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Abstract 
 

In this dissertation work, relationships between open-shell electronic states and electron 

conductivities of single molecules and their aggregates is investigated through simulations based on 

quantum chemical theory and condensed matter physics theory toward applications to molecular 

devices. The dissertation is composed of four parts. In Part I, the theoretical foundation of quantum 

chemical calculations, focusing on density functional theory methods for periodic systems with 

localized spins is introduced. In addition, the theory of quantum transport, electron conductivity in 

single molecule is explained, and the calculation methods for magnetic interactions and an advanced 

method for optimizing molecular structures with corrected spin states are also described. In Part II, 

single-molecule electron conductivities of open-shell single molecules are examined, and relationships 

between the electron conductivities, molecular structures and spin states are investigated aiming to 

establish design guidelines for single-molecule transistors. In Part III, molecular parallel circuit 

models composed of two single-molecule components are considered as the first step of the aggregates 

of the single-molecule components. By clarifying the relationship between structure, electronic states, 

and electron conductivity, a guideline for quantum interference control utilizing open-shell characters 

is established. In Part IV, as an investigation of more aggregation of the single molecules, crystalline 

materials with periodic structures are focused. A relationship between spin states and electron 

conductivity is clarified by using first-principles band calculations. As a result of these studies, this 

dissertation elucidates the relationship between spin-state control enabled by open-shell electronic 

states and electron conductivity, spanning from single molecules to their aggregates. Therefore, this 

dissertation provides design guidelines for single-molecule components utilizing open-shell electronic 

states and offers fundamental insights into theoretical and material design guidelines for molecular 

devices leveraging open-shell properties. 
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Preface 
 

With the advancement of semiconductor miniaturization technology reaching the molecular 
scale, molecular electronics, which utilizes individual molecules as electronic components, has 
garnered increasing attention. While proposals for single-molecule components and molecular 
devices are being made, fundamental laws similar to Ohm’s law have not been established in 
molecular electronics. Consequently, a systematic design approach, spanning from single-
molecule components to molecular circuits and ultimately to molecular devices, has not been fully 
developed to clarify these fundamental principles. In such molecular-scale electronic conduction, 
quantum effects emerge, making it essential to understand the system based on the quantum 
chemical theory. Therefore, from the perspective of theoretical chemistry, it is desirable to 
elucidate the electron conduction mechanisms in molecular devices, propose design guidelines, 
and establish principles for functional control. 

In this dissertation, I aimed to establish guidelines for designing and controlling the electron 
conductivity of single molecules and their aggregates for applications in molecular devices. As a 
functional indicator, I focused on open-shell electronic states. The open-shell electronic states 
have been reported to influence a molecule’s magnetism and electron conductivity, making it 
possible to design functional molecules based on the open-shell electronic states. Therefore, I 
investigated relationships between the open-shell electronic states and electron conductivity, from 

single molecules to their aggregates, toward applications in molecular devices. This dissertation works 

will provide the fundamental insights into theoretical and material design guidelines for molecular 

devices leveraging open-shell properties.  
This dissertation study was carried out under the supervision of Prof. Dr. Masayoshi Nakano, 

Prof. Dr. Norikazu Nishiyama and Prof. Dr. Yasutaka Kitagawa at Division of Chemical 
Engineering. Department of Materials Engineering Science, Graduate School of Engineering 
Science, Osaka University from April 2019 to March 2025. I dedicate this dissertation to late Prof. 
Dr. Masayoshi Nakano.  
 

Naoka AMAMIZU 
Division of Chemical Engineering Science 

Department of Materials Engineering Science 
Graduate School of Engineering Science, Osaka University 
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General Introduction 
 

1. Open-shell systems 

Open-shell nature expresses the instability of chemical bond, and is often explained by using the 

dissociation model of a hydrogen molecule, as shown in Fig. 1.1 [1,2]. When two hydrogen atoms are 

sufficiently close, they share electrons to form a covalent bond, resulting in the formation of a 

hydrogen molecule. In this case, the system is called a closed-shell system (Region I in Fig. 1.1). On 

the other hand, as the distance between the hydrogen atoms increases, the electrons gradually localize 

on each atom. At sufficiently long distances, the system transitions into two independent hydrogen 

atoms that have no chemical bond. Such a state is referred to as a pure open-shell system, which can 

be described as a system where localized spins exist on each atom of the molecule (Region III in Fig. 

1.1). Organic radicals and transition metal complexes, which have localized spins, are typical 

examples of open-shell systems. For example of the open-shell system, organic diradical molecules 

have been attracted attention for a long time because of their unique properties and physical properties 

[3-5].  

 

 
Fig. 1.1. The potential energy curve of H2 along the H-H distance, and classification of the closed-

shell and open-shell systems [2,6,7]. 
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One of the oldest examples of organic diradical molecules is the hydrocarbon of Thiele [8] and 

Chichibabin [9] as shown in Fig. 1.2 (a) and (b), respectively. The open-shell nature can be explained 

by their resonance structure. According to Clar's six-membered ring rule, the stability of the system 

depends on the number of six-membered ring (benzoid) structures determined by aromatic 

stabilization because the aromatic stabilization energy due to the six-membered ring structure is 

expected to compensate for some of the destabilization energy due to p bond cleavage [10]. Therefore, 

in the Thiele's and Chichibabin's hydrocarbons, the open-shell diradical structures are more stable than 

the closed-shell quinoid structures because there are more six-membered rings in the diradical forms, 

and they are expected to exhibit the open-shell nature. However, since the two unpaired electrons in 

these hydrocarbons slightly interact, the closed-shell structures have a non-negligible contribution to 

their resonance structures. Thus, they are classified as intermediate open-shell molecules rather than 

pure open-shell molecules (Region II in Fig. 1.1).  

 

 
Fig. 1.2. The hydrocarbons of (a) Thiele and (b) Chichibabin. Both hydrocarbons show the 

closed-shell quinoid structures on the left side and the open-shell diradical structures on the right 

side. 

 

In order to elucidate the nature and physical properties of diradical molecules, it is important to 

define a characteristic quantity of the open-shell nature within Regions I-III. As the representative 

feature, a diradical character was proposed by Hayes and Siu with a definition as the contribution of 

two-electron excited states [11]. In their definition, the value of the diradical character is 0 for closed-

shell structure and 1 for open-shell structure, with values representing the open-shell states. While this 

parameter explicitly characterizes the open-shell nature, it has the drawback that the computational 

cost of the two-electron excited configuration is very high. Another parameter for evaluating diradical 

character is the occupation numbers of natural orbitals. The natural orbitals are defined as the 

eigenfunctions of the density matrix [12-14], and their occupation numbers n represent the number of 
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electrons occupying each orbital. The value of n is 0 or 2 for the closed-shell systems, but it falls 

within the range 0 < n < 2 for the open-shell or diradical states. Therefore, it can be used as an indicator 

of open-shell character [15,16]. Takatsuka et al. and Head-Gordon have defined odd electrons based 

on the natural orbitals, which provide the number of the unpaired electrons and their spatial 

distributions [17,18]. Nakano et al. have proposed the multiple diradical characters based on the 

occupation number of the natural orbitals and the odd electrons, and clarified a relationship between 

the diradical characters and optical properties of the open-shell molecules [19-23]. Especially, 

regarding nonlinear optical materials, a correlation between the diradical characters and the second 

hyperpolarizability, which provides nonlinear optical response properties, has been identified [24,25]. 

The correlation has been revealed that the second hyperpolarizability reaches its maximum value in 

the region exhibiting intermediate open-shell states. In this way, research on the open-shell systems 

have been conducted over a long period, enabling the proposal of material design guidelines based on 

the open-shell properties. 

In the field of condensed matter physics, the open-shell characters are also explained by electron 

correlation [28-28]. Usually, molecules possess a finite HOMO-LUMO gap. On the other hand, in 

bulk systems consisting of an infinite number of atoms, the orbitals form continuous bands, creating 

a band gap that is smaller than the HOMO-LUMO gap of typical molecules. As the molecular size 

increases, the HOMO-LUMO gap decreases, and the frontier orbitals begin to exhibit quasi-

degeneracy. This trend becomes particularly pronounced in multinuclear metal complexes and metal 

nanoclusters, where multiple metal atoms with d-orbitals are aggregated (see Fig. 1.3) [29]. Such 

systems are referred to as strongly correlated systems, which result in localized electrons on metal 

ions and give rise to magnetism arising from various spin states [30]. In Fig. 1.1, each region is 

explained by the electron correlation: Region I represents the weak correlated systems, Region II 

denotes the intermediate correlated systems, Region III denotes the strong correlated systems.  
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Fig. 1.3. Illustration of the electronic structures in (a) Bulk system, (b) polynuclear complex, 

metal cluster, (c) atom and small molecule [29]. 

 

In the viewpoint of quantum chemical calculations, the open-shell systems, especially strongly 

correlated systems, are highly challenging subject to calculate the electronic structure. For instance, 

as explained in the example of the hydrogen molecule in Fig. 1.1, the HOMO-LUMO gap is 

sufficiently large in the closed-shell system, and the wavefunction of the hydrogen molecule can be 

approximated solely by the ground state electron configuration, where two electrons occupy the 

bonding orbital (HOMO). In the case of the open-shell systems, the HOMO-LUMO gap competes 

with the Coulomb repulsion between the two electrons since the HOMO and LUMO are quasi-

degenerate. It makes the contribution of the excited configuration (two electrons occupy the LUMO) 

non-negligible. As a result, even in the ground state, it becomes necessary to incorporate both the 

ground and excited configurations. Consequently, the wavefunction must be expressed as a linear 

combination of multiple determinants. 

When the wavefunction is described using multiple Slater determinants, an accurate depiction 

requires a linear combination of all possible configurations. This method is called the configuration 

interaction (CI) method. Since it involves a vast number of configurations, however, the computational 

cost becomes prohibitively high, making it impractical for anything other than simple molecules. To 

address this, the complete active space (CAS) CI method that only the quasi-degenerate orbitals are 

selected for applying the CI approach, is proposed. The complete active space self-consistent field 

(CASSCF) method, in which the orbital coefficients of each determinant are also optimized, is often 

used for the practical use [31]. Thus, the electronic state calculations of strongly correlated systems 

are challenging to handle, especially for the theoretical calculations of metal-metal bonding and their 
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magnetism using CASSCF and its advanced methods such as CASPT2 proposed by Roos, Gagliardi, 

McGrady and so on [32-36]. On the other hand, in multinuclear metal complexes, the number of d-

orbitals to be considered becomes significantly large, resulting in a substantial computational cost 

even with the CAS method. To address this, calculation methods using the broken-symmetry (BS) 

approach, which represents the system with a single determinant without strictly satisfying spin 

symmetry, have also been proposed [37-39]. The details of this method are explained in Part I Chapter 

3. The BS method, combined with the spin contamination error, has enabled the treatment of 

multinuclear metal complexes at a lower computational cost. Furthermore, it has facilitated the 

analysis of the magnetic properties of multinuclear metal complexes [40]. In addition, in multinuclear 

metal complexes, it has been revealed that changes in spin states affect electrical conductivity, with 

the spin-excited state exhibiting higher electrical conductivity compared to the spin-ground state [41-

43]. 

As described above, unique optical, magnetic, and electron conductive properties based on open-

shell systems emerge, enabling their application to functional materials and the development of design 

guidelines. 

 

2. Molecular electronics 

Microfabrication technology for integrated circuits has been developed according to Moore’s law 

proposed in 1965 [44,45]. Fig. 2.1 illustrates the year-by-year changes in the process size, an index of 

the miniaturization of transistors [46]. The process size has been decreasing over the past 30 years, 

and this miniaturization of transistors has increased integration density, which drastically improves 

the performance of electron devices. On the other hand, it has been suggested that the miniaturization 

of silicon (Si)-based devices is almost reaching its limit. Table 2.1 shows technology advancements, 

change in the transistor process size and gate length [47]. Since the development of the complementary 

metal oxide semiconductor (CMOS) technology around 1990, the introduction of high-k films with 

high dielectric constants has dramatically miniaturized transistor sizes. The “International Technology 

Roadmap for Semiconductors (ITRS) 2015” predicted that Moore’s Law would come to an end by 

2021 [48], however some advancements in technology such as FinFET (a three-dimensional (3D) 

stacked transistor technology introduced in 2011 beyond the traditional planar technology) and 

extreme ultraviolet (EUV) lithography (implemented in 2019) have brought further miniaturization of 

process sizes. The “International Roadmap for Devices and Systems (IRDS)” released by IEEE has 

reported that the reduction in process size with current mainstream technologies by the FinFET is 

expected to saturate by 2028, leading to a transition towards new manufacturing technologies, such as 

3D structures [49]. In the future, a miniaturization beyond 2nm is expected to be achieved using a 

technology called Gate-All-Around (GAA), which arranges conductive channel regions in the 3D 

structure.  
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Fig. 2.1. Year-by-year changes in process size of transistors [46,47]. 

 

Table 2.1. Technological advancements and changes in transistor process size. 

Year Process size / nm Gate length / nm Technological advancements 

1990 800 800 Early CMOS processes 

1995 350 350 
Improved power efficiency, early scaling 

effects 

2000 180 180 
Increased integration, introduction of Cu 

wiring 

2004 90 50 
Exploration of high-k dielectric and metal 

gate technology 

2007 45 35 
Practical use of high-k/metal gate 

technology 

2011 22 25 Introduction of FinFET (3D transistor) 

2014 14 20 
Improved FinFET, enhanced performance, 

reduced power consumption 

2017 10 

18 ~ 20 

Higher transistor density, approaching 

scaling limits 

2019 7 
Practical use of EUV (Extreme 

Ultraviolet) lithography 

2022 5 15 ~ 18 
Mainstream for high-performance chips, 

further integration 

2024 3 10 ~ 14 
Start of mass production, transition to 

next-gen chip technologies 

Forecast < 2 < 10 
Advancement of 3D structures, adoption 

of GAA (Gate-All-Around) 

1
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100

1000

1990 2000 2010 2020 2030
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Fig. 2.2. Schematic diagram of planar, FinFET and GAA. 

 

As the miniaturization technology for semiconductors have developed, various problems associated 

with the miniaturization of Si-based transistors have become difficult to ignore. For example, the 

miniaturized semiconductors face problems such as increased complexity in processing, variability in 

size and the non-uniform distribution of impurity atoms doped into the semiconductor. Additionally, 

as insulating films become excessively thin, tunneling currents can no longer be ignored because of 

leakage currents and significant energy losses. Furthermore, the lithography technologies for further 

miniaturization would require a light irradiation with wavelengths shorter than those of EUV (< 13.5 

nm), posing another critical issue.  

In the current FinFET technology, the smallest dimension has reached 5 nm. As the Si-based 

semiconductor miniaturization has approached the molecular scale and faced the aforementioned 

scaling limits, molecular electronics has attracted much attention as a new class of nanomaterials [50-

55]. The molecular electronics is aimed to use functional single-molecules for the electronic 

components, such as wires (resistors), transistors, diodes and so on. In 1956, von Hippel was proposed 

the first concept of assembling electronic devices from atoms or molecules in a bottom-up approach 

[56]. The current attention on the molecular electronics has originated from the theoretical proposal 

of a single-molecule diode by Aviram and Ratner in 1974. [57]. Fig. 2.3 shows the concept of the 

single-molecule diode proposed by Aviram and Ratner. They considered that a connection an electron 

acceptor i.e. tetracyanoquinodimethane (TCNQ) and an electron donor i.e. tetrathiafulvalene (TTF) 

via a σ-bond through an insulating region would enable a unidirectional electron transport within the 

single-molecule (see Fig. 2.3 (a) and (b)). When a forward bias voltage is applied as shown in Fig. 2.3 

(c), electron transfer occurs from Electrode I to TCNQ if the HOMO level of Electrode I becomes 

higher than the LUMO of TCNQ. Similarly, if the LUMO level of Electrode II becomes lower than 

the HOMO of TTF, electron transfer occurs from TTF to Electrode II. Due to this insulation, the 

electron transfer from TCNQ to TTF during the process becomes irreversible. On the other hand, in 

the case of a reverse bias voltage, as shown in Fig. 2.3 (d), due to the energy level relationship, a 

significantly high bias voltage is required for electron transfer from the HOMO of Electrode II to the 

LUMO of TTF, as well as from the HOMO of TCNQ to the LUMO of Electrode I. Therefore, it was 

considered that this molecule shows functionality as a rectifier, allowing electron transfer only in the 

direction from TCNQ to TTF under forward bias. The rectification of such an Acceptor-s/bonds-
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Donor structure was experimentally demonstrated by Geddes et al. in 1990 [58]. Even today, the 

asymmetric connection of acceptor and donor units remains a fundamental design guideline for single-

molecule diodes [59-63]. 

 

 
Fig. 2.3. (a) Single-molecule diode proposed by Aviram and Ratner, and schematic energy 

diagram of the rectification mechanism: (b) no bias , (c) forward bias from Electrode I to Electrode 

II and (d) Reverse bias from Electrode II to Electrode I. 

 

After the proposal of the molecular rectifier, the scanning tunneling microscopy (STM) was 

developed. The development of STM has enabled the manipulation of individual atoms [64,65]. In 

addition, electron transport theories and computational methods for the nanoscale materials have also 

been developed. Fischetti and co-workers proposed a calculation method for electron transport in 

nanoscale semiconductors using semiclassical approximations with Monte Carlo methods [66]. 

Additionally, Mujica et al. formulated the electrical conduction in single molecules based on the elastic 

scattering Green’s function method [67,68]. Until the early 1990s, the foundational methodologies of 

the field had been not established yet although the many research had focused on applications of the 

nanomaterials.  

A significant breakthrough in molecular electronics was the development of single-molecule 

electron conductivity measurement techniques. Reed et al. proposed the mechanically controllable 

break junction (MC-BJ) method and measured the current-voltage characteristics of 1,4-benzene 

dithiol [69]. Fig. 2.4 illustrates a procedure of the MC-BJ method. First, a self-assembled monolayer 

(SAM) of 1,4-benzene dithiol is formed on the surface of the gold wire (Fig. 2.4 I→II) by immersing 

a gold wire into a tetrahydrofuran (THF) solution of 1,4-benzene dithiol. Next, the gold wire is pushed 

until it breaks by the pushing rod (Fig. 2.4 III). After evaporating the solvent, the rod is retracted, 

followed by the measurement of the current through the 1,4-benzene dithiol molecule, which bridges 
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the gold wire (electrodes) (Fig. 2.4 IV). By repeating the operations in Fig. 2.4 III and IV multiple 

times, the statistical electron conductivity of a single molecule can be determined. The MC-BJ method 

has enabled the measurement of the conductance of even hydrogen molecules [70]. Another method 

of the measurement of single-molecule electron conductivity is the scanning tunneling microscope 

break junction (STM-BJ) method proposed by Tao et al. [71]. In this method, the STM tip is brought 

into contact with the metal substrate surface to form a metallic nanojunction. Once the sufficient 

contact is confirmed, the tip is gradually retracted to break the junction. By adsorbing the target 

molecules onto the electrode surface through solution or deposition methods, the molecule bridges the 

nanogap during the retraction process. A voltage is then applied to measure the current through the 

bridged molecule (see Fig. 2.5). By repeatedly forming/breaking nanogaps and bridging molecules, 

the electrical conductivity of molecules can be statistically measured. This method has become the 

mainstream technique for single-molecule electron conductivity measurements due to its ease of 

repeated measurements, high reproducibility, and adaptability to a wide range of molecules. Along 

with the development of techniques for measuring single-molecule electrical conductivity, theoretical 

prediction methods have also advanced by the proposals of electron transport theories based on 

Green’s functions combined with quantum chemical calculations (The detail is provided in Part I 

Chapter 2) [72-77]. 

 

 
Fig. 2.4. Illustration of MC-BJ method. I: Initial state of gold wire, II: Immersing a gold wire into 

tetrahydrofuran (THF) solution of 1,4-benzene dithiol, and the self-assembled monolayer (SAM) of 

1,4-benzene dithiol forms on the surface of the gold wire, III: Pressing the pushing rod until gold 

wire breaks, and IV: Relaxing the rod and bridging the molecules between the gold wire electrodes. 
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Fig. 2.5. Illustration of STM-BJ method. (a) STM tip contacts with the metal substrate, and (b) the 

molecule bridges between the STM tip and the substrate. 

 

Since the techniques for measurements and calculations of single-molecule electron conductivity 

were developed, a variety of functional single-molecule components like the single-molecule diodes 

(rectifiers) have been proposed. The simplest single-molecule components are called molecular wires, 

which connects between individual components and serve as resistors [78-81]. Molecular wires have 

also been used to evaluate the fundamental properties of single-molecule devices. For example, it has 

been investigated that conductivity decays exponentially with molecular chain length [82]. Based on 

this guideline, researches have been made to design molecular wires with extremely low decay rates 

relative to chain length [83,84]. Single-molecule transistors or switches utilize two states with different 

electron conductivity, and define the high-conductivity state as ON and the low-conductivity state as 

OFF. The switching is generally achieved using spin state transitions [42,43,85], structural changes 

[86,87] and redox state changes [88] controlled by external stimuli. Moreover, single-molecule 

transistors utilizing gate modulation with a three-terminal configuration have also been proposed [89]. 

Furthermore, it becomes possible to realize logic operations by using single-molecule components 

[90-94]. These devices have been proposed for use as logic operation elements, utilizing the fact that 

the molecular structure and electronic state can vary depending on multiple external stimuli or the 

intensity of input signals.  

For the practical application of these single-molecule components as molecular devices, the next 

essential step is their integration. Recently, for example, integrated single-molecule components based 

on self-assembled monolayers (SAMs) have been proposed and have shown a variety of functionalities 

[95-97]. Research toward the molecular devices has also proposed integrating hundreds to thousands 

of single-molecule devices on a semiconductor chip to develop applications such as biosensors that 

detect interactions between single-molecule devices and external molecules like gases [98]. In addition, 

it has suggested an application of the nonlinear electrical signals of aggregated molecules derived from 

molecular tunneling conduction to neuromorphic computing, because this phenomenon is similar to 

electrical signals of human brain [99,100].  



 11 

While the molecular electronics continues to advance, design guidelines indicating which materials 

are best suited for single-molecule components have not to be established yet. In addition, in systems 

where single-molecule components are integrated, fundamental insights into the electron conduction 

properties when these molecules are interconnected remain largely unknown. In this way, the 

theoretical design and material design principles for these molecular devices remain unclear, and 

fundamental insights have been scarcely studied.  

 

3. Outline of this dissertation 

This dissertation is composed of four parts. Part I provides the general theory for quantum chemical 

calculations (Chapter 1), electron transport for single molecule (Chapter 2) and Estimation of 

molecular magnetism and correction of spin contamination (Chapter 3). 

In Part II, the author examined to utilize the open-shell properties for single-molecule components. 

In particular, the author focused on the structural and spin state changes of metal complexes with open-

shell electronic states and their effect on the single-molecule electron conductivity. 

In Part III and IV, the author explored the aggregates of single-molecule components. In Part III, 

the author considered a molecular parallel circuit model composed of two single-molecule components 

as a simple integrated system, and the author investigated the relationship between its electronic state 

and electron conductivity. In Part IV, the author extended the investigation to molecular crystalline 

models with periodic structures and examine the relationship between spin states and electron 

conductivity. 

This dissertation work clarifies the relationship between open-shell electronic state and electron 

conductivity, from single-molecule components to their aggregate models. These results will not only 

provide design guidelines based on open-shell electronic states in single-molecule components but 

also contribute to the development of advanced molecular device designs and the establishment of 

fundamental knowledge.  
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Chapter 1. Quantum chemical calculation 
To theoretically predict the physical properties of materials, Schrödinger proposed a fundamental 

equation known as the Schrödinger equation. The solution to this equation, called the wavefunction, 

is understood to provide a complete quantum mechanical description of any system. For two-body 

problems such as the hydrogen atom, the Schrödinger equation can be solved exactly. However, for 

systems involving more than two bodies, it becomes impossible to solve the Schrödinger equation 

precisely. Hartree-Fock (HF) theory and density functional theory (DFT) calculation are the most 

familiar methods to solve the Schrödinger equation for many-body systems. In this section, the author 

describes the fundamentals of HF theory and DFT. In addition, the author discusses the DFT 

calculation for the periodic systems. 

 

1.1 Hartree-Fock theory 

Hartree-Fock (HF) theory is a representative approximation method in modern quantum chemistry. 

Based on the HF theory, various methods have been developed, enabling the calculation of molecular 

physical properties through computational approaches using appropriate methods. In this section, the 

key results obtained from the derivation of the HF equations are presented [1]. 

 

1.1.1 Hartree-Fock equation[2,3] 

Under the Born-Oppenheimer approximation, the Hamiltonian of a molecule consisting of M fixed 

atomic nuclei and N electrons is expressed as follows 

𝐻" = −%
1
2∆!

"

!#$

− %
𝑍%
𝑟!%

",'

!,%#$

+%
1
𝑟!(

"

!)(

, (1.1) 

where the first term represents the kinetic energy of the electrons, the second term is the Coulomb 

attraction between the electron and nuclei, and the third term is the Coulomb repulsion between the 

electrons. 

The wavefunction Y is approximated as an antisymmetrized product of normalized N spin orbitals 

ci(x). Each spin orbital is a product of a special orbital fk(r) and a spin function s(s) = a(s) or b(s). 

This antisymmetrized wavefunction is called Slater determinant [4] and is given by 

Ψ*(𝒙$, ⋯ , 𝒙") =
1
√𝑁!

5
𝜒$(𝒙$) ⋯ 𝜒"(𝒙$)
⋮ ⋱ ⋮

𝜒$(𝒙") ⋯ 𝜒"(𝒙")
5. (1.2) 

The HF method is a computational approach that determines the orthonormal spin orbitals ci(x) that 

minimize the system’s energy based on the Slater determinant. According to the variational principle, 

the optimal spin orbitals are those that minimize the electronic energy:  

𝐸* = ;Ψ*<𝐻"<Ψ*= =%𝐻!

