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Abstract

Handling missing data inheres significant challenges in statistical analysis due to the
potential for substantial bias and e�ciency loss, particularly when the response mechanism
depends on unobserved variables, which is referred to as “nonignorable”. A key di�culty
in analyzing nonignorable missing data is guaranteeing identifiability. A model that lacks
identifiability cannot be estimated theoretically, and inferences made from such a model
tend to be unstable. To address these issues, this study develops methodologies to ensure
model identifiability in the presence of nonignorable nonresponse.

First, this research explores the connection between model identifiability and the com-
pleteness condition under instrumental variable settings. It introduces a novel su�cient
condition based on the monotone-likelihood property, providing a practical alternative
when establishing the completeness condition is di�cult. The second proposed approach
focuses on modeling the joint distribution of observed and unobserved variables using a
logistic response mechanism and generalized linear outcome models. A key contribution
of this work is the derivation of su�cient conditions for model identifiability without re-
lying on instrumental variables, which are often assumed to ensure identifiability but are
typically challenging to identify in practice. Numerical simulations and real data analy-
ses illustrate the practical e↵ectiveness of these methods, highlighting their potential for
addressing nonignorable missing data in real-world applications.

The discussion further transitions to survey sampling, a field where missing data is
commonly problematic. In particular, nonresponse occurred with nonnegligible probabil-
ity after probability sampling presents a pervasive issue in survey sampling, often requiring
adjustments to simultaneously address both sampling and selection biases. This study
examines strategies for reducing bias and optimizing the use of available information,
not only in nonresponse scenarios but also in data integration settings, where summary
statistics from external data sources are available. We reframe these challenges within
a two-step monotone missing data framework: the first stage involves missingness due
to sampling, while the second focuses on nonresponse. To enhance robustness against
model misspecification within this framework, we extend the concept of double robust-
ness to multiple robustness by introducing a two-step empirical likelihood method. This
method e�ciently leverages empirical weights to improve estimation accuracy. In addi-
tion, we illustrate how the identifiability conditions established in the first part can be
applied not only to handling missing data but also to integrating non-probability samples
in survey sampling. We can accomplish this by interpreting the pairing of probability and
non-probability samples within the broader context of the incomplete data framework.
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1 Introduction

There has been a rapidly growing movement to utilize all available data, even when such
data explicitly or implicitly contain missing values, in fields such as causal inference (Im-
bens and Rubin, 2015) and data integration (Hu, Wang, Li and Miao, 2022; Yang and Kim,
2020). For such datasets, handling missing data is a critical issue in many research areas
because improper analysis can lead to misleading or erroneous results. For example, “The
Strengthening Analytical Thinking for Observational Studies Initiative”, a large-scale col-
laborative research project involving over 100 experts from diverse fields of biostatistics
research, identified nine crucial topics in observational studies (Sauerbrei, Abrahamowicz,
Altman, le Cessie, Carpenter and initiative, 2014); missing data problems are one of the
nine critical topics. The complexity of handling missing data is further heightened when
the response mechanism is nonignorable or missing not at random (MNAR), where the
missingness is caused by the value that would have been observed (Ibrahim, Chen, Lip-
sitz and Herring, 2005; Kim and Yu, 2011; Little and Rubin, 2019; Wang, Shao and Kim,
2014).

The nonignorable response mechanism is frequently encountered in practical appli-
cations and has been extensively studied in various fields such as RNA-sequencing data
analysis (Hicks, Townes, Teng and Irizarry, 2018), school psychology research (Baraldi and
Enders, 2010), cost-e↵ectiveness analysis (Leurent, Gomes, Faria, Morris, Grieve and Car-
penter, 2018), counselling psychology research (Parent, 2013), clinical trials (Hazewinkel,
Bowden, Wade, Palmer, Wiles and Tilling, 2022), and information systems research (Peng,
Hahn and Huang, 2023). For example, Peng et al. (2023) reported how information sys-
tems researchers deal with missing values and presented six scenarios with R&D data
from the Compustat database and online reviews in the field of information systems.

In recent years, analysis of missing data under the missing at random (MAR) assump-
tion (Little and Rubin, 2019) has become increasingly well-established (Kim and Shao,
2021; Robins, Rotnitzky and Zhao, 1994a). Although model identifiability is a fundamen-
tal requirement for constructing asymptotic theory, relaxing the MAR assumption makes
statistical inference drastically di�cult, especially in model identification (Miao, Ding and
Geng, 2016). Estimation with unidentifiable models may provide multiple solutions that
have exactly the same model fitting. Several researchers have considered giving su�cient
conditions for the model identification under the MNAR assumption.

Constructing observed likelihood consists of two distributions: response mechanism re-
sponse mechanism and outcome distribution outcome distribution (Kim and Shao, 2021).
Miao et al. (2016) considered identification condition with Logistic, Probit, and Robit
(cumulative distribution function of t-distribution) models for response mechanism and
normal and t (mixture) distributions for outcome distribution. Cui, Guo and Yang (2017)
assumed Logistic, Probit, and cLog-log models for response mechanism and the general-
ized linear models for outcome distribution. These studies depend heavily on the model
specification of both response mechanism and outcome distribution. Wang et al. (2014) in-
troduced a covariate called instrument or shadow variable and demonstrated that the use
of the instrument could considerably relax conditions on response mechanism and outcome
distribution. For example, outcome distribution requires only the monotone-likelihood
property, which includes a variety of models, such as the generalized linear model. Tang,
Little and Raghunathan (2003) and Miao and Tchetgen (2018) derived conditions for
model identifiability without postulating any assumptions on response mechanism with
the help of the instrument. Miao, Liu, Tchetgen and Geng (2019) further relaxed the
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assumption under an assumption referred to as the completeness condition on response
mechanism (D’Haultfœuille, 2010, 2011). For example, the generalized linear model with
continuous covariates satisfies the completeness condition. To the best of our knowledge,
this combination of an instrument on response mechanism and completeness on outcome
distribution is the most general condition for model identification and has been accepted
in numerous studies (Yang, Wang and Ding, 2019; Zhao and Ma, 2022).

Generally, assumptions on outcome distribution rely on the distribution of the com-
plete data, which is untestable from observed data. Instead of modelling the distribution
of complete data, numerous recently developed methods have modelled the distribution
of observed data, referred to as the respondents’ outcome model (Kim and Yu, 2011; Li,
Ma and Zhao, 2021; Morikawa and Kim, 2021; Riddles, Kim and Im, 2016; Shetty, Ma
and Zhao, 2021). This modelling is advantageous because the observed data are available;
consequently, we can select a better model for the candidates by using information crite-
ria based on the observed data, such as the Akaike information criterion (AIC), Bayesian
information criterion (BIC), or other variable selection methods, such as the adaptive
lasso (Zou, 2006). The application of Bayes’ theorem yields an explicit expression of the
nonrespondents’ outcome model from the assumed respondents’ outcome model and re-
sponse mechanism. This alternative expression for the joint distribution of the outcome
variable and response indicator is often called Tukey’s representation (Franks, Airoldib
and Rubin, 2020).

Even after overcoming the challenges of identifiability, estimation methods for nonig-
norable nonresponse and similar data structures still have significant potential for further
development. An example of a data structure similar to nonignorable nonresponse is
informative sampling (Pfe↵ermann, 1993; Pfe↵ermann and Sverchkov, 2009) in survey
sampling. In survey sampling, probability sampling typically provides sampling weights,
the inverse of inclusion probabilities, based on covariates known before sampling the out-
come variables. When the outcome variables are conditionally independent of covariates
given the sampling weights, the sampling is non-informative. However, if some covariates
used to construct sampling weights are unavailable to analysts, this dependence between
weights and outcomes leads to informative sampling. Morikawa, Terada and Kim (2022)
proposed a semiparametric e�cient estimator under the informative sampling framework.
However, in practice, outcome variables often contain missing values. To address this non-
response, Kim and Haziza (2014) and Chen and Haziza (2017) proposed a double/multiple
robust estimator, respectively. Additionally, Morikawa, Beppu and Aida (2023) derived an
adaptive estimator that achieves the semiparametric e�cient bound under nonresponse.

In this paper, the discussion centers on two key aspects: identifiability and estimation
under informative sampling. Here are the main contributions of each study:

• Identifiability: under the modeling of the respondents’ outcome model, we derive two
types of identification conditions. First, we consider an identification problem with
an instrument for response mechanism and the respondents’ outcome that satisfies
the monotone-likelihood ratio property. Note that although our model setup is
similar to Wang et al. (2014), we can check the validity of the respondents’ outcome
with observed data. Second, we derive the nonrespondents’ outcome model in the
form of a generalised linear model without any instrumental or shadow variables
when the observed data can be fitted as a generalised linear model and the response
mechanism follows a logistic distribution. To estimate the model parameters, we
employ fractional imputation (FI), which is among the most beneficial tools in
missing data analysis for solving estimating equations (Im, Cho and Kim, 2018;
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Kim, 2011). Detailed FI estimation procedures are introduced along with variance
estimation by applying the results of Riddles et al. (2016). Given these points,
deriving identification conditions without relying on the existence of instrumental
variables is useful and accessible to all fields of research.

• Estimation under informative sampling: to overcome the misspecification of the
working model, we extend the adaptive estimator proposed by Morikawa et al.
(2023) to multiple robust estimators using empirical likelihood weights. Moreover,
we develop optimal estimators for informative sampling scenarios using empirical
likelihood weights when external summary statistics are accessible. Building on the
work of Chatterjee, Chen, Maas and Carroll (2016), Kundu, Tang and Chatterjee
(2019), and Zhang, Deng, Schi↵man, Qin and Yu (2020), recent advances in data
integration utilize both individual-level internal data and summary statistics such as
means and variances of covariates and outcomes from external sources. Additionally,
Hu et al. (2022) established the e�ciency bound for data integration settings and
proposed adaptive estimators that achieve this bound. Inspired by their approach,
we derive the e�cient multiple robust estimator using external summary statistics
in our setting.

The remainder of this paper is organised as follows: In section 2, we overview the
identification conditions from previous research. Then, we propose the identification con-
ditions for two scenarios. In section 3, the discussion shifts to informative sampling, where
we derive an e�cient multiple robust estimator using the empirical likelihood approach.
Furthermore, as a related topic to the identifiability conditions derived in section 2, we
introduce the integration of non-probability samples under nonignorable participation.
Numerical examples including a simulation study and real data applications, are pre-
sented in Section 4 and 5. Section 6 summarises the concluding remarks. All technical
proofs are presented in the Appendix.
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2 Identification in nonignorable model

In this section, we focus on the model identifiability in the nonignorable model. First, we
introduce the observed likelihood, explaining its formulation and importance in address-
ing missing data problems. We then discuss estimation methods based on the observed
likelihood and other functions. Next, we define the concept of identification within the
context of observed likelihood, establishing a clear framework for evaluating identifiability.
Building on this background, we propose novel identification conditions.

2.1 Observed likelihood

Let {xi, yi, �i}
n
i=1

be independent and identically distributed samples from a distribution
of (x, y, �), where x is a fully observed covariate vector, y is an outcome variable subject
to missingness, and � is a response indicator of y being 1(0) if y is observed (missing).
We use generic notation p(·) and p(· | ·) for the marginal density and conditional density,
respectively. For example, p(x) is the marginal density of x, and p(y | x) is the conditional
density of y given x. We model the MNAR response mechanism P (� = 1 | x, y) and
consider its identification. The observed likelihood is defined as

Y

i:�i=1

P (�i = 1 | yi,xi)p(yi | xi)
Y

i:�i=0

Z
{1� P (�i = 1 | y,xi)} p(y | xi)dy. (1)

We say that this model is identifiable if parameters in (1) are identified, which is equiva-
lent to parameters in P (� = 1 | y,x)p(y | x) being identified. This identification condition
is essential even for semiparametric models such as an estimator defined by moment con-
ditions (Morikawa and Kim, 2021). However, simple models can be easily unidentifiable.
For example, Example 1 in Wang et al. (2014) presented an unidentifiable model when
the outcome model is normal, and the response mechanism is a Logistic model.

There is an alternative way to express the relationship between y and x. A disadvan-
tage of modeling p(y | x) is its subjective assumption on the distribution of complete data,
not of observed data. In other words, if we made assumptions about p(y | x) and ensured
its identifiability, we could not verify the assumptions using the observed data. By con-
trast, this issue can be overcome by modeling p(y | x, � = 1) because p(y | x, � = 1) is the
outcome model for the observed data, and we can check its validity using ordinal informa-
tion criteria such as AIC and BIC. Therefore, we model p(y | x, � = 1) and consider the
identification condition in the later section. Hereafter, we assume two parametric models
p(y | x, � = 1;�) and P (� = 1 | x, y;�), where � and � are parameters of the outcome
and response models, respectively. Although our method requires two parametric models,
the class of identifiable models is very large. For example, it can include semiparametric
outcome models for p(y | x, � = 1;�) and general response models P (� = 1 | x, y;�)
other than Logistic models, as discussed in Example 2.10.

2.2 Estimation methods

We present a procedure of parameter estimation based on parametric models of p(y |

x, � = 1;�) and P (� = 1 | x, y;�). Let �̂ be the maximum likelihood estimator of �. The
observed likelihood (1) yields to the mean score equation for � (Kim and Shao, 2021):

nX

i=1

⇢
�i
@ log ⇡(xi, yi;�)

�
� (1� �i)

R
@⇡(xi, y;�)/@� · p(y | x)dyR
{1� ⇡(xi, y;�)}p(y | x)dy

�
= 0, (2)
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where ⇡(x, y;�) = P (� = 1 | x, y;�). By using Bayes’ formula p(y | x) / p(y | x, � =
1)/⇡(x, y;�), the mean score can be written as

nX

i=1

{�is1(xi, yi;�) + (1� �i)s0(xi;�)} = 0,

where

s1(x, y;�) =
@ log ⇡(x, y;�)

@�
, s0(x;�) = �

R
s1(x, y;�)p(y | x, � = 1)dyR

{1/⇡(x, y;�)� 1} p(y | x, � = 1)dy
.

To compute the two integrations in s0(·), we can use the fractional imputation (Kim,
2011). As described in Riddles et al. (2016), the EM algorithm is also applicable.

Many identification conditions have been proposed under nonignorable missing data
because identifiability conditions exist for each estimation method. For example, identi-
fiability for maximizing the observed likelihood (1) or pseudo-likelihood that is a certain
function. First, we explain the definition of identifiability under the estimation using the
observed likelihood in the section 2.3. Second, we overview the previous research for each
modeling. Subsequently, we propose new identification conditions.

2.3 Definition of identification in the use of observed likelihood

Recall that the identification condition in (1) is for parameters in P (� = 1 | y,x)p(y | x).
As seen in Section 2.2, the conditional density p(y | x) is represented by p(y | x, � = 1;�)
and P (� = 1 | x, y;↵,�) by Bayes’ formula. Thus, using the formula, identification with
these models changes to parameters in '(y,x;�,�), where

'(y,x;�,�) =
p(y | x, � = 1;�)R

p(y | x, � = 1;�)/⇡(x, y;�)dy
. (3)

Strictly speaking, the identification condition is '(y,x;�,�) = '(y,x;�0
,� 0) with prob-

ability 1 implies that (�>
,�>) = (�0>

,� 0>). Generally, the integral in the denominator
of (3) does not have the closed form, which makes deriving a su�cient condition for the
identifiability quite challenging. Morikawa and Kim (2021) identified a combination of
Logistic models and normal distributions for response and outcome models has a closed
form of the integration and derived a su�cient condition for the model identifiability.
Beppu, Choi, Morikawa and Im (2024) extended the model to a case where the outcome
model belongs to the exponential family while the response model is still a Logistic model.
However, when the response mechanism is general, simple outcome models such as normal
distribution can be unidentifiable.

Example 2.1. Suppose that the respondents’ outcome model is y | (� = 1, x) ⇠ N(�0 +
�1x, 1), and the response model is P (� = 1 | x, y) =  (↵0 + ↵1x + �y), where  is
a known distribution function such that the integration in (3) exists and the covariate
x is one-dimensional vector in this example. Then, this model is unidentifiable. For
example, di↵erent parametrization (↵0,↵1, �, �0, �1) = (0, 1, 1, 0, 1), (↵0

0
,↵

0

1
, �

0
, �

0

0
, �

0

1
) =

(0, 3,�1, 0, 1) yields the same value of the observed likelihood.
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2.4 Previous research on identifiability

In this section, we review the identification conditions proposed in previous research.
Because identifiability depends on the estimation method, we first focus on identifiability
related to the maximization of the observed likelihood. Subsequently, we introduce the
identifiability for the generalized method of moments and stably estimation proposed by
Li, Qin and Liu (2023) as alternative methods to observed likelihood maximization. Note
that there are various estimation methods besides maximizing the observed likelihood,
each with its own identification conditions. For example, Tang et al. (2003), Liu, Li and
Qin (2022) and the conditional likelihood approaches proposed in section 6.2 of Kim and
Shao (2021).

2.4.1 Identifiability of the observed likelihood

Lemma 2.2. ( Identification condition proposed by Wang et al. (2014)) The observed
likelihood (1) is identifiable under the following conditions:

1. The covariate x has two components, x = (u>
, z>)>, such that

⇡(x, y;�) = P (� = 1 | y,u;�) = F (↵u + �uy), (4)

where ↵u and �u are unknown parameters depending on only u, not z, the function
F : R ! (0, 1] is a known strict monotone and twice di↵erentiable, and for any given
u, there exists two values of z, z1 and z2, such that p(y | u, z1) 6= p(y | u, z2).

