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Abstract

This thesis introduces two novel methodologies that significantly advance mutual

information estimation for mixed-type variables and the identification of non-linear

causal relationships. These contributions address critical challenges in data analy-

sis and causal inference in complex settings, offering powerful tools for researchers

across various scientific disciplines.

The first part focuses on estimating mutual information in datasets containing both

discrete and continuous variables. Extending the Chow-Liu algorithm, our method

constructs a forest that captures probabilistic dependencies among mixed-type vari-

ables. Using copula-based joint density estimation and the Watanabe Bayesian

Information Criterion (WBIC) for computing free energies, our approach enables

more accurate mutual information estimation, surpassing conventional likelihood-

based methods. This method has been effectively applied to link genomic expres-

sion with Single Nucleotide Polymorphism (SNP) data in genome expression studies.

The second part introduces a method for learning non-linear causal structures by

integrating Generalized Additive Models (GAMs) with the Hilbert-Schmidt Inde-

pendence Criterion (HSIC). This approach addresses the challenges of estimating

additive noise models without prior knowledge of the underlying non-linear relation-

ships. Leveraging the adaptability of GAMs, our method models diverse non-linear

dependencies without imposing strict parametric assumptions. We also provide a

theoretical analysis demonstrating consistency in causal order identification, and our

experimental results highlight the superior performance of the proposed approach

in identifying causal relationships compared to existing methods.
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Chapter 1

Introduction

In the era of big data and complex systems, the ability to accurately analyze rela-

tionships between variables and infer causal structures has become paramount across

various scientific disciplines. This thesis presents two novel methodologies that sig-

nificantly advance our capabilities in mutual information estimation for mixed-type

variables and the identification of non-linear causal relationships. These advance-

ments address critical challenges in data analysis and causal inference, offering pow-

erful tools for researchers across diverse fields.

1.1 Mutual Information Estimation for Mixed-Type

Variables

Mutual information is a commonly employed metric for identifying dependencies

between variables in a dataset. It measures how much information is shared between

two random variables, figuring out how much two variables depend on each other.

Mutual information is used in many areas of machine learning and information

theory, for example, in feature selection, clustering, and classification (Shannon,

1948). It reduces the uncertainty associated with one variable when the other is

known.

1
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In the realm of graph theory, trees and forests offer a mathematical framework for

representing variable interdependencies. An undirected acyclic graph, also known as

a forest, is a group of trees that are not connected. It can visually show conditional

independence (CI) relationships between variables (Bender and Williamson, 2010).

The Chow-Liu algorithm uses mutual information metrics to build these trees or

forests, allowing us to model the likely connections between variables using data.

These graphs have been useful in complicated data, like gene differential analysis,

where computational speed is very important (Suzuki, 2017).

As we navigate the complex world of mutual information estimation, it is essential to

address the critical challenges, especially when the variables are of mixed types, with

one being Gaussian and the others being discrete (Edwards et al., 2010). The com-

putational landscape becomes significantly more intricate when examining graphical

models that follow sequences like Y-X-Z, where X is Gaussian while Y and Z are

discrete variables. In such models, optimizing mutual information estimates is far

from trivial due to the intricate interdependencies among variables.

Previous approaches to this challenge include the Bayesian methodology proposed by

Suzuki (2015), which focuses on constructing histograms and performing Bayesian

computations. However, this approach has limitations, relying on unbounded his-

tograms and facing difficulties with uneven sample sizes across datasets. Similarly,

Suzuki (2017) proposed a hierarchical meshing mechanism to estimate mutual in-

formation, but this method struggles with small sample numbers and requires more

data for proper quantification.

Our work introduces a new estimator of mutual information capable of dealing with

variables of mixed types, including continuous and discrete variables. Initially, we

use copula density estimation techniques to determine the joint density of mixed

types of variables (Schmidt, 2007). We then employ a Bayesian approach to find the

normalized constant needed to determine the minimum mutual information (Barron

and Cover, 1991). We use the Watanabe Bayesian Information Criterion (WBIC)
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to obtain free energies, a method commonly used for model selection (Watanabe,

2013, 2021; Suzuki, 2023).

This novel approach overcomes the limitations of previous methods, allowing for

more accurate estimation of mutual information in complex, mixed-type datasets.

It is particularly useful in genomic data analysis, where we consider datasets contain-

ing information on gene expression in addition to Single Nucleotide Polymorphism

(SNP) data.

1.2 Non-Linear Causal Inference from Data

Causal inference, the process of identifying cause-and-effect relationships from ob-

servational data, poses a significant challenge in various scientific domains, including

economics, biology, and social sciences (Pearl, 2009). Understanding causal struc-

tures is crucial for the advancement of scientific knowledge, the informing of policy

decisions, and the prediction of outcomes of interventions (Spirtes et al., 2000).

Traditional causal inference methods have been largely based on linear models or

specific parametric assumptions. Techniques like the Linear Non-Gaussian Acyclic

Model (LiNGAM) (Shimizu et al., 2006) and its derivatives assume linear relation-

ships or use independence tests that may not effectively capture non-linear depen-

dencies. Similarly, structural equation models typically assume linear interactions

among variables (Bollen, 1989). Although these methodologies have been successful

in numerous applications, they often fall short of accurately modeling the complex

nonlinear relationships prevalent in many real-world systems.

The recognition of the necessity for causal inference methods that can handle non-

linear relationships has been growing, driven by the complexity observed in various

fields. For example, ecological interactions and responses to environmental factors

often exhibit non-linear patterns (Sugihara et al., 2012). Economic systems often

display non-linear behaviors, such as the relationship between inflation and un-
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employment (Barnett et al., 2015). Neuroscience studies reveal brain connectivity

patterns that involve complex non-linear interactions (Friston et al., 2003), while cli-

mate systems are marked by non-linear feedback and tipping points (Lenton et al.,

2008).

Previous work in this area includes the approach by Hoyer et al. (2008), which

addressed the issue of nonlinear causal inference but assumed prior knowledge of

the underlying nonlinear function. Zhang and Hyvärinen (2009) proposed the use of

nonlinear additive noise models (ANMs) for causal inference. Kernel-based methods,

such as the kernel conditional independence test (KCI) (Zhang et al., 2011) and the

Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005), have gained

attention due to their effectiveness in modeling complex, nonlinear relationships.

Our work builds upon these foundational ideas while extending the applicability

of the LiNGAM framework to non-linear scenarios. We propose a novel method

for learning nonlinear causal structures that combines generalized additive models

(GAMs) with the Hilbert-Schmidt Independence Criterion (HSIC). This approach

addresses several challenges in the field. Using the flexibility of GAMs, we can model

a wide range of non-linear relationships without imposing strict parametric assump-

tions (Hastie and Tibshirani, 1990). Furthermore, incorporating HSIC improves

the detection of intricate statistical dependencies that traditional correlation-based

methods might overlook.

1.3 Thesis Structure

The remainder of this thesis is structured as follows:

• Chapter 2 provides a comprehensive background and literature review for

both research areas.

• Chapter 3 details our novel methodology for mutual information estimation

in mixed-type datasets, including its theoretical foundations.
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• Chapter 4 presents our approach to non-linear causal structure learning,

outlining the integration of GAMs and HSIC, along with a rigorous theoretical

analysis.

• Chapter 5 demonstrates the application of our methods to both simulated

and real-world datasets, showcasing their effectiveness and superiority over

existing techniques.

• Chapter 6 concludes the thesis with a discussion of our findings, their impli-

cations, and directions for future research.

Through this work, we aim to provide researchers and practitioners with robust,

flexible, and interpretable tools for advanced data analysis and causal inference,

contributing to the advancement of knowledge discovery in complex, non-linear sys-

tems.



Chapter 2

Background

This chapter provides the theoretical foundation and context for our research on

mutual information estimation for mixed-type variables and non-linear causal struc-

ture learning. We begin by discussing the Chow-Liu algorithm and its relationship

with mutual information, followed by an exploration of causal graphical models and

structural equation models. We then delve into the challenges of causal discovery,

particularly in non-linear settings.

2.1 Mutual Information and the Chow-Liu Algo-

rithm

Mutual information, a concept rooted in information theory, quantifies the amount

of information shared between two random variables (Shannon, 1948). For discrete

random variables X and Y taking values in sets X and Y respectively, mutual

information is defined as:

I(X, Y ) =
∑
x∈X

∑
y∈Y

PXY (x, y) log PXY (x, y)
PX(x)PY (y) (2.1)

where PXY , PX , and PY are the associated probability mass functions. Mutual

information is non-negative and equals zero when X and Y are independent.

6
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Figure 2.1: The Chow-Liu algorithm maximizes the sum of the mutual information
values: I(1, 2) > I(2, 3) > I(1, 3) > I(1, 4) > I(2, 4) > I(3, 4) ≥ 0.

The Chow-Liu algorithm (Chow and Liu, 1968) leverages mutual information to

construct tree-structured graphical models. It approximates the joint probability

distribution of N discrete variables X(1), ..., X(N) using a product of pairwise and

univariate distributions:

Q(X(1), ..., X(N)) =
∏
k∈V

P (X(k))
∏

{i,j}∈E

P (X(i), X(j))
P (X(i))P (X(j)) (2.2)

where V = {1, ..., N} is the set of vertices and E is the edge set of the forest

G = (V,E). The algorithm aims to maximize the sum of mutual information values

across the edges of the forest.

Figure 2.1 illustrates the Chow-Liu algorithm’s process of constructing a tree by

selecting edges based on mutual information values.

2.2 Estimating Mutual Information from Data

Maximum likelihood estimators for mutual information tend to overfit, particularly

for small sample sizes (Suzuki, 1993). To address this, alternative Bayesian esti-

mates have been proposed. Suppose that the probabilities PX(x|θ), PY (y|θ), and

PXY (x, y|θ) are indexed by a parameter θ ∈ Θ, where Θ ⊆ Rd is a parameter space.

Let QX , QY , and QXY be the associated marginal likelihood:

QX :=
∫

Θ

n∏
i=1

PX(xi|θ)φ(θ)dθ (2.3)

and QY , QXY are defined similarly, where φ(θ) is a prior probability of θ ∈ Θ. Suzuki

(2012) proposed the following mutual information estimates:
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Jn := 1
n

log QXY

QXQY

(2.4)

For discrete variables with |X | = αX and |Y| = αY , and using Jeffreys’ prior, we

have:

Jn = In −
1

2n(αX − 1)(αY − 1) log n (2.5)

where In is the maximum likelihood estimate. For Gaussian variables, the estimate

takes the form:

Jn = In −
1

2n log n (2.6)

These estimates provide more robust detection of independence, especially for large

sample sizes (Suzuki, 1993).

2.3 Challenges with Mixed-Type Variables

Estimating mutual information becomes particularly challenging when dealing with

a mixture of discrete and Gaussian variables (Edwards et al., 2010). Consider a

scenario where X is Gaussian, while Y and Z are discrete. While it’s relatively

straightforward to compute mutual information for X-Y and X-Z pairs, the com-

putation becomes complex for a Y -X-Z sequence.