"

!#$

+
1
2 %(𝐽!( −𝐾!()

"

!,(#$

, (1.3) 

where 
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𝐻! = @𝜒!∗(𝒙$) A−
1
2∆! −%

𝑍%
𝑟!%

'

%#$

B𝜒!(𝒙$)𝑑𝒙$, (1.4) 

𝐽!( = @@𝜒!∗(𝒙$)𝜒(∗(𝒙,)
1
𝑟!(
𝜒!(𝒙$)𝜒((𝒙,)𝑑𝒙$𝑑𝒙,, (1.5) 

𝐾!( = @@𝜒!∗(𝒙$)𝜒(∗(𝒙,)
1
𝑟!(
𝜒!(𝒙,)𝜒((𝒙$)𝑑𝒙$𝑑𝒙,. (1.6) 

Jij and Kij are called Coulomb integrals and exchange integrals, respectively, with the following 

relationship: 

𝐽!! = 𝐾!! . (1.7) 

Minimizing Equation (1.3) subject to the orthonormalization conditions 

@𝜒!∗(𝒙)𝜒((𝒙)𝑑𝒙 = 𝛿!( , (1.8) 

the HF differential equations are obtained 

𝑓F|𝜒!⟩ =%𝜀!(<𝜒(=
"

(#$

, (1.9) 

where 

𝑓F(𝑖) = −
1
2∆! −%

𝑍%
𝑟!%

'

%#$

+ 𝑣-.(𝑖). (1.10) 

The operator 𝑓F(𝑖) is an effective one-electron operator, called the Fock operator. vHF(i) is the average 

potential influenced by the i-th electron due to the presence of the other electrons. This approach treats 

electron-electron repulsion in an averaged manner, allowing the complex many-body problem to be 

approximated as a simpler single-electron problem. 

Equation (1.9) has N solutions, and their unitary transformations are also solutions of Equation (1.9). 

In other words, the wavefunction based on the Slater determinant is invariant under unitary 

transformations. Since e is a Hermitian matrix, it is possible to choose a unitary matrix U that 

diagonalizes it. The corresponding orbitals ci' are called canonical HF orbitals and satisfy the 

following canonical HF equation: 

𝑓F|𝜒!/⟩ = 𝜀!/|𝜒!/⟩. (1.11) 

Hereafter, the prime in Equation (1.11) is omitted, and it is referred to as the HF equations as 

𝑓F|𝜒!⟩ = 𝜀!|𝜒!⟩. (1.12) 

From the above, the problem of solving a single Slater determinant can be regarded as the problem of 

solving molecular orbitals (MOs) using the HF equation (1.12). According to Koopmans’ theorem, the 

canonical orbitals obtained by solving this equation are understood to be suitable for describing the 

removal of an electron from the system [5]. 
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1.1.2 Restricted closed-shell HF method: Roothaan equation 

By solving the HF equation, molecular information can be obtained; however, solving this equation 

numerically in its original form is difficult. Roothaan devised a method to solve the HF equation using 

standard matrix operations by introducing the linear combination of atomic orbitals (LCAO), which 

transforms the differential equation into a system of algebraic equations [6]. 

First, let us consider eliminating spin. For the restricted closed-shell case, the set of spin orbitals is 

𝜒!(𝒙) = L
𝜓((𝒓)𝛼(𝑠)
𝜓((𝒓)𝛽(𝑠)

. (1.13) 

Substituting Equation (1.13) into the HF equation (1.12), the following equation is obtained 

𝑓F(𝒙$)𝜓((𝒓$)𝛼(𝑠$) = 𝜀(𝜓((𝒓$)𝛼(𝑠$). (1.14) 

Multiplying both sides of Equation (1.14) from the left by a*(s1) and integrating with respect to the 

spin variables, the following HF equation for the spatial orbitals in a closed-shell system is obtained 

𝑓F(1)𝜓((1) = 𝜀(𝜓((1), (1.15) 

where 𝑓F(1) is the closed-shell Fock operator,  

𝑓F(1) = ℎ(1) +%2𝐽0(1) − 𝐾0(1)
"/,

0

. (1.16) 

Ja(1) and Ka(1) represent the closed-shell Coulomb and exchange operators, respectively.  

Next, a basis set is introduced to transform the differential equation into a set of algebraic equations. 

By introducing a set of K basis functions {fµ(r) | µ = 1,2, …, K}, the unknown molecular orbitals yi(r) 

are expanded as a linear combination 

𝜓! =%𝐶2!𝜙2

3

2#$

, 𝑖 = 1,2,⋯ ,𝐾, (1.17) 

where Cµi is the µ-th orbital coefficient of i-th MO y, which is called LCAO-MO. Substituting 

Equation (1.17) into the closed-shell HF equation (1.15), multiplying both sides of equation from the 

left by fµ*(1) and integrating, the integro-differential equation is transformed into a matrix equation: 

%𝐶4!
4

@𝜙2∗(1)𝑓F(1)𝜙4(1)𝑑𝒓$ = 𝜀!%𝐶4!
4

@𝜙2∗(1)𝜙4(1)𝑑𝒓$. (1.18) 

Here the overlap matrix S and the Fock matrix F are defined as follows:  

𝑆24 = @𝜙2∗(1)𝜙4(1)𝑑𝒓$, (1.19) 

𝐹24 = @𝜙2∗(1)𝑓F(1)𝜙4(1)𝑑𝒓$, (1.20) 

and then, the HF equation (1.18) can be rewritten by using the two matrix (1.19) and (1.20),  

%𝐹24𝐶4!
4

= 𝜀!%𝑆24𝐶4!
4

, 𝑖 = 1,2,⋯𝐾, (1.21) 

or 
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𝑭𝑪 = 𝑺𝑪𝜺. (1.22) 

Equation (1.22) is called the Roothaan equation [6]. 

 

1.1.3 Unrestricted open-shell HF method: Pople-Nesbet equation 

In Section 1.1.2, the author discussed the restricted closed-shell HF equation; here, the author 

derives the unrestricted open-shell Hartree-Fock (UHF) method. This method can be applied not only 

to open-shell systems, such as radicals, but also to problems like the dissociation of the hydrogen 

molecule when the bond length becomes large. 

In open-shell systems, spatial orbitals are described separately for electrons with a-spin and b-spin. 

𝜒!(𝒙) = L
𝜓(5(𝒓)𝛼(𝑠)

𝜓(
6(𝒓)𝛽(𝑠)

. (1.23) 

The derivation of the UHF equation is similar to the restricted case. Specifically, by substituting 

Equation (1.23) into Equation (1.12) and integrating over the spin variables after multiplying both 

sides from the left by a*(s1) or b*(s1), 
𝑓F5(1)𝜓(5(1) = 𝜀(5𝜓(5(1), (1.24) 

𝑓F6(1)𝜓(
6(1) = 𝜀(

6𝜓(
6(1). (1.25) 

To solve the UHF equations (1.24) and (1.25), the basis functions are introduced, and molecular 

orbitals are defined separately for the a-spin and b-spin electrons as follows: 

𝜓!5 =%𝐶2!5𝜙2

3

2#$

, 𝑖 = 1,2,⋯ ,𝐾, (1.26) 

𝜓!
6 =%𝐶2!

6𝜙2

3

2#$

, 𝑖 = 1,2,⋯ ,𝐾. (1.27) 

As in the case of the Roothaan equations, substituting Equations (1.26) and (1.27) into the HF equation 

(1.16), and multiplying both sides from the left by fµ*(1) and integrating, the differential equation is 

transformed into an algebraic equation 

𝑭5𝑪5 = 𝑺𝑪5𝜺5 , (1.28) 

𝑭6𝑪6 = 𝑺𝑪6𝜺6 . (1.29) 

Equations (1.28) and (1.29) are called the Pople-Nesbet eqautions [7]. 

Since the Fock matrix F depends on the orbital coefficient C, the Roothaan equation (1.22) and the 

Pople-Nesbet equations (1.28) and (1.29) are nonlinear. Therefore, starting with an appropriate initial 

value of C, the energy is calculated iteratively, updating C until it converges and no longer changes. 

This procedure is called the self-consistent field (SCF) method.  
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1.2 Density functional theory 

Density functional theory (DFT) has been widely used since the 1990s as it efficiently incorporates 

electron correlation in the form of electron density, and it has now become one of the primary methods 

in computational chemistry [8]. The DFT approach expresses electron correlation as a functional of 

the electron density. The foundation of this approach dates back to the Hohenberg-Kohn theorem 

proposed in 1964.  

 

1.2.1 Hohenberg-Kohn theorems 

Hohenberg-Kohn theorem consists of two fundamental theorems [9]. 

 

The first Hohenberg-Kohn theorem 

The external potential v(r) is uniquely determined by the electron density 𝜌(𝒓). 

The second Hohenberg-Kohn theorem 

For a trial density 𝜌\(𝒓) such that 𝜌\(𝒓) ≥ 0 and ∫𝜌\(𝒓)𝑑𝒓 = 𝑁, then 𝐸* ≤ 𝐸7[𝜌\(𝒓)]. 

 

The first Hohenberg-Kohn theorem establishes that the Hamiltonian is uniquely determined by the 

external potential. Once the Hamiltonian is determined, the wavefunction can be obtained. From the 

wavefunction, the electron density can be constructed. Therefore, this theorem demonstrates a one-to-

one correspondence between the electron density, the nuclear potential, the Hamiltonian, and the total 

energy. The first theorem is proven by reductio ad absurdum. Suppose there exist two external 

potentials v and v' that differ by more than a constant and yield the same ground state electron density. 

Then, there would exist two Hamiltonians 𝐻" and 𝐻"/ corresponding to these potentials, which share 

the same ground state density. However, the normalized wavefunctions Y and Y' corresponding to 𝐻" 

and 𝐻"/, respectively, must be different. When Y' is used as the trial wavefunction for 𝐻", 

𝐸* < ;Ψ/<𝐻"<Ψ/= = ;Ψ/<𝐻"/<Ψ/= + ;Ψ/<𝐻" − 𝐻"/<Ψ/=  

																															= 𝐸*/ +@𝜌(𝒓)[𝑣(𝒓) − 𝑣/(𝒓)]𝑑𝒓, (1.30) 

where E0 and E0' are the grand state energies corresponding to 𝐻" and 𝐻"/, respectively. Similarly, when  

Y is used as the trial function for 𝐻"/, the following inequality holds, 

𝐸*/ < ;Ψ<𝐻"/<Ψ= = ;Ψ<𝐻"<Ψ= + ;Ψ<𝐻"/ −𝐻"<Ψ=  

																																						= 𝐸* +@𝜌(𝒓)[𝑣/(𝒓) − 𝑣(𝒓)]𝑑𝒓. (1.31) 

Addition Equations (1.30) and (1.31), the following contradictory equation is obtained, 

𝐸* + 𝐸*/ < 𝐸*/ + 𝐸*. (1.32) 

Therefore, two external potentials that give the same ground state electron density r(r) cannot exist. 

In other words, once the electron density r(r) is determined, the external potential v(r) is uniquely 
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determined. 

The second Hohenberg-Kohn theorem states that the Hamiltonian operator expressed in terms of 

the ground state electron density always has a solution that minimizes the energy, demonstrating the 

variational principle for the energy. The requirement of the variational principle arises from the 

stationary principle with respect to the electron density of the ground state, 

𝛿 e𝐸7[𝜌(𝒓)] − 𝜇 g@𝜌(𝒓)𝑑𝒓 − 𝑁hi = 0. (1.33) 

The Euler-Lagrange equation can be obtained from Equation (1.33), 

𝜇 =
𝛿𝐸7[𝜌(𝒓)]
𝛿𝜌(𝒓) = 𝑣(𝒓) +

𝛿𝐹89[𝜌(𝒓)]
𝛿𝜌(𝒓) , (1.34) 

where µ represents the chemical potential. FHK[r(r)] is defined independently of the external potential, 

which means that it is a universal functional of r(r). If FHK[r(r)] could be explicitly written, the 

Hohenberg-Kohn theorem could be applied to any systems; however, obtaining such a functional 

FHK[r(r)] is extremely difficult. 

 

1.2.2 Levy constrained search 

According to the Hohenberg-Kohn theorem, if a trial electron density 𝜌\(𝒓) is non-negative and the 

total particle number is finite, the external potential is uniquely determined. Here, if v-representability  

is defined as “a system is v-representable if the electron density 𝜌(𝒓) is derived from the ground state 

antisymmetric wavefunction for a Hamiltonian with a given external potential v(r),” then, for example, 

when the ground state is degenerate, multiple wavefunctions can yield the same density, meaning the 

system is not v-representable. Furthermore, as shown in the following equation, the formulation of 

DFT is still possible even if the conditions on the density in the variational principle are relaxed. 

𝜌\(𝒓) ≥ 0,@𝜌\(𝒓)𝑑𝒓 = 𝑁, and	@ m∇𝜌\
$
,(𝒓)m

,
𝑑𝒓 < ∞. (1.35) 

It is called N-representability and means that a density is obtained from some antisymmetric 

wavefunction. Since N-representability is a necessary condition for v-representability, the conditions 

for N-representability are weaker than those for v-representability.  

The one-to-one correspondence between the ground state density and the wavefunction has been 

established, so now considering how to determine the wavefunction when the density is given. The 

density r0(r) is expressed as the square of the wavefunction Y0, but there exist infinitely many 

antisymmetric wavefunctions that yield the same density. If such wavefunction is denoted that satisfies 

r0(r) as Ψ!!, 

;Ψ:!<𝐻"<Ψ:!= ≥ ;Ψ*<𝐻"<Ψ*= = 𝐸*. (1.36) 

Equation (1.36) is trivial from the stationary principle with respect to the electron density of the ground 

state. The Hamiltonian of N electrons system is 𝐻" = 𝑇q + 𝑉q;; +∑ 𝑣(𝒓𝒊)"
!  (𝑇q  and 𝑉q;; are the kinetic 
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energy and potential energy, respectively.), and then, the following equation is obtained: 

;Ψ:!<𝑇q + 𝑉q;;<Ψ:!= + @𝑣(𝒓) 𝜌*(𝒓)𝑑𝒓 ≥ ;Ψ*<𝑇q + 𝑉q;;<Ψ*= +@𝑣(𝒓)𝜌*(𝒓)𝑑𝒓  

∴ 	 ;Ψ:!<𝑇q + 𝑉q;;<Ψ:!= ≥ ;Ψ*<𝑇q + 𝑉q;;<Ψ*=. (1.37) 

The right-hand side of Equation (1.37) shows v-representability, and the left-hand side shows N-

representability. Minimizing the left-hand side of Equation (2.37), it turns to show v-representability. 
𝐹89[𝜌*(𝒓)] = ;Ψ*<𝑇q + 𝑉q;;<Ψ*= = min

=→:!
;Ψ<𝑇q + 𝑉q;;<Ψ=. (1.38) 

This is a constrained search for the density functional FHK[r0(r)] [10]. That is, by searching over all 

antisymmetric wavefunctions corresponding to a density r0(r), a v-representable wavefunction can be 

obtained. Therefore, the condition of non-degenerate ground states, which is a limitation of the 

Hohenberg-Kohn theorem, can be removed. In essence, the ground state energy is expressed as a 

functional of the density, as shown below. 

[𝜌(𝒓)] = 𝐹[𝜌(𝒓)] + @𝑣(𝒓) 𝜌*(𝒓)𝑑𝒓  

																																			= min
=→:!

;Ψ<𝑇q + 𝑉q;;<Ψ= + @𝑣(𝒓) 𝜌*(𝒓)𝑑𝒓. (1.39) 

 

1.2.3 Kohn-Sham equation 

In Section 1.2.1, the electron density of the grand state is obtained by minimizing E[r(r)], and 

satisfies the Euler-Lagrange equation (1.34). The density functional FHK[r(r)] is expressed as below, 

𝐹89[𝜌(𝒓)] = 𝑇[𝜌(𝒓)] + 𝑉;;[𝜌(𝒓)]. (1.40) 

If the kinetic energy term T[r(r)] and the electron-electron interaction term Vee[r(r)] could be 

explicitly expressed, this method could be applied to any system. However, it is difficult to obtain their 

explicit forms beyond rough approximations. Kohn and Sham proposed to introduce the orbitals into 

this problem [11]. 

The kinetic energy without the interactions can be expressed by wavefunctions as below, 

𝑇? =%wΨ?x−
1
2∆xΨ?y

"

!#$

. (1.41) 

Using Ts, Equation (1.40) can be rewritten as: 

𝐹[𝜌(𝒓)] = 𝑇? + 𝐽[𝜌(𝒓)] + 𝐸@A[𝜌(𝒓)], (1.42) 

where 

𝐸@A[𝜌(𝒓)] = 𝑇[𝜌(𝒓)] − 𝑇? + 𝑉;;[𝜌(𝒓)] − 𝐽[𝜌(𝒓)]. (1.43) 

EXC[r(r)] is called the exchange-correlation energy. This term contains the difference between T[r(r)] 

and Ts, and the electron-electron interaction term. In other words, the parts of the energy that cannot 

be explicitly expressed are integrated into this term.  
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The energy functional is expressed as follows: 

𝐸[𝜌(𝒓)] = 𝑇[𝜌(𝒓)] + 𝑉;;[𝜌(𝒓)] + @𝜌(𝒓)𝑣(𝒓)𝑑𝒓  

									= %%@Ψ!
?,∗(𝒓) z−

1
2∆{Ψ!

?(𝒓)𝑑𝒓 +
?

"

!#$

𝐽[𝜌(𝒓)] + 𝐸@A[𝜌(𝒓)] + @𝜌(𝒓)𝑣(𝒓)𝑑𝒓. (1.44) 

The relationship between the electron densities and molecular orbitals is 

𝜌(𝒓) =%%Ψ!?∗(𝒓)Ψ!?(𝒓)
?

"

!#$

. (1.45) 

Thus, the energy can be expressed by N orbitals. 

In order to derive the Kohn-Sham (KS) equation, it is necessary to minimize E[r(r)] with respect 

to the orbitals under the constraint that the orbitals are the orthonormal, 

@Ψ!∗(𝒓)Ψ((𝒓)𝑑𝒓 = 𝛿!( . (1.46) 

A functional W[{Yi}] of the N orbitals is considered as follows: 

Ω[{Ψ!}] = 𝐸[𝜌(𝒓)] −%%𝜀!(

"

(

"

!

@Ψ!∗(𝒓)Ψ((𝒓)𝑑𝒓, (1.47) 

where E[r(r)] is the functional of Yi, which is expressed by Equations (1.44) and (1.45), and e i j  is a 

set of the Lagrange multipliers. To minimize E[r(r)] under the given constraint, minimizing W[{Yi}] 

is require. That is, W[{Yi}] = 0, and these equations are obtained, 

g−
1
2∆ + 𝑣BCChΨ! =%𝜀!(Ψ(

"

(#$

, (1.48) 

𝑣BCC(𝒓) = 𝑣(𝒓) + @
𝜌(𝒓/)
|𝒓 − 𝒓/| 𝑑𝒓

/ + 𝑣@A(𝒓). (1.49) 

Finally, the canonical KS equation follow as: 

g−
1
2∆ + 𝑣BCChΨ! = 𝜀!Ψ! , (1.50) 

where veff(r) is an effective potential (Kohn-Sham potential). The KS equation has the same form as 

the HF equation, except that it includes a more general local potential. Therefore, if the potential is 

uniquely determined, it can be solved in the same manner as in HF theory. If EXC[r] and vXC(r) 

represent the exact exchange-correlation energy and potential, solving the KS equation yields the exact 

energy, including electronic correlation effects. In other words, the KS approximation enables 

calculations that include challenging electronic correlation effects with computational effort similar to 

that of the HF method. 

In the case of a one-electron system, the Coulomb energy J[r] depends solely on the electron density 

r , resulting in a finite value. This leads to the unphysical situation where a single electron interacts 

with itself. In the HF method (and correlation methods based on it), this issue is resolved as the 
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exchange integral precisely cancels out the Coulomb integral. However, in the case of approximate 

exchange-correlation functionals, this cancellation is not exact, leading to a problem. This problem is 

called the self-interaction errors (SIE). 

 

1.3 Exchange-correlation functional 

Up to this point, Hohenberg and Kohn have shown that the exchange-correlation functional 

EXC[r(r)] is determined solely by the electron density. However, obtaining an explicit form of 

EXC[r(r)] is extremely difficult, and thus approximate functionals are employed.  

 

1.3.1 Local density approximation 

The EXC[r(r)]  functional is typically divided into the exchange functional EX[r(r)] and the 

correlation functional EC[r(r)]. The first approximation to the exchange functional EX[r(r)] is called 

the local density approximation (LDA). This functional is introduced by using the basic model of DFT, 

called a homogeneous electron gas (HEG). The HEG, also known as the Jellium model, is a system in 

which N electrons exist within a uniformly distributed positive charge background of N positive 

charges. 

To derive this model, a box potential system in which N electrons move within a cube of edge length 

l under periodic boundary conditions is considered [12]. The electronic wavefunctions for such a box 

potential system are given as: 

Ψ =
1

𝑙
D
,
𝑒!(F"GHF#IHF$J) =

1
√𝑉

𝑒!𝒌∙𝒓, (1.51) 

where 

𝑘G =
2𝜋
𝑙 𝑛G , 𝑘I =

2𝜋
𝑙 𝑛I, 𝑘J =

2𝜋
𝑙 𝑛J. 

(1.52) 

By using Equation (1.51), the spin-independent first-order density matrix is expressed as follows: 

𝜌$(𝒓$, 𝒓,) =%𝜙!(𝒓$)𝜙!∗(𝒓$/)
" ,⁄

!

  

														=
2
𝑉&𝑒"𝒌∙(𝒓%'𝒓&)
)'((

  

																					≈
1
4𝜋3@𝑒

𝑖𝒌∙(𝒓1−𝒓2) 𝑑𝒌  

																																																													=
1
4𝜋-- 𝒌.𝑑𝒌

)+

/
--𝑒"𝒌∙(𝒓%'𝒓&) sin 𝜃 𝑑𝜃𝑑𝜙, (1.53) 

where 

𝑑𝑛 = z
𝑙
2𝜋{

D

𝑑𝑘 = z
𝑉
8𝜋{ 𝑑𝑘. 
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kF is called the Fermi moment and determined as below: 

𝑘. = {3𝜋,𝜌(𝒓)}
$
D. (1.54) 

In inhomogeneous systems, the average of r1 and r2 is often used. Thus, a variable is defined such 

as 

𝒓 =
1
2 (𝒓$ + 𝒓,),			𝒔 = 𝒓$ − 𝒓,, (1.54) 

and s is taken the kz-direction, then, 

𝜌$(𝒓$, 𝒓,) =
1
4𝜋3@ 𝒌2𝑑𝒌

𝑘𝐹

0
@ 𝑒𝑖𝒌∙𝒓12 cos 𝜃 sin 𝜃
𝜋

0
𝑑𝜃@ 𝑑𝜙

2𝜋

0
  

																																																= 3𝜌(𝒓) 9
sin 𝒕 − 𝒕 cos 𝑡

𝒕- ? = 𝜌8(𝒓, 𝒔), (1.55) 

where t = kF(r)s. Expressed in terms of coordinates r and s, this equation represents the exact spin-

independent first-order density matrix for the HEG. By using the spherical Bessel functions,  

𝑗*(𝑧) =
sin 𝑧
𝑧 , 𝑗$(𝑧) =

sin 𝑧
𝑧, −

cos 𝑧
𝑧 , (1.56) 

Equation (1.55) can be rewritten as 

𝜌$(𝒓$, 𝒓,) =
3𝑗1(𝑠𝑘𝐹)
𝑠𝑘𝐹

𝜌(𝒓). (1.57) 

Using this first-order reduced density matrix, the kinetic energy and exchange energy can be calculated. 

The kinetic energy functional is given as follows: 

𝑇P.[𝜌(𝒓)] =
3
10
(3𝜋,)

,
D@𝜌

Q
D(𝒓) 𝑑𝒓. (1.58) 

Equation (1.58) is called the Thomas-Fermi kinetic energy. The exchange energy functional is given 

as follows: 

𝐸G[𝜌(𝒓)] =
3
4 z
3
𝜋{

$
D
@𝜌

D
R(𝒓) 𝑑𝒓. (1.59) 

Equation (1.59) is celled the Dirac exchange energy or Slater exchange energy. Thus, the exchange 

energy is proportional to the electron density raised to the power of 4/3, and the kinetic energy is 

proportional to the electron density raised to the power of 5/3. 

 

1.3.2 Expansion to open-shell system 

In the DFT calculations, when dealing with open-shell electronic structures, it is necessary to 

consider spin-unrestricted orbitals, similar to the HF theory. The spin-unrestricted DFT calculation is 

also called the spin-polarized DFT, where the difference between the a-spin density and b-spin density 

is taken into account. The kinetic energy functional and exchange energy functional can be separate 

into each spin element,  
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𝑇P.[𝜌5 , 𝜌6] = 𝑇P.[𝜌5 , 0] + 𝑇P.[0, 𝜌6]  

																																	=
1
2𝑇P.[𝜌5 , 𝜌6] +

1
2𝑇P.[𝜌5 , 𝜌6] 

 

																									=
1
2𝑇?

*[2𝜌5] +
1
2𝑇?