2. For any given u, p(y | u, z) has a Lebesgue density with a monotone likelihood ratio.

The variable z in the condition 1 of the above theorem is called an instrumental
variable. When data analysts use this condition, it requires one to identify variables that
a↵ect outcomes but do not influence the response mechanism. This condition may be
justified by domain knowledge or external related research. One can check the condition
2 for each model we use. We present examples that satisfy this condition in later chapters.

In practical analyses, identifying variables that satisfy the condition 1 can be chal-
lenging. Additionally, there is always the risk of relying on incorrect external studies or
domain knowledge, leading to a false selection of variables. To overcome this challenge,
Miao et al. (2016) provides the identification conditions without instrumental variables.
Miao et al. (2016) consider the normal outcome model

Y | x ⇠ N{µ(x;�), �2
}, (5)

and a generalized response mechanism

⇡(x, y;�) = F{g(x;↵) + �y}, (6)

where the function F : R ! (0, 1] is a known strict monotone, the functions µ(x;�)
and g(x;↵) have the known functional form and injective function with respect to � and
↵, respectively. Additionally, they use the following condition about the function F to
identify the parameter

8
� > 0, lim

z!�1

F (z)/e�z = 0 or 1. (7)

Condition (7) stipulates that the left tail decay rate of the response probability must not
be exponential. While the Probit missing mechanism meets Condition (7), the Logistic
missing mechanism fails to satisfy it because limz!�1{e

z
/(1 + e

z)}/ez = 1. The next
theorem is the identifiability conditions given by Miao et al. (2016).

6



Lemma 2.3. (Identification condition proposed by Miao et al. (2016)) Assume that the
outcome model and the response model follow (5) and (6), respectively. Then,

1. The absolute value of the parameter |�| is identifiable;

2. The observed likelihood is identifiable if the sign of � is known;

3. The observed likelihood is identifiable if Condition (7) holds;

4. The observed likelihood is identifiable if the functions µ(x;�) and g(x;↵) are linearly
uncorrelated, that is, aµ(·;�) + g(·;↵) 6= c for nonzero vector (a, b) and for all �
and ↵.

The condition 1 of Lemma 2.3 provides the identifiability of k�k without any assump-
tion. In the condition 2 of Lemma 2.3, knowing the sign of � means that the parameter
� is identifiable from the condition 1 of Lemma 2.3. In other words, the identifiability of
� is equivalent to that of the observed likelihood (1),

Note that Miao et al. (2016) gives the theorem in a generalized form of variance to
�
2(x;✓). Also, Miao et al. (2016) provides the identification conditions when the outcome

is a normal mixture and the response model follows the robit model with an unknown
degree of freedom.

2.4.2 Identifiability for generalized method of moments estimator

In the previous section, we provided identifiability conditions for cases where the observed
likelihood is maximized. This section focuses on identifiability in estimation methods that
do not rely on observed likelihood maximization.

Chang and Kott (2008) proposed a semiparametric estimator for � that is the solution
of the following estimating equation

nX

i=1

�(xi, yi, �i;�) =
nX

i=1

⇢
1�

�i

⇡(x, y;�)

�
g(xi;�) = 0, (8)

where g = {g1(xi;�), g2(xi;�), · · · , gk(xi;�)} and k is dimension of �. This estimator has
consistency and asymptotic normality under appropriate regularity conditions, including
the linearity independent of the function g with respect to x. Certainly, identifiability is
part of these regularity conditions. Morikawa and Kim (2021) derived the identification
conditions for the parameter �0 defined below

E {�(x, y, �;�) | x} = 0, a.s., (9)

where the function � is defined in (8).

Lemma 2.4. (Identification condition proposed by Morikawa and Kim (2021)) Let E1(· |
x) be expectation operator under the true conditional density function p(y | x, � = 1) and
O(x, y;�) = 1/⇡(x, y;�)� 1 be the odds ratio of the response model. Then, the observed
likelihood (1) is identifiable if the following conditions hold:

1. E1{O(x, y;�) | x} is bounded almost surely;

2. The calibration function g in (8) satisfies P (inf�2� |g(x;�)| > 0) > 0, and elements
of g(x;�) are linearly independent functions with respect to x for all � 2 �.
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3. E1 {O(x, y;�) | x} = E1 {O(x, y;�0) | x} a.s. implies � = �0.

Condition 1 is a mild condition and also necessary to define the observed likelihood
(1). Condition 2 requires to avoid g becomes identically zero. Condition 3 is essential
to identify the parameter �. Morikawa and Kim (2021) demonstrated the example that
the response model is a logistic model. While condition 3 of Lemma 2.4 was established
to identify the parameter (9), it is closely connected to the identifiability of the observed
likelihood (1).

2.4.3 Identifiability for stability of inverse probability weighting methods

Li et al. (2023) consider a semiparametric location-scale model

y = µ(x;�) + ✏, (10)

where the functional form of µ(x;�) is known, � is a unknown parameter, and E(✏) = 0.
Also, they assume the logistic response model

P (R = 1 | x, y) =
exp(↵0 + x>↵+ �y)

1 + exp(↵0 + x>↵+ �y)
, (11)

where the parameter ↵ and � is unkown. Note that they do not assume the distribution
of ✏, thus, this is the semiparametric modeling. In this setup, they use an equation (4)
from Li et al. (2023) to derive the following new logistic regression model:

P (R = 1 | x) =
1

1 + exp {↵0 + x>↵+ c(x; �,�)}
, (12)

where c(x; �,�) = log
�
E
�
e
�y

| x, R = 1
� 

. Using this logistic regression model, they
construct the likelihood

L(↵0,↵, �, �̂) =
Y

Ri=1

P (Ri = 1 | xi;↵0,↵, �, �̂)
Y

Ri=0

P (Ri = 0 | xi;↵0,↵, �, �̂), (13)

and find the solution argmax↵0,↵,�L(↵0,↵, �, �̂). Note that to find the maximum like-
lihood estimator, they only use the data {(Ri,xi), i = 1, 2, . . . , n}. Here, parameter
identification refers to identifying the parameters in (13). In other words, from the equa-
tion (12), we should check that identifiability of ↵0 + x>↵ + c(x; �,�). Especially, we
can obtain the specific form of the function c(x; �,�) under the model (10) and (11) as
follows

c(x; �,�) = �µ(x;�) + logM1(�),

where M1(�) = E(e�✏). Therefore, we reparameterize the model (12) to

P (R = 1 | x) =
1

1 + exp {⇠ + x>↵+ �µ(x;�)}
,

where ⇠ = ↵0 + logM1(�), (⇠,↵, �) is a new parameter. Note that we should check the
identifiability of ⇠ + x>↵+ �µ(x;�).
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2.5 Proposed identification conditions: Discrete instrumental

variables approach

Recently, widely applicable su�cient conditions have been proposed. Assume that a
covariate x has two components, x = (u>

, z>)>, such that

(C1) z ?? � | (u, y) and z 6?? y | (� = 1,u).

The covariate z is called an instrument (D’Haultfœuille, 2010) or a shadow variable
(Miao and Tchetgen Tchetgen, 2016). Miao et al. (2019) derived su�cient conditions for
model identifiability by combining the instrument and the completeness condition:

(C2) For all square-integrable function h(u, y), E[h(u, y) | � = 1,u, z] = 0 almost surely
implies h(u, y) = 0 almost surely.

Lemma 2.5 (Identification condition by Miao et al. (2019)). Under the conditions (C1),
(C2), the joint distribution p(y,u, z, �) is identifiable.

Although the completeness condition is useful and applicable for general models, a
simple model with a categorical instrument does not hold the completeness condition.

Example 2.6 (Violating completeness with categorical instrument). Suppose y | (� =
1, u, z) follows the normal distribution N(u + z, 1), the covariate u is one dimensional,
and an instrument z is binary taking 0 or 1. This distribution does not satisfy the
completeness condition because the conditional expectation E[h(u, y) | � = 1, u, z] = 0
when h(u, y) = 1 + y � u� (y � u)2.

A vital implication of Example 2.6 is that instruments are no longer evidence of model
identification when the instrument is categorical. Developing the identification condition
for models with discrete instruments is important in applications (Ibrahim, Lipsitz and
Horton, 2001). We separately discuss two cases: (i) both y and z are categorical; (ii)
respondents’ outcome model has the monotone-likelihood ratio property.

When all variables, y and z, are categorical, the model can be fully nonparametric.
Theorem 2.7 demonstrates that, under these conditions, the completeness and identifia-
bility conditions are equivalent. See Appendix 2 in Riddles et al. (2016) for the estimation
of such fully nonparametric models.

Theorem 2.7. When both y and z are categorical, under condition (C1), the joint dis-
tribution p(y,u, z, �) is identifiable if and only if condition (C2) holds.

As evidenced in Lemma 2.5, condition (C2) is generally su�cient for model identifia-
bility, but Theorem 2.7 also reveals that it is necessary when y and z are categorical.

Next, we consider the identification condition for the other case (ii). Let Sy be the
support of the random variable y. We assume the following four conditions:

(C3) The response mechanism is

P (� = 1 | y,x;�) = P (� = 1 | y,u;�) =  {h(u;↵) + g(u;�)m(y)}, (14)

where � = (↵>
,�)>, m : Sy ! R and  : R ! (0, 1] are known continuous strictly

monotone functions, and h(u;↵) and g(u;�) are known injective functions of ↵
and �, respectively.

9



(C4) The density or mass function p(y | x, � = 1;�) is identifiable, and its support does
not depend on x.

(C5) For all u 2 Su, there exist z1 and z2, such that p(y | u, z1, � = 1) 6= p(y | u, z2, � =
1), and p(y | u, z1, � = 1)/p(y | u, z2, � = 1) is monotone with respect to y.

(C6)
Z

p(y | x, � = 1;�)

 {h(u;↵) + g(u;�)m(y)}
dy < 1 a.s.

The condition (C3) means that the random variable z plays a role of an instrument.
The condition (C4) is the identifiability of p(y | x, � = 1;�), which is testable from
the observed data. The condition (C5) assumes a monotone-likelihood property on the
outcome model, which was also used in Wang et al. (2014) for the complete data. The
condition (C6) is necessary for (1) to be well-defined and essentially the same as condition
1 of Lemma 2.4. This condition is always true when the support of y is finite. However,
it must be carefully verified when y is continuous. See Proposition 2.11 below for useful
su�cient conditions when the respondents’ outcome model is normal distribution.

Under conditions (C3)–(C6), we obtain the desired identification condition.

Theorem 2.8. The parameter (�>
,�>)> is identifiable if the conditions (C1) and (C3)–

(C6) hold.

We provide an example of outcome models satisfying the condition (C5).

Example 2.9 (Model satisfying (C5)). Let density functions in the exponential family
be

p(y | x, � = 1;�) = exp

✓
y✓ � b(✓)

⌧
+ c(y; ⌧)

◆
,

where ✓ = ✓(⌘), ⌘ =
PL

l=1
⌘l(x)l,  = (1, . . . ,L)>, and � = (⌧,>)>. Then the density

ratio becomes

p(y | u, z1, � = 1)

p(y | u, z2, � = 1)
/ exp

✓
✓1 � ✓2

⌧
y

◆
,

where xi = (ui, zi) and ✓i = ✓{
PL

l=1
⌘l(xi)l}, i = 1, 2. Therefore, the density ratio is

monotone.

Example 2.10 (Model satisfying (C6)). In application, it is often reasonable to assume
a normal distribution on the respondents’ outcome model. Focusing on the tail of the
outcome model, we provide a su�cient condition to check (C6) for models with general
response mechanisms.

Proposition 2.11. Suppose that the observed distribution p(y | x, � = 1) is normal
distribution N(µ(x;), �2), the response mechanism is (14) with m(y) = y and g(u;�) =
�, and the strictly monotone increasing function  meets the following condition:

9
s 2 (0, 2) s.t. lim inf

z!�1

 (z) exp(|z|s) > 0. (15)

Then, this model satisfies (C6).

10



The condition (15) is easy to check. For example, it holds for Logistic and Robit func-
tions but not for the Probit function. According to Proposition 2.11, it is possible to es-
timate µ(x;) with observed data using splines and other nonparametric methods, which
allows us to use very flexible models. Furthermore, we can also estimate the response
mechanism using nonparametric methods because it does not impose any restrictions on
the functional form of h(u;↵).

2.6 Proposed identification conditions: Avoiding instrumental

variables approach

In the previous section, we consider the identification conditions under the existence of
instrumental variables and conduct various discussions. However, it is well known that
the specification of such variables is challenging in real-world scenarios. Therefore, in
this section, we explore identifiability without relying on the existence of instrumental
variables. Note that this section is based on the findings of Beppu et al. (2024). First, we
assume that the response mechanism follows a logistic model:

logit {P (� = 1 | x, y;↵, �)} = h(x;↵) + �y, (16)

where logit(z) := log (z/(1� z)) for all 0 < z < 1, h(x;↵) is injective with respect to
↵, and is known up to a finite-dimensional parameter ↵. In nonignorable missing data
analysis, several previous studies have employed this logistic model (Kim and Yu, 2011;
Shao and Wang, 2016; Wang, Lu and Liu, 2021).

Suppose that the outcome variable distribution of the respondent, given the covariates
[yi | xi, �i = 1] belongs to the exponential family in the form

p(yi | xi, �i = 1;�) = exp [⌧{yi✓i � b(✓i)}+ c(yi; ⌧)] , (17)

where ✓i = ✓(⌘i), ⌘i =
PL

l=1
⌘l(xi)l,  = (1, . . . ,L)>, and � = (⌧,>)>. This class

includes several distributions such as binomial, normal, gamma, and Poisson. Function ✓
is defined according to the purpose of the statistical analysis. In fact, this joint distribution
can explicitly represent the distribution of the missing part p(y | x, � = 0). To discuss this
in detail, when the outcome model of the respondents belongs to the exponential family
in (17) and the response mechanism follows the logistic model in (16), the outcome model
of the non-respondents also belongs to the same exponential family, but with a di↵erent
parameterization:

p(y | x, � = 0) = p(y | x, � = 1)
exp {�h(x;↵)� �y}R

exp {�h(x;↵)� �y} p(y | x, � = 1)dy

/ exp
⇥
⌧
�
y
�
✓ � �⌧

�1
�
� b

�
✓ � �⌧

�1
� 

+ c(y; ⌧)
⇤
. (18)

2.6.1 Single outcome model

In this section, we derive su�cient conditions representing model identifiability, consider-
ing the outcome models that belong to the exponential family (17), and extend the result
to its mixture. The following theorem is a general result of model identifiability for the
outcome model (17).
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Theorem 2.12. Suppose that the response mechanism is (16) and the distribution of [y |

x, � = 1] is identifiable with a density that belongs to the exponential family (17). Then,
this model is identifiable if and only if the following condition holds for all ↵,↵0

, �, �
0
,�:

'(↵, �,�) = '(↵0
, �

0
,�) ) � = �

0
, (19)

where

'(↵, �,�) = h(x;↵)� ⌧b

(
✓

 
LX

l=1

⌘l(x)l

!
�
�

⌧

)
.

A vital implication of Theorem 2.12 is that the identifiability of the model is equivalent
to that of '(↵, �,�). Furthermore, the model identification of ' can be verified only
with respect to �. Based on Theorem 2.12, we can conveniently check the identification
conditions for almost all distributions belonging to the exponential family even if the
covariates x contain both discrete and continuous variables.

Remark 1. We mention the relationship between Theorem 2.12 and Lemma 2.4. The
di↵erence lies in the estimation method. Specifically, Theorem 2.12 requires that the
parameter maximizing the observed likelihood is unique, while Lemma 2.4 demands that
the parameter uniquely provides the root of (9). However, the derived su�cient conditions
are essentially the same. In other words, for models within the scope of both methods,
the identification conditions are equivalent. A minor di↵erence is that Theorem 2.12 is
presented in a more specific form and the identification of � alone is su�cient in this
context.

Remark 2. We consider the relationship between Theorem 2.12 and the identification
condition of Li et al. (2023) presented in section 2.4.3. The primary di↵erence is that
Li et al. (2023) assumes a semiparametric model, whereas Theorem 2.12 is established
under a fully parametric model. In scenarios where both are applicable, such as when
the outcome is normally distributed, their identification conditions are equivalent. In
practice, it would be reasonable to use Li et al. (2023) when the outcome variable y can
take any value in the real numbers, and Theorem 2.12 when y takes discrete values or
categorical cases.

When the covariates x contain only discrete variables, we can determine whether the
number of unknown variables (↵>

, �)> is less than or equal to the number of values taken
by the covariates x. Additionally, we provide Corollary 2.13, which specifically assumes
that the outcome model follows a normal distribution because it requires careful attention,
as detailed in Example 2.14.

Corollary 2.13. Suppose that the response mechanism is (16), h(x;↵) is a polynomial,
and the outcome model of respondent is N(µ(x;�), �2), where the link function represents
the identity ✓(⌘) = ⌘ such that µ(x;�) =

PL
l=1

⌘l(x)l. Then, condition (19) holds if an
index l = 1, . . . , L exists such that ⌘l(x) is continuous and not represented by h(x;↵) for
all ↵.

