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Abstract

Various dynamic phenomena occur in solution systems, which play an important role
in chemistry. Solution systems have both a degree of ordered structure and thermal
fluctuations, and these properties give rise to a wide variety of functions. To understand
the dynamics of the solution, we have developed a new formulation based on the theory
of statistical mechanics and molecular simulation.

Chapter 1 gives a general introduction to the theoretical backgrounds of the dynamics
in the solution system.

Chapter 2 presents the new diffusion equation theory in the energy representation (ER)
solution theory. First, the exact framework based on the generalized Langevin equation
(GLE) formula is formulated, incorporating the ER theory. The derived equation (ER-
GLE) describes the time evolution of the distribution functions on the energy coordinate.
By introducing systematic approximations, such as the overdamped limit, the new diffu-
sion equation for the molecular liquids in the ER theory (ERSV equation) is obtained.
The present theory is applied to the solvation dynamics of water induced by the photoex-
citation of benzonitrile. The new theory was able to predict the long-time behavior of
the relaxation of the solvation structure, which is in agreement with that obtained by the
molecular dynamics simulation. The analysis based on the new theory indicates that the
collective motion of water is important during the relaxation process.

In Chapter 3, we applied the ERSV equation to the solvation dynamics of 6-propionyl2-
dimethylamino naphthalene (Prodan) in water and alcohol solvents. For all solvents, the
ERSV equation successfully predicts the relaxation timescale on the long timescale. We
found that the relaxation timescale is linearly correlated with the inverse of the trans-
lational diffusion coefficient for the alcohol solvents. For water, this linear relationship
is broken, indicating the difference in the importance of collective motion between water
and alcohol solvents.

Chapter 4 provides the new computational scheme for calculating the free energy
change of the molecular association based on the ER theory. The rigorous equation of
the standard free energy change caused by the molecular association is derived. This
equation consists of three terms, the conditional solvation free energy in the bound state,
the solvation free energy in the bulk state, and the standard state correction term. The
first two of these terms can be calculated based on the framework of the ER theory.
The comparison of the results obtained by our new method and the conventional method
showed the validity of our new approach.

Finally, the general conclusion is shown in Chapter 5.
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Chapter 1

General Introduction

1.1 Integral equation theory for molecular liquids:
Static theory

Solution systems are the common field where various chemical dynamics occur. [1-3]
Since the solution systems are always under thermal fluctuation, the statistical mechanics
treatments are essential. As such a treatment, the integral equation theory has long been
used to understand the properties of solutions. The Ornstein-Zernike (OZ) relation is one
of the most fundamental equations, which determines the relationship between the total
correlation function and the direct correlation function. Because the OZ equation contains
two unknown functions, the additional equation to close the OZ equation, known as the
closure equation is required. The hyper-netted chain (HNC) closure and the Percus-Yevick
(PY) closure are commonly used as the closure equation, and they can be derived from
the functional expansions. Based on the OZ equation and the closure equation, the radial
distribution function (RDF) between monoatomic molecules or its Fourier transform, the
static structure factor can be obtained. Thanks to its analytical nature, the OZ equation
is free from statistical errors, and its computational cost is much lower than molecular
simulations, such molecular dynamics simulations and Monte Carlo simulations.

The extensions of the OZ equation for the molecular liquids are also often used in
the solution chemistry. One of the commonly used theories for molecular liquids is the
reference interaction site model (RISM) theory. [4-7] In the RISM theory, molecules are
considered to be composed of atomic sites, and the site-site Ornstein-Zernike (SSOZ)
equation can be derived by averaging the orientation of the molecules. The SSOZ equation
and the closure equation give the RDFs between atomic sites, and the properties of the
solution is discussed through the set of the RDFs. The extension of the RISM theory for
the three-dimensional distribution functions (SDFs) is known as the 3D-RISM theory. [8,9]
Because the SDFs are more intuitive and contain more information than RDFs, the 3D-
RISM theory has been used to analyze the solvation structure of the biomolecules. [10,11]
The solvation free energy, which is one of the most important thermodynamic variables
and very computationally expensive in MD simulations, can also be expressed analytically
as a function of the correlation functions. Hence, once the correlation functions are
calculated through the RISM theory, the solvation free energy is also easily obtained
without any statistical error.

The hybrid approach of RISM theory and quantum chemistry, such as the RISM-SCF
method and similar methods, has also been developed to incorporate the solvent effect



into the quantum chemical calculation. [12-16] It should be noted that these methods
were originally derived with the intuition and reformulated on the basis of the variational
principles. [14] The RISM-based methods incorporating the polarization of the solvent
[17-20] have been also proposed based on the charge response kernel (CRK), which is the
response function of the point charge on the atomic site against the electrostatic potential
and determined by the quantum chemistry calculation. [21]

1.2 Integral equation theory for molecular liquids:
Dynamics theory

This section introduces the theoretical approaches to describe the dynamical phenomena
in terms of the integral equation theory. [1,6,22,23] One of the representative approaches
is the transport equation, such as the Smoluchowski equation. [24] The Smoluchowski
equation is the extension of the diffusion equation to include the effect of the free energy
surface. In the Smoluchowski equation, the time evolution of the distribution function is
characterized by the diffusive motion and the drift motion due to the free energy profile.
The Smoluchowski-Vlasov (SV) equation is the extension of the Smoluchowski equation
to include the collective motion, using the direct correlation function in the OZ equation
as the effective interaction between particles. [25,26] The logarithms of the stationary
solutions of the Smoluchowski equation and the SV equation must be proportional to the
free energy profile. This is an important feature of these two equations, and the diffusion
equation has no such feature.

