u

) <

The University of Osaka
Institutional Knowledge Archive

Theoretical Study on Relationship between Open-

Title Shell Electronic State and Electron Conductivity
of Single Molecules and Their Aggregates toward

Applications to Molecular Devices

Author(s) |HK, &EE

Citation |KFRKZ, 2025 1HIHwX

Version Type|VoR

URL https://doi.org/10.18910/101722

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Theoretical Study on Relationship between Open-Shell Electronic
State and Electron Conductivity of Single Molecules and Their

Aggregates toward Applications to Molecular Devices

Naoka AMAMIZU

MARCH 2025






Theoretical Study on Relationship between Open-Shell Electronic
State and Electron Conductivity of Single Molecules and Their

Aggregates toward Applications to Molecular Devices

A dissertation submitted to
THE GRADUATE SCHOOL OF ENGINEERING SCIENCE
OSAKA UNIVERSITY
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN SCIENCE

BY

Naoka AMAMIZU

MARCH 2025






Abstract

In this dissertation work, relationships between open-shell electronic states and electron
conductivities of single molecules and their aggregates is investigated through simulations based on
quantum chemical theory and condensed matter physics theory toward applications to molecular
devices. The dissertation is composed of four parts. In Part I, the theoretical foundation of quantum
chemical calculations, focusing on density functional theory methods for periodic systems with
localized spins is introduced. In addition, the theory of quantum transport, electron conductivity in
single molecule is explained, and the calculation methods for magnetic interactions and an advanced
method for optimizing molecular structures with corrected spin states are also described. In Part II,
single-molecule electron conductivities of open-shell single molecules are examined, and relationships
between the electron conductivities, molecular structures and spin states are investigated aiming to
establish design guidelines for single-molecule transistors. In Part III, molecular parallel circuit
models composed of two single-molecule components are considered as the first step of the aggregates
of the single-molecule components. By clarifying the relationship between structure, electronic states,
and electron conductivity, a guideline for quantum interference control utilizing open-shell characters
is established. In Part IV, as an investigation of more aggregation of the single molecules, crystalline
materials with periodic structures are focused. A relationship between spin states and electron
conductivity is clarified by using first-principles band calculations. As a result of these studies, this
dissertation elucidates the relationship between spin-state control enabled by open-shell electronic
states and electron conductivity, spanning from single molecules to their aggregates. Therefore, this
dissertation provides design guidelines for single-molecule components utilizing open-shell electronic
states and offers fundamental insights into theoretical and material design guidelines for molecular

devices leveraging open-shell properties.
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Preface

With the advancement of semiconductor miniaturization technology reaching the molecular
scale, molecular electronics, which utilizes individual molecules as electronic components, has
garnered increasing attention. While proposals for single-molecule components and molecular
devices are being made, fundamental laws similar to Ohm’s law have not been established in
molecular electronics. Consequently, a systematic design approach, spanning from single-
molecule components to molecular circuits and ultimately to molecular devices, has not been fully
developed to clarify these fundamental principles. In such molecular-scale electronic conduction,
quantum effects emerge, making it essential to understand the system based on the quantum
chemical theory. Therefore, from the perspective of theoretical chemistry, it is desirable to
elucidate the electron conduction mechanisms in molecular devices, propose design guidelines,
and establish principles for functional control.

In this dissertation, I aimed to establish guidelines for designing and controlling the electron
conductivity of single molecules and their aggregates for applications in molecular devices. As a
functional indicator, I focused on open-shell electronic states. The open-shell electronic states
have been reported to influence a molecule’s magnetism and electron conductivity, making it
possible to design functional molecules based on the open-shell electronic states. Therefore, |
investigated relationships between the open-shell electronic states and electron conductivity, from
single molecules to their aggregates, toward applications in molecular devices. This dissertation works
will provide the fundamental insights into theoretical and material design guidelines for molecular
devices leveraging open-shell properties.

This dissertation study was carried out under the supervision of Prof. Dr. Masayoshi Nakano,
Prof. Dr. Norikazu Nishiyama and Prof. Dr. Yasutaka Kitagawa at Division of Chemical
Engineering. Department of Materials Engineering Science, Graduate School of Engineering
Science, Osaka University from April 2019 to March 2025. I dedicate this dissertation to late Prof.
Dr. Masayoshi Nakano.

Naoka AMAMIZU
Division of Chemical Engineering Science
Department of Materials Engineering Science

Graduate School of Engineering Science, Osaka University
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General Introduction

1. Open-shell systems

Open-shell nature expresses the instability of chemical bond, and is often explained by using the
dissociation model of a hydrogen molecule, as shown in Fig. 1.1 [1,2]. When two hydrogen atoms are
sufficiently close, they share electrons to form a covalent bond, resulting in the formation of a
hydrogen molecule. In this case, the system is called a closed-shell system (Region I in Fig. 1.1). On
the other hand, as the distance between the hydrogen atoms increases, the electrons gradually localize
on each atom. At sufficiently long distances, the system transitions into two independent hydrogen
atoms that have no chemical bond. Such a state is referred to as a pure open-shell system, which can
be described as a system where localized spins exist on each atom of the molecule (Region IlII in Fig.
1.1). Organic radicals and transition metal complexes, which have localized spins, are typical
examples of open-shell systems. For example of the open-shell system, organic diradical molecules
have been attracted attention for a long time because of their unique properties and physical properties

[3-5].
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Fig. 1.1. The potential energy curve of H» along the H-H distance, and classification of the closed-
shell and open-shell systems [2,6,7].



One of the oldest examples of organic diradical molecules is the hydrocarbon of Thiele [8] and
Chichibabin [9] as shown in Fig. 1.2 (a) and (b), respectively. The open-shell nature can be explained
by their resonance structure. According to Clar's six-membered ring rule, the stability of the system
depends on the number of six-membered ring (benzoid) structures determined by aromatic
stabilization because the aromatic stabilization energy due to the six-membered ring structure is
expected to compensate for some of the destabilization energy due to m bond cleavage [10]. Therefore,
in the Thiele's and Chichibabin's hydrocarbons, the open-shell diradical structures are more stable than
the closed-shell quinoid structures because there are more six-membered rings in the diradical forms,
and they are expected to exhibit the open-shell nature. However, since the two unpaired electrons in
these hydrocarbons slightly interact, the closed-shell structures have a non-negligible contribution to
their resonance structures. Thus, they are classified as intermediate open-shell molecules rather than

pure open-shell molecules (Region II in Fig. 1.1).

a)
Q9
()=
L O

Closed-shell (quinoid form) Open-shell (diradical form)
(b)
Closed-shell (quinoid form) Open-shell (diradical form)

Fig. 1.2. The hydrocarbons of (a) Thiele and (b) Chichibabin. Both hydrocarbons show the
closed-shell quinoid structures on the left side and the open-shell diradical structures on the right

side.

In order to elucidate the nature and physical properties of diradical molecules, it is important to
define a characteristic quantity of the open-shell nature within Regions I-III. As the representative
feature, a diradical character was proposed by Hayes and Siu with a definition as the contribution of
two-electron excited states [11]. In their definition, the value of the diradical character is 0 for closed-
shell structure and 1 for open-shell structure, with values representing the open-shell states. While this
parameter explicitly characterizes the open-shell nature, it has the drawback that the computational
cost of the two-electron excited configuration is very high. Another parameter for evaluating diradical
character is the occupation numbers of natural orbitals. The natural orbitals are defined as the

eigenfunctions of the density matrix [12-14], and their occupation numbers n represent the number of



electrons occupying each orbital. The value of n is 0 or 2 for the closed-shell systems, but it falls
within the range 0 <7 <2 for the open-shell or diradical states. Therefore, it can be used as an indicator
of open-shell character [15,16]. Takatsuka et al. and Head-Gordon have defined odd electrons based
on the natural orbitals, which provide the number of the unpaired electrons and their spatial
distributions [17,18]. Nakano et al. have proposed the multiple diradical characters based on the
occupation number of the natural orbitals and the odd electrons, and clarified a relationship between
the diradical characters and optical properties of the open-shell molecules [19-23]. Especially,
regarding nonlinear optical materials, a correlation between the diradical characters and the second
hyperpolarizability, which provides nonlinear optical response properties, has been identified [24,25].
The correlation has been revealed that the second hyperpolarizability reaches its maximum value in
the region exhibiting intermediate open-shell states. In this way, research on the open-shell systems
have been conducted over a long period, enabling the proposal of material design guidelines based on
the open-shell properties.

In the field of condensed matter physics, the open-shell characters are also explained by electron
correlation [28-28]. Usually, molecules possess a finitt HOMO-LUMO gap. On the other hand, in
bulk systems consisting of an infinite number of atoms, the orbitals form continuous bands, creating
a band gap that is smaller than the HOMO-LUMO gap of typical molecules. As the molecular size
increases, the HOMO-LUMO gap decreases, and the frontier orbitals begin to exhibit quasi-
degeneracy. This trend becomes particularly pronounced in multinuclear metal complexes and metal
nanoclusters, where multiple metal atoms with d-orbitals are aggregated (see Fig. 1.3) [29]. Such
systems are referred to as strongly correlated systems, which result in localized electrons on metal
ions and give rise to magnetism arising from various spin states [30]. In Fig. 1.1, each region is
explained by the electron correlation: Region I represents the weak correlated systems, Region 11

denotes the intermediate correlated systems, Region 111 denotes the strong correlated systems.
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Fig. 1.3. Illustration of the electronic structures in (a) Bulk system, (b) polynuclear complex,

metal cluster, (c) atom and small molecule [29].

In the viewpoint of quantum chemical calculations, the open-shell systems, especially strongly
correlated systems, are highly challenging subject to calculate the electronic structure. For instance,
as explained in the example of the hydrogen molecule in Fig. 1.1, the HOMO-LUMO gap is
sufficiently large in the closed-shell system, and the wavefunction of the hydrogen molecule can be
approximated solely by the ground state electron configuration, where two electrons occupy the
bonding orbital (HOMO). In the case of the open-shell systems, the HOMO-LUMO gap competes
with the Coulomb repulsion between the two electrons since the HOMO and LUMO are quasi-
degenerate. It makes the contribution of the excited configuration (two electrons occupy the LUMO)
non-negligible. As a result, even in the ground state, it becomes necessary to incorporate both the
ground and excited configurations. Consequently, the wavefunction must be expressed as a linear
combination of multiple determinants.

When the wavefunction is described using multiple Slater determinants, an accurate depiction
requires a linear combination of all possible configurations. This method is called the configuration
interaction (CI) method. Since it involves a vast number of configurations, however, the computational
cost becomes prohibitively high, making it impractical for anything other than simple molecules. To
address this, the complete active space (CAS) CI method that only the quasi-degenerate orbitals are
selected for applying the CI approach, is proposed. The complete active space self-consistent field
(CASSCF) method, in which the orbital coefficients of each determinant are also optimized, is often
used for the practical use [31]. Thus, the electronic state calculations of strongly correlated systems

are challenging to handle, especially for the theoretical calculations of metal-metal bonding and their



magnetism using CASSCF and its advanced methods such as CASPT2 proposed by Roos, Gagliardi,
McGrady and so on [32-36]. On the other hand, in multinuclear metal complexes, the number of d-
orbitals to be considered becomes significantly large, resulting in a substantial computational cost
even with the CAS method. To address this, calculation methods using the broken-symmetry (BS)
approach, which represents the system with a single determinant without strictly satisfying spin
symmetry, have also been proposed [37-39]. The details of this method are explained in Part I Chapter
3. The BS method, combined with the spin contamination error, has enabled the treatment of
multinuclear metal complexes at a lower computational cost. Furthermore, it has facilitated the
analysis of the magnetic properties of multinuclear metal complexes [40]. In addition, in multinuclear
metal complexes, it has been revealed that changes in spin states affect electrical conductivity, with
the spin-excited state exhibiting higher electrical conductivity compared to the spin-ground state [41-
43].

As described above, unique optical, magnetic, and electron conductive properties based on open-
shell systems emerge, enabling their application to functional materials and the development of design

guidelines.

2. Molecular electronics

Microfabrication technology for integrated circuits has been developed according to Moore’s law
proposed in 1965 [44,45]. Fig. 2.1 illustrates the year-by-year changes in the process size, an index of
the miniaturization of transistors [46]. The process size has been decreasing over the past 30 years,
and this miniaturization of transistors has increased integration density, which drastically improves
the performance of electron devices. On the other hand, it has been suggested that the miniaturization
of silicon (Si)-based devices is almost reaching its limit. Table 2.1 shows technology advancements,
change in the transistor process size and gate length [47]. Since the development of the complementary
metal oxide semiconductor (CMOS) technology around 1990, the introduction of high-x films with
high dielectric constants has dramatically miniaturized transistor sizes. The “International Technology
Roadmap for Semiconductors (ITRS) 2015 predicted that Moore’s Law would come to an end by
2021 [48], however some advancements in technology such as FinFET (a three-dimensional (3D)
stacked transistor technology introduced in 2011 beyond the traditional planar technology) and
extreme ultraviolet (EUV) lithography (implemented in 2019) have brought further miniaturization of
process sizes. The “International Roadmap for Devices and Systems (IRDS)” released by IEEE has
reported that the reduction in process size with current mainstream technologies by the FinFET is
expected to saturate by 2028, leading to a transition towards new manufacturing technologies, such as
3D structures [49]. In the future, a miniaturization beyond 2nm is expected to be achieved using a
technology called Gate-All-Around (GAA), which arranges conductive channel regions in the 3D

structure.
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Table 2.1. Technological advancements and changes in transistor process size.

Year Process size / nm | Gate length / nm Technological advancements
1990 800 800 Early CMOS processes
Improved power efficiency, early scalin
1995 350 350 Y s
effects
Increased integration, introduction of Cu
2000 180 180 o
wiring
Exploration of high-x dielectric and metal
2004 90 50
gate technology
Practical use of high-x/metal gate
2007 45 35
technology
2011 22 25 Introduction of FinFET (3D transistor)
Improved FinFET, enhanced performance,
2014 14 20 ]
reduced power consumption
Higher transistor density, approachin,
2017 10 s ¥ ap s
scaling limits
18 ~20
Practical use of EUV (Extreme
2019 7 . .
Ultraviolet) lithography
Mainstream for high-performance chips,
2022 5 15~18 i
further integration
Start of mass production, transition to
2024 3 10~ 14 ' '
next-gen chip technologies
Advancement of 3D structures, adoption
Forecast <2 <10

of GAA (Gate-All-Around)
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Fig. 2.2. Schematic diagram of planar, FinFET and GAA.

As the miniaturization technology for semiconductors have developed, various problems associated
with the miniaturization of Si-based transistors have become difficult to ignore. For example, the
miniaturized semiconductors face problems such as increased complexity in processing, variability in
size and the non-uniform distribution of impurity atoms doped into the semiconductor. Additionally,
as insulating films become excessively thin, tunneling currents can no longer be ignored because of
leakage currents and significant energy losses. Furthermore, the lithography technologies for further
miniaturization would require a light irradiation with wavelengths shorter than those of EUV (< 13.5
nm), posing another critical issue.

In the current FinFET technology, the smallest dimension has reached 5 nm. As the Si-based
semiconductor miniaturization has approached the molecular scale and faced the aforementioned
scaling limits, molecular electronics has attracted much attention as a new class of nanomaterials [50-
55]. The molecular electronics is aimed to use functional single-molecules for the electronic
components, such as wires (resistors), transistors, diodes and so on. In 1956, von Hippel was proposed
the first concept of assembling electronic devices from atoms or molecules in a bottom-up approach
[56]. The current attention on the molecular electronics has originated from the theoretical proposal
of a single-molecule diode by Aviram and Ratner in 1974. [57]. Fig. 2.3 shows the concept of the
single-molecule diode proposed by Aviram and Ratner. They considered that a connection an electron
acceptor i.e. tetracyanoquinodimethane (TCNQ) and an electron donor i.e. tetrathiafulvalene (TTF)
via a ¢-bond through an insulating region would enable a unidirectional electron transport within the
single-molecule (see Fig. 2.3 (a) and (b)). When a forward bias voltage is applied as shown in Fig. 2.3
(¢), electron transfer occurs from Electrode I to TCNQ if the HOMO level of Electrode I becomes
higher than the LUMO of TCNQ. Similarly, if the LUMO level of Electrode 11 becomes lower than
the HOMO of TTE, electron transfer occurs from TTF to Electrode II. Due to this insulation, the
electron transfer from TCNQ to TTF during the process becomes irreversible. On the other hand, in
the case of a reverse bias voltage, as shown in Fig. 2.3 (d), due to the energy level relationship, a
significantly high bias voltage is required for electron transfer from the HOMO of Electrode II to the
LUMO of TTF, as well as from the HOMO of TCNQ to the LUMO of Electrode 1. Therefore, it was
considered that this molecule shows functionality as a rectifier, allowing electron transfer only in the

direction from TCNQ to TTF under forward bias. The rectification of such an Acceptor-c/bonds-



Donor structure was experimentally demonstrated by Geddes et al. in 1990 [58]. Even today, the
asymmetric connection of acceptor and donor units remains a fundamental design guideline for single-

molecule diodes [59-63].

(@)

NC._CN
L=
s s Interqal
tunneling
NC”~ "CN barrier
Acceptor Insulation Donor

(o bonds)

Fig. 2.3. (a) Single-molecule diode proposed by Aviram and Ratner, and schematic energy
diagram of the rectification mechanism: (b) no bias , (¢) forward bias from Electrode I to Electrode

II and (d) Reverse bias from Electrode II to Electrode 1.

After the proposal of the molecular rectifier, the scanning tunneling microscopy (STM) was
developed. The development of STM has enabled the manipulation of individual atoms [64,65]. In
addition, electron transport theories and computational methods for the nanoscale materials have also
been developed. Fischetti and co-workers proposed a calculation method for electron transport in
nanoscale semiconductors using semiclassical approximations with Monte Carlo methods [66].
Additionally, Mujica et al. formulated the electrical conduction in single molecules based on the elastic
scattering Green’s function method [67,68]. Until the early 1990s, the foundational methodologies of
the field had been not established yet although the many research had focused on applications of the
nanomaterials.

A significant breakthrough in molecular electronics was the development of single-molecule
electron conductivity measurement techniques. Reed et al. proposed the mechanically controllable
break junction (MC-BJ) method and measured the current-voltage characteristics of 1,4-benzene
dithiol [69]. Fig. 2.4 illustrates a procedure of the MC-BJ method. First, a self-assembled monolayer
(SAM) of 1,4-benzene dithiol is formed on the surface of the gold wire (Fig. 2.4 I—II) by immersing
a gold wire into a tetrahydrofuran (THF) solution of 1,4-benzene dithiol. Next, the gold wire is pushed
until it breaks by the pushing rod (Fig. 2.4 III). After evaporating the solvent, the rod is retracted,

followed by the measurement of the current through the 1,4-benzene dithiol molecule, which bridges



the gold wire (electrodes) (Fig. 2.4 IV). By repeating the operations in Fig. 2.4 III and IV multiple
times, the statistical electron conductivity of a single molecule can be determined. The MC-BJ method
has enabled the measurement of the conductance of even hydrogen molecules [70]. Another method
of the measurement of single-molecule electron conductivity is the scanning tunneling microscope
break junction (STM-BJ) method proposed by Tao et al. [71]. In this method, the STM tip is brought
into contact with the metal substrate surface to form a metallic nanojunction. Once the sufficient
contact is confirmed, the tip is gradually retracted to break the junction. By adsorbing the target
molecules onto the electrode surface through solution or deposition methods, the molecule bridges the
nanogap during the retraction process. A voltage is then applied to measure the current through the
bridged molecule (see Fig. 2.5). By repeatedly forming/breaking nanogaps and bridging molecules,
the electrical conductivity of molecules can be statistically measured. This method has become the
mainstream technique for single-molecule electron conductivity measurements due to its ease of
repeated measurements, high reproducibility, and adaptability to a wide range of molecules. Along
with the development of techniques for measuring single-molecule electrical conductivity, theoretical
prediction methods have also advanced by the proposals of electron transport theories based on
Green’s functions combined with quantum chemical calculations (The detail is provided in Part I

Chapter 2) [72-77].

Gold wire

I N

Pushing rod

ot : SAM of 1,4-benzene dithiol§
Gold wirs i L L " ‘

TTITTTTTTT T TITTTTTITTIT TTTTT

ﬂ\é S U ﬂ o Gold wire

tetrahydrofuran (THF) solution of 1,4-benzene dithiol, and the self-assembled monolayer (SAM) of
1,4-benzene dithiol forms on the surface of the gold wire, I1I: Pressing the pushing rod until gold

wire breaks, and I'V: Relaxing the rod and bridging the molecules between the gold wire electrodes.
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molecule bridges between the STM tip and the substrate.

Since the techniques for measurements and calculations of single-molecule electron conductivity
were developed, a variety of functional single-molecule components like the single-molecule diodes
(rectifiers) have been proposed. The simplest single-molecule components are called molecular wires,
which connects between individual components and serve as resistors [78-81]. Molecular wires have
also been used to evaluate the fundamental properties of single-molecule devices. For example, it has
been investigated that conductivity decays exponentially with molecular chain length [82]. Based on
this guideline, researches have been made to design molecular wires with extremely low decay rates
relative to chain length [83,84]. Single-molecule transistors or switches utilize two states with different
electron conductivity, and define the high-conductivity state as ON and the low-conductivity state as
OFF. The switching is generally achieved using spin state transitions [42,43,85], structural changes
[86,87] and redox state changes [88] controlled by external stimuli. Moreover, single-molecule
transistors utilizing gate modulation with a three-terminal configuration have also been proposed [89].
Furthermore, it becomes possible to realize logic operations by using single-molecule components
[90-94]. These devices have been proposed for use as logic operation elements, utilizing the fact that
the molecular structure and electronic state can vary depending on multiple external stimuli or the
intensity of input signals.

For the practical application of these single-molecule components as molecular devices, the next
essential step is their integration. Recently, for example, integrated single-molecule components based
on self-assembled monolayers (SAMs) have been proposed and have shown a variety of functionalities
[95-97]. Research toward the molecular devices has also proposed integrating hundreds to thousands
of single-molecule devices on a semiconductor chip to develop applications such as biosensors that
detect interactions between single-molecule devices and external molecules like gases [98]. In addition,
it has suggested an application of the nonlinear electrical signals of aggregated molecules derived from
molecular tunneling conduction to neuromorphic computing, because this phenomenon is similar to

electrical signals of human brain [99,100].
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While the molecular electronics continues to advance, design guidelines indicating which materials
are best suited for single-molecule components have not to be established yet. In addition, in systems
where single-molecule components are integrated, fundamental insights into the electron conduction
properties when these molecules are interconnected remain largely unknown. In this way, the
theoretical design and material design principles for these molecular devices remain unclear, and

fundamental insights have been scarcely studied.

