

to generate 3D models, each defined by a mesh surface. From these models, an image

database is created to encode grasp quality based on the pose applied during simula-

tion. Once trained on this dataset, the system enables single-object grasping in a real

environment.
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4.2 Proposed method

In this chapter, we detail the process of constructing a fractal geometry-based 3D mesh

model database for robotic grasping. First, we automatically generate 3D fractal models

using a 3D Iterated Function System (3D-IFS), a mathematical formulation of fractal

geometry proposed in [56,57]. We then verify the diversity of the resulting point clouds

via variance checks and apply alpha-shape surface reconstruction to produce 3D mesh

models. Finally, using these mesh models, we build 3D scenes and create the associated

image dataset by following the Dex-Net 2.0 generation pipeline [36].

3D IFS

𝒙!"# =
𝑎! 𝑏! 𝑐!
𝑑! 𝑒! 𝑓!
𝑔! ℎ! 𝑖!

𝒙! +
𝑗!
𝑘!
𝑙!

𝒙!

𝒙!"#

N iteration Surface
reconstruction

Variance 
check

Figure 4.2: Example of a 3D Mesh Model Generated from a Single Fractal Geometry

Formula. By applying parameterized 3D-IFS, we first generate a fractal-shaped point

cloud. We then compute a dispersion metric for each fractal to verify its suitability

as a model. Finally, we configure surface reconstruction parameters and convert the

validated point cloud into a 3D mesh.
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4.2.1 Point cloud generation

As shown in Equation (1), a 3D-IFS is a mathematical representation of a fractal shape,

comprising two key components: an affine transformation function and a corresponding

selection probability.

3D-IFS = {(wi, pi)}Ni=1 (4.1)

A 3D fractal model is generated by repeatedly applying the affine transformation func-

tion indicated by its corresponding selection probability, as specified in Equation (2).

xj = wi ∗ xj−1 (4.2)

Here, xj ∈ R3 denotes a three-dimensional coordinate, and the initial coordinate x0 is

set to the origin. The affine transformation function is given in Equation (3).

wi =


ai bi ci

di ei fi

gi hi ii

 +


ji

ki

li

 (4.3)

The parameters of the affine transformation function, {ai, · · · , li}, are randomly sampled

from the range [-1.0, 1.0] . The selection probability is is computed using a 3x3 matrix

derived from the randomly chosen parameters {ai, · · · , ii}, as shown in Equation (4).

Here, the 3x3 matrix formed by these parameters is defined as Ti.

pi = | det Ti|∑N
i=0 | det Ti|

(4.4)

Because a uniform selection probability pi would not inherently yield shape diversity,

computing it from random values in this manner enables the generation of a single 3D

model with distinct fractal scales and orientations for each component.

4.2.2 Variance check

Because the 3D models are generated from random parameters, similar shapes may

appear even when different parameter values are used. To ensure diversity among the
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generated shapes, we perform a quality check based on the variance of the point cloud.

Specifically, we compute the variance of the points in each model; if the variance exceeds

a predefined threshold, the model is retained. This variance is calculated according to

the following equation.

min(var(X), var(Y ), var(Z)) > σ (4.5)

Here, var computes the variance for each dimension, and the smallest of these values

is adopted as the model’s overall variance. We then set a variance threshold σ at discrete

levels ranging from 0.0 to 0.2, in increments of 0.05.

4.2.3 Surface reconstruction

A closed mesh model is constructed via the Alpha-shape algorithm applied to the point

cloud generated by the aforementioned fractal-based method. Alpha-shape generalizes

the concept of a convex hull, allowing a single parameter to control the level of detail in

the resulting mesh. Specifically, the algorithm first computes a Delaunay triangulation

of the point set and then selectively filters the resulting primitives (e.g., triangles in 2D,

tetrahedra in 3D) based on the chosen value. As with fractals, the parameters uniquely

determine the final shape. The complete data generation pipeline is illustrated in Figure

4.2, and Figure 4.3 shows an example of Alpha-shape applied to a fractal point cloud.

The value of alpha can be set from 0 to infinity. When alpha is set to infinity,

a perfectly convex hull is produced, whereas lower alpha values preserve more local

features of the original point cloud. This parameter must be determined empirically,

as the optimal value depends on the specific characteristics of the underlying data. In

generating a 3D mesh model, alpha is chosen such that the resulting mesh is closed and

contains a single connected object. As an example, Figure 4.3 illustrates how adjusting

alpha affects the mesh. Around alpha = 0.1, the mesh accurately reflects local structure,

while at alpha = 0.7 to 1.0, it approaches a near-convex hull representation.

Finally, we construct a dataset for robotic grasping using these mesh models. Vari-

ous data generation methods can be employed to build this dataset, including Dex-Net,
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which relies on 3D models.

Pointcloud alpha=0.06 alpha=0.1 alpha=0.2 alpha=0.3

alpha=0.4 alpha=0.5 alpha=0.6 alpha=0.7 alpha=0.8

Figure 4.3: An example of a 3D mesh model generated from a single fractal geometry

formula, illustrating how the alpha-shape parameter influences the resulting shape when

varied from 0.06 to 0.8.