*[2𝜌6], (1.60) 

𝐸@[𝜌5 , 𝜌6] =
1
2𝐸@[𝜌5 , 𝜌6] +

1
2𝐸@[𝜌5 , 𝜌6] 

 

																	=
1
2𝐸@

*[2𝜌5] +
1
2𝐸@

*[2𝜌6], (1.61) 

where Ts
0 and EX

0 are the kinetic energy and exchange energy for the total density in the closed-shell 

system. The Thomas-Fermi kinetic energy is given as follows: 

𝑇P.[𝜌5 , 𝜌6] = 2
,
D𝐶P.* @g𝜌5

D
Q + 𝜌6

D
Qh 𝑑𝒓  

												= % @𝐶P.$ 𝜌S
D
Q𝑑𝒓,

S#5,6

 (1.62) 

𝐶P.* =
3
10
(3𝜋,)

,
D, 𝐶P.$ =

3
10
(6𝜋,)

,
D. (1.63) 

The Dirac exchange energy is  

𝐸@[𝜌5 , 𝜌6] = −2
$
D𝐶@*@g𝜌5

R
D + 𝜌6

R
Dh 𝑑𝒓  

								= % @𝐶@$ 𝜌S
R
D𝑑𝒓,

S#5,6

 (1.64) 

𝐶@* =
3
4z
3
𝜋{

$
D
, 𝐶@$ =

3
2z

3
4𝜋{

$
D
. (1.65) 

The variable that express the spin polarization is defined as follows: 

ζ =
𝜌5 − 𝜌6

𝜌 =
𝜌5 − 𝜌6
𝜌5 + 𝜌6

, (1.66) 

where 

𝜌5 =
1
2 (1 + 𝜁)𝜌, 𝜌6 =

1
2 (1 − 𝜁)𝜌. 

 

The exchange energy functional (1.64) can be rewritten by using Equation (1.66),  

𝐸@[𝜌5 , 𝜌6] = @𝜌𝜖@(𝜌, 𝜁)𝑑𝒓, (1.67) 

𝜖@(𝜌, 𝜁) = 𝜖@*(𝜌) + [𝜖@$(𝜌) − 𝜖@*(𝜌)]𝑓(𝜁), (1.68) 

𝑓(𝜁) =
1

2
R
D − 2

[(1 + 𝜁)
R
D + (1 − 𝜁)

R
D − 2], (1.69) 
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where 𝜖@(𝜌, 𝜁)  is the exchange energy density; 𝜖@* = 𝐶@*𝜌S
-
.  is a spin-compensated (paramagnetic) 

exchange energy and 𝜖@$ = 𝐶@$𝜌S
-
. is a fully spin-polarized (ferromagnetic) exchange energy of HEG. Such 

a spin-polarized LDA is also referred to as the local spin density approximation (LSDA). 

 

1.3.3 Correlation energy functional for LDA 

Unlike the kinetic and exchange functionals, which can be derived exactly for the HEG, the 

correlation functional is not exactly known even for the HEG. Therefore, the correlation functional is 

obtained by fitting empirical functional forms to the correlation energy extracted from the total energy 

of the HEG obtained through numerical simulations, such as quantum Monte Carlo calculations, after 

subtracting the kinetic and exchange energies. Below, the author introduces two commonly used types 

of LDA correlation functionals. 

 

・VWN correlation functional [13] 

The functional developed by Vosko, Wilk, and Nusair (VWN) uses analytical information for the 

upper and lower limits of the density to determine the correlation energy density for spin-unpolarized 

(0) and spin-polarized (1) systems. 

𝜖*/$TU"(𝑥) = 𝐴Lln
𝑥,

𝑋(𝑥) +
2𝑏
𝑄 tanV$

𝑄
2𝑥 + 𝑏

−
𝑏𝑥*
𝑋(𝑥*)

�ln
(𝑥 − 𝑥*),

𝑋(𝑥) +
2(𝑏 + 2𝑥*)

𝑄 tanV$
𝑄

2𝑥 + 𝑏��, 

(1.70) 

𝑥 = F𝑟;, 𝑋(𝑥) = 𝑥. + 𝑏𝑥 + 𝑐, 𝑄 = √4𝑐 − 𝑏  

By interpolating between these limits, the correlation energy density 𝜖ATU"(𝑟?, 𝜁)  applicable to 

general cases is obtained. 

𝜖ATU"(𝑟?, 𝜁) = 𝜖*TU"(𝑟?) + 𝜖$TU"(𝑟?) g
𝑓,(𝜁)
𝑓,//(0)

h (1 − 𝜁R) + [𝜖$TU"(𝑟?) − 𝜖*TU"(𝑟?)]𝑓,(𝜁)𝜁R, (1.71) 

𝑓,(𝜁) =
𝑓$(𝜁) − 2

2
$
D − 1

,  

where rs is the variable defined from  

4
3𝜋𝑟?

D =
1
𝜌, (1.72) 

which is the radius of an effective volume containing a single electron, known as the Wigner-Seitz 

radius. 
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・PW92 correlation functional [14] 

This functional was proposed by Perdew and Wang. 

𝜖*/$WUX, = −2𝑎𝜌(1 − 𝑎𝑟?) × ln �1 +
1

2𝑎 z𝛽$𝑟?
$
, + 𝛽,𝑟? + 𝛽D𝑟?

D
, + 𝛽R𝑟?{

�, (1.73) 

These functionals are used interpolating at z = 0 to 1. 

 

1.3.4 Generalized gradient approximation 

So far, the LDA has been introduced; however, LDA has two main drawbacks. The first is that it is 

based on the HEG, even though the charge density in real systems is not uniform. The second is that 

it does not correctly describe the r-dependence in the limit as 𝒓 → ∞ . To incorporate the 

inhomogeneity of the charge density, which was not considered in LDA, a correction using the density 

gradient is introduced. This approach is called the generalized gradient approximation (GGA). The 

GGA functionals are currently the main functionals used in density functional theory and can generally 

be expressed as follows: 

𝐸@AYYZ 𝜌5 , 𝜌6¡ = @𝑒@AYYZ(𝜌5 , 𝜌6 , ∇𝜌5 , ∇𝜌6)𝑑𝒓. (1.74) 

Similar to the LDA, the exchange-correlation functional is separated into exchange and correlation 

components, and approximations are made for each. 

 

1.3.5 GGA exchange functional 

The GGA exchange functionals are generally written as 

𝐸@YYZ = % @𝐹@(𝑥S)𝜌
R
D(𝒓)𝑑𝒓

S#5,6

, (1.75) 

where FX is a expansion function of xs, and in the case of LDA, FLDA 
X  = C1 

D . xs is a variable that 

expressed the local heterogeneity,  

𝑥S =
|∇𝜌S|,

𝜌
R
D
. (1.76) 

This variable represents the deviation from the uniform electron gas and can take large values not only 

in regions with significant electron density gradients near the nucleus but also in low-density regions, 

such as the asymptotic region where the density decays exponentially. Similarly, small gradients are 

typical in bonding regions but can also occur in high-density regions. The notable differences in this 

region arise because, while the exact local density limit and GGA limit for exchange energy exist as 

fundamental physical conditions, the physical constraints on functionals in regions of high-density 

gradients or low electron density are largely unknown. Below, several representative GGA exchange 

functionals are introduced. 
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・Becke88 exchange functional [15] 

𝐸@[\\ = 𝐸@]^%
𝜁𝑥S,

1 + 6𝜁𝑥S sinhV$ 𝑥S
. (1.77) 

Here, z is a parameter with a value of 0.042, and the functional is designed to satisfy the asymptotic 

behavior of the exchange energy density. Due to its improved accuracy in reproducing physical 

properties compared to previously developed functionals, it was widely used in combination with LYP 

correlation or Perdew86 correlation [16], among others, contributing significantly to the widespread 

adoption of DFT. 

 

・PBE exchange functional [17] 

𝐸@W[_ = 𝐸@]^% g1 + 𝜅 −
𝜅

1 + 𝜇/𝜅𝑠S,
h = 𝐸@]^% �1 + 𝜅

𝜇/𝜅𝑠S,

1 + 𝜇/𝜅𝑠S,
� (1.78) 

PBE exchange fictional is simplified and derived from PW91, and widely used as well as B88 

exchange functional. The revPBE [18], which recalibrated the parameters, is also commonly used. 

LDA exchange functional is known to consistently underestimate the exchange energy, and this 

underestimation is significantly improved in GGA exchange functional. On the other hand, the 

differences between GGA exchange functionals are relatively small compared to the discrepancy with 

LDA. 

 

1.3.6 GGA correlation functional 

GGA correlation functionals improve the LDA correlation functionals by multiplying them with a 

GGA enhancement factor, similar to the GGA exchange functionals. Some example of GGA 

correlation functionals are introduced as below. 

 

・PBE correlation functional [17] 

PBE correlation functional is obtained by adding H(t) to the PW92 correlation functional (1.73). 

𝜖AW[_ = 𝜖A]^% +𝐻(𝑡),  

𝐻(𝑡) = 𝑐𝑓D
D ln �1 + 𝑑𝑡, §

1 + 𝐴𝑡,

1 + 𝐴𝑡, + 𝐴,𝑡R¨�, (1.79) 

𝐴 = 𝑑 �𝑒𝑥𝑝 §−
𝜖A]^%

𝑐𝑓,
D¨�

V$

,  

𝑓D(𝜁) =
1
2 g(1 + 𝜁)

,
D + (1 − 𝜁)

,
Dh,  

𝑡 = g2(3𝜋D)
$
D𝑓?h

V$
𝑥.  
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・Lee-Yang-Parr (LYP) correlation functional [19]  

The PBE correlation functional was created by multiplying the LDA correlation functional by a 

GGA factor. However, there is also an approach to derive correlation functionals based on approximate 

correlation wavefunctions, known as Colle-Salvetti type correlation functionals. First, the correlation 

wavefunction Y₀(𝑥₁, 𝑥₂, …, 𝑥ₙ) is approximated as the product of the Slater determinant from the HF 

method and a Jastrow factor. 

Ψ*(𝑥$, 𝑥,, ⋯ , 𝑥`) = Ψ*8a(𝑥$, 𝑥,, ⋯ , 𝑥`)ª 1 −Φ$,(𝑟! , 𝑟()¡
!b(

, (1.80) 

where YHF 
0  is the Slater determinant (1.2), F12(ri, rj) is a correlation factor, which describes the 

correlations between all particle pairs. The Colle-Salvetti wavefunction is given as follows [20,21]:  

Φ$,(𝑟! , 𝑟() = 𝑒V6&?& ¬1 − Ψ*8a(𝑅) ®1 +
𝑠
2¯°, (1.81) 

where R and s are the variables between two electrons. A parameter b determines the size of the 

Coulomb hole, and q is a dimensionless parameter, q = 2.29. In regions of high electron density, the 

Coulomb hole is deep and localized, while in regions of low electron density, the Coulomb hole is 

shallow and spread out. Using these relationships in calculations, the electron correlation energy is 

expressed as: 

𝐸AAc = −4𝑎@
𝜌,-.(𝑟, 𝑠)

𝜌 g1 + 𝑏𝜌V
\
D[∇?,𝜌,-.(𝑟, 𝑠)]?#*𝑒Vd:

/%.h × z1 + 𝑑𝜌V
$
D{

V$
𝑑𝑟, (1.82) 

where rHF 
2  is the pair density matrix (diagonal elements of the second-order electron density) in the 

HF method. Four parameters, a, b, c and d, can be fitted by the He atom.  

One of the most widely used functionals, the Lee-Yang-Parr (LYP) correlation functional, is derived 

from the Colle-Salvetti electron correlation energy. The LYP functionals is known to provide highly 

accurate correlation energy in molecular property calculations. In practice, the expressions commonly 

used are the one proposed by Miehlich et al. [22], which converts the Laplacian term Dr into a density 

gradient term through integration by parts, and the implementation formula proposed by Johnson et 

al. [23]. Although the mathematical expression is omitted due to its complexity, one characteristic 

feature is the presence of a rarb term. This ensures that, for single-electron systems, it equals zero, 

meaning that the correlation functional does not suffer from self-interaction. 

For closed-shell atoms, LDA correlation functionals overestimate the correlation energy by about a 

factor of two, but this overestimation is significantly improved with GGA correlation functionals such 

as LYP and PBE. Similarly to exchange functionals, the energy differences between GGA functionals 

are much smaller compared to the discrepancy with LDA. Notably, although LYP and PBE have 

significantly different functional forms, they are known to achieve comparable computational 

accuracy. 
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1.3.7 Hybrid exchange-correlation functional 

In Section 1.2.3, DFT calculations have the issue of self-interaction error (SIE), where electrons 

interact with themselves. On the other hand, the HF method resolves the SIE issue as the exchange 

integral precisely cancels out the Coulomb integral. Additionally, DFT calculations tend to 

overestimate the delocalization of electrons, whereas HF calculations overestimate the electron 

localization. Therefore, to improve the SIE issue in DFT, hybrid exchange-correlation functionals, 

which incorporate a portion of the HF exchange energy into GGA functionals, have been proposed 

and are widely used today. 

Generally, the hybrid exchange-correction functional is written as follows: 

𝐸@A
eIfg!h = 𝑐@-.𝐸@-. +%𝑐@! 𝐸@!

!

+%𝑐A
(𝐸A

(

(

, (1.83) 

where 

𝑐@-. +%𝑐@! 𝐸@!
!

= 1,  

%𝑐A
(𝐸A

(

(

= 1.  

EHF 
X , E i  

X  and E j  
C are the HF exchange energy, i-th exchange functional and j-th correlation functional, 

respectively. The mixing ratio of HF exchange, cHF 
X , is known to significantly influence the results, and 

hybrid functionals with the same mixing ratio often yield similar outcomes. The fllowing are three 

commonly used hybrid functionals. 

 

・B3LYP [24] 

B3LYP exchange-correlation functional is the most widely used functionals in the quantum 

chemical calculations. The functional is written as follows: 

𝐸@A[D]iW = 𝐸@A]^% + 𝑎$(𝐸@-. − 𝐸@]^%) + 𝑎,𝐸@[\\ + 𝑎D(𝐸A]iW − 𝐸A]^%), (1.84) 

where ELDA 
X , EB88 

X , ELYP 
C  and ELDA 

C  are the Slater exchange energy (1.59), the B88 exchange energy (1.77), 

the LYP correlation energy and the VWN correlation energy (1.71), respectively. The three parameters, a1 

= 0.2, a2 = 0.72 and a3 = 0.81 are determined to reproduce the physical properties of the G2 benchmark 

set [25], which consists of several dozen atoms and small molecules. The mixing ratio of HF exchange 

is a1 = 0.2, i.e. 20 %.  

 

・BHandHLYP [26] 

Another hybrid functional using the Becke’s exchange energy (1.77) and the LYP correlation energy 

is BHandHLYP, 

𝐸@A[-0`h-]iW = 0.5𝐸@-. + 0.5𝐸@[\\ + 𝐸A]iW. (1.85) 

This functional mixes the HF exchange energy and the GGA exchange energy at a 1:1 ratio, meaning 
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that the HF exchange component is 50 %. BHandHLYP has been reported to reproduce experimental 

values more accurately than B3LYP in the calculation of magnetism [27]. 

 

・PBE0 [28] 

PBE0 functional is also a widely used hybrid functionals. 

𝐸@AW[_* = 𝐸@AW[_ + 0.25(𝐸@-. − 𝐸@W[_). (1.86) 

The mixing ratio of HF exchange is 25 %. This functional is based on the adiabatic connection and 

uses the PBE exchange-correlation functional as a reference. It is derived by expanding the energy 

difference between the exchange functional and the HF exchange integral as a perturbation and 

replacing one-fourth of the PBE exchange with the HF exchange integral in the third-order term of the 

expansion. Therefore, unlike B3LYP, it is a hybrid functional derived without using empirical 

parameters. 

 

1.4 DFT calculation for periodic systems 

In the HF and DFT calculations for atoms and isolated molecules, the physical properties of 

materials can be obtained by using the wavefunctions (or electron density). These molecular orbital 

calculations are performed using the localized (gaussian) basis sets like the LCAO-MO described in 

Equation (1.17). However, it is difficult to handle the electronic structures of systems with periodic 

boundary conditions, such as metals and crystals, using the localized basis sets. To handle periodic 

systems, band theory is commonly used. This approach uses plane-wave basis sets, which are 

particularly suited for describing the periodicity of the system. Additionally, the influence of core 

electrons is often replaced with effective potentials, such as pseudopotentials, to reduce computational 

cost while maintaining accuracy. Solid surfaces, interfaces, and isolated molecular systems can also 

be modeled using plane-wave basis sets by employing a slab model. In this approach, the 

computational target is periodically arranged within an enlarged unit cell, known as a supercell, with 

vacuum layers inserted to separate adjacent replicas of the target system. Furthermore, the autho 

describes the DFT+U method, which incorporates on-site Coulomb parameters U, as a technique for 

handling open-shell systems in the DFT calculations using plane-wave basis sets [29-32]. 

 

1.4.1 Lattice and reciprocal lattice 

In crystals and supercells with periodic systems, the same unit cell repeats at each lattice point (Fig. 

I.1.1). The lattice vector R indicatingr the position of the lattice point (unit cell) is expressed using the 

basic translation vectors a1, a2, a3 as R = l1a1 + l2a2 + l3a3, where l1, l2, l3 are integers. The unit cell can 

be taken as a parallelepiped with a1, a2, a3 as edges, and the atomic positions are given as R + ta, where   

ta is the relative position vector within the unit cell. In crystals and supercells, the potential term in the 

Kohn-Sham equation possesses translational symmetry, meaning that for any lattice vector R, the 
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following condition holds: 

𝑣BCC(𝒓 + 𝑹) = 𝑣BCC(𝒓), (1.87) 

where veff is the Kohn-Sham potential consisting of the sum of the Coulomb attraction with the atomic 

nuclei, the Coulomb repulsion with the electrons, and the exchange-correlation potential. The potential 

is repeated identically for each unit cell. 

 

 
Fig. I.1.1. The arrangement of unit cells in a crystal and the Born-von Karman periodic boundary 

conditions. The unit cell (with volume Wc) repeats periodically along the basic translation vectors  

a1, a2, a3. On the other hand, the crystal region with a volume W, which spans N1a1, N2a2, N3a3 in 

three directions, is assumed to repeat further beyond its boundaries under the Born-von Karman 

boundary conditions. 

 

On the other hand, the primitive reciprocal lattice vectors, which correspond to the real-space lattice, 

are defined as follows: 

𝒃$ = 2𝜋
𝒂, × 𝒂D

𝒂$ ∙ (𝒂, × 𝒂D)
, (1.88) 

𝒃, = 2𝜋
𝒂D × 𝒂$

𝒂$ ∙ (𝒂, × 𝒂D)
, (1.89) 

𝒃D = 2𝜋
𝒂$ × 𝒂,

𝒂$ ∙ (𝒂, × 𝒂D)
, (1.90) 

and these vectors satisfy a relationship, 
𝒂! ∙ 𝒃( = 2𝜋𝛿!( . (1.91) 

The reciprocal lattice space (k-space) is defined as a space where the reciprocal lattice vectors G = 

m1b1 + m2b2 + m3b3 (where m1, m2, m3 are integers) repeat periodically. In this case, the dot product 
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with the lattice vector is expressed as 

𝑮 ∙ 𝑹 = 2𝜋𝑀,			𝑀:	integer. (1.92) 

The parallelepiped formed by the fundamental reciprocal lattice vectors b1, b2, b3 represents a unit cell 

of the reciprocal lattice, but in its original form, it does not fully reflect the symmetry of the reciprocal 

lattice. To address this, a region is constructed by bisecting the space with planes equidistant from the 

origin and its neighboring reciprocal lattice points. This region has a volume equal to that of the unit 

cell in the reciprocal lattice and incorporates the symmetry of the reciprocal lattice. This region is 

called the Brillouin zone. The volume of the unit cell in real space is given by the parallelepiped 

formed by a1, a2, a3 as Wc = |a1・a2 × a3|. Correspondingly, the volume of the Brillouin zone in 

reciprocal space, formed by b1, b2, b3, is |b1・b2 × b3| = 2p3Wc
−1. As the unit cell volume Wc increases, 

the volume of the Brillouin zone decreases. 

 

1.4.2 Bloch's theorem 

In periodic systems characterized by lattice vectors R and reciprocal lattice vectors G (systems with 

translational symmetry), solving the Kohn-Sham equations is referred to as band structure calculations. 

According to Bloch’s theorem, the eigenfunctions of a periodic system always have a wave vector k, 

which corresponds to a wave (propagating in the direction of k with a wavelength 2p / |k| ), and k is 

confined within the Brillouin zone. Moreover, the eigenfunctions take the following form: 

𝜙𝒌` = 𝑒!𝒌∙𝒓𝑢𝒌`(𝒓), (1.93) 

where ukn(r) is a lattice-periodic function, and for any lattice translation vector R, it satisfies the 

translational symmetry condition: 

𝑢𝒌`(𝒓 + 𝑹) = 𝑢𝒌`(𝒓). (1.94) 

And n is a band index, and for each k-point, several eigenstates are calculated based on the number of 

electrons per unit cell, and these eigenstates are labeled with the index n in ascending order of energy. 

From Equation (1.93), the contribution of the eigenstate fkn(r) to the electron density distribution in 

Equation (1.45), |fkn(r)|2, eliminates the exponential term and becomes |Ukn(r)|2. Furthermore, from 

Equation (1.94), this distribution is also a lattice periodic function.  

The reason for constructing reciprocal lattice vectors and the Brillouin zone from lattice vectors is 

that the eigenstates of electrons in periodic systems are identified by k, and solving for the eigenvalues 

and eigenfunctions at all k-points within the Brillouin zone completely determines the electronic 

structure. By combining Equations (1.87), (1.93), and (1.94) with the KS equation (1.50), the KS 

equation for periodic systems takes a form dependent on k. The eigenvalues Ekn and eigenfunctions 

fkn are solved for each k-point. The obtained Ekn and fkn change gradually as k varies, and can be 

regarded as continuous functions of k. A continuous set of eigenstates within the Brillouin zone 

corresponding to a specific band index n is referred to as a “band.” When multiple bands overlap, the 

values of n may interchange. The variation of Ekn with respect to k within the Brillouin zone is called 
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the band structure (or band dispersion).  

The Brillouin zone contains densely distributed k-points. The number of k-points in the Brillouin 

zone is, in principle, the same as the number of unit cells in the entire periodic system. Under the 

macroscopic periodic boundary condition depicted in Figure 1.1 (Born–von Karman periodic 

condition), the unit cell repeats in the a1, a2 and a3 directions with sizes of N1a1, N2a2 and N3a3, 

respectively. The total crystal volume is given as W = NWc, where N = N1N2N3 and N is a macroscopic 

number. The total translational degrees of freedom N correspond to the number of k-points defined in 

the system. Therefore, the Brillouin zone accommodates 2N states (electrons) per band, including spin. 

Two electrons per unit cell always fill a single band (the entire Brillouin zone); in the case of spin 

polarization, one electron fills one band. 

 

1.4.3 Pseudopotential method 

In solid-state electronic structure calculations, the construction of basis functions presents 

significant challenges. This is due to the coexistence of an extremely deep potential field near the 

atomic nucleus and a relatively flat potential field in the interatomic regions (Fig. I.1.2). Focusing on 

the region near the atomic nucleus, (i) φ, which represents atomic orbital-like basis functions as 

solutions to the deep spherical symmetric field, can be considered. On the other hand, (ii)ψ, which 

uses plane-wave basis functions to describe the extended free-electron-like characteristics in the flat 

interatomic regions, can be utilized. However, the (i) case faces difficulties in representing the 

interatomic regions, while the (ii) case encounters challenges in accurately describing the areas near 

the atomic nucleus. 

 
Fig. I.1.2. (a) Conceptual diagram of the all-electron potential VAE(r) and eigenstate wavefunctions 

(core orbitals ψc1, ψc2, and valence band wavefunction ψv) in a solid (crystal). (b) By 

introducing a “pseudopotential” that smoothens the potential within a cutoff radius rc, oscillations in 

the valence wavefunction ψv near the atomic nucleus are removed. Outside the radius rc, the 

pseudopotential ensures that the valence wavefunction and the all-electron potential accurately 

reproduce the correct valence electron properties. 
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As shown in Fig. I.1.2 (a), the valence wavefunction ψv is smooth in the interatomic region but 

exhibits oscillations near the atomic nucleus. These oscillations arise due to the orthogonality 

requirement with the core orbital ψc ( ∫𝜙<∗(𝒓)𝜙>(𝒓) 𝑑𝒓 = 0 ). To represent wavefunctions with 

significant local variations using a plane-wave basis, a large number of short-wavelength plane waves 

are required, leading to an enormous computational size. On the other hand, methods that bridge (i) 

and (ii) have also been proposed, such as (iii), which constructs basis functions that are atomic orbital-

like (spherical wave expansion) near the atomic nucleus and connect these to plane waves in the 

interatomic regions. 

First-principles band calculation methods have been developed across several categories: 

(i) LCAO-based methods:  

First-principles approaches using the linear combination of atomic orbitals (LCAO), including 

hybrid basis methods [33]. 

(ii) Plane-wave pseudopotential methods:  

These employ plane-wave basis sets and include the norm-conserving pseudopotential (NCPP) 

method [34,35], ultrasoft pseudopotential (USPP) method [36], and the projector augmented 

wave (PAW) method [37,38]. 

(iii) Linearized methods:  

These include full-potential linearized augmented plane wave (FLAPW) methods and full-

potential linear muffin-tin orbital (FP-LMTO) methods [39]. This category offers the highest 

accuracy, as it handles all electrons from core orbitals to valence bands (hence often referred to 

as “all-electron methods”), but the high computational cost is a notable drawback. 

 

Here, the author explains the methods in category (ii). The three approaches—NCPP, USPP, and 

PAW—were developed sequentially, with newer methods achieving improvements in both efficiency 

and accuracy. Therefore, the author primarily focuses on explaining the foundational NCPP method. 

When dividing the region of each atom where the wave functions of core orbitals exist into an inner 

and outer region using a cutoff radius rc , the effective potential Veff(r) for each region is considered. 