The generalized Langevin equation (GLE) plays a significant role in this field. It is
rigorously derived using the Zwanzig-Mori projection operator method and describes the
time evolution of the dynamical variable such as particle velocity, distribution and the cor-
responding current. [27-29] The time evolution of the dynamical variable is characterized
by three terms, the collective frequency term, the memory term and the fluctuating force
term. The second term corresponds to the convolution integral of the dynamical variable
and the memory function, which is considered to be the generalized friction coefficient.
As a feature of the convolution integral, the second term is history-dependent, in other
words, all information about the time evolution of the dynamical variable is required.
This is the decisive difference between the GLE and the (ordinal) Langevin equation,
which is written only by the instantaneous variables. The GLE for the density and the
current fields, which is applicable to inhomogeneous systems with external fields was also
formulated. [30] Although it requires the two-point density-density correlation function,
which is computationally expensive, the introduction of the approximation based on the
HNC closure makes it possible to use the one-body correlation function instead of the
many-body function.

Although the derivation of the GLE itself is rigorous, it is impossible to know the exact
form of the memory function. Therefore, some approximations for the memory function
are necessary. The simplest approximation is the overdamped limit, which assumes that
the memory function decays immediately. This approximation is valid when the timescale
of the dynamical variable and other variables is largely different. It should be noted that
the Smoluchowski equation and the SV equation are derived from the GLE using this ap-
proximation. When the timescale gap is not large enough, other approximations, such as
the viscoelastic model and the mode-coupling theory (MCT) are used. In the viscoelastic
model, the memory function is approximated by the single exponential function with the



wavenumber-dependent time constant. This wavenumber-dependent time constant can be
determined to satisfy the asymptotic behavior of the dynamics structure factor. [31, 32]
The MCT introduces the new projection operator to extract the slower motion, and the
memory function is divided into two components, the fast and the slow part. Employing
the decoupling approximation, the MCT gives the closed formula for the slower part of
the memory function. [33]

Treatments of the dynamics of molecular liquids were achieved by the site-site Smolu-
chowski-Vlasov (SSSV) equation and the site-site generalized Langevin equation (SS-
GLE). [34-37] These equations give the time evolution of the site-site van Hove correla-
tion function or its Fourier transform, the site-site intermediate scattering function. The
SSGLE is derived through the Zwanzig-Mori projection operator method and the RISM
theory, and the overdamped limit approximation yields the SSSV equation. As in the case
of monoatomic molecular liquids, the viscoelastic model and the mode-coupling theory
for the memory function are proposed. [36,38-42] The three-dimensional version of the
SSSV equation (3D-SSSV) was developed and applied to the diffusion process in the elec-
trolyte solutions. [43] The site-site description of the Smoluchowski equation under the
external field was also formulated and used to analyze the diffusion-controlled reaction of
the diatomic molecule. [44] The surrogate Hamiltonian theory enabled them to treat the
solvation dynamics, which is the response of the solvation structure after the photoexcita-
tion of the solute. [45-55] This theory can express the solvation time correlation function
(STCF) through the intermediate scattering function and the site-site direct correlation
functions between the solute and the solvent. It is noteworthy that the site-site interme-
diate scattering function in the pure solvent system can be used instead of that in the
solution system and the site-site direct correlation function is regarded as the effective
solute-solvent interaction. Such a treatment is justified by the linear response theory, in
other words, it is reasonable when the solute-solvent interaction is sufficiently weak and
the dynamics of the solvent is not changed significantly by the solute.

Another promising approach is the time-dependent density functional theory (TDDFT)
[56,57] in terms of the site-site description. [58] It describes the dynamics of the solvation
structure by the functional derivative of the free energy with the distribution. Its major
advantage is that it can treat the nonlinear response, whereas the surrogate theory is a lin-
ear response theory. The combination of the TDDFT and the 3D-RISM theory with the
polarizable solvent has also been developed and applied to the solvation dynamics. [59]

1.3 Energy representation solution theory

This section gives a brief introduction to the Energy Representation (ER) solution the-
ory. [60-65] Whereas many other IE theories use geometric quantities, such as positions
and angles, the ER theory employs the pair interaction energy between the solute and the
solvent as a argument of the distribution function. In this theory, the full set of the co-
ordinates of position and orientation with intramolecular degrees of freedom is projected
onto the solute-solvent pair interaction energy, which is used as a coordinate, namely
the energy coordinate. This process can be regarded as a kind of dimensional reduction.
In contrast to the RISM theory, where the molecules are considered to be composed of
atomic sites, the ER theory takes each of the solute and solvent molecules as a single
unit, making it straightforward to handle the molecules with the intramolecular degree
of freedom. It should be noted that the potential energy function used for the projec-



tion does not necessarily correspond to the true solute-solvent interaction that appears in
the Hamiltonian of the system. To clarify this difference, the former is referred to as the
defining potential. The Kirkwood charging formula, the well-known expression for the
solvation free energy, can also be written in the energy representation. In this formula,
the solvation free energy is expressed as the functional of the solute-solvent interaction
potential function u§(e) and the energy distribution function pS(¢), where A means the
coupling parameter. The one-to-one correspondence between the solute-solvent interac-
tion potential and the energy distribution function is proved under the condition that
the solute-solvent interaction potential can be written as a function of the defining po-
tential. [60] This fact means that the functional of the solute-solvent interaction can be
treated as a functional of the energy distribution. Thanks to this fact, the solvation free
energy can be seen as a functional of p§(e) only. Although this formula is exact, it re-
quires pS(e) for all A, which is almost impossible to calculate. To avoid this problem,
the HNC-type and PY-type approximations are introduced, and the approximated the
solvation free energy functional is derived. [61] As a result, only the functions at the end-
points of the charging process (A = 0, 1) are needed to calculate the solvation free energy,
leading to the drastic reduction of the computational costs.