Figure 2.2 illustrates the limitations of traditional methods when dealing with mixed-

type variables in graphical models. Discrete vertices cannot be separated by a

Gaussian vertex, significantly constraining the possible graph structures.
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Figure 2.2: Upper: The labels ”D” and ”G” represent discrete and Gaussian vari-
ables, respectively. Out of the four cases presented, only the ”D-G-D” configuration
is not permissible. Lower: The forest depicted on the right cannot be expressed by
Edwards et al. (2010) due to the presence of the green rectangle.

2.4 Causal Graphical Models and Structural Equa-

tion Models

Causal graphical models provide a formalized approach to representing causal rela-

tionships (Pearl, 2000). Within this framework, causal structures are illustrated us-

ing directed acyclic graphs (DAGs), where the nodes correspond to random variables

and the edges represent direct causal influences. For a set of p random variables,

X = (X1, . . . , Xp), the causal relationships between these variables are described by

a DAG G = (V,E), where V = {1, . . . , p} denotes the set of nodes corresponding

to the variables, and E ⊆ V × V represents the set of directed edges that indicate

direct causal relationships.

A DAG G is characterized by two essential properties: it is directed, which means

that each edge has a direction from cause to effect, and it is acyclic, meaning that

no variable can causally influence itself, directly or indirectly (Pearl, 2009).

To model the data-generating process, we use Structural Equation Models (SEMs)

as described by Hoyle (2012). For the purpose of non-linear causal discovery, we

focus on non-linear SEMs, which can be expressed as:
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Xi = fi(PAi, εi), i = 1, . . . , p (2.7)

In this expression, Xi denotes the i-th variable, and PAi represents the set of parent

variables that directly influence Xi in the graph G, defined by PAi = {Xj : (j, i) ∈

E}. The function fi is an unspecified non-linear function that captures the relation-

ship between Xi and its parent variables, while εi represents an independent noise

term. This approach allows for the modeling of complex, non-linear interactions

between causes and effects, extending the capabilities of traditional linear SEMs

(Bollen, 1989).

2.5 The Causal Discovery Problem

Given observational data D = {x(1), . . . ,x(n)}, where each x(j) = (x(j)
1 , . . . , x(j)

p ) is a

realization of X, our objective is to infer the underlying causal graph G. This involves

identifying the presence or absence of edges in G and determining the direction of

these edges (Spirtes et al., 2000).

The task of causal discovery is complex due to several factors. Nonlinearity poses a

significant challenge, as functions fi can be arbitrarily non-linear, complicating the

distinction between cause and effect based on simple statistical associations (Hoyer

et al., 2008). The high-dimensional nature of the problem further complicates the

task, as the number of possible DAGs grows super-exponentially with the number of

variables p, rendering an exhaustive search infeasible (Chickering et al., 2004). Fur-

thermore, finite sample sizes make it difficult to distinguish true causal relationships

from spurious correlations (Kalisch and Bühlmann, 2007). The faithfulness assump-

tion, which posits that all conditional independence relationships in the distribution

of X are reflected in the graph structure, is another critical factor; violations of

this assumption can lead to errors in causal discovery (Spirtes et al., 2000). Finally,

the presence of confounders, or unmeasured common causes, can result in spurious
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associations between variables (Pearl, 2009).

2.6 Assumptions in Causal Discovery

To make the causal discovery problem tractable, several assumptions are adopted in

our approach. We assume causal sufficiency, which means that there are no unmea-

sured common causes of the observed variables. This allows us to focus solely on

the relationships among observed variables without considering latent confounders

(Spirtes et al., 2000). We also assume the causal Markov condition, which states

that the joint distribution of the variables factors according to the causal graph. For-

mally, each variable Xi is conditionally independent of its non-descendants given its

parents in the graph (Pearl, 2000). The faithfulness assumption is another critical

component, positing that all conditional independence relationships in the distri-

bution are mirrored in the graph structure and vice versa (Spirtes et al., 2000).

Additionally, we assume acyclicity, meaning that the true causal structure does not

contain feedback loops or reciprocal causation (Pearl, 2009). Finally, we assume

that the noise terms εi are non-Gaussian, mutually independent, and independent

of the causal parents PAi for each variable Xi (Peters et al., 2017).

2.7 Challenges in Nonlinear Settings

Nonlinear causal discovery introduces several additional challenges that require care-

ful consideration. One major challenge is identifiability, as causal directions are gen-

erally not identifiable from observational data alone without additional assumptions.

In nonlinear contexts, while identifiability is theoretically possible (Hoyer et al.,

2008), it often requires specific conditions on functional relationships and noise dis-

tributions. Model flexibility is another important consideration. The chosen model

class for the functions fi must be sufficiently flexible to capture complex nonlinear

relationships, yet sufficiently constrained to avoid overfitting and ensure identifia-
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bility (Mooij et al., 2016). Nonlinear models also introduce increased computational

complexity, as they often require more sophisticated estimation procedures and hy-

pothesis tests, which significantly increase the computational burden, especially for

high-dimensional problems (Heinze-Deml et al., 2018). Lastly, interpretability is a

crucial factor. While nonlinear models can capture more complex relationships, they

may be less interpretable compared to their linear counterparts, complicating the

communication and validation of discovered causal structures (Molnar, 2020).

In the subsequent chapters, we present novel methodologies that address these chal-

lenges in both mutual information estimation for mixed-type variables and non-linear

causal structure learning. Our approaches combine the strengths of various tech-

niques, including Generalized Additive Models (GAMs) and the Hilbert-Schmidt

Independence Criterion (HSIC), to provide robust, flexible, and interpretable tools

for advanced data analysis and causal inference.



Chapter 3

Mutual Information Estimation in

Mixed-Type Variables

3.1 Introduction

This chapter presents our novel approach to estimating mutual information in datasets

comprising both discrete and continuous variables. We address the limitations of

existing methods, particularly when dealing with combinations of Gaussian and dis-

crete variables. Our methodology overcomes the challenges associated with mixed-

type data analysis by employing copula-based joint density modeling, which offers

greater flexibility in handling the collaboration between discrete and continuous

variables.

13
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3.2 Copula-Based Approaches for Joint Density

Estimation

3.2.1 Theoretical Foundation

Copulas are fundamental tools in multivariate statistical modeling, enabling us to

separate the dependency structure among random variables from their marginal dis-

tributions. A copula C is a function that links univariate marginal distribution func-

tions to form a multivariate distribution function. Specifically, for a d-dimensional

random vector U = (U1, U2, . . . , Ud), where each Ui is uniformly distributed over the

interval [0, 1], the copula is defined as:

C(u1, u2, . . . , ud) = Pr(U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud).

This framework allows us to model the dependency structure independently of the

marginal distributions (Schmidt, 2007). The Probability Integral Transform (PIT)

facilitates this approach by mapping any random variable X with cumulative distri-

bution function (CDF) FX(x) to a uniform random variable U = FX(X) on [0, 1].

Sklar’s theorem (Sklar, 1959) provides the theoretical underpinning for copula mod-

eling by expressing any multivariate joint CDF H(x1, x2, . . . , xd) in terms of its

marginals and a copula:

H(x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)),

where Fi(xi) are the marginal CDFs. This theorem also allows us to represent the

joint probability density function (PDF) fX1,X2,...,Xd
(x1, x2, . . . , xd) in terms of the

copula density c(u1, u2, . . . , ud) and the marginal PDFs fXi
(xi):

fX1,X2,...,Xd
(x1, x2, . . . , xd) = c(F1(x1), F2(x2), . . . , Fd(xd))

d∏
i=1

fXi
(xi), (3.1)
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where the copula density c(u1, u2, . . . , ud) is the mixed partial derivative of the copula

function C:

c(u1, u2, . . . , ud) = ∂dC(u1, u2, . . . , ud)
∂u1∂u2 . . . ∂ud

.

3.2.2 Copula Families for Modeling Dependencies

Selecting an appropriate copula family is crucial when modeling joint distributions,

especially with mixed data types like discrete and continuous variables (Aas et al.,

2009; Kojadinovic and Yan, 2010). In our study, we focus on the Gaussian and

Clayton copulas to model the joint distribution of a Bernoulli-distributed variable

X and a normally distributed variable Y .

3.2.2.1 Gaussian Copula

The Gaussian copula utilizes the standard normal CDF Φ and its inverse Φ−1. The

copula density function cGaussian(u, v; ρ) is defined as:

cGaussian(u, v; ρ) = 1√
1− ρ2 exp

(
−z

2
u − 2ρzuzv + z2

v

2(1− ρ2)

)
,

where zu = Φ−1(u), zv = Φ−1(v), and ρ is the correlation parameter.

The joint PDF for X and Y using the Gaussian copula is:

fX,Y (x, y; p, µ, σ2, ρ) = P (X = x) · fY (y) · cGaussian(FX(x), FY (y); ρ), (3.2)

where P (X = x) is the probability mass function (PMF) of the Bernoulli variable

X with parameter p, and fY (y) is the PDF of the normal variable Y with mean µ

and variance σ2.
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3.2.2.2 Clayton Copula

The Clayton copula, suitable for modeling asymmetric dependencies, has the density

function:

cClayton(u, v; θ) = (θ + 1)u−θ−1v−θ−1
(
u−θ + v−θ − 1

)−θ−2
,

where θ > 0 is the dependence parameter. The corresponding joint PDF is:

fX,Y (x, y; p, µ, σ2, θ) = P (X = x) · fY (y) · cClayton(FX(x), FY (y); θ). (3.3)

3.2.3 Bayesian Marginal and Joint Distributions

In the Bayesian framework, we incorporate prior distributions over the model pa-

rameters to account for uncertainty.

Marginal Distribution for X:

QX =
∫ 1

0

n∏
i=1

P (Xi = xi | p)π(p)dp,

where π(p) is the prior for the Bernoulli parameter p, and n is the sample size.

Marginal Distribution for Y :

QY =
∫ ∞

−∞

∫ ∞

0

n∏
i=1

fY (yi | µ, σ2)π(µ, σ2)dµdσ2,

where π(µ, σ2) is the joint prior over the mean µ and variance σ2.