4.3 Experiments

In this section, we evaluate how the method introduced in the previous chapter affects

the performance of an image-based model for grasp pose detection.

4.3.1 Implementation settings

In this experiment, we adopt the GQ-CNN model from Dex-Net 2.0 [36]. Following the

dataset generation rules outlined in Dex-Net 2.0, we start with a 3D mesh (comprising

the object model, gripper, and desk plane) and automatically collect sampled grasp poses

and corresponding images within a designated region around each grasp center. We also

record the 3D coordinates of the grasp candidate as well as its grasp-performance metric.

The 3D model is adjusted so that it can be grasped with the specified gripper width (50

mm in this dissertation).
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Figure 4.4 illustrates examples of the sampled grasp poses, their performance val-

ues, and the resulting rendered scene. The dataset generation process follows the Dex-

Net 2.0 pipeline and proceeds as follows.

1. Sampling grasp candidates and analyzing their grasp stability

2. Determining stable object poses on a flat surface

3. Performing collision detection among the desk, gripper, and object for 4-DoF grasp

candidates

4. Rendering images from a randomly specified camera pose

5. Pairing each rendered image with the performance results obtained in step 1)

As comparison baselines, we adopt Dex-Net 2.0 and EGAD!, along with datasets

constructed by varying the value of alpha for the alpha-shape parameter. Each dataset

comprises approximately 150 models, yielding between 15k and 20k images. We select

six object types for grasping trials and conduct experiments in the picking environment

depicted in Figure [reference], grasping each object five times in various orientations.

Figure 4.5 shows representative examples from these datasets.

While Dex-Net features a diverse set of object shapes, EGAD! enables the creation

of geometrically complex objects while retaining basic outlines, such as spheres and

rectangles. By contrast, our proposed database includes a wide range of shape variations,

resulting in greater appearance diversity.

4.3.2 Simulation experiments

We utilize the dataset from the previous section to evaluate the effectiveness of our

learning-based grasping approach. Six target objects are tested—two everyday objects,

two from the YCB dataset, and two adversarial objects from Dex-Net shown in Figure

4.6. Each model is evaluated using images corresponding to the sampled grasp poses

generated by the same pipeline as in the previous section. Ground truth labels are
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Figure 4.4: Illustration of the 3D annotations and scene setup in Dex-Net 2.0’s dataset

generation process. Left: Sampled grasp poses for a parallel gripper on the object model.

The red line represents low grasp quality, while the green line indicates high grasp quality.

Middle and Right: Scenes where the object is successfully grasped without collisions,

followed by rendering from a camera posed above the desk.

Dex-net EGAD! Ours (alpha=0.3)

Figure 4.5: Image datasets generated from Fractal mesh models

assigned based on whether the analytical grasp performance value exceeds 0.5 (“gras-

pable”) or falls below 0.5 (“ungraspable”). We vary the alpha parameter at three levels

(0.06, 0.3, 0.7), chosen empirically to ensure visible shape differences.

As summarized in Table 4.1, our proposed method achieves the highest classifica-

tion accuracy, highlighting the benefits of learning from diverse shape contours—even

those not found in reality. Figure 4.7 provides examples of successful and failed classi-

fications for the proposed method when alpha is 0.3. While it robustly estimates stable

grasps for everyday objects and detects unstable grasps in complex shapes (e.g., Dex-Net
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adversarial objects), it occasionally misclassifies objects with intricate details, such as

brushes. One reason is that higher alpha values reduce shape fidelity, making it harder

to capture fine concavities and protrusions. Furthermore, training with objects at mul-

tiple alpha values simultaneously yields lower accuracy than using only 0.3, indicating

that the model may not adequately generalize across a broad spectrum of object types.

Figure 4.6: Target objects from daily items, YCB dataset, and Dex-net Adversarial

objects for evaluating image datasets

4.3.3 Real-world experiments

System Configuration

We evaluate the effectiveness of pre-training on Grasp-FractalDB by performing grasp

experiments on a UR5e robot equipped with a Robotiq two-finger gripper (140 mm)

featuring rubber tips. A RealSense SR305 depth sensor is utilized, and the overall setup

parallels the Dex-Net 2.0 configuration (left side of Figure 4.8). The GQ-CNN model,
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Table 4.1: Grasping results for each object and dataset

Dataset Accuracy [%]

Dex-net 2.0 [36] 63.42

EGAD! [41] 61.10

Fractal (alpha=0.06) 51.16

Fractal (alpha=0.3) 66.70

Fractal (alpha=0.7) 65.93

Fractal (alpha=0.06, 0.3, 0.7) 60.23

True Positive

True Negative

False Positive

False Negative

Figure 4.7: The examples of classification results.
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also used in the simulation experiments, is employed here to determine a robust grasping

strategy through the cross-entropy method. GQ-CNN samples grasp poses and crops

images based on a specified gripper width, which must be adjusted depending on the

target object. To automatically determine the appropriate gripper width for each object

in the scene, we apply the following pipeline:

1. Inpaint missing regions in the depth image.

2. Extract a binary mask based on a specified height threshold (distance from the

desk).

3. Retain only objects whose minimum average depth value falls within the segmented

region.