3. Outline of this dissertation

This dissertation is composed of four parts. Part I provides the general theory for quantum chemical
calculations (Chapter 1), electron transport for single molecule (Chapter 2) and Estimation of
molecular magnetism and correction of spin contamination (Chapter 3).

In Part II, the author examined to utilize the open-shell properties for single-molecule components.
In particular, the author focused on the structural and spin state changes of metal complexes with open-
shell electronic states and their effect on the single-molecule electron conductivity.

In Part III and IV, the author explored the aggregates of single-molecule components. In Part III,
the author considered a molecular parallel circuit model composed of two single-molecule components
as a simple integrated system, and the author investigated the relationship between its electronic state
and electron conductivity. In Part IV, the author extended the investigation to molecular crystalline
models with periodic structures and examine the relationship between spin states and electron
conductivity.

This dissertation work clarifies the relationship between open-shell electronic state and electron
conductivity, from single-molecule components to their aggregate models. These results will not only
provide design guidelines based on open-shell electronic states in single-molecule components but
also contribute to the development of advanced molecular device designs and the establishment of

fundamental knowledge.
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Chapter 1. Quantum chemical calculation

To theoretically predict the physical properties of materials, Schrodinger proposed a fundamental
equation known as the Schrodinger equation. The solution to this equation, called the wavefunction,
is understood to provide a complete quantum mechanical description of any system. For two-body
problems such as the hydrogen atom, the Schrodinger equation can be solved exactly. However, for
systems involving more than two bodies, it becomes impossible to solve the Schrodinger equation
precisely. Hartree-Fock (HF) theory and density functional theory (DFT) calculation are the most
familiar methods to solve the Schrodinger equation for many-body systems. In this section, the author
describes the fundamentals of HF theory and DFT. In addition, the author discusses the DFT

calculation for the periodic systems.

1.1 Hartree-Fock theory

Hartree-Fock (HF) theory is a representative approximation method in modern quantum chemistry.
Based on the HF theory, various methods have been developed, enabling the calculation of molecular
physical properties through computational approaches using appropriate methods. In this section, the

key results obtained from the derivation of the HF equations are presented [1].

1.1.1 Hartree-Fock equation|[2,3]
Under the Born-Oppenheimer approximation, the Hamiltonian of a molecule consisting of M fixed

atomic nuclei and N electrons is expressed as follows

N N.M N

_ 1 7, 1

Hz—ZEAi—Z—+ - (1.1)
=1 e S

where the first term represents the kinetic energy of the electrons, the second term is the Coulomb
attraction between the electron and nuclei, and the third term is the Coulomb repulsion between the
electrons.

The wavefunction V¥ is approximated as an antisymmetrized product of normalized N spin orbitals
xi(x). Each spin orbital is a product of a special orbital ¢x(r) and a spin function o(s) = a(s) or f(s).
This antisymmetrized wavefunction is called Slater determinant [4] and is given by

1 |G - ()
Wi )+ G

The HF method is a computational approach that determines the orthonormal spin orbitals y;(x) that

Wolxy, oo, xy) = . (1.2)

minimize the system’s energy based on the Slater determinant. According to the variational principle,

the optimal spin orbitals are those that minimize the electronic energy:
N N
- 1
By = (Wo|Al90) = > Hi+5 D Uy =Ky (13)
i=1 ij=1

where
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1 vz
H; = in*(xl) <_§Ai _Azlé>)(i(x1)dx1' (1.4)

1
Jij = ffXi*(x1))(j*(x2)FXi(x1)Xj(x2)dx1dx2‘ (1.5)
1
* * 1
Kij = f f)(i (x1))(j (xz)FXi(xz)Xj(x1)dx1dx2- (1.6)
U
Jij and Kj; are called Coulomb integrals and exchange integrals, respectively, with the following
relationship:
Ju = Ky (1.7)
Minimizing Equation (1.3) subject to the orthonormalization conditions
[ 1@ x@dx =y, (18)
the HF differential equations are obtained
N
flx) =Zsi,-|x,-), (1.9)
=1
where
1 <z
f(i)z——Ai—Z—A—kaF(i). (1.10)
2 £ Tig

The operator f(i) is an effective one-electron operator, called the Fock operator. v/7(i) is the average
potential influenced by the i-th electron due to the presence of the other electrons. This approach treats
electron-electron repulsion in an averaged manner, allowing the complex many-body problem to be
approximated as a simpler single-electron problem.

Equation (1.9) has N solutions, and their unitary transformations are also solutions of Equation (1.9).
In other words, the wavefunction based on the Slater determinant is invariant under unitary
transformations. Since ¢ is a Hermitian matrix, it is possible to choose a unitary matrix U that
diagonalizes it. The corresponding orbitals ' are called canonical HF orbitals and satisfy the

following canonical HF equation:

flai'y = &'lx:"). (1.11)
Hereafter, the prime in Equation (1.11) is omitted, and it is referred to as the HF equations as
flx) = &lx)- (1.12)

From the above, the problem of solving a single Slater determinant can be regarded as the problem of
solving molecular orbitals (MOs) using the HF equation (1.12). According to Koopmans’ theorem, the
canonical orbitals obtained by solving this equation are understood to be suitable for describing the

removal of an electron from the system [5].
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1.1.2 Restricted closed-shell HF method: Roothaan equation

By solving the HF equation, molecular information can be obtained; however, solving this equation
numerically in its original form is difficult. Roothaan devised a method to solve the HF equation using
standard matrix operations by introducing the linear combination of atomic orbitals (LCAO), which
transforms the differential equation into a system of algebraic equations [6].

First, let us consider eliminating spin. For the restricted closed-shell case, the set of spin orbitals is

Yi(mals)
(x) = ) 1.13
x® {w,- (MBG) (119
Substituting Equation (1.13) into the HF equation (1.12), the following equation is obtained
FOaY;roals;) = gy;ralsy). (1.14)

Multiplying both sides of Equation (1.14) from the left by o*(s1) and integrating with respect to the

spin variables, the following HF equation for the spatial orbitals in a closed-shell system is obtained

Fy;(1) = gy; (1), (1.15)
where f(1) is the closed-shell Fock operator,
N/2
F() = h(1) + ) 2J4(1) = Ky(D). (1.16)

Ju(1) and K,(1) represent the closed-shell Coulomb and exchange operators, respectively.
Next, a basis set is introduced to transform the differential equation into a set of algebraic equations.
By introducing a set of K basis functions {@.(r) | #=1,2, ..., K}, the unknown molecular orbitals ()

are expanded as a linear combination
K
¢i =ZCP_1¢”; L = 1;21'“51(; (1.17)
p=1

where C,; is the u-th orbital coefficient of i-th MO , which is called LCAO-MO. Substituting
Equation (1.17) into the closed-shell HF equation (1.15), multiplying both sides of equation from the

left by ¢,*(1) and integrating, the integro-differential equation is transformed into a matrix equation:

Y o | e OF OB =Y 6 [ ¢ O D, (118)

Here the overlap matrix § and the Fock matrix F are defined as follows:
Spv = f ¢, (Dgy(Ddry, (1.19)
R = [ 9 WF 9, (1.20)

and then, the HF equation (1.18) can be rewritten by using the two matrix (1.19) and (1.20),

ZELVCVi = Sizsuvcvi' i=12,-K, (1.21)
v v

or
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FC = SCs. (1.22)
Equation (1.22) is called the Roothaan equation [6].

1.1.3 Unrestricted open-shell HF method: Pople-Nesbet equation
In Section 1.1.2, the author discussed the restricted closed-shell HF equation; here, the author
derives the unrestricted open-shell Hartree-Fock (UHF) method. This method can be applied not only
to open-shell systems, such as radicals, but also to problems like the dissociation of the hydrogen

molecule when the bond length becomes large.

In open-shell systems, spatial orbitals are described separately for electrons with a-spin and B-spin.
Yi(ma(s)
a0 = {wf (PB(s)
The derivation of the UHF equation is similar to the restricted case. Specifically, by substituting

(1.23)

Equation (1.23) into Equation (1.12) and integrating over the spin variables after multiplying both
sides from the left by a*(s1) or f*(s1),
FEOYFQ) = (1), (1.24)
FEP! ) = Lyl . (1.25)
To solve the UHF equations (1.24) and (1.25), the basis functions are introduced, and molecular

orbitals are defined separately for the a-spin and B-spin electrons as follows:

K

YE= D Chd  i=120K, (1.26)
u=1
K

lplﬁ = Z leid)#! i=12- K. (127)
u=1

As in the case of the Roothaan equations, substituting Equations (1.26) and (1.27) into the HF equation
(1.16), and multiplying both sides from the left by ¢,*(1) and integrating, the differential equation is
transformed into an algebraic equation
FoC® = SC*&°, (1.28)
FPCP = SCP€P, (1.29)
Equations (1.28) and (1.29) are called the Pople-Nesbet eqautions [7].
Since the Fock matrix F depends on the orbital coefficient C, the Roothaan equation (1.22) and the
Pople-Nesbet equations (1.28) and (1.29) are nonlinear. Therefore, starting with an appropriate initial
value of C, the energy is calculated iteratively, updating C until it converges and no longer changes.

This procedure is called the self-consistent field (SCF) method.
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1.2 Density functional theory

Density functional theory (DFT) has been widely used since the 1990s as it efficiently incorporates
electron correlation in the form of electron density, and it has now become one of the primary methods
in computational chemistry [8]. The DFT approach expresses electron correlation as a functional of
the electron density. The foundation of this approach dates back to the Hohenberg-Kohn theorem
proposed in 1964.

1.2.1 Hohenberg-Kohn theorems

Hohenberg-Kohn theorem consists of two fundamental theorems [9].

The first Hohenberg-Kohn theorem

The external potential v(r) is uniquely determined by the electron density p(r).
The second Hohenberg-Kohn theorem
For a trial density p(r) suchthat () =0 and [p(r)dr = N, then E, < E,[p(1)].

The first Hohenberg-Kohn theorem establishes that the Hamiltonian is uniquely determined by the
external potential. Once the Hamiltonian is determined, the wavefunction can be obtained. From the
wavefunction, the electron density can be constructed. Therefore, this theorem demonstrates a one-to-
one correspondence between the electron density, the nuclear potential, the Hamiltonian, and the total
energy. The first theorem is proven by reductio ad absurdum. Suppose there exist two external
potentials v and V' that differ by more than a constant and yield the same ground state electron density.
Then, there would exist two Hamiltonians H and H' corresponding to these potentials, which share
the same ground state density. However, the normalized wavefunctions ¥ and ¥' corresponding to H
and H', respectively, must be different. When ' is used as the trial wavefunction for H,

Eo <(W/[H[|¥") = (W[H'|¥") + (¥'[H - '|¥')
=E;+ f p(M[v(r) —v'(r)]dr, (1.30)

where Eo and Ey' are the grand state energies corresponding to H and H’, respectively. Similarly, when

W is used as the trial function for H’, the following inequality holds,

Ej < (¢|H'|W) = (V|H|®) + (¥|H' — H|¥)
=F,+ f p(M[v'(r) —v(r)]dr. (1.31)

Addition Equations (1.30) and (1.31), the following contradictory equation is obtained,
E,+ Ej < Ej + E,. (1.32)
Therefore, two external potentials that give the same ground state electron density p(r) cannot exist.

In other words, once the electron density p(r) is determined, the external potential v(r) is uniquely
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determined.

The second Hohenberg-Kohn theorem states that the Hamiltonian operator expressed in terms of
the ground state electron density always has a solution that minimizes the energy, demonstrating the
variational principle for the energy. The requirement of the variational principle arises from the

stationary principle with respect to the electron density of the ground state,

5{5,, [p()] - u U p(r)dr — N]} 0. (133)
The Euler-Lagrange equation can be obtained from Equation (1.33),
_6E,[p(M)] _ 8Fuk[p ()]

where g represents the chemical potential. Fux[o(r)] is defined independently of the external potential,
which means that it is a universal functional of p(r). If Fux[o(r)] could be explicitly written, the
Hohenberg-Kohn theorem could be applied to any systems; however, obtaining such a functional

Fux[p(r)] is extremely difficult.

1.2.2 Levy constrained search

According to the Hohenberg-Kohn theorem, if a trial electron density p(r) is non-negative and the
total particle number is finite, the external potential is uniquely determined. Here, if v-representability
is defined as “a system is v-representable if the electron density p(r) is derived from the ground state
antisymmetric wavefunction for a Hamiltonian with a given external potential v(r),” then, for example,
when the ground state is degenerate, multiple wavefunctions can yield the same density, meaning the
system is not v-representable. Furthermore, as shown in the following equation, the formulation of

DFT is still possible even if the conditions on the density in the variational principle are relaxed.

5r) = o,fﬁ(r) dr = N,and f |v,3%(r) Cdr <o (1.35)

It is called N-representability and means that a density is obtained from some antisymmetric
wavefunction. Since N-representability is a necessary condition for v-representability, the conditions
for N-representability are weaker than those for v-representability.

The one-to-one correspondence between the ground state density and the wavefunction has been
established, so now considering how to determine the wavefunction when the density is given. The
density po(r) is expressed as the square of the wavefunction Wy, but there exist infinitely many
antisymmetric wavefunctions that yield the same density. If such wavefunction is denoted that satisfies
) as W,

(W, |H|®,,) = (W |H|¥,) = E,. (1.36)
Equation (1.36) is trivial from the stationary principle with respect to the electron density of the ground

state. The Hamiltonian of N electrons system is H =T + V,, + XY v(r;) (T and V,, are the kinetic
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energy and potential energy, respectively.), and then, the following equation is obtained:
(gﬁ#@ﬁ%HIWﬂ%mmzMﬁ+@mwjmﬂ%mm

AW T + Voo [Wy) = (WoT + Voo |Wo)- (1.37)
The right-hand side of Equation (1.37) shows v-representability, and the left-hand side shows N-
representability. Minimizing the left-hand side of Equation (2.37), it turns to show v-representability.
Fux[po ()] = (Wo|T + V[ ¥o) = L{,‘EI?O(WW + Ve | P). (1.38)
This is a constrained search for the density functional Fuk[oo(r)] [10]. That is, by searching over all
antisymmetric wavefunctions corresponding to a density po(r), a v-representable wavefunction can be
obtained. Therefore, the condition of non-degenerate ground states, which is a limitation of the
Hohenberg-Kohn theorem, can be removed. In essence, the ground state energy is expressed as a

functional of the density, as shown below.

M&H=FM&H+fWﬂm@Mr

= min (W|T‘+Ze|\}’)+fv(r)p0(r)dr. (1.39)

Y-po

1.2.3 Kohn-Sham equation

In Section 1.2.1, the electron density of the grand state is obtained by minimizing E[p(r)], and
satisfies the Euler-Lagrange equation (1.34). The density functional Fux[p(r)] is expressed as below,

Fuglp(M)] = T[p(M)] + Vee[p()]. (1.40)

If the kinetic energy term 7]p(r)] and the electron-electron interaction term Ve[p(r)] could be
explicitly expressed, this method could be applied to any system. However, it is difficult to obtain their
explicit forms beyond rough approximations. Kohn and Sham proposed to introduce the orbitals into
this problem [11].

The kinetic energy without the interactions can be expressed by wavefunctions as below,
N

T, :Z(ws —2A tys>. (1.41)
Using Ty, Equation (1.40) can be rewritt;n as:
Flp(r)] =T, + J[p()] + Exc[p(r)], (1.42)
where
Exclp(M)] =Tlp(M)] = Ts + Vee [p(1)] = J[p()]. (1.43)

Exc[p(r)] is called the exchange-correlation energy. This term contains the difference between 77p(r)]
and Ty, and the electron-electron interaction term. In other words, the parts of the energy that cannot

be explicitly expressed are integrated into this term.
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The energy functional is expressed as follows:

E[p(r)] = T[p()] + Ve [p()] + f p@w(r)dr

- ZZ f v (—%A) Wi(m)dr +][p(M)] + Exc[p(r)] + f p(M)v(r)dr. (1.44)

The relationship between the electron densities and molecular orbitals is

p(r) = ZZ WS (WS (1), (1.45)

Thus, the energy can be expressed by N orbitals.
In order to derive the Kohn-Sham (KS) equation, it is necessary to minimize E[p(r)] with respect

to the orbitals under the constraint that the orbitals are the orthonormal,
f‘Pi*(r)‘{’j(r)dr = &jj. (1.46)
A functional Q[{¥;}] of the N orbitals is considered as follows:
N N
QL] = Blp@] = ) Y &y [ wewmyar, (147)
ij

where E[p(r)] is the functional of W;, which is expressed by Equations (1.44) and (1.45), and &;; is a
set of the Lagrange multipliers. To minimize E[o(r)] under the given constraint, minimizing Q[ {¥';}]

is require. That is, Q[{¥;}] = 0, and these equations are obtained,
N

1

[_§A+Ueff:| lpi =Z€Ul‘pj, (148)
=1
rl
Vege(r) = v(r) + f | : (_ r)'l A’ + vy (). (1.49)
Finally, the canonical KS equation follow as:
1

I:—EA‘}‘Ueff:l l‘IJi = Eil'pi, (150)

where veri(r) is an effective potential (Kohn-Sham potential). The KS equation has the same form as
the HF equation, except that it includes a more general local potential. Therefore, if the potential is
uniquely determined, it can be solved in the same manner as in HF theory. If Exc[p] and vxc(r)
represent the exact exchange-correlation energy and potential, solving the KS equation yields the exact
energy, including electronic correlation effects. In other words, the KS approximation enables
calculations that include challenging electronic correlation effects with computational effort similar to
that of the HF method.

In the case of a one-electron system, the Coulomb energy J[ p] depends solely on the electron density
P, resulting in a finite value. This leads to the unphysical situation where a single electron interacts

with itself. In the HF method (and correlation methods based on it), this issue is resolved as the
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exchange integral precisely cancels out the Coulomb integral. However, in the case of approximate
exchange-correlation functionals, this cancellation is not exact, leading to a problem. This problem is

called the self-interaction errors (SIE).

1.3 Exchange-correlation functional
Up to this point, Hohenberg and Kohn have shown that the exchange-correlation functional
Exc[p(r)] is determined solely by the electron density. However, obtaining an explicit form of

Exc[p(r)] is extremely difficult, and thus approximate functionals are employed.

1.3.1 Local density approximation

The Exc[p(r)] functional is typically divided into the exchange functional Ex[p(r)] and the
correlation functional Ec[p(r)]. The first approximation to the exchange functional Ex[o(r)] is called
the local density approximation (LDA). This functional is introduced by using the basic model of DFT,
called a homogeneous electron gas (HEG). The HEG, also known as the Jellium model, is a system in
which N electrons exist within a uniformly distributed positive charge background of N positive
charges.

To derive this model, a box potential system in which N electrons move within a cube of edge length
[ under periodic boundary conditions is considered [12]. The electronic wavefunctions for such a box

potential system are given as:

1 . 1
Y= _el(kxx+kyy+kzz) — _elk-r’ 1.51
i W (30
where
21 21 21
kx =—nx,ky =Tny,kz =Tnz. (152)

l

By using Equation (1.51), the spin-independent first-order density matrix is expressed as follows:
N/2

pr(rT) = ) G, ()

L
2 ;
J— ik-(ri—7z2)
v Z €

kOCC

1

~ o f etk (ri=T2) g

1 [(kr .
=13 J k%dk J J etk ("1=72) 5in 0 dOd ¢, (1.53)
0

where

an = () dic = ()
"= \2n - \8n/
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kr is called the Fermi moment and determined as below:
1
kp = {3n%p(r)}5. (1.54)
In inhomogeneous systems, the average of r; and r» is often used. Thus, a variable is defined such

as
1
r=5(try), s=1.-1y (1.54)

and s is taken the k.-direction, then,

1 kr 5 T 21
p,(ry, 1) = m[ k dkf etkT12¢0s0g5in@dl | do
0 0 0

sint —tcost

= 3p(n) [ = ), (1.55)

where t = kr(r)s. Expressed in terms of coordinates r and s, this equation represents the exact spin-

independent first-order density matrix for the HEG. By using the spherical Bessel functions,

si sinz cosz

nz
1 =" = - 1.56
Jo(2) 2 J1(2) 42 P ( )
Equation (1.55) can be rewritten as
3j,(skp)
pi(ry,15) = ————p("). (1.57)
F

Using this first-order reduced density matrix, the kinetic energy and exchange energy can be calculated.

The kinetic energy functional is given as follows:

3 2
Trelp(r)] = 75 Gn)i [ piry dr. (1.58)

Equation (1.58) is called the Thomas-Fermi kinetic energy. The exchange energy functional is given

as follows:

1

Ex[p(M] = %(E)§ f p%(r) dr. (1.59)

v
Equation (1.59) is celled the Dirac exchange energy or Slater exchange energy. Thus, the exchange
energy is proportional to the electron density raised to the power of 4/3, and the kinetic energy is

proportional to the electron density raised to the power of 5/3.

1.3.2 Expansion to open-shell system

In the DFT calculations, when dealing with open-shell electronic structures, it is necessary to
consider spin-unrestricted orbitals, similar to the HF theory. The spin-unrestricted DFT calculation is
also called the spin-polarized DFT, where the difference between the c-spin density and B-spin density
is taken into account. The kinetic energy functional and exchange energy functional can be separate

into each spin element,
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Trr [Pmpﬁ] = Trp[Pq, 0] + Tre[O, PB]
1 1
= ETTF [Par P,B] + 2 Tre[par ,0/3’]

1 1
= ETSO[Zpa] + ETSO[ZP;;]. (1.60)

1 1
Ex[Par ppl = 3 Ex[pq ppl + EEX [Pa Pg]

1 1
= EEXO[ZP(Z] +§Ex0[2pg], (1.61)

where T,” and Ex” are the kinetic energy and exchange energy for the total density in the closed-shell
system. The Thomas-Fermi kinetic energy is given as follows:

2 3 3
Trelpar pgl = 236%’4 [pas + pBS] dr

3
= Z fC%Fpagdr' (1.62)

o=a,p

3

3 2 2
CFp = 75 (31203, Chy = =5 (6m)5. (1.63)

The Dirac exchange energy is

1 4 4
Ex[pa ppl = —ZSCff [pa3 + p;ﬁ] dr

4
= Z f Cx po3dr, (1.64)

o=a,
3/3 3 373 3
3 3
0o_>(2 1_2(2 (1.65)
Cx 4-(1r) =3 (4-7r) '
The variable that express the spin polarization is defined as follows:
Pa—Ps _ Pa—P
=re fF_re 1P (1.66)

T T +pg
where
1 1
Po = 5(1 +Op,pg =§(1 = {p.