Inside rc, near the atomic nucleus, Veff(r) is a deep spherical symmetric potential similar to that of a 

free atom, and the core orbitals, such as yc1 and yc2 shown in Fig. I.1.2, form low-energy eigenstates 

in crystals as they do in free atoms. These core orbitals do not directly contribute to interatomic 

bonding. Additionally, the Coulomb potential of other atomic nuclei is screened by the electrons near 

those nuclei. On the other hand, in the interatomic region outside rc, only valence electrons are present, 

and Veff(r) effectively represents the potential experienced by the valence electrons. This potential 

consists of the Coulomb field of the positively charged ion, screened by the core electrons, and the 

electrostatic and exchange potentials generated by the valence electrons both inside and outside rc. 
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The wave function of the valence band (yv in Fig. I.1.2) changes smoothly outside rc, making it 

suitable for plane-wave basis expansion. However, as mentioned earlier, it oscillates (with nodes) 

inside rc due to orthogonality with the core orbitals. The presence of a deep potential and core orbitals 

inside the rc sphere is the origin of these oscillations. To address this, core orbitals are excluded from 

electronic structure calculations, and only valence electrons are considered. By introducing an 

“artificial potential” that has a shallower well inside rc but matches the true all-electron potential  

VAE(r) outside rc, density functional theory calculations can be performed with the focus on valence 

electrons (Fig. I.1.2(b)). The process can be considered as follows: 

(a) By “raising the bottom” of the potential inside rc, a smooth, non-oscillating, and delocalized 

valence electron wave function can be generated. 

(b) Ensuring that the integral of |yv|2 (norm) for the valence wave function inside rc is preserved 

correctly for each atom allows the potential outside rc to accurately reproduce the true all-electron 

potential VAE(r). 

(c) This setup should enable the correct valence wave function obtained from all-electron 

calculations to be reproduced outside rc. 

(d) The raised potential inside rc and the elimination of wave function oscillations should 

compensate each other, potentially allowing the eigenvalues (energy levels) to be accurately 

reproduced. 

The atom-specific potential that satisfies these requirements is referred to as the pseudopotential. 

Instead of using V(r) , which represents the sum of the Coulomb potentials from the atomic nuclei, the 

sum of the pseudopotentials VPS(r) for each atom is utilized. Under this framework, density functional 

theory (DFT) calculations for the valence electron system alone are performed by solving the Kohn–

Sham equations using the following effective potential, 

𝑉BCC(𝒓) = 𝑉jk(𝒓) + 𝑉8(𝒓) + 𝜇lm(𝒓), (1.95) 

where VH(r) and µxc(r) are the electrostatic potential and the exchange-correlation potential, 

respectively, derived from the valence electron distribution under the pseudopotential framework.  

VPS(r) is sum of pseudopotentials VPS 
a  from all atoms (with internal coordinates ta ) in all unit cells of 

the periodic system R: 

𝑉jk(𝒓) =%%𝑉0jk
0

(𝒓 − 𝒕0 −𝑹)
𝑹

. (1.96) 

VPS 
a  is preconstructed for each atomic species a and acts only on the valence electrons. Inside the cutoff 

radius rc, it is adjusted upwards, while outside rc, it becomes the Coulomb potential of the positively 

charged ion with the valence electrons removed. Thus, under the potential field described by Equation 

(1.95), the valence electron wavefunctions are smooth and free of oscillations (nodes) both inside and 

outside rc (as shown in Fig. I.1.2), enabling expansion using plane-wave basis functions. Equation 

(1.95) describes a potential field in the interatomic region composed of the Coulomb field of the 
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positive ions and the contributions from VH(r) + µxc(r) due to the valence electrons. If the norm of the 

valence electron wavefunctions inside each atomic rc-sphere is preserved to match the correct values 

from all-electron calculations, this pseudopotential can be considered equivalent to the full all-electron 

potential VAE(r) in the interatomic regions.  

The calculated valence electron wavefunction is accurate in the interatomic region outside rc, but 

within rc, the nodes are removed, making it incorrect (as shown in Fig. I.1.2). Therefore, this 

wavefunction is referred to as the pseudo wavefunction. To correct the inaccuracies in the 

wavefunction within rc, methods such as the USPP method and the PAW method have been developed. 

In the USPP method, condition (a) of the pseudopotential construction criteria (a)-(d) mentioned 

earlier is relaxed, allowing the smooth potential and extended wavefunction outside rc to be assumed 

within rc as well. This method significantly reduces the number of plane-wave basis functions required.  

The PAW method, building upon the USPP method, combines it with the all-electron method (iii), 

resulting in further improvements in computational accuracy. While handling pseudo wavefunctions 

that do not have nodes near the atomic nucleus, in the expression of total energy and the Hamiltonian, 

the portion within the radius rc of each atomic sphere is replaced with the correct valence wave 

function that possesses nodes (see Fig. I.1.2(a)). As a result, variational calculations using plane-wave 

basis can be performed efficiently with a relatively small number of plane waves, similar to the USPP 

method. Ultimately, this approach enables the accurate reconstruction of the correct valence wave 

functions with nodes near the atomic nucleus, leading to highly precise total energy calculations. In 

the PAW method, the valence electron wavefunction in a solid is treated as follows: first, a potential 

is constructed by adding the electrostatic potential VH(r) and the exchange-correlation potential µxc(r) 

from the valence electron distribution to the potential outside the cutoff radius rc . Under this potential, 

a pseudo-wave function 𝜙𝒌"#$(𝒓)  is handled using a plane-wave basis expansion. This pseudo 

wavefunction does not have nodes inside rc but reproduces the correct wave function in the interatomic 
region outside rc. The true wavefunction form 𝜙𝒌𝑛(𝒓)  is obtained by modifying the pseudo 

wavefunction 𝜙𝒌"#$(𝒓) within the spherical region rc of each atom as follows: 

𝜙𝒌`(𝒓) = 𝜙𝒌`jk(𝒓) +%¾|𝜙!⟩ − <𝜙o¿ =À⟨𝑝oÂ|
!

𝜙𝒌`jk(𝒓). (1.97) 

The second term on the right-hand side represents the modification operation within the rc sphere. The 

summation over i runs over the valence electron states of each atom, where i = (l, m, t). The functions 
|𝜙!⟩, <𝜙o¿ =, and |𝑝oÂ⟩ are atomic orbital-like functions (or operators) centered at each atomic position. 

For each element, two functions (t = 1, 2) are assigned to each valence orbital angular momentum l. 
|𝜙!⟩	represents an expansion basis that correctly describes the electronic structure within the rc sphere. 

It is an all-electron (AE) partial wave, constructed as the product of the radial wave function obtained 

from an all-electron calculation of a free atom and a spherical harmonic function. <𝜙o¿ = represents the 

pseudo (PS) partial wave, which corresponds to each AE partial wave. It is constructed such that: 
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 ・Outside the rc sphere, it smoothly connects to the radial wavefunction of |𝜙!⟩. 

 ・Inside the rc sphere, it is a smooth pseudo radial wavefunction that does not have nodes. 

This pseudo wavefunction is appropriately designed to ensure computational efficiency while retaining the 

necessary accuracy in electronic structure calculations. The final form is obtained by multiplying the pseudo 

radial wavefunction with a spherical harmonic function. Projectors |𝑝oÂ⟩ corresponding to each |𝜙!⟩ also 

takes the form of a radial function multiplied by the spherical harmonic function.  

The accuracy and reliability of a series of plane-wave-based first-principles calculation methods, 

including the NCPP, USPP, and PAW method, are fundamentally ensured by the treatment of valence 

electron behavior inside and outside the cutoff radius rc of atomic spheres, based on all-electron orbital 

calculations of free atoms. Since the free atom calculation assumes a spherically symmetric potential, it 

allows for variable separation, enabling the execution of one-dimensional radial equations with relative 

ease. This systematic approach facilitates the construction of pseudopotentials, partial waves, and projectors, 

ensuring high accuracy in practical electronic structure calculations. 

 

1.4.4 Cut-off energy 

By Fourier expanding the lattice periodic function ukn(r) in Equation (1.94), Equation (1.93) 

becomes: 

𝜙𝒌`(𝒓) = 𝑒!𝒌∙𝒓𝑢𝒌`(𝒓) = 𝑒!𝒌∙𝒓%𝑢𝒌`(𝑮)𝑒!𝑮∙𝒓
𝑮

=%𝑢𝒌`(𝑮)𝑒!(𝒌H𝑮)∙𝒓
𝑮

, (1.98) 

where ukn(G) is Fourier expanding coefficient. Equation (1.98) can be regarded as a plane-wave basis 

expansion, where ei(k+G)・r represents the plane-wave basis and ukn(G) corresponds to the expansion 

coefficients. The summation is taken over G, which changes while fixing k (restricted to the first 

Brillouin zone).  

On the other hand, under the Born–von Karman periodic boundary conditions, where the unit cell 

repeats with periodicities N1a1, N2a2, N3a3 along the directions of a1, a2, a3, respectively, forming a 

crystal volume W, the plane-wave basis normalized to a probability of 1 is considered: 

|𝒌 + 𝑮⟩ = ΩV
$
,𝑒!(𝒌H𝑮)∙𝒓. (1.99) 

And then, the basis is 

𝜙𝒌`(𝒓) =%Ω
$
,𝑢𝒌`(𝑮)|𝒌 + 𝑮⟩

𝑮

=%𝐶𝒌H𝑮` |𝒌 + 𝑮⟩
𝑮

, (1.100) 

where {Cn 
k+G = W1/2ukn(G)} is a eigen vector. In a plane-wave basis expansion, the reciprocal lattice 

vector G starts from G = 0 , and the expansion includes all plane waves up to a certain cut-off energy  

Ecut. This cut-off energy is defined as: 

ℏ,

2𝑚
|𝒌 + 𝑮|, ≤ 𝐸mqr, (1.101) 

This corresponds to specifying the lower limit of the wavelength in the plane-wave basis. From this 
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condition, the total number of plane wave bases NG is determined. NG dictates the computational load 

(the size of the Hamiltonian matrix is NG × NG ). If the wave function has no nodes and is smooth (and 

the pseudopotential is shallow and smooth), a smaller Ecut suffices, thereby reducing NG. Typically, 

the shape of the pseudopotential for each element determines the value of Ecut. 

 

1.4.5 DFT+U method 

In plane-wave basis sets, describing systems with localized spins, such as those involving magnetic 

materials or strongly correlated electrons, is challenging due to the inherently delocalized nature of 

the basis functions. To address this issue, hybrid-DFT, as discussed in Section 1.3.7, can be considered. 

However, hybrid-DFT calculations may become impractical in terms of computational cost in certain 

cases. As another approach for the calculation of open-shell systems, DFT+U method is frequently 

employed [40-42]. This method introduces an on-site Coulomb interaction parameter U to account for 

electron correlation effects that are inadequately described by standard DFT calculations. The total 

energy based on the Hubbard model is given as follows: 

𝐸rsr = 𝐸tau +
𝑈 − 𝐽
2 %(𝑛!S − 𝑛!S,)

S

, (1.102) 

where EDFT represents the calculated energy by DFT methods, U is the on-site Coulomb repulsion, J 

represents the exchange interaction, n is the atomic-orbital occupation number, i is the orbital 

momentum and s is a spin index. In the Hubbard model, the U term inherently includes exchange 

interactions; therefore, it is common to set J = 0 . U is generally applied to strongly correlated d-

orbitals or f-orbitals. The combination of plane-wave basis sets and the DFT+U method allows for 

efficient and accurate analysis of electronic structures in complex periodic systems.  
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Chapter 2. Electron transport for single molecule 
Electron transport in single molecule or molecular scale devices is different from that of silicon-

based devices with continuous energy levels, as single molecules possess discrete energy levels. Since 

controlling the junction between molecules and electrodes in experiments remains challenging, 

theoretical approaches are crucial for understanding conduction within molecules. This section 

provides an overview of general quantum transport concepts and a method for calculation of electron 

conduction in single molecule[43].  

  

2.1 Quantum transport theory 

2.1.1 Landauer formula 

Let us consider a ballistic conductor with a single conduction channel. A ballistic conductor is 

defined as a conductor whose length is shorter than the mean free path of electrons. Here, electron-

electron interactions and temperature effects are neglected. The model is depicted in Fig. I.2.1. The 

chemical potentials of the electrode 1 and electrode 2 are  µ1  and µ2  (µ1  > µ2), respectively, with a 

voltage V = (µ1  − µ2)/e applied between the electrodes. The conductor is assumed to be connected to 

the electrodes via ideal leads (L1, L2) that satisfy the following conditions: 

1. The states in L1 are occupied only by electrons coming from the electrode 1, and the chemical 

potential is µ1 .   

2. The states in L2 are occupied only by electrons coming from the electrode 2, and the chemical 

potential is µ2 .   

3. Electrodes 1 and 2 are sufficiently large, ensuring that the current always maintains thermal 

equilibrium. 

 
Fig. I.2.1. A model of a ballistic conductor connected to two electrodes. 

 

At 0 K, the current arises within the energy range between µ1  and µ2 . The current I1
+  generated 

by electrons flowing from L1 is given as follows: 

𝐼8? =
2𝑒
ℎ
[𝜇8 − 𝜇.]. (2.1) 
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When the average probability of electrons transported from L1 to L2 is 𝒯, then the outflow from L2 is 

given by the inflow from L1 multiplied by the transition probability 𝒯. Thus: 

𝐼.? =
2𝑒
ℎ 𝒯

[𝜇8 − 𝜇.]. (2.2) 

And then, the remining electrons returns to L1, and it can be expressed as follows: 

𝐼8' =
2𝑒
ℎ
(1 − 𝒯)[𝜇8 − 𝜇.]. (2.3) 

Therefore, the net current I and conductance g are given as follows: 

𝐼 = 𝐼8? − 𝐼8' = 𝐼.? =
2𝑒
ℎ 𝒯

[𝜇8 − 𝜇.], (2.4) 

𝑔 =
𝐼
𝑉 =

𝐼|𝑒|
(𝜇8 − 𝜇.)

=
2𝑒.

ℎ 𝒯. (2.5) 

If 𝒯=1, the conductance g = 77.4 µS, which is referred to as the quantum conductance. This indicates 

that the conductance of the ballistic conductor with a single conduction channel is 77.4 µS, and it 

cannot exceed this value. In the Landauer model, the conductance depends on the interface between 

the conductor and the electrodes, and the resistance is therefore referred to as contact resistance. 

Consequently, the conductance expressed in Equation (2.5) represents the contact resistance. The 

interface between the leads and the conductor depends on the transition probability 𝒯. 

 

 

2.1.2 Landauer formula at finite temperature 

At finite temperature, the average number of electrons is obtained from the Fermi distribution, 

𝑓/(𝐸 − 𝜇) =
1

1 + exp _𝐸 − 𝜇𝑘@𝑇
a
. (2.6) 

f(E  − µ)  represents the probability that an energy state E is occupied by an electron at an absolute 

temperature T. The Fermi distribution applies to indistinguishable particles in thermal equilibrium, 

specifically, those that obey Pauli exclusion principle. Based on this, the electron inflow from lead 1 

and lead 2 can be expressed as follows, respectively: 

𝑖8?(𝐸) =
2𝑒
ℎ 𝑓8

(𝐸), (2.7) 

𝑖.'(𝐸) =
2𝑒
ℎ 𝑓.

(𝐸). (2.8) 

On the other hand, the electron outflow from lead 1 and lead 2 can be expressed as follows: 

𝑖8'(𝐸) = (1 − 𝒯)𝑖8?(𝐸) + 𝒯A𝑖.'(𝐸), (2.9) 

𝑖.?(𝐸) = 𝒯𝑖8?(𝐸) + (1 − 𝒯A)𝑖.'(𝐸). (2.10) 

Therefore, the current flowing through the device i(E) is given by 
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𝑖(𝐸) = 𝑖8? − 𝑖8'  

										= 𝑖.? − 𝑖.'  

																		= 𝒯𝑖8? − 𝒯A𝑖.'  

																																																						=
2𝑒
ℎ
[𝒯(𝐸)𝑓8(𝐸) − 𝒯A(𝐸)𝑓.(𝐸)]. (2.11) 

If 𝒯(𝐸) = 𝒯′(𝐸), the total current is written as 

𝐼 = - 𝑖(𝐸)𝑑𝐸, (2.12) 

where 

𝑖(𝐸) =
2𝑒
ℎ 𝒯

(𝐸)[𝑓8(𝐸) − 𝑓.(𝐸)]. (2.13) 

When the system is no longer in equilibrium, the applied bias voltage could change the two 

transmission functions and make them unequal, so generally 𝒯(𝐸) ≠ 𝒯′(𝐸). However, if inelastic 

scattering is assumed to be absent within the device, 𝒯(𝐸) = 𝒯′(𝐸) always holds for a two-terminal 

devices. 

When the deviation from equilibrium is small, the current is proportional to the applied bias voltage. 

Equation (2.13) is given by 

𝛿𝐼 =
2𝑒
ℎ -f

[𝒯(𝐸)]BC𝛿[𝑓8 − 𝑓.] + [𝑓8 − 𝑓.]BC𝛿[𝒯(𝐸)]g𝑑𝐸. (2.14) 

Since f1(E) = f2(E) at equilibrium state, the second term is zero. The first term is written by using the 

Taylor expansion,  

𝛿[𝑓8 − 𝑓.] ≈ [𝜇8 − 𝜇.] i
𝜕𝑓
𝜕𝜇kBC

  

																							= i−
𝜕𝑓/
𝜕𝐸k

[𝜇8 − 𝜇.]. (2.15) 

Thus, the linear response formula at finite temperature is obtained 

𝑔 =
𝑒

(𝜇8 − 𝜇.)
𝛿𝐼  

																			=
2𝑒.

ℎ -𝒯(𝐸) i−
𝜕𝑓/
𝜕𝐸k  

																																														=
2𝑒.

ℎ𝑘@𝑇
-𝒯(𝐸) 𝑓/(𝐸)[1 − 𝑓/(𝐸)]𝑑𝐸. (2.16) 

 

2.1.3 Multi-channel case 

The Landauer model quantizes the conductance of a one-dimensional conductor, where the 

conductance of a ballistic conductor with a single conduction channel is given by g = 77.4 µS. When 
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multiple conduction channels are present, the sum of the transition probabilities for each channel is 

expressed as the total transition probability, 

𝑔 =
2𝑒.

ℎ &𝒯",E
",E

, (2.17) 

where 𝒯",E represents the transition probability of the transmission from channel i to j. 

In each channel, incoming and outgoing waves are moving. Let us consider a system where two 

conduction channels, 1 and 2, are connected as illustrated in Fig. I.2.2. 

 

 
Fig. I.2.2. The model of multi-channel system. 

 

The wavefunctions in channels 1 and 2 are represented by the  following plane waves: 

𝜓8 = 𝑎8𝑒")F + 𝑏8𝑒")F , (2.18) 

𝜓. = 𝑎.𝑒")F + 𝑏.𝑒")F . (2.19) 

For simplicity, the same k is used for channels 1 and 2, however, it is generally different. From the 

Schrödinger equation, there is a linear relationship between the amplitudes of the incoming wave 

(a1,a2) and outgoing wave (b1,b2). Thus, 

𝑏8 = 𝑟𝑎8 + 𝑡A𝑎., (2.20) 

𝑏. = 𝑡𝑎8 + 𝑟A𝑎., (2.21) 

where (r,t) is the left side of the matrix of the reflection coefficient, and (r',t') is the right side of the 

matrix of the transmission coefficient. Equation (2.20) and (2.21) are rewritten as following: 

𝒃 = 𝑺𝒂,							𝑺 = _𝑟 𝑡A
𝑡 𝑟Aa. (2.22) 

The unitary matrix S is called S-matrix. The S-matrix is often used in order to calculate 𝒯",E  in 

Equation (2.17). At each energy, a coherent conductor is characterized by the S-matrix that relates the 

amplitudes of the outgoing waves to the incoming waves in different leads.  

To generalize the above concept, one coherent conductor and count all the channels through which 

electrons can move id considered. The transition probability 𝒯G←I is obtained by taking the square 

of the corresponding element of the S-matrix.  
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𝑇G←I = |𝑠G←I|. (2.23) 

The arrow in the subscript is introduced to indicate the direction of transition, from the second 

subscript to the first. 

 

2.1.4 Current density 

The Landauer formula is the method that calculates the conductance or current between the 

electrodes and conductor. In this section, the author derives the Landauer formula from a different 

approach. In an equilibrium state without an applied bias voltage, the current does not flow because 

the amplitudes of the waves traveling in the left and right directions are equal. When the voltage 

difference is applied between the left and right electrodes, current begins to flow. The general problem 

is shown in Fig. I.2.3 for a tunneling barrier. Considering that a real device is three-dimensional system, 

assuming that the flowing direction of the tunneling current is z-direction, and split of z-direction into 

perpendicular direction against it. When the electron transport in z-direction is treated as the tunneling 

process, the transport in perpendicular direction does not affect the tunneling process because it is 

regarded as free-electron movement. The energy of z-direction is written as 

𝐸J =
ℏ.𝑘KJ.

2𝑚 =
ℏ.𝑘LJ.

2𝑚 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, (2.24) 

where klz and krz are the z-components of the wave vector for a region of the left and right side of the 

barrier, respectively. The constant depends on the applied voltage and takes negative value when the 

potential of the right electrode is positive. The derivative of Equation (2.24) corresponds to the velosity,  

𝑣J(𝑘KJ) =
1
ℏ
𝑑𝐸J
𝑑𝑘KJ

, (2.25) 

𝑣J(𝑘LJ) =
1
ℏ
𝑑𝐸
𝑑𝑘LJ

. (2.26) 

 

 
Fig. I.2.3. Band diagram for the tunneling barrier under the bias voltage 
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The current through the barrier depends on the tunneling probability and the number of electrons 

contributing to the tunneling. Therefore, the current density flowing from the left to right is 

𝐽MN = 𝑒-𝐷(𝒌)𝑣J(𝑘KJ)𝒯(𝑘KJ)𝑓(𝐸M)𝑑-𝒌,						𝐷(𝒌) =
2

(2𝜋)-. (2.27) 

f(EL)  is the Fermi distribution function on the left side of the barrier, D(k) is the density of state in k-

space, and 𝒯(klz) is the transition probability. Similarly, the current density from the right to left is 

𝐽NM = 𝑒-𝐷(𝒌) 𝑣J(𝑘LJ)𝒯(𝑘LJ)𝑓(𝐸N)𝑑-𝒌. (2.28) 

If the energy of the left side electrode is equal to that of the right side electrode, the transition 

probability on the left side becomes equal to that on the right side, resulting 𝒯(klz) = 𝒯(krz). From 

Equation (2.27) and (2.28), 

𝐽 = 𝑒-𝐷(𝒌) 𝑣J(𝑘J)𝒯(𝑘J)[𝑓(𝐸M) − 𝑓(𝐸N)]𝑑-𝒌  

											= -𝐷(𝒌) 𝑣J(𝑘J)𝒯(𝑘J)[𝑓(𝐸M) − 𝑓(𝐸M + 𝑒𝑉)]𝑑-𝒌. (2.29) 

In order to simplify, the energy of the left barrier can be divided into the energy in the z-direction 

Ez and the energy in the perpendicular direction E^, then: 

𝐸 = 𝐸J + 𝐸O, (2.30) 

𝑑-𝒌 = 𝑑.𝑘O𝑑𝑘J. (2.31) 

Here, the differential dkz can be rewritten as the derivative of the z-direction energy Ez, 

𝑘J = i
𝑑𝐸
𝑑𝑘J

k
'8 𝑑𝐸
𝑑𝐸J

𝑑𝐸J, (2.32) 

𝑑𝐸
𝑑𝑘J

=
ℏ.𝑘J
𝑚 = ℏ𝑣J. (2.33) 

Also, 

𝑑.𝑘O = 2𝜋𝑘O𝑑𝑘O  

																= i
2𝜋𝑚
ℏ	. k𝑑𝐸O, 

(2.34) 

where 

𝑘O𝑑𝑘O =
𝑚
ℏ	. 𝑑𝐸O.  

Therefore, Equation (2.29) can be rewritten as follows: 

𝐽 =
4𝜋𝑒𝑚
(2𝜋)-ℏ- 𝒯(𝐸J)

Q

/
𝑑𝐸J- [𝑓(𝐸J + 𝐸O) − 𝑓(𝐸J + 𝐸O + 𝑒𝑉)]

Q

/
𝑑𝐸O  
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																								=
𝑒𝑚𝑘@𝑇
2𝜋.ℏ- - 𝒯(𝐸J)

Q

/
lny

1 + 𝑒
R+
0'R$
)1S

1 + 𝑒
R+
0?BT'R$
)1S

z𝑑𝐸J, (2.35) 

where E l  
F is the Fermi energy on the left side, and the logarithmic term is called the supply function. 

 

2.2 Single-molecule electron conductivity using elastic scattering Green's function method 

The electrical conductivity of single molecules is evaluated not only through experimental 

measurements but also through theoretical calculations. Two primary calculation methods are used: 

the elastic scattering Green’s function (ESGF) method [44] and the non-equilibrium Green’s function 

(NEGF) method [45]. By combining these methods with Hartree-Fock or DFT calculations, it becomes 

possible to predict the conductivity of single molecules based on the quantum chemical calculations. 

This section discusses the theory behind conductivity calculations based on the ESGF method. 

 

2.2.1 Scattering theory[46] 

Electric current is generated by the movement of electrons, and describing it requires addressing 

the scattering of particles. Scattering processes can be broadly classified into two categories: those in 

which energy is conserved before and after scattering, and those in which energy loss occurs. The 

former is referred to as elastic scattering, while the latter is called inelastic scattering. In the following 

discussion, the author focuses on elastic scattering. In scattering theory, the Schrödinger equation is 

replaced with the Lippmann-Schwinger equation as follows, and the discussion is developed based on 

this formulation. 

|𝜓±⟩ = |𝜙⟩ + 𝐺}/
±𝑉}|𝜓±⟩, (2.36) 

where |𝜓±⟩  and |𝜙⟩  represent the scattered state and incident state, respectively, 𝑉}  is the 

interaction with the scatterer, and 𝐺}/
± is the Green's function without the interaction. By defining the 

transition operator 𝑇}  as the operator that connects the incident state and scattered state, the following 

equation can be obtained 

𝑇}|𝜙⟩ = 𝑉}|𝜓±⟩. (2.37) 

By using the transition operator 𝑇}, Equation (2.36) can be rewritten as 

|𝜓±⟩ = |𝜙⟩ + 𝐺}/
±𝑇}|𝜙⟩, (2.38) 

and then, the transition operator 𝑇}  can be represented by Equation (2.37) and (2.38) as follows: 

𝑇} = 𝑉} + 𝑉}𝐺}/
±𝑇}. (2.39) 

Expanding Equation (2.39) sequentially, it becomes the following equation 

𝑇} = 𝑉} + 𝑉}𝐺}/
±𝑉} + 𝑉}𝐺}/

±𝑉}𝐺}/
±𝑉} +⋯. (2.40) 

By applying the Born approximation and neglecting higher-order terms, the following result can  be 

obtained 

𝑇} = 𝑉} + 𝑉}𝐺}/
±𝑉}. (2.41) 
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From Equation (2.41), in the scattering theory, the transition operator can be obtained by the 

interaction with the scatterer and the Green’s function. 