4. Perform ellipse fitting to compute the minor axis and convert its length to mil-

limeters.

5. Adjust the image crop size to match the gripper width.

The standard crop size is 96×96 pixels, corresponding to a 50 [mm] gripper. We scale

this crop proportionally to the gripper size determined in the above pipeline.

Results

The experimental results indicated that the proposed method performed as well as or

better than both Dex-Net 2.0 and EGAD!. Adjusting the parameter revealed that

a value of 0.06 yielded the best results, while a value of underperformed relative to

the benchmark methods. These observations suggest that alpha is a crucial parameter

influencing grasping performance. Interestingly, even with a mix of three alpha values,

the performance remained high. Therefore, it appears that if the dataset encompasses a

specific range of alpha parameters, a high success rate in picking tasks can be achieved

without extensive parameter tuning.
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Figure 4.8: (Left) Experimental setup featuring a UR5e robot and a Robotiq two-finger

gripper (140 [mm]). A depth image is captured from a sensor mounted on the table

beneath the workspace. The GQ-CNN then detects the grasp pose. A grasp is considered

successful if the object is dropped into a black bin adjacent to the workspace. (Right)

Sample test objects include everyday items commonly found in Japanese convenience

stores; the lower-left image shows items from the YCB dataset

4.3.4 Discussion

We applied the database we proposed to the spatial distribution of the difficulty of grasp-

ing and the complexity of the shape of the 3D models defined in EGAD! and analyzed

the relationship with the target object Figure 4.9. We applied our proposed database

to analyze the spatial distribution of grasping difficulty and the complexity of the 3D

model shapes as defined in EGAD!. The analysis explores the relationship with the tar-

get object, as depicted in Figure 4.9. The results demonstrate that training on datasets

featuring complex liquid shapes, which are inherently difficult to grasp, facilitates the
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Table 4.2: Grasping results for each object and dataset

Dataset \ Object 1 2 3 4 5 6 Mean

Dex-net 2.0 [36] 1.0 1.0 0.8 0.8 0.6 1.0 0.867

EGAD! [41] 1.0 1.0 1.0 0.8 0.8 1.0 0.933

Fractal (alpha=0.06) 1.0 1.0 0.8 1.0 1.0 1.0 0.967

Fractal (alpha=0.3) 1.0 1.0 0.8 1.0 0.2 0.8 0.800

Fractal (alpha=0.7) 1.0 0.8 1.0 1.0 0.8 1.0 0.933

Fractal (alpha=0.06, 0.3, 0.7) 1.0 1.0 0.8 1.0 0.8 1.0 0.933

successful handling of simpler shapes and more easily graspable objects. However, the

spatial distribution analyzed does not encompass all the critical elements required for

effective grasping. Therefore, it is necessary to re-evaluate and consider additional axes

that have not yet been assessed. While the Dex-Net dataset broadly covers the map,

the proposed method includes many data points associated with high grasping difficulty.

This trend is attributed to the fractal 3D models having non-smooth surfaces and a lim-

ited number of parallel planes conducive to easy grasping, resulting in many sampled

grasp poses being challenging. In terms of shape complexity, the distribution shifts to-

wards higher complexity areas as the Alpha parameter is reduced. Although many target

objects align with the Dex-Net dataset mapping, the continued high success rate using

the Fractal method demonstrates that it is feasible to learn effective grasping strategies

for datasets characterized by complex shapes and high grasping difficulty, even without

fully covering this distribution.

4.3.5 Compulational efficiency

We quantified the time required to generate the dataset. To establish baseline metrics

for database construction times, we used EGAD! for comparison on an Apple M1 Max

platform.

The verification results presented in Table 4.3 indicate a significant reduction in the
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Table 4.3: Cost performance for generating dataset

Dataset Hyper-parameter 3D model [sec/model] Image [sec/model]

EGAD! [7] 59+ 17.6+ 48 (120 images)

Fractal (alpha=0.3) 13 1.29-2.43 47 (111 images)

time required to generate 3D models using our proposed method. Variation in the Alpha

parameter influenced the generation times, with more complex shapes (lower value of

alpha) necessitating longer calculations. However, these times remained shorter than

those required for generating models with EGAD!.

4.4 Conclusion

In this dissertation, we constructed a 3D mesh model using a mathematical formula

derived from fractal geometry and applied a database built according to Dex-Net gen-

eration rules to a deep learning model for grasping. We concentrated on optimizing the

data generation pipeline, explored the implications of varying the number of parameters,

and conducted a thorough verification of the calculation times involved.
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A limitation of our method is that the shape of the object is determined randomly,

making it challenging to generate shapes and scales akin to real objects. Scanned 3D

models offer a rich variety of shapes but do not adequately represent composite objects

such as articulated items or variations in hand and object scales. Consequently, there is

a need for a data generation method that can accurately reflect these complexities.
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Chapter 5

Deformability-based grasp pose

detection from a visible image

This thesis chapter originally appeared in the literature as

K. Makihara, Y. Domae, R. Hanai, I. G. Ramirez-Alpizar, H. Kataoka and

K. Harada, ”Deformability-based grasp pose detection from a visible image,”

in IEEE Access, doi: 10.1109/ACCESS.2024.3511546.