The exchange energy functional (1.64) can be rewritten by using Equation (1.66),

Ex[pa ppl = f pex(p,{)dr, (1.67)
ex(p, ) = €x(p) + [ex(p) — ex(PIf (D), (1.68)
1 4 4
fQO=7—[A+3+1-3-2] (1.69)
23 -2
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4
where €4(p,{) is the exchange energy density; €g = C9p,3 is a spin-compensated (paramagnetic)

4
exchange energy and €3 = C§p,3 is a fully spin-polarized (ferromagnetic) exchange energy of HEG. Such

a spin-polarized LDA is also referred to as the local spin density approximation (LSDA).

1.3.3 Correlation energy functional for LDA

Unlike the kinetic and exchange functionals, which can be derived exactly for the HEG, the
correlation functional is not exactly known even for the HEG. Therefore, the correlation functional is
obtained by fitting empirical functional forms to the correlation energy extracted from the total energy
of the HEG obtained through numerical simulations, such as quantum Monte Carlo calculations, after
subtracting the kinetic and exchange energies. Below, the author introduces two commonly used types

of LDA correlation functionals.

* VWN correlation functional [13]
The functional developed by Vosko, Wilk, and Nusair (VWN) uses analytical information for the
upper and lower limits of the density to determine the correlation energy density for spin-unpolarized

(0) and spin-polarized (1) systems.

x?> 2b Q
VWN — -1
€0/1 (x)—A{lnX(x)+ Qtan %D
(1.70)
x—x9)%  2(b+ 2x,) Q

bx, 1 ( 1
_X(xo)[n X@w o o 2x+b]}'
x=1,X(x) =x?+bx+c,Q=V4c—b

By interpolating between these limits, the correlation energy density €/""(r;,{) applicable to

general cases is obtained.

el 5,0) = )+ ) [ B (4 = 6 4 E ) - OO, T
-2
£(0) = &
23—1
where 7y is the variable defined from
4 - 1
3T = P (1.72)

which is the radius of an effective volume containing a single electron, known as the Wigner-Seitz

radius.
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* PWO2 correlation functional [14]
This functional was proposed by Perdew and Wang.

1

1 3 ’
20 (Bur? + Bors + Bsri? + urs)

€610 =—2ap(1—ar)) xIn |1+

(1.73)
These functionals are used interpolating at =0 to 1.

1.3.4 Generalized gradient approximation

So far, the LDA has been introduced; however, LDA has two main drawbacks. The first is that it is
based on the HEG, even though the charge density in real systems is not uniform. The second is that
it does not correctly describe the r-dependence in the limit as r — oo. To incorporate the
inhomogeneity of the charge density, which was not considered in LDA, a correction using the density
gradient is introduced. This approach is called the generalized gradient approximation (GGA). The
GGA functionals are currently the main functionals used in density functional theory and can generally

be expressed as follows:

ESEAparpp] = f exc*(Pas Pg VDo Vpg)dr. (1.74)

Similar to the LDA, the exchange-correlation functional is separated into exchange and correlation

components, and approximations are made for each.

1.3.5 GGA exchange functional
The GGA exchange functionals are generally written as
4
B = 3 [ BGpimar, 175)
o=a,f
where Fy is a expansion function of x4, and in the case of LDA, FY* = C). x, is a variable that
expressed the local heterogeneity,
_1Vp,|?
X¢ =7 - (1.76)
p3
This variable represents the deviation from the uniform electron gas and can take large values not only

in regions with significant electron density gradients near the nucleus but also in low-density regions,
such as the asymptotic region where the density decays exponentially. Similarly, small gradients are
typical in bonding regions but can also occur in high-density regions. The notable differences in this
region arise because, while the exact local density limit and GGA limit for exchange energy exist as
fundamental physical conditions, the physical constraints on functionals in regions of high-density
gradients or low electron density are largely unknown. Below, several representative GGA exchange

functionals are introduced.
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* Becke88 exchange functional [15]

2
$xo

1+ 6{x,sinh~1x,’

B88 _ pLDA
Ex™ = Ex

(1.77)

Here, ¢ is a parameter with a value of 0.042, and the functional is designed to satisfy the asymptotic
behavior of the exchange energy density. Due to its improved accuracy in reproducing physical
properties compared to previously developed functionals, it was widely used in combination with LYP
correlation or Perdew86 correlation [16], among others, contributing significantly to the widespread

adoption of DFT.

* PBE exchange functional [17]

EFPF = EfPA |1+ k-

(1.78)

KS,2
=E§DA[1+K ks, ]

K
1+ ,u/;csaz] 1+ p/ks,?

PBE exchange fictional is simplified and derived from PW91, and widely used as well as B88
exchange functional. The revPBE [18], which recalibrated the parameters, is also commonly used.

LDA exchange functional is known to consistently underestimate the exchange energy, and this
underestimation is significantly improved in GGA exchange functional. On the other hand, the
differences between GGA exchange functionals are relatively small compared to the discrepancy with
LDA.

1.3.6 GGA correlation functional
GGA correlation functionals improve the LDA correlation functionals by multiplying them with a
GGA enhancement factor, similar to the GGA exchange functionals. Some example of GGA

correlation functionals are introduced as below.

* PBE correlation functional [17]
PBE correlation functional is obtained by adding H(#) to the PW92 correlation functional (1.73).

€lBE = €tP4 + H (D),

3 5 1+ At?
H(t) =cf;’In|1+dt Tr A+ a2t )| (1.79)

eLDA -1

c

A - d [exp <_ 3)] '
cf>

1 2 2
£© =5|a+or+a-o3)

t= [2(3113)%]‘5]_1 X.
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* Lee-Yang-Parr (LYP) correlation functional [19]

The PBE correlation functional was created by multiplying the LDA correlation functional by a
GGA factor. However, there is also an approach to derive correlation functionals based on approximate
correlation wavefunctions, known as Colle-Salvetti type correlation functionals. First, the correlation
wavefunction Wo(x1, X2, ..., X») is approximated as the product of the Slater determinant from the HF
method and a Jastrow factor.

Wo (g, %5, %) = W (xp, x5, 0+, Xy) 1_[[1 —®y,(rmy), (1.80)
i<j
where Wi" is the Slater determinant (1.2), ®12(r;, ;) is a correlation factor, which describes the
correlations between all particle pairs. The Colle-Salvetti wavefunction is given as follows [20,21]:

() = eF55 {1 - WIF(R) (1+ %)} (1.81)

where R and s are the variables between two electrons. A parameter £ determines the size of the
Coulomb hole, and ¢ is a dimensionless parameter, ¢ = 2.29. In regions of high electron density, the
Coulomb hole is deep and localized, while in regions of low electron density, the Coulomb hole is
shallow and spread out. Using these relationships in calculations, the electron correlation energy is

expressed as:
HE(r, s 8 1 -1
EES = —‘mf % [1 +bp 3[V2pyF (1, $)]s=0e P ] X (1 + dp‘g) dr, (1.82)

where i is the pair density matrix (diagonal elements of the second-order electron density) in the
HF method. Four parameters, a, b, ¢ and d, can be fitted by the He atom.

One of the most widely used functionals, the Lee-Yang-Parr (LYP) correlation functional, is derived
from the Colle-Salvetti electron correlation energy. The LYP functionals is known to provide highly
accurate correlation energy in molecular property calculations. In practice, the expressions commonly
used are the one proposed by Miehlich et al. [22], which converts the Laplacian term Ap into a density
gradient term through integration by parts, and the implementation formula proposed by Johnson et
al. [23]. Although the mathematical expression is omitted due to its complexity, one characteristic
feature is the presence of a psp0p term. This ensures that, for single-electron systems, it equals zero,
meaning that the correlation functional does not suffer from self-interaction.

For closed-shell atoms, LDA correlation functionals overestimate the correlation energy by about a
factor of two, but this overestimation is significantly improved with GGA correlation functionals such
as LYP and PBE. Similarly to exchange functionals, the energy differences between GGA functionals
are much smaller compared to the discrepancy with LDA. Notably, although LYP and PBE have
significantly different functional forms, they are known to achieve comparable computational

accuracy.
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1.3.7 Hybrid exchange-correlation functional

In Section 1.2.3, DFT calculations have the issue of self-interaction error (SIE), where electrons
interact with themselves. On the other hand, the HF method resolves the SIE issue as the exchange
integral precisely cancels out the Coulomb integral. Additionally, DFT calculations tend to
overestimate the delocalization of electrons, whereas HF calculations overestimate the electron
localization. Therefore, to improve the SIE issue in DFT, hybrid exchange-correlation functionals,
which incorporate a portion of the HF exchange energy into GGA functionals, have been proposed
and are widely used today.

Generally, the hybrid exchange-correction functional is written as follows:
phybrid _ HFpHF 4 LEL 4 JgJ
XC Cx Ly CxEx CcLe (1.83)
i J
where

ciF +ZC§E§ =1,
7

Z clEl = 1.

J
EY,Ey and E.. are the HF exchange energy, i-th exchange functional and j-th correlation functional,
respectively. The mixing ratio of HF exchange, ¢’ , is known to significantly influence the results, and
hybrid functionals with the same mixing ratio often yield similar outcomes. The fllowing are three

commonly used hybrid functionals.

* B3LYP [24]
B3LYP exchange-correlation functional is the most widely used functionals in the quantum
chemical calculations. The functional is written as follows:
BV = B + oy (BY = BP*) + B + ay (B = B, (1.89
where £, EYY, E¢” and E™ are the Slater exchange energy (1.59), the B88 exchange energy (1.77),
the LYP correlation energy and the VWN correlation energy (1.71), respectively. The three parameters, ai
=0.2,a,=0.72 and a3 = 0.81 are determined to reproduce the physical properties of the G2 benchmark

set [25], which consists of several dozen atoms and small molecules. The mixing ratio of HF exchange
isa; =0.2,1.e. 20 %.

* BHandHLYP [26]
Another hybrid functional using the Becke’s exchange energy (1.77) and the LYP correlation energy
is BHandHLYP,
EgHandHLYP — 0 SEHF 4 0.5EF%8 + ELYP. (1.85)

This functional mixes the HF exchange energy and the GGA exchange energy at a 1:1 ratio, meaning
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that the HF exchange component is 50 %. BHandHLYP has been reported to reproduce experimental

values more accurately than B3LYP in the calculation of magnetism [27].

* PBEO [28]
PBEO functional is also a widely used hybrid functionals.
Ex¢"® = Ex¢" + 0.25(E{" — Ex"F). (1.86)
The mixing ratio of HF exchange is 25 %. This functional is based on the adiabatic connection and
uses the PBE exchange-correlation functional as a reference. It is derived by expanding the energy
difference between the exchange functional and the HF exchange integral as a perturbation and
replacing one-fourth of the PBE exchange with the HF exchange integral in the third-order term of the
expansion. Therefore, unlike B3LYP, it is a hybrid functional derived without using empirical

parameters.

1.4 DFT calculation for periodic systems

In the HF and DFT calculations for atoms and isolated molecules, the physical properties of
materials can be obtained by using the wavefunctions (or electron density). These molecular orbital
calculations are performed using the localized (gaussian) basis sets like the LCAO-MO described in
Equation (1.17). However, it is difficult to handle the electronic structures of systems with periodic
boundary conditions, such as metals and crystals, using the localized basis sets. To handle periodic
systems, band theory is commonly used. This approach uses plane-wave basis sets, which are
particularly suited for describing the periodicity of the system. Additionally, the influence of core
electrons is often replaced with effective potentials, such as pseudopotentials, to reduce computational
cost while maintaining accuracy. Solid surfaces, interfaces, and isolated molecular systems can also
be modeled using plane-wave basis sets by employing a slab model. In this approach, the
computational target is periodically arranged within an enlarged unit cell, known as a supercell, with
vacuum layers inserted to separate adjacent replicas of the target system. Furthermore, the autho
describes the DFT+U method, which incorporates on-site Coulomb parameters U, as a technique for

handling open-shell systems in the DFT calculations using plane-wave basis sets [29-32].

1.4.1 Lattice and reciprocal lattice

In crystals and supercells with periodic systems, the same unit cell repeats at each lattice point (Fig.
[.1.1). The lattice vector R indicatingr the position of the lattice point (unit cell) is expressed using the
basic translation vectors a1, a2, a3 as R = lia1 + hay + Las, where [y, b, I3 are integers. The unit cell can
be taken as a parallelepiped with a1, a», a3 as edges, and the atomic positions are given as R + #,, where
t, is the relative position vector within the unit cell. In crystals and supercells, the potential term in the

Kohn-Sham equation possesses translational symmetry, meaning that for any lattice vector R, the
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following condition holds:

Vese(T + R) = Vege(T), (1.87)
where vefr is the Kohn-Sham potential consisting of the sum of the Coulomb attraction with the atomic
nuclei, the Coulomb repulsion with the electrons, and the exchange-correlation potential. The potential

is repeated identically for each unit cell.

Q = N,N,N,Q,

Nsas

1)
TC

/'

N,a, <

Unit cell

Nia,
Q.=|a,"a,Xa, |

Fig. I.1.1. The arrangement of unit cells in a crystal and the Born-von Karman periodic boundary
conditions. The unit cell (with volume €).) repeats periodically along the basic translation vectors
a1, a, az. On the other hand, the crystal region with a volume Q, which spans Nia1, N>a>, Nza3 in

three directions, is assumed to repeat further beyond its boundaries under the Born-von Karman

boundary conditions.

On the other hand, the primitive reciprocal lattice vectors, which correspond to the real-space lattice,

are defined as follows:

b, = 222 %% (1.88)

a, (a, Xas)
b, = 2m— 224 (1.89)

a,(a, Xaz)
b, = 2m— X% (1.90)

a,(a, Xaz)

and these vectors satisfy a relationship,

a; " b; = 2mé;;. (1.91)

The reciprocal lattice space (k-space) is defined as a space where the reciprocal lattice vectors G =

mib1 + moby + m3bs (where mi, mo, m3 are integers) repeat periodically. In this case, the dot product
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with the lattice vector is expressed as
G- R = 2ntM, M:integer. (1.92)

The parallelepiped formed by the fundamental reciprocal lattice vectors b1, b2, b3 represents a unit cell
of the reciprocal lattice, but in its original form, it does not fully reflect the symmetry of the reciprocal
lattice. To address this, a region is constructed by bisecting the space with planes equidistant from the
origin and its neighboring reciprocal lattice points. This region has a volume equal to that of the unit
cell in the reciprocal lattice and incorporates the symmetry of the reciprocal lattice. This region is
called the Brillouin zone. The volume of the unit cell in real space is given by the parallelepiped
formed by ai, a2, a3 as QO = |a * a> X a3|. Correspondingly, the volume of the Brillouin zone in
reciprocal space, formed by b, ba, b3, is |b1 * by x bs| = 2°Q.!. As the unit cell volume Q. increases,

the volume of the Brillouin zone decreases.

1.4.2 Bloch's theorem

In periodic systems characterized by lattice vectors R and reciprocal lattice vectors G (systems with
translational symmetry), solving the Kohn-Sham equations is referred to as band structure calculations.
According to Bloch’s theorem, the eigenfunctions of a periodic system always have a wave vector k,
which corresponds to a wave (propagating in the direction of k with a wavelength 2n / |k| ), and k is
confined within the Brillouin zone. Moreover, the eigenfunctions take the following form:
Upn (1), (1.93)

where urs(r) is a lattice-periodic function, and for any lattice translation vector R, it satisfies the

¢kn =e ther

translational symmetry condition:

Upn (T + R) = Uy (7). (1.94)
And 7 is a band index, and for each k-point, several eigenstates are calculated based on the number of
electrons per unit cell, and these eigenstates are labeled with the index # in ascending order of energy.
From Equation (1.93), the contribution of the eigenstate ¢ () to the electron density distribution in
Equation (1.45), |@(r)|*, eliminates the exponential term and becomes |Uk,(r)]*. Furthermore, from
Equation (1.94), this distribution is also a lattice periodic function.

The reason for constructing reciprocal lattice vectors and the Brillouin zone from lattice vectors is
that the eigenstates of electrons in periodic systems are identified by &, and solving for the eigenvalues
and eigenfunctions at all k-points within the Brillouin zone completely determines the electronic
structure. By combining Equations (1.87), (1.93), and (1.94) with the KS equation (1.50), the KS
equation for periodic systems takes a form dependent on k. The eigenvalues Ex, and eigenfunctions
&in are solved for each k-point. The obtained Ex, and ¢k, change gradually as k varies, and can be
regarded as continuous functions of k. A continuous set of eigenstates within the Brillouin zone
corresponding to a specific band index # is referred to as a “band.” When multiple bands overlap, the

values of » may interchange. The variation of Ex, with respect to k within the Brillouin zone is called
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the band structure (or band dispersion).

The Brillouin zone contains densely distributed k-points. The number of k-points in the Brillouin
zone is, in principle, the same as the number of unit cells in the entire periodic system. Under the
macroscopic periodic boundary condition depicted in Figure 1.1 (Born—von Karman periodic
condition), the unit cell repeats in the ai, a; and a3 directions with sizes of Niai, Nax and Nas,
respectively. The total crystal volume is given as Q = NQ., where N = N1N>N; and N is a macroscopic
number. The total translational degrees of freedom N correspond to the number of k-points defined in
the system. Therefore, the Brillouin zone accommodates 2N states (electrons) per band, including spin.
Two electrons per unit cell always fill a single band (the entire Brillouin zone); in the case of spin

polarization, one electron fills one band.

1.4.3 Pseudopotential method

In solid-state electronic structure calculations, the construction of basis functions presents
significant challenges. This is due to the coexistence of an extremely deep potential field near the
atomic nucleus and a relatively flat potential field in the interatomic regions (Fig. 1.1.2). Focusing on
the region near the atomic nucleus, (i) ¢, which represents atomic orbital-like basis functions as
solutions to the deep spherical symmetric field, can be considered. On the other hand, (ii) % , which
uses plane-wave basis functions to describe the extended free-electron-like characteristics in the flat
interatomic regions, can be utilized. However, the (i) case faces difficulties in representing the
interatomic regions, while the (ii) case encounters challenges in accurately describing the areas near

the atomic nucleus.
(a) 3 ; 3 3 (b)

WS |

Y (1)

Yer (1) A A

. Nuclei ‘

Fig. 1.1.2. (a) Conceptual diagram of the all-electron potential V() and eigenstate wavefunctions

Verr(r)

(core orbitals ¥ 1, Y 2, and valence band wavefunction 1 ,) in a solid (crystal). (b) By
introducing a “pseudopotential” that smoothens the potential within a cutoff radius 7, oscillations in
the valence wavefunction 1, near the atomic nucleus are removed. Outside the radius 7, the
pseudopotential ensures that the valence wavefunction and the all-electron potential accurately

reproduce the correct valence electron properties.
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As shown in Fig. 1.1.2 (a), the valence wavefunction 1, is smooth in the interatomic region but
exhibits oscillations near the atomic nucleus. These oscillations arise due to the orthogonality
requirement with the core orbital ¥ ([ ¢s(1r)d (1) dr = 0 ). To represent wavefunctions with
significant local variations using a plane-wave basis, a large number of short-wavelength plane waves
are required, leading to an enormous computational size. On the other hand, methods that bridge (i)
and (ii) have also been proposed, such as (iii), which constructs basis functions that are atomic orbital-
like (spherical wave expansion) near the atomic nucleus and connect these to plane waves in the
interatomic regions.

First-principles band calculation methods have been developed across several categories:

(i) LCAO-based methods:

First-principles approaches using the linear combination of atomic orbitals (LCAO), including
hybrid basis methods [33].

(i1) Plane-wave pseudopotential methods:

These employ plane-wave basis sets and include the norm-conserving pseudopotential (NCPP)
method [34,35], ultrasoft pseudopotential (USPP) method [36], and the projector augmented
wave (PAW) method [37,38].

(iii) Linearized methods:

These include full-potential linearized augmented plane wave (FLAPW) methods and full-
potential linear muffin-tin orbital (FP-LMTO) methods [39]. This category offers the highest
accuracy, as it handles all electrons from core orbitals to valence bands (hence often referred to

as “all-electron methods”), but the high computational cost is a notable drawback.

Here, the author explains the methods in category (ii). The three approaches—NCPP, USPP, and
PAW—were developed sequentially, with newer methods achieving improvements in both efficiency
and accuracy. Therefore, the author primarily focuses on explaining the foundational NCPP method.
When dividing the region of each atom where the wave functions of core orbitals exist into an inner
and outer region using a cutoff radius r. , the effective potential Ves(r) for each region is considered.
Inside r., near the atomic nucleus, Ves(r) is a deep spherical symmetric potential similar to that of a
free atom, and the core orbitals, such as y¢; and w2 shown in Fig. 1.1.2, form low-energy eigenstates
in crystals as they do in free atoms. These core orbitals do not directly contribute to interatomic
bonding. Additionally, the Coulomb potential of other atomic nuclei is screened by the electrons near
those nuclei. On the other hand, in the interatomic region outside 7., only valence electrons are present,
and Ver(r) effectively represents the potential experienced by the valence electrons. This potential
consists of the Coulomb field of the positively charged ion, screened by the core electrons, and the

electrostatic and exchange potentials generated by the valence electrons both inside and outside r..
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The wave function of the valence band (y4 in Fig. I.1.2) changes smoothly outside 7., making it
suitable for plane-wave basis expansion. However, as mentioned earlier, it oscillates (with nodes)
inside 7. due to orthogonality with the core orbitals. The presence of a deep potential and core orbitals
inside the 7. sphere is the origin of these oscillations. To address this, core orbitals are excluded from
electronic structure calculations, and only valence electrons are considered. By introducing an
“artificial potential” that has a shallower well inside . but matches the true all-electron potential
Vae(r) outside r., density functional theory calculations can be performed with the focus on valence
electrons (Fig. 1.1.2(b)). The process can be considered as follows:

(a) By “raising the bottom” of the potential inside r., a smooth, non-oscillating, and delocalized

valence electron wave function can be generated.

(b) Ensuring that the integral of |y4|* (norm) for the valence wave function inside 7. is preserved
correctly for each atom allows the potential outside r. to accurately reproduce the true all-electron
potential Vag(r).

(c) This setup should enable the correct valence wave function obtained from all-electron
calculations to be reproduced outside 7.

(d) The raised potential inside r. and the elimination of wave function oscillations should
compensate each other, potentially allowing the eigenvalues (energy levels) to be accurately
reproduced.

The atom-specific potential that satisfies these requirements is referred to as the pseudopotential.
Instead of using V(r) , which represents the sum of the Coulomb potentials from the atomic nuclei, the
sum of the pseudopotentials Vps(r) for each atom is utilized. Under this framework, density functional
theory (DFT) calculations for the valence electron system alone are performed by solving the Kohn—
Sham equations using the following effective potential,
Veer(r) = Vs (1) + V(1) + e (1), (1.95)

where Vu(r) and suc(r) are the electrostatic potential and the exchange-correlation potential,
respectively, derived from the valence electron distribution under the pseudopotential framework.