For better understanding of Theorem 2.12 and Corollary 2.13, we introduce some
examples that are commonly used in the generalised linear model (GLM).
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Example 2.14. Considering the same setting as in Corollary 2.13, the function ' in
Theorem 2.12 can be expressed as

'(↵, �,�) = h(x;↵) + �

LX

l=1

⌘l(x)l �
�
2
�
2

2
.

Condition (19) holds if
PL

l=1
⌘l(x)l contains a term not included in h(x;↵). For instance,PL

l=1
⌘l(x)l = 0 + 1x+ 2x

2 (2 6= 0) and h(x;↵) = ↵0 + ↵1x satisfy this condition if
the covariate x is continuous and one dimension. If covariate x is binary, the identification
condition does not hold because of the three unknown variables, (↵0,↵1, �). In addition,
the model is not identifiable for 2 = 0 even if covariate x is continuous. This is identical
to the example in Morikawa and Kim (2021).

Example 2.15. Suppose [y | x, � = 1] ⇠ B(1, p(x)), which belongs to the exponential
family, with ⌧ = 1, ✓ = log p/(1 � p), b(✓) = log{1 + exp(✓)}, c(y; ⌧) = 0, ✓(⌘) = ⌘.
Accordingly, we check the identification of this model, and function ' in Theorem 2.12
can be expressed as

'(↵, �,�) = h(x;↵)� log

(
1 + exp

 
�� +

LX

l=1

⌘l(x)l

!)
.

For example, condition (19) holds if the polynomials h(x;↵) and ⌘l(x) contain continuous
variables.

For discrete nonmeasurement variables such as sex and area, the outcome models
for each nonmeasurement variable should be assumed, as discussed in Section 5. For
instance, if z denotes sex and x represents one-dimensional continuous covariate, we can
model various mean structures: 01 + 11x for males and 02 + 12x for females rather
than 0+1x+2z. In these cases, we have su�cient conditions for model identifiability.

Example 2.16. Suppose that nonmeasurement categorical variables occur in D cases
with z (= 1, 2, . . . , D) indicating one of the D cases, the response mechanism is (16) and
h(x;↵) =

PD
d=1

hd(x;↵d), and the outcome density of the respondents can be expressed
as

DY

d=1

"
1p
2⇡�2

d

exp

(
�
(y � µd(x;d))

2

2�2

d

)#I(z=d)

,

where d and �2

d represent the mean function and variance parameter, respectively, and
I(·) denotes the indicator function. As it is normal distribution with mean

PD
d=1

I(z =
d)µd(x;d) and variance

PD
d=1

I(z = d)�2

d, according to Example 2.14, the function ' in
Theorem 2.12 can be stated as

'(↵, �,�) =
DX

d=1

hd(x;↵d) + �I(z = d)µd(x;d)�
�
2

2
I(z = d)�2

d.

Similar to Corollary 2.13, this model is identifiable if an index l = 1, . . . , D exists, such
that µl(x;l) is continuous and not represented by hl(x;↵l) for all ↵l.
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Example 2.17. Suppose that nonmeasurement categorical variables occur in D cases
with z (= 1, 2, . . . , D) indicating one of the D cases, the response mechanism is (16)
and h(x;↵) =

PD
d=1

hd(x;↵d), and [y | x, � = 1] ⇠ B(1, p(x)), where logit{p(x)} =PD
d=1

I(z = d)
PLd

l=1
⌘ld(x)ld. The function ' in Theorem 2.12 can be expressed as

'(↵, �,�) =
DX

d=1

hd(x;↵d)� log

(
1 + exp

 
�� +

DX

d=1

I(z = d)
LdX

l=1

⌘ld(x)ld

!)
.

Similar to Example 2.16, the model can be identified more easily than in the case without
categorical measurement variables.

2.6.2 Mixture outcome models

In this subsection, we derive su�cient conditions for model identifiability when the re-
sponse mechanism is (16), and the outcome model of the respondents [y | x, � = 1;�] is
a mixture distribution of the exponential family (17)

KX

k=1

⇡k exp [⌧k {y✓k � b(✓k)}+ c(y; ⌧k)] , (20)

where ⇡ = (⇡1, . . . , ⇡K)> represents the mixing proportion of the mixture models, i.e.,PK
i=k ⇡k = 1 and ⇡k � 0, ✓k = ✓(⌘k) and ⌧ = (⌧1, . . . , ⌧K)> denote the model parame-

ters, ⌘k =
Pm(k)

l=0
⌘lk(x)lk, k = (0k,1k, . . . ,m(k)k)> and  = (>

1
, . . . ,>

K)
> are link

functions and their parameters, � = (>, ⌧>, ⇡>
, K)> is a vector of all of the parameters,

and m(k) + 1 indicates a dimension of the vector k. The following theorem is the most
general result representing the identifiability of the mixture model, and its results are
consistent with those of Theorem 2.12 for K = 1.

Theorem 2.18. Suppose that the response mechanism is (16) and the distribution of
[y | x, � = 1] is (20) and identifiable. Then, this model is identifiable if and only if the
following condition holds for all ↵,↵0

, �, �
0
,�:

g(↵, �,�) = g(↵0
, �

0
,�) ) � = �

0
,

where

g(↵, �,�) = h(x;↵)� log

"
KX

k=1

⇡k exp

⇢
�⌧kb(✓k) + ⌧kb

✓
✓k �

�

⌧k

◆�#
.

Because the most popular and commonly used mixture model is a normal mixture, we
discuss it in more detail the identification conditions for the case where [y | x, � = 1;�]
follows a normal mixture distribution:

[y | x, � = 1;�] ⇠
KX

k=1

⇡kN(µk(x;k), �
2

k), (21)

where µk(x;k) denotes a polynomial
Pm(k)

l=0
⌘lk(x)lk, �2 = (�2

1
, . . . , �

2

K)
> represents a

vector of variance, and � = (>
,�2>

,⇡>
, K)> denotes a vector of all of the parameters.

In this case, we obtain Corollary 2.19 by applying Theorem 2.18:
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Corollary 2.19. Suppose that the response mechanism is (16) and the distribution of
[y | x, � = 1] is (21) and identifiable. Then, this model is identifiable if and only if the
following condition holds for all ↵,↵0

, �, �
0
,�:

g(↵, �,�) = g(↵0
, �

0
,�) ) � = �

0
,

where

g(↵, �,�) = h(x;↵)� log

8
<

:

KX

k=1

⇡k exp

0

@��

m(k)X

l=0

⌘lk(x)lk +
�
2
�
2

k

2

1

A

9
=

; .

Hereafter, we consider a practically useful setup, where h(x;↵) =
PJ�1

j=0
↵jhj(x) and

µk(x;k) =
Pm(k)

l=0
⌘lk(x)lk, where J is the dimension of ↵, the basis functions of hj(x)

and ⌘lk(x) have the form of polynomial function
Q

dim(x)
i=1

x
si
i , dim(x) is a dimensional x,

and si represents any nonnegative integer. We define two classes of basis functions:

H : =

⇢
hj(x)

���� j = 0, 1, . . . , J � 1

�
[ {1},

M : =

⇢
⌘lk(x),

���� l = 0, 1, . . . ,m(k), k = 1, . . . , K

�
\ H,

and decompose µk(x;k) into µk(x;k) = µ
H

k (x;k) + µ
M

k (x;k), where each µ
H

k and
µ
M

k are constant multiple of the elements of H and M, respectively. For example, in the
case of h(x;↵) = 2 + 4x, µ1(x;1) = 3x2, and µ2(x;2) = x+ 4x3, the definitions of the
notation imply H = {1, x}, M = {x

2
, x

3
}, µH

1
= 0, µM

1
= 3x2, µH

2
= x, and µ

M

2
= 4x3.

When the distribution of x is discrete, comparing the number of unknown variables
and the taken values of x is su�cient. Therefore, we consider only the continuous case:

(C7) The distribution of x is continuous.

The next theorem provides more rigorous conditions and identifiability results given the
above setting.

Theorem 2.20. Suppose that the response mechanism is (16) and the distribution of
[y | x, � = 1] is identifiable and has a normal mixture density in (21). Furthermore, we
define three additional conditions:

(C8) M 6= ;;

(C9) The sign of � is known;

(C10)
�
µ
M

i (x;i); i = 1, . . . , K
 
6=
�
�µ

M

i (x;i); i = 1, . . . , K
 
.

Then, this model is identifiable if (C7)–(C8) and one of (C9)–(C10) hold.

In application, confirming (C8) may be su�cient because violation of (C10) is rare in
practical applications.

The following example shows an unidentifiable model that satisfies the condition (C8),
but does not satisfy (C9)–(C10).
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Example 2.21. Suppose the outcome model for respondents is ⇡1N(x2
, �

2

1
)+⇡2N(�x

2
, �

2

2
),

where x is one-dimensional covariate. Consider the following two response models:

Model 1 : logit {P (� = 1 | x, y)} = x+ y;

Model 2 : logit {P (� = 1 | x, y)} = x� y.

This model satisfies condition (C8) because M = {x
2
} and H = {1, x}, but does not

satisfy (C9)–(C10) because we do not know the sign of � and {µ
M

i (x;i); i = 1, . . . , K} =
{x

2
,�x

2
}. The su�cient condition in Corollary 2.19 is not satisfied if

1

2
�
2

1
+ log ⇡1 =

1

2
�
2

2
+ log ⇡2

holds; thus, this model is unidentifiable.

The following example shows an unidentifiable model that does not satisfy (C8).

Example 2.22. Suppose that the outcome model of the respondents is ⇡1N(x, �2

1
) +

⇡2N(2x, �2

2
), where x is one-dimensional covariate. Consider two response models:

Model 1 : logit {P (� = 1 | x, y)} = x+ y;

Model 2 : logit {P (� = 1 | x, y)} = 4x� y.

This model does not satisfy the condition (C8) because M = ; and H = {1, x}. The
su�cient condition in Corollary 2.19 is not satisfied if

1

2
�
2

1
+ log ⇡1 =

1

2
�
2

2
+ log ⇡2

holds; thus, this model is unidentifiable.

Although Example 2.22 and Theorem 2.20 indicate the importance of condition (C8),
eliminating this condition enables a more flexible model. Thus, we derive su�cient con-
ditions for the identifiability of a mixture of simple linear regression models:

[y | x, � = 1;�] ⇠
KX

k=1

⇡kN(0k + 1kx, �
2

k), (22)

and H = {1, x}, which do not satisfy (C8). Because the su�cient conditions for model
identifiability di↵er for K � 3 and K = 2, we derive the conditions separately.

Theorem 2.23. Suppose that the response mechanism is (16) with h(x;↵) = ↵0 + ↵1x

and the distribution of [y | x, � = 1] is identifiable and has a normal mixture density in
(22) with the number of mixture components K � 3. We further assume that H = {1, x},
̃ = (11,12, . . . ,1K)> is a vector of first-order coe�cients, and 1i 6= 1j (i 6= j). The
model is identifiable if at least one of the following conditions is satisfied:

1 Sign of � is known;

2 For all K ⇥K permutation matrices P and for all r 2 R,

(P + I) ̃ 6= r1K ,

where 1n denotes an n⇥ 1 vector of ones.
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To clarify the second condition, we consider K = 3 and assume that 11 > 12 > 13

without loss of generality. If P is defined as

P =

0

@
0 0 1
0 1 0
1 0 0

1

A ,

we obtain (P + I)̃ = (11+13, 212,11+13)>. Then, the second condition is satisfied,
unless 212 = 11 + 13. More importantly, it does not generally hold and can be tested
using the observed data.

However, for K = 2, the second condition in Theorem 2.23 does not hold for any
model in [y | x, � = 1], which can be demonstrated by assuming 11 > 12 without loss of
generality. Using a similar argument, we derive (P + I)̃ = (11 + 12,11 + 12)> = r12,
where

P =

✓
0 1
1 0

◆
, r = 11 + 12.

Thus, the second condition does not hold for any model [y | x, � = 1]. Therefore, a more
careful investigation is required for K = 2.

Theorem 2.24. Suppose that the response mechanism is (16) and the distribution of
[y | x, � = 1] is identifiable and has a normal mixture density in (22) with the number
of mixture components K = 2. We further assume that H = {1, x}, µ1(x,1) = 01 +
11x (11 6= 0), µ2(x,2) = 02 + 12x (12 6= 0), and h(x;↵) = ↵0 + ↵1x (↵1 6= 0). The
model is then identifiable if the following conditions hold:

1 11 6= 12;

2 �1 = �2 ) ⇡1 6= ⇡2;

3 �1 6= �2 ) (log ⇡2 � log ⇡1) (�2

1
� �

2

2
)�1

 0.

Overall, the conditions required in Theorems 2.24 are more di�cult to satisfy than
those in Theorems 2.23. Although these conditions can be verified using the observed
data, they are redundant.

17



3 Nonignorable model in survey sampling

In this section, the discussion transitions to the survey sampling, focusing on informative
sampling, which is closely related to nonignorable mechanisms. Here, we extend the
concept of double robustness from previous research to multiple robustness by leveraging
empirical weights. Additionally, as a direction for future work, we introduce the issue of
nonignorable participation in non-probability survey samples.

3.1 E�cient multiple robust estimation under informative sam-

pling

3.1.1 Notation

Suppose that there exists a superpopulation of random variables (X, Y, Z,W ), where
Y denotes an outcome, X and Z are explanatory variables, and W represents a sam-
pling weight. Specifically, the sampling weight is the inverse of the inclusion probability.
We draw identically and independently distributed N copies {Xi, Yi, Zi,Wi}

N
i=1

from the
distribution. Our aim is to estimate a parameter ✓ that characterizes the relationship
between X and Y . The target parameter ✓⇤ is uniquely determined by the solution to the
equation E{U✓(X, Y )} = 0. For example, if our focus is on E(Y ), then U✓(y) = y � ✓,
and if our interest lies in the regression parameter ✓ within µ(x; ✓) = E(Y | x; ✓), then
U✓(x, y) = A(x){y�µ(x; ✓)}, where A(x) is a function of x with the same dimensionality
as ✓.

In survey sampling, we extract a finite population of size n (< N) based on the
inclusion probability 1/W . We Define � as a sampling indicator that is set to one if a
unit is sampled and set to zero otherwise. By the definition of the inclusion probability,
W = 1/P (� = 1 | X, Y, Z,W ) holds. Consider a scenario in which the outcome variable
Y is subject to missingness among the sampled units, resulting in only m out of n units
having fully observed data. Let R be a response indicator for Y , which is equal to one
when Y is observed and equal to zero otherwise.

We outline our setup across three distinct settings in Figure 1. In Setting 1, informa-
tion regarding X is available for all units. In Setting 2, information regarding X is limited
to sampled units. In Setting 3, instead of using data from X for unsampled units, we
leverage additional data sources that provide information such as the mean and variance
of X. Note that it is also possible to integrate external summary statistics into Setting 1
similar to Setting 3. For notational simplicity, without loss of generality, we rearrange the
order of the units as follows: the initial m units are fully observed, the subsequent n�m

units are sampled with Y units missing, and the remaining N � n units are unsampled.
We denote the independence of two random variables X and Y as X ?? Y , and

postulate the following two assumptions regarding the distribution of the superpopulation
of (X, Y, Z,W, �, R):

Condition 1 (Informative sampling). W 6?? (Y, Z) | X in Setting 1; W 6?? (X, Y, Z) in
Settings 2 and 3;

Condition 2 (Sample missing at random). R ?? Y | (X,Z,W, � = 1).

When the negation of Condition 1 holds in Setting 1, we have

P (� = 1 | x, y, z) = E(W�1
| x, y, z) = E(W�1

| x) = P (� = 1 | x).
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Figure 1: Three settings considered in this study. The data highlighted in black represents
observed data, and the entries labeled as “mis” indicate unsampled or nonresponse.

This sampling mechanism is referred to as non-informative sampling in the literature of
survey sampling (Pfe↵ermann, 1993) and as missing at random in missing data analysis
(Rubin, 1976). Under this sampling mechanism, we have f(y | x, � = 0) = f(y | x).
Therefore, the sampled outcome distribution is the same as that of the population. In
contrast, Condition 1 allows the two distributions to di↵er, and ignoring the sampling
mechanism may result in biased results. This sampling mechanism is called informative or
missing not at random. Condition 2 constrains the response mechanism of the subsequent
missingness to be missing at random (Little, 2003; Pfe↵ermann, 1993), which di↵ers from
the population missing at randomness R ?? Y | X in Setting 1 defined in Berg, Kim and
Skinner (2016). Condition 2 permits the response indicator to be dependent on sampling
weights, which could be perceived as unconventional. Nevertheless, including sampling
weights can enhance e�ciency and mitigate bias resulting from design variables that data
analysts cannot access, as these weights are related to the unsampled items and indirectly
convey the information to the response indicator. As illustrated in Figure 1, our setup is
essentially the same as that of two-step monotone missing data (e.g. Särndal, 1992), but
the response mechanism combines missing not at random and missing at random, which
makes statistical inference problematic (Kim and Shao, 2013; Little and Rubin, 2019).