One of the significant points of the ER theory is its applicability to functional molecu-
lar systems, such as the micelles, [66,67] the lipid membranes, [68,69] the polymers, [70-75]
the biomolecules, [76-80] the ionic liquids, [81] and the solid-liquid interface. [82,83] This
broad applicability is achieved by generalizing the concept of solvation. In this con-
cept, the molecule which comes into the system is referred to as the solute, and all other
molecules already present in the system are regarded as the mixed solvent. For example,
in the case of the dissolution process of the peptide to the lipid membrane, the lipid is
considered to be one of the components of the mixed solvents. This treatment makes it
straightforward to apply the ER theory to systems with nano- or macroscopic inhomo-
geneity. The combination with the quantum-mechanical /molecular-mechanics (QM/MM)
calculation is also realized, [84-87] and the reduction process is viewed as the solvation of
the electron in the mixed solvent composed of the oxidant and surrounding molecules.

1.4 Objective and focus of this dissertation

As shown in section 1.3, the ER solution theory is a powerful framework for studying
the thermodynamics of functional molecular systems. Recently, the diffusion-influenced
bimolecular reaction theory, which uses the energy coordinate as the reaction coordi-
nate, has been proposed and found to be useful in describing the host-guest binding
processes. [88,89] In this approach, the intermediate and bound states are defined by the
host-guest interaction energy, and the binding process is described as a motion on the en-
ergy coordinate. It is shown that this method yields the rate constants in agreement with
the experimental results. This suggests that the ER solution theory is effective not only
in free energy analyses but also in kinetic theories. For many chemical processes, both
thermodynamic and kinetic properties play an important role. For example, in the elu-
cidation of host-guest binding processes, both the thermodynamic stability of the bound
state and the rate constants of association and dissociation are important. Therefore,
the development of theoretical frameworks to describe the thermodynamic and kinetic
properties of chemical processes occurring in functional molecular systems is crucial for
microscopic insights into these phenomena.

In this dissertation, we aim to understand the thermodynamics and kinetics of the
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solvation based on the theory of solutions and the nonequilibrium statistical mechanics.
The diffusion equation theory plays central role in elucidating the molecular motions
in solutions. We formulate the new diffusion equation theory to analyze the dynamic
phenomena of the functional molecules in terms of the energy representation solution
theory and achieve the systematic analysis based on the new theory. We also develop
the new theoretical framework for the calculation of the binding free energy based on the
energy representation solution theory using the generalized concept of the solvation.

1.5 Organization of this dissertation

In Chapter 2, the rigorous theoretical framework of the energy-represented dynamics
is shown. Introducing the systematic approximations, such as the coarse graining of the
time, leads to the new diffusion equation theory in the energy representation. Application
to the relaxation process of the hydration structure around the benzonitrile shows the
validity of the new theory in the long-time region, and the systematic analyses based on
the new theory are conducted. In Chapter 3, we applied the new theory to the solvation
dynamics of Prodan in various solvents. For all solution systems, our theory predict
the long-timescale dynamics successfully. The comparison among the different solvent
species indicates that the relaxation process of water has a different feature from that
of the alcohol solvents. Chapter 4 provides the new framework to compute the binding
free energy based on the theory of solutions. It gives the rigorous relationship between
the binding free energy and the conditional solvation free energy. The new framework is
shown to be more robust and computationally efficient than the existing rigorous one.



Chapter 2

Diffusion theory of molecular liquids
in the energy representation and
application to solvation dynamics

2.1 Introduction

Molecular motions in a condensed phase are essential in various dynamic processes. Such
dynamics are often characterized by sophisticated spectroscopy techniques. [90,91] For
instance, the time-resolved fluorescence spectroscopy can be useful to probe the solvation
dynamics with a certain dye (solute), i.e., a solvent relaxation around a solute induced by
the photoexcitation. [3,92,93] Recently, this spectroscopy has been extensively utilized to
investigate the dynamics in heterogeneous environments such as the surface of biological
lipid bilayers. [94,95] In its measurement, however, since the information on the dynamics
is contracted to the time development of the fluorescence wavenumber, it is challenging to
get the atomistic insights directly. Thus, developing a theoretical fundament to analyze
the dynamics in the heterogeneous environments from the atomistic points of view would
be useful for further understanding.

A theoretical approach to describe the dynamics in solution is based on transport equa-
tions such as Smoluchowski equation, in which the dynamics is characterized by the diffu-
sive motion and drift motion governed by the free energy gradient. [96-98] Smoluchowski-
Vlasov (SV) equation is an extension of the original Smoluchowski equation to describe the
collective motion of solvents, which is a crucial part of solvation dynamics. [25,26,99,100]
The molecular mode-coupling theories were also proposed to describe the dynamics of
supercooled liquids. [101-103] However, these equations are useful only for simple lig-
uids such as monoatomic and diatomic liquids, because the difficulties in handling both
the translational and rotational motions (six-dimensional in total) arise in the case of
molecular liquids.