Joint Distribution Using Gaussian Copula:

QXY =
∫ ∫ ∫ ∫ n∏

i=1
fX,Y (xi, yi | p, µ, σ2, ρ)π(p, µ, σ2, ρ)dpdµdσ2dρ,

where π(p, µ, σ2, ρ) is the prior over all parameters.
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3.3 Proposed Framework for Mutual Information

Estimation

3.3.1 Bayesian Marginal and Joint Distributions

For a Bernoulli-distributed variable X with parameter p, the Bayesian marginal

distribution QX is defined as:

QX =
∫ 1

0

n∏
i=1

P (X = xi)φ(p)dp

For a Gaussian-distributed variable Y with parameters µ and σ2, the Bayesian

marginal distribution QY is:

QY =
∫ ∞

−∞

∫ ∞

0

n∏
i=1

fY (yi)φ(µ, σ2)dσ2dµ

Utilizing the Gaussian copula, the Bayesian joint distribution QXY becomes:

QXY =
∫ ∫ ∫ ∫ n∏

i=1
P (X = xi)× fY (yi)× cGaussian(ui, vi; ρ)φ(p, µ, σ2, ρ)dpdµdσ2dρ

3.3.2 Mutual Information Estimation

The mutual information of the mixture of discrete and continuous variables Jn in-

corporating the copula-based joint distribution is:

Jn = 1
n

log
( ∫

Θ
∏n

i=1 fXY (xi, yi|θ)φ(θ)dθ
(
∫

Θ
∏n

i=1 fX(xi | θ)φ(θ)dθ) (
∫

Θ
∏n

i=1 fY (yi|θ)φ(θ)dθ)

)
(3.4)

3.3.3 Watanabe Bayesian Information Criterion (WBIC)

In Bayesian inference, calculating the free energy is a key step for model selection

and comparison. The free energy Fn serves as a measure that evaluates the fit of
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a model to observed data while incorporating a regularization effect from the prior

distribution φ(θ) over the parameters θ. It is defined as:

Fn = − log
∫

θ

n∏
i=1

P (xi | θ)φ(θ)dθ

However, solving this high-dimensional integral directly requires substantial compu-

tational resources, especially as the sample size n grows. To address this challenge,

we employ the Watanabe Bayesian Information Criterion (WBIC), which offers an

approximation to free energy while reducing computational effort. WBIC was intro-

duced by Watanabe (Watanabe, 2013), as an extension of the traditional Bayesian

Information Criterion (BIC), and it is particularly useful for dealing with non-regular

models. WBIC is expressed as:

WBIC = E1/ log n

[
−

n∑
i=1

logP (xi | θ)
]

= Fn +OP (
√

log n)

This expression allows us to compute an approximation of Fn in a more tractable

manner, which can be implemented via probabilistic programming frameworks like

Stan.

3.3.3.1 Posterior Distribution and WBIC Approximation

The key idea behind WBIC is to modify the posterior distribution by introducing a

reverse temperature coefficient β > 0, which adjusts the influence of the likelihood

on the posterior distribution:

p(θ | Xn, Y n, β) = 1
Z(β)φ(θ)

n∏
i=1

P (Xi, Yi | θ)β

Here, Z(β) is the normalizing constant ensuring that the posterior integrates to 1,

and β is a temperature-like parameter that controls the weight of the likelihood

function. For WBIC, we use β = 1
log n

, which asymptotically approaches zero as

n→∞, making the approximation tighter.
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By employing WBIC, we can compute the free energy approximation more efficiently,

avoiding the direct evaluation of the high-dimensional integral. The approximation

to free energy can be written as:

Eβ[Y (·)] =
∫

θ Y (θ)∏n
i=1 P (xi | θ)βφ(θ)dθ∫

θ

∏n
i=1 P (xi | θ)βφ(θ)dθ , β > 0

The log loss function Ln(θ) is used as the measure of fit:

Ln(θ) = − 1
n

n∑
i=1

logP (Xi, Yi | θ)

where (Xi, Yi) represent the observed data points. This log loss function reflects

the predictive performance of the model, and WBIC balances the model fit against

complexity, preventing overfitting.

3.3.3.2 Implementation via Stan

WBIC can be implemented efficiently using Stan, a probabilistic programming lan-

guage that facilitates sampling from the posterior distribution. Stan uses Monte

Carlo methods to approximate the integrals involved in the WBIC computation,

making it computationally feasible for large datasets. Through this method, we can

obtain an accurate and computationally efficient approximation of the free energy,

Fn (Suzuki, 2020, 2021).

3.3.4 Free Energy and Mutual Information

In this framework, the free energy for the joint distribution FXY
n (x, y) can be ex-

pressed as:

FXY
n (x, y) = − log

∫
w

n∏
i=1

fXY (xi, yi | w)φ(w)dw = − logQXY .

This leads us to the final formula for the mutual information Jn:



Chapter 3. Mutual Information Estimation in Mixed-Type Variables 20

Jn = 1
n

log QXY

QXQY

= 1
n

log e−FXY

e−FX · e−FY
= 1
n

(FX + FY − FXY ).

This equation establishes a direct relationship between mutual information and the

difference between the free energies of the marginal distributions and the joint distri-

bution. It shows that mutual information can be viewed as the gain in free energy

obtained by knowing the joint distribution of X and Y instead of their marginal

distributions separately.

3.4 Evaluating Marginal Likelihood Estimates

We conducted a comparative study of marginal probability estimations using both

direct approaches and our Stan-based approach. This analysis focused on Bernoulli,

Gaussian, and pairwise distributions across diverse sample sizes ranging from 100

to 4000.

3.4.1 Experimental Setup

We generated synthetic datasets: Bernoulli data using a binomial process with a

probability of success p, and Gaussian data with a specified mean µ and standard

deviation σ. For pairwise distributions, we merged datasets consisting of Bernoulli

and Gaussian variables, assuming independence between these variables.

Our Stan model, employing a Gaussian copula, was designed to model the rela-

tionship between Bernoulli and Gaussian variables. It includes priors for the mean

(µ) and standard deviation (σ) of the Gaussian variable, along with a correlation

parameter (ρ).
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3.4.2 Results and Analysis

To visualize the performance of our marginal likelihood estimation methods, we

plotted the results for Bernoulli, Gaussian, and pairwise distributions across various

sample sizes, as shown in Figure 3.1.

Figure 3.1: Marginal Likelihood Estimation Analysis for Diverse Sample Sizes within
Bernoulli, Gaussian, and Pairwise Models. This visualization contrasts the outcomes
from conventional direct estimation techniques (highlighted in red) with those ob-
tained through our Stan-based methodology (depicted in green), showcasing the re-
lationship between estimation methods and sample size on the precision of marginal
likelihood calculations.

Figure 3.1 provides a comprehensive view of how our Stan-based approach compares

to direct estimation methods across different distribution types and sample sizes.

Our findings indicate:

1. For the Bernoulli distribution, marginal likelihood estimates from both direct

and Stan-based approaches were closely aligned across all sample sizes. This is

evident from the overlapping red and green lines in the top panel of the figure.

2. For the Gaussian distribution (middle panel), both techniques provided esti-

mates in close agreement, with discrepancies becoming negligible as the sample

size increased. The convergence of the red and green lines as we move right

on the x-axis illustrates this trend.

3. For the pairwise distribution (bottom panel), integrating Bernoulli and Gaus-

sian data, we observed consistent estimates from both approaches. The parallel
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trajectories of the red and green lines demonstrate this consistency, underscor-

ing their capability to effectively model mixed distribution models.

These visual results reinforce our conclusion that the direct and Stan-based ap-

proaches provide similar and consistent marginal likelihood estimates. Our Stan

methodology, in particular, shows robustness across various statistical models, af-

firming its utility as a reliable tool for Bayesian model comparisons, especially in

cases where direct methods might be computationally challenging or impractical.

The consistency observed across different sample sizes and distribution types pro-

vides strong evidence for the reliability and versatility of our proposed method. This

graphical analysis complements our numerical findings and offers intuitive insight

into the performance of our methodology across a range of scenarios.

3.5 Summary

Our novel methodology for estimating mutual information in mixed-type variables

addresses the challenges associated with analyzing datasets comprising both dis-

crete and continuous variables. By leveraging copula-based joint density modeling

and employing the Watanabe Bayesian Information Criterion, we provide a robust

and flexible approach that overcomes the limitations of traditional methods. The

comparative analysis of marginal likelihood estimates further validates the effec-

tiveness of our approach across various distribution types and sample sizes. This

methodology opens new avenues for analyzing complex, multidimensional datasets

with increased precision and comprehensiveness.



Chapter 4

Non-Linear Causal Inference from

Data

4.1 Introduction

This chapter presents a detailed description of our proposed method for nonlinear

causal inference. We introduce a novel approach that integrates Generalized Addi-

tive Models (GAMs) with the Hilbert-Schmidt Independence Criterion (HSIC) to

perform non-linear causal discovery. This method addresses the challenges associ-

ated with estimating additive noise models from data without prior knowledge of

the nonlinear function, a situation where overfitting often hinders the detection of

noise independence.

We begin by discussing the foundational components of our approach: Generalized

Additive Models (GAMs) and the Hilbert-Schmidt Independence Criterion (HSIC).

We then provide a comprehensive derivation of the objective function, followed by

a detailed description of the algorithm. The chapter concludes with a theoretical

analysis of our method and a discussion of practical considerations for implementa-

tion.

23
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4.2 Generalized Additive Models (GAMs)

Generalized Additive Models (GAMs), introduced by Hastie and Tibshirani (1990),

provide an extension of the Generalized Linear Models (GLMs) by allowing non-

linear relationships between predictors and the response variable. GLMs assume

that the effects of predictors on the response are linear, which often limits their

applicability in real-world scenarios. GAMs relax this assumption by modeling the

effect of each predictor as a smooth, non-linear function. This added flexibility

enables GAMs to capture complex data patterns while preserving the interpretability

of the model.

In many real-world systems, the assumption of linearity between predictors and a

response variable is unrealistic. For example, in biological systems, the relationship

between drug dosage and patient outcomes may be non-linear, with small doses

having little effect, medium doses providing significant benefits, and large doses

leading to harmful side effects. Linear models, which assume a constant effect of

predictors, cannot capture such complex dynamics. GAMs provide a solution by

allowing each predictor to have its own non-linear function, which can vary across

the range of the predictor, offering a flexible, data-driven approach. Furthermore,

despite the increased flexibility, GAMs retain the interpretability of traditional linear

models because the effect of each predictor can be examined individually.

4.2.1 Mathematical Formulation of GAMs

The formulation of a GAM for a response variable Y and predictors X1, X2, . . . , Xp

is given as:

g(E[Y | X1, . . . , Xp]) = β0 + f1(X1) + f2(X2) + . . .+ fp(Xp) (4.1)

Here, g(·) is a link function that transforms the expected value of Y into a scale

appropriate for additive modeling. The term E[Y | X1, . . . , Xp] represents the con-
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ditional expectation of Y given the predictors. The link function g(·) depends on the

type of response variable. For continuous data, the identity link g(µ) = µ is often

used, while for binary responses, the logit link g(µ) = log
(

µ
1−µ

)
is more common.

For count data, the log link g(µ) = log(µ) is typically applied. The smooth func-

tions fj(Xj) allow each predictor to have a non-linear effect on the response variable.

These functions are estimated non-parametrically, typically using techniques such

as splines or kernel methods, allowing for data-driven estimation of the functional

form.