3.1.2 Estimators from previous studies under informative sampling with non-

response

Under Condition 2, if we know the response mechanism ⇡(x, z, w) = P (R = 1 | x, z, w, � =
1), then ✓ can be estimated by using the inverse probability weighted estimating equation
(Binder, 1983):

NX

i=1

�iWiRi

⇡(Xi, Zi,Wi)
U✓(Xi, Yi) =

mX

i=1

Wi

⇡(Xi, Zi,Wi)
U✓(Xi, Yi) = 0. (23)

However, the response mechanism is generally unknown and must be modeled and es-
timated. The parameters of the response model can be estimated using any method,
such as maximum-likelihood estimation because X is observed for all units of � = 1.
Because misspecification of the response model leads to biased results, we construct a
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double-robust estimator:

NX

i=1

�iWi


Ri

⇡̂(Xi, Zi,Wi)
U✓(Xi, Yi) +

⇢
1�

Ri

⇡̂(Xi, Zi,Wi)

�
ĝ✓(Xi, Zi,Wi)

�
= 0, (24)

where g✓(x, z, w) = E{U✓(x, Y ) | x, z, w} and “hat” denote estimated parametric mod-
els based on observed data (e.g., ⇡̂(x, z, w) and ĝ✓(x, z, w) are estimated functions using
⇡(x, z, w) and g✓(x, z, w), where the detailed procedure is discussed in end of this sec-
tion). Kim and Haziza (2014) considered a similar estimator without including weights
in the response and the regression models. Although nonparametric working models are
also usable due to orthogonality to the nuisance parameter (Chernozhukov, Chetverikov,
Demirer, Duflo, Hansen, Newey and Robins, 2018), we focus on parametric working mod-
els in this paper. The solution ✓̂KH to the estimating equation (24) has double robustness:
if either ⇡(x, z, w) or g✓(x, z, w) is correctly specified, then it has consistency. However,
this estimator is not necessarily e�cient, even if both models are correct, unlike the or-
dinal double-robust estimator (Robins, Rotnitzky and Zhao, 1994b), because it does not
leverage the information in the data of �i = 0 (i.e., Xi (i = n+ 1, . . . , N)) in Setting 1 or
the information of N in Settings 2 and 3.

Hereafter, we explain the semiparametric e�ciency bound and the e�cient score of
the parameter ✓ in Settings 1 and 2 in Figure 1 derived by Morikawa et al. (2023).

Lemma 3.1. The e�cient score function in Setting 1 is

Se↵,✓(�, R,X, Y, Z,W ) = �WD✓(R,X, Y, Z,W ) + (1� �W )C✓(X), (25)

where

C✓(x) =
E{(W � 1)U✓(x, Y ) | x}

E(W � 1 | x)
,

D✓(r, x, y, z, w) = r
U✓(x, y)

⇡(x, z, w)
+

⇢
1�

r

⇡(x, z, w)

�
g✓(x, z, w).

The e�cient score function in Setting 2 is (25) with the same D✓ as above but di↵erent
C✓(x) = C✓ = E{(W � 1)U✓(X, Y )}/E(W � 1). The e�cient influence function is
'e↵,✓ = B✓Se↵,✓, and the semiparametric e�ciency bound for ✓ is {E('⌦2

e↵,✓⇤)}
�1, where

B✓ = E{@U✓(X, Y )/@✓>}�1 and B
⌦2 = BB

> for any matrix B.

To construct adaptive estimators, we require some working models for ⇡(x, z, w;↵),
g✓(x, z, w; �), and C✓(X; �), where ↵, �, and � are unknown finite-dimensional parameters.
Each model is naturally estimated based on the ignorability (Condition 2): ↵̂ is the
maximum likelihood estimator,

↵̂ = argmax
↵

nY

i=1

⇡(Xi, Zi,Wi;↵)
Ri{1� ⇡(Xi, Zi,Wi;↵)}

1�Ri ,

and �̂ and �̂ are the weighted least-squares estimators

mX

i=1

B(Xi, Zi,Wi){Yi � g✓(Xi, Zi,Wi; �)}
2 = 0,

mX

i=1

Wi(Wi � 1){Yi � C✓(Xi; �)}
2 = 0,
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where B(x, z, w) is any function of x, z, w that has the same dimensionality as �. In
Setting 1, we define a method of moments estimator ✓̂MM1 as the solution to

S
[1]

e↵,✓(↵̂, �̂, �̂) = n
�1

NX

i=1

n
�iWiD̂✓(Ri, Xi, Yi, Zi,Wi) + (1� �iWi)Ĉ✓(Xi)

o
= 0, (26)

whereas in Setting 2, we define ✓̂MM2 by the solution to an estimating equation obtained
by replacing Ĉ✓(x) with Ĉ✓.

3.1.3 Derivation of the e�ciency bound under Setting 3

In this section, we derive the e�ciency bound in Setting 3. Note that sections 3.1.3, 3.1.4,
and 3.1.5 are part of the contributions of my doctoral thesis and are included in Morikawa
et al. (2023). In Setting 3, to make summary statistics from additional data sources avail-
able, we must extend the class of estimators. Let P0 2 P0 and P1 2 P1 be the internal
and external distributions, respectively, where P0 and P1 are collections of probability
distributions. We define the summary statistics ⌧ ⇤ = ⌧(P1) in the external data source.
Additionally, we denote the estimator with an external data source of sample size N1 as
⌧̃ = ⌧̃(P1), which emphasizes that the parameter is estimated from the external distribu-
tion P1. Integrating multiple data sources is also possible, but we confine our analysis to
a single data source for the sake of simplicity. Readers can consult the discussion in Hu
et al. (2022) for additional details on the extension to multiple data sources.

Following Hu et al. (2022), we adopt three assumptions regarding the summary statis-
tics from the external data source.

Condition 3. The summary statistics ⌧ = ⌧(P1) represent a parameter of the fully ob-
served covariates X and Z;

Condition 4. The estimated summary statistics ⌧̃ represent a regular and asymptotically
linear estimator of ⌧(P1), and N

1/2
1

{⌧̃�⌧(P1)} converges weakly to the normal distribution
with mean zero and variance ⌃1, where ⌃1 is the asymptotic variance of ⌧̃ and a consistent
estimator ⌃̃1 for ⌃1 is available;

Condition 5. The sample size from the external data source N1 = N1,N satisfies

N1,N/N ! ⇢ 2 (0,1) as N ! 1;

Condition 6. ⌧(P0) = ⌧(P1).

Condition 3 confines the summary statistics to the sampled data without missingness,
such as sample means of X and Z, and regression coe�cients Z on X, and excludes
statistics related to outcome variables. Condition 4 is a regular condition for estimators.
One may feel that Condition 5 is strange because internal and external data are often
independent, but this assumption requires the sample size to go to infinity according to
the ratio ⇢. This condition is necessary to investigate the large-sample property and reflect
the di↵erence between the sample sizes N1 and N . Condition 6 requires the consistency
of the target parameter between two data sources. Specifically, the populations can di↵er,
but the target parameters must be the same.

Let Ii = (Xi, Yi, Zi,Wi, �i, Ri) (i = 1, . . . , N) and Ei (i = 1, . . . , N1) be random vectors
in the internal and the external dataset, respectively. Then, our estimator for ✓ can
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be represented as ✓̂N = ✓̂N(I1, . . . , IN , ⌧̃) because it depends on both the internal data
{Ii}

N
i=1

and summary statistics ⌧̃ from the external data. We assume that our estimator
in Setting 3 is in the class of data-fused regular and asymptotically linear estimators (Hu
et al., 2022).

Definition 3.2 (Data-Fused Regular and Asymptotically Linear Estimator). An estima-
tor ✓̂N = ✓̂N(I1, . . . , IN , ⌧̃) is said to be data-fused regular and asymptotically linear if the
following two conditions hold:

(i) (Regular). Let ⇠ be a finite-dimensional parameter in any parametric sub-model
P0(I; ⇠)⇥ P1(E; ⇠) 2 P0 ⇥ P1 and ⇠⇤ be the true value. Then, the variable

N
1/2

{✓̂N(I
(N)

1
, . . . , I

(N)

N , ⌧̃
(N1))� ✓(P0(I; ⇠n))}

has a limiting distribution that does not depend on the local data generation pro-
cess, in which the data {I

(N)

1
, . . . , I

(N)

N } and {E
(N1)

1
, . . . , E

(N1)

N1
} are i.i.d. samples

from P0(I; ⇠n) and P1(E; ⇠n), ⌧̃ (N1) denotes the summary statistics estimated from

{E
(N1)

1
, . . . , E

(N1)

N1
}, N1/N ! ⇢, and N

1/2(⇠n � ⇠
⇤) converges to a constant.

(ii) (Asymptotically linear). The estimator ✓̂N has the form ✓̂N = ✓
⇤+N

�1
PN

i=1
 0(Ii)+

 1(⌧̃)+op(N�1/2), where E{ 0(I)} = 0, E{ 0(I)⌦2
} is finite and non-singular,  1(⌧̃)

is continuously di↵erentiable, and  1(⌧(P1)) = 0.

Hájek (1970) and Inagaki (1970) derived the convolution theorem independently, and it
has been extended in various settings since then. Hu et al. (2022) extended the convolution
theorem for the ordinary class of regular and asymptotically linear estimators to data-
fused regular and asymptotically linear estimators and derived the e�ciency bound of the
new class.

Lemma 3.3. Suppose ✓̂N is a data-fused regular and asymptotically linear estimator and
Conditions 3-6 hold. Then, we have

N
1/2

✓
✓̂N � ✓

⇤
�N

�1
PN

i=1
(�e↵,i �M⌘e↵,i)�M(⌧̃ � ⌧)

N
�1
PN

i=1
(�e↵,i �M⌘e↵,i) +M(⌧̃ � ⌧)

◆
!

✓
�0

�1

◆

in distribution, where M = E(�e↵⌘
>

e↵
){⌃1/⇢ + E(⌘⌦2

e↵
)}�1, �0 and �1 are independent

random variables, and �e↵,i and ⌘e↵,i (i = 1, . . . , N) are e�cient influence functions for ✓
and ⌧ based on the internal data.

The convolution theorem yields the semiparametric e�ciency bound in Setting 3 as
E(�⌦2

e↵
)� E(�e↵⌘

>

e↵
){⌃1/⇢+ E(⌘⌦2

e↵
)}�1

E(�e↵⌘
>

e↵
)> in the class of data-fused regular and

asymptotically linear estimators. The first term is the e�ciency bound when using only
internal data. This implies that incorporating external summary statistics into estimation
always results in a more e�cient estimator.

3.1.4 Optimal estimator using empirical likelihood in Settings 1 and 2

We consider empirical likelihood based estimators with the same asymptotic variances de-
tailed in Morikawa et al. (2023) for Settings 1 and 2. There are two primary motivations
for considering the empirical likelihood methods. First, using the empirical likelihood
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method facilitates the easy derivation of multiple-robust estimators. Second, an elemen-
tary extension of the optimal empirical likelihood estimator from Setting 2 can provide
the optimal estimator for Setting 3. Although it may be feasible to construct an estimator
by the method of moments and extend it to Setting 3, we lean toward empirical likelihood
estimators for their theoretically appealing properties; see Remark 4 for additional details.

One natural empirical likelihood estimator based on the e�cient score (25) is defined
as

✓̂EL,Q = argmax
✓

argmax
p1,...,pN

NX

i=1

log pi,

subject to

NX

i=1

pi = 1,
NX

i=1

pi�iWiD✓(Ri, Xi, Yi, Zi,Wi) = 0,
NX

i=1

pi(1� �iWi)C✓(Xi) = 0.

By directly applying the theory in Qin, Zhang and Leung (2009), we can easily demon-
strate that this maximum empirical likelihood estimator has desirable asymptotic proper-
ties. However, we do not adopt ✓̂EL,Q as our estimator because the functionD✓(r, x, y, z, w)
includes the two working models ⇡(x, z, w) and g(x, z, w), making it intractable to con-
struct a multiple-robust estimator. Let our candidate models for ⇡(x, z, w) and g✓(x, z, w)

be ⇡[j](x, z, w) (j = 1, . . . .J) and g
[k]
✓ (x, z, w) (k = 1, . . . , K), respectively. Then, ✓̂EL,Q

requires JK constraints to obtain multiple robustness. Hereafter, in Settings 1 to 3, we
propose two-step maximum empirical likelihood estimators to realize multiple robustness
under only J + K constraints. We also present the use of C [l]

✓ (l = 1, . . . , L) working
models for C✓(x) to achieve the e�ciency bound.

The first-step empirical likelihood weights are common in all settings. We define the
maximum empirical weights in the first step as

✓̂1 = argmax
✓

argmax
p
(1)
1 ,...,p

(1)
m

mX

i=1

log p(1)i ,

subject to

mX

i=1

p
(1)

i = 1,
mX

i=1

p
(1)

i {⇡̂
[j](Xi, Zi,Wi)� ⇡̄

[j]
n } = 0 (j = 1, . . . , J),

mX

i=1

p
(1)

i {Wiĝ
[k]
✓ (Xi, Zi,Wi)� ḡ

w[k]
✓ } = 0 (k = 1, . . . , K),

where ⇡̄[j]
n and ḡ

w[k]
✓ are defined as

⇡̄
[j]
n = n

�1

nX

i=1

⇡̂
[j](Xi, Zi,Wi), ḡ

w[k]
✓ = n

�1

nX

i=1

Wiĝ
[k]
✓ (Xi, Zi,Wi),

respectively. The first-step maximum empirical weights are denoted as

(p̂(1)
1
, . . . , p̂

(1)

m ) = (p̂(1)
1
(✓̂1), . . . , p̂

(1)

m (✓̂1)).
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Next, we define the maximum empirical likelihood weights in the second step as

✓̂2 = argmax
✓

argmax
p
(2)
1 ,...,p

(2)
N

NX

i=1

log p(2)i ,

subject to

NX

i=1

p
(2)

i = 1,
NX

i=1

p
(2)

i (1� �iWi) Ĉ
[l]
✓ (Xi) = 0 (l = 1, . . . , L).

The second-step maximum empirical weights are denoted as

(p̂(2)
1
, . . . , p̂

(2)

m ) = (p̂(2)
1
(✓̂2), . . . , p̂

(2)

m (✓̂2)).

Then, we define the final maximum empirical likelihood estimator ✓̂EL1 in Setting 1 as the
unique solution to

NX

i=1

p̂
(2)

i p̂
(1)

i �iRiWiU✓(Xi, Yi) = 0. (27)

Remark 3. The first step of the empirical weights described above is a generalization
of the multiple-robust estimator in Han (2014). Indeed, Wi = 1 (i = 1, . . . , n) yields
the same empirical weights, implying that multiplication by Wi is required to adjust
the sampling bias under informative sampling. The concept for the second step of the
empirical weights comes from Qin, Zhang and Leung (2009)’s estimator ✓̂EL,Q. Therefore,
our empirical likelihood weights are obtained by combining the ideas of Han (2014) and
Qin, Zhang and Leung (2009).

Remark 4. Our empirical likelihood estimator does not directly use 1/⇡̂(x, z, w), unlike the
method of moments estimator. Therefore, the finite-sample performance of the empirical
likelihood estimator is better than that of the method of moments estimator when some
⇡̂(x, z, w) can take on values near zero. See Han (2014) for additional details.

In Setting 2, we must modify the empirical weights in the second step and define the
maximum empirical likelihood estimator as

V̂ = argmax
V

argmax
p
(2)
1 ,...,p

(2)
n

nX

i=1

log p(2)i + (N � n) log(1� V ),

subject to
nX

i=1

p
(2)

i = 1,
nX

i=1

p
(2)

i (1/Wi � V ) = 0.

Then, we define the empirical weights as (p̂(2)
1
, . . . , p̂

(2)

n ) = (p̂(2)
1
(V̂ ), . . . , p̂(2)n (V̂ )). Our

maximum empirical likelihood estimator ✓̂EL2 in Setting 2 is defined as the unique solution
to

NX

i=1

p̂
(2)

i p̂
(1)

i �iRiU✓(Xi, Yi) = 0. (28)

In Setting 2, modeling C✓ and multiplying by the sampling weights in (28) are unnecessary
because such information is already carried by the second term in the empirical likelihood.
Then, our estimators ✓̂EL1 and ✓̂EL2 have desired multiple robustness.
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Theorem 3.4. In Settings 1 and 2, we assume Conditions 1–2 and Conditions 7–10 in
Appendix. If each of the J models for the response mechanism, K models for the regression
function, and L models for C✓(x) include the correct model, then the two adaptive esti-
mators ✓̂EL1 and ✓̂EL2 achieve the e�ciency bound {E(S⌦2

e↵,j)}
�1 for each Setting j = 1, 2.

If at least one of the J + K models for the response and outcome regression models is
correctly specified, then ✓̂EL1 and ✓̂EL2 still have consistency.

3.1.5 Optimal estimator using empirical likelihood in Setting 3

Finally, we propose the most e�cient estimator in Setting 3 by extending the esti-
mator in Setting 2. Recall that ⌧ = ⌧(P1) is the target parameter in the external
data, where P1 is the distribution of external data. Suppose that an estimator ⌧̃ for
⌧ , its variance estimator ⌃̃1, and the sample size of the external data N1 are available
from the external source. Additionally, suppose that we can access summary statistics
such as (i) Z-estimator (the solution to E{U⌧ (X,Z)} = 0), (ii) regression coe�cients
E(X | Z; ⌧), and (iii) conditional density f(x | z; ⌧). According to Condition 3, because
there is no missingness for X and Z after sampling, the optimal estimator is obtained
by solving n

�1
PN

i=1
{�iWiD

⇤

⌧ (Xi, Zi) + (1� �iWi)C⇤

⌧ (Xi)} = 0, where D
⇤

⌧ and C
⇤

⌧ are
defined in Theorem 3.1 in Morikawa, Terada and Kim (2022) dependent on the target
parameter ⌧ . For example, if a Z-estimator is of interest, then D

⇤

✓ = U⌧ (X,Z) and
C

⇤

⌧ = E{(W � 1)U⌧ (X,Z) | X}/E(W � 1 | X).
Then, by using the optimal score function for ⌧ , the maximum empirical likelihood

estimator in Setting 3 in the second step is defined through the maximizer of (⌧, V ) in

argmax
p
(2)
1 ,...,p

(2)
n

nX

i=1

log p(2)i + (N � n) log(1� V ) � 2�1
N1(⌧̃ � ⌧)>⌃̃�1

1
(⌧̃ � ⌧)>,

subject to

nX

i=1

p
(2)

i = 1,
nX

i=1

p
(2)

i (1/Wi � V ) = 0,
nX

i=1

p
(2)

i D
⇤

⌧ (Xi, Zi) = 0.