A route to describe such motions while avoiding the difficulty is to introduce the inter-
action site representation of statistical mechanics of solution. [6,7] In its representation,
the static liquid structure is expressed with a set of radial distribution functions (RDFs)
between the atomic sites in molecules, realizing the effective treatment of a molecular
shape and orientation. The theoretical framework for the RDFs is provided by refer-
ence interaction site model (RISM) theory, an integral equation (IE) theory of molecular
liquids, [1,4,104,105] and its extension towards the dynamic processes is achieved with
Zwanzig-Mori projection operator theory. [23,27,28,34,106] According to this approach,



site-site Smoluchowski-Vlasov (SSSV) equation, [34] and several types of site-site general-
ized Langevin equations (SSGLE) have been derived [35,40,42,107] and applied to various
dynamic processes such as collective excitation, [38], pressure dependence of solvent dif-
fusivity, [108-110], electrical conduction, [111,112] ultrasound adsorption, [113,114] and
solvation dynamics. [45,47-49,52,53,55] Upgrading the description of the dynamics from
the radial coordinate to the spatial coordinate using three-dimensional RISM (3D-RISM)
theory [8,9,115] and the time-dependent density functional theory (TDDFT) [57,93] is
a recent progress in the IE-based dynamics theories. [43,58,59] Thanks to the analytical
nature of the theories, the developed theories are free from the sampling problems which
appear in the molecular dynamics (MD) simulations, and the computational cost is low.
However, the applicability of the theories is still limited to simple polyatomic solvents due
to the orientational averaging imposed on the solvent molecules.

Another progress in the field of the statistical mechanics of solution is the development
of the energy representation (ER) theory. [60-62,116] Instead of the spatial coordinates,
ER theory employs the interaction energy between a solute and solvent molecule as a
coordinate, namely energy coordinate, for treating the relative position and orientation
for molecules. It corresponds to the reduction of the dimensions required for the atomistic
description from six-dimensions (6D) to one-dimension (1D). As well as in the case of
the spatial coordinate, the Ornstein-Zernike (OZ) equation and the relationship between
the density correlations and the solvation free energy can be constructed on the energy
coordinate. In ER theory, once we evaluate such density correlations through the MD
simulations, the accurate calculation of the solvation free energy of a solute is realized.
[61,64,117] Thanks to the reduction of the dimensions, the calculation of the density
correlations on the energy coordinate is much easier than those on the 6D-space. A
remarkable point of ER theory is the applicability to heterogeneous systems. [64,118] In
the case of the binding of small solutes in a lipid membrane, for example, the lipid can
be regarded as part of the mixed solvents. [68,69] Very recently, a diffusion-influenced
reaction theory incorporating the energy coordinate was proposed to quantify the rate
constants of host-guest binding processes, and its application to the binding processes
of aspirin and 1-butanol to S-cyclodextrin yielded the rate constants consistent with the
experimental results. [88] Accordingly, the energy coordinate would be also useful for
describing dynamic processes at the atomistic scale. Furthermore, since the mathematical
form of the equations derived in the framework of ER theory is almost parallel to that for
the IE theory on the spatial coordinate of full 6D, position and orientation, such as the
OZ equation, the ideas of the existing IE-based dynamics theories mentioned in the last
paragraph could be imported into ER framework.

In the present study, we develop a theoretical framework for elucidating the dynam-
ics in condensed phases by utilizing the energy coordinate. According to Zwanzig-Mori
projection operator theory and ER theory, an energy representation of GLE is derived.
Introducing the systematic approximations such as the overdamped limit yields the en-
ergy representation of SV (ERSV) equation by generalizing the scheme of deriving the
Smoluchowski equation for molecular liquids. [44] The ERSV equation provides the solute-
solvent dynamics as outputs from the static solute-solvent distribution and the diffusion
coefficient as inputs. Those inputs can be readily obtained in molecular simulations, and
ERSV offers a scheme to approaching the (long-time) dynamics by combining MD and
GLE. We show that the solvation dynamics can be described by ERSV equation in con-
junction with the linear response theory. The present theory is applied to the solvation
dynamics of solvent water induced by the photoexcitation of benzonitrile.



2.2 Theory

2.2.1 Ornstein-Zernike equation in the energy representation

In this subsection, we describe a brief summary of the Ornstein-Zernike equation formal-
ism in the energy representation. [60-62] Let us consider a system containing a solute
molecule u immersed in solvent. We regard the solute u as the source of an external field
and the position is defined as the origin of the system. We denote the full-phase space
coordinate of ith molecule of the solvent v with respect to u as x, ;, which refers col-
lectively to the coordinates of the center of mass (CoM) and the orientation of the ith
solvent molecule. If the solvent molecule is flexible, the intramolecular degrees of freedom
are also incorporated in x, ;. The instantaneous distribution of solvent v in the energy
representation is defined as

pu(€) = 25(6—%(%,@-)), (2.1)

and its fluctuation around the equilibrium average is

0p,(€) = py(e) = (py(€)) (2.2)

where (---) stands for the ensemble average, and ¢, is the defining potential between
solute u and solvent v, which defines the energy coordinate, €. Note that the defining
potential, €, is not limited to the solute-solvent interaction, and can be defined arbitrarily
depending on the phenomena of interest. It should be also noted that either the solute or
solvent species are not assumed to be rigid. Moreover, the solute molecule is actually not
necessary to be located at fixed position and/or orientation. The distribution of Eq. (2.1)
can be constructed at any snapshot configuration of the solute and solvent by referring only
to the value of the defining potential ¢, (x, ;). The density-density correlation function
between solvent species v and w on the energy coordinate x,,,(€,n) is written as