4.2.2 Estimation of GAMs

The parameters of a GAM are estimated by maximizing a penalized likelihood,

which incorporates both the likelihood of the data and a penalty that ensures the

smoothness of the estimated functions. The penalized log-likelihood function is

expressed as:

L(β0, f1, . . . , fp) = −l(Y, η) +
p∑

j=1
λj

∫
[f ′′

j (x)]2dx (4.2)

In this formulation, l(Y, η) represents the log-likelihood function for the data, and

η = β0 + ∑p
j=1 fj(Xj) is the additive predictor. The second term,

∫
[f ′′

j (x)]2dx,

penalizes the roughness of each smooth function fj(Xj) by incorporating the second

derivative of fj(Xj). This ensures that the estimated functions remain smooth

and do not overfit the data. The smoothing parameters λj control the trade-off

between fitting the data closely and ensuring that the functions fj(Xj) are smooth.

Larger values of λj enforce smoother functions, while smaller values allow for more

flexibility.
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4.2.2.1 Smoothing Parameter Selection

The selection of smoothing parameters λj is crucial to the performance of a GAM. If

the smoothing parameters are too small, the model may overfit the data by capturing

noise in the observations. Conversely, if the smoothing parameters are too large,

the model may underfit the data, leading to overly smooth functions that fail to

capture important patterns. To select optimal smoothing parameters, Generalized

Cross-Validation (GCV) is commonly used (Craven and Wahba, 1978). The GCV

score is defined as:

GCV(λ) =
1
n

∑n
i=1(yi − ŷi)2(
1− tr(S)

n

)2 (4.3)

In this equation, the numerator represents the mean squared error (MSE) between

the observed values yi and the predicted values ŷi, while the denominator adjusts for

the complexity of the model, accounting for the effective degrees of freedom through

the trace of the smoother matrix S. By minimizing the GCV score, the smoothing

parameters are chosen in a way that balances model complexity and goodness of fit.

4.3 Hilbert-Schmidt Independence Criterion (HSIC)

The Hilbert-Schmidt Independence Criterion (HSIC), introduced by Gretton et al.

(2005), is a kernel-based method for measuring the statistical independence between

two random variables. Unlike traditional methods such as Pearson correlation, which

can only detect linear dependencies, HSIC is capable of detecting both linear and

non-linear relationships. HSIC is based on embedding the random variables into

reproducing kernel Hilbert spaces (RKHS), allowing for a more flexible and powerful

measure of dependence.
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4.3.1 Definition

HSIC measures the dependence between two random variables X and Y by eval-

uating the Hilbert-Schmidt norm of the cross-covariance operator between their

respective RKHS embeddings. Mathematically, HSIC is defined as:

HSIC(X, Y ) = ∥CXY ∥2
HS (4.4)

Here, CXY represents the cross-covariance operator between the RKHSs associated

with X and Y , and ∥ · ∥HS denotes the Hilbert-Schmidt norm. HSIC evaluates how

far the joint distribution of X and Y deviates from the product of their marginal

distributions. If X and Y are independent, their joint distribution will equal the

product of their marginals, and HSIC will be close to zero. IfX and Y are dependent,

HSIC will be positive, indicating the presence of statistical dependence.

4.3.2 Empirical Estimation of HSIC

In practice, HSIC is estimated from finite samples of the random variables. Given

a sample of size n, the empirical estimate of HSIC is computed as:

HSIC(X, Y ) = 1
(n− 1)2 tr(KHLH) (4.5)

In this equation, K and L are the kernel matrices for X and Y , respectively, where

each entry in the kernel matrices is computed as Kij = k(xi, xj) and Lij = l(yi, yj).

The centering matrix H = I − 1
n
11T ensures that the kernel matrices are mean-

centered in the RKHS. The trace operator tr(·) computes the sum of the diagonal

elements of the matrix product KHLH, which measures the dependence between

X and Y .
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4.4 Proposed Methodology

We propose a method for non-linear causal discovery that integrates the flexibil-

ity of Generalized Additive Models (GAMs) with the robust independence testing

capabilities of the Hilbert-Schmidt Independence Criterion (HSIC). Our approach

combines the power of GAMs to model complex, non-linear relationships with the

sensitivity of HSIC to detect dependencies in the residuals, allowing us to uncover

underlying causal structures.

4.4.1 Problem Formulation

We consider a set of variables X = {X1, . . . , Xp}, where the causal relationships

between these variables are represented by a Directed Acyclic Graph (DAG) G.

Each variable Xi is assumed to be generated as a function of its parents in the

DAG, denoted as PAi, and an independent noise term εi. The data generation

process is assumed to follow the form:

Xi = fi(PAi) + εi (4.6)

Here, fi(·) represents an unknown, non-linear function, and εi is a non-Gaussian

noise term that is independent of the parent variables PAi. The objective is to

estimate the causal structure by fitting GAMs to model the relationships between

the variables and using HSIC to test for statistical independence in the residuals.

4.4.2 Objective Function

The objective function in the context of Generalized Additive Models (GAMs) com-

bined with Hilbert-Schmidt Independence Criterion (HSIC) is fundamental for esti-

mating the relationships between variables while maintaining the smoothness of the

functional forms and avoiding overfitting.

For each variable Xi, we model the influence of the other variables Xj, where j ̸= i,
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through a set of smooth functions fij(Xj). These functions capture the non-linear

effects of predictor Xj on the response Xi. The general form of the GAM for each

variable Xi is:

Xi = β0 +
∑
j ̸=i

fij(Xj) + εi

Here:

• Xi is the dependent variable.

• β0 is the intercept.

• fij(Xj) is a smooth, non-linear function representing the effect of Xj on Xi.

• εi is the noise or residual term, assumed to be independent and non-Gaussian.

The estimation of the smooth functions fij(Xj) involves minimizing a penalized least

squares criterion. The penalization ensures that the functions fij(Xj) do not overfit

the data by being overly flexible. The objective function for estimating the smooth

functions fij is expressed as:

β̂0, f̂ij = arg min
β0,fij

p∑
i=1

 n∑
k=1

Xi,k − β0 −
∑
j ̸=i

fij(Xj,k)
2

+
∑
j ̸=i

λj

∫ (
f ′′

ij(Xj)
)2
dXj



This objective function consists of two main components:

1. Least Squares Error: The term ∑n
k=1

(
Xi,k − β0 −

∑
j ̸=i fij(Xj,k)

)2
repre-

sents the sum of squared residuals, where Xi,k is the observed value of Xi for

the k-th observation, and β0 +∑
j ̸=i fij(Xj) is the additive model fitted to the

data. This term ensures that the model fits the data accurately.

2. Smoothness Penalty: The term∑
j ̸=i λj

∫ (
f ′′

ij(Xj)
)2
dXj penalizes the rough-

ness of the functions fij(Xj) by incorporating their second derivatives. This
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smoothness penalty controls the flexibility of the functions, with larger values

of the smoothing parameters λj enforcing smoother (i.e., less wiggly) func-

tions. The integration
∫ (
f ′′

ij(Xj)
)2
dXj ensures that functions with large sec-

ond derivatives (which correspond to rapid changes) are penalized, preventing

overfitting.

The smoothing parameters λj play a crucial role in balancing the trade-off between

model fit and smoothness. Smaller values of λj allow the functions fij(Xj) to capture

more complex patterns in the data, while larger values force the functions to be

smoother and avoid capturing noise.

4.4.2.1 Interpretation of the Objective Function

The objective function minimizes the total error across all variables Xi, with each

predictor Xj contributing to the additive model for Xi. The penalization ensures

that the estimated functions are smooth and interpretable. The second derivative

penalty is a key feature of non-parametric regression techniques, such as splines,

that are commonly used in GAMs.

In the context of causal discovery, this objective function allows us to model the

non-linear dependencies between variables while ensuring that the estimated rela-

tionships are smooth and generalize well to unseen data.

4.4.3 Determining Causal Order

The threshold τ is derived from the asymptotic distribution of the normalized HSIC

(nHSIC) statistic. Under the null hypothesis of independence, it has been shown

that as the sample size n increases, nHSIC converges in distribution to a weighted

sum of squared normal variables, i.e.,

τ ← lim
n→∞

∞∑
l=1

λlz
2
l ,
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where {λl} are the eigenvalues of the kernel integral operator and {zl} are indepen-

dent standard normal variables, i.e., zl ∼ N (0, 1). This asymptotic result provides a

theoretically justified threshold for assessing statistical independence. For a detailed

derivation and discussion of these properties, please refer to Gretton et al. (2005,

2008)

4.4.4 Algorithm for Non-Linear Causal Discovery

This section describes the steps in the proposed non-linear causal discovery method,

which integrates Generalized Additive Models (GAMs) and the Hilbert-Schmidt

Independence Criterion (HSIC). The method estimates causal relationships between

variables by modeling non-linear dependencies using GAMs and applying HSIC to

test for independence in the residuals. The final output is a causal graph representing

the discovered causal structure.
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Algorithm 1 Proposed Algorithm for Non-linear Causal Discovery
Require: Dataset D = {x(1), . . . ,x(n)} where each x(k) =

(
x

(k)
1 , . . . , x(k)

p

)
Ensure: A causal graph G = (V,E)

1: Standardize each variable: X ′
i = Xi−µi

σi
for i = 1 to p

2: for i = 1 to p do
3: Fit GAM: X ′

i ≈ β0,i +∑
j ̸=i fij(X ′

j)
4: Minimize penalized loss:

L(β0,i, {fij}j ̸=i) =
n∑

k=1

(
X ′

i,k − β0,i −
∑
j ̸=i

fij(X ′
j,k)
)2

+
∑
j ̸=i

λij

∫ [
f ′′

ij(x)
]2
dx,

choosing λij via GCV or REML.
5: Compute residuals: r(k)

i = X ′
i,k −

(
β0,i +∑

j ̸=i fij(X ′
j,k)
)

6: end for
7: Initialize matrix M ∈ Rp×p

8: for i = 1 to p do
9: for j = 1 to p where j ̸= i do

10: Compute HSIC between ri and X ′
j:

Mij = HSIC(ri, X
′
j) = 1

(n− 1)2 tr(KiHLjH),

where Ki is the kernel matrix for residuals ri, Lj is the kernel matrix for X ′
j,

and H is the centering matrix.
11: end for
12: end for
13: for each pair (i, j) where i ̸= j do
14: if Mij < τ then
15: Infer edge X ′

j → X ′
i

16: else if Mij > τ then
17: Infer edge X ′

i → X ′
j

18: end if
19: end for
20: Construct initial graph G = (V,E) using the directed edges determined

above.
21: while G contains at least one directed cycle do
22: Identify a cycle C in G
23: Remove edge e∗ = arg min(u,v)∈C Muv

24: E ← E \ {e∗}
25: end while
26: return The resulting acyclic graph G = (V,E)

4.5 Theoretical Analysis

Our method is supported by several theoretical results, which we state here. The

detailed proofs can be found in the appendix.