We incorporate the information on ⌧̃ into the likelihood to leverage our prior knowledge
that ⌧̃ is asymptotically normally distributed with mean ⌧ and variance ⌃̃1, as discussed
in Zhang et al. (2020). Furthermore, the third constraint above is essential for e�ciently
estimating ⌧ using the internal data. Then, our final estimator ✓̂EL3 is obtained by solving
(28) with respect to ✓.

Theorem 3.5. In Setting 3, we assume Conditions 1–6, Conditions 7–9 and 11 in Ap-
pendix. If each of the J models for the response mechanism and K models for the regres-
sion function include the correct model, the adaptive estimator ✓̂EL3 achieves the e�ciency
bound addressed in section 3.1.3. If at least one of the J +K models for the response and
outcome regression models is correctly specified, ✓̂EL3 still has consistency.

3.2 Future work: Nonignorable participation for non-probability

survey samples

In section 2, we discussed the identifiability of nonignorable missing data. The proposed
identification conditions are beneficial in settings where the data structure can be viewed
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within the framework of incomplete data analysis. In this section, as an illustrative
example, we introduce the utilization of non-probability samples in survey sampling. First,
we introduce the notation: the finite population U = {1, 2, . . . , N} with population size
N , auxiliary variables, xi, and the study variable, yi. The finite population mean of the
study variable is defined as µy = N

�1
PN

i=1
yi. Let SA be the set of nA units for the

non-probability survey sample and {(yi,xi), i 2 SA} be the sample dataset; let SB be the
set of nB units of an existing reference probability survey sample with the sample dataset
represented by {(xi, d

B
i ), i 2 SB}, where the dB

i ’s are the survey weights. Let �i = I(i 2 SA)
be the indicator variable for the participation of unit i in the non-probability sample SA,
i = 1, 2, . . . , N . In a probability sample, the inclusion probabilities dBi are known, but the
study variable y is not observed. Conversely, in a non-probability sample, the inclusion
probabilities are unknown, but the study variable y is observed.

In this setting, we want to estimate the parameter of the participation probabilities
for the non-probability sample defined as

⇡i = P (i 2 SA | xi, yi) = P (�i = 1 | xi, yi) , i = 1, 2, . . . , N . (29)

Note that it is consistent with the response mechanism in missing data analysis. Under
the ignorable condition, Chen, Li and Wu (2020) propose the doubly robust estimator.

Hereafter, we consider the relaxation of ignorable assumption. Similarly to the tech-
nique used by Chen et al. (2020), we explain how to estimate it through nonignorable
missing data analysis methods. Suppose that x is observed for all units in the finite
population while y is only observed for the non-probability sample. In this case, the
observations are {(Ri, Riyi,xi), i = 1, 2, . . . , N} that is same in missing data analysis de-
scribed in section 2. In this case, we develop a parametric modeling method that is often
used in practical applications. Of course, it is also possible to extend semiparametric
or nonparametric models for nonignorable missingness, such as Kim and Yu (2011) and
Morikawa, Kim and Kano (2017).

Recall that we solve the following mean score equation (2) to get the MLE estimator
in the nonignorable missing setting,

nX

i=1

⇢
�i
@ log ⇡(xi, yi;�)

�
� (1� �i)

R
@⇡(xi, y;�)/@� · p(y | x)dyR
{1� ⇡(xi, y;�)}p(y | x)dy

�
= 0.

Similarly to the technique used by Chen et al. (2020), the mean score equation (2) can
be approximated as

X

i2SA


@ log ⇡(xi, yi;�)

�
�

R
@⇡(xi, y;�)/@� · p(y | x)dyR
{1� ⇡(xi, y;�)}p(y | x)dy

�

+
X

i2SB

d
B
i

R
@⇡(xi, y;�)/@� · p(y | x)dyR
{1� ⇡(xi, y;�)}p(y | x)dy

. (30)

Note that the identifiability with respect to the equation (2) is required because the
equation (30) approximates the equation (2). To guarantee identifiability with respect to
(2), one can directly use the conditions in section 2 which is the future work of this thesis.
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4 Numerical experiment

In this section, we perform numerical experiments related to the identification conditions
proposed in section 2.5 and 2.6, respectively.

4.1 Simulation of instrumental variables approach

We present the e↵ects of identifiability in numerical experiments by comparing weak and
strong identifiable models. We prepared four Scenarios S1–S4:

S1: (Outcome: Normal, Response: Logistic)
[y | u, z, � = 1] ⇠ N(0 + 1u + 2z, �

2), logit{P (� = 1 | u, y;↵, �)} = ↵0 + ↵1u +

�y, u ⇠ N(0, 12), and z ⇠ B(1, 0.5), where (0,1, �2)> = (0.3, 0.4, 1/
p
2
2

)> and
(↵0,↵1, �)> = (0.7,�0.2, 0.29)>.

S2: (Outcome: Normal, Response: Cauchy)
[y | u, z, � = 1] ⇠ N(0 + 1u + 2z, �

2), P (� = 1 | u, y;↵, �) =  (↵0 + ↵1u + �y),

u ⇠ Unif(�1, 1), and z ⇠ B(1, 0.7), where (0,1, �2)> = (�0.36, 0.59, 1/
p
2
2

)>,
(↵0,↵1, �)> = (0.24,�0.1, 0.42)>, and  is the cumulative distribution function of
the Cauchy distribution.

S3: (Outcome: Bernoulli, Response: Probit)
[y | u, z, � = 1] ⇠ B(1, p(u, z;)}), P (� = 1 | u, y;↵, �) =  (↵0 + ↵1u + �y),
u ⇠ N(0, 12), and z ⇠ N(0, 12), where p(u, z;) = 1/{1 + exp(�0 � 1u � 2z),
(0,1,2)> = (�0.21, 3.8, 1.0)>, (↵0,↵1, �)> = (0.4, 0.39, 0.3)>, and  is the cu-
mulative distribution function of the standard normal.

S4: (Outcome: Normal+nonlinear mean structure, Response: Cauchy or Logistic)
[y | u, z, � = 1] ⇠ N(µ(x), 0.52), P (� = 1 | u, y;↵, �) =  (↵0 + ↵1u + �y),
u ⇠ Unif(�1, 1), and z ⇠ B(1, 0.5), where µ(x) = z + cos(2⇡u) + exp(z + u),
(↵0,↵1, �)> = (0.1,�0.2, 0.3)>, and  is the cumulative distribution function of the
Cauchy or Logistic distribution.

In S1 and S2, the strength of the identification can be adjusted by changing the
parameter 2 because 2 = 0 indicates that the model it is unidentifiable by Example 2.1.
On the other hand, we can verify that the models in S3 and S4 are identifiable by Theorem
2.8. For example, in S4, we can see that checking (C3) and (C4) is straightforward to the
setting, while (C5) and (C6) hold from Example 2.9 and Proposition 2.11, respectively.
From S3 and S4, we can confirm the successful inference even in the case of discrete
outcome and complex mean structures, respectively.

We generated 1,000 independent Monte Carlo samples and computed two estimators
for E[y] and � with two methods: fractional imputation (FI) and complete case (CC)
estimators, which use only completely observed data. The estimator for E[y] is computed
by the standard inverse probability weighting method with estimated response models
(Riddles et al., 2016). We used correctly specified models for Scenarios S1–S3 but used
nonparametric models for Scenario S4 because it is unrealistic to assume that the compli-
cated mean structure is known. The R package ‘crs’ specialized in nonparametric spline
regression on the mixture of categorical and continuous covariates (Nie and Racine, 2012)
is used to estimate the respondents’ outcome model. Response model are estimated by
using the method discussed in Section 2.2.
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Bias, root mean squared error (RMSE), and coverage rate for 95% confidence intervals
in S1–S4 are reported in Table 1. In all the Scenarios, CC estimators have a significant
bias, and the coverage rates are far from 95%, while FI estimators work well when the
model is surely identifiable. When 2 is small in S1 and S2, the performance of variance
estimation with FI is poor, as expected, although that of point estimates is acceptable.
The results in S4 indicate that the model is identifiable even if we use a nonparametric
mean structure, and the estimates are almost the same between the two response models.

Table 1: Results of S1–S4: Bias, root mean square error (RMSE), and coverage rate
(CR,%) with 95% confidence interval are reported. CC: complete case; FI: fractional
imputation.

Scenario Parameter 2 Method Bias RMSE CR

1.0
CC 0.053 0.066 73.5
FI 0.000 0.043 95.4

E[y] 0.5
CC 0.039 0.053 80.9
FI -0.001 0.059 97.1

S1
0.1

CC 0.034 0.049 83.0
FI 0.021 0.136 99.8

1.0 FI 0.001 0.163 95.2
� 0.5 FI 0.003 0.330 98.6

0.1 FI -0.146 0.865 100

1.0
CC 0.146 0.152 5.7
FI -0.004 0.051 94.8

E[y] 0.5
CC 0.130 0.136 7.7
FI -0.008 0.086 86.2

S2
0.1

CC 0.127 0.133 9.4
FI -0.007 0.105 92.4

1.0 FI 0.008 0.148 95.4
� 0.5 FI 0.044 0.365 100

0.1 FI 0.033 0.448 100

E[y]
– CC 0.100 0.102 0.3

S3 – FI 0.001 0.022 95.3

� – FI -0.023 0.279 95.0

– CC(Logistic) 0.341 0.355 5.4

E[y]
– FI(Logistic) 0.005 0.079 95.4
– CC(Cauchy) 0.296 0.312 10.7

S4 – FI(Cauchy) 0.007 0.080 94.3

�
– FI(Logistic) 0.006 0.050 94.7
– FI(Cauchy) 0.011 0.063 93.8

28



4.2 Simulation of avoiding instrumental variables approach

In this section, we conduct numerical studies to evaluate the performance of the proposed
FI method. We assume that the response mechanism follows a logistic distribution.

logit {pr(� = 1 | x, y;↵, �)} = ↵0 + ↵1x+ �y,

where x denotes a one-dimensional covariate. We conduct three scenarios, S1–S3 with
varying outcome models, as follows:

S1: The distribution of [y | x, � = 1] is N(0 + 1x + 2x
2
, �

2), where (0,1, �2)> =

(0, 0.4, 1/
p
2
2

)> and 2 (identifiability) are 0.1 (weak), 0.5 (moderate), and 1.0
(strong), the distribution of the covariate x is N(0, 12), and the true parameter
of the response mechanism is (↵0,↵1, �)> = (0.68, 0.19, 0.24)>.

S2: The distribution of [y | x, � = 1] follows a binomial distribution B(1, 1/{1 +
exp(�0�1x)}), where (0,1)> = (�0.21, 5.9)>, the distribution of the covariate
[x] is N(0, 12), and the true parameter of the response mechanism is (↵0,↵1, �)> =
(0.7, 0.39, 0.39)>.

S3: The distribution of [y | x, � = 1] follows a normal mixture distribution 0.35N(1 �

1.4x, 1/
p
2
2

)+0.65N(�1.5�0.5x+x
2
, 1/

p
2
2

), where the distribution of the covariate
[x] is N(0, 12) and the true parameter of the response mechanism is (↵0,↵1, �)> =
(0.9,�0.26, 0.2)>.

We generate B = 1,000 independent Monte Carlo samples with a sample size of
n = 500. The average response rate is approximately 0.7 for all scenarios. We compare
our proposed FI estimators with complete case (CC) estimators, which use only com-
plete cases. For comparison, we consider two parameters: the expectation of the missing
variable y, µy, and the response model coe�cient � associated with the missing variable
y.

Table 2 reports the bias, root-mean-square error (RMSE), and coverage rates with
a 95% confidence interval. Although the naive CC estimators have large biases in all
scenarios, the proposed FI estimators yield asymptotically unbiased estimates, except for
non-identifiable situations.

Based on the discussion in Example 2.14, we demonstrate that the model in S1 is
unidentifiable for 2 = 0. Moreover, as 2 tends to 0, the identifiability becomes weaker,
hence yielding inaccurate estimates. For the estimations of µy, the FI estimators per-
formed adequately in all scenarios, and the results for the coverage rate were acceptable.
Regarding the estimations of �, the bias is still less in all scenarios. However, the RMSE
in S2 takes large values owing to the lack of information on binary outcomes.
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Table 2: Results of S1–S3: bias, root mean square error (RMSE), and coverage rate
(CR,%) with 95% confidence interval are reported. CC, complete case; FI: fractional
imputation.

Scenario Parameter 2 Method Bias RMSE CR

1.0
CC 0.167 0.191 59.1
FI 0.000 0.076 94.9

µy 0.5
CC 0.099 0.116 64.2
FI -0.002 0.057 95.5

S1
0.1

CC 0.077 0.089 60.8
FI -0.006 0.137 98.8

1.0 FI 0.015 0.097 95.3
� 0.5 FI 0.017 0.162 96.7

0.1 FI 0.078 1.694 99.1

µy
– CC 0.073 0.078 21.5

S2 – FI 0.002 0.026 95.1

� – FI 0.018 0.508 95.6

µy
– CC 0.214 0.236 43.0

S3 – FI -0.001 0.102 94.9

� – FI 0.013 0.165 95.3

5 Real data analysis

In this section, we perform real data analysis related to the identification conditions
proposed in section 2.5 and 2.6, respectively.

5.1 AIDS Clinical Trials Group Study 175

We analyzed a dataset of 2139 HIV-positive patients enrolled in AIDS Clinical Tri-
als Group Study 175 (ACTG175; Hammer, Katzenstein, Hughes, Gundacker, Schooley,
Haubrich, Henry, Lederman, Phair, Niu et al. (1996)). In this analysis, we specify 532
patients for analysis who received zidovudine (ZDV) monotherapy. Let each y, x1, and x2

be the CD4 cell count at 96±5 weeks, at the baseline, and at 20±5 weeks, x3 be the CD8
cell count at the baseline, and z be sex. The outcome was subject to missingness with a
60.34% observation rate, while all covariates were observed. To make estimation stable
and easy, we standardized all the data. We expect that z (sex) is a reasonable choice
for an instrument variable because the information is a biological value, which a↵ects the
value of CD4, but has little e↵ect on the response probability.

Patients who are su↵ering from a mild illness of HIV tend to have higher CD4 cell
count; thus, one may consider that missingness of the outcome relates to serious conditions
and may expect that the missing value of the outcome would be a lower CD4 cell count
than the respondent. We therefore considered five di↵erent MNAR response models:

P (� = 1 | x1, x2, x3, y) =  (↵0 + ↵1x1 + ↵2x2 + ↵3x3 + �y),

where  represents either the Logistic function or the distribution functions of the Cauchy
or t distribution with degrees of freedom v (= 2, 5, 10). Theorem 2.8 and Proposition 2.11
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ensure that all the models with these five response models are identifiable, even when the
instrumental variable z is discrete. From the above conjecture on missing values, the sign
of � is expected to be negative. We assumed that the respondent’s outcome is a normal
distribution with a nonparametric mean structure and estimated by the ‘crs’ R package
as considered in Scenario S4 in Section 4. The residual plots shown in Figure 3 and
the computed R

2-value (= 0.453) signify the assumed distribution on the respondents’
outcome fit well. Table 3 reports the estimated parameters and their estimated standard
errors calculated by 1,000 bootstrap samples. The results of the five response models
were almost similar. This suggests that the response mechanism is robust to the choice of
response models. Although we cannot determine whether it is MNAR or MAR because
the estimated standard error for � is large, the point estimate is negative, as we expected.
This result is consistent with the result in Zhao, Wang and Shao (2021).

Figure 2: Residual plots of respondents’ outcome in ACTG175 data.
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Table 3: Estimated parameters: Estimates and standard errors for the target parameters
are reported. Logistic and Cauchy are Fractional Imputation using Logistic and Cauchy
distributions for the response mechanism. Tv: t distribution function with degrees of
freedom v (= 2, 5, 10).

Parameter Model Estimate SE Parameter Model Estimate SE

Logistic 0.464 0.104 Logistic 0.125 0.156
Cauchy 0.417 0.260 Cauchy 0.108 0.139

↵0 T2 0.341 0.081 ↵1 T2 0.091 0.113
T5 0.306 0.069 T5 0.082 0.102
T10 0.295 0.066 T10 0.080 0.099

Logistic 0.255 0.192 Logistic 0.093 0.107
Cauchy 0.244 0.207 Cauchy 0.083 0.097

↵2 T2 0.196 0.148 ↵3 T2 0.069 0.079
T5 0.169 0.126 T5 0.062 0.070
T10 0.160 0.120 T10 0.060 0.068

Logistic -0.032 0.314 Logistic 276.70 13.476
Cauchy -0.030 0.387 Cauchy 276.51 14.107

� T2 -0.027 0.235 E[y] T2 276.57 13.437
T5 -0.021 0.203 T5 276.61 13.271
T10 -0.019 0.194 T10 276.63 13.217

5.2 Election Poll Data

We apply the proposed method to opinion poll data collected to predict the 2022 South
Korean presidential election. Specifically, data were obtained from a telephone survey
with a response rate of 8.96% from 896 individuals among 10,000 potential voters. The
dataset includes respondents’ voting intentions regarding electoral participation, voting
preferences, and demographic information, such as sex, area, and age.