Xow (&) = (0p,(€)0p,, (1))
= (0,(8)) (P (M) Py (£,1) + 0,6 (€ — 1) (o, (€)) (2.3)

where h,,,(,7) is the total correlation function defined as

— <pv(€>pw (77)> - 5vw5(€ - 77) <pv(€)> o
o (€:1) = PXCITNC) : (24)

The Ornstein-Zernike equation in the energy representation is given as follows:

P (€:1) =Cyp(€;m) + Z/dé Corr (856) (Pyr (€)) Py (€, ). (2.5)

Here, c,,,(g,n) is the direct correlation function, which can be related with the inverse of
Xow(€:7) as

b (e = 7 ble =) — oo (2.6

Note that x,.(g,n) is a key quantity for constructing the dynamics theory based on the
generalized Langevin equation (GLE) formalism. The numerical computation of x,. (g, )
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can be performed from (p()) and x,,,(g,n) with the aid of Moore-Penrose pseudo-inverse
method when the ensemble is NVT or NPT and the number of particles in the system is
invariant. The inverse matrix obtained from this method contains an additive constant.
This constant is determined so as to assure the intensive property of solvation free energy
in the ER theory. [62,116] As shown in the next subsection, since the derivative of x,. (¢, n)
affects the dynamics, the additive constant does not contribute to the time development
of the system. [62,116)]

2.2.2 Diffusion equation in the energy representation

We derive a diffusion equation in the energy representation. The starting point of the
derivation is the GLE formalism based on Zwanzig-Mori projection operator method. We
choose a set of the time-dependent density fluctuation, {dp,(e,t)} defined below, as the
dynamical variable A(e,t)

5P1 <€vt>
A(e,t) = ((5,02(8,t)), (2.7)

5pv(6’ t) = Z 5<€ - gv(wv,i (t)>> - <pv(€>> . (28>

Hereafter, the functions which do not contain time ¢ as their arguments represent the
values at t = 0. Performing the time derivative of dp, (e, t) yields the continuity equation
as

dop,(e,t) _ 0j,(et)

. e (2.9)

where j,(¢,t) is the current field on the energy coordinate given by

et = 30 L@y o) 2.10)

Let us introduce an operator P projecting dynamical variables onto the subspace spanned

by A(e) defined as

PX(et) E/dndé (X(e,t) AT () (A AT(Q)) " A(Q), (2.11)

where T means the adjoint. According to the standard procedure of the Zwanzig-Mori
projection operator method, the following GLE in the energy coordinate is derived.

dp,(e,t)

o —Z/ dT/dn Ko (2,1, 7)0py (0, t — T) + F, (e, 1). (2.12)

w 0

Here, K,,,(e,n,t) and F,(e,t) are the memory function and the fluctuating force, respec-
tively. F,(e,t) is defined as

F(e,t) = exp [QiLt] QiLdp, () = — exp [QiLt] ajgf). (2.13)




where £ is the Liouville operator of the system and Q is the orthogonal operator defined
as O =1 — 2. The memory function, K, (g,n,t), is represented with F,(e,t) as follows

Enn =y [ (B DFA) G
_ Z / ¢ <{exp (03 £t] aj§£€>}ajgéc>> X (G5 ) (2.14)

A route for deriving the diffusion equation from the projection operator method is to
replace the orthogonal time evolution operator exp [Qi£t] involved in Eq. (2.14) by the
usual time evolution operator exp [i.£t], [44,119,120] corresponding to

_ Ojy(&,t)
Oe

where we have used Eq. (2.13) with the relationship given by exp [i£t] A = A(t) that
holds for arbitrary functions over the phase space. This approximation leads to

2
) =3 [ ac TR G G (2.16)

F(e,t) ~ (2.15)

Similar to the conventional diffusion theory, we introduce the overdamped approximation
expressed in the energy representation as

(Jo(&, )50y (n)) 2 26,,,6( — n)3(t) D5 (€) (py (€)) - (2.17)

where D¢ (¢) is the diffusion coefficient in the energy coordinate defined as

1 / /
dt [ dn (j,(e,t)j,(n
{0, (€)) ! "
1

<pv(5)>/0 dt {(j,(e,t)E,) (2.18)

where E,(t) is the total interaction energy between the solute and the solvent v defined
as

Using the above approximation, Eq. (2.16) can be rewritten as

~1
Kuulont) = =20(0 37 | Dy p,(0) 5= . (220

Substituting Eqgs. (2.6) and (2.20) into Eq. (2.12) yields the following diffusion equation
as

90p,(.1) _ D [pe Bpuleat) _ e dlnfp,(6)

8t - 85 Dv(g) 85 d€ 5pv(€7t>

Dy N Y [an T g, |+ Fe. 2
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The first and second terms respectively indicate the diffusive motions caused by the en-
ergy distribution gradient and drift motions by the free energy gradient over the energy
coordinate, respectively. The third term describes the collective motions of the solvents.
Since the mathematical form of Eq. (2.21) is parallel to that of the Smoluchowski-Vlasov
(SV) equation on the spatial coordinate proposed by Calef et al., [25,26] this equation
can be regarded as the energy-represented SV (ERSV) equation. The diffusive and drift
terms in Eq. (2.21) could be combined as follows