5.1 Introduction

In recent years, several approaches focused on grasp pose detection methods that esti-

mate robotic grasps based on the appearance of an object [9,10,18,19].This allows robots

to grasp objects of different colors, shapes, and materials. Although these methods can

be used to grasp deformable objects, grasping can fail, and the object can be squashed

and/or damaged owing to deformation. To address this problem, the deformability of

an object must be considered when estimating the grasp based on the appearance of the

object. Some methods for grasp planning that consider object deformability [14,90] and

techniques for detecting grasp poses from images [47, 82] have been proposed; however,

their application remains limited in scenarios involving numerous objects. Achieving
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effective grasping in complex environments, such as random-pile scenes with densely ar-

ranged objects, presents significant challenges. This dissertation aims to approximately

estimate the deformability of objects in cluttered scenes, enabling successful grasping

without inducing deformation. Furthermore, our approach ensures robust grasping per-

formance even in situations where deformable obstacles hinder access to target objects.

In this dissertation, we assume that a constant correlation exists between the ap-

pearance of an object and its deformability. For example, when manipulating everyday

items in a supermarket, humans typically estimate the approximate firmness or softness

of a new product based on visual information alone or on past experiences. Therefore,

we propose a deep learning model to establish this relationship. As extensive training

data are necessary for learning, we built an image database composed of images and de-

formability map pairs by creating bin-picking scenarios using several objects from a small

dataset of 3D models, with their respective deformability maps manually evaluated.

Based on the experimental results, we showed that it is possible to estimate the de-

formability of unknown objects in the same product category that have different shapes,

sizes, and colors. Furthermore, we propose a grasp pose detection method based on

the deformability estimated using a trained deep learning model. Finally, we present

experimental results to demonstrate that the proposed grasp pose detection method can

select a suitable grasp and thereby enable successful grasping of deformable objects that

are difficult to grasp using existing methods (Figure 5.1).

The contributions of this dissertation are as follows.

1. We propose a network that can estimate the deformability of an object with in-

stance segmentation by combining a Mask R-CNN [48] and a deformability esti-

mation layer. We verified that we could estimate the deformability of each object

from its appearance in scenes with different objects.

2. The grasp pose detection method that considers the estimated object’s deformabil-

ity, making it possible to properly pick up an object even in scenes where existing

methods either fail to grasp the object or damage it.
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Figure 5.1: Results of the proposed Method: (a.1) From the original image, the deep

learning model generates a deformability map and a segmentation image. A suitable

grasp pose (highlighted in red) is then selected to prevent potential damage while si-

multaneously displacing nearby obstacles. (a.2) This approach enables the successful

grasp of the target object while pushing away deformable obstacles. (b) Our method

effectively mitigates the risk of damage, and (c) achieves successful grasping by directing

the gripper towards rigid areas of the target.

The remainder of this paper is organized as follows. Related works are reviewed

in Section II. Section III presents an overview of the proposed methods (deformability

estimation and grasp pose detection). In Section IV, we evaluate these methods in real-

world environments. Finally, we conclude this paper and discuss some of its limitations

in Section V.
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5.2 Proposed method

In this section, we describe three proposed methods: 1) a method for instance segmen-

tation and deformability map generation based on a Mask R-CNN, 2) a method for data

collection and model training, and 3) a grasp pose detection method based on estimated

deformability (Figure 5.2).

5.2.1 Definition of the deformability

In existing grasp pose detection methods, objects are typically assumed to be rigid

bodies, and grasp poses are identified based on collision-free constraints with surrounding

obstacles. However, this assumption can result in significant deformation or even damage

when interacting with deformable objects. Additionally, in cluttered environments with

numerous obstacles, this approach may fail to detect valid grasp candidates or may select

suboptimal candidates prone to grasp failure. Therefore, it is crucial to incorporate the

consideration of object deformability in the grasp pose detection stage to enhance both

the reliability and safety of grasping in complex environments.

The deformability map indicated the location of the deformability of an object

for each pixel in the image. Deformability refers to the ease with which an object

can be deformed; a high score signifies that the object is easy to deform, whereas a

low score indicates that it is difficult to deform. For grasping deformable objects, the

absolute score was determined by measuring both the deformation and grasping forces.

In this context, a stiffness map, as proposed in [14], plays a crucial role in controlling

the grasping force. Understanding this definition is vital when considering the force

applied; however, estimating the score without contact is challenging for objects of

unknown shapes and materials. Therefore, the score was categorized into 10 steps and

annotated by humans. For example, parts that do not deform even under a significant

mechanical force, such as a PET bottle cap, receive the highest score, whereas those that

can deform with minimal force, such as cloth, receive the lowest score. The annotation

process involves scoring each part of an object within a 3D model.

CHAPTER 5. DEFORMABILITY-BASED GRASP POSE DETECTION 52



Depth image Stiffness map

Segmentation imageTarget stiffness

Hand Model

4DoF grasp pose

Stiffness estimation

Grasp pose detection

Train

⨂

⨂ =

=
∩

Deformability mapDeformability estimation

Target segment

Figure 5.2: Overview of the proposed method: With a single depth image as input, the

deformability map and target segment was generated using our deformability estimation

method. Using the images, a 4-DoF grasp pose for a two-finger gripper was detected.