Vps(r) is sum of pseudopotentials ¥;° from all atoms (with internal coordinates #, ) in all unit cells of

the periodic system R:

Vps(1) = Z Z VFS(r—t, —R). (1.96)
R a

Vi* is preconstructed for each atomic species a and acts only on the valence electrons. Inside the cutoff
radius r, it is adjusted upwards, while outside 7., it becomes the Coulomb potential of the positively
charged ion with the valence electrons removed. Thus, under the potential field described by Equation
(1.95), the valence electron wavefunctions are smooth and free of oscillations (nodes) both inside and
outside r. (as shown in Fig. 1.1.2), enabling expansion using plane-wave basis functions. Equation

(1.95) describes a potential field in the interatomic region composed of the Coulomb field of the
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positive ions and the contributions from Vu(r) + tixe(r) due to the valence electrons. If the norm of the
valence electron wavefunctions inside each atomic r.-sphere is preserved to match the correct values
from all-electron calculations, this pseudopotential can be considered equivalent to the full all-electron
potential Vag(r) in the interatomic regions.

The calculated valence electron wavefunction is accurate in the interatomic region outside r., but
within r., the nodes are removed, making it incorrect (as shown in Fig. 1.1.2). Therefore, this
wavefunction is referred to as the pseudo wavefunction. To correct the inaccuracies in the
wavefunction within 7., methods such as the USPP method and the PAW method have been developed.
In the USPP method, condition (a) of the pseudopotential construction criteria (a)-(d) mentioned
earlier is relaxed, allowing the smooth potential and extended wavefunction outside 7. to be assumed
within 7. as well. This method significantly reduces the number of plane-wave basis functions required.

The PAW method, building upon the USPP method, combines it with the all-electron method (iii),
resulting in further improvements in computational accuracy. While handling pseudo wavefunctions
that do not have nodes near the atomic nucleus, in the expression of total energy and the Hamiltonian,
the portion within the radius r. of each atomic sphere is replaced with the correct valence wave
function that possesses nodes (see Fig. 1.1.2(a)). As a result, variational calculations using plane-wave
basis can be performed efficiently with a relatively small number of plane waves, similar to the USPP
method. Ultimately, this approach enables the accurate reconstruction of the correct valence wave
functions with nodes near the atomic nucleus, leading to highly precise total energy calculations. In
the PAW method, the valence electron wavefunction in a solid is treated as follows: first, a potential
is constructed by adding the electrostatic potential Vu(r) and the exchange-correlation potential z4c(r)
from the valence electron distribution to the potential outside the cutoff radius 7. . Under this potential,
a pseudo-wave function ¢fs(r) is handled using a plane-wave basis expansion. This pseudo
wavefunction does not have nodes inside 7. but reproduces the correct wave function in the interatomic
region outside 7.. The true wavefunction form ¢, (r) is obtained by modifying the pseudo

wavefunction ¢fs(r) within the spherical region r. of each atom as follows:
bin() = $EE) + ) (160) = BBl ST, (1.97)

The second term on the right-hand side represents the modification operation within the . sphere. The
summation over i runs over the valence electron states of each atom, where i = (/, m, 7). The functions
|¢:), |@.), and |p;) are atomic orbital-like functions (or operators) centered at each atomic position.
For each element, two functions (7= 1, 2) are assigned to each valence orbital angular momentum /.

|@;) represents an expansion basis that correctly describes the electronic structure within the 7. sphere.
It is an all-electron (AE) partial wave, constructed as the product of the radial wave function obtained
from an all-electron calculation of a free atom and a spherical harmonic function. |$l) represents the

pseudo (PS) partial wave, which corresponds to each AE partial wave. It is constructed such that:
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* Outside the . sphere, it smoothly connects to the radial wavefunction of |¢;).

+ Inside the 7. sphere, it is a smooth pseudo radial wavefunction that does not have nodes.
This pseudo wavefunction is appropriately designed to ensure computational efficiency while retaining the
necessary accuracy in electronic structure calculations. The final form is obtained by multiplying the pseudo
radial wavefunction with a spherical harmonic function. Projectors |p;) corresponding to each |¢;) also
takes the form of a radial function multiplied by the spherical harmonic function.

The accuracy and reliability of a series of plane-wave-based first-principles calculation methods,
including the NCPP, USPP, and PAW method, are fundamentally ensured by the treatment of valence
electron behavior inside and outside the cutoff radius 7. of atomic spheres, based on all-electron orbital
calculations of free atoms. Since the free atom calculation assumes a spherically symmetric potential, it
allows for variable separation, enabling the execution of one-dimensional radial equations with relative
ease. This systematic approach facilitates the construction of pseudopotentials, partial waves, and projectors,

ensuring high accuracy in practical electronic structure calculations.

1.4.4 Cut-off energy
By Fourier expanding the lattice periodic function ux,(r) in Equation (1.94), Equation (1.93)
becomes:
Ben(1) = €*T01y (1) = €*7 ) 13 (6)1T = N e (G 4O, (1.98)
G G
where u(G) is Fourier expanding coefficient. Equation (1.98) can be regarded as a plane-wave basis
expansion, where e'**®) " " represents the plane-wave basis and ux,(G) corresponds to the expansion
coefficients. The summation is taken over G, which changes while fixing k (restricted to the first
Brillouin zone).

On the other hand, under the Born—von Karman periodic boundary conditions, where the unit cell
repeats with periodicities Niai, Noaa, Nzaz along the directions of a1, a», a3, respectively, forming a
crystal volume ), the plane-wave basis normalized to a probability of 1 is considered:

k + G) = Q Zeitk+6)T, (1.99)
And then, the basis is
Bia() = Y P (@)K +6) = Y Cfiglk+ ), (1.100)
G G
where {Ci.c = Q"% ur(G)} is a eigen vector. In a plane-wave basis expansion, the reciprocal lattice
vector G starts from G' = 0, and the expansion includes all plane waves up to a certain cut-off energy

Ey:. This cut-off energy is defined as:

2

h
ﬁ|k+6|2 < Ecyo (1.101)

This corresponds to specifying the lower limit of the wavelength in the plane-wave basis. From this

41



condition, the total number of plane wave bases N¢ is determined. Ng dictates the computational load
(the size of the Hamiltonian matrix is Ng X Ng ). If the wave function has no nodes and is smooth (and
the pseudopotential is shallow and smooth), a smaller Ec suffices, thereby reducing Ng. Typically,

the shape of the pseudopotential for each element determines the value of Ecu:.

1.4.5 DFT+U method

In plane-wave basis sets, describing systems with localized spins, such as those involving magnetic
materials or strongly correlated electrons, is challenging due to the inherently delocalized nature of
the basis functions. To address this issue, hybrid-DFT, as discussed in Section 1.3.7, can be considered.
However, hybrid-DFT calculations may become impractical in terms of computational cost in certain
cases. As another approach for the calculation of open-shell systems, DFT+U method is frequently
employed [40-42]. This method introduces an on-site Coulomb interaction parameter U to account for
electron correlation effects that are inadequately described by standard DFT calculations. The total

energy based on the Hubbard model is given as follows:
Uu-]J )
Eior = Eppr + TZ(nw — Nig"), (1.102)

where Eprr represents the calculated energy by DFT methods, U is the on-site Coulomb repulsion, J
represents the exchange interaction, n is the atomic-orbital occupation number, i is the orbital
momentum and ¢ is a spin index. In the Hubbard model, the U term inherently includes exchange
interactions; therefore, it is common to set J = 0 . U is generally applied to strongly correlated d-
orbitals or f-orbitals. The combination of plane-wave basis sets and the DFT+U method allows for

efficient and accurate analysis of electronic structures in complex periodic systems.
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Chapter 2. Electron transport for single molecule

Electron transport in single molecule or molecular scale devices is different from that of silicon-
based devices with continuous energy levels, as single molecules possess discrete energy levels. Since
controlling the junction between molecules and electrodes in experiments remains challenging,
theoretical approaches are crucial for understanding conduction within molecules. This section
provides an overview of general quantum transport concepts and a method for calculation of electron

conduction in single molecule[43].

2.1 Quantum transport theory
2.1.1 Landauer formula
Let us consider a ballistic conductor with a single conduction channel. A ballistic conductor is
defined as a conductor whose length is shorter than the mean free path of electrons. Here, electron-
electron interactions and temperature effects are neglected. The model is depicted in Fig. 1.2.1. The
chemical potentials of the electrode 1 and electrode 2 are w1 and g2 (w1 > u2), respectively, with a
voltage V' = (1 — u2)/e applied between the electrodes. The conductor is assumed to be connected to
the electrodes via ideal leads (L1, L») that satisfy the following conditions:
1. The states in L are occupied only by electrons coming from the electrode 1, and the chemical
potential is z;.
2. The states in L, are occupied only by electrons coming from the electrode 2, and the chemical
potential is z.
3. Electrodes 1 and 2 are sufficiently large, ensuring that the current always maintains thermal
equilibrium.

Electrode1 Electrode2
L, I Conductor I L,

My )

'
|
' 1
'
'

M l—‘

'
|
! |
|
|
|

Ho

Fig. 1.2.1. A model of a ballistic conductor connected to two electrodes.

At 0 K, the current arises within the energy range between x; and g». The current I;* generated

by electrons flowing from L is given as follows:

_Ze

I = n (11 — pa]. 2.1)
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When the average probability of electrons transported from L; to Lz is T, then the outflow from L is

given by the inflow from L; multiplied by the transition probability T. Thus:

2e

I =5 Tl = ol (2.2)

And then, the remining electrons returns to L1, and it can be expressed as follows:

2
=22 Dl - kgl (2.3)

Therefore, the net current / and conductance g are given as follows:
2e
I= -1y =13 = — Tl — w2, (2.4)

=£=—I|e| =2_ez (2.5)
Vo (i — 1) h ™" ‘
If =1, the conductance g = 77.4 uS, which is referred to as the quantum conductance. This indicates
that the conductance of the ballistic conductor with a single conduction channel is 77.4 uS, and it
cannot exceed this value. In the Landauer model, the conductance depends on the interface between
the conductor and the electrodes, and the resistance is therefore referred to as contact resistance.
Consequently, the conductance expressed in Equation (2.5) represents the contact resistance. The

interface between the leads and the conductor depends on the transition probability T

2.1.2 Landauer formula at finite temperature

At finite temperature, the average number of electrons is obtained from the Fermi distribution,

1
fo(E—w) = PRI (2.6)

1+ exp (kB—T)
f(E — p) represents the probability that an energy state £ is occupied by an electron at an absolute
temperature 7. The Fermi distribution applies to indistinguishable particles in thermal equilibrium,
specifically, those that obey Pauli exclusion principle. Based on this, the electron inflow from lead 1

and lead 2 can be expressed as follows, respectively:

Ze
if () = -~ f1(E), 2.7)
Ze
i3 (B) = - fa(E). (2.8)
On the other hand, the electron outflow from lead 1 and lead 2 can be expressed as follows:
it () = (1 = 7)if (E) +T'i; (E), (2.9)
iy (E) =Tif (E) + (1 —T7")i; (E). (2.10)

Therefore, the current flowing through the device i(E) is given by

44



i(E) = if —if

=it i3
=Tit —T'i;
= 2T ©AE - T OLE) 2.11)
If T(E) = T'(E), the total current is written as
I= J i(E)dE, (2.12)
where
i(E) = 22T ), ~ (B e.13)

When the system is no longer in equilibrium, the applied bias voltage could change the two
transmission functions and make them unequal, so generally T'(E) # T'(E). However, if inelastic
scattering is assumed to be absent within the device, T(E) = T'(E) always holds for a two-terminal
devices.

When the deviation from equilibrium is small, the current is proportional to the applied bias voltage.

Equation (2.13) is given by

1 =22 [ (T ENegdUfy — £ + [ = Fleg8IT () @14

Since f1(E) = f2(E) at equilibrium state, the second term is zero. The first term is written by using the

Taylor expansion,

of
Ol — £l = i — o) (55
K eq
of
- (_ a_bf’> [ — 1] (2.15)
Thus, the linear response formula at finite temperature is obtained
=—° &I
g (1 — H2)

2e? af,

-7 7@ (-7)
2

= - ) 2.16

ror | 7E K@~ foENaE 2.16)

2.1.3 Multi-channel case
The Landauer model quantizes the conductance of a one-dimensional conductor, where the

conductance of a ballistic conductor with a single conduction channel is given by g = 77.4 uS. When
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multiple conduction channels are present, the sum of the transition probabilities for each channel is

expressed as the total transition probability,
2e?
g ZTZTi,j' (2.17)
Lj

where J; ; represents the transition probability of the transmission from channel i to .
In each channel, incoming and outgoing waves are moving. Let us consider a system where two

conduction channels, 1 and 2, are connected as illustrated in Fig. [.2.2.

1 1
2 2
3 3

\.—n

Fig. 1.2.2. The model of multi-channel system.

The wavefunctions in channels 1 and 2 are represented by the following plane waves:
P, = a;e®* + b ek, (2.18)
P, = a,e™* + betr*, (2.19)
For simplicity, the same £ is used for channels 1 and 2, however, it is generally different. From the
Schrodinger equation, there is a linear relationship between the amplitudes of the incoming wave
(a1,a2) and outgoing wave (b1,b2). Thus,
by =ra, +t'a,, (2.20)
b, =ta, +1'a,, (2.21)
where (7,f) is the left side of the matrix of the reflection coefficient, and (#',¢') is the right side of the
matrix of the transmission coefficient. Equation (2.20) and (2.21) are rewritten as following:

b=sa s=(" ﬁ) (2.22)

The unitary matrix § is called S-matrix. The S-matrix is often used in order to calculate T;; in
Equation (2.17). At each energy, a coherent conductor is characterized by the S-matrix that relates the
amplitudes of the outgoing waves to the incoming waves in different leads.

To generalize the above concept, one coherent conductor and count all the channels through which
electrons can move id considered. The transition probability T;,., is obtained by taking the square

of the corresponding element of the S-matrix.
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Then = |Sm<—n|2 (2.23)
The arrow in the subscript is introduced to indicate the direction of transition, from the second

subscript to the first.

2.1.4 Current density
The Landauer formula is the method that calculates the conductance or current between the
electrodes and conductor. In this section, the author derives the Landauer formula from a different
approach. In an equilibrium state without an applied bias voltage, the current does not flow because
the amplitudes of the waves traveling in the left and right directions are equal. When the voltage
difference is applied between the left and right electrodes, current begins to flow. The general problem
is shown in Fig. 1.2.3 for a tunneling barrier. Considering that a real device is three-dimensional system,
assuming that the flowing direction of the tunneling current is z-direction, and split of z-direction into
perpendicular direction against it. When the electron transport in z-direction is treated as the tunneling
process, the transport in perpendicular direction does not affect the tunneling process because it is
regarded as free-electron movement. The energy of z-direction is written as
S
2m 2m

+ constant, (2.24)

where k. and k- are the z-components of the wave vector for a region of the left and right side of the
barrier, respectively. The constant depends on the applied voltage and takes negative value when the
potential of the right electrode is positive. The derivative of Equation (2.24) corresponds to the velosity,

1 dE,

v (ki) = 37— K (2.25)
z
1 dE

vz(krz) = Edk . (2.26)
rz

e
Eg EE——)
eV

Fig. 1.2.3. Band diagram for the tunneling barrier under the bias voltage
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The current through the barrier depends on the tunneling probability and the number of electrons
contributing to the tunneling. Therefore, the current density flowing from the left to right is

2

Jin =€ j DA, (k)T (k) (BN, D) = s (2.27)

f(EL) is the Fermi distribution function on the left side of the barrier, D(k) is the density of state in k-

space, and T (k) is the transition probability. Similarly, the current density from the right to left is

Jrr = eJD(k) v, (kyy )T (k) f (ER)d3 k. (2.28)

If the energy of the left side electrode is equal to that of the right side electrode, the transition
probability on the left side becomes equal to that on the right side, resulting T'(ki:) = T (k). From
Equation (2.27) and (2.28),

J=e j D) v, (k)T (e ) (Ep) — f(E)1dk

- j DK v, (k)T (e (E,) — f(E, + eV)]d k. (2.29)

In order to simplify, the energy of the left barrier can be divided into the energy in the z-direction

E: and the energy in the perpendicular direction £1, then:

E=E,+E|, (2.30)
d3k = d*k, dk,. (2.31)
Here, the differential dk. can be rewritten as the derivative of the z-direction energy E.,
dE\"' dE
= —_— 2.32
& (dkz> dE, dE,, (232)
dE  h%k,
= = hv,. 2.33
dkz m th ( )
Also,
dzkl = Zﬂkldkl
2mm
_ ( - )d E,, (2.34)
where
m
kldkl ﬁ dEJ_

Therefore, Equation (2.29) can be rewritten as follows:

oo [oe]

_Amem (5, dE, J [f(E, + E,) — f(E, + E, + V)] dE,
0

-~ (2m)3h ),
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EL—E,

emkgT 1+ e ksT
= WJO T(E,)In Trev E, dE,, (2.35)
1+e kst

where E. is the Fermi energy on the left side, and the logarithmic term is called the supply function.

2.2 Single-molecule electron conductivity using elastic scattering Green's function method

The electrical conductivity of single molecules is evaluated not only through experimental
measurements but also through theoretical calculations. Two primary calculation methods are used:
the elastic scattering Green’s function (ESGF) method [44] and the non-equilibrium Green’s function
(NEGF) method [45]. By combining these methods with Hartree-Fock or DFT calculations, it becomes
possible to predict the conductivity of single molecules based on the quantum chemical calculations.

This section discusses the theory behind conductivity calculations based on the ESGF method.

2.2.1 Scattering theory[46]

Electric current is generated by the movement of electrons, and describing it requires addressing
the scattering of particles. Scattering processes can be broadly classified into two categories: those in
which energy is conserved before and after scattering, and those in which energy loss occurs. The
former is referred to as elastic scattering, while the latter is called inelastic scattering. In the following
discussion, the author focuses on elastic scattering. In scattering theory, the Schrodinger equation is
replaced with the Lippmann-Schwinger equation as follows, and the discussion is developed based on
this formulation.

) = 19) + G Vi), (2.36)
where [1p%) and |¢) represent the scattered state and incident state, respectively, V is the
interaction with the scatterer, and G§ is the Green's function without the interaction. By defining the
transition operator T as the operator that connects the incident state and scattered state, the following

equation can be obtained

TI¢) = VIp*). (2.37)
By using the transition operator T, Equation (2.36) can be rewritten as
W) = 1¢) + G5 T|9), (2.38)
and then, the transition operator T can be represented by Equation (2.37) and (2.38) as follows:
T=V+VGT. (2.39)

Expanding Equation (2.39) sequentially, it becomes the following equation
T =0+ 0GED + DGEDGCED + - (2.40)
By applying the Born approximation and neglecting higher-order terms, the following result can be

obtained

~
Il
<>
+
<?
(o))
S
<>

(2.41)
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From Equation (2.41), in the scattering theory, the transition operator can be obtained by the

interaction with the scatterer and the Green’s function.

2.2.2 Formulation of electron conductivity by using ESGF method

The single-molecule electron conductivity can be considered based on the molecular orbitals. At
first, Mujica et al. formularized the single-molecule electron conductivity evaluation method based on
the elastic scattering method [47-49]. Luo et al. improved the method to a simple model by using the
(1) overlap matrix elements, (2) the anchor atoms connected to the electrodes and (3) the probabilities
that the electron is present at the anchor atoms in LUMO[44,50,51].

First, the Hamiltonian of the system H is defined as follows,

Hy = ) ) Elap)a|
o=t «
= Z Z Egs CagiCaos N1, (2.43)
o=t «a
= ) ES lighiol, a4
o=+ i
Hp = Z Z EQ oMol (2.45)
o=t j
U= 3 VuolioXtl+ Y violighI] | + complex conjugate, (246)
o=+ I i j

where Hyr, Hrr) represent the Hamiltonians of the molecule and the left (right) electrode, respectively;
U is the interaction potential between the molecule and the electrodes; and yis » is the interaction
between the /-th site of the molecule and the i-th orbital of the electrodes with spin ¢ (= o or B).
In the ESGF method, the transition operator is defined as follows,
T =U+UGU. (2.47)

G is the Green's function,

G = (2.48)

where z is a complex variable. Assuming that the electrodes only interact directly with the end-sites,

(site 1 and M) of the molecule (see Fig. 1.2.4), the transition matrix element can be written as

Tiio = YivoGimyYnjor (2.49)
1
Gy = Y (1] 7277 ]07) (02 1m)
n
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=y {loeRo|M)

~ z—¢)
1|¢g )¢ |M
'-2< |Z>_<§n| >. (2.50)
n g

where ¢, is the eigenstate of the total Hamiltonian H, i.e. H |¢;’) =g |q.')g) Here, the end-sites are
defined as the terminal atoms connected to the electrodes, the eigenstate 7 that overlaps with end-sites
only contributes to the matrix elements in the Green's function . Therefore, |¢)Z> can be approximated

by orbitals obtained from the Kohn-Sham equation for the finite systems consisting of the molecule
sandwiched the electrodes (H |¢2) = &) |¢)Z)) [44].

Left Right
electrode ‘ O O e O ‘ electrode

L 11) 12) 13) |M — 1) |M) R

Fig. 1.2.4. Model of the finite system consisting of the molecule sandwiched the electrodes.

This model is referred to as the extended molecule.

In the linear response theory, a static carrier conduction i“* of the system that are applied the bias

voltage Vp by right and left electrodes is given as

1 emkgT (© . 2
.LR — B
6" =5 ) 5273 L V[,lT”(E)lﬂ fo(E)dE, (2.51)
n
_ Eps +eVp — E>] [ (EF,(, - E)]}
fo(E) = {ln [1 + exp ( kT In|1+ exp kT , (2.52)

where T is the temperature of the system and f+(E) represents the Fermi distribution. Eris the Fermi
energy that is defined as the intermediate value between the orbital energies of the HOMO and LUMO
of the extended molecule. Assuming that the interactions between the different scattering channels are
negligible because the spacing between the molecular orbitals is large enough, then the transition
probability is written as

I 1l¢g | |<¢UIM>I

17, @) —ymymaz . (2.53)

where 1;720. denote the spin-depend escape rate determined by the Fermi's golden rule,

ro= Viro{1|®a) + Yuro(da|M) (2.54)
no — 2 ) ’

(1|¢>2) and (¢}} |M ) represent the site-orbital overlap matrix elements between the end-sites and the
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extended molecule. The product of the two site-orbital overlap matrixes, |(1|¢2)|2|<q’>2 |M )|2 ,
represents delocalization of the molecular orbitals of the extended molecule, which is called site-
overlap.

s called the coupling constant between the molecule and electrodes. Luo et al. proposed that the
occupied molecular orbitals of the electrodes interact with the LUMO of the bare molecule without

electrodes based on the frontier orbital theory[44,50]. Therefore, the coupling constant y between the

left electrode and site 1 of the molecule with subscripts L and 1 is written as

Y11,6(LUMO) =V, ,(LUMO)d, ,(LUMO), (2.55)
VLZJ(LUMO) — (AEO',HOMO—LUMO _ZAEU,LUMO)AEJ,LUMO‘ (2.56)
2
d?,,(LUMO) = % (2.57)
al*a,i,oc

where Vi, -(LUMO) is the interaction between the HOMO of the electrodes and the LUMO of the
bare molecule, and AEsrumo is the energy difference between them. AEsnomo-Lumo is the HOMO-
LUMO gap of the extended molecule and di, (LUMO) is the ratio of the ratio of the electron density
at end-site 1 to that of the entire molecule. In other words, V', -(LUMO) is the strength of the junction
between the molecule and electrodes, and di,(LUMO) express the degree of transmission from the
electrode to the molecule. Therefore, y.1,o(LUMO) represents the coupling strength of the junction
between the left electrode and site 1, and determines the electron conductivity derived from the
electron transfer between them. Equations (2.55)-(2.57) also hold between the end-site M and the right
electrode with subscripts M and R.