Dot _ 2 peie) fpy(e)) 2 (—5{” (f’;)))
~D5() (N Y oM b (t)| + Fufevt), (22)

indicating that the time evolution of the energy distribution is governed by DS (¢) (p,(¢))
instead of DS(e). If we neglect the third term, Eq. (2.21) is reduced to the energy-
represented Smoluchowski (ERS) equation written as

0p,(e,t) _ O [ . 00p, (1) dn {p, (=),

o~ oo | D) — Dile)— pv(s,t)]+Fv(5,t)_ (2.23)

Similar to the case of the spatial coordinate, [23] the van Hove correlation function in the
energy representation can be defined as follows:

Gow(En,t) = (dp,(g,1)0p,, (1)) - (2.24)

From Eq. (2.21) and the orthogonality between F, (e,t) and dp (), we can obtain the
differential equation for G, (g,7,t) as

1

(9t - 68 v( ) 68 v d€ vw(g’n7t>

_De pv Z/dC ac / v’w<C7n7t) . (225)

2.2.3 Approximate expression of the diffusion coefficient D¢(¢)

The explicit formula of the diffusion coefficient in the energy coordinate is already avail-
able (Eq. (2.18)), which requires the energy-time correlation function, (j,(¢,t)j,(n)). In
this subsection, we derive a tractable expression of DS (e). Substituting Eq. (2.10) into
Eq. (2.18) yields

Dy(e) =

7 1(g)) 2 / Tt (& (0006, ()06 — 2, (2,4 (00) (2.26)
v i,7 Y0

We assume that the solute molecule is located at fixed position and orientation. Then,
by expressing the full coordinate ZEU’Z»@) as a set of the positions of atoms p in the molecule,
;s €0(T, () can be written as

& ( Zv,u fin ):—Z Z v, ()£, (). (2.27)

HET HEL a=x,Y,2
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Here, o3, (t) is the velocity of atom p in the ith molecule, and f{* (¢) is the “force”
corresponding to the defining potential, that is introduced as
O, (, (1))
() = e 2 2.98
uult) = == (225)

If the defining potential €, is the same as the solute-solvent interaction, f; ,(t) corre-
sponds to the force acting on atom p due to the solute-solvent interaction. In the next
subsection, we treat the solvation dynamics and set €, to the difference in the solute-
solvent interaction potential between the ground and excited states of the solute. Using
Eq. (2.27), Eq. (2.26) is written as

D= ¥ ﬁ /Ooodt (08, (00 £, () 2356 — e (100,4(1))))

1,] WELAEJ a,B=x,y,2 ( )
2.29

By decoupling the velocity from the force and energy, Eq. (2.29) is written as

Do)=Y Y ﬁ /Ooodt (vg, (00 (e, (O F30(e — e, (z, ;1))

7;7.7' ,U,G’L',)\Ej O‘vB:xay»Z
(2.30)

Tu et al. revealed that the time integral of velocity correlation function between different
atomic sites is equal to the integral for the CoM, [121] i.e.,

/oo dt (v, (t)v],) :/OO dt (Vewvy), (2.31)

where V(t) is the CoM velocity of ith molecule. It is well known that this integral gives
the translational diffusion coefficient of species v, D,, if ¢ = j and o = . Then, we
introduce the following overdamped approximation.

(v, (0] ) 222D, 8,,56,,0(t). (2.32)
It should be noted that a similar type of approximation is utilized for deriving SSSV
equation [34]. Substitution of Eq. (2.32) into Eq. (2.30) gives

1
(py(€))

where f# is the force acting on the CoM of ith molecule defined as ff = Zu Ji,- The

scheme of computing f% is provided in Appendix A. As compared to Eq. (2.18), this
formula does not require the computation of the energy-time correlation function, leading
to the reduction of the computational cost for evaluating D¢ (g). On the other hand, since
the spatial diffusivity is represented with bulk diffusion coefficient of solvents, Eq. (2.33)
is valid only when the solute-solvent interactions are so weak that the diffusivity of the
solvent is not changed drastically around the solute. In Eq. (2.33), the rotational diffusion
does not appear explicitly due to the decoupling of velocity from the force and energy,
and the overdamped approximation. It could cause an insufficient description about the
rotational motion of the solvent which is important on the short timescale.

Dy(e) =

D, Y (IFF[ (e —en(x,0)) - (2:33)
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2.2.4 Application to solvation dynamics

In this subsection, we present a scheme for describing the solvation dynamics, a response
of the solvation structure to a sudden change of the electronic structure of a solute due to
the photoexcitation. Let us introduce the Hamiltonians of the system at the ground and
excited states as H; and H |, respectively. The difference of the Hamiltonians is defined
as

AR =H, —H,
= Z Z{ug(a"v,i) - u%(wv,l)} =+ Afc’solute? (234)

v 1€V

where ug(x, ;) and u$(x, ;) are respectively the interaction potential between a solute

and solvent v at the ground and excited states. AFE_ . i the change of the solute
energy due to the excitation. Only the pairwise additivity of the difference of the solute-
solvent interactions at the ground and excited states are assumed in Eq. (2.34), and the
interactions themselves and solvent-solvent interactions may not be necessarily pairwise
additive. We consider the following nonequilibrium process: at ¢ < 0, the system is in
equilibrium at the ground state and then the system is changed to the excited state from

t = 0. The Hamiltonian corresponding to this process is represented as
H(t)=H,+ Ot)AH, (2.35)

where O(t) is the Heaviside step function. The solvation dynamics is characterized with
the solvation time correlation function (STCF), S(t), defined as

S(t) = ne ne (2.36)

Here, <---)ne indicates the nonequilibrium average governed by Eq. (2.35). In the present
study, we assume that the solute molecule is rigid and its electronic structure is not
modulated by the solvents, i.e., AE,_ e iS @ constant during the relaxation process. Thus,
introducing the difference of the total solute-solvent interaction between the excited and
ground states at time t as

AE() = ) {us(@, (1) —ub(z, (1)}, (2.37)

Eq. (2.36) is rewritten as
_ (AE(t)),, — (AE(c0)),
S = AB0). — (AB(0) (2.38)

The fluctuation dissipation theorem provides the following tractable expression of S () in

the linear-response regime.