5.2.2 Encoder–Decoder model for deformability estimation

We contract the model for estimateing the deformability represented by a 2D input image

by assigning a deformability value to each pixel of the object image, thus generating a
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deformability map of the same size as the input image. The proposed deformability

estimation method is based on a Mask R-CNN [48].

As mentioned in Section II, Mask R-CNN can perform multiple tasks simultane-

ously, and the multitasking performance is complementarily enhanced. In the proposed

method, we add deformability estimation layer to the Mask R-CNN and design the

model such that instance segmentation is also possible by devising the structure of

the network and generating image data for training. Specifically, the detection and

segmentation parts are included in the head of the Mask R-CNN in a Fully Convo-

lutional Network (FCN) [91]. During training, the objective multi-task loss function

is L = Lcls + Ldet + Lmask + Ldeform. the classification loss Lcls, bounding-box loss

Ldet, and segmentation loss Lmask are same ones as in [48]. In the classification task,

we conduct binary classification to distinguish whether an object is in the foreground

or background. In the detection task, we identify the bounding box of the object’s

candidate region. For the segmentation task, we output the probability of each pixel

within the bounding box belonging to the object’s region. In the deformability estima-

tion task, we predict the deformability of the object for each pixel within the bounding

box. The deformability estimation component is constructed to generate a map similar

to the segmentation map. For segmentation loss, it is necessary to determine whether

each pixel in the obtained region belongs to a defined class. Therefore, we used binary

cross-entropy as a loss function for training. However, for deformability, we also require

an output score between 0 and 1. Therefore, a layer was required to generate whole

images similar to those in the image generation model. In particular, the estimated de-

formability map must be similar to the structure in part of the image. Therefore, we use

structural similarity [85] loss to perform more robustly for unknown similar objects for

the deformability estimation loss Ldeform. In multi-task learning, each task contributes

to the learning of other tasks, resulting in enhanced overall performance. Consequently,

the same weight is assigned to each loss function throughout the learning process.

For pretraining, the model learns only the detection and segmentation layers, similar

to the Mask R-CNN using the WISDOM [92] datasets. The input image was a depth

image, and the depth was extended to three channels as the input to the network to
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unify the input channels for feature extraction. To adapt to unknown objects of the

same product category but with different colors, sizes, and shapes, it is more likely that

feature extraction for deformability estimation is better using depth images than using

RGB images such as texture. From the feature map obtained by feature extraction

using ResNet50-FPN, which integrates ResNet50 [93] and a feature pyramid network

(FPN) [94] into the backbone of the input image, we can obtain the feature map of

the input image. In related segmentation techniques, it has been indicated that using

a transformer as the backbone and increasing the model size are factors that enhance

the accuracy. However, we focused on determining whether deformability estimation is

effective in models that solve multiple tasks, such as the Mask R-CNN. Therefore, we

used basic models, such as ResNet. A region proposal network (RPN) [95] was used

to extract the object candidate regions in the feature map, and the individual object

candidate region outputs from the RPN were extracted by the RoIAlign layer as the

output. In the output, each object candidate region from the RPN is extracted by

the RoIAlign layer and an image showing the object and its deformability (0 to 1) is

generated from the FCN structure. In this manner, we realized a network that performs

instance segmentation and deformability estimation (Figure 5.3).

Following the integration of the deformability estimation layer into the pre-trained

Mask R-CNN, fine-tuning is conducted with a learning rate initialized at 0.00002 for

20 epochs. A StepLR scheduler is applied to decay the learning rate by a factor of 0.1

every three epochs. The optimization process employs the Adam [96] optimizer, with

decay parameters β1 and β2 set to 0.9 and 0.999, respectively. The training process is

executed on a single NVIDIA RTX A6000 GPU with a batch size of 16.

5.2.3 Simulation-based semi-automatic data collection

A large number of object depth images and their corresponding estimated deformability

maps are needed to train the deformability estimation model, and generating them in

real-world is difficult and time-consuming.Therefore, simulations were used to automate

half of the procedure.
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Figure 5.3: Encoder–decoder model for deformability estimation. Using a 3-channel

depth image as input, identify object candidate regions from the feature map extracted

by Backbone (ResNet50-FPN) and RPN. The object candidate regions are extracted

from the RoIAlign layer, and deformability maps are generated for each object candi-

date region by classifying the object or background, estimating the bounding box, and

using the FCN structure. Finally, by combining each map, we can obtain the entire

deformability map. In addition, by generating a mask image with a certain threshold

from each map, we can also perform instance segmentation and obtain a segmentation

image.

We assumed a bin-picking environment for grasping one object and generating a

bin-picking scene in the simulation and rendered images. To create the scene, we used

3D models of deformable objects gathered from daily object databases (NEDO ITEM

DATABASE1, APC2017 RGB-D dataset [97] and YCB dataset [37]). Following the data

generation pipeline described in [47], the training dataset was constructed using Pybullet

simulations, which were used to generate segmentation maps concurrently (Figure 5.4).