 

2.2.2 Formulation of electron conductivity by using ESGF method 

The single-molecule electron conductivity can be considered based on the molecular orbitals. At 

first, Mujica et al. formularized the single-molecule electron conductivity evaluation method based on 

the elastic scattering method [47-49]. Luo et al. improved the method to a simple model by using the 

(1) overlap matrix elements, (2) the anchor atoms connected to the electrodes and (3) the probabilities 

that the electron is present at the anchor atoms in LUMO[44,50,51]. 

First, the Hamiltonian of the system H is defined as follows, 

𝐻 = 𝐻V +𝐻M +𝐻N + 𝑈, (2.42) 

𝐻V = &&𝐸WX/
WXY±

|𝛼X⟩⟨𝛼X|  

																	≡ &&𝐸WX/
WXY±

𝐶WXZ∗ 𝐶WX[|𝐼⟩⟨𝐽|, (2.43) 

𝐻M = &&𝐸"X/

"XY±

|𝑖X⟩⟨𝑖X|, (2.44) 

𝐻N = &&𝐸EX/

EXY±

|𝑗X⟩⟨𝑗X|, (2.45) 

𝑈 = &&�&𝛾"Z,X|𝑖X⟩⟨𝐼|
"

+&𝛾EZ,X|𝑗X⟩⟨𝐼|
E

�
ZXY±

+ complex	conjugate, (2.46) 

where HM, HL(R) represent the Hamiltonians of the molecule and the left (right) electrode, respectively; 

U is the interaction potential between the molecule and the electrodes; and g i I ,s  is the interaction 

between the I-th site of the molecule and the i-th orbital of the electrodes with spin s (= a or b). 

In the ESGF method, the transition operator is defined as follows, 

𝒯} = 𝑈 + 𝑈𝐺𝑈. (2.47) 

G is the Green's function, 

𝐺 =
1

𝑧 − 𝐻, 
(2.48) 

where z is a complex variable. Assuming that the electrodes only interact directly with the end-sites, 

(site 1 and M) of the molecule (see Fig. I.2.4), the transition matrix element can be written as 

𝒯}"E,X = 𝛾"8,X𝐺8V,\𝛾]E,X , (2.49) 

𝐺8V,\ =&�1� 1
𝑧 − 𝐻 �𝜙X

^�
^

�𝜙X
^�𝑀�  
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																																																																=&
�1�𝜙X

^��𝜙X
^�𝑀�

𝑧 − 𝜀X
^

^

  

																																																																≈ &
�1�𝜙X

^��𝜙X
^�𝑀�

𝑧 − 𝜀X̃
^ ,

^

 (2.50) 

where 𝜙X
^ is the eigenstate of the total Hamiltonian H, i.e. 𝐻�𝜙X

^� = 𝜀X
^�𝜙X

^�. Here, the end-sites are 

defined as the terminal atoms connected to the electrodes, the eigenstate h that overlaps with end-sites 

only contributes to the matrix elements in the Green's function . Therefore, �𝜙X
^� can be approximated 

by orbitals obtained from the Kohn-Sham equation for the finite systems consisting of the molecule 

sandwiched the electrodes (𝐻��𝜙X
^� = 𝜀X̃

^�𝜙X
^�) [44].  

 

 
Fig. I.2.4. Model of the finite system consisting of the molecule sandwiched the electrodes.  

This model is referred to as the extended molecule. 

 

In the linear response theory, a static carrier conduction iLR of the system that are applied the bias 

voltage VD by right and left electrodes is given as 

𝑖XMN =
1
2&

𝑒𝑚𝑘@𝑇
2𝜋.ℏ-

^

- �𝒯}X(𝐸)�^
.

Q

BT2
𝑓X(𝐸)𝑑𝐸, (2.51) 

𝑓X(𝐸) = �ln 91 + exp i
𝐸_,X + 𝑒𝑉 − 𝐸

𝑘@𝑇
k? − ln 91 + exp i

𝐸_,X − 𝐸
𝑘@𝑇

k?�, (2.52) 

where T is the temperature of the system and fs(E) represents the Fermi distribution. EF,s is the Fermi 

energy that is defined as the intermediate value between the orbital energies of the HOMO and LUMO 

of the extended molecule. Assuming that the interactions between the different scattering channels are 

negligible because the spacing between the molecular orbitals is large enough, then the transition 

probability is written as 

�𝒯}X(𝐸)�^
. = 𝛾M8,X. 𝛾VN,X. &

��1�𝜙X
^��.��𝜙X

^�𝑀��.

f𝜀X̃
^ − 𝐸g. + 𝛤 ,X

.
^

, (2.53) 

where 𝛤 ,X
.  denote the spin-depend escape rate determined by the Fermi's golden rule, 

𝛤 ,X =
𝛾M8,X�1�𝜙X

^� + 𝛾VN,X�𝜙X
^�𝑀�

2 . (2.54) 

�1�𝜙X
^� and �𝜙X

^�𝑀� represent the site-orbital overlap matrix elements between the end-sites and the 
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extended molecule. The product of the two site-orbital overlap matrixes, ��1�𝜙X
^��.��𝜙X

^�𝑀��. , 
represents delocalization of the molecular orbitals of the extended molecule, which is called site-

overlap.  

g is called the coupling constant between the molecule and electrodes. Luo et al. proposed that the 

occupied molecular orbitals of the electrodes interact with the LUMO of the bare molecule without 

electrodes based on the frontier orbital theory[44,50]. Therefore, the coupling constant g between the 

left electrode and site 1 of the molecule with subscripts L and 1 is written as 

𝛾M8,X(LUMO) = 𝑉M,X(LUMO)𝑑8,X(LUMO), (2.55) 

𝑉M,X. (LUMO) =
fΔ𝐸X,abcb'decb − Δ𝐸X,decbgΔ𝐸X,decb

2 , (2.56) 

𝑑8,X. (LUMO) =
∑ 𝑐8,",X.
"

∑ 𝑐f,",X.
f,"

, (2.57) 

where VL,s(LUMO) is the interaction between the HOMO of the electrodes and the LUMO of the 

bare molecule, and DEs,LUMO is the energy difference between them. DEs,HOMO-LUMO is the HOMO-

LUMO gap of the extended molecule and d1,s(LUMO) is the ratio of the ratio of the electron density 

at end-site 1 to that of the entire molecule. In other words, VL,s(LUMO) is the strength of the junction 

between the molecule and electrodes, and d1,s(LUMO) express the degree of transmission from the 

electrode to the molecule. Therefore, gL1,s(LUMO) represents the coupling strength of the junction 

between the left electrode and site 1, and determines the electron conductivity derived from the 

electron transfer between them. Equations (2.55)-(2.57) also hold between the end-site M and the right 

electrode with subscripts M and R. 

In the systems where the LUMO of the molecules is non-degenerate, Equations (2.55)-(2.57) can 

be applied; however, these equations cannot be applied to systems where the LUMO of the molecules 

is degenerate. Nakanishi et al. extended the method to the degenerated or quasi-degenerated systems 

by using the Boltzmann distribution[52]. Assuming that Equation (2.56) does not change in the 

degenerated systems, Equations (2.55)-(2.57) can be written as follows: 

𝛾M8,X = 𝑉M,X𝑑8,X∗ , (2.58) 

𝑉M,X ≈ 𝑉M,X(LUMO), (2.59) 

𝑑8,X. =
∑ exp[−(𝐸decb?) − 𝐸decb)/𝑅𝑇]) 𝑑decb?)

∑ exp[−(𝐸decb?) − 𝐸decb)/𝑅𝑇])
  

																																													=
∑ 𝐵)) 𝑑decb?)

∑ 𝐵))
, (2.60) 

where k is the number of orbitals degenerate with the LUMO, and Bk is the Boltzmann distribution. If 

k = 0, Equations (2.58)-(2.60) are equivalent to Equations (2.55)-(2.57).  

The total current density ILR is finally calculated as AiLR, where A is the effective injection area of 

the electron transmitted from the electrodes. A can be approximated that prs
2, where rs = [3/(4pn)]1/3 
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is defined as the radius of a sphere with the same volume as an electron. Also, n is the density of the 

electron, which is assumed in the three-dimensional free-electron model [50] as: 

𝑛 =
f2𝑚𝐸_,Xg

-
.

(3𝜋.ℏ-) . 
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Chapter 3. Estimation of molecular magnetism and correction of spin contamination 
In systems with open-shell electronic states, such as strongly correlated systems, magnetism arises 

from the interactions between localized spins. By estimating these magnetic interactions, it becomes 

possible to predict stable spin states. Calculation methods for open-shell electronic states, such as UHF 

and UDFT-based Broken-Symmetry (BS) methods, are commonly used; however, it is known that BS 

methods introduce errors referred to as spin contamination [1]. This section explains calculation 

methods for magnetic interactions corrected for spin contamination, namely the Yamaguchi method 

and the approximate spin projection method. Additionally, a method for optimizing molecular 

structures while correcting spin contamination using the approximate spin projection method is 

discussed [29]. 

 

3.1 Approximate spin projection method 

In systems such as open-shell biradical molecules, a possibility of the different spin coupling states 

must be considered. In the case of biradical systems, the energy gap between the singlet (BS) and 

triplet states must be considered. Usually, the energy gap between those states can be discussed by 

using the effective exchange integrals (Jab) in the Heisenberg Hamiltonian [54,55]. For example, the 

Heisenberg Hamiltonian for two spin-site system is 

𝐻¥ = −2𝐽fg𝑺¥f ∙ 𝑺¥g , (3.1) 

where Jab is the effective exchange integral between the localized spin site a and b, and 𝑺¥f(g) is the 

total spin operator at site a(b). When considering two spins coupled in antiferromagnetic (AFM, also 

referred to as spin-polarized low spin (LS) state, which in this model is represented as a BS singlet) 

and ferromagnetic (FM, or high spin (HS) state, represented as a triplet) interactions, the total spin 

operator can be expressed as the sum of the spin operators at each spin site. In this case, Equation (3.1) 

is: 

𝐻¥ = −2𝐽fg(−𝑺¥. + 𝑺¥f
. + 𝑺¥g

.). (3.2) 

Thus, the energies in the Heisenberg model for singlet and triplet states are as follows 

𝐸hijklmn = 𝐽fg(−〈𝑺¥.〉hijklmn + 〈𝑺¥f
.〉hijklmn + 〈𝑺¥g

.〉hijklmn), (3.3) 

𝐸noiplmn = 𝐽fg(−〈𝑺¥.〉noiplmn + 〈𝑺¥f
.〉noiplmn + 〈𝑺¥g

.〉noiplmn). (3.4) 

If the magnitude of the spin at each spin site remains the same for both the singlet and triplet states, 

the total spin interaction energy can be expressed as 

𝐸hijklmn − 𝐸noiplmn = 𝐽fg(〈𝑺¥.〉noiplmn − 〈𝑺¥.〉hijklmn). (3.5) 

Therefore, 

𝐽fg =
𝐸hijklmn − 𝐸noiplmn

〈𝑺¥.〉noiplmn − 〈𝑺¥.〉hijklmn
. (3.5) 

By generalizing to arbitrary ferromagnetic coupling states (HS) and antiferromagnetic coupling states 

(LS), the energy expressions can be described as follows 
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𝐽fg =
𝐸qrdr − 𝐸ar

〈𝑺¥.〉ar − 〈𝑺¥.〉qrdr
, (3.6) 

where ELS 
BS  and EHS represent the total energy of the LS and HS states calculated by the BS method. 

This is referred to as the effective exchange integral (J) value calculated by the approximate spin 

projection (AP) method. The denominator in the formula for the effective exchange integral is always 

positive, and considering that the molecule’s energy corresponds to the energy difference between the 

HS state and the LS state, the energy takes a negative value. Therefore, if Jab < 0, the LS states is more 

stable than the HS states; if Jab > 0, the HS states is more stable than LS states. The electronic structures 

with localized spins are often calculated by using the BS method. This method can approximate the 

spin-polarized electronic structures of the open-shell systems at low cost of calculations, however it 

has a problem called the spin contamination error. The spin contamination is an error that the electronic 

structure of the lower spin multiplicity (such as the LS state) is contaminated by the electronic states 

of higher spin multiplicity (such as the HS state) [1]. The spin contamination error is usually not 

negligible in the systems with larger spin-polarization. Equation (3.6) is called Yamaguchi's approach 

to calculate Jab values with the AP procedure [56-37].  

To apply the Yamaguchi equation to the results of the plane-wave calculations, it is necessary to 

determine the total spin angular momentum 〈𝑺¥.〉s (Y means the spin states and Y = LS or HS) in the 

context of the plane-wave calculations. Wang et al. proposed that 〈𝑺¥.〉s can be estimated using the 

electron density [59], 

〈𝑺¥.〉s = 〈𝑺¥.〉BFf>ts − 𝜌s'(𝑟), (3.7) 

𝜌s'(𝑟) = ©𝜌s
W(𝑟) − 𝜌su(𝑟)

0
					
when	𝜌sW(𝑟) < 𝜌su(𝑟)
when	𝜌sW(𝑟) ≥ 𝜌su(𝑟)

, (3.8) 

where 𝜌sW(𝑟) and 𝜌su(𝑟) are the density of the up and down spins for the spin states Y, respectively. 

By substituting 〈𝑺¥.〉s  defined in Equations (3.7) and (3.8) into Yamaguchi equation (3.6), the 

effective exchange integrals Jab in plane-wave calculations can be obtained. For a system where two 

spins are coupled (LS = singlet, HS = triplet), Jab is given as follows, 

𝐽fg =
𝐸dr − 𝐸ar

2 + ∫𝜌dr'(𝑟)𝑑𝑟 −∫𝜌ar'(𝑟)𝑑𝑟
. (3.9) 

 

3.2 Geometry optimization with AP method 

Jab value calculated by Equation (3.6) should be equal to Jab value calculated by the spin-projected 

wavefunctions because the spin contamination error (𝐽fg〈𝑺¥.〉qrdr ) is approximately eliminated, i.e. 

𝐽fg =
𝐸qrdr − 𝐸qrar

〈𝑺¥.〉qrar − 〈𝑺¥.〉qrdr
=

𝐸vwqrdr − 𝐸vwqrar

〈𝑺¥.〉BFf>tar − 〈𝑺¥.〉BFf>tdr , (3.10) 

where ELS 
APBS and EHS 

APBS are the total energy of the LS and the HS state with the AP procedure, 

respectively. In the HS state, the spin contamination is usually negligible, therefore,  
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〈𝑺¥.〉qrar ≅ 〈𝑺¥.〉BFf>tar , 𝐸qrar ≅ 𝐸vwqrar . (3.11) 

The spin-projected energy ELS 
APBS is then written as 

𝐸vwqrdr = 𝛼𝐸qrdr − 𝛽𝐸qrar, (3.12) 

where 

𝛼 =
〈𝑺¥.〉qrar − 〈𝑺¥.〉BFf>tdr

〈𝑺¥.〉qrar − 〈𝑺¥.〉qrdr
, (3.13) 

𝛽 =
〈𝑺¥.〉qrdr − 〈𝑺¥.〉BFf>tdr

〈𝑺¥.〉qrar − 〈𝑺¥.〉qrdr
, (3.14) 

𝛽 = 𝛼 − 1. (3.15) 

 To perform the geometry optimization by using the AP method, an energy gradient of ELS 
APBS is 

required [60,61]. Taylor expansion of Equation (3.12) is written as 

𝐸vwqrdr (𝑹vwqrdr ) = 𝐸vwqrdr (𝑹) + 𝑿S𝑮vwqrdr (𝑹) +
1
2𝑿

S𝑭vwqrdr (𝑹)𝑿, (3.16) 

where GLS 
APBS(R) and FLS 

APBS(R) are a gradient and a hessian of ELS 
APBS(R), respectively. RLS 

APBS and R are a 

stationary point of and a present position, respectively, and X = RLS 
APBS − R is a position vector.  

GLS 
APBS(R) = 0 at the stationary point RLS 

APBS, therefore RLS 
APBS can be obtained if GLS 

APBS(R) can be calculated. 

 From Equation (3.12), GLS 
APBS(R) can be written as 

𝑮vwqrdr (𝑹) =
𝜕𝐸vwqrdr (𝑹)

𝜕𝑹   

					= ´𝛼(𝑹)𝑮qrdr(𝑹) − 𝛽(𝑹)𝑮qrar(𝑹)µ +
𝜕𝛼(𝑹)
𝜕𝑹 ´𝐸qrdr(𝑹) − 𝐸qrar(𝑹)µ, (3.17) 

where GY 
APBS(R) is the energy gradient calculated by the BS method for the spin state Y (Y: LS or HS). 

〈𝑺¥.〉qrar is usually constant because the spin contamination of the HS state is negligible, so 𝜕𝛼(𝑹) 𝜕𝑹⁄  

is written as follows from Equation (3.13) 

 

𝜕𝛼(𝑹)
𝜕𝑹 =

〈𝑺¥.〉qrar − 〈𝑺¥.〉BFf>tdr

f〈𝑺¥.〉qrar − 〈𝑺¥.〉qrdrg
.
𝜕〈𝑺¥.〉qrdr

𝜕𝑹 . (3.18) 

𝜕〈𝑺¥.〉qrdr 𝜕𝑹⁄  can be obtained from a numerical fitting [60] and the AP optimization is carried out by 

Equation (3.17) and (3.18). 

 The spin-projected hessian FLS 
APBS(R) can be used to estimate the spin contamination in IR spectra. 

FLS 
APBS(R) is written as 

𝑭vwqrdr (𝑹) =
𝜕.𝐸vwqrdr (𝑹)

𝜕𝑹.   
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						= ´𝛼(𝑹)𝑭qrdr(𝑹) − 𝛽(𝑹)𝑭qrar(𝑹)µ + 2
𝜕𝛼(𝑹)
𝜕𝑹 ´𝑮qrdr(𝑹) − 𝑮qrar(𝑹)µ

+
𝜕.𝛼(𝑹)
𝜕𝑹. ´𝐸qrdr(𝑹) − 𝐸qrar(𝑹)µ 

(3.19) 

where FY 
APBS(R) is the hessian calculated by the BS method for the spin state Y (Y: LS or HS). We can 

obtain the IR spectra by diagonalizing FLS 
APBS(R). 

 Although 𝜕𝛼(𝑹) 𝜕𝑹⁄  is necessary to calculate the AP gradient by Equation (3.17), most ab initio 

programs don't give us 𝜕𝛼(𝑹) 𝜕𝑹⁄  value. For this issue, we used a numerical procedure based on the 

univariate method introduced by Kitagawa et al. [60,61]. 
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Part II 
 

Relationship between open-shell electronic 
state and single-molecule electron 
conductivity 

 

 



 62 

1. Introduction 

To establish design guidelines for single-molecule components utilizing the open-shell electronic 

states, the selection of target molecular systems is crucial. In this study, the author focused on d-p 

conjugated compounds. In the molecular electronics, p-conjugated organic molecules are the first 

promising candidates for the single-molecule components/devices, because their delocalization of p-

orbitals exhibit high electron conductivity. Various single-molecule components utilizing p-

conjugated organic molecules have been reported to date [1-11]. In addition, d-p conjugated 

compounds, consist of organic ligands and metal ions, have also attracted attention as another 

candidate molecules [12-14]. They can exhibit both the high electron conductivity through the p-

orbitals of the organic ligands and various functionalities due to the localized electrons in d-orbitals 

of the metal ions. Extended metal atom chains (EMACs) are one of the d-p conjugated compounds 

that involve the linearly aligned transition metal ions surrounded by the organic bridging ligands [15]. 

The EMACs are considered suitable for application as molecular wires because their one-

dimensionally aligned metal ions resemble the structure of metal leads [16,17]. 

As describes in General Introduction, a development of the theoretical calculations for the strongly 

correlated systems have clarified the electronic structures of the d-p conjugated compounds [18-26]. 

For example, the DFT and multi-reference (MR) calculations have revealed the nature of the metal-

metal bonds [18,21,24,25]. Additionally, the electron transportation in the EMACs have also been 

simulated based on the Green’s function method, such as ESGF and NEGF methods [22-26]. It has 

been reported that the electron conductivities depend on their structures and electronic states [23]. 

From the viewpoint of the single-molecule components/devices, a relationship between the 

electronic/spin structure, magnetic property and electron conductivity of nickel EMACs has also 

examined based on the DFT and the ESGF methods [24-26]. The nickel EMACs have two types of 

nickel(II) ions i.e. terminal (high spin, S = 1) and inner (low spin, S = 0) ions, where S represents the  

magnitude of spins of the Ni(II) ion, and a difference in the electron conductivity by their spin coupling 

states between the terminal Ni(II) ions i.e. anti-ferromagnetic (AFM) and ferromagnetic (FM) 

coupling states was reported [24]. In addition, the FM state exhibited higher conductivity than the 

AFM state [25,26].   

To further discuss the relationship, the author has focused on paddlewheel-type dinuclear complexes, 

whose structures are considered the smallest units of EMACs. Up to now, a lot of functional 

paddlewheel-type dinuclear complexes such as redox activity, optical property and electron 

conductivity have been reported [27-31]. Additionally, paddlewheel-type dichromium tetraacetate 

complexes have been reported to possess unique spin-polarized quadruple metal-metal bonds 

consisting of s-, p- and d-orbitals, and their electronic structures have been theoretically examined 

using the generalized valence bond (GVB) and MR methods [32-34]. Kitagawa et al. conducted a 

detailed study on a relationship between the molecular structure, electronic structure and effective 
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exchange integrals (J) of the dichromium tetraacetate complexes using the BS and AP methods (see 

the details in Part I, Chapter 3) [35]. The results indicated that the dichromium complexes have a 

ground state with a spin-polarized open-shell singlet electronic structure [36], which is preferable for 

the single-molecule transistors using the spin states. In addition, it was found that the BS method is a 

powerful tool for calculating J values and molecular structures of these complexes when the spin 

contamination error is corrected by the AP method [36,37]. 

In this study, therefore, the author investigated the electron conductivity of the paddlewheel-type 

dichromium(II,II) tetrabenzoate complex shown in Fig. II.1 using the BS-DFT with the AP method 

and ESGF method, whose detail was explained in Part I, Chapter 2. In addition, the author introduced 

substituents, such as electron-donating/withdrawing groups, into the bridging ligands (R in Fig. 

II.1(a)), and compared the electron conductivities between the AFM and FM states, as shown in Fig. 

II.1(b) to elucidate the relationship between the electronic structure, spin state and single-molecule 

electron conductivity in detail. 

 

 
Fig. II.1. (a) Model structure of the paddlewheel-type dichromium(II,II) tetrabenzoate complex.  

R represents the positions where the substituents are introduced. (b) Electron configuration of d-

orbitals of two Cr(II) ions for the anti-ferromagnetic (AFM) and ferromagnetic (FM) states. In these 

complexes, the AFM state corresponds to an open-shell singlet state formed by the d-orbitals of the 

chromium ions, while the FM state corresponds to a nonet state. In the figure, the upward and 

downward arrows represent a-spin and b-spin, respectively. 

 

2. Computational Details 

The dichromium(II,II) tetrabenzoate pyrazine complex was used as the basic framework, and 

several substituents were introduced into the benzoate ligands to examined the substitution effect. As 

electron-donating groups, OH and CH₃, and as electron-withdrawing groups, F, CN, and NO₂ were 

introduced into the R-parts of Fig. II.1(a) to compare with the non-substituted (R=H, abbreviated as 
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NS) complex. Hereafter, the complexes with substituents X are referred to as R(X). The structures of 

these complexes were based on the dichromium tetraacetate pyrazine complex [40].  

The structures of the complexes in the AFM state were first optimized by B3LYP/6-31G* level of 

theory [41-43]. Since these complexes have the open-shell properties, the BS-DFT calculation was 

used to include the static electron correlation. To eliminate the spin contamination error in the BS-

DFT results, the geometry of the Cr(II) ions was only reoptimized by the AP-optimization explained 

in Part I, Chapter 3.  

The anchor nitrogen atoms of the axial pyrazine ligands were designed to bind to the on-top site of 

the Au(111) surface, as the nitrogen atoms are known to bind to the on-top sites of Au(111) [44,45]. 

To reduce the computational cost, the electrodes were approximated as gold dimers as shown in Fig. 

II.2, which reproduce the Fermi energy of the bulk gold [24]. 

On the complexes plus gold dimers (extended molecule), the electronic structure calculations were 

performed by BS-B3LYP/LANL2DZ [46](Au), 6-31G* (other atoms) level of theory for both the 

AFM and FM states. For all models, the total charge was neutral, and the spin multiplicities of the 

AFM and FM states were singlet and nonet, respectively.  

The electron conductivity was calculated by the ESGF method, explained in Part I, Chapter 2, using 

the DFT calculation results. Assuming that the temperature was 300 K. The molecular orbitals 

contributing to the electron transition were considered within the range from LUMO+9 to HOMO−9. 

All DFT calculations were performed in the gas phase using Gaussian 09 Rev. D01 [47] and the 

electron conductivity was simulated using our self-developed program. 