(0AE(t)0AE)
(0AESAFE)

S(t) = (2.39)

Here, (---) denotes an ensemble average at equilibrium with the Hamiltonian %, and
OAE (t) is the fluctuation of AFE (t) in the equilibrium ensemble with H,, JAE (t) =
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AFE (t) — (AE). Since the system is described by F till t = 0, (---) corresponds to the
average at t = 0. If the potential to define the energy coordinate is set to

51}("131),1) = u%(wv,i) - u%<wv,i>7 (240)

(AE(t)), . can be simply written as

AE(t) =) / de ep,(e,t), (2.41)
(AE@) = / de e (p,(c,1)) . (2.42)

In the original ER theory, the energy coordinate is defined as the solute-solvent interaction
for free energy calculation, and its definition is almost parallel to that in the present study:
the initial state contains a phantom solute that does not interact with the solvent, and
the full solute-solvent interactions are present at the final state.

It indicates that the difference between these two states becomes the full solute-solvent
interaction potential. Therefore, the difference of the solute-solvent interaction between
the ground and excited states (Eq. (2.40)) is a natural choice as the energy coordinate
for solvation dynamics. In empirical models, solvation dynamics has been regarded as
the dynamics along the “solvation coordinate”, which is a collective coordinate of sol-
vent molecules usually defined as the difference of the total potential energy between the
two different states. [122,123] Unlike such a collective coordinate, the energy coordinate
(Eq. (2.40)) refers the difference of pairwise solute-solvent interaction.

According to the linear response theory, [1,3,30, 124] the approximate relationships
are given by

{pu(, 1)), — (py(€,00)) = B(op,(e, ) AFH) = B {0p,(e, 1) AE) (2.43)

and

(00, (€) 0py, (1)) = (0P, (€) 0Py, (M) g - (2.44)

Here, (5 is inverse temperature and <>ES represents the equilibrium average at the excited
state. Eq. (2.43) is rewritten as

(Pulet),, — (ool =8 [dnnGulent) = B0, (249
where G, (¢,m,t) is introduced by Eq. (2.24) and Q,(e,t) is defined as
Q)= Y [ annGuu(ent) = (o, (. 050E) (2.46)

From the conservation of the number of molecules in the system, the integral of
@, (g,t) over the energy leads to

/OO de @, (g,t) = 0. (2.47)

—0
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Since (p, (€,00))__1is the equilibrium distribution at the excited state, {(p,(¢)) ., Eq. (2.45)
is expressed as

(P (&:)) . = Py (€)) g + BQ, (&,1) - (2.48)
An alternative expression is obtained from the equivalence of (p,(¢,0)) _to (p,(e)) as
(po(e,1)) = (pu(€)) + B{Qy (e, 1) — Q,(,0)}. (2.49)

Substituting Eqgs. (2.42) and (2.45) into Eq. (2.36) gives
Z/de eQ, (e, 1)
Z/de e@,(

G (8,1, 1) in Eq. (2.45) evolves with time through with Eq. (2.25). Since Eq. (2.25) does
not contain the differential operator acting on the energy coordinate 7, the differential
equation for @, (e,t) is readily obtained as

0Qu(Et) _ 0 [ 00D . dinip (o)
R _ 2 [D() A2l (o g (e

D50 ) Y [n E2E Do, 0]

It indicates that the solvation dynamics can be described on the energy coordinate by
numerically solving Eq. (2.51). Eq. (2.51) reduces to

Wulet) 2 lm ) pg@)%ﬁ%(w} (2.52)

In Sec. 2.2.3, an approximation for DS (¢) has been described. Egs. (2.51) and (2.52)
have been derived, on the other hand, only by combining the formulation in Sec. 2.2.2
and the linear-response treatment for the solvation dynamics without resorting to any
approximations to D¢ (¢). The overdamped condition of Eq. (2.17) is a step to Eq. (2.51),
and an approximation may be independently adopted for DS (¢). (p, (¢)), DS (¢), and
Cow (€,m) are involved in Eqs. (2.51) and (2.52), and to solve these equations, @, (¢,t = 0)
is also needed as the initial condition. It should be noted that {p, (¢)), DS (&), Cyy (€,M),
and @, (¢,t =0) can be computed from the molecular simulation of the static (¢ = 0)
solute-solvent system at equilibrium with the solute being at its ground state, as well as
the diffusion coefficient of the bulk solvent. The direct correlation function, ¢,,,(&,n), can
be computed from Eq. (2.6) using the simulation at the ground state. Hence, Eq. (2.51)
can be a scheme to evaluate the (long-time) dynamics on the basis of readily accessible
properties in molecular simulation. Note that there are three expressions of @, (¢,t = 0)
in the linear response limit. From Egs. (2.44) and (2.46), one can obtain

QVet=0=%" / a0 (5p,(€)6pu(n)) (2.53)

S(t) (2.50)

and

QPet=0=Y" / A0 (39 (0P (1)) - (2.54)
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Since the value of (p, (e,t = 0)) is equivalent to (p, (¢)), Eq. (2.48) is rewritten as

Q¥ (et =0) = %{m () = (po(2) s - (2.55)

While Egs. (2.53) and (2.54) respectively require the molecular simulations at the ground
state and at the excited states, the simulations both at the ground and excited states
are required for Eq. (2.55). In the present study, we utilize Eq. (2.53) for computing the
initial value.