The dataset includes 15 types of deformable hollow objects, such as bottles and boxes

with hollow interiors, and 5 types of partially deformable objects, such as brushes with

both deformable and rigid components. In the simulation, between 3 and 8 objects

are randomly selected and repeatedly dropped into a bin from above. This process is

repeated 10,000 times in total to generate the image dataset, which is subsequently used

for training.

1http://mprg.cs.chubu.ac.jp/NEDO DB/
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Figure 5.4: Simulator-based data collection: (a) examples of objects textured the de-

formability as green tone, (b)-(d) the scene generation using a physics simulator. (e)

After various images are rendered from the scene, (f) the deformability map as a seg-

ment was created for each object.

5.2.4 Grasp pose detection based on deformability map

We performed grasp pose detection using the segmentation image and deformability

map obtained as the output of the neural network, as explained in the previous section.
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Target object selection from segmentation image

In bin-picking scenarios, it is important to select the object to be grasped correctly. To

select an appropriate target object using the segmentation image obtained from the net-

work, we targeted the segment that was judged as an object with a probability of more

than 95% in the probability of being an object or background obtained by object detec-

tion. Among these segments, the segment with the smallest depth (maximum height of

the object from the desk visible in the image) in each object region was designated as

the target.

Grasp pose detection with segment and deformability map

The grasp pose detection method is similar to that of pix2stiffness [47]. The contact Tθ
t

and collision Tθ
c templates for each rotation angle θ are predefined, whereas the contact

It and collision Ic images are obtained from a single-depth image D. The deformability

contact image Ist was calculated by multiplying the generated deformability map S∗ in

the area of the target segment Is and It and then convoluted with Tθ
t . Subsequently, the

deformability contact region Aθ
st was generated, and Aθ

c was calculated by convoluting

Tθ
c with Ic. After applying a logical AND operation between Aθ

st and Aθ
c , a noncollision

graspability map considering the deformabilityGθ was generated. The objective function

is defined as follows:

f(x, y, θ) =

 Gθ(x, y) if Aθ
c(x, y) = 1

0 otherwise
, (5.1)

where θ is the rotation angle of detected grasp candidates. The calculated coordinate

index is expressed as

[X, Y, Θ] = arg max
x,y,θ

f(x, y, θ) . (5.2)

Here, we solely utilize the hand template of the two-finger gripper; therefore, we

can apply Eq. (2) as the objective function.

Detection was performed by changing the width of the grasp in the hand template,

and the grasp position with the smallest possible width was selected. To select the
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grasping height, we start at the height where the segment of the selected object had

a certain size K; then, we took cross-sections of L mm, each divided into M steps. L

and M were determined by the average size of the target object and the length of the

toe of the hand, respectively. The overall structure of the algorithm is as follows. The

deformability map for each region of the extracted input depth image is Si(i = 1, ..., N).

For each of these deformability maps, a binary image was generated at a certain threshold

R to simultaneously obtain a segmentation image. Then, min(Ig) extracts the minimum

value in an image Ig, and binary(Ig, h) generates a binary image with 1 for the threshold

h and 0 otherwise. region(I) returns the calculated number of pixels in each labeled

region of the binary image I. GP (It, Ic,S
∗) is a function that detects grasp pose [X, Y, Θ]

from Eq. (2) using contact, collision, and deformability maps.

The grasping score Q(S∗, It, Xi, Yi, Θi) calculates the average estimated deformabil-

ity in the area inside the hand from It to determine the optimal grasp poses at different

depths. The detection algorithm is presented as Algorithm 1.

The aforementioned process is used to detect the grasp position of the obtained

4-DoF grasp pose.

5.3 Experiments

We verified whether the deformability map could be useful for grasp-pose detection. For

this purpose, we used (1) a cluttered scene with several unknown objects that were not

included in the training data but belonged to the same category, (2) a cluttered scene of

partially deformable objects where the hard and soft parts were clearly separated (e.g.,

a brush with a handle), and (3) a specific case in which a target object was specified,

but some deformable objects were located around the target.
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Algorithm 1 Grasp pose detection based on deformability estimation

Input: K, L, M, R,D,Si(i = 1, ..., N)

Output: [X∗, Y ∗, Z∗, Θ∗]

1: Target segment selection :

2: D∗ ←∞

3: for i = 1 to N do

4: if D∗ > min(D
⊙

binary(Si, R)) then

5: D∗ ← min(D
⊙

binary(Si, R))

6: Is ← binary(Si, R)

7: S∗ ← Si

8: Grasp pose detection :

9: for i = 0 to M do

10: if K < region(binary(D, i ∗ L)) then

11: H∗ ← i

12: break

13: Q∗ ← 0

14: for i = 0 to 4 do

15: It ← binary(D, (i + H∗) ∗ L) * Is

16: Ic ← binary(D, (i + H∗ + 1) ∗ L)

17: (Xi, Yi, Θi) = GP (It, Ic,S
∗)

18: if Q(S∗, It, Xi, Yi, Θi) > Q∗ then

19: Q∗ ← Q(S∗, It, Xi, Yi, Θi)

20: [X∗, Y ∗, Z∗, Θ∗]← [Xi, Yi, (D∗ + i ∗ L), Θi]

5.3.1 Hardware settings

We validated the effectiveness of the proposed method using UR5e and a Robotiq two-

finger gripper (140 mm) with rubber tips. We used Realsense SR305 as the depth sensor

attached to the end-effector.