 

 
Fig. II.2. Illustration of the extended molecules of the NS complex. The labels 1 and M represent the 

end-sites of the complex, and L and R are the left and right electrodes, respectively. The Au-N 

distance and Au-Au distance were fixed to 2.30 Å and 2.88 Å, respectively [38,39]. 
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3. Results and Discussion 

3.1 Effect of substituents on the structure and electron conductivity of the complex in the AFM state 

First, the author investigated the electron conductivity in the AFM state. Fig. II.3 shows a 

relationship between the calculated current values at 1.0 V (IAFM) and the optimized Cr(II)-Cr(II) 

distances of the complexes. As shown in Fig. II.3, when the electron-donating groups (-OH and -CH3) 

are introduced, the Cr(II)-Cr(II) distance becomes shorter and the electron conductivity of the complex 

becomes higher. On the other hand, in the case of introducing the electron-withdrawing groups (-F, -

CN and -NO2), the distance between Cr(II) ions is elongated and the electron conductivity becomes 

lower.  

  

 
Fig. II.3. Calculated current values at 1.0 V versus the Cr(II)-Cr(II) distance of the optimized 

complexes in the AFM states. The red, blue and black markers represent the complexes with the 

electron-donating groups, electron-withdrawing groups and NS form, respectively. 

 

IAFM without the AP-optimization are shown in Fig. II.4, and significant changes were observed in 

the electron conductivities due to the Cr(II)-Cr(II) distances, suggesting the importance of eliminating 

the spin contamination error for the electron conductivity calculations in these systems. The optimized 

Cr(II)-Cr(II) distances, summarized in Table II.1, are slightly longer than the experimental results of 

the related complexes. The elongation can be attributed to the absence of packing effects in the crystal 

structure. It has been reported that the AP-B3LYP method reproduces the experimental Cr(II)-Cr(II) 

distance of paddlewheel-type dichromium(II,II) tetraacetate complexes well when the ligands are 

fixed to the X-ray structure [48,49]. In this study, however, the entire structure of the model complexes 

was fully optimized using the BS method in the gas phase, without considering crystal packing effects, 
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followed by the partial optimization of the Cr(II) ions. As a result, the molecular sizes were expanded. 

Indeed, the optimized axial molecular lengths, defined as the distance between the end-sites 1 and M 

(see Fig. II.2), are longer than the experimental values, as summarized in Table. II.2.  

 

 
Fig. II.4. Calculated current values at 1.0 V versus the distance between the dichromium ions of the 

complexes without the AP-optimization in the AFM states. The red circle markers, the blue circle 

markers and the black diamond-shaped marker represent electron-donating groups, -withdrawing 

groups and NS form, respectively. 

 

Table II.1. Cr-Cr distances optimized by BS- and AP-B3LYP methods. Experimental Cr-Cr 

distances of related complexes; Cr2(O2CCH3)4(pyridine)2 (1) and Cr2(O2CCH3)4(pyrazine)2 (2) are 

also summarized in the table from reference, respectively. 

 Cr-Cr distance / Å 

 BS-B3LYP AP-B3LYP 

R(OH) 2.505 2.425 

R(CH3) 2.506 2.426 

NS 2.509 2.429 

R(F) 2.512 2.433 

R(CN) 2.529 2.451 

R(NO2) 2.532 2.455 

Complex 1 [40] 2.369 

Complex 2 [40] 2.295 
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Table II.2. Axial molecular length of each complex, defined as the distance between the terminal 

atoms 1 and M, as shown in Fig. II.2. Since the AP-optimization was performed only for the Cr 

atoms, these lengths remain unchanged before and after the AP-optimization. Experimental distances 

of related complexes; Cr2(O2CCH3)4(pyridine)2 (1) and Cr2(O2CCH3)4(pyrazine)2 (2) are also 

summarized in the table from reference, respectively. 

 Axial molecular length / Å 

R(OH) 12.802 

R(CH3) 12.784 

NS 12.786 

R(F) 12.790 

R(CN) 12.797 

R(NO2) 12.798 

Complex 1 [40] 12.545 

Complex 2 [40] 12.474 

 

As shown in Fig.II.1, the AFM state in these paddlewheel-type dichromium complexes corresponds 

to the open-shell singlet state formed by the d-orbitals of the chromium ions. Therefore, spin 

polarization occurs, where the a electrons and b electrons exhibit different spatial distributions. The 

spin polarization increases as the open-shell property becomes larger, that is, as the bond distance 

increases. Consequently, when the electron-donating group is substituted, the spin polarization is 

smaller than that of the NS form, whereas when the electron-withdrawing group is substituted, the 

spin polarization becomes larger. Summarizing these trends, they are illustrated in Fig. II.5 and 

explained that: 

I. When the electron-donating group is introduced into the paddlewheel-type dichromium complex, 

the electron density within the Cr-Cr bond increases, leading to the shorter Cr-Cr distance and 

reduced the spin polarization. Consequently, the orbital overlaps between the chromium ions, i.e., 

within the molecule, becomes larger. As a result, based on the electron transmission probability 

equation, the electron conductivity increases. 

II. When the electron-withdrawing group is introduced into the complex, the electron density within 

the Cr-Cr bond decreases, leading to the elongated Cr-Cr distance and increased the spin 

polarization. Consequently, the orbital overlaps between the chromium ions, i.e., within the 

molecule, becomes smaller. As a result, the electron conductivity decreases. 

 

In the transition probability equation, the orbital overlaps within the molecule are represented as the 

site-overlaps. The calculated site-overlaps were analyzed, revealing that they are almost zero except 

for the LUMO and LUMO+1. Therefore, these two molecular orbitals are considered the primary 
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contributors to the electron conductivity of these complexes. The site-overlaps of the LUMO and 

LUMO+1 are summarized in Table II.3. The results align with the aforementioned trends and indicate 

that the electron-donating groups increase the site-overlaps, whereas these parameters decrease when 

the electron-withdrawing groups are introduced. From the above, it has been revealed that the electron 

conductivity of the paddlewheel-type dichromium complexes can be controlled by the substituents. 

 

 
Fig. II.5. Effect of the substituents on the Cr-Cr bond. EDG and EWG mean Electron-Donating 

Group and Electron-Withdrawing Group, respectively. In addition to the p- and s-orbitals shown in 

the figure, similar spin polarization occurs in another p-orbital and the d-orbital.  

 

Table II.3. The site-overlaps of the LUMO and LUMO+1 in the AFM states. The small difference 

between a and b orbital is considered to originate in a slight asymmetry of the optimized structures. 

  Site-overlap 

  LUMO LUMO+1 

R(OH) 
a 0.0085 0.0084 

b 0.0069 0.0069 

R(CH3) 
a 0.0071 0.0071 

b 0.0076 0.0076 

NS 
a 0.0070 0.0070 

b 0.0069 0.0069 

R(F) 
a 0.0068 0.0068 

b 0.0066 0.0066 

R(CN) 
a 0.0054 0.0054 

b 0.0055 0.0055 

R(NO2) 
a 0.0051 0.0051 

b 0.0051 0.0051 
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3.2 Difference in electron conductivity between the AFM and FM states 

To consider the effect of changes in the spin state on the electron conductivity, the current in the 

magnetically excited (FM) states are also calculated for the model complexes. Here, the author only 

discussed the FM state which is the highest spin state as illustrated in Fig.II.1 (b). Considering the 

vertical excitation by an external field, the structure was fixed to the optimized structure in the AFM 

state. Fig. II.6 shows the calculated current values at 1.0 V in the FM state (IFM) plotted against the 

Cr-Cr distance. The results indicate that the FM state exhibits much higher conductivity than the AFM 

state; however, changes in the electron conductivity due to substituents show almost the same trend as 

in the AFM state. Table II.4 shows the current ratio for the AFM and FM states before and after AP-

optimization, IY, AP/IY, non-AP (Y = AFM or FM). From Fig. II.3, II.4, II.6, and Table II.4, the current 

value increases by approximately 1.3 to 1.6 times in the AFM state due to AP-optimization, whereas 

it remains almost unchanged in the FM state. This trend corresponds to the fact that the spin 

contamination significantly affects the low-spin state, while it has little impact on the high-spin state.  

 

 
Fig. II.6. Calculated current values IFM at 1.0 V in the FM states versus the distance between the 

dichromium ions of each complex (a) with AP-optimization and (b) without AP-optimization.  

The red triangle markers, the blue triangle markers and the black square marker represent electron-

donating groups, -withdrawing groups and NS form, respectively. 
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Table II.4. Calculated current ratio before and after AP-optimization (IY, AP / IY, non-AP), where the 

subscript Y indicates the spin state (Y = AFM or FM). 

 IY, AP / IY, non-AP 

 AFM FM 

R(OH) 1.35 1.07 

R(CH3) 1.38 1.06 

NS 1.39 1.06 

R(F) 1.40 1.06 

R(CN) 1.43 1.04 

R(NO2) 1.59 1.04 

 

The change in the electron conductivity between the AFM and FM states can be explained by the 

orbital correlation diagram and the spin polarization shown in Fig. II.7. In the AFM state, the spin 

polarization between a and b electrons leads to the uneven electron distribution. On the other hand, 

in the FM state, electrons are arranged in antibonding orbitals, resulting in the absence of spin 

polarization, and consequently, a more delocalized electron distribution. This delocalization facilitates 

the electron transport between the electrodes through the molecule, thereby increasing the electron 

conductivity. Table II.5 summarizes the site-overlaps of the LUMO and LUMO+1 in the FM states, 

which predominantly contribute to the electron conduction, as in the AFM states. From Table II.1 and 

II.5, comparing the calculated parameters related to the transition probability, the site-overlaps are 

significantly larger in the FM states than that in the AFM states. In addition, as illustrated in Fig. II.8, 

the FM states exhibit the delocalized electronic structures in both the LUMO and LUMO+1, whereas 

the AFM states exhibit the spin-polarized electronic structures. Thus, it has been clarified that in the 

FM state, the expanded distribution enhances the electron conductivity.  

 

 
Fig. II.7. Orbital correlation diagram of (a) AFM and (b) FM states. The same trend applies to the s-

orbital, d-orbital, and the other p-orbital, as shown in the figure. 
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Table II.5. Site-overlaps that contribute to the electron conductivity in the FM states. In the table, a 

and b represent the a and b orbitals, respectively. The small difference between a and b orbital 

values is considered to originate in a slight asymmetry of the optimized structures. 

  Site-overlap 

  LUMO LUMO+1 

R(OH) 
a 0.0490 0.0470 

b 0.0484 0.0486 

R(CH3) 
a 0.0492 0.0472 

b 0.0511 0.0513 

NS 
a 0.0494 0.0475 

b 0.0514 0.0516 

R(F) 
a 0.0498 0.0481 

b 0.0517 0.0519 

R(CN) 
a 0.0508 0.0495 

b 0.0523 0.0526 

R(NO2) 
a 0.0506 0.0497 

b 0.0522 0.0527 
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Fig. II.8. Electron distributions in the LUMO and LUMO+1 in the AFM states and the FM states of 

(a)NS, (b)R(OH), (c)R(CH3), (d)R(F), (e)R(CN) and (f)R(NO2).  

Their isovalues are 0.02 electron/a.u.3. 

 

In Fig. II.8, the reason why the spin polarization appears on the axial ligand pyrazine rather than on 

the chromium in the electron distribution of the LUMO and LUMO+1 can be interpreted by 

considering the spin polarization in Cr-Cr bond and the orbital interactions between the chromium 

ions and the pyrazine ligands. The nature of the molecular orbitals formed between the metal and the 

ligand strongly depends on the component (either the metal or the ligand) whose energy levels are 

closer to the corresponding molecular orbital (see Fig. II.9(a)). Therefore, the molecular orbital 

correlation diagram formed by the interaction between the Cr-Cr bond and the pyrazine ligand is 

represented in Fig. II.9(b). The antibonding orbital corresponding to the spin-polarized distribution of 

the Cr-Cr bond in the bonding orbital appears in the LUMO, where the pyrazine ligand distribution is 

induced by the spin polarization of the Cr ions. Thus, it can be concluded that the pyrazine ligand 

exhibits a biased distribution due to spin polarization. 
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Fig. II.9. Orbital correlation diagram of (a) metal and ligand and (b) the chromium ions and the 

pyrazine axial ligands. 

 

Fig. II.10 shows a ratio of the electronic currents between the AFM and FM states (IFM/IAFM) at 1.0 

V, indicating that the electron-withdrawing groups increase the ratio, while the electron-donating 

groups decrease it. Moreover, from Fig. II.10, it can be observed that the current ratio, IFM/IAFM, 

calculated for structures without AP-optimization is overestimated by approximately 1.3 to 1.5 times 

compared to those obtained using AP-optimized structures, corresponding to the calculated current 

ratio before and after AP-optimization in the AFM states (IAFM, AP / IAFM, non-AP). These results highlight 

the importance of eliminating spin contamination in electronic current calculations for strongly 

correlated molecular systems.  

As summarized in Table II.6, the coupling constants and their products (𝛾M8,X. × 𝛾VN,X.) of the FM 

states are much larger than those of the AFM states. As a result, a significant difference in the electron 

conductivity between the AFM and FM states is considered to have emerged. To examine the effect of 

the substituents on the ratio, IFM/IAFM, in detail, the product of coupling constants, 𝛾M8,X. × 𝛾VN,X., of 

the complexes are illustrated in Fig. II.11. In the AFM states, the spin polarization dominantly 

contributes to the electron conductivity, and the electron-withdrawing substituents with strong spin 

polarization exhibited the decrease in the electron conductivity. However, in the FM states, the spin 

polarization does not occur, and its impact becomes more significant for systems that exhibited strong 

spin polarization. As a result, from the viewpoint of the switching ratio (IFM/IAFM), the introduction of 

the electron-withdrawing groups is more effective than that of the electron-donating groups, and 

therefore, the switching ratio of the paddlewheel-type dichromium complex can be also controlled by 

the substituents. 
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Fig. II.10. A ratio of the electronic currents between the AFM and FM states (IFM/IAFM) at 1.0 V (a) 

with AP-optimization and (b) without AP-optimization. The red, blue and black markers represent 

the complexes with the electron-donating groups, -withdrawing groups and NS form, respectively. 

 

Table II.6. Coupling constants in the AFM and the FM states of (a)NS, (b)R(OH), (c)R(CH3), 

(d)R(F), (e)R(CN) and (f)R(NO2). In this table, the subscript σ represents either α or β, which 

correspond to the α orbital and the β orbital, respectively. Ratio of product (FM/AFM) represents the 

ratio of the products of the coupling constants 𝛾M8,X. × 𝛾VN,X. for the AFM and the FM states. 

(a) NS 
 

a orbital b orbital  
AFM state FM state AFM state FM state 

𝛾M8,X/eV 0.514 1.350 1.224 0.960 

𝛾VN,X/eV 1.224 1.347 0.513 0.958 

𝛾M8,X. × 𝛾VN,X./eV4 0.396 3.303 0.394 0.845 

Ratio of product 8.33 2.14 

(b) R(OH) 
 

a orbital b orbital  
AFM state FM state AFM state FM state 

𝛾M8,X/eV 0.586 1.401 1.262 0.984 

𝛾VN,X/eV 1.234 1.355 0.531 0.948 

𝛾M8,X. × 𝛾VN,X./eV4 0.522 3.602 0.449 0.869 

Ratio of product 6.90 1.93 
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(c) R(CH3)  
a orbital b orbital  

AFM state FM state AFM state FM state 

𝛾M8,X/eV 0.533 1.369 1.249 0.967 

𝛾VN,X/eV 1.257 1.382 0.548 0.979 

𝛾M8,X. × 𝛾VN,X./eV4 0.449 3.580 0.469 0.896 

Ratio of product 7.98 1.91 

(d) R(F) 
 

a orbital b orbital  
AFM state FM state AFM state FM state 

𝛾M8,X/eV 0.485 1.302 1.167 0.927 

𝛾VN,X/eV 1.160 1.292 0.473 0.920 

𝛾M8,X. × 𝛾VN,X./eV4 0.316 2.832 0.304 0.728 

Ratio of product 8.96 2.39 

(e) R(CN) 
 

a orbital b orbital  
AFM state FM state AFM state FM state 

𝛾M8,X/eV 0.357 1.112 0.970 0.751 

𝛾VN,X/eV 0.970 1.112 0.358 0.751 

𝛾M8,X. × 𝛾VN,X./eV4 0.120 1.529 0.120 0.318 

Ratio of product 12.75 2.64 

(f) R(NO2)  
a orbital b orbital  

AFM state FM state AFM state FM state 

𝛾M8,X/eV 0.274 0.936 0.759 0.603 

𝛾VN,X/eV 0.757 0.932 0.270 0.601 

𝛾M8,X. × 𝛾VN,X./eV4 0.043 0.760 0.042 0.131 

Ratio of product 17.76 3.13 
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Fig. II.11. 𝛾M8,X. × 𝛾VN,X. values of (a) a orbital and (b) b orbital of the model complexes. 

 

In the experimental work for the single-molecule components, the applied bias voltage has usually 

been within the range of 0.1 - 1.0 V [12,16,17,44]. Thus, the author also examined the current-voltage 

(I-V) characteristics and the IFM/IAFM ratio at bias voltages of 0.5, 1.5 and 2.0 V. The calculated I-V 

characteristics of the AFM and FM states are shown in Fig. II.12 (a) and (b), respectively. The results 

indicate that the relationship between the bias voltage and calculated current remains consistent up to 

2.0 V. Additionally, the IFM/IAFM ratio indicates the same trend up to 2.0 V, as shown in Fig. II.13. 

 

 
Fig. II.12. Calculated I-V characteristics for each complex in (a) the AFM state and (b) the FM state. 
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Fig. II.13. Electronic current ratio (IFM/IAFM) at 0.5 V, 1.0 V, 1.5 V and 2.0 V. 

 

Finally, the author examined the exchange coupling (J) values between the two Cr(II) ions. In the 

two-site Heisenberg Hamiltonian, 𝐻¥ = −2𝐽fg𝑆¹f𝑆¹g, a spin operator 𝑆¹"(i = a, b) becomes each Cr(II) 

(S = 2) in these complexes, and Table II.6 summarized the calculated J values by Yamaguchi equation 

(see Part I, Chapter 3). The total energies and 〈𝑺¥.〉 for the calculation of these J values are also 

summarized in Table II.6. The paddlewheel-type dichromium(II,II) complexes has been reported to 

exhibit partial paramagnetism in the Cr-Cr quadruple bond. The J value of Cr2(O2CCH3)4(OH2)2 was 

experimentally observed to be –490 cm–1 (see Table II.7) [52]. However, B3LYP was reported to 

overestimate the stability of the AFM state in the spin-polarized systems [50]. In fact, the J value of 

Cr2(O2CCH3)4(OH2)2, which was calculated to be –733 cm–1 by B3LYP using the X-ray structure, was 

overestimated by about 70% [35]. Therefore, the calculated J values of the model complexes in this 

study (–606 ~ –636 cm–1) may represent an over-stabilization of the AFM state. On the other hand, it 

has also been reported that the overestimation can be corrected by using BHandHLYP, which includes 

50% Hartree-Fock exchange [52]. The calculated J values of the NS form between BHandHLYP and 

B3LYP are summarized in Table II.7. The J value calculated using B3LYP is approximately 70% larger 

than that obtained with BHandHLYP, suggesting that B3LYP overestimates the J value. However, 

from the viewpoint of the Cr(II)-Cr(II) distance, AP-B3LYP has been reported to be able to  

reproduce the experimental Cr-Cr distance [48]. In addition, it has been confirmed that the I-V 

characteristics estimated using B3LYP can successfully reproduce the experimental results [24]. From 

these reasons, the author discussed the relationship between the electron conductivity and molecular 

structure using B3LYP. 
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The J values are slightly changed by the substituents as shown in Table II.6. The complexes with 

the electron-donating groups enhance the anti-ferromagnetic interaction, while the electron-

withdrawing groups weaken it. The result is consistent with the difference in electron conductivity by 

the substituents. On the other hand, the change in the exchange coupling is within 30 cm–1, suggesting 

that the electron conductivity shows a stronger dependency on the spin polarization. 

 

Table II.6. The total energy, 〈𝑺",〉 values of the AFM and FM states and effective exchange integrals 

(J) values of the extended molecules. 

 Total energy / a. u. 〈𝑺¥.〉  

 AFM FM AFM FM J / cm−1 

R(OH) −5141.465538 −5141.425873 3.5829 20.0191 −636 

R(CH3) −4997.869403 −4997.829566 3.5811 20.0191 −638 

NS −4840.597525 −4840.557873 3.5830 20.0189 −634 

R(F) −5237.529641 −5237.490277 3.5856 20.0188 −629 

R(CN) −5209.549988 −5209.511696 3.5963 20.0184 −610 

R(NO2) −5658.575993 −5658.537932 3.5986 20.0183 −606 

 

Table II.7. Calculated and experimental J values by B3LYP and BHandHLYP with the paddlewheel-type 

dichromium(II,II) benzoate (NS) and Cr2(O2CCH3)4(H2O)2. 

 J / cm−1 

Method NS Cr2(O2CCH3)4(H2O)2 [35] 

B3LYP −634 −734 

BHandHLYP −460 −520 

Expt. [51] --- −490 

 

4. Conclusion 

In this study, the author investigated the single-molecule electron conductivity of the paddlewheel-

type dichromium(II,II) tetrabenzoate complexes by introducing the electron-donating and electron-

withdrawing groups into the bridging ligands. The results indicated that the electron conductivity of 

the model complexes increases/decreases by substitution of the electron-donating/withdrawing groups, 

respectively. Especially, the electron-donating group is effective to increase the electron conductivity 

due to the suppression of the spin polarization. On the other hand, from the viewpoint of the switching 

ratio between the AFM and FM states (IFM/IAFM), the electron-withdrawing group is more effective 

because the transition to the FM state eliminates spin polarization, making its impact more significant. 

From these results, the electron conductivity and its switching ratio, achieved by changing the spin 

states of the paddlewheel-type dichromium tetrabenzoate complex, can be controlled through the 
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introduction of substituents. This finding provides the design guideline for single-molecule transistors 

utilizing open-shell electronic states.  
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Part III 
 

Comparison of open-shell electronic state 
and electron conductivity in single molecule 
and two-molecule system 
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1. Introduction 

For the use of single-molecule components as devices, integration—such as connecting or 

assembling them—is considered important. Recently, research on the integration of single-molecule 

components has also been conducted, with reports evaluating the performance and characteristics of 

systems consisting of multiple molecular components such as self-assembled monolayers (SAMs), 

arrangement on semiconductor chips, and placing on carbon nanotube substrate [1-5].  

In recent years, there have been interesting results on molecular circuits. According to the Ohm’s 

law, the current value of a parallel circuit equals to the sum of current through each resistor. However, 

in molecular parallel circuits, the Ohm's law is fail because of quantum interference effects [6]. The 

conductance 𝐺, in nano-scale parallel circuits of two components is given as 

𝐺 = 𝐺8 + 𝐺. + 2F𝐺8𝐺.	, (III.1) 

where 𝐺8  and 𝐺.  are the conductance of respective components and 2F𝐺8𝐺.  is the quantum 

interference term. Vazquez and his co-workers demonstrated that the conductance of a molecular 

parallel circuit model composed of two parallel benzenes is larger than twice that of a single benzene, 

both experimentally and theoretically [7]. Recently, several exceptions to Equation (III.1) have been 

reported from the perspectives of aromaticity, frontier orbital theory, and orbital interaction [8,9]. 

However, molecular circuits in open-shell electronic systems have not been investigated. 

In this study, as the first step toward molecular integrated systems utilizing open-shell single-

molecule components, the author considered the simplest molecular parallel circuit model composed 

of two components. As such a model, the author considered a molecular parallel circuit model based 

on [18]annulene, as shown in Fig. III.1. As shown in Fig. III.1, [18]annulene can be assumed to be a 

parallel circuit composed of two linear polyenes (Polyene A and Polyene B). The sulfur atoms at the 

end-sites form thiol radicals, leading the linear polyenes to exhibit open-shell electronic structures. In 

such a molecular parallel circuit model, the electronic structures and the electron conductivities of 

both the circuit and its components were calculated by DFT and ESGF methods. Subsequently, the 

author examined the relationship between electron conductivity in the molecular parallel circuit model 

and that of individual molecular components, comparing it to the classical parallel circuit, where 

Ohm’s law holds for electrical conductivity. 
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Fig. III.1. Illustration of the molecular parallel circuit models: (a) [18]annulene derivative as the 

parallel circuit, and (b) two linear polyenes A and B divided from the [18]annulene derivative as the 

individual components. 

 

2. Computational Details 

[18]annulene derivatives were used as the molecular parallel circuit models, which were assumed 

to be composed of two linear polyenes (Polyene A and Polyene B). The end-sites of these molecules 

were sulfur atoms, with the assumption that the junctions between the end-sites and Au(111) surface 

were at the bridge-site, as illustrated in Fig. III.2. Similar to the paddlewheel-type dichromium 

complexes in Part II, the electrodes were approximated as the gold dimers. To modify the open-shell 

electronic state of the molecular circuit and single-molecule components, various substituents X were 

introduced into the model molecules, and comparisons were made with the non-substituted (NS) form. 

To consider the open-shell electronic state, the electronic structures were calculated using spin-

unrestricted DFT, that enabled the spin polarization to be performed involved the static electron 

correlation effect. 

[18]annulene derivatives were geometrically optimized by the BHandHLYP/6-31+G*(S), 6-

31G*(other atoms) level of theory [10-13]. The two linear polyenes, Polyene A and Polyene B, were 

extracted from the optimized [18] annulene structures. Subsequently, only the hydrogen atoms added 

at the boundaries of the polyenes were geometrically optimized. The electronic structures of the 

extended molecules, including the gold dimer in the molecules, were determined using spin-

unrestricted DFT calculations with the BHandHLYP functional. The basis sets used were LANL2DZ 

[14] for Au, 6-31+G* for S, and 6-31G* for other atoms. For all models, the charge and the spin states 

were set to neutral and singlet, respectively. 
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The electron conductivity was calculated through ESGF methods, explained in Part I, Chapter 2, 

assuming that the temperature was 300 K and the electron conduction occurred through the molecular 

orbitals from LUMO+9 to HOMO−9. All DFT calculations were performed in the gas phase using 

Gaussian 09 Rev. D01 [15], and the electron conductivity was calculated using our self-developed 

program. 