The respondents’ voting preferences, denoted by y, were categorised into binary re-
sponses: 1 for the candidate of the ruling party and 0 for other candidates. Additionally
we redefine the intention of electoral participation, denoted by �, such that it equals 1
if a respondent is likely to participate in the election, and 0 otherwise. We assume that
we do not observe y, whose voting intention, �, is 0. Among the 896 respondents, we
observe y for 841(93.9%) respondents and do not observe y for the remaining 55(6.1%)
respondents. Moreover, we implicitly assume a nonignorable missing mechanism, such
that voting intention is closely related to the respondents’ voting preferences.

The covariate age(� 19) is continuous, sex is a binary non-ordered categorical variable
which represents male status or not, and area is another non-ordered categorical variable
with three merged administrative districts in South Korea. The “true” averaged voting
preference rate of E(y) is ✓̂n = 0.300(= 269/896) calculated using the complete data, and
the naive average voting rate is ✓̂naive = 0.317(= 267/841) calculated using the observed
data with � = 1.

To apply our proposed method, we define a non-ordered categorical variable z with
six values that integrate the sex and area variables. Subsequently, we assume a binomial
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Table 4: Results of the analysis of the 2022 South Korean Presidential Election data:
estimates and 95% confidence intervals (CI) for the target parameters reported.

Parameter Estimate 95% CI Parameter Estimate 95% CI
↵01 2.865 ( 1.659, 4.072 ) ↵11 0.489 ( -0.021, 1.001 )
↵02 3.304 ( 1.673, 4.934 ) ↵12 0.308 ( -0.707, 1.324 )
↵03 2.616 ( 1.651, 3.580 ) ↵13 0.535 ( 0.018, 1.051 )
↵04 2.860 ( 1.750, 3.971 ) ↵14 -0.266 ( -0.799, 0.267 )
↵05 3.764 ( 1.323, 6.205 ) ↵15 0.310 ( -2.078, 2.698 )
↵06 4.848 ( -0.467, 10.165 ) ↵16 -1.817 ( -6.722, 3.086 )
� -0.461 ( -2.921, 1.999 ) E[Y ] 0.321 ( 0.292, 0.350 )

distribution B(1, p1(x, z)) as the outcome model, where

logit{p1(x, z)} =
6X

d=1

I(z = d)
4X

l=0

ldx
l
,

and ld is the coe�cient of the logistic regression for the l-th power of the covariate for
z = d, and x represents the standardisation of age. For each value of z, we select the
most suitable logistic regression model by AIC in a stepwise algorithm among 25 � 1
models. The resulting logistic regression functions vary for each categorical variable. For
example, the most suitable model is �0.12 � 1.09x � 0.69x2 + 0.55x3 for z = 1, and
�0.68� 0.85x� 0.66x2 for z = 6.

We assumed that the response model

logit {pr(� = 1 | x, z, y;↵, �)} =
6X

d=1

I(z = d)(↵0d + ↵1dx) + �y,

and further estimate (↵>
, �)> and the mean voting preference using the proposed FI

method. As explained in Example 2.17, this model can be identified without using in-
strumental variables.

Table 4 presents the point estimates and 95% confidence intervals of the model pa-
rameters and E[y]. The 95% confidence intervals for z = 5 and z = 6 are wider than the
others, owing to the smaller sample size. We can assert that the proposed FI method per-
forms well because the confidence interval of E[y] contains the “true” average voting rate
✓̂n = 0.300. Although the point estimator of � significantly deviates from 0, we cannot
determine whether it is MAR or MNAR because the 95% confidence interval contains 0
in this real data application.

5.3 National Supported Work Data

In the second application, we use publicly available data collected to evaluate the National
supported work (NSW) demonstration project Lalonde (1986). The response indicator
� denotes a treatment indicator, and the covariates of the dataset are age, education,
black, nodegree, where age and education are continuous, and black and nodegree are
non-ordered categorical binary response variables that represent whether the race of a
participant is black and they do not take degree or not, respectively. The integration of
black and nodegree defines a new non-ordered categorical vairble z with four values. The
covariates x1 and x2 represent the standardisation of age and education, respectively. We
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Table 5: Results of the analysis of the National Supported Work data: estimates and 95%
confidence intervals (CI) for the target parameters reported.

Parameter Estimate 95% CI Parameter Estimate 95% CI
↵01 12.47 (-7.72, 32.67) ↵11 0.01 (-0.19, 0.22)
↵02 11.94 (-6.16, 30.05) ↵12 0.14 (-0.80, 1.09)
↵03 13.01 (-6.81, 32.83) ↵13 0.85 (0.23, 1.47)
↵04 14.48 (-16.11, 45.08) ↵14 0.24 (-1.35, 1.84)
↵21 -0.07 (-0.50, 0.36) � -1.42 (-3.59, 0.73)
↵22 1.15 (-1.19, 3.50) E[Y ] 9.03 (8.50, 9.56)
↵23 0.57 (-0.11, 1.27)
↵24 -1.50 (-11.48, 8.47)

also define the outcome value y by the logarithmic transformation of earnings in 1978
using any non-zero. The response rate was approximately 43.7% for the 526 experimental
participants.

We selected the most suitable model using the AIC and confirmed the identifiability
of the model. As explained in Theorem 2.20, the most suitable model must satisfy (C2)
and (C4): Hence, we verify how far the most suitable model and the model that does
not satisfy (C2) or (C4) are separated by the AIC. For each value of z, we selected the
most suitable normal mixture model using the adaptive lasso. We further determined the
number of components by comparing the AIC of each component (Städler, Bühlmann and
Van De Geer, 2010). We set the maximum number of the mixture components among the
candidate models to three with basis functions (x1, x2, x

2

1
, x

2

2
, x

3

1
, x

3

2
, x1x2) as covariates,

whereas we set the number of mixture components of z = 4 to 1 because the sample
size was small. The resulting regression functions vary for each categorical variable. For
example, the most suitable model for z = 1 and z = 3 is

z = 1 : 0.25N(7.13� 0.68x1 � 0.55x2 + 0.06x3

1
, 0.902)

+ 0.33N(9.21� 0.02x2

2
, 0.202) + 0.42N(8.86 + 0.44x2 + 0.16x1x2, 0.68

2);

z = 3 : 0.54N(9.62 + 0.07x2

1
� 0.27x2

2
+ 0.88x3

1
+ 0.44x1x2, 0.21

2)

+ 0.45N(8.03� 0.54x2 + 0.08x2

1
� 0.20x2

2
, 0.482).

As explained in Theorem 2.20, this model is identifiable. For z = 2 and z = 3, the largest
AIC models in unidentifiable models that do not satisfy (C2) or (C4) of Theoerem2.20 are
131.58 and 90.23. However, the most suitable models are 119.76 and 79.48, respectively.
The naive average of the outcome is µ̂naive = 8.52, calculated using only the respondents’
data. Figure 3 reports the residual plots for each categorical variable, which show the
goodness of fit of the normal mixture. We assume that the response model

logit {pr(� = 1 | x1, x2, z, y;↵, �)} =
4X

d=1

I(z = d)(↵0d + ↵1dx1 + ↵2dx2) + �y,

and further estimate (↵>
, �)> and the mean of y using the proposed FI method.

Table 5 reports the point estimate and 95% confidence intervals for each target param-
eter. A smaller sample size of z = 4 widens the 95% confidence intervals of ↵24. Although
the point estimate of � significantly deviates from 0, we cannot determine whether it is
MAR or MNAR because the 95% confidence interval contains 0.
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Figure 3: Residual plots for each z.

6 Conclusion

In this paper, we first proposed two new types of identification conditions for models using
respondents’ outcome and response models. Next, we developed e�cient multiple robust
estimation methods under informative sampling. Additionally, the integration of external
summary statistics can also be easily handled using the proposed empirical likelihood
approach.

Regarding the identification condition proposed in section 2.5, while our method re-
quires the specification of the two models, these models can be highly flexible with the
help of an instrument. As considered in Scenario S4 in section 4.1, the mean function
in the respondents’ outcome model can be nonparametric, and the response model can
be any strictly monotone function, other than Logistic models. Our condition guarantees
model identifiability even when instruments are categorical, which is not addressed by
previous conditions. However, our method has certain limitations. First, respondents’
outcome models need to satisfy the monotone-likelihood property in Condition (C5). For
example, mixture models fall outside the scope of our framework. Second, the specifi-
cation of instruments is necessary in advance. While recent studies, such as Zhao et al.
(2021), have explored methods for identifying instruments, a universally accepted gold
standard has yet to be established. In section 2.6, we propose su�cient conditions for
model identifiability using a generalized linear model and a logistic response mechanism.
We futher extend the outcome model to accommodate a mixture of distributions belong-
ing to the exponential family and discuss the model identifiability of normal mixture
models. However, the proposed FI method has notable limitations: it relies on the unver-
ifiable assumption that if the response mechanism is nonignorable, it must be additive,
meaning that the missing data y is related to the response only through the additive
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term �y. If these assumptions deviate significantly from reality, the proposed method
may produce highly biased estimates. Although we restrict the response mechanism to
a logistic distribution, it may be possible to utilize other distributions such as the Tobit
and Robit models (Liu, 2004). However, these alternatives face additional challenges:
the integral involved in the observed likelihood cannot typically be represented explicitly,
and in some cases, this integral may diverge to infinity. Therefore, careful investigation
is necessary when employing alternative response mechanisms. The proposed FI method
can be replaced by multiple imputation, which is a popular method of missing data anal-
ysis (Rubin, 1978). Rubin’s variance formula simplifies the calculation of the asymptotic
variance of estimators. However, the congeniality condition requires further discussion
to guarantee the applicability of Rubin’s variance formula, which represents the scope of
future work.

In the discussion of the e�cient multiple robust estimations presented in section 3,
the estimator achieves the semiparametric e�cient bound as long as the model candidates
include at least one correct model. However, there are also inherent limitations to this
approach. Firstly, Condition 2, which assumes the ignorability of the response mecha-
nism, can be restrictive in practical applications. Therefore, enhancing the methodology
to accommodate nonignorable response mechanisms is critical for further development.
Second, our approach assumes that external information is fully observed and excludes
any parameters related to the outcome variable (y) from the current framework. Ex-
tending the method to incorporate such parameters represents an important direction for
future research. Finally, the methods introduced in section 3.2 are still at a conceptual
stage and remain a challenge for future investigation.
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Appendix

A Technical Proofs of Section 2

We first provide a technical result to prove Theorem 2.7.

Lemma A.1. Let a, b, and c be any positive real numbers. Assume that r1 and r2 are
positive real numbers satisfying
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Proof of Lemma A.1. By using a polar coordinate system, we transform ⇡
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j (j = 1, 2, 3; k =
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from (33) and double-angular formulas that we have
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where !1 = cos 2�1,!2 = cos 2�2,!3 = cos 2 1, and !4 = cos 2 2. Setting !2 = !4 and
equations (34) and (35) yield
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Fixing !2 = 1� 2a/(a+ b) reduces the above equations to the one common equation
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maintaing the condition �1 < !2 < 1. It remains to show that there exists �1 < !3 < 1
satisfying (36) and (37). Solving the equation (37) with respect to !1, we have
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Substituting (38) into (36) leads to the following quadratic equation with respect to !3:
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It follows from (31) that
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which implies that there is at least one solution of !3 to the equation f(!3) = 0 in the
open interval (�1, 1) .

Finally, we prove Theorem 2.7 with the help of Lemma A.1.

Proof of Theorem 2.7. Without loss of generality, we set the value of u to a fixed vector
because the following proof holds for each u. Let the categorical variables y and z take
values in {1, 2, . . . , p} and {1, 2, . . . , q}, respectively. We show that model identifiability
implies the completeness condition (C2) by individually addressing three cases: (i) p = 2,
(ii) p = 3, and (iii) p � 4 because “if” part has been already established by Lemma 2.5.

When p = 2, condition (C1) results in the rank of a q ⇥ 2 matrix, composed of
p(y = j | � = 1, z = i) in its (i, j)-th element (i = 1, 2; j = 1 . . . , q), being 2. Hence,
identifiable models always satisfy the completeness condition (C2).

For cases where p � 3, we must show that the model becomes unidentifiable when the
completeness condition is violated. The breach of the completeness condition indicates
the existence of a non-zero vector (h1, . . . , hp) such that for z = 1, . . . , q, we have

E[hy | � = 1, z] =
pX

y=1

hyp(y | � = 1, z) = 0. (39)

The elements in (h1, · · · , hp) do not all share the same sign, and multiplying this vector
by any constant does not a↵ect the above equation. Recall that the model’s unidentifi-
ability implies that ⇡(1)

y 6= ⇡
(2)

y exists for some y 2 {1, . . . , p}, satisfying
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y . We now construct an unidentifiable model when
the completeness condition is violated.

When p = 3, without loss of generality, we assume h1 > 0, h2 > 0, and h3 < 0
satisfying the condition

P
3

y=1
hyp(y | � = 1, z) = 0 for all z 2 {1, . . . , q}. Employing

Lemma A.1 with a = h1, b = h2, c = �h3, and r1 = r2 = 1, we derive:
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Lastly, we consider the case of p � 4. Suppose hy (y = 1, . . . , p) satisfies (39). Within

(h1, · · · , hp), we select three elements with signs as positive, positive, and negative, re-
spectively, and define them as a, b, and �c where a, b, c > 0, and � is set to be su�ciently
large to ensure that
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For ease of notation, we denote (h1, · · · , hp) = (h1, · · · , hp�3, a, b,�c). The remaining
part of the proof is similar when the combination of the signs is negative, negative, and
positive. With the selected �, 0 < ⇡
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By determining the variables through these steps, it follows from (40), (41), and (42)
that condition (31) with a = �a, b = �b, and c = �c is fulfilled:
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Therefore, by applying Lemma A.1, we demonstrate that there exist ⇡(k)
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Therefore, the model is unidentifiable.

Proof of Theorem 2.8. We consider when y is continuous because when y is discrete, we
just need to change the integral to summation. To simplify the discussion, we consider
the case where Sy = R. Let u be a fixed value. Because h and g are injective functions,
it is su�cient to prove the case where ↵ := h(u;↵) and � := g(u;�). Therefore, our goal
is to prove

p(y | x, � = 1;�)R
p(y | x, � = 1;�) {↵ + �m(y)}�1dy

=
p(y | x, � = 1;�0)R

p(y | x, � = 1;�0) {↵0 + �0m(y)}�1dy
,

implies ↵ = ↵
0, � = �

0 and � = �0. Integrating both sides of the above equation with
respect to y yields the equality of the denominator. Thus, we have p(y | x, � = 1;�) =
p(y | x, � = 1;�0); this implies � = �0 by (C4).

Next, we consider the identification of �. Taking z1 and z2 such that they satisfy
(C5), we show that

Z
p(y | u, z1, � = 1;�)

 {↵ + �m(y)}
dy =

Z
p(y | u, z1, � = 1;�)

 {↵0 + �0m(y)}
dy, (43)

Z
p(y | u, z2, � = 1;�)

 {↵ + �m(y)}
dy =

Z
p(y | u, z2, � = 1;�)

 {↵0 + �0m(y)}
dy, (44)

implies � = �
0. It follows from (43) and (44) that

Z
K(y;↵,↵0

, �, �
0)p(y | u, z1, � = 1;�)dy

=

Z
K(y;↵,↵0

, �, �
0)p(y | u, z2, � = 1;�)dy = 0, (45)

where K(y;↵,↵0
, �, �

0) =  �1
{↵+ �m(y)}� �1

{↵
0 + �

0
m(y)}. It remains to show that

(45) implies � = �
0 in the following two steps:

Step I. We prove that the function K(y;↵,↵0
, �, �

0) has a single change of sign when
� 6= �

0. Assume that � 6= �
0. The equation K(y;↵,↵0

, �, �
0) = 0 has only one solution

y
⇤
2 Sy satisfying m(y⇤) = (↵ � ↵

0)/(�0
� �) because of the injectivity of the function

m(·) and  (·). This implies K(y) has a single change of sign.
Step II. We prove that the equation (45) does not hold when � = �

0. Without loss
of generality, by Step I, we consider a case where K(y;↵,↵0

, �, �
0) < 0 (y < y

⇤) and
K(y;↵,↵0

, �, �
0) > 0 (y > y

⇤), and p(y | u, z2, � = 1)/p(y | u, z1, � = 1) is monotone
increasing. Let c be the upper bound of the density ratio

c := sup
y<y⇤

p(y | u, z2, � = 1)

p(y | u, z1, � = 1)
.
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By a property on K(y;↵,↵0
, �, �

0) shown in (45), we have

0 =

Z
K(y;↵,↵0

, �, �
0)p(y | u, z2, � = 1)dy

=

Z y⇤

�1

K(y;↵,↵0
, �, �

0)
p(y | u, z2, � = 1)

p(y | u, z1, � = 1)
p(y | u, z1, � = 1)dy

+

Z
1

y⇤
K(y;↵,↵0

, �, �
0)
p(y | u, z2, � = 1)

p(y | u, z1, � = 1)
p(y | u, z1, � = 1)dy

�

Z y⇤

�1

cK(y;↵,↵0
, �, �

0)p(y | u, z1, � = 1)dy +

Z
1

y⇤
cK(y;↵,↵0

, �, �
0)p(y | u, z1, � = 1)dy

= c

Z
K(y;↵,↵0

, �, �
0)p(y | u, z1, � = 1)dy = 0,

where the inequality follows from the definition of c. This results in the density ratio
p(y | u, z2, � = 1)/p(y | u, z1, � = 1) being a constant on Sy, hence, p(y | u, z2, � = 1) =
p(y | u, z1, � = 1) on Sy. This contradicts with (C5), thus � = �

0.
Finally, from the strict monotonicity of  , it follows that the integration

Z
p(y | u, z1, � = 1;�)

 {↵ + �m(y)}
dy,

is injective with respect to ↵. Therefore, equation (43) implies that ↵ = ↵
0.