Chapter 4. Non-Linear Causal Inference from Data 33

Lemma 4.1 (Consistency of GAM Estimation). Let X be the domain of the input

variables, f : X → R be the true underlying function, and f̂n : X → R be the

GAM estimator based on n samples. Under suitable regularity conditions, the GAM

estimators are consistent, that is, as the sample size n→∞, the estimated functions

converge to the true functions in probability:

sup
x∈X
|f̂n(x)− f(x)| p−→ 0 (4.7)

where | · | denotes the absolute value.

The proof of this lemma is provided in Appendix A.1.

Proposition 4.1 (HSIC and Independence). For characteristic kernels k and l,

HSIC(X, Y ) = 0 if and only if X and Y are independent (Gretton et al., 2005).

The proof of this proposition is given in Appendix A.1.

Theorem 4.1 (Consistency of Proposed Method). Under the assumptions of Lemma

1 and Proposition 1, and assuming that the true data-generating process follows a

non-linear additive noise model with non-Gaussian noise terms, the proposed method

consistently recovers the true causal structure, including both the presence of causal

relationships and their directions, as the sample size approaches infinity.

The detailed proof of this theorem can be found in Appendix A.1.

These theoretical results provide a strong foundation for our method, ensuring its

consistency and effectiveness in recovering true causal structures in non-linear set-

tings with non-Gaussian noise.

4.6 Computational Considerations

The computational complexity of the proposed method is O(n3 + n2p3), where n

is the number of samples and p is the number of variables. This complexity arises



Chapter 4. Non-Linear Causal Inference from Data 34

from the O(n3) operations needed for computing HSIC and the O(n2p3) required for

fitting GAMs when using cubic spline basis functions.

To enhance scalability and efficiency, we implemented several optimizations:

1. Utilization of the mgcv package in R (Wood, 2011) for fast restricted maximum

likelihood estimation for GAMs.

2. Leveraging parallel processing to handle independent tasks.

3. Employment of sparse matrix representations and operations in high-dimensional

settings.

4. Implementation of iterative methods for GAM fitting and HSIC computation

for extremely large datasets.

These optimizations enable the proposed method to efficiently address moderate to

large-scale causal discovery tasks.

4.7 Summary

The proposed method presented in this chapter offers a novel approach to nonlinear

causal discovery by combining the flexibility of Generalized Additive Models with

the independence testing power of the Hilbert-Schmidt Independence Criterion. By

addressing the challenges of non-linear causal discovery, the proposed method pro-

vides a powerful tool for uncovering causal structures in complex systems across

various domains, including economics, biology, and the social sciences.

In the subsequent chapters, we will present empirical evaluations of the proposed

method on simulated data, demonstrating its effectiveness in practical applications,

and comparing its performance to existing state-of-the-art causal discovery meth-

ods.



Chapter 5

Results and Discussion

5.1 Introduction

This chapter presents a comprehensive analysis of our novel methodologies: (1)

estimating mutual information in mixed-type variables, and (2) non-linear causal

structure learning. We evaluate these methods using both simulated and real-world

datasets, comparing their performance against existing approaches. Our analysis

employs various statistical techniques, including Bayesian modeling with Stan and

rigorous performance metrics.

The exploration of accurate causal inference in complex, non-linear systems is a fun-

damental challenge in various scientific disciplines, including economics, biology, and

social sciences (Pearl, 2009). Our research addresses this critical need by propos-

ing novel methods that overcome limitations of traditional approaches in capturing

intricate relationships within data.

35
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5.2 Mutual Information Estimation in Mixed-Type

Variables

5.2.1 Experimental Setup

Our analysis focused on three distinct datasets: synthetic data, a heart disease

dataset, and a gene expression dataset. Each dataset was selected based on its

unique characteristics, representing a variety of real-world scenarios that allow us

to evaluate the robustness and flexibility of our proposed method. For all datasets,

we employed the Stan programming language, which is widely used for Bayesian

statistical modeling. We interfaced Stan with R version 4.3.2 through the rstan

package to enable efficient and reproducible analyses.

For each dataset, we executed Stan models using four independent Markov Chain

Monte Carlo (MCMC) chains, each running for a total of 2000 iterations. This

process included a burn-in period of 1000 iterations to allow the chains to reach

stationarity before the final sample was collected. By standardizing the MCMC

configuration across datasets, we ensured consistent methodological rigor and facil-

itated coherent comparison of results between datasets. The datasets and scripts

used for these analyses can be accessed via the link below:

https://github.com/ash141886/Forest-based-on-WBIC.

5.2.2 Model Performance with Simulated Data

We began our evaluation by applying our proposed method to a synthetic dataset

containing 151 variables, including 75 discrete variables and 76 continuous variables.

The aim of this analysis was to validate the model’s performance under controlled

conditions, allowing us to observe how effectively it can handle a mix of variable

types and model the relationships between them. We utilized the Stan statistical

model to examine these relationships, producing a series of diagnostic graphs and

https://github.com/ash141886/Forest-based-on-WBIC
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posterior distribution plots to assess model convergence and reliability.

1 2

Effective sample size / Sample size

Figure 5.1: Distribution of the Effective Sample Size (ESS) over various parameters.
A higher ESS indicates better sampling efficiency, meaning that the MCMC chains
are effectively mixing, with minimal autocorrelation between samples.

In Figure 5.1, we observe the distribution of the Effective Sample Size (ESS) ratio

across all parameters. The ESS is a critical diagnostic measure, as it quantifies the

degree of independence between sampled values. A higher ESS ratio indicates more

efficient sampling and ensures that the posterior samples are representative of the

true distribution. The peak observed near a ratio of 1 suggests that the MCMC

chains mixed well for most parameters, resulting in an accurate representation of

the posterior distribution (Betancourt, 2017).

The results of the Gelman-Rubin potential scale reduction factor (R-hat) analysis

are presented in Figure 5.2. The R-hat diagnostic is a widely used metric for as-

sessing MCMC convergence, where values close to 1 suggest that the chains have

converged to a stationary distribution. In this case, most R-hat values cluster near

1, indicating that our MCMC chains converged effectively across all parameters, pro-

viding confidence in the reliability of the posterior estimates (Gelman and Rubin,

1992).
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0.999 1.000 1.001 1.002

Rhat statistic

Figure 5.2: Gelman-Rubin R-hat diagnostic values for model parameters. R-hat
values close to 1 indicate convergence across multiple MCMC chains, confirming the
reliability of the posterior estimates.

Figure 5.3 illustrates the distribution of the model’s Log Posterior values and the

Mean Metropolis Acceptance rates. The concentration of Log Posterior values

around a threshold of 560 reflects the model’s consistent likelihood across itera-

tions. Additionally, the high acceptance rates in the Metropolis algorithm indicate

that the proposed samples were largely accepted, suggesting efficient exploration of

the parameter space (Gelman, 2011). However, these high acceptance rates should

be interpreted with caution, as they may indicate that the model is not thoroughly

exploring the entire parameter space.

The trace plots and posterior distributions for selected parameters, presented in Fig-

ure 5.4, offer further insights into the behavior of the MCMC chains. On the left,

the trace plots for parameters p[2], µ[4], and σ[3] show overlapping paths across the

four chains, indicating good mixing and convergence to a stationary distribution.

On the right, the posterior distributions exhibit bell-shaped curves, implying that

the parameters are well-estimated and that the likelihood function is smooth and

unimodal. These findings confirm that the model is capable of accurately estimat-
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Figure 5.3: Distribution of the model’s Log Posterior values and Mean Metropolis
Acceptance rates. The concentration around 560 suggests a stable model likelihood,
while high acceptance rates indicate efficient sampling.
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Figure 5.4: Trace plots (left) and posterior distributions (right) for parameters p[2],
µ[4], and σ[3]. The trace plots show good mixing and convergence across chains,
while the posterior distributions indicate well-defined parameter estimates.
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ing the parameters, even in the presence of both discrete and continuous variables

(McElreath, 2020).

Figure 5.5: Forest graph constructed from the simulated dataset. This graph
includes 75 discrete variables (orange nodes) and 76 continuous variables (green
nodes), demonstrating the method’s ability to identify independent and dependent
structures.

The forest graph produced using the Chow-Liu algorithm, shown in Figure 5.5, il-

lustrates the relationships between the 75 discrete and 76 continuous variables in

the simulated dataset. Unlike traditional spanning tree models, which impose a

single-parent constraint, this forest structure reveals the model’s ability to detect

independent variables while preserving the complexity of the dataset. This structure

demonstrates the robustness of our proposed method in identifying both dependen-

cies and independencies in the data.

5.2.3 Analysis of Heart Disease Dataset

Following the simulated data analysis, we applied our method to a real-world heart

disease dataset comprising 303 patient records, each containing 14 attributes. These

attributes represent a combination of demographic, physiological, and clinical factors

related to cardiovascular health (Janosi et al., 1988). This dataset presents a more
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complex scenario than the synthetic data, as it includes real-world variability and

interdependencies between factors.

Table 5.1: Summary of Markov Chain Monte Carlo (MCMC) Simulation Results
for Heart Disease Dataset.

Parameter Mean SD 25% 50% 95% n eff Rhat
p[1] 0.27 0.03 0.25 0.27 0.31 8294 1
p[2] 0.78 0.02 0.76 0.78 0.81 10191 1
p[3] 0.42 0.03 0.40 0.42 0.46 8774 1
p[4] 0.91 0.02 0.90 0.91 0.94 9896 1
p[5] 0.93 0.01 0.92 0.93 0.96 10349 1
p[6] 0.06 0.01 0.05 0.06 0.08 10554 1
p[7] 0.52 0.03 0.50 0.52 0.57 7749 1
p[8] 0.87 0.02 0.86 0.87 0.90 10059 1
p[9] 0.57 0.03 0.55 0.57 0.62 9872 1
mu[1] 1.54 0.03 1.52 1.54 1.60 8815 1
mu[2] -0.56 0.03 -0.59 -0.56 -0.51 9717 1
mu[3] -0.82 0.03 -0.84 -0.82 -0.77 10202 1
mu[4] -1.55 0.03 -1.57 -1.55 -1.50 9435 1
sigma[1] 0.98 0.02 0.96 0.97 1.01 8562 1
sigma[2] 1.06 0.02 1.05 1.06 1.10 9903 1
sigma[3] 0.93 0.02 0.91 0.93 0.96 9785 1
sigma[4] 0.98 0.02 0.96 0.98 1.02 8224 1
sigma[5] 1.01 0.02 0.99 1.01 1.05 10058 1
lp -7417.46 6.08 -7421.36 -7417.12 -7408.12 1213 1

Table 5.1 presents the results of the MCMC simulations for the heart disease dataset.

The Rhat values, which converge to 1 for all parameters, indicate that the multiple

chains reached a consistent distribution, affirming the stability and reliability of the

parameter estimates. The effective sample sizes (n eff) are also substantial relative

to the total number of iterations, indicating minimal autocorrelation in the samples,

which further enhances the robustness of the model’s estimates.