The camera height used to capture depth images, set at 550 [mm], matched that

used in the simulation, and the camera was oriented such that its optical axis was

CHAPTER 5. DEFORMABILITY-BASED GRASP POSE DETECTION 60



perpendicular to the plane of the desk. The grasping force, pre-measured to verify its

adequacy for lifting all objects within the scene, was set to 67.5 [N].

5.3.2 Grasping for deformable hollow objects

We evaluated the efficacy of the proposed method using unknown objects that fell within

similar categories. Given that the training data encompassed hollow bottles and boxes,

we selected 10 unknown objects from categories that varied in texture and scale. In ad-

dition to the grasping success rate, we assessed the object deformation as a quantitative

evaluation index. To compute this index, we measured the distance between the gripper

fingers when grasping with the minimum gripping force wc (12.5 [N] in this case) and

when grasping with a constant grasping force wg used in the experiments (67.5 [N] in

the experiments). The deformation was quantified using the following equation:

Deformation = wc − wt

wc
. (5.3)

This equation, similar to the definition of strain, indicates that lower values corre-

spond to lower deformations. We created a bulk stacking scenario with randomly placed

objects and repeated the picking task three times until all the objects were cleared. For

comparative analysis, we employed FGE [18] and Dex-net 4.0 [10], which do not account

for object deformability but have high grasp success rates. Additionally, we utilized the

pix2stiffness [47], which is the method most similar to ours. The results of Table 5.1

demonstrate that while Dex-net achieves the highest grasp success rate, our proposed

method excels in minimizing deformation, with a grasp success rate close to that of Dex-

net. In addition, the detection time per trial is presented, which represents the duration

from inputting the depth image to detecting the grasp pose. The proposed method

achieves the shortest calculation time overall. While Dex-Net 4.0 exhibits the shortest

detection time when a specific gripper’s width is pre-defined, it requires additional time

in this experiment to identify the optimal gripper’s width that maximizes the grasping

performance score to ensure a high success rate. The scene images, estimated images,

and examples of the grasp position detection in the experiment are presented in Figure
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5.5(a).

Table 5.1: Comparison of grasping results for deformable hollow objects

Method Grasping success [%] Deformation Detection time [sec / attempt]

FGE [18] 75.9 0.148 10.9

Dex-net 4.0 [10] 85.7 0.127 22.0

pix2stiffness [47] 76.9 0.264 16.1

Ours 83.3 0.115 9.07

5.3.3 Grasping for partially deformable objects

For scenes composed of partially deformable objects arranged in piles, we generated an

appropriate grasp pose and assessed the grasping feasibility. These objects are distinctly

segmented into hard and soft parts, enabling targeted detection of the optimal grasp

pose on the harder sections. To facilitate this, the grasp pose detection process involves

setting the deformability score to -1 for areas in the target segment that represent less

than a predefined threshold of the maximum score, effectively creating contact images.

The threshold for extracting the region with the highest deformability is determined

by using the reciprocal of the number of predefined regions (two in this experiment)

with varying hardness levels. In this case, a threshold of 50% is identified as a suitable

candidate for grasping. When prior information is unavailable, automatic differentiation

between regions can be achieved by analyzing the histogram of the deformability in the

object region. The target object of this dissertation, a brush with a handle, presents a

more complex geometry than simpler objects such as bottles, complicating the extraction

of the object region and the grasping of the hard part of the handle. We generated three

scenarios with six brushes each, piled in disarray, and defined the task success rate as the

proportion of attempts in which the hard part was successfully grasped. The comparative

analysis employed the same methods as previously—FGE, Dex-net, and pix2stiffness.

The results of Table 5.2 indicated that the proposed method outperformed pix2stiffness,

with a notably higher success rate when object deformability was considered. The scene
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images, estimated images, and examples of the grasp position detection in the experiment

are presented in Figure 5.5(b).

Table 5.2: Comparison grasping results for partially deformable objects

Method metrics Task success [%]

FGE [18] 5.56

Dex-net 4.0 [10] 11.1

pix2stiffness [47] 61.2

Ours 77.8

5.3.4 Pushing away of deformable obstacles

When a specific target object is identified, if normal grasping is impeded by a nearby

deformable object with relatively low deformability, a viable strategy involves grasp-

ing while compressing the obstructing deformable object without considering its struc-

tural integrity. This approach allows the detection of appropriate grasping positions

in scenarios where conventional methods fail. We assume that the interfering object is

elastic—like a sponge—which returns to its original shape after compression if its hard-

ness, as determined by deformability estimation, is low. In our detection method, this

strategy is implemented in the collision image by classifying areas with an arbitrarily

high percentage (in this case, more than 50[%]) of the surrounding deformabilities are

considered obstacles, neglecting the remaining ones). In the proposed scenario, the pro-

posed method was compared with the traditional methods, FGE and pix2stiffness, in a

task involving the retrieval of all five target objects across three separate piled scenes.