Proof of Proposition 2.11. It follows from the assumption (15) that there exist M,C > 0
such that

Z
p(y | x, � = 1;�)

 {h(u;↵) + g(u;�)m(y)}
dy

/

Z
1

�1

exp

⇢
�
1

2

(y � h(u;↵)� �µ(x,))2

�2�2

�
1

 (y) exp(|y|s)
exp(|y|s)dy



Z
�M

�1

exp

⇢
�
1

2

(y � h(u;↵)� �µ(x,))2

�2�2

�
C exp(|y|s)dy + C < 1,

where 0 < s < 2. The first and the second terms of the last equation hold by the condition
(15) and the increasing assumption of  , respectively.

Next, we first prove Theorem 2.18, which is the most general case. Using Theorem
2.18, we can prove Theorem 2.12 by considering the case for which K = 1. Theorems
2.12 and 2.18 prove corollaries 2.13 and 2.19, respectively.

Proof of Theorem 2.18. Using Bayes’ theorem, we obtain

p(y | x;↵, �,�)P (� = 1 | x, y;↵, �)

=
p(y | x, � = 1;�)R

p(y | x, � = 1;�) {P (� = 1 | x, y;↵, �)}�1
dy

. (46)

When (↵, �,�) and (↵0
, �

0
,� 0) yield the same observed likelihood, by integrating out y

from both sides, we obtain
Z

p(y | x, � = 1;�)

P (� = 1 | x, y;↵, �)
dy =

Z
p(y | x, � = 1;� 0)

P (� = 1 | x, y;↵0, �0)
dy.

45



Then, we obtain p(y | x, � = 1;�) = p(y | x, � = 1;� 0) because both denominators in (46)
are identical. The identification of [y | x, � = 1] reduces our identification problem as

Z
p(y | x, � = 1;�)

P (� = 1 | x, y;↵, �)
dy =

Z
p(y | x, � = 1;�)

P (� = 1 | x, y;↵0, �0)
dy ) (↵, �) = (↵0

, �
0).

Next, we show that � = �
0 is su�cient to show (↵, �) = (↵0

, �
0). Let us introduce a

function

l(s) =

Z
p(y | x, � = 1;�)

1

F (s+ �y)
dy,

where F denotes a logistic distribution. Here, l(s) inherits strict monotonicity from F (·).
When � = �

0, we obtain ↵ = ↵0 using the following relationship:

l (h(x;↵)) = l (h(x;↵0)) ) h(x;↵) = h(x;↵0) ) ↵ = ↵0
.

When p(y | x, � = 1;�) belongs to a mixture of the exponential family and P (� = 1 |

x, y;↵, �) is the logistic response mechanism, it can be analogously computed
Z

p(y | x, � = 1;�) {P (� = 1 | x, y;↵, �)}�1
dy

=

Z
p(y | x, � = 1;�) {1 + exp (�h(x;↵)� �y)} dy

= 1 + exp (�h(x;↵))

Z KX

k=1

⇡k exp {⌧k (y✓k � b(✓k)) + c(y; ⌧k)} · exp (��y) dy

= 1 + exp (�h(x;↵))
KX

k=1

⇡k exp (�⌧kb(✓k)) · exp

⇢
⌧kb

✓
✓k �

�

⌧k

◆�
.

The identification problem results in
Z

p(y | x, � = 1;�)

P (� = 1 | x, y;↵, �)
dy = exp {�g(↵, �,�)}

= exp {�g(↵0
, �

0
,�)} =

Z
p(y | x, � = 1;�)

P (� = 1 | x, y;↵0, �0)
dy,

where g(↵, �,�) is as defined in Theorem 2.18. Because the assumption g(↵, �,�) =
g(↵0

, �
0
,�) ) � = �

0 guarantees the identification of �, we obtain the desired identifica-
tion for (↵, �,�). Regarding the necessity, the identifiability of (↵, �) can clearly claim
the identifiability of �. Thus, the theorem is proven.

Proof of Theorem 2.12. By using Theorem 2.18, rearranging the equation g(↵, �,�) =
g(↵0

, �
0
,�) provides

h(x;↵)�

⇢
�⌧b(✓) + ⌧b

✓
✓ �

�

⌧

◆�
= h(x;↵0)�

⇢
�⌧b(✓) + ⌧b

✓
✓ �

�
0

⌧

◆�

h(x;↵)� ⌧b

✓
✓ �

�

⌧

◆
= h(x;↵0)� ⌧b

✓
✓ �

�
0

⌧

◆
.

Hence, the function above is consistent with (19). Necessity and su�ciency follow from
an argument analogous to the proof of Theorem 2.18.
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Proof of Theorem 2.20. Using the function g(↵, �,�) in Corollary 2.19, we consider two
functions exp{�g}, which are equal but have di↵erent parameters, as follows

KX

i=1

⇡i exp

⇢
�h(x;↵)� �µi(x;i) +

1

2
�
2
�
2

i

�

=
KX

i=1

⇡i exp

⇢
�h(x;↵0)� �

0
µi(x;i) +

1

2
�
02
�
2

i

�
.

It su�ces to show � = �
0 to prove the identifiability according to Corollary 2.19. By

employing condition (C8) and Lemma A.2, there exists K ⇥ K permutation matrix P

such that

P�µ
M(x) = �

0
µ
M(x), (47)

where µ
M(x) = (µM

1
(x;1), . . . , µM

K (x;K))>. The equation (47) leads to

P
n
µ
M(x) = P

n�1
· Pµ

M(x)

= P
n�1

·
�
0

�
µ
M(x) = · · · =

✓
�
0

�

◆n

µ
M(x).

Note that since P is the permutation matrix, there exists n 2 N such that P n = I. Thus,
there exists n 2 N such that (�0

/�)n = 1, which implies that � = �
0 or � = ��

0. The
Condition (C9) indicates � = �

0. When � = ��
0, equation (47) becomes Pµ

M(x) =
�µ

M(x), indicating that (C10) is not satisfied. Therefore, this model is identifiable when
(C10) holds.

Proof of Theorem 2.23. Following the same approach as in the proof of Theorem 2.20, we
consider the following equation

KX

i=1

⇡i exp

⇢✓
�↵0 � �0i +

1

2
�
2
�
2

i

◆
� (↵1 + �1i) x

�

=
KX

i=1

⇡i exp

⇢✓
�↵

0

0
� �

0
0i +

1

2
�
02
�
2

i

◆
� (↵0

1
+ �

0
1i) x

�
.

It su�ces to show � = �
0 to prove the identifiability according to Theorem 2.18. Using

Lemma A.2, there exists a permutation matrix P such that

P (↵11K + �̃) = ↵
0

1
1K + �

0̃,

where ̃ = (11, . . . ,1K)>. Note that 1K is an eigenvector of a permutation matrix with
an eigenvalue of 1. Thus, we obtain the following equation

P ̃ =
(↵0

1
� ↵1)

�
1K +

�
0

�
̃. (48)

By applying equation (48) once,

P
2̃ = P

⇢
(↵0

1
� ↵1)

�
1K +

�
0

�
̃

�
=

✓
1 +

�
0

�

◆
(↵0

1
� ↵1)

�
1K +

✓
�
0

�

◆2

̃
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holds, and through repeating this process n times, we get

P
n̃ =

(
1 +

�
0

�
+ · · ·+

✓
�
0

�

◆n�1
)
↵
0

1
� ↵1

�
1K +

✓
�
0

�

◆n

̃.

Note that there exists n 2 N such that P
n = I because P is the permutation matrix.

Thus, the equation P
n̃ = ̃ holds for some n 2 N and the following equation is obtained

⇢
1�

✓
�
0

�

◆n�
̃ =

(
1 +

�
0

�
+ · · ·+

✓
�
0

�

◆n�1
)
↵
0

1
� ↵1

�
1K .

If (�0
/�)n 6= 1 holds, we have ̃ = C1K , where C is a constant. However, this result is

inconsistent with 1i 6= 1j (i 6= j). Hence, we obtain (�0
/�)n = 1, meaning that � = �

0

or � = ��
0. Under the first condition of Theorem 2.23, � = �

0 is immediately apparent.
Next, we show that � = �

0 under the second condition of Theorem 2.23. Based on the
above argument, if we assume � = ��

0, equation (48) provides

P ̃ =
(↵0

1
� ↵1)

�
1K � ̃,

which contradicts the second condition of Theorem 2.23. Therefore, we obtain � = �
0.

Proof of Theorem 2.24. Following the same approach as in the proof of Theorem 2.20, we
consider the following equation

2X

i=1

⇡i exp

⇢✓
�↵0 � �0i +

1

2
�
2
�
2

i

◆
� (↵1 + �1i) x

�
;

=
2X

i=1

⇡i exp

⇢✓
�↵

0

0
� �

0
0i +

1

2
�
02
�
2

i

◆
� (↵0

1
+ �

0
1i) x

�
.

It su�ces to show � = �
0 to prove the identifiability according to Theorem 2.18. Using

Lemma A.2, one of the following equations holds:

Case 1 : ↵1 + �11 = ↵
0

1
+ �

0
11, ↵1 + �12 = ↵

0

1
+ �

0
12;

Case 2 : ↵1 + �11 = ↵
0

1
+ �

0
12, ↵1 + �12 = ↵

0

1
+ �

0
11.

Under Case 1, subtracting both equations gives �(11�12) = �
0(11�12). Therefore,

we obtain � = �
0 from the assumption 11 6= 12.

Under Case 2, a similar calculation of Case 1 yields � = ��
0. Next, we compare the

constant part. If the two models are not identifiable, following two equations hold

�↵0 � �01 +
1

2
�
2
�
2

1
+ log ⇡1 = �↵

0

0
� �

0
02 +

1

2
�
02
�
2

2
+ log ⇡2,

�↵0 � �02 +
1

2
�
2
�
2

2
+ log ⇡2 = �↵

0

0
� �

0
01 +

1

2
�
02
�
2

1
+ log ⇡1.

Because � = ��
0, rearranging the equation above leads to

�
2(�2

1
� �

2

2
) = 2 (log ⇡2 � log ⇡1) .

The above equation is inconsistent with conditions 2 and 3 of Theorem 2.24.
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The following lemma shows the linear independence of exponentials of multivariate
polynomials. This result plays an important role in deriving the identification conditions
for normal mixtures. A related proof exists on the Stack Exchange website, and we provide
it here in a more extended form.

Lemma A.2. Let x be the p-dimensional vector (x1, . . . , xp)>, P1(x), . . . , Pn(x) be dis-
tinct multivariate polynomials without constant term, R1(x), . . . , Rn(x) be rational func-
tions of multivariate polynomials, and a domain of all these functions be the subset of the
Euclidean space Rp which contains an interior point. Then, the following result holds:

R1(x)e
P1(x) + · · ·+Rn(x)e

Pn(x) = 0 ) R1(x) = · · · = Rn(x) = 0.

Note that Lemma A.2 implies the linear independence of exponentials of multivariate
polynomials when the functions R1(x), . . . , Rn(x) are constant.

Proof of Lemma A.2. We prove this through mathematical induction. The case for n = 1
is straightforward. Now, we assume that the case for n = k � 1 is true. Let

R1(x)e
P1(x) + · · ·+Rk(x)e

Pk(x) = 0,

where P1(x), . . . , Pk(x) are distinct polynomials without a constant term and the functions
R1(x), . . . , Rk(x) are rational functions. If Rk(x) 6= 0, it follows

R1(x)

Rk(x)
e
P1(x)�Pk(x) + · · ·+

Rk�1(x)

Rk(x)
e
Pk�1(x)�Pk(x) + 1 = 0. (49)

Since both sides are di↵erentiable at the interior point of the domain of all functions,
di↵erentiating of equation (49) with respect to xl gives

k�1X

i=1


d

dxl

✓
Ri(x)

Rk(x)

◆
+

Ri(x)

Rk(x)
·

d

dxl
{Pi(x)� Pk(x)}

�
e
Pi(x)�Pk(x) = 0.

Because P1 � Pk, . . . , Pk�1 � Pk are distinct multivariate polynomials without a constant
term, the assumption of n = k � 1 case yields

d

dxl

✓
Ri(x)

Rk(x)

◆
+

Ri(x)

Rk(x)
·

d

dxl
(Pi(x)� Pk(x)) = 0,

⇢
d

dxl

✓
Ri(x)

Rk(x)

◆
+

Ri(x)

Rk(x)
·

d

dxl
(Pi(x)� Pk(x))

�
e
Pi(x)�Pk(x) = 0,

where i = 1, 2, . . . , k � 1. Integrating out xl from both sides, we obtain

Ri(x)

Rk(x)
e
Pi(x)�Pk(x) = Ci(x1, . . . , xl�1, xl+1, . . . , xp),

where l = 1, 2, · · · , p. The left-hand side is constant because it does not depend on l.
Therefore, it is denoted by Ci. If Ci 6= 0, Ri(x)/Rk(x) and Pi(x)� Pk(x) are constants,
which contradicts the fact that P1(x), . . . , Pn(x) are distinct polynomials without constant
terms. Thus, using Ci = 0 for i = 1, 2, . . . , k � 1 and the equation (49), the following
contradictory equation holds

0 =
R1(x)

Rk(x)
e
P1(x)�Pk(x) + · · ·+

Rk�1(x)

Rk(x)
e
Pk�1(x)�Pk(x) + 1 = 1.
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Consequently, we obtain Rk(x) = 0 that follows

R1(x)e
P1(x) + · · ·+Rk�1(x)e

Pk�1(x) = 0.

From the assumption of n = k � 1, R1(x) = · · · = Rk�1(x) = 0 holds and the lemma is
proven.
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B Technical Proofs of Section 3

The following are additional conditions to ensure consistency and asymptotic normality.

Condition 7. Let ↵j (j = 1, . . . , J), �k (k = 1, . . . , K) and �l (l = 1, . . . , L) be the param-
eter of candidate working models ⇡[j], g[k], and C

[l](X). We use ↵̂k, �̂j, and �̂l to denote
the estimators of ↵k, �j, and �l. N

1/2(↵̂k � ↵
⇤

k), N
1/2(�̂j � �

⇤

j ), and N
1/2(�̂l � �

⇤

l ) are

bounded in probability, where ↵⇤

k, �
⇤

j , and �
⇤

l are the probability limit of ↵̂k, �̂j, and �̂l.

Let ↵⇤ = (↵⇤

1

>
, . . . ,↵

⇤

J
>)>, �⇤ = (�⇤

1

>
, . . . , �

⇤

K
>)>, and �⇤ = (�⇤

1

>
, . . . , �

⇤

L
>)>.

Condition 8. E(W 3) < 1.

Condition 9. Suppose that ⇡[1](x, z, w;↵1) and g
[1](x, z, w; �1) are correctly specified.

Then, functions

kR�W (1� �W )U✓/⇡
[1]
k, k@

2
{ĥ

>(↵, �)/⇡[1]
}/@(↵>

, �
>)@(↵>

, �
>)>k, kĥ

>(↵, �)/⇡[1]
k
3
,

k@{ĥ
>(↵, �)/⇡[1](X,Z,W ;↵1)}/@(↵

>
, �

>)k, k(1 + ⇢̂
>
ĥ)�1

R�W
�
U✓⇤(X, Y )� g

[1]
 
k,

kR�WU✓(X, Y )/⇡[1]
k, k(1� �W )2C✓(X; �)⌦2

k, kRĥ
⌦2
/{(⇡[1])2W}k,

k�R(⇡[1])�1
@ĥ/@↵

>

1
k, k�R(⇡[1])�2

ĥ@⇡
[1]
/@↵1k, k�Rĥ/⇡

[1]
k, kR�WU✓(X, Y )ĥ>

/(⇡[1])2k,

kR�W (W � 1)U✓(X, Y )C✓(X; �)>/⇡[1]
k, kR�W (⇡[1])�2

U✓(X, Y )@⇡[1]
/@↵

>

1
k,

kR�W/⇡
[1]
{@U✓(X, Y )/@✓>}k,

are continuous and bounded by some integrable function in the neighborhood of the point
(↵⇤>

, �
⇤>
, �

⇤>
, ✓

⇤>), where ĥ(↵, �, ✓)> = (ĥ>

1
, ĥ

>

2
),

ĥ
>

1
= (⇡[1](↵1)� ⇡̄

[1]

n (↵1), . . . , ⇡
[J ](↵J)� ⇡̄

[J ]
n (↵J)),

ĥ
>

2
= (Wg

[1]

✓ (�1)
>
� ḡ

w[1]

✓ (�1)
>
, . . . ,Wg

[K](�K)
>
� ḡ

w[K]

✓ (�K)
>),

⇢
⇤ is the probability limit of the Lagrange multipliers ⇢̂ satisfied (50), and C✓(X; �) =

(C [1]

✓ (X; �[1])>, . . . , C [L]
✓ (X; �[L])>)>.