In the systems where the LUMO of the molecules is non-degenerate, Equations (2.55)-(2.57) can
be applied; however, these equations cannot be applied to systems where the LUMO of the molecules
is degenerate. Nakanishi et al. extended the method to the degenerated or quasi-degenerated systems
by using the Boltzmann distribution[52]. Assuming that Equation (2.56) does not change in the
degenerated systems, Equations (2.55)-(2.57) can be written as follows:

Yire = Viedie, (2.58)
Vo = V. (LUMO), (2.59)

d2 = Y expl—(Evumo+k — ELumo)/RT] dLymosk
1,0 —
Yk exp[—(ELumo+k — ELumo)/RT]

— Zk Bk dLUMO+k
Zk Bk '

where k is the number of orbitals degenerate with the LUMO, and By is the Boltzmann distribution. If
k=0, Equations (2.58)-(2.60) are equivalent to Equations (2.55)-(2.57).

(2.60)

The total current density /*% is finally calculated as 4i“®, where 4 is the effective injection area of

the electron transmitted from the electrodes. 4 can be approximated that nr,2, where r, = [3/(4mn)]"?
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is defined as the radius of a sphere with the same volume as an electron. Also, » is the density of the

electron, which is assumed in the three-dimensional free-electron model [50] as:

3
_ (2mEg,)?

=T Een
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Chapter 3. Estimation of molecular magnetism and correction of spin contamination

In systems with open-shell electronic states, such as strongly correlated systems, magnetism arises
from the interactions between localized spins. By estimating these magnetic interactions, it becomes
possible to predict stable spin states. Calculation methods for open-shell electronic states, such as UHF
and UDFT-based Broken-Symmetry (BS) methods, are commonly used; however, it is known that BS
methods introduce errors referred to as spin contamination [1]. This section explains calculation
methods for magnetic interactions corrected for spin contamination, namely the Yamaguchi method
and the approximate spin projection method. Additionally, a method for optimizing molecular
structures while correcting spin contamination using the approximate spin projection method is

discussed [29].

3.1 Approximate spin projection method

In systems such as open-shell biradical molecules, a possibility of the different spin coupling states
must be considered. In the case of biradical systems, the energy gap between the singlet (BS) and
triplet states must be considered. Usually, the energy gap between those states can be discussed by
using the effective exchange integrals (Jz5) in the Heisenberg Hamiltonian [54,55]. For example, the
Heisenberg Hamiltonian for two spin-site system is

H= —Zfabfa 'gb» (3.1)

where J is the effective exchange integral between the localized spin site @ and b, and fa(b) is the
total spin operator at site a(b). When considering two spins coupled in antiferromagnetic (AFM, also
referred to as spin-polarized low spin (LS) state, which in this model is represented as a BS singlet)
and ferromagnetic (FM, or high spin (HS) state, represented as a triplet) interactions, the total spin
operator can be expressed as the sum of the spin operators at each spin site. In this case, Equation (3.1)

is:

A=-2,(-82+8,+8,9). (3.2)

Thus, the energies in the Heisenberg model for singlet and triplet states are as follows
Esinglet =]ab (_(§2>singlet + (§a2>singlet + (§b2>singlet)’ (3‘3)
Etriplet — ]ab (_(§2>triplet + (§a2>triplet + (§b2>triplet). (3‘4)

If the magnitude of the spin at each spin site remains the same for both the singlet and triplet states,
the total spin interaction energy can be expressed as
Esinglet _ Etriplet — ] b((’SvZ)triplet _ (§2>singlet) (3 5)
@ . .
Therefore,

Esinglet _ Etriplet

Jar = (§2)triplet _ (§2)singlet’ (3-5)

By generalizing to arbitrary ferromagnetic coupling states (HS) and antiferromagnetic coupling states

(LS), the energy expressions can be described as follows
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__ER—-E
E = R

where Ess and E'S represent the total energy of the LS and HS states calculated by the BS method.

Jab (3.6)

This is referred to as the effective exchange integral (J) value calculated by the approximate spin
projection (AP) method. The denominator in the formula for the effective exchange integral is always
positive, and considering that the molecule’s energy corresponds to the energy difference between the
HS state and the LS state, the energy takes a negative value. Therefore, if Ju» <0, the LS states is more
stable than the HS states; if J,» > 0, the HS states is more stable than LS states. The electronic structures
with localized spins are often calculated by using the BS method. This method can approximate the
spin-polarized electronic structures of the open-shell systems at low cost of calculations, however it
has a problem called the spin contamination error. The spin contamination is an error that the electronic
structure of the lower spin multiplicity (such as the LS state) is contaminated by the electronic states
of higher spin multiplicity (such as the HS state) [1]. The spin contamination error is usually not
negligible in the systems with larger spin-polarization. Equation (3.6) is called Yamaguchi's approach
to calculate J,, values with the AP procedure [56-37].

To apply the Yamaguchi equation to the results of the plane-wave calculations, it is necessary to
determine the total spin angular momentum ($2)¥ (Y means the spin states and Y = LS or HS) in the
context of the plane-wave calculations. Wang et al. proposed that (§%)¥ can be estimated using the

electron density [59],

(§2>Y = (§2>zxact —py (1), (3.7)
—rn _ 1oy ® () = pyP () when py®(r) < pyf (r)
py (r) = { Y 0 Y when py@(r) = peP (1)’ (3.8)

where py®(r) and py# (r) are the density of the up and down spins for the spin states Y, respectively.

By substituting (§%)Y defined in Equations (3.7) and (3.8) into Yamaguchi equation (3.6), the

effective exchange integrals J,» in plane-wave calculations can be obtained. For a system where two

spins are coupled (LS = singlet, HS = triplet), J, is given as follows,
ELS _ EHS

T2+ J pLs™(r)dr — [ pus™(r)dr’

Jab (3.9)

3.2 Geometry optimization with AP method
Jab value calculated by Equation (3.6) should be equal to J., value calculated by the spin-projected

wavefunctions because the spin contamination error (J,,(5?)53) is approximately eliminated, i.e.

Jo= E§S —Ep  EXpes — Ehpes (3.10)
b =73 < -3 < ’ :
B e T N L b X e

where Espss and Ejpss are the total energy of the LS and the HS state with the AP procedure,

respectively. In the HS state, the spin contamination is usually negligible, therefore,
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(SZ>HS = (Sz>exact: EgSS = EAPBS' (311)
The spin-projected energy Expss is then written as

EleDBS = aEBS :BEBS' (3.12)

where

— (§2>HS <52>exact

(§2)HS <52>LS ’ (3.13)
(SHLS — (S8,

b= gy : (3.14)

B=a-1. (3.15)

To perform the geometry optimization by using the AP method, an energy gradient of Expps is

required [60,61]. Taylor expansion of Equation (3.12) is written as

1
Exdps(Ripes) = Expps(R) + X" Gipps(R) + = XTFAPBS(R)X' (3.16)

where Gf;iBS(R) and F{;iBs(R) are a gradient and a hessian of E];iBS(R), respectively. R:5ss and R are a

stationary point of and a present position, respectively, and X = Ripss — R is a position vector.

Gios(R) =0 at the stationary point Ripgs, therefore Ripss can be obtained if Gipss(R) can be calculated.
From Equation (3.12), G ares(R) can be written as

OExpes(R)
APBS (R) T

da(R
= @G M ~ FRIGE R + 2D (B ) — BB ) a7

where Gipss(R) is the energy gradient calculated by the BS method for the spin state Y (Y: LS or HS).
(§?)H3 is usually constant because the spin contamination of the HS state is negligible, so da(R)/dR

is written as follows from Equation (3.13)

da(R)  (§%)53 — (§%)eRace 0(5?)5s
R (E5-GR)° R
0(S%)L3/0R can be obtained from a numerical fitting [60] and the AP optimization is carried out by
Equation (3.17) and (3.18).

(3.18)

The spin-projected hessian Fipss(R) can be used to estimate the spin contamination in IR spectra.

Fious(R) is written as

azE'APBS (R)
Fi3ps(R) = Rz
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da(R)
R

= {a(R)FE(R) — B(R)FES(R)} + 2 {GEX(R) — GHS(R)}

(3.19)

d%a(R
;ﬁ,ﬁ (e - B R)

+

where FXPBS(R) is the hessian calculated by the BS method for the spin state Y (Y: LS or HS). We can
obtain the IR spectra by diagonalizing Fipss(R).

Although da(R)/0R isnecessary to calculate the AP gradient by Equation (3.17), most ab initio
programs don't give us da(R)/dR value. For this issue, we used a numerical procedure based on the

univariate method introduced by Kitagawa et al. [60,61].
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Part 11

Relationship between open-shell electronic
state and single-molecule electron

conductivity
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1. Introduction

To establish design guidelines for single-molecule components utilizing the open-shell electronic
states, the selection of target molecular systems is crucial. In this study, the author focused on d-n
conjugated compounds. In the molecular electronics, m-conjugated organic molecules are the first
promising candidates for the single-molecule components/devices, because their delocalization of -
orbitals exhibit high electron conductivity. Various single-molecule components utilizing n-
conjugated organic molecules have been reported to date [1-11]. In addition, d-m conjugated
compounds, consist of organic ligands and metal ions, have also attracted attention as another
candidate molecules [12-14]. They can exhibit both the high electron conductivity through the -
orbitals of the organic ligands and various functionalities due to the localized electrons in d-orbitals
of the metal ions. Extended metal atom chains (EMACs) are one of the d-n conjugated compounds
that involve the linearly aligned transition metal ions surrounded by the organic bridging ligands [15].
The EMACs are considered suitable for application as molecular wires because their one-
dimensionally aligned metal ions resemble the structure of metal leads [16,17].

As describes in General Introduction, a development of the theoretical calculations for the strongly
correlated systems have clarified the electronic structures of the d-n conjugated compounds [18-26].
For example, the DFT and multi-reference (MR) calculations have revealed the nature of the metal-
metal bonds [18,21,24,25]. Additionally, the electron transportation in the EMACs have also been
simulated based on the Green’s function method, such as ESGF and NEGF methods [22-26]. It has
been reported that the electron conductivities depend on their structures and electronic states [23].

From the viewpoint of the single-molecule components/devices, a relationship between the
electronic/spin structure, magnetic property and electron conductivity of nickel EMACs has also
examined based on the DFT and the ESGF methods [24-26]. The nickel EMACs have two types of
nickel(Il) ions i.e. terminal (high spin, S = 1) and inner (low spin, S = 0) ions, where S represents the
magnitude of spins of the Ni(Il) ion, and a difference in the electron conductivity by their spin coupling
states between the terminal Ni(Il) ions i.e. anti-ferromagnetic (AFM) and ferromagnetic (FM)
coupling states was reported [24]. In addition, the FM state exhibited higher conductivity than the
AFM state [25,26].

To further discuss the relationship, the author has focused on paddlewheel-type dinuclear complexes,
whose structures are considered the smallest units of EMACs. Up to now, a lot of functional
paddlewheel-type dinuclear complexes such as redox activity, optical property and electron
conductivity have been reported [27-31]. Additionally, paddlewheel-type dichromium tetraacetate
complexes have been reported to possess unique spin-polarized quadruple metal-metal bonds
consisting of s-, p- and d-orbitals, and their electronic structures have been theoretically examined
using the generalized valence bond (GVB) and MR methods [32-34]. Kitagawa et al. conducted a

detailed study on a relationship between the molecular structure, electronic structure and effective
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exchange integrals (J) of the dichromium tetraacetate complexes using the BS and AP methods (see
the details in Part I, Chapter 3) [35]. The results indicated that the dichromium complexes have a
ground state with a spin-polarized open-shell singlet electronic structure [36], which is preferable for
the single-molecule transistors using the spin states. In addition, it was found that the BS method is a
powerful tool for calculating J values and molecular structures of these complexes when the spin
contamination error is corrected by the AP method [36,37].

In this study, therefore, the author investigated the electron conductivity of the paddlewheel-type
dichromium(ILII) tetrabenzoate complex shown in Fig. II.1 using the BS-DFT with the AP method
and ESGF method, whose detail was explained in Part I, Chapter 2. In addition, the author introduced
substituents, such as electron-donating/withdrawing groups, into the bridging ligands (R in Fig.
II.1(a)), and compared the electron conductivities between the AFM and FM states, as shown in Fig.
I1.1(b) to elucidate the relationship between the electronic structure, spin state and single-molecule

electron conductivity in detail.
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Fig. 11.1. (a) Model structure of the paddlewheel-type dichromium(IL,II) tetrabenzoate complex.
R represents the positions where the substituents are introduced. (b) Electron configuration of d-
orbitals of two Cr(II) ions for the anti-ferromagnetic (AFM) and ferromagnetic (FM) states. In these
complexes, the AFM state corresponds to an open-shell singlet state formed by the d-orbitals of the
chromium ions, while the FM state corresponds to a nonet state. In the figure, the upward and

downward arrows represent o-spin and [3-spin, respectively.

2. Computational Details

The dichromium(ILII) tetrabenzoate pyrazine complex was used as the basic framework, and
several substituents were introduced into the benzoate ligands to examined the substitution effect. As
electron-donating groups, OH and CHs, and as electron-withdrawing groups, F, CN, and NO: were

introduced into the R-parts of Fig. II.1(a) to compare with the non-substituted (R=H, abbreviated as
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NS) complex. Hereafter, the complexes with substituents X are referred to as R(X). The structures of
these complexes were based on the dichromium tetraacetate pyrazine complex [40].

The structures of the complexes in the AFM state were first optimized by B3LYP/6-31G* level of
theory [41-43]. Since these complexes have the open-shell properties, the BS-DFT calculation was
used to include the static electron correlation. To eliminate the spin contamination error in the BS-
DEFT results, the geometry of the Cr(Il) ions was only reoptimized by the AP-optimization explained
in Part I, Chapter 3.

The anchor nitrogen atoms of the axial pyrazine ligands were designed to bind to the on-top site of
the Au(111) surface, as the nitrogen atoms are known to bind to the on-top sites of Au(111) [44,45].
To reduce the computational cost, the electrodes were approximated as gold dimers as shown in Fig.
11.2, which reproduce the Fermi energy of the bulk gold [24].

On the complexes plus gold dimers (extended molecule), the electronic structure calculations were
performed by BS-B3LYP/LANL2DZ [46](Au), 6-31G* (other atoms) level of theory for both the
AFM and FM states. For all models, the total charge was neutral, and the spin multiplicities of the
AFM and FM states were singlet and nonet, respectively.

The electron conductivity was calculated by the ESGF method, explained in Part I, Chapter 2, using
the DFT calculation results. Assuming that the temperature was 300 K. The molecular orbitals
contributing to the electron transition were considered within the range from LUMO+9 to HOMO-9.
All DFT calculations were performed in the gas phase using Gaussian 09 Rev. D01 [47] and the

electron conductivity was simulated using our self-developed program.

J
L)

. J
‘; ;;;‘J‘{se/&
9

Fig. 11.2. llustration of the extended molecules of the NS complex. The labels 1 and M represent the
end-sites of the complex, and L and R are the left and right electrodes, respectively. The Au-N
distance and Au-Au distance were fixed to 2.30 A and 2.88 A, respectively [38,39].
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3. Results and Discussion
3.1 Effect of substituents on the structure and electron conductivity of the complex in the AFM state
First, the author investigated the electron conductivity in the AFM state. Fig. I1.3 shows a
relationship between the calculated current values at 1.0 V (Japm) and the optimized Cr(II)-Cr(II)
distances of the complexes. As shown in Fig. I1.3, when the electron-donating groups (-OH and -CH3)
are introduced, the Cr(I1I)-Cr(II) distance becomes shorter and the electron conductivity of the complex
becomes higher. On the other hand, in the case of introducing the electron-withdrawing groups (-F, -
CN and -NO»), the distance between Cr(II) ions is elongated and the electron conductivity becomes

lower.

35

N ]
&] o
)

o
o
<

Ihewat1.0 V/nA
o
=

-
o

5 R(CN)
© Rnvo,)
O

2.42 2.43 2.44 2.45 2.46
Cr-Cr distance / A

Fig. I1.3. Calculated current values at 1.0 V versus the Cr(II)-Cr(Il) distance of the optimized
complexes in the AFM states. The red, blue and black markers represent the complexes with the

electron-donating groups, electron-withdrawing groups and NS form, respectively.

Iarm without the AP-optimization are shown in Fig. 1.4, and significant changes were observed in
the electron conductivities due to the Cr(I1I)-Cr(Il) distances, suggesting the importance of eliminating
the spin contamination error for the electron conductivity calculations in these systems. The optimized
Cr(I)-Cr(IT) distances, summarized in Table II.1, are slightly longer than the experimental results of
the related complexes. The elongation can be attributed to the absence of packing effects in the crystal
structure. It has been reported that the AP-B3LYP method reproduces the experimental Cr(1I)-Cr(II)
distance of paddlewheel-type dichromium(ILII) tetraacetate complexes well when the ligands are
fixed to the X-ray structure [48,49]. In this study, however, the entire structure of the model complexes

was fully optimized using the BS method in the gas phase, without considering crystal packing effects,
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followed by the partial optimization of the Cr(II) ions. As a result, the molecular sizes were expanded.
Indeed, the optimized axial molecular lengths, defined as the distance between the end-sites 1 and M

(see Fig. 11.2), are longer than the experimental values, as summarized in Table. I1.2.
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Fig. 11.4. Calculated current values at 1.0 V versus the distance between the dichromium ions of the
complexes without the AP-optimization in the AFM states. The red circle markers, the blue circle
markers and the black diamond-shaped marker represent electron-donating groups, -withdrawing

groups and NS form, respectively.

Table I1.1. Cr-Cr distances optimized by BS- and AP-B3LYP methods. Experimental Cr-Cr
distances of related complexes; Cr2(O2CCH3)4(pyridine): (1) and Cro(O2.CCHzs)4(pyrazine), (2) are

also summarized in the table from reference, respectively.

Cr-Cr distance / A
BS-B3LYP AP-B3LYP

R(OH) 2.505 2.425

R(CH:) 2.506 2.426

NS 2.509 2.429

R(F) 2512 2.433

R(CN) 2.529 2.451

R(NO») 2.532 2.455
Complex 1 [40] 2.369
Complex 2 [40] 2.295
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Table I1.2. Axial molecular length of each complex, defined as the distance between the terminal
atoms 1 and M, as shown in Fig. I1.2. Since the AP-optimization was performed only for the Cr
atoms, these lengths remain unchanged before and after the AP-optimization. Experimental distances
of related complexes; Cro(O2CCH3)4(pyridine), (1) and Cro(O.CCHs)a(pyrazine); (2) are also

summarized in the table from reference, respectively.

Axial molecular length / A

R(OH) 12.802
R(CH3) 12.784

NS 12.786

R(F) 12.790
R(CN) 12.797
R(NOy) 12.798
Complex 1 [40] 12.545
Complex 2 [40] 12.474

As shown in Fig.I1.1, the AFM state in these paddlewheel-type dichromium complexes corresponds
to the open-shell singlet state formed by the d-orbitals of the chromium ions. Therefore, spin
polarization occurs, where the o electrons and 3 electrons exhibit different spatial distributions. The
spin polarization increases as the open-shell property becomes larger, that is, as the bond distance
increases. Consequently, when the electron-donating group is substituted, the spin polarization is
smaller than that of the NS form, whereas when the electron-withdrawing group is substituted, the
spin polarization becomes larger. Summarizing these trends, they are illustrated in Fig. 1.5 and
explained that:

I. When the electron-donating group is introduced into the paddlewheel-type dichromium complex,
the electron density within the Cr-Cr bond increases, leading to the shorter Cr-Cr distance and
reduced the spin polarization. Consequently, the orbital overlaps between the chromium ions, i.e.,
within the molecule, becomes larger. As a result, based on the electron transmission probability
equation, the electron conductivity increases.

II. When the electron-withdrawing group is introduced into the complex, the electron density within
the Cr-Cr bond decreases, leading to the elongated Cr-Cr distance and increased the spin
polarization. Consequently, the orbital overlaps between the chromium ions, i.e., within the

molecule, becomes smaller. As a result, the electron conductivity decreases.
In the transition probability equation, the orbital overlaps within the molecule are represented as the

site-overlaps. The calculated site-overlaps were analyzed, revealing that they are almost zero except

for the LUMO and LUMO+1. Therefore, these two molecular orbitals are considered the primary
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contributors to the electron conductivity of these complexes. The site-overlaps of the LUMO and
LUMO+1 are summarized in Table I1.3. The results align with the aforementioned trends and indicate
that the electron-donating groups increase the site-overlaps, whereas these parameters decrease when
the electron-withdrawing groups are introduced. From the above, it has been revealed that the electron

conductivity of the paddlewheel-type dichromium complexes can be controlled by the substituents.

Electron-donating groups R(OH), R(CHj) NS form R(H) Electron-withdrawing groups R(F), R(CN), R(NO,)
IIEDG H EWG

® Q)
Increasing electron density f Decreasing electron density
0" o

o™
—Cr—Cr— —Cr—Cr—

@) (o) (o) (e (er) (o)
B3e 36 e
OO ode'e) CEo

Fig. IL.5. Effect of the substituents on the Cr-Cr bond. EDG and EWG mean Electron-Donating
Group and Electron-Withdrawing Group, respectively. In addition to the - and c-orbitals shown in

the figure, similar spin polarization occurs in another m-orbital and the 5-orbital.

Table 11.3. The site-overlaps of the LUMO and LUMO+1 in the AFM states. The small difference

between o and B orbital is considered to originate in a slight asymmetry of the optimized structures.