 

 
Fig. III.2. Model of the extended molecule of the NS form. The electrodes are approximated by the 

gold dimers, and the junctions between the Au and S atoms are assumed to be the bridge-site. The 

labels 1 and M represent the end-sites; L and R are the left and right electrodes, respectively. The 

distances between the middle point of the Au dimer and the sulfur atom were fixed at 2.30 Å, and the 

Au–Au distance was assumed to be 2.88 Å [16,17]. 

 

3. Results and Discussion 

3.1 Electron conductivity of [18]annulene as the molecular parallel circuit model 

First, using the NS form, the author examined the relationship between the electron conductivity of 

the molecular parallel circuit model based on [18]annulene and that of the two linear polyenes as 

individual single-molecule components. Fig. III.3 shows the current-voltage (I–V) characteristics of 

[18]annulene (Iannulene) and the total of the current values of the two polyenes, which are defined by 

two equations. The first equation represents a simply summation, analogous to a classical parallel 

circuits: 
𝐼v?q = 𝐼wxlymjm	v + 𝐼wxlymjm	q, (III.2) 

where 𝐼Polyene A and 𝐼Polyene B represent the current of Polyene A and Polyene B, respectively. The 

second equation accounts for the quantum interference (QI) term base on Equation (III.1): 

𝐼v?q?z = 𝐼wxlymjm	v + 𝐼wxlymjm	q + 2º𝐼wxlymjm	v𝐼wxlymjm	q, (III.3) 

where 2F𝐼Polyene A𝐼Polyene B is the QI term. As shown in Fig. III.3, the calculated currents values of 

the [18]annulene were larger than IA+B, however, smaller than IA+B+Q. Therefore, in the molecular 

parallel circuit model with the open-shell electronic system, it has been revealed that neither Ohm’s 

law in classical circuits, as shown in Equation (III.2), nor the existing conductivity equation  

incorporating quantum interference in molecular parallel circuits, as shown in Equation (III.3), holds.  
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Fig. III.3. I–V characteristics of the [18]annulene (Iannulene), the sum of independent polyenes (IA+B), 

and the values including the QI term (IA+B+Q). 

 

To analyze the difference in the electron conductivity between the Iannulene and IA+B, IA+B+Q, various 

calculated parameters were examined, including the total spin angular momentum 〈𝑺¥.〉 and coupling 
constants 𝛾M8,X , 𝛾VN,X, as summarized in Table III.1, as well as the site-overlaps in each molecular 

orbital, as summarized in Table III.2. From the calculated 〈𝑺¥.〉 values in Table III.1, it is found that 

the [18]annulene exhibits a closed-shell electronic state, whereas the divided polyenes exhibit weak 

open-shell systems. Such difference in the electronic states significantly affects the coupling constants 

and site-overlaps. Specifically, according to Tables III.1 and III.2, in the closed-shell system of 

[18]annulene, the 𝛾M8,X , 𝛾VN,X  and site-overlaps exhibit equal values for the  a and b orbitals. 

However, in the open-shell system of the linear polyenes, these parameters show different values 

between the a and b orbitals, indicating the spin polarization. Therefore, the [18]annulene facilitates 

the electron transfer between the left and right electrodes, whereas the divided polyenes, due to their 

asymmetric electron distributions, makes it more difficult for electrons to migrate to the opposite 

electrode. Such differences in the electron transfer mechanisms are considered to be the cause of the 

differences observed between Iannulene and IA+B, IA+B+Q. As a result, it has been clarified that in the open-

shell electronic molecular parallel circuits, considerations incorporating the quantum interference are 

essential. 
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Table III.1. Summary of the total spin angular momentum 〈𝑺¥.〉 and coupling constants of the 

[18]annulene and the divided polyenes. In this table, a and b represent a and b orbitals, respectively.  
 [18]annulene Polyene A Polyene B 
 a b a b a b 

〈𝑺¥.〉 0.000 0.147 0.147 

𝛾M8,X 	/	eV 0.855 0.855 1.078 0.674 0.675 1.049 

𝛾VN,X 	/	eV 0.855 0.855 0.675 1.049 1.078 0.674 

𝛾M8,X. × 𝛾VN,X.	/	eV{ 0.534 0.534 0.530 0.500 0.530 0.500 

 

Table III.2. Site-overlap values of each orbital for the [18]annulene and the divided polyenes. 

 Site-overlap 

 [18]annulene Polyene A Polyene B 

 a b a b a b 

HOMO−9 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000 

HOMO−8 0.0213 0.0213 0.0000 0.0002 0.0000 0.0001 

HOMO−7 0.0158 0.0158 0.0000 0.0000 0.0000 0.0000 

HOMO−6 0.4074 0.4074 0.0000 0.0000 0.0000 0.0000 

HOMO−5 2.2823 2.2823 0.2068 0.1903 0.1287 0.1534 

HOMO−4 0.9860 0.9860 0.0043 1.5019 0.0036 1.4478 

HOMO−3 0.0033 0.0033 0.0557 0.9201 0.0465 0.8951 

HOMO−2 0.0150 0.0150 0.0015 0.0035 0.0000 0.0023 

HOMO−1 0.0321 0.0321 0.0000 0.0000 0.0000 0.0000 

HOMO 0.0331 0.0331 0.0000 0.0000 0.0000 0.0000 

LUMO 0.0703 0.0703 0.0578 0.0351 0.0453 0.0515 

LUMO+1 0.0341 0.0341 0.0002 0.0001 0.0000 0.0000 

LUMO+2 0.0001 0.0001 0.0099 0.0013 0.0022 0.0001 

LUMO+3 0.0023 0.0023 0.0308 0.0323 0.0342 0.0593 

LUMO+4 0.0003 0.0003 0.0151 0.0112 0.0127 0.0158 

LUMO+5 0.0037 0.0037 0.0000 0.0000 0.0030 0.0027 

LUMO+6 0.0130 0.0130 0.0003 0.0002 0.0000 0.0000 

LUMO+7 0.0000 0.0000 0.0135 0.0128 0.0310 0.0294 

LUMO+8 0.0001 0.0001 0.0016 0.0016 0.0018 0.0017 

LUMO+9 0.0170 0.0170 0.0000 0.0000 0.0000 0.0000 

Total 3.94 3.94 0.398 2.71 0.309 2.66 
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3.2. Effects of substituents on the electron conductivity of molecular parallel circuits with the open-

shell electronic states 

As described in the previous section, both electron conductivity and the QI term were influenced 

by the open-shell property of the molecules. Additionally, in Part II, it was demonstrated that the 

electron conductivities and open-shell electronic states of single-molecule components can be 

modulated by introducing substituents. Based on them, the author examined the impact of adjusting 

the open-shell electronic states of single-molecule components through substituent introduction on the 

electron conductivity of molecular parallel circuits. To explore the effects of substituents on the 

molecular parallel circuits, the relationship between open-shell electronic state and electron 

conductivity was examined by introducing electron-donating groups (X = -OCH₃, -OH) and electron-

withdrawing groups (X = -CN, -NO₂) into [18]annulene and divided polyenes. Two substituted models, 

1 and 2, were considered, with two substituents placed symmetrically, as shown in Fig. III.4(a). The 

NO₂-substituted derivative of model 2 was excluded because the sulfur atom is structurally too close 

to the oxygen atoms of the nitro group, leading to unintended bond formation. The current values for 

substituted annulenes and polyenes at 1.0 V are presented in Fig. III.4(b). The results indicate that 

introducing substituents reduces electron conductivity in both annulenes and polyenes, irrespective of 

whether the substituents are electron-donating or withdrawing in the model 1. However, in the case of 

the model 2, an increase in electron conductivity compared to the NS form was observed when 

electron-donating groups were substituted, whereas the substitution of electron-withdrawing groups 

resulted in a decrease in electron conductivity. Furthermore, the relationship between the current 

values of annulenes and the total currents of the two polyenes differs depending on the type of 

substituents regardless the type of models. For electron-donating groups, the current values of 

annulenes do not match the total current values of the polyenes, even when the QI term is included 

(Iannulene ≠ IA+B, Iannulene ≠ IA+B+Q). In contrast, for electron-withdrawing groups, the annulene current 

becomes comparable to the simple sum of the two polyene currents (Iannulene ≒ IA+B). From these results, 

it is suggested that in the molecular parallel circuits composed of single-molecule components with 

enhanced spin polarization due to the introduction of electron-withdrawing groups, the quantum 

interference is suppressed. 
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Fig. III.4. (a) Scheme of substituted model 1 (left) and 2 (right). (b) Calculated current of the 

[18]annulene derivatives and the divided polyenes at 1.0 V. The models 1 and 2 with substituents X 

are denoted as 1-X and 2-X, respectively. 

 

To understand the effects of the substituents, the author examined the 〈𝑺¥.〉 values, as summarized 

in Table III.3. In the case of the NS form and its derivatives with electron-donating groups, the 

calculated 〈𝑺¥.〉 values are zero, indicating the closed-shell systems. However, their corresponding 

polyenes exhibit non-zero values, indicating the open-shell systems. In contrast, in the case of the 

electron-withdrawing groups, both the [18]annulene derivatives and their corresponding polyenes 

exhibit non-zero 	〈𝑺¥.〉	values, indicating the open-shell electronic states. Therefore, the quantum 

interference effects in the molecular parallel circuits are related on the open-shell properties. When 

the quantum interference occurs between the two single-molecule components with the open-shell 

systems, the molecular parallel circuit exhibits the closed-shell electronic state. In contrast, the 

quantum interference does not occur between them, the molecular circuit retains the open-shell 

electronic state.   
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Table III.3. Total spin angular momentum 〈𝑺¥.〉 of each extended molecule. 

 〈𝑺¥.〉 

[18]annulene Polyene A Polyene B 

NS 0.000 0.147 0.147 

1-OCH3 0.000 0.163 0.163 

1-OH 0.000 0.156 0.156 

1-CN 0.462 0.222 0.222 

1-NO2 0.438 0.193 0.193 

2-OCH3 0.000 0.0162 0.0163 

2-OH 0.000 0.0123 0.0123 

2-CN 0.230 0.0406 0.0406 

 

From Table III.3, the intensity of the 〈𝑺¥.〉 values of the polyenes is not considered to be directly 

related to the quantum interference in the molecular parallel circuits. To further understand the electron 

conduction property of the molecular parallel circuit, the coupling constants 𝛾M8,X , 𝛾VN,X and the total 

of site-overlaps of each orbital were analyzed, as summarized in Table III.4. As well as the case of the 

NS form, the [18]annulenes introduced electron-donating groups exhibit the symmetrical parameters 

between the a and b orbitals because of their closed-shell electronic states. On the other hand, in the 

molecules exhibiting the open-shell electronic structures, these parameters show the asymmetrical 

values between the a and b orbitals, indicating the spin polarization. As explained in Part II, the 

introduction of electron-donating groups weakens the spin polarization in single-molecule 

components, whereas the introducing electron-withdrawing groups enhances the spin polarization. 

Thus, the electron conduction properties of molecular parallel circuits composed of the open-shell 

single-molecule components can be explained that:  

(i) When single-molecule components exhibit weak spin polarization, the quantum interference 

occurs between them, resulting in the molecular parallel circuit adopting the closed-shell electronic 

state. In this case, Ohm's law fails because of the quantum interference effects (Iannulene ≠ IA+B). 

Moreover, the existing conductivity equation in molecular parallel circuits, as shown in Equation 

(III.3), also does not hold (Iannulene ≠ IA+B+Q).  

(ii) When the spin polarization in single-molecule components is strong, the quantum interference 

effect is suppressed, resulting in the molecular parallel circuit remaining in the open-shell 

electronic state. In this case, the current value of the molecular circuit is approximately equal to 

the simple sum of the current values of the single-molecule components, similar to Ohm's law in 

classical parallel circuits (Iannulene ≒ IA+B).  
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Table III.4. Summary of the coupling constants and total of site-overlap of (a) 1-OCH3, (b) 1-OH, 

(c) 1-CN, (d) 1-NO2, (e) 2-OCH3, (f) 2-OH and (g) 2-CN models. The small differences in site-

overlap between Polyenes A and B are considered to originate from the convergence accuracy of the 

molecular orbitals (here, 10−7 a.u. in electron density). 

(a) 1-OCH3 
 [18]annulene Polyene A Polyene B 
 a b a b a b 

𝛾M8,X 	/eV 0.847 0.847 0.474 0.880 0.983 1.283 

𝛾VN,X/eV 0.847 0.847 1.283 0.983 0.880 0.474 

𝛾M8,X. × 𝛾VN,X.	/	eV{ 0.514 0.514 0.370 0.748 0.748 0.370 

Site-overlap (i) 3.05 3.05 0.293 0.475 0.324 0.280 

(b) 1-OH 
 [18]annulene Polyene A Polyene B 
 a b a b a b 

𝛾M8,X 	/eV 0.832 0.832 0.448 0.828 1.287 1.001 

𝛾VN,X/eV 0.832 0.832 1.287 1.001 0.448 0.828 

𝛾M8,X. × 𝛾VN,X.	/	eV{ 0.479 0.479 0.333 0.687 0.333 0.687 

Site-overlap (i) 3.07 3.07 0.174 0.386 0.204 0.288 

(c) 1-CN 
 [18]annulene Polyene A Polyene B 
 a b a b a b 

𝛾M8,X 	/eV 0.497 0.991 1.007 0.602 0.911 0.517 

𝛾VN,X/eV 0.991 0.497 0.518 0.911 0.602 1.007 

𝛾M8,X. × 𝛾VN,X.	/	eV{ 0.242 0.242 0.271 0.301 0.301 0.271 

Site-overlap (i) 2.31 2.59 1.245 0.892 0.999 1.141 

(d) 1-NO2 
 [18]annulene Polyene A Polyene B 
 a b a b a b 

𝛾M8,X 	/eV 0.890 0.481 1.070 0.632 0.710 0.441 

𝛾VN,X/eV 0.481 0.890 0.441 0.711 0.632 1.070 

𝛾M8,X. × 𝛾VN,X.	/	eV{ 0.183 0.183 0.222 0.201 0.201 0.222 

Site-overlap (i) 1.04 0.896 0.380 0.523 0.558 0.296 
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(e) 2-OCH3 
 [18]annulene Polyene A Polyene B 
 a b a b a b 

𝛾M8,X 	/eV 0.859 0.859 1.074 1.219 0.620 0.527 

𝛾VN,X/eV 0.859 0.859 0.620 0.527 1.074 1.219 

𝛾M8,X. × 𝛾VN,X.	/	eV{ 0.543 0.543 0.443 0.413 0.443 0.413 

Site-overlap (i) 6.11 6.11 0.601 0.613 0.553 0.581 

(f) 2-OH 
 [18]annulene Polyene A Polyene B 
 a b a b a b 

𝛾M8,X 	/eV 0.861 0.861 1.084 1.198 0.523 0.609 

𝛾VN,X/eV 0.861 0.861 0.609 0.523 1.198 1.084 

𝛾M8,X. × 𝛾VN,X.	/	eV{ 0.550 0.550 0.436 0.393 0.393 0.436 

Site-overlap (i) 5.15 5.15 0.389 0.401 0.373 0.392 

(g) 2-CN 
 [18]annulene Polyene A Polyene B 
 a b a b a b 

𝛾M8,X 	/eV 0.622 0.955 0.584 0.767 0.871 0.997 

𝛾VN,X/eV 0.955 0.622 0.997 0.871 0.767 0.584 

𝛾M8,X. × 𝛾VN,X.	/	eV{ 0.353 0.353 0.340 0.446 0.446 0.340 

Site-overlap (i) 3.17 3.37 0.851 0.912 0.850 0.926 

(i) Sum of HOMO−9 and LUMO+9. 

 

Finally, the intensity of electron conductivity in annulenes is discussed. Fig. III.5 illustrates the 

product of the coupling constants, 𝛾M8,X. 𝛾VN,X. , and the total site-overlaps for each orbital, in relation 

to the current values of the [18]annulene derivatives, separately for the a and b orbitals. From this 

figure, the electron conductivity of the [18]annulene derivatives exhibits positive correlations with the 

coupling constant and site-overlap. However, when comparing the model 1 and 2, it is considered that 

the electron conductivity of the [18]annulene derivatives depends not only on the type of substituent 

but also on the substitution position. Therefore, the molecular orbitals were analyzed. Fig. III.6 

illustrates the electron distributions in molecular orbitals that primarily contribute to electron 

conductivity, along with their site-overlap values and orbital energy levels. First, focusing on the 

model 1, the total current of the annulene derivatives with the electron-withdrawing groups (1-CN and 

1-NO2 shown in Fig. III.6 (d) and (e), respectively) decreases due to the spin polarization between the 

a and b orbitals. In contrast, a difference in the electron distributions in molecular orbitals, which 

contribute to the electron conductivity from the viewpoint of the site-overlap values, become important 
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for models with electron-donating groups. In the model 1, 1-OCH3 and 1-OH shown in Fig. III.6 (b) 

and (c), the introduction of the electron-donating groups suppresses a degree of delocalization of 

HOMO−4 and HOMO−5. This decrease is explained as follows: the π orbital energies of the annulene 

ring are shifted by the substitution effect, so that the energy difference between the π orbitals of the 

annulene ring and junction moieties becomes larger. As a result, the site-overlap values become small 

due to a decrease in conjugation between the ring and junction moieties. On the other hand, in the case 

of the model 2, 2-OCH3, 2-OH and 2-CN shown in Fig. III.6 (f), (g) and (h), respectively, the π-orbitals 

of the annulenes, which are the primary contributors to electron conductivity, exhibit significant 

delocalization, leading to the large site-overlap value. Particularly, 2-OCH₃ and 2-OH do not exhibit 

spin-polarized distributions, indicating that they exhibit the larger site-overlap and higher electron 

conductivity compared to the NS form. These results indicate that the electron conductivity can be 

modulated based on the orbital distribution influenced by the substitution positions. This suggests that 

by strategically altering the substitution positions, it is possible to tailor the orbital interactions and, 

consequently, the electron conductivity of the annulene. 

 

 
Fig. III.5. Current values at 1.0 V for the [18]annulene derivatives as a function of the product of the 

coupling constants, 𝛾M8,X. 𝛾VN,X. , in (a) a orbital and (b) b orbital, and as a function of the total site-

overlaps for each orbital in (c) a orbital and (d) b orbital. 
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Fig. III.6. Electron distributions in contributed orbitals to electron conductivity of (a)NS, (b)1-

OCH3, (c)1-OH, (d)1-CN, (e)1-NO2, (f)2-OCH3, (g)2-OH and (h)2-CN models.  

Their isovalues are 0.02 electron/a.u.3.  
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4. Conclusion 

In this study, as the first step in the investigation of molecular integrated systems, the author 

examined the relationship between the electron conduction in single-molecule components with the 

open-shell electronic states and molecular parallel circuit composed of these components. As models 

for these investigation, the [18]annulene and its derivatives introduced the electron-donating/-

withdrawing groups were examined as the molecular parallel circuit models composed of two linear 

polyenes. When the spin polarization of single-molecule components is small, such as in the NS form 

or electron-donating group derivatives, Ohm’s law for classical parallel circuits does not hold due to 

the quantum interference effects in the molecular circuit. Additionally, in this case, the electronic 

structures of the molecular circuits, [18]annulenes, adopt a closed-shell systems. On the other hand, 

when the electron-withdrawing groups are introduced into the single-molecule components, the 

increased spin polarization suppresses the quantum interference between the components, allowing 

the molecular circuit to retain the open-shell electronic state. In this case, the current value of the 

molecular circuit becomes equal to the simple sum of the current values of the two components, similar 

to Ohm’s law. Therefore, it is suggested that the quantum interference in molecular parallel circuits 

can be controlled by tuning the open-shell electronic state through substituent introductions. 
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1.Introduction 

To further expand molecular integrated systems, molecular crystals consisting of an infinite number 

of molecules were considered as model systems. Among these, particular attention was given to metal-

organic frameworks (MOFs), which are porous crystals composed of metal ions/complexes and 

organic linkers [1]. MOFs stem from a combination of inorganic and organic moieties, and have design 

flexibility [2-4]. In 1995, Yaghi and Li synthesized a compound with unique channels and named it 

the metal-organic framework [5]. Kitagawa et al. reported that applying high pressure enables the 

adsorption of gas molecules into the pores of MOFs [6]. Subsequently, Yaghi and co-workers 

demonstrated that gas adsorption into MOFs is possible even under low temperature and low-pressure 

conditions, indicating that the pores of MOFs are permanent [7]. Furthermore, the proposal to use 

metal clusters, known as Secondary Building Units (SBUs), instead of metal ions as starting materials 

for synthesis has facilitated easier design [8]. Additionally, the establishment of solvothermal synthesis, 

which remains the predominant method, has enabled the production of robustly structured MOFs [9]. 

Today, various MOFs have been proposed with multifunctionality, including molecular storage, 

separation and catalysis due to their large surface areas and tunable pore sizes [10-12]. Furthermore, 

MOFs have been attracting attention for their properties in luminescence [13,14], electronics [15], and 

magnetism due to their ability to incorporate properties derived from metal complexes and organic 

linkers, as well as their high design flexibility through various combinations of these components. 

This makes them promising candidates for next-generation sensing materials, molecular devices, and 

data storage applications [17-20] (Fig. IV.1). 

 

 
Fig. IV.1. Overview of the functionalities of MOFs. 
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The application of MOFs to electronic devices has garnered significant attention in recent years, 

and they are called MOF-based electronics or MOFtronics [15]. In general, the electron conductivity 

of MOFs is typically low due to their wide band gaps and the weak d-p orbital hybridization between 

metal ions and organic linkers. To synthesize electrically conductive MOFs, various strategies have 

been proposed: the main strategies include introducing redox-active molecules [21,22], polar solvent 

molecules [23], or conductive polymers [24,25] as guest molecules; incorporating mixed-valence 

complexes to induce polarity within the MOF [26]; and controlling π-π stacking interactions [27]. 

Furthermore, applications such as switching devices that modulate conductivity through external 

fields like electric fields or light [28,29], as well as diodes that control the direction of electron flow 

[30,31], have also been proposed. Additionally, MOFs exhibiting characteristics of memristors, which 

store the charge passed through them and change resistance in an analog manner [32], have garnered 

attention as potential hardware components for neuromorphic computing systems [33]. 

In this study, the author considered MOFs that incorporate single-molecule components with open-

shell electronic states, similar to the paddlewheel-type dichromium complex in Part II. Therefore, Ru2-

TCNQ MOFs, composed of paddlewheel-type diruthenium complexes ([Ru2] units) and tetracyano-p-

quinodimethane derivatives (TCNQ linkers), were selected as models for the molecular integrated 

systems. In the Ru2-TCNQ MOFs, the [Ru2] units exhibit the open-shell electronic states due to their 

localized spins in p*- and d*-orbitals as shown in Fig. IV.2. In addition, they can exhibit various charge 

transfer (CT) states. In Ru2-TCNQ MOFs, the [Ru2] unit is classified as an electron-donor (D), while 

the TCNQ linker acts an electron-acceptor (A) [34,35]. Therefore, multiple CT states can be 

considered: a neutral state (D0-A0-D0), one-electron transferred states (D+-A−-D0 and D0-A−-D+, which 

are degenerate), and a two-electron transferred state (D+-A2−-D+) [36-38]. Recently, some Ru2-TCNQ 

MOFs have been reported to exhibit switchable magnetic properties triggered by gas absorption and 

desorption [39-42]. This characteristic arises from the charge transfer induced by gas molecule 

interactions, leading to the changing intrinsic spin states in the [Ru2] units and TCNQ radicals, and it 

has been suggested that the potential application of the Ru2-TCNQ MOFs in gas sensors and memory 

devices.  
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Fig. IV.2. Calculated molecular orbitals of paddlewheel-type diruthenium benzoate complex.  

Ru ions in the complex exhibit two CT states, i.e. (a) [Ru2
II,II] and (b) [Ru2

II,III]+. The electronic 

structures were calculated using DFT with the Broken-Symmetry (BS) method at B3LYP/LANL08f 

(Ru), 6-31G* (others) level of theory. 

 

As described in Part I, Chapter 1, the electronic states of crystals can be determined using band 

calculations. However, handling localized spins is challenging with plane-wave basis sets. To address 

this issue, until now, the analysis of the electronic structures and magnetic properties of Ru2-TCNQ 

MOFs has been conducted using DFT calculations with Gaussian basis (Gaussian DFT) [36, 39-41]. 

This approach utilizes a D₂-A unit cluster model, which is extracted from the X-ray structure of Ru2-

TCNQ MOF based on the stoichiometric ratio, consisting of two [Ru2] units and one TCNQ linker. 

The investigations using the D₂-A unit cluster models with Gaussian DFT have revealed the magnetism 

of Ru2-TCNQ MOFs from the viewpoint of the molecular orbital interaction and inter-molecular 

magnetic interactions.  

However, in the study of the molecular integrated systems, it is crucial to use a model that does not 

rely on structural extraction to elucidate its electronic states and magnetic interactions. In this case, 

investigations based on the band calculations with periodic boundary conditions are required. It has 

been proposed that the DFT calculations with open-shell systems under periodic conditions can be 

also calculated by using plane-wave basis sets (DFT/plane-wave) with hybrid exchange-correlation 

functionals or the on-site Coulomb parameter U. In Gaussian DFT calculations, the hybrid exchange-

correlation functionals are often used for the open-shell electronic state calculations because they can 

predict spin-polarized electronic states with high accuracy [43-45]. However, the computational cost 

of hybrid-DFT is high for the band calculations using the plane-wave basis. Therefore, the DFT+U 

method [46-48], which uses the on-site Coulomb parameter U to obtain the spin-polarized electronic 
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structures, is employed in the DFT/plane-wave calculations because the computational costs of the 

DFT+U and pure-DFT methods are comparable [49-52]. Despite this, the Ru2-TCNQ MOFs has not 

been considered using DFT+U/plane-wave methods. Therefore, there are no In the DFT+U method, 

the parameter U varies depending on the target system and must be determined through parameter 

fitting. However, the electronic structure calculations using the DFT+U/plane-wave method have not 

been performed for the Ru₂-TCNQ MOFs. Therefore, in the study of the molecular integrated systems 

based on the Ru₂-TCNQ MOFs, it is necessary to first determine the optimal U value.  