Figure 5.6 depicts the graphical model constructed for the heart disease dataset. The

spanning tree structure highlights the interrelated nature of the variables, suggesting

that the risk factors for heart disease are not independent, but rather interconnected

in complex ways. This provides valuable insights into the underlying mechanisms

contributing to cardiovascular disease.
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Figure 5.6: Graphical representation of the heart disease dataset, with discrete
variables marked in red and continuous variables in green. This structure illustrates
the interconnectedness of the variables and their potential relationships.

5.2.4 Analysis of Gene Expression Data

We further applied our method to a gene expression dataset from the HapMap

project (Miller et al., 2005; Gamazon et al., 2010). This dataset includes genetic

variants and gene expression levels for 90 Utah individuals from the CEU population.

Our analysis focused on the first 200 polymorphic SNPs and 200 expression values

to examine the associations between genetic variants and gene expression.

The forest graph shown in Figure 5.7 visualizes the relationships between 336 vari-

ables, including genomic expressions, SNPs, and gender information. The graph

provides a detailed overview of the complex relationships within the dataset, with

nodes representing different variable types. The presence of independent compo-

nents in the graph demonstrates our method’s ability to accurately identify truly

independent variables, thus offering a deeper understanding of the underlying ge-

netic mechanisms.
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Figure 5.7: Forest graph illustrating relationships between 336 variables, includ-
ing genomic expressions, SNPs, and gender information. The structure reveals the
complex relationships between these variables, with distinct nodes highlighting in-
dependent variables.

5.3 Non-Linear Causal Inference from Data

5.3.1 Performance in Linear Scenarios

We start our analysis by evaluating the performance of our proposed method under

linear conditions, providing a baseline for comparison with LiNGAM (Shimizu et al.,

2006). To investigate the effect of sample size on model performance, we generated

datasets with sample sizes of 400, 800, 1200, and 1500. The generated data followed

a predefined causal structure consisting of five variables: x1, x2, x3, x4, and x5. The

causal relationships were structured such that x1 influenced x2, which subsequently

affected x4 and x5, with x5 further influencing x3.

Figure 5.8 provides an in-depth comparison of the performance of our proposed

method versus LiNGAM, across four important metrics: Mean Root Mean Square

Error (RMSE), Mean Kolmogorov-Smirnov (KS) statistics, Mean KS p-values, and

Mean t-test p-values. The results are evaluated over various sample sizes to assess
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Figure 5.8: Performance comparison between LiNGAM and our method in linear
scenarios. The plots show Mean RMSE, Mean KS statistics, Mean KS p-values, and
Mean t-test p-values across different sample sizes.

how both methods behave under different data conditions.

The upper left subplot shows the mean RMSE for both methods. RMSE is used

to measure the average deviation between the predicted and actual values, where

lower values indicate better model performance. Although LiNGAM consistently

achieves slightly lower RMSE values, suggesting a marginally better fit to the data,

our method demonstrates nearly equivalent performance. The gap between the

two methods remains small, indicating that despite LiNGAM’s specialized design

for linear models, our method effectively captures linear relationships with only a

minor increase in error magnitude (Shimizu et al., 2006).

The upper right subplot illustrates the Mean Kolmogorov-Smirnov (KS) statistics,

which quantify the maximum distance between the empirical cumulative distribution

functions (ECDFs) of the predicted residuals and the true residuals. Higher KS

statistics imply greater divergence between the predicted and actual distributions.
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Both methods show comparable KS values, but as the sample size increases, there is a

slight rise in the KS statistic for our proposed method. This trend may indicate that

as our model gains flexibility with larger datasets, it begins to capture more subtle

patterns, which can lead to a slight deviation from the true residual distribution.

The bottom left subplot depicts the mean KS p-values, which test the null hypoth-

esis that there is no significant difference between the distributions of the predicted

residuals and the actual residuals. Higher p-values suggest that the null hypothesis

cannot be rejected, implying that the distributions are statistically indistinguish-

able. Both LiNGAM and our method yield p-values well above the conventional

significance level of 0.05 for all sample sizes, indicating that neither method pro-

duces residuals significantly different from the true residuals. This result reinforces

the validity of both methods in accurately modeling the residual distributions.

Finally, the bottom right subplot presents the mean p-values from the t-test, which

assesses whether the mean of the predicted residuals differs significantly from the

mean of the true residuals. A higher p-value suggests no significant difference be-

tween the two means. Both methods consistently achieve high t-test p-values across

all sample sizes, showing that the residuals produced by our method are statistically

comparable to those generated by LiNGAM, particularly in terms of mean accuracy.

This further supports the robustness of our method in handling linear scenarios.

In summary, although LiNGAM achieves slightly lower RMSE values, the perfor-

mance of our method is comparable, especially when looking at residual distribution

metrics. The KS statistics and p-values, as well as the t-test results, show that our

method performs similarly to LiNGAM in terms of residual accuracy, particularly

as sample sizes increase. These findings suggest that our method is highly capable

of modeling linear relationships, offering robust and reliable results across different

evaluation criteria.
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5.3.2 Performance in Non-Linear Scenarios

The primary objective of this study is to develop a method that effectively identifies

causal relationships in complex nonlinear systems, where conventional linear tech-

niques such as LiNGAM (Shimizu et al., 2006) may be inadequate. To evaluate the

performance of the proposed method, synthetic datasets were created with sample

sizes of 400, 800, 1200, and 1500, as well as with different numbers of variables

(4, 8, 12, 15), thus allowing the method to be tested under various levels of com-

plexity. Nonlinear transformations, such as sine, cosine, and exponential functions,

were randomly applied to selected parent variables, with a sparsity parameter to

regulate the introduction of nonlinearity in the data. Furthermore, non-Gaussian

noise, an important component of LiNGAM’s assumptions, was incorporated and

extended to a nonlinear context. This noise was introduced into each variable using

random samples from several non-Gaussian distributions, such as exponential, chi-

squared, or t-distribution, and then scaled by a specified noise level. This approach

ensured that the datasets featured both nonlinear relationships and non-Gaussian

noise, allowing for a thorough evaluation of the method’s effectiveness in identifying

complex causal structures, particularly when the non-Gaussianity assumption is crit-

ical for establishing causal directions. The results, presented in Figures 5.9 to 5.13,

provide a comprehensive comparison between the proposed method and LiNGAM,

demonstrating the benefits of the proposed method in nonlinear contexts, especially

regarding the utilization of non-Gaussian noise for causal discovery.

However, as illustrated in Figure 5.13, the improvements in accuracy and struc-

tural precision come with the trade-off of increased computational time. As the

number of variables increases, the computational cost associated with the proposed

method rises, reflecting the greater complexity and resources required for accurately

modeling non-linear relationships. While the computational demand is higher, the

significant gains in accuracy and structural fidelity justify this cost in many real-

world applications where precision is paramount (Chickering, 2002).
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In conclusion, the results demonstrate that the proposed method offers clear advan-

tages over LiNGAM in non-linear settings. The method consistently outperforms

LiNGAM in key metrics such as accuracy, F1 score, MSE, and SHD, highlighting

its robustness in capturing complex non-linear causal relationships. This makes it a

highly valuable tool for researchers working on causal discovery in fields where such

non-linearities are prevalent (Peters et al., 2014; Mooij et al., 2016; Hastie et al.,

2009).

Figure 5.9: Accuracy comparison between LiNGAM and our method in non-linear
scenarios. Our method consistently outperforms LiNGAM, particularly as the num-
ber of variables increases.

The accuracy results depicted in Figure 5.9 clearly indicate that the proposed

method consistently surpasses the performance of LiNGAM across different sam-

ple sizes and numbers of variables. This consistent trend highlights the robustness

of the method and its capability to model complex non-linear dependencies, where

LiNGAM’s effectiveness is notably diminished (Shimizu et al., 2006). The results

demonstrate that our approach is better equipped to capture the intricacies of non-

linear relationships, making it a more suitable choice in such scenarios.

Additionally, the F1 scores illustrated in Figure 5.10 further validate the proposed

method’s efficacy, particularly in non-linear environments. As the number of vari-



Chapter 5. Results and Discussion 48

Figure 5.10: F1 score comparison between our method and LiNGAM. Our method
achieves higher F1 scores, especially in datasets with a greater number of variables.

ables increases, our method shows a more balanced trade-off between precision and

recall, reflecting its ability to accurately identify causal relationships while minimiz-

ing false positives and negatives. This improved balance is crucial in the context of

causal discovery, especially when the underlying relationships become more complex

(Hoyer et al., 2008).

Figure 5.11 presents a comparison of the mean squared error (MSE) between the

proposed method and LiNGAM. Across all conditions, the proposed method con-

sistently achieves lower MSE values, demonstrating its superior prediction accuracy

in non-linear contexts. The lower MSE values suggest that the predictions made by

our method are more reliable, even when faced with intricate non-linear structures

in the data (Zhang and Hyvärinen, 2012).

The Structural Hamming Distance (SHD) results, shown in Figure 5.12, underscore

the enhanced structural accuracy of our method when reconstructing the true causal

graphs. The consistently lower SHD values indicate that our method more effectively

captures the true underlying causal structures compared to LiNGAM, particularly

in scenarios involving non-linear relationships. This is a crucial metric in causal
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Figure 5.11: Comparison of Mean Squared Error (MSE) values between LiNGAM
and our method. Our method consistently achieves lower MSE values, particularly
as system complexity increases.

Figure 5.12: Comparison of Structural Hamming Distance (SHD) between our
method and LiNGAM. Our method shows lower SHD values, indicating better re-
construction of causal structures.

discovery, as a lower SHD implies greater alignment between the estimated and true

causal networks (Peters et al., 2017).

However, as illustrated in Figure 5.13, the improvements in accuracy and struc-

tural precision come with the trade-off of increased computational time. As the
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Figure 5.13: Comparison of computational time required by LiNGAM and our
method. Our method requires more computational resources, particularly as the
number of variables grows.

number of variables increases, the computational cost associated with the proposed

method rises, reflecting the greater complexity and resources required for accurately

modeling non-linear relationships. While the computational demand is higher, the

significant gains in accuracy and structural fidelity justify this cost in many real-

world applications where precision is paramount (Chickering, 2002).

In conclusion, the results demonstrate that the proposed method offers clear advan-

tages over LiNGAM in non-linear settings. The method consistently outperforms

LiNGAM in key metrics such as accuracy, F1 score, MSE, and SHD, highlighting

its robustness in capturing complex non-linear causal relationships. This makes it a

highly valuable tool for researchers working on causal discovery in fields where such

non-linearities are prevalent (Peters et al., 2014; Mooij et al., 2016; Hastie et al.,

2009).
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5.4 Discussion and Implications

Our research makes substantial contributions to mutual information estimation and

causal discovery by introducing methods that overcome previous limitations and

offer key advancements. One major breakthrough lies in the integration of discrete

and continuous variables. Unlike prior approaches that analyzed these variables

separately, our methodology successfully combines them, leading to a more compre-

hensive understanding of complex systems, which is particularly relevant in contexts

such as biological and social science datasets (Edwards et al., 2010). Additionally,

our methods address scalability issues, which have often posed challenges to exist-

ing techniques. We demonstrate consistent performance across datasets of different

sizes, which is crucial for real-world applications where the size and complexity of

data can vary significantly (Suzuki, 2017).