Site-overlap

LUMO LUMO+1

o 0.0085 0.0084
R(OH)
B 0.0069 0.0069
o 0.0071 0.0071
R(CHa)
B 0.0076 0.0076
a 0.0070 0.0070
NS
B 0.0069 0.0069
a 0.0068 0.0068
R(F)
B 0.0066 0.0066
o 0.0054 0.0054
R(CN)
B 0.0055 0.0055
o 0.0051 0.0051
R(NOy)
B 0.0051 0.0051
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3.2 Difference in electron conductivity between the AFM and FM states

To consider the effect of changes in the spin state on the electron conductivity, the current in the
magnetically excited (FM) states are also calculated for the model complexes. Here, the author only
discussed the FM state which is the highest spin state as illustrated in Fig.II.1 (b). Considering the
vertical excitation by an external field, the structure was fixed to the optimized structure in the AFM
state. Fig. 1.6 shows the calculated current values at 1.0 V in the FM state (/rm) plotted against the
Cr-Cr distance. The results indicate that the FM state exhibits much higher conductivity than the AFM
state; however, changes in the electron conductivity due to substituents show almost the same trend as
in the AFM state. Table I1.4 shows the current ratio for the AFM and FM states before and after AP-
optimization, Iy, ap/ly, non-ap (Y = AFM or FM). From Fig. 11.3, 1.4, 1.6, and Table 11.4, the current
value increases by approximately 1.3 to 1.6 times in the AFM state due to AP-optimization, whereas
it remains almost unchanged in the FM state. This trend corresponds to the fact that the spin

contamination significantly affects the low-spin state, while it has little impact on the high-spin state.

(a) 1200 - (b) 1200 .
R(CHy)
AAS R(CHs)
1000 + Rony O 1000 | VARV
NS JAY [m]
A R(OH) R(F)
< R(F) < A
= 800 + = 800 +
~ ~
> >
S 600 | R(CN) S 600 } R(CN)
© ©
s s
L 400 R(l\gjz) - 400 ¢ H(NAOQ)
200 + 200 +
O L 1 L ) o 1 L L
2.42 2.43 2.44 2545 2.46 2.50 2.51 2.52 . 2.53
Cr-Cr distance / A Cr-Cr distance / A

Fig. I1.6. Calculated current values /rm at 1.0 V in the FM states versus the distance between the
dichromium ions of each complex (a) with AP-optimization and (b) without AP-optimization.
The red triangle markers, the blue triangle markers and the black square marker represent electron-

donating groups, -withdrawing groups and NS form, respectively.
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Table I1.4. Calculated current ratio before and after AP-optimization (/v, ap/ Iy, non-ap), Where the

subscript Y indicates the spin state (Y = AFM or FM).

Iy, ap / Iy, non-AP

AFM FM

R(OH) 1.35 1.07
R(CH3) 1.38 1.06
NS 1.39 1.06
R(F) 1.40 1.06
R(CN) 1.43 1.04
R(NO,) 1.59 1.04

The change in the electron conductivity between the AFM and FM states can be explained by the
orbital correlation diagram and the spin polarization shown in Fig. I11.7. In the AFM state, the spin
polarization between a and 3 electrons leads to the uneven electron distribution. On the other hand,
in the FM state, electrons are arranged in antibonding orbitals, resulting in the absence of spin
polarization, and consequently, a more delocalized electron distribution. This delocalization facilitates
the electron transport between the electrodes through the molecule, thereby increasing the electron
conductivity. Table II.5 summarizes the site-overlaps of the LUMO and LUMO+1 in the FM states,
which predominantly contribute to the electron conduction, as in the AFM states. From Table 11.1 and
I1.5, comparing the calculated parameters related to the transition probability, the site-overlaps are
significantly larger in the FM states than that in the AFM states. In addition, as illustrated in Fig. 118,
the FM states exhibit the delocalized electronic structures in both the LUMO and LUMO+1, whereas
the AFM states exhibit the spin-polarized electronic structures. Thus, it has been clarified that in the

FM state, the expanded distribution enhances the electron conductivity.

(@) Cr Cry------- Cr, Cr, (b) Cr, Cry------- Cr, Cr,

Fig. I1.7. Orbital correlation diagram of (a) AFM and (b) FM states. The same trend applies to the o-

orbital, 5-orbital, and the other w-orbital, as shown in the figure.
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Table IL.5. Site-overlaps that contribute to the electron conductivity in the FM states. In the table, o
and P represent the o and [ orbitals, respectively. The small difference between o and B orbital

values is considered to originate in a slight asymmetry of the optimized structures.

Site-overlap

LUMO LUMO+1

o 0.0490 0.0470
R(OH)

B 0.0484 0.0486

o 0.0492 0.0472
R(CH3)

B 0.0511 0.0513

o 0.0494 0.0475

NS
B 0.0514 0.0516
o 0.0498 0.0481
R(F)

B 0.0517 0.0519

o 0.0508 0.0495
R(CN)

B 0.0523 0.0526

o 0.0506 0.0497
R(NOy)

B 0.0522 0.0527

(a) NS
AFM FM
a orbital B orbital a orbital B orbital

- o @@gg
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(c) R(CH,)

a orbital B orbital a orbital B orbital

%., ﬁéﬁ. -e%e. «@%@.
%{} n%,.s-e%@.~ a,% .

(d)

a orbital B orbital a orbital B orbital

Lowo w:}c? %{} ‘QC%Q. ﬁ%’g.
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(e) R(CN)

a orbital B orbital a orbital B orbital
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Fig. 11.8. Electron distributions in the LUMO and LUMO+1 in the AFM states and the FM states of
(2)NS, (b)R(OH), (c)R(CH3), (DR(F), ()R(CN) and (HR(NO>).

Their isovalues are 0.02 electron/a.u.>.

In Fig. I1.8, the reason why the spin polarization appears on the axial ligand pyrazine rather than on
the chromium in the electron distribution of the LUMO and LUMO+1 can be interpreted by
considering the spin polarization in Cr-Cr bond and the orbital interactions between the chromium
ions and the pyrazine ligands. The nature of the molecular orbitals formed between the metal and the
ligand strongly depends on the component (either the metal or the ligand) whose energy levels are
closer to the corresponding molecular orbital (see Fig. 11.9(a)). Therefore, the molecular orbital
correlation diagram formed by the interaction between the Cr-Cr bond and the pyrazine ligand is
represented in Fig. I1.9(b). The antibonding orbital corresponding to the spin-polarized distribution of
the Cr-Cr bond in the bonding orbital appears in the LUMO, where the pyrazine ligand distribution is
induced by the spin polarization of the Cr ions. Thus, it can be concluded that the pyrazine ligand

exhibits a biased distribution due to spin polarization.
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Fig. I1.9. Orbital correlation diagram of (a) metal and ligand and (b) the chromium ions and the

pyrazine axial ligands.

Fig. I1.10 shows a ratio of the electronic currents between the AFM and FM states (/lrm//arm) at 1.0
V, indicating that the electron-withdrawing groups increase the ratio, while the electron-donating
groups decrease it. Moreover, from Fig. I1.10, it can be observed that the current ratio, Irm/Iarm,
calculated for structures without AP-optimization is overestimated by approximately 1.3 to 1.5 times
compared to those obtained using AP-optimized structures, corresponding to the calculated current
ratio before and after AP-optimization in the AFM states (/arm, Ap/ IarMm, non-ap). These results highlight
the importance of eliminating spin contamination in electronic current calculations for strongly
correlated molecular systems.

As summarized in Table I1.6, the coupling constants and their products (y;1 % X Yyr,o2) of the FM
states are much larger than those of the AFM states. As a result, a significant difference in the electron
conductivity between the AFM and FM states is considered to have emerged. To examine the effect of
the substituents on the ratio, Iem/Iarm, in detail, the product of coupling constants, y.1 5% X Vag 2, Of
the complexes are illustrated in Fig. II.11. In the AFM states, the spin polarization dominantly
contributes to the electron conductivity, and the electron-withdrawing substituents with strong spin
polarization exhibited the decrease in the electron conductivity. However, in the FM states, the spin
polarization does not occur, and its impact becomes more significant for systems that exhibited strong
spin polarization. As a result, from the viewpoint of the switching ratio (/rm//arm), the introduction of
the electron-withdrawing groups is more effective than that of the electron-donating groups, and
therefore, the switching ratio of the paddlewheel-type dichromium complex can be also controlled by

the substituents.
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Fig. 11.10. A ratio of the electronic currents between the AFM and FM states (/pm/Iarm) at 1.0 V (a)
with AP-optimization and (b) without AP-optimization. The red, blue and black markers represent

the complexes with the electron-donating groups, -withdrawing groups and NS form, respectively.

Table I1.6. Coupling constants in the AFM and the FM states of (a)NS, (b)R(OH), (c)R(CH3),
(DR(F), (¢)R(CN) and (f)R(NO,). In this table, the subscript o represents either o or 3, which

correspond to the o orbital and the B orbital, respectively. Ratio of product (FM/AFM) represents the

ratio of the products of the coupling constants y;1 4% X Yyro> for the AFM and the FM states.

(a) NS
o orbital B orbital
AFM state FM state AFM state FM state
Yi1,0/€V 0.514 1.350 1.224 0.960
Ymro/€V 1.224 1.347 0.513 0.958
Yito? X Yuro/eV? 0.396 3.303 0.394 0.845
Ratio of product 8.33 2.14
(b) R(OH)
o orbital B orbital
AFM state FM state AFM state FM state
Yi1,0/€V 0.586 1.401 1.262 0.984
YmRro/€V 1.234 1.355 0.531 0.948
Yito? X Yuro/eV? 0.522 3.602 0.449 0.869
Ratio of product 6.90 1.93

75



(©) R(CH:)
o orbital B orbital
AFM state FM state AFM state FM state
Yi1,0/€V 0.533 1.369 1.249 0.967
YmRro/€V 1.257 1.382 0.548 0.979
Yito? X Yuro/eV? 0.449 3.580 0.469 0.896
Ratio of product 7.98 1.91
(d) R(F)
o orbital B orbital
AFM state FM state AFM state FM state
Yi1,0/€V 0.485 1.302 1.167 0.927
Ymro/€V 1.160 1.292 0.473 0.920
Yito? X Yuro/eV? 0.316 2.832 0.304 0.728
Ratio of product 8.96 2.39
(e) R(CN)
o orbital B orbital
AFM state FM state AFM state FM state
Yi1,0/€V 0.357 1.112 0.970 0.751
YmRro/€V 0.970 1.112 0.358 0.751
Yito? X Yuro/eV? 0.120 1.529 0.120 0.318
Ratio of product 12.75 2.64
® R(NO2)
o orbital B orbital
AFM state FM state AFM state FM state
Yi1,0/€V 0.274 0.936 0.759 0.603
YmRro/€V 0.757 0.932 0.270 0.601
Yito? X Yuro/eV? 0.043 0.760 0.042 0.131
Ratio of product 17.76 3.13
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Fig. IL11. y.1 4% X Yyro> values of (a) o orbital and (b) B orbital of the model complexes.

In the experimental work for the single-molecule components, the applied bias voltage has usually
been within the range of 0.1 - 1.0 V [12,16,17,44]. Thus, the author also examined the current-voltage
(I-V) characteristics and the Irm/Iapm ratio at bias voltages of 0.5, 1.5 and 2.0 V. The calculated /-
characteristics of the AFM and FM states are shown in Fig. I1.12 (a) and (b), respectively. The results
indicate that the relationship between the bias voltage and calculated current remains consistent up to

2.0 V. Additionally, the /rm//apm ratio indicates the same trend up to 2.0 V, as shown in Fig. 11.13.
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Fig. I1.12. Calculated /-V characteristics for each complex in (a) the AFM state and (b) the FM state.
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Fig. I1.13. Electronic current ratio (/rm//arm) at 0.5V, 1.0V, 1.5V and 2.0 V.

Finally, the author examined the exchange coupling (J) values between the two Cr(Il) ions. In the
two-site Heisenberg Hamiltonian, H = —2J,,5,S,, a spin operator $;(i = a, b) becomes each Cr(II)
(8= 2) in these complexes, and Table 11.6 summarized the calculated J values by Yamaguchi equation
(see Part I, Chapter 3). The total energies and ($2) for the calculation of these J values are also
summarized in Table I1.6. The paddlewheel-type dichromium(ILII) complexes has been reported to
exhibit partial paramagnetism in the Cr-Cr quadruple bond. The J value of Cry(O.CCH3)4(OHz), was
experimentally observed to be —490 cm™' (see Table 11.7) [52]. However, B3LYP was reported to
overestimate the stability of the AFM state in the spin-polarized systems [50]. In fact, the J value of
Cr2(02CCH3)4(OHa)2, which was calculated to be =733 cm™' by B3LYP using the X-ray structure, was
overestimated by about 70% [35]. Therefore, the calculated J values of the model complexes in this
study (—606 ~—636 cm™') may represent an over-stabilization of the AFM state. On the other hand, it
has also been reported that the overestimation can be corrected by using BHandHLYP, which includes
50% Hartree-Fock exchange [52]. The calculated J values of the NS form between BHandHLYP and
B3LYP are summarized in Table I1.7. The J value calculated using B3LYP is approximately 70% larger
than that obtained with BHandHLYP, suggesting that B3LYP overestimates the J value. However,
from the viewpoint of the Cr(II)-Cr(II) distance, AP-B3LYP has been reported to be able to
reproduce the experimental Cr-Cr distance [48]. In addition, it has been confirmed that the /-V
characteristics estimated using B3LYP can successfully reproduce the experimental results [24]. From
these reasons, the author discussed the relationship between the electron conductivity and molecular

structure using B3LYP.
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The J values are slightly changed by the substituents as shown in Table I1.6. The complexes with
the electron-donating groups enhance the anti-ferromagnetic interaction, while the electron-
withdrawing groups weaken it. The result is consistent with the difference in electron conductivity by
the substituents. On the other hand, the change in the exchange coupling is within 30 cm™, suggesting

that the electron conductivity shows a stronger dependency on the spin polarization.

Table I1.6. The total energy, (§2) values of the AFM and FM states and effective exchange integrals

(J) values of the extended molecules.

Total energy / a. u. (52)

AFM FM AFM FM J/em™!
R(OH)  —5141.465538 —5141.425873  3.5829 20.0191 -636
R(CH;)  —4997.869403 —4997.829566  3.5811 20.0191 -638
NS —4840.597525 —4840.557873  3.5830 20.0189 -634
R(F) —5237.529641 —5237.490277  3.5856 20.0188 -629
R(CN)  —5209.549988 —5209.511696  3.5963 20.0184 -610
R(NO;)  —5658.575993 —5658.537932  3.5986 20.0183 -606

Table I1.7. Calculated and experimental J values by B3LYP and BHandHLYP with the paddlewheel-type
dichromium(IL,II) benzoate (NS) and Cr2(O2CCH3s)4(H20)2.

J/em™!
Method NS Cr2(02CCH3)4(H20)2 [35]
B3LYP —634 —734
BHandHLYP —460 —520
Expt. [51] - —490

4. Conclusion

In this study, the author investigated the single-molecule electron conductivity of the paddlewheel-
type dichromium(ILII) tetrabenzoate complexes by introducing the electron-donating and electron-
withdrawing groups into the bridging ligands. The results indicated that the electron conductivity of
the model complexes increases/decreases by substitution of the electron-donating/withdrawing groups,
respectively. Especially, the electron-donating group is effective to increase the electron conductivity
due to the suppression of the spin polarization. On the other hand, from the viewpoint of the switching
ratio between the AFM and FM states (/rm/Iarm), the electron-withdrawing group is more effective
because the transition to the FM state eliminates spin polarization, making its impact more significant.
From these results, the electron conductivity and its switching ratio, achieved by changing the spin

states of the paddlewheel-type dichromium tetrabenzoate complex, can be controlled through the
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introduction of substituents. This finding provides the design guideline for single-molecule transistors

utilizing open-shell electronic states.
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Part 111

Comparison of open-shell electronic state
and electron conductivity in single molecule

and two-molecule system
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1. Introduction

For the use of single-molecule components as devices, integration—such as connecting or
assembling them—is considered important. Recently, research on the integration of single-molecule
components has also been conducted, with reports evaluating the performance and characteristics of
systems consisting of multiple molecular components such as self-assembled monolayers (SAMs),
arrangement on semiconductor chips, and placing on carbon nanotube substrate [1-5].

In recent years, there have been interesting results on molecular circuits. According to the Ohm’s
law, the current value of a parallel circuit equals to the sum of current through each resistor. However,
in molecular parallel circuits, the Ohm's law is fail because of quantum interference effects [6]. The
conductance G, in nano-scale parallel circuits of two components is given as

G =G, + G, + 2,/G,G,, (I1L.1)
where G; and G, are the conductance of respective components and 2\/@ is the quantum
interference term. Vazquez and his co-workers demonstrated that the conductance of a molecular
parallel circuit model composed of two parallel benzenes is larger than twice that of a single benzene,
both experimentally and theoretically [7]. Recently, several exceptions to Equation (III.1) have been
reported from the perspectives of aromaticity, frontier orbital theory, and orbital interaction [8,9].
However, molecular circuits in open-shell electronic systems have not been investigated.

In this study, as the first step toward molecular integrated systems utilizing open-shell single-
molecule components, the author considered the simplest molecular parallel circuit model composed
of two components. As such a model, the author considered a molecular parallel circuit model based
on [18]annulene, as shown in Fig. III.1. As shown in Fig. III.1, [18]annulene can be assumed to be a
parallel circuit composed of two linear polyenes (Polyene A and Polyene B). The sulfur atoms at the
end-sites form thiol radicals, leading the linear polyenes to exhibit open-shell electronic structures. In
such a molecular parallel circuit model, the electronic structures and the electron conductivities of
both the circuit and its components were calculated by DFT and ESGF methods. Subsequently, the
author examined the relationship between electron conductivity in the molecular parallel circuit model
and that of individual molecular components, comparing it to the classical parallel circuit, where

Ohm’s law holds for electrical conductivity.
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Fig. I11.1. [llustration of the molecular parallel circuit models: (a) [18]annulene derivative as the
parallel circuit, and (b) two linear polyenes A and B divided from the [18]annulene derivative as the

individual components.

2. Computational Details

[18]annulene derivatives were used as the molecular parallel circuit models, which were assumed
to be composed of two linear polyenes (Polyene A and Polyene B). The end-sites of these molecules
were sulfur atoms, with the assumption that the junctions between the end-sites and Au(111) surface
were at the bridge-site, as illustrated in Fig. III.2. Similar to the paddlewheel-type dichromium
complexes in Part II, the electrodes were approximated as the gold dimers. To modify the open-shell
electronic state of the molecular circuit and single-molecule components, various substituents X were
introduced into the model molecules, and comparisons were made with the non-substituted (NS) form.
To consider the open-shell electronic state, the electronic structures were calculated using spin-
unrestricted DFT, that enabled the spin polarization to be performed involved the static electron
correlation effect.

[18]annulene derivatives were geometrically optimized by the BHandHLYP/6-31+G*(S), 6-
31G*(other atoms) level of theory [10-13]. The two linear polyenes, Polyene A and Polyene B, were
extracted from the optimized [18] annulene structures. Subsequently, only the hydrogen atoms added
at the boundaries of the polyenes were geometrically optimized. The electronic structures of the
extended molecules, including the gold dimer in the molecules, were determined using spin-
unrestricted DFT calculations with the BHandHLYP functional. The basis sets used were LANL2DZ
[14] for Au, 6-31+G* for S, and 6-31G* for other atoms. For all models, the charge and the spin states

were set to neutral and singlet, respectively.
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The electron conductivity was calculated through ESGF methods, explained in Part I, Chapter 2,
assuming that the temperature was 300 K and the electron conduction occurred through the molecular
orbitals from LUMO+9 to HOMO-9. All DFT calculations were performed in the gas phase using
Gaussian 09 Rev. D01 [15], and the electron conductivity was calculated using our self-developed

program.

9 JJ

Au“‘) 9 j ff

;‘j /J' J)‘ 9 fJ'_ ______________ ¢ Au
Mg i L | w2304
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bR g R e s

s g |
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Fig. I11.2. Model of the extended molecule of the NS form. The electrodes are approximated by the
gold dimers, and the junctions between the Au and S atoms are assumed to be the bridge-site. The
labels 1 and M represent the end-sites; L and R are the left and right electrodes, respectively. The

distances between the middle point of the Au dimer and the sulfur atom were fixed at 2.30 A, and the

Au—Au distance was assumed to be 2.88 A [16,17].

3. Results and Discussion
3.1 Electron conductivity of [18]annulene as the molecular parallel circuit model

First, using the NS form, the author examined the relationship between the electron conductivity of
the molecular parallel circuit model based on [18]annulene and that of the two linear polyenes as
individual single-molecule components. Fig. I1I.3 shows the current-voltage (/-V) characteristics of
[18]annulene (Jannuiene) and the total of the current values of the two polyenes, which are defined by
two equations. The first equation represents a simply summation, analogous to a classical parallel
circuits:

In+B = Ipolyene A + Ipolyene B (I11.2)

where Ipgyenea and Ipoiyene 3 Tepresent the current of Polyene A and Polyene B, respectively. The

second equation accounts for the quantum interference (QI) term base on Equation (II1.1):

IA+B+Q = IPolyeneA + IPolyene Bt 2\/1Polyene AIPolyene B/ (IH‘?’)

where 2, /Tpgiyenc Alpolyene 8 is the QI term. As shown in Fig. 1113, the calculated currents values of
the [18]annulene were larger than /a+, however, smaller than /s+s+q. Therefore, in the molecular
parallel circuit model with the open-shell electronic system, it has been revealed that neither Ohm’s
law in classical circuits, as shown in Equation (IIL.2), nor the existing conductivity equation

incorporating quantum interference in molecular parallel circuits, as shown in Equation (I11.3), holds.
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Fig. I11.3. [V characteristics of the [18]annulene (Zannulene), the sum of independent polyenes (/a+8),

and the values including the QI term (/a+B+q).

To analyze the difference in the electron conductivity between the Jannulene and Ia+s, Ia+s+q, various
calculated parameters were examined, including the total spin angular momentum ($?) and coupling
constants ¥y 4, ¥umpr,s» as summarized in Table III.1, as well as the site-overlaps in each molecular
orbital, as summarized in Table II1.2. From the calculated (§2) values in Table III.1, it is found that
the [18]annulene exhibits a closed-shell electronic state, whereas the divided polyenes exhibit weak
open-shell systems. Such difference in the electronic states significantly affects the coupling constants
and site-overlaps. Specifically, according to Tables III.1 and IIL.2, in the closed-shell system of
[18]annulene, the y.;,,¥Yurs and site-overlaps exhibit equal values for the o and B orbitals.
However, in the open-shell system of the linear polyenes, these parameters show different values
between the o and 3 orbitals, indicating the spin polarization. Therefore, the [18]annulene facilitates
the electron transfer between the left and right electrodes, whereas the divided polyenes, due to their
asymmetric electron distributions, makes it more difficult for electrons to migrate to the opposite
electrode. Such differences in the electron transfer mechanisms are considered to be the cause of the
differences observed between lannulenc and /a+s, [a+B+q. As a result, it has been clarified that in the open-
shell electronic molecular parallel circuits, considerations incorporating the quantum interference are

essential.
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Table ITL.1. Summary of the total spin angular momentum ($?) and coupling constants of the

[18]annulene and the divided polyenes. In this table, o and B represent o and 3 orbitals, respectively.