In this study, as the models of the molecular integrated systems composed of single-molecule 

components with the open-shell electronic states, the author investigated the electronic structures and 

spin states of Ru2-TCNQ MOFs using periodic systems with DFT+U/plane-wave method. For this 

calculations, the author first determined the on-site Coulomb parameter U in the periodic system 

calculations of the Ru₂-TCNQ MOFs. After determining the appropriate parameter, the author 

performed the band calculations using the DFT+U/plane-wave method to investigate the relationship 

between spin states and electron conductivity in the molecular integrated systems. 

 

2. Computational Details 

Fig. IV.3 shows the calculation models for the Gaussian DFT and DFT+U/plane-wave calculations. 

All models were constructed based on SCXRD data for [{Ru2(o-ClPhCO2)4}2{TCNQ(OMe)2}] (o-

ClPhCO2
−=ortho-chlorobenzoate; TNCQ(OMe)2=2,5-dimethoxy-7,7,8,8-tetracyanoquinodimethane) 

[42]. Fig. IV.3(a) represents the D2-A unit cluster model for the Gaussian DFT calculations, following 

the same as previous works. Fig. IV.3(b) shows the isolated system for the DFT+U/plane-wave 

calculations, with the same structure as the unit cluster model. Fig. IV.3(c) shows the periodic system 

for the DFT+U/plane-wave calculations without the structural extraction from the SCXRD data. The 

charge state is set to [Ru2
II,III]+-TCNQ(OMe)2

2−-[Ru2
II,III]+ (D+-A2−-D+) since the Ru2-TCNQ MOF has 

been proposed to exhibit this charge state prior to CO2 adsorption [42]. In the D+-A2−-D+ charge state, 

two [Ru2
II,III]+ units magnetically interact, exhibiting both the anti-ferromagnetic interaction (AFM) 

state and the ferromagnetic interaction (FM) state, as shown in Fig. IV.4.  
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Fig. IV.3. The calculation models. (a) D2-A unit cluster model for the Gaussian DFT calculations. 

(b)Isolated system and (c) periodic system along the ac-plane (left) and bc-plane (right) for the 

DFT+U/plane-wave calculations. 

 

 
Fig. IV.4. (a) Illustration of the charge state of [Ru2

II,III]+-TCNQ(OMe)2
2−-[Ru2

II,III]+ (D+-A2−-D+), 

and (b) the spin states due to the magnetic interaction between two [Ru2] units, anti-ferromagnetic 

interaction (AFM) and ferromagnetic interaction (FM) states. 

 

The Gaussian 09 [53] was used for the Gaussian DFT calculations. the hybrid DFT calculations 

were performed at PBE0 [54]/LANL08(f) (Ru) [55] and 6-31G* (others) [56,57] level of theory. The 

BS method was employed to handle the open-shell electronic staes. The total charge was set to neutral 

and the spin multiplicities of the AFM and FM states were singlet and septet, respectively. 
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For the DFT+U/plane-wave calculations, the Vienna Ab initio Simulation Package (VASP) [58-61] 

was performed at PBE functional [62]. The wavefunction was expanded using a plane-wave basis, and 

the cut-off energy was set to 400 eV. The PAW method was applied to the core region (see Part I, 

Chapter 1) [63,64]. The valence electrons for H, C, N, O, Cl, and Ru atoms were set to one (1s1), four 

(2s22p2), five (2s22p3), six (2s22p4), seven (3s23p5) and eight (5s14d7), respectively. A supercell with a 

vacuum region was used for the isolated system calculations, with the specific cell size of 30.00 × 

30.00 × 30.00 Å3, and the G-point was sampled.  

 

3. Results and Discussion 

3.1 Fitting the on-site Coulomb parameter U in DFT+U/plane-wave calculations 

To obtain appropriate U value for the Ru2-TCNQ MOF, the author first determined the on-site 

Coulomb parameter U. From the perspective of the investigation for spin-polarized states, an approach 

was considered in which the spin densities of ruthenium ions in the band calculations were adjusted 

to match the spin densities of the Ru ions in the D2-A unit cluster model obtained from the Gaussian 

DFT calculations. Therefore, the spin densities of Ru ions in AFM state in the isolated system, where 

the D2-A unit cluster model was placed within the supercell, were calculated for U values ranging 

from 0.0 to 5.0 eV, as shown in Table IV.1. From Table IV.1, When U exceeds 3.5 eV, asymmetric spin 

densities between the two [Ru2] units were obtained. The U adjusts the degree of the open-shell 

character, and as U increases, the open-shell nature becomes more pronounced. Thus, when U exceeds 

3.5 eV, the open-shell character becomes too strong, leading to a different state from the considered 

D+-A2−-D+ configuration. For further investigation of the parameter U determination, the author 

investigated parameter fitting using the effective exchange integral (J value) for U values ranging from 

0.0 to 3.0 eV. The J values are useful for investigating the strength of the magnetic coupling [39-41,50-

52]. To apply the Yamaguchi equation for the DFT/plane-wave calculations, the total spin angular 

momentum is expressed using the electron density as explained in Part I, Chapter 3. For this work, 

since the spin multiplicities of the AFM and FM states are singlet and septet, respectively, the 

Yamaguchi equation with the electron density is written as  

𝐽 =
𝐸v|c − 𝐸|c

12 + ∫𝜌v|c'(𝑟)𝑑𝑟 −∫𝜌|c'(𝑟)𝑑𝑟
, (IV.1) 

where EY, 𝜌sW(𝑟) and 𝜌su(𝑟) are the total energy and the electron density of the major and minor 

spins for the spin states Y (Y: AFM or FM), respectively. Fig. IV. 5 indicates that the J values of the 

isolated system are too large in the range of U = 0.0 to 3.0 eV than that of the D2-A unit cluster model 

calculated by Gaussian DFT. From the third-order polynomial approximation curve which was created 

from the J values for U ranging from 0.0 to 3.0 eV, estimating that the U value, which gives the same 

J value as the D2-A unit cluster model, was approximately 3.5 eV. Therefore, in this work, U = 3.0 eV, 

where no asymmetricity of the spin densities between the [Ru2] units was observed, and U = 3.5 eV, 
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predicted from the approximation curve, were adopted in the DFT+U/plane-wave method for the 

periodic systems.  

 

Table IV.1. Spin densities of Ru ions in the isolated systems. The Ru numbers correspond to Fig. 

IV.3(a), and the column for Gaussian DFT represents the spin density of the D2-A unit cluster model. 
 Spin density 

U / eV 0.0 0.5 1.0 1.5 2.0 2.5 

Ru1 1.15 1.17 1.17 1.22 1.25 1.30 

Ru2 1.00 1.00 0.96 0.97 0.95 0.90 

Ru3 −0.97 −0.96 −1.00 −0.93 −0.90 −0.85 

Ru4 −1.13 −1.15 −1.20 −1.20 −1.23 −1.27 

U / eV 3.0 3.5 4.0 4.5 5.0 
Gaussian 

DFT 

Ru1 1.37 1.37 1.27 1.26 1.25 1.27 

Ru2 0.84 0.87 1.02 1.06 1.06 1.00 

Ru3 −0.78 −0.66 −0.50 −0.35 −0.27 −0.96 

Ru4 −1.34 −1.42 −1.52 −1.63 −1.74 −1.25 

 

 
Fig. IV.5. U versus effective exchange integrals J values for U ranging from 0.0 to 3.5 eV. The black 

line represents the J value calculated by Gaussian DFT (J = −0.0262 eV). The black dashed curve 

represents the third-order polynomial approximation curve fitted for U values ranging from 0.0 to 

3.0 eV, and the equation is J = −0.00029U3 −0.00017U2 −0.00225U −0.00250 (R2 = 0.99997).  

U=3.5 eV deviates from the approximation curve due to the spin asymmetry. 
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3.2 Investigation of Electrical Conductivity Changes Induced by Magnetic Transition 

First, the spin densities of Ru ions in the periodic system were compared for two U values, U = 3.0 

eV and 3.5 eV, determined through the parameter fitting. The calculated spin densities are shown in 

Table IV.2. As shown in this table, the spin densities of the Ru ions were almost same between the two 

U values. In the isolated systems, it is considered that the asymmetricity appeared as U increases 

because the two [Ru2] units receive the different potentials, resulting from the structural extraction and 

absence of surrounding components. Since such potential differences do not exist in the periodic 

systems, the results for U = 3.0 eV and 3.5 eV remained unchanged. Hereafter, the author discusses 

the results for U = 3.0 eV. 

 

Table IV.2. Spin density of Ru ions for U = 3.0 and 3.5 eV in the periodic systems. The Ru numbers 

correspond to Fig. IV.3(a). 
 Spin density 

 U = 3.0 eV U = 3.5 eV 
 AFM FM AFM FM 

Ru1 1.23 1.29 1.24 1.30 

Ru2 1.23 1.29 1.24 1.30 

Ru3 −1.26 1.33 −1.27 1.34 

Ru4 −1.26 1.33 −1.27 1.34 

 

The electron conduction mechanism in MOFs are primarily categorized into two types: band 

conduction, where electrons propagate as waves delocalized across the crystal, and hopping 

conduction, where electrons are localized on individual molecules or atoms and propagate by 

intermittently hopping between them [15]. Therefore, to evaluate the potential for electron 

conductivity switching induced by the spin state transitions, similar to that of the single molecules as 

described in Part II, the author analyzed the band structures and spin density distributions of the 

periodic systems for each spin state. As an analysis of the band structures, density of state (DOS) plots 

are presented in Fig. IV.6. From the DOS analysis, changes in the band structure between the AFM 

and FM states were observed. However, they exhibit the multiple isolated peaks rather than continuous 

bands, suggesting that the band conduction is unlikely to occur in the Ru2-TCNQ MOF.  
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Fig. IV.6. DOS plots of the periodic systems in (a) the AFM and (b) FM states for U = 3.0 eV. 

The positive (yellow) and negative (blue) DOS values represent the major and minor spins, 

respectively. 

 

As another analysis for the electron conduction in the Ru2-TCNQ MOF, the partial spin density 

corresponding to each peak near the Fermi energy in DOS plots was calculated for each spin state. Fig. 

IV.7 and Fig. IV.8 show the partial spin density distribution for each DOS peak in the AFM and FM 

states, respectively. In the AFM state, the spin density was distributed only the [Ru2] units in any DOS 

peaks. Consequently, even the hopping conduction does not occur in the AFM state because the 

localization of electrons at the [Ru2] units. On the other hand, in the FM state, the spin density was 

distributed not only the [Ru2] units but also the TCNQ linkers. Thus, the hopping conduction from the  

[Ru2] units to the TCNQ linkers may be occurred in the FM state. As a result, the Ru2-TCNQ MOF 

can be switched the electron conductivity by changing the spin states. 

 

 

Fig. IV.7. Partial spin density distribution of the periodic system in the AFM state at (a) −1.5 to −1.0 

eV, (b) −0.1 to 0.1 eV, (c) 0.4 to 0.7 eV and (d) 0.8 to 1.0 eV for U = 3.0 eV. The yellow and blue 

distributions represents positive and negative spin, respectively. All illustrations are viewed along 

the a-axis, and the threshold of the spin density distributions is 0.0005 e− Bohr−3. 
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Fig. IV.8. Partial spin density distribution of the periodic system in the FM state at (a) −1.6 to −1.3 

eV, (b) −1.3 to −1.1 eV, (c) −1.0 to −0.8 eV, (d) −0.1 to 0.1 eV, (e) 0.1 to 0.3 eV, (f) 0.3 to 0.5 eV and 

(g) 0.5 to 1.0 eV for U = 3.0 eV. The yellow and blue distributions represents positive and negative 

spin, respectively All illustrations are viewed along the a-axis, and the threshold of the spin density 

distributions is 0.0005 e− Bohr−3. 

 

Fig. IV.9 presents the integrated partial spin density distribution within the range of E−EF = −1.0 to 

0.5 eV, combining all the peaks near the Fermi energy shown in Fig. IV.7 and Fig. IV.8. From Fig. 

IV.9, the following insights can be drawn regarding functional design in molecular integrated systems: 

AFM state: The spin distributions are localized at the [Ru2] units. Therefore, the electronic states 

of each unit are independent, and unit-specific designs can be applied. That is, 

following the design guidelines for single-molecule components of paddlewheel-type 

complexes shown in Part II, it is possible to design the characteristics of the units within 

the molecular integrated systems. 

FM state: The spin distributions are delocalized from the [Ru2] units to the TCNQ linkers. This 

suggests that the wavefunctions of the [Ru2] units overlap, including the TCNQ linkers, 

indicating the presence of quantum interference effect between the [Ru2] units. Therefore, 

since the electronic states of each unit interfere with each other, new theories and design 

guidelines for molecular integrated systems are required. 

 

The quantum interference effect in the FM state is essentially the same as that in the molecular 

parallel circuit discussed in Part III. That is, by introducing substituents into the [Ru₂] unit to enhance 

the spin polarization, the quantum interference can be suppressed, potentially allowing the system to 

be controlled into an independent state similar to the AFM state. Conversely, if substituents that 

weaken the spin polarization in the single-molecule components are introduced into the [Ru₂] units, 

the quantum interference effects may appear even in the AFM state, potentially making it impossible 

to design the system as independent units, as seen in the FM state. As described above, the 
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investigation of the electronic states of the Ru₂-TCNQ MOFs in the periodic systems has provided 

new insights into the electron conductivity and design principles of molecular integrated systems 

incorporating open-shell components. 

 

 
Fig. IV.9. Integrated partial spin density distribution of the periodic system in the AFM and FM 

states for U = 3.0 eV. The energy range E−EF is from −1.0 to 0.5 eV. (a-1) The AFM state along the 

ac-plane, (a-2) bc-plane, (b-1) the FM state along the ac-plane and (b-2) the bc-plane. The yellow 

and blue distributions represents positive and negative spin, respectively The threshold of the spin 

density distributions is 0.0005 e− Bohr−3. 

 

4. Conclusion 

In this study, the author investigated the electronic structures of the Ru2-TCNQ MOFs as the model 

of molecular integrated systems. For this investigation, the determination of the on-site Coulomb 

parameter U in the DFT+U/plane-wave method for Ru2-TCNQ MOF was conducted first. Using the 

determined U, the electronic structure calculations for the periodic system suggested that spin state 

transitions could also induce changes in the electron conductivity in the molecular integrated systems 

similar to the single-molecule components. Furthermore, the analysis of the partial spin density 

distribution revealed that in the AFM state, the spin distribution is localized on the [Ru₂] unit. This 

indicates that the design of individual units, i.e., single-molecule components, can also be applied to 

the design of the molecular integrated systems. On the other hand, in the FM state, the quantum 

interference between the [Ru₂] units leads to the spin distribution extending to the TCNQ linkers, 

suggesting the necessity of a design guideline specific to the molecular integrated systems. 

From these results, it is suggested that in molecular integrated systems containing single-molecule 
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components with the open-shell electronic states, the electron conductivity can be switched through 

the spin states change induced by the magnetic interactions between open-shell units. On the other 

hand, it has been clarified that the electron transport properties and design guidelines differ 

significantly depending on the spin states. Therefore, further detailed investigations focusing on the 

design of molecular integrated systems are necessary in the future. 
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General Conclusion 
 

In this dissertation work, the author has investigated relationships between open-shell electronic 

states and electron conductivities of single molecules and their aggregates, such as molecular parallel 

circuit models and molecular crystal models, through simulations based on the quantum chemical 

theory and condensed matter physics theory. In Part II, the author has demonstrated relationships 

between spin states and electron conductivity in open-shell single molecules, aiming to establish 

design guidelines for single-molecule transistors. In Part III, the author has examined molecular 

parallel circuit models composed of two single-molecule components. By clarifying the relationship 

between structure, electronic states, and electron conductivity, the author has established guidelines 

for quantum interference control utilizing open-shell characters. In Part IV, as an investigation into 

aggregates of the single molecules, the author has focused on crystalline materials with periodic 

structures. Using first-principles band calculations, the author has clarified the relationship between 

spin states and electron conductivity, and have proposed a method for controlling electron conductivity 

through spin states. In the following, the author summarizes the results of each part. 

 

Part II: Relationship between open-shell electronic state and single-molecule 
electron conductivity 

In Part II, the relationship between the structure, spin states, and single-molecule electron 

conductivity of open-shell molecules was elucidated. Specifically, paddlewheel-type 

dichromium(II,II) benzoate complexes with various substituents on the bridging ligands were 

examined. By clarifying the relationship between spin states and electron conductivity, design 

guidelines for single-molecule transistors using spin state changes were proposed. Metal-metal bonds 

involving d-orbitals in these complexes exhibit a ground state of open-shell singlet (antiferromagnetic, 

AFM) that causes electrons to localize on each metal ion due to the quasi-degenerate of the frontier 

orbitals. However, it was revealed that introducing electron-donating/withdrawing substituents on the 

bridging ligands shortens/elongates the metal-metal distance that increases/decreases orbital overlap. 

As a result, the electron conductivity is controlled by the substituents. Furthermore, these metal 

complexes exhibit a ferromagnetic (FM) state as an excited state, where electron delocalization 

increases the electrical conductivity compared to the AFM state. In addition, it was found that the 

conductivity ratio between the AFM and FM states can also be controlled by the substituents. Through 

Part II, the author has clarified the relationship between the open-shell electronic state and the single-

molecule electron conductivity of the paddlewheel-type dichromium(II) benzoate complex, and 

proposed the design guidelines for single-molecule transistors utilizing changes in single-molecule 

electron conductivity driven by switching the spin states in open-shell metal complexes. 
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Part III: Comparison of open-shell electronic state and electron conductivity in 
single molecule and two-molecule system 

In Part III, the author has constructed a molecular parallel circuit model by considering a 

[18]annulene as two linear polyenes connected in parallel. And the author has successfully obtained 

fundamental insights into molecular circuits. Specifically, I have elucidated the effects of quantum 

interference within the circuit by investigating the relationship between the electronic states and 

electrical conductivity of [18]annulene with electron-donating/withdrawing substituents. In contrast 

to classical parallel circuits, where the total current equals the sum of the currents through individual 

components (i.e. Ohm’s law), the molecular parallel circuit model is strongly affected by quantum 

interference that causes deviations from Ohm’s law. It was shown that the current through the annulene 

circuit exceeds the sum of the currents through the two linear polyenes. Furthermore, the author has 

revealed that the introduction of electron-withdrawing substituents suppresses this quantum 

interference. Through Part III, the author has demonstrated that the quantum interference in the 

molecular parallel circuit models composed of the single-molecule components violates Ohm’s law, 

and show unique current behaviors. In addition, introducing the substituents into the molecular circuits 

can control the quantum interference and tune circuit properties. 

 

Part IV: Investigation of inter-molecular open-shell property and electrical 
conductivity in molecular integrated system 

In Part IV, the author has focused on metal-organic frameworks (MOFs) as the aggregate of the 

single-molecule components and have elucidated the relationship between their electronic states and 

electron conductivity. Especially, the author has investigated the relationship between electronic 

structure and electron conductivity of the magnetic MOF composed of paddlewheel-type diruthenium 

complexes and TCNQ linkers by using density functional theory calculations with periodic boundary 

conditions (DFT+U/plane-wave method). In this system, the paddlewheel-type diruthenium units can 

exhibit the spin-polarized states, and there is the magnetic interaction between them. In the model 

complex, the AFM and FM states are the ground and excited states, respectively. From the spin density 

distributions near the Fermi level, the author found that the electrons are localized on the diruthenium 

complexes in the AFM state, whereas the electrons delocalize and spread to the TCNQ linkers in the 

FM state. This result demonstrated that the FM state shows higher electron conductivity. Consequently, 

it was shown that the electron conductivity can also be controlled by changes in the magnetic state in 

periodic systems, similar to the case of the single-molecules. In addition, these spin distributions 

suggested that the design of single-molecule components can be effective in the AFM state, whereas 

an alternative design approach incorporating the quantum interference effects may be necessary in the 

FM state. Through Part IV, the author has proposed that the electron conductivity can be achieved 

even in molecular crystalline materials with open-shell electronic structures by changing their spin 
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states, and provided fundamental insights into the design of functional materials for the realization of 

molecular devices. 

 

In summary, the author has investigated the relationship between open-shell electronic states and 

electron conductivity, focusing on the single-molecule transistors, the molecular parallel circuits 

consisting of two molecules, and the periodic systems utilizing MOFs. As a result, the author has 

clarified the control of electron conductivity through spin states induced by open-shell electronic 

structures from single molecules to their aggregates. The findings in this dissertation are expected to 

contribute to the field of the molecular electronics by providing design guidelines for single-molecule 

components utilizing open-shell electronic states. Furthermore, they will offer theoretical insights and 

material design strategies for molecular devices leveraging open-shell electronic states, and pave the 

way for advancements in the development of functional molecular materials. 
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Future Prospects 
 

This dissertation has investigated the relationship between open-shell electronic states, spin states 

and electron conductivities from single-molecule components to their aggregates. And then, this 

dissertation works clarified the utilization of open-shell properties in single-molecule transistors and 

provided guidelines for controlling open-shell properties in molecular circuits. Furthermore, it 

uncovered fundamental insights into electrical conductivity switching induced by spin-state changes 

in molecular crystals. On the other hand, there remain numerous issues to be addressed in molecular 

electronics and molecular devices, and attention must also be directed toward their realization and 

future trends. The major challenges can be outlined as below. 

 

1. Molecular wiring 

As discussed in Part II, treating single-molecule components as integrated circuits requires precise 

molecular wiring and connection techniques. Molecular wiring primarily employs two methods: 

arranging molecules on a substrate using self-assembled monolayers (SAMs) or connecting them 

between electrodes [1-4]. SAMs allow for large-scale and uniform arrangements; however, because 

they rely on molecular self-assembly, precise control over intermolecular distances and orientations 

remains challenging. In electrode connections, the characteristics of single molecules are more likely 

to be reflected. However, the instability of the molecule-electrode junction poses a significant 

challenge.  

 

2. Integration and arrangement of single-molecule components 

Similar to the challenges with wiring, the techniques for integration and arrangement are still in a 

developmental stage [4-8]. Currently proposed methods include patterning the substrate surface with 

lithography to selectively position molecules, adsorbing molecules onto templates like carbon 

nanotubes, floating molecules in a solution and transferring them onto a substrate (Langmuir-Blodgett 

(LB) films), coating the substrate with techniques such as drop casting or spin coating, and assembling 

molecular films layer-by-layer. All these methods rely on leveraging the characteristics of molecules, 

such as selective binding through chemical modification, chemical adsorption, or electrostatic 

interactions, to achieve integration and arrangement. Lithography allows for the regular arrangement 

of molecules, but it faces challenges such as the technological resolution limits inherent in lithographic 

techniques, similar to those encountered in semiconductors. Additionally, the complexity of the 

required techniques for single-molecule devices makes mass production difficult. Methods utilizing 

nanomaterial templates such as carbon nanotubes or graphene face challenges in application to 

molecules with low affinity for carbon-based materials. Techniques like Langmuir-Blodgett (LB) films, 
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drop casting, and spin coating offer simple manufacturing processes and enable relatively large-scale 

arrangements of materials; however, these methods are limited in terms of uniformity and the number 

of layers that can be achieved. Layer-by-layer integration offers the advantage of precise thickness 

control; however, scaling up this technique remains technically challenging. For the integration and 

arrangement of single-molecule devices, it is essential not only to advance each individual method but 

also to strategically combine techniques in a way that utilizes their strengths appropriately for specific 

applications. 

 

3. External field control of single-molecule devices 

To achieve the switching of electrical conductivity through spin state changes as discussed in Part 

II and Part IV, it is necessary to alter the spin state by applying an external field, such as optical, 

electric field, magnetic field, and so on [3,5]. Regarding single-molecule transistors, in principle, 

individual control of each molecule is required. However, considering the size of the apparatus needed 

to apply an external field and the range of its influence, achieving this presents significant technical 

challenges. On the other hand, for molecular devices, it is sufficient to classify characteristics based 

on the overall state of the molecule and control multiple states for proper functionality. For instance, 

as discussed in Part IV, the Ru₂-TCNQ MOF exhibits changes in overall magnetism upon gas 

adsorption. This property can be leveraged for applications such as memory devices or gas sensors 

[39,10].  

 

4. Establishment of calculation method for electron conductivity of molecular device 

Finally, from the perspective of theoretical calculations, establishing reliable methods for 

calculating electron transport is crucial. In addition to the ESGF method discussed in this thesis, other 

advanced computational approaches, such as the nonequilibrium Green’s function (NEGF) method 

with periodic boundary conditions applied to electrodes, have been proposed. Moreover, there are 

multiple modes of electron conduction in single-molecule components and molecular integrated 

systems such as MOFs. For example, in single-molecule components, it has been revealed that 

tunneling conduction predominantly contributes in the short-chain length region, whereas hopping 

conduction becomes the main contribution as the chain length increases [11]. Additionally, as 

described in Part IV, MOFs can exhibit both band conduction, resulting from the delocalization of 

wavefunctions within the crystal, and hopping conduction between units [12]. If a theoretical 

framework is developed that adapts these different conduction mechanisms depending on the system’s 

state, theoretical research on electron conduction in both single-molecule components and molecular 

integrated systems is expected to advance further. In fact, theoretical calculations have been proposed 

that enable the transition from the tunneling regime to the hopping regime in single-molecule 

conduction [13]. It is also necessary to propose a theoretical framework that enables the switching of 
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electrical conduction mechanisms in molecular integrated systems. In addition, it is desirable to 

establish a theoretical formulation for electrical conduction in molecular circuits that takes quantum 

interference into account. With the advancement of these theoretical computational methods, it is 

expected that simulations capable of evaluating the electron conduction properties of molecular 

devices will be established. 
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