The results of Table 5.3 demonstrate that our method achieved the highest success rate,

largely because of the effective identification and handling of crushable obstacles. No-

tably, failures occur when a deformable object significantly blocks the target, crushing

both the obstruction and the target object itself. To mitigate such issues, it is advisable

to employ a force sensor to measure the exertion force and decide whether to halt the

mid-process action. The scene images, estimated images, and examples of the grasp
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Figure 5.5: Example of deformability estimation and grasping results

position detection in the experiment are presented in Figure 5.5(c).

Table 5.3: Comparison grasping results in the task of pushing away deformable obstacles

Method Grasping success [%]

FGE [18] 53.6

pix2stiffness [47] 53.6

Ours 75.0
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5.4 Conclusion

In this dissertation, we propose an encoder-decoder model for deformability estimation,

which assumes that the deformability of an object is related to its appearance. Based

on the Mask R-CNN, we construct a model for generating a deformability map that

indicates the tendency deformability in an object for each pixel, which can also generate a

segmentation image. To train this model, a semiautomatic generation of image datasets

via simulation was proposed, and a deformability map was created for each segment

to adapt to our model. Using the results of deformability estimation with instance

segmentation, we propose a grasp pose detection method from a single image that can

grasp various deformable objects, thereby preventing the deformation shown in real-

world experimental results.

One limitation of the proposed method is that it cannot be adapted to different ma-

terials with similar shapes. When the internal structure (filled with a specific material)

differs in objects with shapes equivalent to deformable hollow objects, distinguishing

between them becomes challenging. Nevertheless, both internal structures can serve as

targets for preventing deformation. Moreover, our method does not aim for fully de-

formable objects such as cloth and does not consider deformation in the training data.

Therefore, we require an estimation method that uses other modalities to consider ma-

terial information.
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Chapter 6

Discussion

6.1 Contributions

In this dissertation, a method is proposed for generating data and applying it to grasping,

taking into account the diversity of the physical properties of objects. The framework

considers softness and shape and applies it to a wide variety of shapes while achieving

grasping without damaging the object. In Chapter 3, a spatial hardness map is estimated

for objects with different hardness distributions depending on their shape, and grasping

is achieved in a way that prevents the deformation of the object.

In the dataset that corresponds to the diversity of shapes, scanned 3D models are

randomly selected and used. By collecting a large number of these, it is possible to

achieve a high grasping rate for similar shapes and unknown objects. However, because

there is no uniformity in the need to retain data, its quality, or the quality of the data

as grasping data, it is thought that unnecessary data for learning is also used. In order

to solve this problem and adapt to the diversity of shapes, Chapter 4 uses procedurally

generated data, which allows achieving the same level of grasping as when using scanned

3D models. By using fractal geometry to quickly and automatically build a database

with a wide variety of shapes that follow the formation principles of natural objects, it is

possible to avoid the problems associated with using scanned 3D models. The ability to
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manipulate shapes using parameters enables the generation of complex shapes, and we

have confirmed in real-world picking that this has a significant effect when using small

amounts of data.

However, Chapter 3 and Chapter 4 are only applicable to single objects, and it

is difficult to handle scenes with a variety of objects, such as those found in logistics

warehouses. In the case of complex scenes, it is necessary to simultaneously recognize

multiple objects while also taking occlusion into account, and the framework must be

realistic and feasible while keeping the computational cost down. In Chapter 5, we

address this issue and enable picking in real environments using a framework that con-

siders both softness and shape diversity at the same time. We have achieved a model

that processes tasks related to softness and shape simultaneously using a single truth

learning model and have accomplished a reduction in computational cost while enhanc-

ing mutual performance. We have confirmed that the proposed method has the highest

success rate in three grasping scenarios. In particular, in scenes with many obstacles,

more stable grasping can be achieved using an operation strategy that considers the

physical properties of the object.
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6.2 Open Challenges and Future Work

The limitation of this method is that it only relates to the shape and softness of objects.

While there are objects where shape and softness are related, it is difficult to apply this

method to objects with the same shape but different materials. In this case, it depends

on the texture and feel of the object, so it is necessary to generate a new database for

these and to use information other than shape, such as RGB images. Also, in the case of

a large number of different types of objects, it is difficult to generate a large amount of

softness databases. In this dissertation, the softness scores were assigned by humans, and

the cost of scaling up is high. Therefore, a framework that enables easy annotation, such

as collecting hardness evaluation values using a robot, is necessary. Additionally, LLMs

and similar systems acquire physical knowledge in the form of linguistic information [69].

By effectively leveraging this knowledge and continuously updating it with real-world

robot motion data, these models can be extended to a broader range of objects.

In addition, in the shape database, the shape manipulation is controlled by only one

parameter. To apply it to objects with complex structures, such as articulated objects,

where there remains a large discrepancy between the actual object and its appearance, it

is necessary to execute surface reconstruction to smooth the object’s surface and create

a 3D model that is aware of the parts in order to create a large number of grasping

points. And the 3D models generated by fractal geometry facilitate successful grasping

by partially incorporating the shape of the real 3D object. Because they also contain

shapes that cannot be collected in real-world environments, they can be leveraged to

compensate for the limited availability of real data (e.g., Data augmentation).
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