[18]annulene Polyene A Polyene B
o o B o B
(8%) 0.000 0.147 0.147
Yiie / €V 0.855 0.855 1.078 0.674 0.675 1.049
Ymro / €V 0.855 0.855 0.675 1.049 1.078 0.674

Yire® X Yuro® / €V* 0.534 0.534 0.530 0.500 0.530 0.500

Table II1.2. Site-overlap values of each orbital for the [18]annulene and the divided polyenes.

Site-overlap

[18]annulene Polyene A Polyene B
o p o p o p

HOMO-9 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000
HOMO-8 0.0213 0.0213 0.0000 0.0002 0.0000 0.0001
HOMO-7 0.0158 0.0158 0.0000 0.0000 0.0000 0.0000
HOMO—-6 0.4074 0.4074 0.0000 0.0000 0.0000 0.0000
HOMO-5 2.2823 2.2823 0.2068 0.1903 0.1287 0.1534
HOMO—4 0.9860 0.9860 0.0043 1.5019 0.0036 1.4478
HOMO-3 0.0033 0.0033 0.0557 0.9201 0.0465 0.8951
HOMO-2 0.0150 0.0150 0.0015 0.0035 0.0000 0.0023
HOMO-1 0.0321 0.0321 0.0000 0.0000 0.0000 0.0000

HOMO 0.0331 0.0331 0.0000 0.0000 0.0000 0.0000

LUMO 0.0703 0.0703 0.0578 0.0351 0.0453 0.0515
LUMO+1 0.0341 0.0341 0.0002 0.0001 0.0000 0.0000
LUMO+2 0.0001 0.0001 0.0099 0.0013 0.0022 0.0001
LUMO+3 0.0023 0.0023 0.0308 0.0323 0.0342 0.0593
LUMO+4 0.0003 0.0003 0.0151 0.0112 0.0127 0.0158
LUMO+5 0.0037 0.0037 0.0000 0.0000 0.0030 0.0027
LUMO+6 0.0130 0.0130 0.0003 0.0002 0.0000 0.0000
LUMO+7 0.0000 0.0000 0.0135 0.0128 0.0310 0.0294
LUMO+8 0.0001 0.0001 0.0016 0.0016 0.0018 0.0017
LUMO+9 0.0170 0.0170 0.0000 0.0000 0.0000 0.0000

Total 3.94 3.94 0.398 271 0.309 2.66
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3.2. Effects of substituents on the electron conductivity of molecular parallel circuits with the open-
shell electronic states

As described in the previous section, both electron conductivity and the QI term were influenced
by the open-shell property of the molecules. Additionally, in Part II, it was demonstrated that the
electron conductivities and open-shell electronic states of single-molecule components can be
modulated by introducing substituents. Based on them, the author examined the impact of adjusting
the open-shell electronic states of single-molecule components through substituent introduction on the
electron conductivity of molecular parallel circuits. To explore the effects of substituents on the
molecular parallel circuits, the relationship between open-shell electronic state and electron
conductivity was examined by introducing electron-donating groups (X = -OCHs, -OH) and electron-
withdrawing groups (X =-CN, -NO) into [18]annulene and divided polyenes. Two substituted models,
1 and 2, were considered, with two substituents placed symmetrically, as shown in Fig. I11.4(a). The
NO:-substituted derivative of model 2 was excluded because the sulfur atom is structurally too close
to the oxygen atoms of the nitro group, leading to unintended bond formation. The current values for
substituted annulenes and polyenes at 1.0 V are presented in Fig. II1.4(b). The results indicate that
introducing substituents reduces electron conductivity in both annulenes and polyenes, irrespective of
whether the substituents are electron-donating or withdrawing in the model 1. However, in the case of
the model 2, an increase in electron conductivity compared to the NS form was observed when
electron-donating groups were substituted, whereas the substitution of electron-withdrawing groups
resulted in a decrease in electron conductivity. Furthermore, the relationship between the current
values of annulenes and the total currents of the two polyenes differs depending on the type of
substituents regardless the type of models. For electron-donating groups, the current values of
annulenes do not match the total current values of the polyenes, even when the QI term is included
(Zannulene # 1A+B, Lannutene # Ia+B+Q). In contrast, for electron-withdrawing groups, the annulene current
becomes comparable to the simple sum of the two polyene currents (Zannulene = /a+8). From these results,
it is suggested that in the molecular parallel circuits composed of single-molecule components with
enhanced spin polarization due to the introduction of electron-withdrawing groups, the quantum

interference is suppressed.
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Fig. 111.4. (a) Scheme of substituted model 1 (left) and 2 (right). (b) Calculated current of the
[18]annulene derivatives and the divided polyenes at 1.0 V. The models 1 and 2 with substituents X
are denoted as 1-X and 2-X, respectively.

To understand the effects of the substituents, the author examined the ($?) values, as summarized
in Table IIL1.3. In the case of the NS form and its derivatives with electron-donating groups, the
calculated (8?) values are zero, indicating the closed-shell systems. However, their corresponding
polyenes exhibit non-zero values, indicating the open-shell systems. In contrast, in the case of the
electron-withdrawing groups, both the [18]annulene derivatives and their corresponding polyenes
exhibit non-zero (§?) values, indicating the open-shell electronic states. Therefore, the quantum
interference effects in the molecular parallel circuits are related on the open-shell properties. When
the quantum interference occurs between the two single-molecule components with the open-shell
systems, the molecular parallel circuit exhibits the closed-shell electronic state. In contrast, the
quantum interference does not occur between them, the molecular circuit retains the open-shell

electronic state.
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Table I11.3. Total spin angular momentum ($2) of each extended molecule.

(%)
[18]annulene Polyene A Polyene B

NS 0.000 0.147 0.147
1-OCH3 0.000 0.163 0.163
1-OH 0.000 0.156 0.156
1-CN 0.462 0.222 0.222
1-NO» 0.438 0.193 0.193
2-OCHj3 0.000 0.0162 0.0163
2-OH 0.000 0.0123 0.0123
2-CN 0.230 0.0406 0.0406

From Table I11.3, the intensity of the (§2) values of the polyenes is not considered to be directly
related to the quantum interference in the molecular parallel circuits. To further understand the electron
conduction property of the molecular parallel circuit, the coupling constants ¥, 5, ¥ur and the total
of site-overlaps of each orbital were analyzed, as summarized in Table II1.4. As well as the case of the
NS form, the [18]annulenes introduced electron-donating groups exhibit the symmetrical parameters
between the o and [ orbitals because of their closed-shell electronic states. On the other hand, in the
molecules exhibiting the open-shell electronic structures, these parameters show the asymmetrical
values between the o and B orbitals, indicating the spin polarization. As explained in Part II, the
introduction of electron-donating groups weakens the spin polarization in single-molecule
components, whereas the introducing electron-withdrawing groups enhances the spin polarization.
Thus, the electron conduction properties of molecular parallel circuits composed of the open-shell
single-molecule components can be explained that:

(i) When single-molecule components exhibit weak spin polarization, the quantum interference
occurs between them, resulting in the molecular parallel circuit adopting the closed-shell electronic
state. In this case, Ohm's law fails because of the quantum interference effects (Zannutenc 7 Ia+B).
Moreover, the existing conductivity equation in molecular parallel circuits, as shown in Equation
(111.3), also does not hold (Zannutene # 1a+B+Q).

(ii) When the spin polarization in single-molecule components is strong, the quantum interference
effect is suppressed, resulting in the molecular parallel circuit remaining in the open-shell
electronic state. In this case, the current value of the molecular circuit is approximately equal to
the simple sum of the current values of the single-molecule components, similar to Ohm's law in

classical parallel circuits (Zannulene = Ia+B).
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Table I11.4. Summary of the coupling constants and total of site-overlap of (a) 1-OCHj3, (b) 1-OH,
(c) 1-CN, (d) 1-NO3, () 2-OCHj, (f) 2-OH and (g) 2-CN models. The small differences in site-
overlap between Polyenes A and B are considered to originate from the convergence accuracy of the

molecular orbitals (here, 1077 a.u. in electron density).

(a) 1-OCH;3
[18]annulene Polyene A Polyene B
o B o B o B
Y10 €V 0.847 0.847 0.474 0.880 0.983 1.283
YmRro/€V 0.847 0.847 1.283 0.983 0.880 0.474
Yiro? X Yuro® / €V* 0.514 0.514 0.370 0.748 0.748 0.370
Site-overlap @ 3.05 3.05 0.293 0.475 0.324 0.280
(b) 1-OH
[18]annulene Polyene A Polyene B
o B o B o B
Y10 €V 0.832 0.832 0.448 0.828 1.287 1.001
Ymro/€V 0.832 0.832 1.287 1.001 0.448 0.828
Yiro? X Yuro® / €V* 0.479 0.479 0.333 0.687 0.333 0.687
Site-overlap @ 3.07 3.07 0.174 0.386 0.204 0.288
() 1-CN
[18]annulene Polyene A Polyene B
o p o p o p
Y10 €V 0.497 0.991 1.007 0.602 0.911 0.517
Ymro/€V 0.991 0.497 0.518 0.911 0.602 1.007
Yiro? X Yuro® / €V* 0.242 0.242 0.271 0.301 0.301 0.271
Site-overlap @ 231 2.59 1.245 0.892 0.999 1.141
(d) 1-NO;
[18]annulene Polyene A Polyene B
o B o B o B
Y10 €V 0.890 0.481 1.070 0.632 0.710 0.441
YmRro/€V 0.481 0.890 0.441 0.711 0.632 1.070
Yire” X Yuro® / €V* 0.183 0.183 0.222 0.201 0.201 0.222
Site-overlap @ 1.04 0.896 0.380 0.523 0.558 0.296
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(e) 2-OCH;

[18]annulene Polyene A Polyene B
o B o B o B
Y10 €V 0.859 0.859 1.074 1.219 0.620 0.527
YmRro/€V 0.859 0.859 0.620 0.527 1.074 1.219
Yite? X Yuro® / €V* 0.543 0.543 0.443 0.413 0.443 0.413
Site-overlap @ 6.11 6.11 0.601 0.613 0.553 0.581
® 2-OH
[18]annulene Polyene A Polyene B
o B o B o B
Y10 €V 0.861 0.861 1.084 1.198 0.523 0.609
YmRro/€V 0.861 0.861 0.609 0.523 1.198 1.084
Yiro? X Yuro® / €V* 0.550 0.550 0.436 0.393 0.393 0.436
Site-overlap @ 5.15 5.15 0.389 0.401 0.373 0.392
(9) 2-CN
[18]annulene Polyene A Polyene B
o B o B o B
Y10 €V 0.622 0.955 0.584 0.767 0.871 0.997
Ymro/€V 0.955 0.622 0.997 0.871 0.767 0.584
Yiro? X Yuro® / €V* 0.353 0.353 0.340 0.446 0.446 0.340
Site-overlap @ 3.17 3.37 0.851 0.912 0.850 0.926

(i) Sum of HOMO-9 and LUMO+9.

Finally, the intensity of electron conductivity in annulenes is discussed. Fig. IIL.5 illustrates the
product of the coupling constants, y7 ,¥fr o and the total site-overlaps for each orbital, in relation
to the current values of the [18]annulene derivatives, separately for the o and 8 orbitals. From this
figure, the electron conductivity of the [18]annulene derivatives exhibits positive correlations with the
coupling constant and site-overlap. However, when comparing the model 1 and 2, it is considered that
the electron conductivity of the [18]annulene derivatives depends not only on the type of substituent
but also on the substitution position. Therefore, the molecular orbitals were analyzed. Fig. 111.6
illustrates the electron distributions in molecular orbitals that primarily contribute to electron
conductivity, along with their site-overlap values and orbital energy levels. First, focusing on the
model 1, the total current of the annulene derivatives with the electron-withdrawing groups (1-CN and
1-NO; shown in Fig. I11.6 (d) and (e), respectively) decreases due to the spin polarization between the
o and P orbitals. In contrast, a difference in the electron distributions in molecular orbitals, which

contribute to the electron conductivity from the viewpoint of the site-overlap values, become important
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for models with electron-donating groups. In the model 1, 1-OCH3 and 1-OH shown in Fig. I11.6 (b)
and (c), the introduction of the electron-donating groups suppresses a degree of delocalization of
HOMO-4 and HOMO-S5. This decrease is explained as follows: the m orbital energies of the annulene
ring are shifted by the substitution effect, so that the energy difference between the m orbitals of the
annulene ring and junction moieties becomes larger. As a result, the site-overlap values become small
due to a decrease in conjugation between the ring and junction moieties. On the other hand, in the case
of'the model 2, 2-OCH3, 2-OH and 2-CN shown in Fig. I11.6 (f), (g) and (h), respectively, the m-orbitals
of the annulenes, which are the primary contributors to electron conductivity, exhibit significant
delocalization, leading to the large site-overlap value. Particularly, 2-OCHs and 2-OH do not exhibit
spin-polarized distributions, indicating that they exhibit the larger site-overlap and higher electron
conductivity compared to the NS form. These results indicate that the electron conductivity can be
modulated based on the orbital distribution influenced by the substitution positions. This suggests that
by strategically altering the substitution positions, it is possible to tailor the orbital interactions and,

consequently, the electron conductivity of the annulene.
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4. Conclusion

In this study, as the first step in the investigation of molecular integrated systems, the author
examined the relationship between the electron conduction in single-molecule components with the
open-shell electronic states and molecular parallel circuit composed of these components. As models
for these investigation, the [18]annulene and its derivatives introduced the electron-donating/-
withdrawing groups were examined as the molecular parallel circuit models composed of two linear
polyenes. When the spin polarization of single-molecule components is small, such as in the NS form
or electron-donating group derivatives, Ohm’s law for classical parallel circuits does not hold due to
the quantum interference effects in the molecular circuit. Additionally, in this case, the electronic
structures of the molecular circuits, [18]annulenes, adopt a closed-shell systems. On the other hand,
when the electron-withdrawing groups are introduced into the single-molecule components, the
increased spin polarization suppresses the quantum interference between the components, allowing
the molecular circuit to retain the open-shell electronic state. In this case, the current value of the
molecular circuit becomes equal to the simple sum of the current values of the two components, similar
to Ohm’s law. Therefore, it is suggested that the quantum interference in molecular parallel circuits

can be controlled by tuning the open-shell electronic state through substituent introductions.
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Part 1V

Investigation of inter-molecular open-shell
property and electrical conductivity in

molecular integrated system
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1.Introduction

To further expand molecular integrated systems, molecular crystals consisting of an infinite number
of molecules were considered as model systems. Among these, particular attention was given to metal-
organic frameworks (MOFs), which are porous crystals composed of metal ions/complexes and
organic linkers [1]. MOFs stem from a combination of inorganic and organic moieties, and have design
flexibility [2-4]. In 1995, Yaghi and Li synthesized a compound with unique channels and named it
the metal-organic framework [5]. Kitagawa et al. reported that applying high pressure enables the
adsorption of gas molecules into the pores of MOFs [6]. Subsequently, Yaghi and co-workers
demonstrated that gas adsorption into MOFs is possible even under low temperature and low-pressure
conditions, indicating that the pores of MOFs are permanent [7]. Furthermore, the proposal to use
metal clusters, known as Secondary Building Units (SBUs), instead of metal ions as starting materials
for synthesis has facilitated easier design [8]. Additionally, the establishment of solvothermal synthesis,
which remains the predominant method, has enabled the production of robustly structured MOFs [9].
Today, various MOFs have been proposed with multifunctionality, including molecular storage,
separation and catalysis due to their large surface areas and tunable pore sizes [10-12]. Furthermore,
MOFs have been attracting attention for their properties in luminescence [13,14], electronics [15], and
magnetism due to their ability to incorporate properties derived from metal complexes and organic
linkers, as well as their high design flexibility through various combinations of these components.
This makes them promising candidates for next-generation sensing materials, molecular devices, and

data storage applications [17-20] (Fig. IV.1).

) *~ »
Gas storage, separation ¢ ¢ Mm"zlc.un.,

4 —

N o Organic linker
Chemical reaction catalyst S )
Metal-organic

framework

Fig. IV.1. Overview of the functionalities of MOFs.
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The application of MOFs to electronic devices has garnered significant attention in recent years,
and they are called MOF-based electronics or MOFtronics [15]. In general, the electron conductivity
of MOFs is typically low due to their wide band gaps and the weak d-p orbital hybridization between
metal ions and organic linkers. To synthesize electrically conductive MOFs, various strategies have
been proposed: the main strategies include introducing redox-active molecules [21,22], polar solvent
molecules [23], or conductive polymers [24,25] as guest molecules; incorporating mixed-valence
complexes to induce polarity within the MOF [26]; and controlling n-n stacking interactions [27].
Furthermore, applications such as switching devices that modulate conductivity through external
fields like electric fields or light [28,29], as well as diodes that control the direction of electron flow
[30,31], have also been proposed. Additionally, MOFs exhibiting characteristics of memristors, which
store the charge passed through them and change resistance in an analog manner [32], have garnered
attention as potential hardware components for neuromorphic computing systems [33].

In this study, the author considered MOFs that incorporate single-molecule components with open-
shell electronic states, similar to the paddlewheel-type dichromium complex in Part II. Therefore, Ru,-
TCNQ MOFs, composed of paddlewheel-type diruthenium complexes ([Ruz] units) and tetracyano-p-
quinodimethane derivatives (TCNQ linkers), were selected as models for the molecular integrated
systems. In the Ru,-TCNQ MOFs, the [Ruz] units exhibit the open-shell electronic states due to their
localized spins in *- and &*-orbitals as shown in Fig. IV.2. In addition, they can exhibit various charge
transfer (CT) states. In Ru,-TCNQ MOFs, the [Ru] unit is classified as an electron-donor (D), while
the TCNQ linker acts an electron-acceptor (A) [34,35]. Therefore, multiple CT states can be
considered: a neutral state (D°-A%-D?), one-electron transferred states (D*-A"-D®and D°-A"-D", which
are degenerate), and a two-electron transferred state (D*-A%"-D") [36-38]. Recently, some Ru,-TCNQ
MOFs have been reported to exhibit switchable magnetic properties triggered by gas absorption and
desorption [39-42]. This characteristic arises from the charge transfer induced by gas molecule
interactions, leading to the changing intrinsic spin states in the [Ruz] units and TCNQ radicals, and it
has been suggested that the potential application of the Ru,-TCNQ MOFs in gas sensors and memory

devices.
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Fig. IV.2. Calculated molecular orbitals of paddlewheel-type diruthenium benzoate complex.
Ru ions in the complex exhibit two CT states, i.e. (a) [Ruz™!"] and (b) [Rux"]". The electronic
structures were calculated using DFT with the Broken-Symmetry (BS) method at B3LYP/LANLOSf
(Ru), 6-31G* (others) level of theory.

As described in Part I, Chapter 1, the electronic states of crystals can be determined using band
calculations. However, handling localized spins is challenging with plane-wave basis sets. To address
this issue, until now, the analysis of the electronic structures and magnetic properties of Ru,-TCNQ
MOFs has been conducted using DFT calculations with Gaussian basis (Gaussian DFT) [36, 39-41].
This approach utilizes a D»-A unit cluster model, which is extracted from the X-ray structure of Ru-
TCNQ MOF based on the stoichiometric ratio, consisting of two [Ru,] units and one TCNQ linker.
The investigations using the D2-A unit cluster models with Gaussian DFT have revealed the magnetism
of Ru-TCNQ MOFs from the viewpoint of the molecular orbital interaction and inter-molecular
magnetic interactions.

However, in the study of the molecular integrated systems, it is crucial to use a model that does not
rely on structural extraction to elucidate its electronic states and magnetic interactions. In this case,
investigations based on the band calculations with periodic boundary conditions are required. It has
been proposed that the DFT calculations with open-shell systems under periodic conditions can be
also calculated by using plane-wave basis sets (DFT/plane-wave) with hybrid exchange-correlation
functionals or the on-site Coulomb parameter U. In Gaussian DFT calculations, the hybrid exchange-
correlation functionals are often used for the open-shell electronic state calculations because they can
predict spin-polarized electronic states with high accuracy [43-45]. However, the computational cost
of hybrid-DFT is high for the band calculations using the plane-wave basis. Therefore, the DFT+U

method [46-48], which uses the on-site Coulomb parameter U to obtain the spin-polarized electronic
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structures, is employed in the DFT/plane-wave calculations because the computational costs of the
DFT+U and pure-DFT methods are comparable [49-52]. Despite this, the Ru,-TCNQ MOFs has not
been considered using DFT+U/plane-wave methods. Therefore, there are no In the DFT+U method,
the parameter U varies depending on the target system and must be determined through parameter
fitting. However, the electronic structure calculations using the DFT+U/plane-wave method have not
been performed for the Ru.-TCNQ MOFs. Therefore, in the study of the molecular integrated systems
based on the Ru.-TCNQ MOFs, it is necessary to first determine the optimal U value.

In this study, as the models of the molecular integrated systems composed of single-molecule
components with the open-shell electronic states, the author investigated the electronic structures and
spin states of Ru,-TCNQ MOFs using periodic systems with DFT+U/plane-wave method. For this
calculations, the author first determined the on-site Coulomb parameter U in the periodic system
calculations of the Ru-TCNQ MOFs. After determining the appropriate parameter, the author
performed the band calculations using the DFT+U/plane-wave method to investigate the relationship

between spin states and electron conductivity in the molecular integrated systems.

2. Computational Details

Fig. IV.3 shows the calculation models for the Gaussian DFT and DFT+U/plane-wave calculations.
All models were constructed based on SCXRD data for [{Ru2(0-CIPhCO3)4}2{TCNQ(OMe).}] (o-
CIPhCO; =ortho-chlorobenzoate; TNCQ(OMe),=2,5-dimethoxy-7,7,8,8-tetracyanoquinodimethane)
[42]. Fig. IV.3(a) represents the D»-A unit cluster model for the Gaussian DFT calculations, following
the same as previous works. Fig. IV.3(b) shows the isolated system for the DFT+U/plane-wave
calculations, with the same structure as the unit cluster model. Fig. IV.3(c) shows the periodic system
for the DFT+U/plane-wave calculations without the structural extraction from the SCXRD data. The
charge state is set to [Rux™]*-TCNQ(OMe),*> -[Rux™™]* (D*-A%"-D") since the Ru,-TCNQ MOF has
been proposed to exhibit this charge state prior to CO, adsorption [42]. In the D*-A*-D" charge state,
two [Ru™™]" units magnetically interact, exhibiting both the anti-ferromagnetic interaction (AFM)

state and the ferromagnetic interaction (FM) state, as shown in Fig. IV.4.
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(a) (b)

Fig. IV.3. The calculation models. (a) D2-A unit cluster model for the Gaussian DFT calculations.
(b)Isolated system and (c) periodic system along the ac-plane (left) and be-plane (right) for the

DFT+U/plane-wave calculations.
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Fig. IV.4. (a) Illustration of the charge state of [Ru™"]*-TCNQ(OMe),> -[Ru,"™]" (D*-A?"-D"),
and (b) the spin states due to the magnetic interaction between two [Rus] units, anti-ferromagnetic

interaction (AFM) and ferromagnetic interaction (FM) states.