Another key advancement is our use of forest-based models rather than traditional

spanning trees to represent variable independence. This approach allows for a more

nuanced depiction of the structure of the data, detecting complex interdependencies

that are often overlooked by simpler models. This provides deeper insights into

intricate relationships within the dataset. Moreover, our research advances the field

of non-linear causal discovery, improving the ability to accurately identify causal

relationships in complex systems characterized by non-linear interactions. This en-

hancement addresses a significant gap in existing methods (Peters et al., 2014; Mooij

et al., 2016; Hastie et al., 2009) and opens new opportunities for understanding so-

phisticated phenomena across diverse scientific domains.

Furthermore, in cases of non-linear causal inference, the evaluation metrics, includ-

ing accuracy, F1 score, mean squared error (MSE), and structural precision as mea-

sured by Structural Hamming Distance (SHD), consistently demonstrate the supe-

rior performance of our proposed method compared to LiNGAM. This improvement

is particularly noticeable in scenarios involving complex non-linear relationships.

The ability of our method to balance multiple aspects of model performance—such
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as minimizing residual errors, reducing false discoveries, and accurately reconstruct-

ing causal structures—has broad implications across several domains. In biomedical

research, for example, the method’s capacity to capture intricate non-linear interac-

tions between genetic, environmental, and clinical factors could support the develop-

ment of personalized treatment strategies and contribute to a deeper understanding

of disease mechanisms (Peters et al., 2014; Hastie et al., 2009). In economics and

the social sciences, where systems are often driven by mixed-type variables and com-

plex dependencies, the enhanced accuracy and structural fidelity of our approach

could lead to more effective modeling of economic behavior and social networks,

which in turn could improve the design and evaluation of policies and interventions

(Mooij et al., 2016; Peters et al., 2017). In climate science, the method’s ability to

model non-linear dynamics within climate systems offers potential improvements in

the accuracy of climate models and long-term forecasting (Zhang and Hyvärinen,

2012). Finally, in neuroscience, this approach holds promise for advancing our un-

derstanding of brain connectivity, particularly by revealing the complex, non-linear

interactions between brain regions and their connections to cognitive functions and

neurological disorders (Chickering, 2002; Peters et al., 2017).

5.5 Summary

Our proposed methods for mutual information estimation involving mixed-type vari-

ables and for learning non-linear causal structures represent significant advance-

ments within their respective areas of research. By effectively addressing challenges

such as the integration of discrete and continuous variables as well as the identifica-

tion of non-linear relationships, these methods become powerful tools for uncovering

intricate structures in diverse real-world contexts.

Our non-linear causal discovery approach has demonstrated consistent superiority

over LiNGAM in various metrics, indicating its robustness in identifying non-linear
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causal relationships. Although the increased computational cost presents a trade-

off, the resulting gains in accuracy and the enhanced structural representation often

justify this additional effort.

These encouraging results provide a solid foundation for future advancements in

mutual information estimation and non-linear causal discovery. By offering more

precise and comprehensive tools for analyzing complex systems, these methods have

the potential to foster new insights across multiple scientific disciplines, including

genomics, neuroscience, economics, and climate science.



Chapter 6

Conclusions and Future Works

6.1 Conclusion

This thesis introduces two key advancements in the fields of mutual information

estimation and non-linear causal discovery, addressing fundamental challenges in

analyzing complex, real-world datasets and determining causal relationships within

non-linear systems. The first major contribution is the development of a robust mu-

tual information estimator designed to work with hybrid datasets containing both

discrete and continuous variables. By incorporating the Watanabe Bayesian Infor-

mation Criterion (WBIC) and copula density estimation, this estimator effectively

calculates joint densities and free energies, surpassing traditional limitations associ-

ated with data type constraints in mutual information calculations. Enhancements

were made to the Chow-Liu algorithm, enabling it to construct multiple trees, thus

providing a more nuanced representation of dependencies between variables. The

practical success of this approach was demonstrated in genomics, where it efficiently

uncovered gene expression-SNP relationships without the need to separate discrete

from Gaussian components. This integrative method simplified the analysis and

interpretation of complex genetic data, enriching the insights obtained and making

significant strides in the domain of mutual information estimation for mixed-type
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datasets.

The second contribution of this thesis is a novel approach to non-linear causal dis-

covery, integrating Generalized Additive Models (GAMs) with the Hilbert-Schmidt

Independence Criterion (HSIC) to extend the applicability of the LiNGAM frame-

work into non-linear contexts. This method tackles the problem of estimating ad-

ditive noise models without requiring prior knowledge of the underlying non-linear

functions, thus maintaining interpretability while accommodating a wide range of

non-linear relationships. The use of GAMs provides flexibility, while HSIC en-

hances the capacity to detect complex statistical dependencies that are often missed

by correlation-based techniques. Furthermore, the method assumes non-Gaussian

noise, which is essential for correctly identifying causal directions in cases where

Gaussian noise would otherwise hinder identifiability. Theoretical consistency in de-

termining causal order, combined with superior experimental results across metrics

such as accuracy, F1 score, mean squared error, and structural Hamming distance,

makes this approach a valuable tool for researchers studying complex, non-linear

systems in fields such as economics, biology, neuroscience, and climate science.

While the methods developed in this thesis represent significant advancements, sev-

eral promising directions for future research remain. One potential area for ex-

ploration is improving the computational efficiency of both methods, especially for

non-linear causal discovery, by focusing on algorithmic optimizations or leveraging

advanced computational techniques to reduce runtime while retaining accuracy. The

scalability of these methods to very large datasets should also be investigated, as

real-world data continues to grow in size and complexity. This could involve devel-

oping distributed or parallel processing versions of the algorithms to handle larger

datasets effectively. Another promising avenue is to explore how the integration

of these techniques with deep learning models might enhance their performance,

particularly when dealing with high-dimensional data or complex, non-linear rela-

tionships. Expanding the application of these methods beyond genomics to other
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domains, such as climate science, social networks, and financial markets, would help

validate their versatility and generalizability.

6.2 Future research directions

Further research could also focus on extending the proposed methods to handle

time series data, thereby capturing temporal causal relationships and expanding

their applicability. Developing robust approaches for quantifying uncertainty in mu-

tual information estimates and causal structures would also be beneficial, enhancing

the interpretability and reliability of the findings. Addressing challenges related to

latent confounders is another potential research direction, where extending the non-

linear causal discovery method to account for hidden variables would greatly enhance

its utility in real-world scenarios. Finally, further theoretical investigation into the

identifiability conditions and convergence properties of the proposed methods would

provide deeper insights, ensuring robustness and guiding future refinements. These

future directions provide a foundation for advancing the contributions of this the-

sis, leading to the development of more powerful, efficient, and versatile tools for

understanding complex systems and discovering causal relationships across a broad

spectrum of real-world applications.



Appendix A

Appendix

A.1 Proof of Consistency of GAM Estimation

Lemma A.1 (Consistency of GAM Estimation). Let X be the domain of the input

variables, f : X → R be the true underlying function, and f̂n : X → R be the

GAM estimator based on n samples. Under suitable regularity conditions, the GAM

estimators are consistent, that is, as the sample size n→∞, the estimated functions

converge to the true functions in probability:

sup
x∈X
|f̂n(x)− f(x)| p−→ 0 (A.1)

where | · | denotes the absolute value.

Proof. We consider the Generalized Additive Model (GAM) for each response vari-

able Xi, modeled as:

Xi = β0i +
∑
j ̸=i

fij(Xj) + εi, i = 1, . . . , p

where:

• β0i is the intercept term.
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• fij(Xj) are unknown smooth functions of the predictors Xj, j ̸= i.

• εi are error terms with E[εi] = 0 and Var(εi) = σ2
i <∞.

Assumptions:

(A1) Smoothness of True Functions: Each true function fij belongs to a Sobolev

space Wm
2 (X ) of order m ≥ 2, implying that fij has square-integrable deriva-

tives up to order m.

(A2) Choice of Smoothing Parameters: The smoothing parameters satisfy

λij → 0 and nλij →∞ as n→∞.

(A3) Design Density: The predictor variables Xj have a joint density pX(x) that

is bounded away from zero and infinity on a compact support X ⊂ Rp.

(A4) Error Terms: The error terms εi are independent and identically distributed

(i.i.d.) with E[εi] = 0 and Var(εi) = σ2
i <∞.

Our goal is to show that under these assumptions, the estimators f̂ij converge uni-

formly in probability to the true functions fij as n→∞.

Step 1: Approximation by Finite Basis Expansion

We represent each function fij using a finite basis expansion:

fij(x) =
Mij∑
l=1

θijlϕijl(x)

where:

• {ϕijl(x)}Mij

l=1 are known basis functions (e.g., B-splines or truncated power se-

ries) forming a basis for Wm
2 (X ).

• Mij is the number of basis functions, which may increase with n.

• θij = (θijl)Mij

l=1 are coefficients to be estimated.
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This representation allows us to approximate fij to arbitrary accuracy as Mij →∞.

Step 2: Penalized Least Squares Estimation

We estimate the coefficients θij by minimizing the penalized least squares criterion:

PLSn(θi) = 1
n

n∑
k=1

X(k)
i − β0i −

∑
j ̸=i

Mij∑
l=1

θijlϕijl(X(k)
j )

2

+
∑
j ̸=i

λijθ
⊤
ijKijθij

where:

• Kij is a positive semi-definite matrix corresponding to the roughness penalty,

typically derived from the integral of the squared second derivative of fij:

θ⊤
ijKijθij =

∫ (
f ′′

ij(x)
)2
dx

Step 3: Consistency of Penalized Least Squares Estimators

Under assumptions (A1)-(A4), and by applying results from nonparametric regres-

sion theory (Newey, 1997; Huang, 2003), we have the following:

- The estimation error of θ̂ij satisfies:

∥θ̂ij − θ∗
ij∥ = OP

((
Mij

n

)1/2
+ λij

)

where θ∗
ij are the true coefficients of fij in the basis expansion.

- The approximation error due to using a finite basis is O(M−m
ij ), because the Sobolev

space Wm
2 functions can be approximated with error O(M−m

ij ) (Schumaker, 2007)).