Condition 10. Functions k(1� �W )C✓(X; �)k3, k@{(1� �W )C✓(X; �)}/@(✓>, �>)k, and
k@

2
{(1� �W )C✓(X; �)}/@(✓>, �>)@(✓>, �>)>k are continuous and bounded by some inte-

grable function with respect to the probability distribution (X,Z,W ) in the neighborhood
of (�⇤>, ✓⇤>).

Condition 11. Functions

k@
2
{WD

⇤

⌧ (Xi, Zi)}/@⌧
>
@⌧k, k@{WD

⇤

⌧ (Xi, Zi)}/@⌧
>
k, kWD

⇤

⌧ (Xi, Zi)k
3
,

are continuous and bounded by some integrable function in the neighborhood of ⌧ ⇤, and

k�RW
2
U✓(X, Y )D⇤

⌧ (X,Z)>/⇡[1]
k, kR�W/⇡

[1]
{@U✓(X, Y )/@✓>}k, k(W � 1)D⇤

⌧k,

kW (D⇤

⌧ )
⌦2
k, k@D

⇤

⌧/@⌧k,

are bounded by some integrable function in the neighborhood of (↵⇤

1

>
, ✓

⇤>
, ⌧

⇤>).

51



Proof of Theorem 3.4. For each Setting 1 and 2, we show multiple robustness and then
prove the semiparametric e�ciency. Suppose that ⇡[1] is the correct model.

By using the method of Lagrange multipliers, the first-step empirical weights are
obtainable as

p̂
(1)

i = m
�1

1

1 + ⇢̂>ĥi(↵̂, �̂, ✓̂1)
, (i = 1, . . . ,m)

where

ĥi(↵̂, �̂, ✓̂1) =
�
⇡̂
[1](Xi, Zi,Wi; ↵̂1)� ⇡̄

[1]

n (↵̂1), . . . , ⇡̂
[J ](Xi, Zi,Wi; ↵̂J)� ⇡̄

[J ]
n (↵̂J),

Wiĝ
[1]

✓̂1
(Xi, Zi,Wi; �̂1)� ḡ

w[1]

✓̂1
(�̂1), . . . ,Wiĝ

[K]

✓̂1
(Xi, Zi,Wi; �̂K)� ḡ

w[K]

✓̂1
(�̂K)

⌘>
,

↵̂ = (↵̂1, . . . , ↵̂J)>, �̂ = (�̂1, . . . , �̂K)>, and the Lagrange multipliers ⇢̂ satisfy

m
�1

mX

i=1

ĥi(↵̂, �̂, ✓̂1)

1 + ⇢̂>ĥi(↵̂, �̂, ✓̂1)
= 0. (50)

Next, we consider empirical weights by using the information that ⇡[1] is correct, as
considered in Han (2014): maxq1,...,qm

Qm
i=1

qi, subject to

mX

i=1

q
(1)

i = 1,

mX

i=1

q
(1)

i

�
⇡̂
[j](Xi, Zi,Wi)� ⇡̄

[j]
n

 
/⇡̂

[1](Xi, Zi,Wi) = 0, (j = 1, . . . , J)

mX

i=1

q
(1)

i

n
Wiĝ

[k]
✓ (Xi, Zi,Wi)� ḡ

w[k]
✓

o
/⇡̂

[1](Xi, Zi,Wi) = 0. (k = 1, . . . , K)

By using the method of Lagrange multipliers again, we obtain

q̂i = m
�1

1

1 + �̂>ĥi(↵̂, �̂, ✓̂)/⇡̂[1](Xi, Zi,Wi)
, (i = 1, . . . ,m)

where the Lagrange multipliers �̂ satisfy

m
�1

mX

i=1

ĥi(↵̂, �̂, ✓̂)/⇡̂[1](Xi, Zi,Wi)

1 + �̂>ĥi(↵̂, �̂, ✓̂)/⇡̂[1](Xi, Zi,Wi)
= 0. (51)

It follows from the equation

m
�1

mX

i=1

ĥi/⇡̂
[1]

i

1 + �>ĥi/⇡̂
[1]

i

= (⇡̄[1]

n m)�1

mX

i=1

ĥi

1 + (�1 + 1,�2, . . . ,�J+K) ĥi/⇡̄
[1]

n

,

that the Lagrange multipliers ⇢̂ are ⇢̂1 = (�̂1 + 1)/⇡̄[1]

n and ⇢̂l = �̂l/⇡̄
[1]

n , l = 2, . . . , J +K.
Thus, we have

p̂
(1)

i = m
�1

⇡̄
[1]

n /⇡̂
[1](Xi, Zi,Wi)

1 + �̂>ĥi/⇡̂
[1](Xi, Zi,Wi)

,
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and each ✓̂1 and �̂ converges to ✓⇤ and 0 in probability, respectively, from the standard
theory of empirical-likelihood method in Qin and Lawless (1994).

In the second step, the empirical weights are written as

p̂
(2)

i = N
�1

1

1 + �̂> (1� �iWi) C✓̂2(Xi; �̂)
,

where C✓̂2
(Xi; �̂) = (Ĉ [1]

✓̂2
(Xi; �̂[1])>, . . . , Ĉ

[L]

✓̂2
(Xi; �̂[L])>)>, �̂ = (�̂[1], . . . , �̂[L])>, and the

Lagrange multipliers �̂ satisfy

NX

i=1

(1� �iWi) C✓̂2(Xi; �̂)

1 + �̂> (1� �iWi) C✓̂2(Xi; �̂)
= 0. (52)

By using the theory in Qin and Lawless (1994) again, we can show that each ✓̂2 and �̂

converges to ✓⇤ and 0 in probability. Therefore, the two empirical weights and the uniform
law of large numbers provide the asymptotic unbiasedness of the estimating equation:

n

NX

i=1

p̂
(2)

i p̂
(1)

i �iRiWiU✓̂EL1
(Xi, Yi)

= n
⇡̄
[1]

n

m
N

�1

NX

i=1

1

1 + �̂> (1� �iWi) C✓̂2(Xi; �̂)>
Ri/⇡̂

[1](Xi, Zi,Wi)

1 + �̂>ĥi/⇡̂
[1](Xi, Zi,Wi)

�iWiU✓̂EL1
(Xi, Yi)

= N
�1

NX

i=1

Ri

⇡̂[1](Xi, Zi,Wi)
�iWiU✓̂EL1

(Xi, Yi) + op(1)

p
�! E

⇢
R

⇡[1](X,Z,W )
�WU✓⇤(X, Y )

�
= 0.

Next, we consider when the outcome models include the correct model and suppose that
g
[1] is the correct model. It follows from the constraint

NX

i=1

p̂
(1)

i RiWig
[1](Xi, Zi,Wi) = n

�1

nX

i=1

Wig
[1](Xi, Zi,Wi) (53)

that the estimating equation is asymptotically unbiased:

N

NX

i=1

p̂
(2)

i p̂
(1)

i �iRiWiU✓̂EL1
(Xi, Yi)

=
NX

i=1

p̂
(1)

i Ri

�
�iWiU✓̂EL1

(Xi, Yi)�Wig
[1](Xi, Zi,Wi)

 
+ n

�1

nX

i=1

Wig
[1](Xi, Zi,Wi) + op(1)

= m
�1

NX

i=1

1

1 + ⇢̂>ĥi

Ri�iWi

�
U✓̂EL1

(Xi, Yi)� g
[1](Xi, Zi,Wi)

 
+ op(1)

p
�!

1

P (� = R = 1)
E

"
R�W

�
U✓⇤(X, Y )� g

[1](X,Z,W )
 

1 + ⇢⇤>h†(X,Z,W )

#
= 0,

where

h
†(X,Z,W )> = (⇡[1](↵⇤

1
)� �1, . . . , ⇡

[J ](↵⇤

J)� �J ,

Wg
[1]

✓⇤
(X,Z,W ; �⇤

1
)� �J+1, . . . ,Wig

[K]

✓⇤
(X,Z,W ; �⇤

K)� �J+K),
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and �j (j = 1, . . . , J) and �J+k (k = 1, . . . , K) are the probability limit of ⇡̄[j]
n (j =

1, . . . , J) and ḡ
w[k]

✓̂1
(k = 1, . . . , K). Therefore, the estimator ✓̂EL1 has consistency when one

of the J +K models for the response mechanism and the regression function is correct.
We prove the e�ciency of ✓̂EL1. The Taylor expansion of the left-hand side of (52)

around (�>, �>, ✓>) = (0>, �⇤>, ✓⇤>) is

0 = N
�1/2

NX

i=1

(1� �iWi)C✓⇤(Xi; �
⇤)

�N
�1

NX

i=1

(1� �iWi)
2
C✓⇤(Xi; �

⇤)⌦2
N

1/2
�̂ + op(1).

With this equation, �̂ can be expanded as

N
1/2
�̂ = E

�
(W � 1)C✓⇤(X; �⇤)⌦2

 �1

N
�1/2

NX

i=1

(1� �iWi)C✓⇤(Xi; �
⇤) + op(1). (54)

In a similar way, the left-hand side of (51) can be expanded as

0 = N
�1/2

NX

i=1

�i
Ri � ⇡

[1]

i

⇡
[1]

i

h
†(Xi, Zi,Wi)� E

⇢
h
†(X,Z,W )⌦2

⇡[1]W

�
N

1/2
�̂

+N
�1/2

NX

i=1

�iRi

(
1

⇣
⇡
[1]

i

⌘2

✓
@ĥi

@↵>

1

⇡
[1]

i � ĥi
@⇡

[1]

i

@↵1

◆
�

ĥi

⇡
[1]

i

1>
)
(↵̂1 � ↵

⇤) + op(1). (55)

Recall that our empirical-likelihood estimator is the solution to

Q(�̂, �̂, ↵̂, �̂, �̂, ✓̂1, ✓̂2, ✓̂EL1) =
NX

i=1

p̂
(2)

i (�̂, �̂, ✓̂2)p̂
(1)

i (�̂, ↵̂, �̂, ✓̂1)�iRiWiU✓̂EL1
(Xi, Yi) = 0.

By substituting p
(1)

i and p
(2)

i into the above equation and expanding, we have

0 = N
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i
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1 + �̂> (1� �iWi) C✓̂2(Xi; �̂)

�
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i
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i

N
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�̂
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�1

NX
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�iWi
Ri
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i
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(Xi, Yi)C>
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1 + �̂> (1� �iWi) C✓̂(Xi; �̂)
N

1/2
�̂ + op(1)

= N
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NX

i=1

Ri

⇡
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i
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⇢
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�
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�̂

+ E
�
(W � 1)U✓⇤(X, Y )C✓⇤(X; �⇤)>

 
N

1/2
�̂
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(
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✓
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[1](↵⇤

1
)

@↵1

◆>
)
N

1/2 (↵̂⇤

1
� ↵

⇤

1
)

+ E

⇢
@U✓⇤(X, Y )

@✓

�
N

1/2
⇣
✓̂EL1 � ✓

⇤

⌘
+ op(1). (56)
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It remains to show that terms in (56) reduce to

E
�
(W � 1)U✓⇤(X, Y )C✓⇤(X; �⇤)>

 
N

1/2
�̂

= E

n
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✓⇤ C
>

✓⇤

o
E
�
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 �1

N
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NX
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(1� �iWi)C✓⇤(Xi; �
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NX
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[1]

✓⇤ (Xi) + op(1), (57)

and

E

⇢
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⇡[1]
h
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>

�
N
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= E

✓
Wg
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⇡[1]W
h
†>

◆
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h
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i

⇡
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i

h
†
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(
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⇣
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✓
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i
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◆
�

ĥi

⇡
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i
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)
N
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⇤)

#
+ op(1)

= (0, . . . , 0, 1, 0, . . . , 0)

"
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i

⇡
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i
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+N
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NX

i=1

�iRi

(
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⇣
⇡
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i
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✓
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⇡
[1]

i � ĥi
@⇡
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i

@↵1

◆
�

ĥi

⇡
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i
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)
N

1/2(↵̂1 � ↵
⇤)

#
+ op(1)

= N
�1/2

NX

i=1

�i
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[1]

i

⇡
[1]

i

g
[1]

i + E

⇢
U✓⇤

⇡[1]

✓
@⇡

[1](↵⇤

1
)

@↵1

◆>�
N

1/2(↵̂1 � ↵
⇤) + op(1). (58)

Then, equations (56)–(58) reveal that the influence function of the two-step empirical-
likelihood estimator in Setting 1 is asymptotically the same as Se↵,1.

We prove the property of ✓̂EL2. In setting 2, by using the method of Lagrange multi-
pliers, the second-step empirical weights are

p̂
(2)

i = n
�1

1

1 + ⇣̂(W�1

i � V̂ )
, (i = 1, . . . , n)

where ⇣̂ and V̂ satisfy

nX

i=1

⇣(1/Wi � V )

1 + ⇣(1/Wi � V )
= 0,

nX

i=1

⇣

1 + ⇣(1/Wi � V )
�

N � n

1� V
= 0. (59)

It follows from (59) that V̂ = 1 + ⇣̂
�1(1�N/n).

First, we prove the consistency of ⇣̂ and V̂ . By using the same arguments of Qin,
Leung and Shao (2002), after profiling out p

(2)

i , the log-likelihood is l1(⇠, V ) + l2(V ),
where l1(⇣, V ) = �

Pn
i=1

log{1+ ⇠V (1� VWi)}, l2(V ) = n log VWi + (N � n) log(1� V ),
and ⇠ = ⇣ � V

�1 satisfy

nX

i=1

V (1� VWi)

1 + ⇠V (1� VWi)
= 0.
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By a similar argument to Qin et al. (2002), if V is in the set {V : kV k = N
�1/3

}, we
can show that l1(⇠(V ), V ) > l1(⇠(V ⇤), V ⇤) a.s. and l1(⇠(V ), V ) + l2(W ) > l1(⇠(V ⇤), V ⇤) +
l2(W0) a.s. Therefore, we obtain consistency of ⇣̂ ! P (� = 1)�1 and V̂ ! P (� = 1).

It follows analogously from

N

NX

i=1

p̂
(2)

i (⇣̂)p̂(1)i (�̂, ↵̂, �̂, ✓̂1)�iRiU✓̂EL2
(Xi, Yi) =

NX

i=1

p̂
(1)

i (�̂, ↵̂, �̂, ✓̂1)�iRiWiU✓̂EL2
(Xi, Yi),

that our empirical-likelihood-based estimator in Setting 2 has multiple robustness.
By using the Taylor expansion, we obtain

N
1/2
n
⇣̂ � P (� = 1)�1

o
=

1

P (� = 1)E(W � 1)
N

�1/2
NX

i=1

(1� �iWi) + op(1). (60)

Recall that our empirical-likelihood estimator is the solution to

Q(⇣̂, �̂, ↵̂, �̂, ✓̂1, ✓̂EL2) =
NX

i=1

p̂
(2)

i (⇣̂)p̂(1)i (�̂, ↵̂, �̂, ✓̂1)�iRiU✓̂EL2
(Xi, Yi) = 0.

The Taylor expansion of the estimating equation is

0 = N
�1/2

NX

i=1

�iWi

(
Ri

⇡
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i

U✓⇤(Xi, Yi) +
⇡
[1]
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⇡
[1]

i

g
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⇤

1
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)
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⇣̂ � P (� = 1)�1

o
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✓
@U✓⇤(X, Y )

@✓

◆
N

1/2
⇣
✓̂EL2 � ✓

⇤

⌘
+ op(1). (61)

By substituting (60) into the second term of (61), we have

� E

✓
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@✓>

◆
N

1/2
⇣
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⇤

⌘

= N
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(
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i
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⇡
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i
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1
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)

+N
�1/2

NX
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(1� �iWi)
E {(W � 1)U✓⇤(X, Y )}

E(W � 1)
+ op(1).

Thus, the influence function of the two-step empirical-likelihood estimator in Setting 2 is
asymptotically the same as Se↵,1.

Proof of Theorem 3.5. Because the proof of multiple robustness is almost the same, we
prove only the semiparametric e�ciency of our proposed estimator in Setting 3. In Setting
3, the empirical weights are represented by

p̂
(2)

i (⌫, ⇣, ⌧) = n
�1

1

N/n+ ⌫(W�1

i � 1) + ⇣D⇤
⌧ (Xi, Zi)

.
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Recall that our empirical-likelihood estimator is the solution to

Q(⌫̂, ⇣̂, ⌧̂ , �̂, ↵̂, �̂, ✓̂1, ✓̂EL3) =
NX

i=1

p̂
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(Xi, Yi) = 0.

The Taylor expansion of the estimating equation is
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By using the method of Lagrange multipliers and the Taylor expansion, we obtain
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The terms in (62) can be simplified to
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and �e↵ and ⌘e↵ are the e�cient influence functions for ✓ and ⌧ based on the internal
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individual data. By the Taylor expansion (62) and (63), we can show that
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Thus, the influence function of the two-step empirical-likelihood estimator in Setting 3 is
asymptotically the same.
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