The Gaussian 09 [53] was used for the Gaussian DFT calculations. the hybrid DFT calculations
were performed at PBEO [54]/LANLO&(f) (Ru) [55] and 6-31G* (others) [56,57] level of theory. The
BS method was employed to handle the open-shell electronic staes. The total charge was set to neutral

and the spin multiplicities of the AFM and FM states were singlet and septet, respectively.
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For the DFT+U/plane-wave calculations, the Vienna Ab initio Simulation Package (VASP) [58-61]
was performed at PBE functional [62]. The wavefunction was expanded using a plane-wave basis, and
the cut-off energy was set to 400 eV. The PAW method was applied to the core region (see Part I,
Chapter 1) [63,64]. The valence electrons for H, C, N, O, Cl, and Ru atoms were set to one (1s'), four
(2s22p?), five (2s22p?), six (2s*2p”), seven (3s23p°) and eight (5s'4d”), respectively. A supercell with a
vacuum region was used for the isolated system calculations, with the specific cell size of 30.00 x

30.00 x 30.00 A%, and the I'-point was sampled.

3. Results and Discussion
3.1 Fitting the on-site Coulomb parameter U in DFT+U/plane-wave calculations

To obtain appropriate U value for the Ru,-TCNQ MOF, the author first determined the on-site
Coulomb parameter U. From the perspective of the investigation for spin-polarized states, an approach
was considered in which the spin densities of ruthenium ions in the band calculations were adjusted
to match the spin densities of the Ru ions in the D2-A unit cluster model obtained from the Gaussian
DFT calculations. Therefore, the spin densities of Ru ions in AFM state in the isolated system, where
the D»-A unit cluster model was placed within the supercell, were calculated for U values ranging
from 0.0 to 5.0 eV, as shown in Table IV.1. From Table IV.1, When U exceeds 3.5 eV, asymmetric spin
densities between the two [Ruz] units were obtained. The U adjusts the degree of the open-shell
character, and as U increases, the open-shell nature becomes more pronounced. Thus, when U exceeds
3.5 eV, the open-shell character becomes too strong, leading to a different state from the considered
D*-A>-D" configuration. For further investigation of the parameter U determination, the author
investigated parameter fitting using the effective exchange integral (J value) for U values ranging from
0.0 to 3.0 eV. The J values are useful for investigating the strength of the magnetic coupling [39-41,50-
52]. To apply the Yamaguchi equation for the DFT/plane-wave calculations, the total spin angular
momentum is expressed using the electron density as explained in Part I, Chapter 3. For this work,
since the spin multiplicities of the AFM and FM states are singlet and septet, respectively, the
Yamaguchi equation with the electron density is written as

EFAFM _ pFM

12+ [ parm (N)dr = J peu~(r)dr’

where Ey, py®(r) and py? (1) are the total energy and the electron density of the major and minor

] Iv.1)

spins for the spin states Y (Y: AFM or FM), respectively. Fig. IV. 5 indicates that the J values of the
isolated system are too large in the range of U= 0.0 to 3.0 eV than that of the D»-A unit cluster model
calculated by Gaussian DFT. From the third-order polynomial approximation curve which was created
from the J values for U ranging from 0.0 to 3.0 eV, estimating that the U value, which gives the same
Jvalue as the D>-A unit cluster model, was approximately 3.5 eV. Therefore, in this work, U= 3.0 eV,

where no asymmetricity of the spin densities between the [Ruz] units was observed, and U = 3.5 eV,
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predicted from the approximation curve, were adopted in the DFT+U/plane-wave method for the

periodic systems.

Table IV.1. Spin densities of Ru ions in the isolated systems. The Ru numbers correspond to Fig.

IV.3(a), and the column for Gaussian DFT represents the spin density of the D»-A unit cluster model.

Spin density
U/eV 0.0 0.5 1.0 1.5 2.0 2.5
Rul 1.15 1.17 1.17 1.22 1.25 1.30
Ru2 1.00 1.00 0.96 0.97 0.95 0.90
Ru3 —0.97 —0.96 —-1.00 —0.93 —0.90 —0.85
Ru4 —-1.13 —-1.15 —-1.20 —-1.20 -1.23 -1.27
U/eV 3.0 3.5 4.0 4.5 5.0 Gaussian
DFT
Rul 1.37 1.37 1.27 1.26 1.25 1.27
Ru2 0.84 0.87 1.02 1.06 1.06 1.00
Ru3 —0.78 —0.66 —0.50 —0.35 —0.27 —0.96
Ru4 -1.34 —1.42 —-1.52 —-1.63 -1.74 -1.25
1.0 2.0 3.0 4.0

J/eV

-0.005

-0.010

-0.015

-0.020

-0.025

-0.030

UleVv

Fig. IV.5. U versus effective exchange integrals J values for U ranging from 0.0 to 3.5 eV. The black
line represents the J value calculated by Gaussian DFT (J= —0.0262 eV). The black dashed curve

represents the third-order polynomial approximation curve fitted for U values ranging from 0.0 to

3.0 eV, and the equation is J = —0.000290° —0.00017U* —0.00225U —0.00250 (R* = 0.99997).

U=3.5 eV deviates from the approximation curve due to the spin asymmetry.
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3.2 Investigation of Electrical Conductivity Changes Induced by Magnetic Transition

First, the spin densities of Ru ions in the periodic system were compared for two U values, U = 3.0
eV and 3.5 eV, determined through the parameter fitting. The calculated spin densities are shown in
Table IV.2. As shown in this table, the spin densities of the Ru ions were almost same between the two
U values. In the isolated systems, it is considered that the asymmetricity appeared as U increases
because the two [Ruz] units receive the different potentials, resulting from the structural extraction and
absence of surrounding components. Since such potential differences do not exist in the periodic
systems, the results for U = 3.0 eV and 3.5 eV remained unchanged. Hereafter, the author discusses

the results for U= 3.0 eV.

Table IV.2. Spin density of Ru ions for U = 3.0 and 3.5 eV in the periodic systems. The Ru numbers
correspond to Fig. IV.3(a).

Spin density
U=30¢eV U=35¢eV
AFM M AFM M
Rul 1.23 1.29 1.24 1.30
Ru2 1.23 1.29 1.24 1.30
Ru3 —-1.26 1.33 -1.27 1.34
Ru4 -1.26 1.33 -1.27 1.34

The electron conduction mechanism in MOFs are primarily categorized into two types: band
conduction, where electrons propagate as waves delocalized across the crystal, and hopping
conduction, where electrons are localized on individual molecules or atoms and propagate by
intermittently hopping between them [15]. Therefore, to evaluate the potential for electron
conductivity switching induced by the spin state transitions, similar to that of the single molecules as
described in Part II, the author analyzed the band structures and spin density distributions of the
periodic systems for each spin state. As an analysis of the band structures, density of state (DOS) plots
are presented in Fig. IV.6. From the DOS analysis, changes in the band structure between the AFM
and FM states were observed. However, they exhibit the multiple isolated peaks rather than continuous

bands, suggesting that the band conduction is unlikely to occur in the Ru,-TCNQ MOF.
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Fig. IV.6. DOS plots of the periodic systems in (a) the AFM and (b) FM states for U= 3.0 eV.
The positive (yellow) and negative (blue) DOS values represent the major and minor spins,

respectively.

As another analysis for the electron conduction in the Ru,-TCNQ MOF, the partial spin density
corresponding to each peak near the Fermi energy in DOS plots was calculated for each spin state. Fig.
IV.7 and Fig. IV.8 show the partial spin density distribution for each DOS peak in the AFM and FM
states, respectively. In the AFM state, the spin density was distributed only the [Ru:] units in any DOS
peaks. Consequently, even the hopping conduction does not occur in the AFM state because the
localization of electrons at the [Ruz] units. On the other hand, in the FM state, the spin density was
distributed not only the [Ruz] units but also the TCNQ linkers. Thus, the hopping conduction from the
[Ruz] units to the TCNQ linkers may be occurred in the FM state. As a result, the Ru,-TCNQ MOF

can be switched the electron conductivity by changing the spin states.

Fig. IV.7. Partial spin density distribution of the periodic system in the AFM state at (a) —1.5 to —1.0
eV, (b) —0.1t0 0.1 eV, (c) 0.4 t0 0.7 eV and (d) 0.8 to 1.0 eV for U= 3.0 eV. The yellow and blue
distributions represents positive and negative spin, respectively. All illustrations are viewed along

the a-axis, and the threshold of the spin density distributions is 0.0005 ¢~ Bohr >,
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eV,(b)-13to—-1.1eV,(c) -1.0to —0.8 eV, (d) —0.1 t0 0.1 eV, (¢) 0.1 t0 0.3 eV, (f) 0.3 to 0.5 eV and
(g) 0.5to 1.0 eV for U=3.0 eV. The yellow and blue distributions represents positive and negative
spin, respectively All illustrations are viewed along the a-axis, and the threshold of the spin density

distributions is 0.0005 ¢~ Bohr .

Fig. IV.9 presents the integrated partial spin density distribution within the range of E—Fr =—1.0 to
0.5 eV, combining all the peaks near the Fermi energy shown in Fig. IV.7 and Fig. IV.8. From Fig.
IV.9, the following insights can be drawn regarding functional design in molecular integrated systems:

AFM state: The spin distributions are localized at the [Ruz] units. Therefore, the electronic states

of each unit are independent, and unit-specific designs can be applied. That is,
following the design guidelines for single-molecule components of paddlewheel-type
complexes shown in Part 11, it is possible to design the characteristics of the units within
the molecular integrated systems.

FM state: The spin distributions are delocalized from the [Ruz] units to the TCNQ linkers. This
suggests that the wavefunctions of the [Ruz] units overlap, including the TCNQ linkers,
indicating the presence of quantum interference effect between the [Ru,] units. Therefore,
since the electronic states of each unit interfere with each other, new theories and design

guidelines for molecular integrated systems are required.

The quantum interference effect in the FM state is essentially the same as that in the molecular
parallel circuit discussed in Part I1I. That is, by introducing substituents into the [Ru2] unit to enhance
the spin polarization, the quantum interference can be suppressed, potentially allowing the system to
be controlled into an independent state similar to the AFM state. Conversely, if substituents that
weaken the spin polarization in the single-molecule components are introduced into the [Ruz] units,
the quantum interference effects may appear even in the AFM state, potentially making it impossible

to design the system as independent units, as seen in the FM state. As described above, the
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investigation of the electronic states of the Ru.-TCNQ MOFs in the periodic systems has provided
new insights into the electron conductivity and design principles of molecular integrated systems

incorporating open-shell components.

Fig. IV.9. Integrated partial spin density distribution of the periodic system in the AFM and FM
states for U= 3.0 eV. The energy range £E—FEF is from —1.0 to 0.5 eV. (a-1) The AFM state along the
ac-plane, (a-2) be-plane, (b-1) the FM state along the ac-plane and (b-2) the be-plane. The yellow
and blue distributions represents positive and negative spin, respectively The threshold of the spin

density distributions is 0.0005 ¢~ Bohr .

4. Conclusion

In this study, the author investigated the electronic structures of the Ru,-TCNQ MOFs as the model
of molecular integrated systems. For this investigation, the determination of the on-site Coulomb
parameter U in the DFT+U/plane-wave method for Ru,-TCNQ MOF was conducted first. Using the
determined U, the electronic structure calculations for the periodic system suggested that spin state
transitions could also induce changes in the electron conductivity in the molecular integrated systems
similar to the single-molecule components. Furthermore, the analysis of the partial spin density
distribution revealed that in the AFM state, the spin distribution is localized on the [Ruz] unit. This
indicates that the design of individual units, i.e., single-molecule components, can also be applied to
the design of the molecular integrated systems. On the other hand, in the FM state, the quantum
interference between the [Ru:] units leads to the spin distribution extending to the TCNQ linkers,
suggesting the necessity of a design guideline specific to the molecular integrated systems.

From these results, it is suggested that in molecular integrated systems containing single-molecule
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components with the open-shell electronic states, the electron conductivity can be switched through
the spin states change induced by the magnetic interactions between open-shell units. On the other
hand, it has been clarified that the electron transport properties and design guidelines differ
significantly depending on the spin states. Therefore, further detailed investigations focusing on the

design of molecular integrated systems are necessary in the future.
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General Conclusion

In this dissertation work, the author has investigated relationships between open-shell electronic
states and electron conductivities of single molecules and their aggregates, such as molecular parallel
circuit models and molecular crystal models, through simulations based on the quantum chemical
theory and condensed matter physics theory. In Part II, the author has demonstrated relationships
between spin states and electron conductivity in open-shell single molecules, aiming to establish
design guidelines for single-molecule transistors. In Part III, the author has examined molecular
parallel circuit models composed of two single-molecule components. By clarifying the relationship
between structure, electronic states, and electron conductivity, the author has established guidelines
for quantum interference control utilizing open-shell characters. In Part IV, as an investigation into
aggregates of the single molecules, the author has focused on crystalline materials with periodic
structures. Using first-principles band calculations, the author has clarified the relationship between
spin states and electron conductivity, and have proposed a method for controlling electron conductivity

through spin states. In the following, the author summarizes the results of each part.

Part II: Relationship between open-shell electronic state and single-molecule
electron conductivity

In Part II, the relationship between the structure, spin states, and single-molecule electron
conductivity of open-shell molecules was elucidated. Specifically, paddlewheel-type
dichromium(ILII) benzoate complexes with various substituents on the bridging ligands were
examined. By clarifying the relationship between spin states and electron conductivity, design
guidelines for single-molecule transistors using spin state changes were proposed. Metal-metal bonds
involving d-orbitals in these complexes exhibit a ground state of open-shell singlet (antiferromagnetic,
AFM) that causes electrons to localize on each metal ion due to the quasi-degenerate of the frontier
orbitals. However, it was revealed that introducing electron-donating/withdrawing substituents on the
bridging ligands shortens/elongates the metal-metal distance that increases/decreases orbital overlap.
As a result, the electron conductivity is controlled by the substituents. Furthermore, these metal
complexes exhibit a ferromagnetic (FM) state as an excited state, where electron delocalization
increases the electrical conductivity compared to the AFM state. In addition, it was found that the
conductivity ratio between the AFM and FM states can also be controlled by the substituents. Through
Part II, the author has clarified the relationship between the open-shell electronic state and the single-
molecule electron conductivity of the paddlewheel-type dichromium(Il) benzoate complex, and
proposed the design guidelines for single-molecule transistors utilizing changes in single-molecule

electron conductivity driven by switching the spin states in open-shell metal complexes.
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Part III: Comparison of open-shell electronic state and electron conductivity in
single molecule and two-molecule system

In Part III, the author has constructed a molecular parallel circuit model by considering a
[18]annulene as two linear polyenes connected in parallel. And the author has successfully obtained
fundamental insights into molecular circuits. Specifically, I have elucidated the effects of quantum
interference within the circuit by investigating the relationship between the electronic states and
electrical conductivity of [18]annulene with electron-donating/withdrawing substituents. In contrast
to classical parallel circuits, where the total current equals the sum of the currents through individual
components (i.e. Ohm’s law), the molecular parallel circuit model is strongly affected by quantum
interference that causes deviations from Ohm’s law. It was shown that the current through the annulene
circuit exceeds the sum of the currents through the two linear polyenes. Furthermore, the author has
revealed that the introduction of electron-withdrawing substituents suppresses this quantum
interference. Through Part III, the author has demonstrated that the quantum interference in the
molecular parallel circuit models composed of the single-molecule components violates Ohm’s law,
and show unique current behaviors. In addition, introducing the substituents into the molecular circuits

can control the quantum interference and tune circuit properties.

Part IV: Investigation of inter-molecular open-shell property and electrical
conductivity in molecular integrated system

In Part IV, the author has focused on metal-organic frameworks (MOFs) as the aggregate of the
single-molecule components and have elucidated the relationship between their electronic states and
electron conductivity. Especially, the author has investigated the relationship between electronic
structure and electron conductivity of the magnetic MOF composed of paddlewheel-type diruthenium
complexes and TCNQ linkers by using density functional theory calculations with periodic boundary
conditions (DFT+U/plane-wave method). In this system, the paddlewheel-type diruthenium units can
exhibit the spin-polarized states, and there is the magnetic interaction between them. In the model
complex, the AFM and FM states are the ground and excited states, respectively. From the spin density
distributions near the Fermi level, the author found that the electrons are localized on the diruthenium
complexes in the AFM state, whereas the electrons delocalize and spread to the TCNQ linkers in the
FM state. This result demonstrated that the FM state shows higher electron conductivity. Consequently,
it was shown that the electron conductivity can also be controlled by changes in the magnetic state in
periodic systems, similar to the case of the single-molecules. In addition, these spin distributions
suggested that the design of single-molecule components can be effective in the AFM state, whereas
an alternative design approach incorporating the quantum interference effects may be necessary in the
FM state. Through Part 1V, the author has proposed that the electron conductivity can be achieved

even in molecular crystalline materials with open-shell electronic structures by changing their spin
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states, and provided fundamental insights into the design of functional materials for the realization of

molecular devices.

In summary, the author has investigated the relationship between open-shell electronic states and
electron conductivity, focusing on the single-molecule transistors, the molecular parallel circuits
consisting of two molecules, and the periodic systems utilizing MOFs. As a result, the author has
clarified the control of electron conductivity through spin states induced by open-shell electronic
structures from single molecules to their aggregates. The findings in this dissertation are expected to
contribute to the field of the molecular electronics by providing design guidelines for single-molecule
components utilizing open-shell electronic states. Furthermore, they will offer theoretical insights and
material design strategies for molecular devices leveraging open-shell electronic states, and pave the

way for advancements in the development of functional molecular materials.
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Future Prospects

This dissertation has investigated the relationship between open-shell electronic states, spin states
and electron conductivities from single-molecule components to their aggregates. And then, this
dissertation works clarified the utilization of open-shell properties in single-molecule transistors and
provided guidelines for controlling open-shell properties in molecular circuits. Furthermore, it
uncovered fundamental insights into electrical conductivity switching induced by spin-state changes
in molecular crystals. On the other hand, there remain numerous issues to be addressed in molecular
electronics and molecular devices, and attention must also be directed toward their realization and

future trends. The major challenges can be outlined as below.

1. Molecular wiring

As discussed in Part I, treating single-molecule components as integrated circuits requires precise
molecular wiring and connection techniques. Molecular wiring primarily employs two methods:
arranging molecules on a substrate using self-assembled monolayers (SAMs) or connecting them
between electrodes [1-4]. SAMs allow for large-scale and uniform arrangements; however, because
they rely on molecular self-assembly, precise control over intermolecular distances and orientations
remains challenging. In electrode connections, the characteristics of single molecules are more likely
to be reflected. However, the instability of the molecule-electrode junction poses a significant

challenge.

2. Integration and arrangement of single-molecule components

Similar to the challenges with wiring, the techniques for integration and arrangement are still in a
developmental stage [4-8]. Currently proposed methods include patterning the substrate surface with
lithography to selectively position molecules, adsorbing molecules onto templates like carbon
nanotubes, floating molecules in a solution and transferring them onto a substrate (Langmuir-Blodgett
(LB) films), coating the substrate with techniques such as drop casting or spin coating, and assembling
molecular films layer-by-layer. All these methods rely on leveraging the characteristics of molecules,
such as selective binding through chemical modification, chemical adsorption, or electrostatic
interactions, to achieve integration and arrangement. Lithography allows for the regular arrangement
of molecules, but it faces challenges such as the technological resolution limits inherent in lithographic
techniques, similar to those encountered in semiconductors. Additionally, the complexity of the
required techniques for single-molecule devices makes mass production difficult. Methods utilizing
nanomaterial templates such as carbon nanotubes or graphene face challenges in application to

molecules with low affinity for carbon-based materials. Techniques like Langmuir-Blodgett (LB) films,

118



drop casting, and spin coating offer simple manufacturing processes and enable relatively large-scale
arrangements of materials; however, these methods are limited in terms of uniformity and the number
of layers that can be achieved. Layer-by-layer integration offers the advantage of precise thickness
control; however, scaling up this technique remains technically challenging. For the integration and
arrangement of single-molecule devices, it is essential not only to advance each individual method but
also to strategically combine techniques in a way that utilizes their strengths appropriately for specific

applications.

3. External field control of single-molecule devices

To achieve the switching of electrical conductivity through spin state changes as discussed in Part
IT and Part 1V, it is necessary to alter the spin state by applying an external field, such as optical,
electric field, magnetic field, and so on [3,5]. Regarding single-molecule transistors, in principle,
individual control of each molecule is required. However, considering the size of the apparatus needed
to apply an external field and the range of its influence, achieving this presents significant technical
challenges. On the other hand, for molecular devices, it is sufficient to classify characteristics based
on the overall state of the molecule and control multiple states for proper functionality. For instance,
as discussed in Part IV, the Ru>-TCNQ MOF exhibits changes in overall magnetism upon gas
adsorption. This property can be leveraged for applications such as memory devices or gas sensors

[39,10].

4. Establishment of calculation method for electron conductivity of molecular device

Finally, from the perspective of theoretical calculations, establishing reliable methods for
calculating electron transport is crucial. In addition to the ESGF method discussed in this thesis, other
advanced computational approaches, such as the nonequilibrium Green’s function (NEGF) method
with periodic boundary conditions applied to electrodes, have been proposed. Moreover, there are
multiple modes of electron conduction in single-molecule components and molecular integrated
systems such as MOFs. For example, in single-molecule components, it has been revealed that
tunneling conduction predominantly contributes in the short-chain length region, whereas hopping
conduction becomes the main contribution as the chain length increases [11]. Additionally, as
described in Part IV, MOFs can exhibit both band conduction, resulting from the delocalization of
wavefunctions within the crystal, and hopping conduction between units [12]. If a theoretical
framework is developed that adapts these different conduction mechanisms depending on the system’s
state, theoretical research on electron conduction in both single-molecule components and molecular
integrated systems is expected to advance further. In fact, theoretical calculations have been proposed
that enable the transition from the tunneling regime to the hopping regime in single-molecule

conduction [13]. It is also necessary to propose a theoretical framework that enables the switching of
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electrical conduction mechanisms in molecular integrated systems. In addition, it is desirable to
establish a theoretical formulation for electrical conduction in molecular circuits that takes quantum
interference into account. With the advancement of these theoretical computational methods, it is
expected that simulations capable of evaluating the electron conduction properties of molecular

devices will be established.
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