Step 4: Uniform Convergence of Estimated Functions

Combining the estimation error and approximation error, we have:

sup
x∈X

∣∣∣f̂ij(x)− fij(x)
∣∣∣ = OP

(M2
ij

n

)1/2

+ λijM
1/2
ij


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Similarly, the approximation error is:

sup
x∈X

∣∣∣fMij

ij (x)− fij(x)
∣∣∣ = O(M−m

ij )

Step 5: Choice of Mij and λij

To balance the estimation and approximation errors, we select Mij and λij such

that: (
M2

ij

n

)1/2

≈M−m
ij , λijM

1/2
ij ≈M−m

ij

Let us choose Mij ∝ n1/(2m+1). Then:

(
M2

ij

n

)1/2

= O
(
n−m/(2m+1)

)

M−m
ij = O

(
n−m/(2m+1)

)
Similarly, choose λij ∝ n−m/(2m+1)M

−1/2
ij .

Step 6: Total Error and Convergence

Combining the errors:

sup
x∈X

∣∣∣f̂ij(x)− fij(x)
∣∣∣ = OP

(
n−m/(2m+1)

)

As n→∞, n−m/(2m+1) → 0, so:

sup
x∈X

∣∣∣f̂ij(x)− fij(x)
∣∣∣ P−→ 0

Step 7: Conclusion

By applying this result to each function fij, we have shown that under the regular-

ity conditions (A1)-(A4), the estimated functions f̂i(x) for the generalized additive
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model are consistent. Specifically:

sup
x∈X

∣∣∣f̂i(x)− fi(x)
∣∣∣ ≤∑

j ̸=i

sup
x∈X

∣∣∣f̂ij(x)− fij(x)
∣∣∣ P−→ 0 as n→∞

This completes the proof of the consistency of the generalized additive model esti-

mators.

Proposition A.1 (HSIC and Independence). For characteristic kernels k and l,

HSIC(X, Y ) = 0 if and only if X and Y are independent (Gretton et al., 2005).

Proof. We will prove this proposition following the approach of Gretton et al. (2005):

Step 1: Define HSIC in terms of cross-covariance operators.

Let F and G be Reproducing Kernel Hilbert Spaces (RKHS) associated with kernels

k and l, respectively. Let ϕ : X → F and ψ : Y → G be the feature maps

corresponding to k and l.

The mean elements in F and G are defined as:

µX = EX [ϕ(X)], µY = EY [ψ(Y )]

The cross-covariance operator CXY : G → F is defined by:

CXY = EXY [(ϕ(X)− µX)⊗ (ψ(Y )− µY )]

where ⊗ denotes the tensor product.

The Hilbert-Schmidt Independence Criterion (HSIC) is defined as the squared Hilbert-

Schmidt norm of CXY :

HSIC(X, Y ) = ∥CXY ∥2
HS

Step 2: Show that HSIC is zero if and only if the cross-covariance operator

is zero.
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By the properties of the Hilbert-Schmidt norm, we have:

∥CXY ∥2
HS = 0 ⇐⇒ CXY = 0

Therefore:

HSIC(X, Y ) = 0 ⇐⇒ CXY = 0

Step 3: Prove that a zero cross-covariance operator implies independence.

Assume that CXY = 0. We need to show that X and Y are independent.

For any f ∈ F and g ∈ G, consider the covariance between f(X) and g(Y ):

Cov(f(X), g(Y )) = EXY [(f(X)− E[f(X)])(g(Y )− E[g(Y )])]

= EXY [⟨f, ϕ(X)− µX⟩F⟨ψ(Y )− µY , g⟩G]

= ⟨f, CXY g⟩F

Since CXY = 0, it follows that:

Cov(f(X), g(Y )) = 0

for all f ∈ F and g ∈ G.

Because k and l are characteristic kernels, their corresponding RKHS F and G

are dense in the space of continuous functions vanishing at infinity on X and Y ,

respectively (see Fukumizu et al., 2008).

This implies that for all bounded continuous functions f : X → R and g : Y → R:

Cov(f(X), g(Y )) = 0

Therefore, all such functions f(X) and g(Y ) are uncorrelated.

However, uncorrelatedness of all bounded continuous functions implies independence

of X and Y , because any joint distribution where all bounded continuous functions
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are uncorrelated must be the product of the marginals.

Conversely, assume that X and Y are independent.

Then:

EXY [ϕ(X)⊗ ψ(Y )] = EX [ϕ(X)]⊗ EY [ψ(Y )]

Therefore:

CXY = EXY [(ϕ(X)− µX)⊗ (ψ(Y )− µY )]

= (EXY [ϕ(X)⊗ ψ(Y )])− µX ⊗ µY

− µX ⊗ µY + µX ⊗ µY

= (µX ⊗ µY )− µX ⊗ µY

= 0

Thus, HSIC(X, Y ) = ∥CXY ∥2
HS = 0.

Conclusion:

We have shown that:

HSIC(X, Y ) = 0 ⇐⇒ X ⊥ Y

when using characteristic kernels k and l. This completes the proof.

A.2 Proof of Theorem

Theorem A.1 (Consistency of Proposed Method). Under the assumptions of Lemma

1 and Proposition 1, and assuming that the true data-generating process follows a

non-linear additive noise model with non-Gaussian noise terms, the proposed method

consistently recovers the true causal structure, including both the presence of causal

relationships and their directions, as the sample size approaches infinity.
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Proof. To prove the consistency of our method, we will show that under suitable

assumptions, the probability that our method correctly identifies the true causal

graph approaches 1 as n→∞.

Assumptions:

(A1) Data Generating Process: The true model is a non-linear additive noise

model (ANM):

Xi = fi(PAi) + εi, i = 1, . . . , p

where:

• PAi denotes the set of parent variables of Xi in the true causal graph G.

• fi are unknown smooth, non-linear functions belonging to a Sobolev space

Wm
2 (X ) with m ≥ 2.

• εi are mutually independent, non-Gaussian noise terms with E[εi] = 0

and Var(εi) = σ2
i <∞.

• The errors εi are independent of their predictors PAi.

(A2) Observational Data: We have an i.i.d. sample {X(k) = (X(k)
1 , . . . , X(k)

p )}n
k=1

from the joint distribution of (X1, . . . , Xp).

(A3) Design Density: The covariatesXj have a joint density pX(x) that is bounded

away from zero and infinity on a compact support X ⊂ Rp.

(A4) Smoothness Penalty Parameters: The smoothing parameters λij satisfy

λij → 0 and nλij →∞ as n→∞.

(A5) Kernel Functions: The kernels used in HSIC are characteristic, continuous,

and bounded.

Our goal is to demonstrate that, under these assumptions, the estimated causal

graph Ĝ converges to the true causal graph G with probability approaching 1 as

n→∞.
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Proof Outline:

1. Consistency of Function Estimation: Show that the estimated functions

f̂i converge uniformly to the true functions fi.

2. Convergence of Residuals: Establish that the residuals ε̂i = Xi − f̂i(P̂Ai)

converge in distribution to the true noise terms εi.

3. Independence Testing Using HSIC: Use the HSIC to test for independence

between residuals and predictors, correctly identifying parent and non-parent

variables.

4. Recovery of Causal Structure: Combine the results to show that the

estimated parent sets P̂Ai converge to the true parent sets PAi, thus recovering

the true causal structure.

Detailed Proof:

Step 1: Consistency of Function Estimation

By Lemma A.1, under assumptions (A1)-(A4), the estimated functions f̂i obtained

from the penalized least squares criterion converge uniformly in probability to the

true functions fi:

sup
x∈X

∣∣∣f̂i(x)− fi(x)
∣∣∣ P−→ 0, ∀i = 1, . . . , p.

Step 2: Convergence of Residuals

Define the residuals:

ε̂
(k)
i = X

(k)
i − f̂i(P̂A(k)

i ), k = 1, . . . , n.

Expressing ε̂(k)
i in terms of the true model:

ε̂
(k)
i = ε

(k)
i +

[
fi(PA(k)

i )− f̂i(P̂A(k)
i )

]
.

Let δ(k)
i = fi(PA(k)

i )− f̂i(P̂A(k)
i ).
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Since f̂i converges to fi uniformly and P̂Ai will be shown to converge to PAi, we

have δ(k)
i

P−→ 0.

Thus:

ε̂
(k)
i = ε

(k)
i + δ

(k)
i

d−→ ε
(k)
i .

Step 3: Independence Testing Using HSIC

We employ Proposition A.1 which states that for characteristic kernels:

HSIC(X, Y ) = 0 if and only if X ⊥ Y.

Testing Procedure:

For each variable Xi and each potential predictor Xj (j ̸= i):

1. Fit a GAM Excluding Xj: Estimate f̂i without including Xj as a predictor.

2. Compute Residuals: Calculate ε̂(k)
i = X

(k)
i − f̂i(P̂A(k)

i ).

3. Compute HSIC: Compute HSICn(ε̂i, Xj) using the empirical estimate:

HSICn(ε̂i, Xj) = 1
(n− 1)2 tr(KHLH),

where K and L are kernel matrices for ε̂i and Xj, and H is the centering

matrix.

4. Hypothesis Testing: Test H0 : ε̂i ⊥ Xj versus H1 : ε̂i ̸⊥ Xj.

5. Decision Rule: Reject H0 if HSICn(ε̂i, Xj) > τn, where τn is determined

based on the asymptotic distribution under H0 and the desired significance

level α.

Justification:

• In Case 1, when Xj /∈ PAi, the noise term εi is independent of Xj. As a result,

the estimated residuals ε̂i converge in distribution to the true residuals, ε̂i
d−→
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εi, meaning that asymptotically, ε̂i becomes independent of Xj. Therefore, as

the sample size increases, the Hilbert-Schmidt Independence Criterion (HSIC)

between ε̂i and Xj, denoted as HSICn(ε̂i, Xj), converges in probability to zero,

HSICn(ε̂i, Xj) P−→ 0.

• In Case 2, when Xj ∈ PAi, excluding Xj from the model results in mis-

specification. This misspecification leads to residuals ε̂i that retain some de-

pendence on Xj, meaning that ε̂i ̸⊥ Xj. Consequently, the HSIC value be-

tween ε̂i and Xj, HSICn(ε̂i, Xj), converges in probability to a positive constant,

HSICn(ε̂i, Xj) P−→ c > 0.

Consistency of the Test:

The test is consistent because, under the null hypothesis H0, which states that ε̂i and

Xj are independent, HSICn
P−→ 0. On the other hand, under the alternative hypoth-

esis H1, which posits dependence between ε̂i and Xj, the HSIC statistic converges

in probability to a positive value, HSICn
P−→ c > 0. As the sample size n tends to

infinity, the test reliably distinguishes between independence and dependence with

a probability approaching 1.

Step 4: Recovery of Causal Structure

By applying the testing procedure for all pairs (Xi, Xj), we construct estimated

parent sets:

P̂Ai = {Xj : Reject H0 between ε̂i and Xj}.

Since the tests are consistent, we have:

P (P̂Ai = PAi)→ 1 as n→∞.

Conclusion:

The estimated causal graph Ĝ, constructed from the estimated parent sets P̂Ai,
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converges to the true causal graph G with probability approaching 1:

P (Ĝ = G)→ 1 as n→∞.

Therefore, the proposed method is consistent.
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