2.3 Computational methods

2.3.1 System modeling

We investigated the aqueous solution of benzonitrile in the infinite dilution limit. The
structure of benzonitrile was optimized at MP2/6-31G(d) level calculation with Gaus-
sianl6. [125] The atomic point charges of benzonitrile at the ground and excited states
were taken from the previous study by Ishida et al., [49] and these values are shown in
Fig. 2.1. The force fields for benzonitrile and water molecules are the generalized Amber
force field (GAFF) [126] and TIP3P, respectively. In order to check the box size depen-
dency of the present theory, we prepared two systems with different box sizes, 60 x 60 x 60
A3 (7200 water molecules) and 80 x 80 x 80 A% (17067 water molecules). The schemes
of the MD simulations described below were adopted for both the systems. The initial
configurations were built using Packmol. [127]

2.3.2 Simulation setups

We performed three types of MD simulations of benzonitrile in water at 298.15 K at
constant volume and numbers of particles. One is at equilibrium with benzonitrile at
the ground state, and the others are with the excited-state benzonitrile. The second
type is in the equilibrium condition, and the last one is the nonequilibrium MD (NEMD)
simulations corresponding to the solvent relaxation process due to the photoexcitation
of benzonitrile. The results from the NEMD simulations were used for comparison with
those from the present theory.

To perform a series of MD simulations at equilibrium, we prepared the system config-
urations separately at the ground and excited states for benzonitrile. At each state, an
MD simulation was performed for 1 ns. Then, we carried out the simulations for 5 ns at
the ground state and for 1 ns at the excited state to extract the configurations every 1
ps. The total numbers of sampled configurations were 5000 and 1000 at the ground and
excited states, respectively. We performed the simulations for 0.5 ns starting from the
sampled configurations for equilibration, where the random seed for the thermostat was
different among the distinct runs. The production MD simulations (1 ns for each) were
performed at the ground and excited states, and the number of trajectories was 1000 at
each state. We also conducted the 5000 NEMD simulations (2 ps for each) starting from
the configurations at the ground state while using the atomic charges of benzonitrile at
the excited state.

For all the simulations, we used the velocity Verlet (VVER) integrator [128] with
a time interval of 2 fs and the Bussi thermostat. [129] The benzonitrile molecule was
treated as rigid by setting the velocities of its atoms to zero, corresponding to the neglect
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Fig. 2.1: Atomic point charges for benzonitrile at the ground and excited states. The values in
parentheses mean the charges at the excited state. The carbon, nitrogen, and hydrogen atoms
are depicted in green, blue, and gray, respectively. The absolute value of the dipole moment is
changed from 5.88 D to 12.6 D due to the excitation.

of both the translational and rotational motions of benzonitrile. The cutoff distance of
Lennard-Jones potentials was 9.0 A, and the particle-mesh Ewald (PME) method was
used to calculate the electrostatic potential. Water molecules were kept rigid using the
SETTLE algorithm. [130] All the MD simulations were performed with GENESIS 2.0
beta [131-133] in which the freeze scheme of a molecule was implemented by us. All the
analyses were performed using in-house Fortran90/95 programs combined with the visual
molecular dynamics (VMD) package (ver. 1.9.4 alpha) [134] and ERmod 0.3.7. [116]

2.3.3 Solver for ERS and ERSV equations

In order to numerically solve ERS and ERSV equations, we constructed a scheme of
treating these equations in the discretized forms. It is known that the solvent distribution
on the energy coordinate has a very sharp peak around € = 0. For numerical accuracy,
we introduced a function for generating non-uniform grids on the energy coordinate,
which are fine around € = 0 (see Sec. S1 and Fig. S1 of the supplementary material).
The discretization was performed with the finite volume method (FVM) to assure the
conservation law of particle number, as shown in Fig. S2 of the supplementary material.
[135] As well as in the case of a solver of Smoluchowski equation, [136] the drift term was
discretized by the 1st-order upwind difference scheme, and ERS and ERSV equations were
integrated by the full implicit algorithm to obtain the numerical stability. The time grid
At is set to be 1 fs. Further details of the solver is shown in Sec. S2 of the supplementary
material
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Fig. 2.2: Solvent distributions at the ground state. (a) The distributions on the energy co-
ordinate obtained from the simulations with different box lengths, L = 60 A and 80 A. The
energy coordinate € is defined as the difference between the solute-solvent interaction poten-
tial at the ground state and that at the excited state. (b) The spatial distribution function
(SDFs), gg(r), corresponding to the destabilized region (¢ > 1.5 kcalmol !, red) and the sta-
bilized region (¢ < —2.8 kcalmol™', blue). The gg (r) at the isovalue of 0.4 are visualized with
PyMOL. [137] In (a), those regions are shaded in cyan and orange, respectively.

2.4 Results and discussion

2.4.1 Solvent distribution on the energy coordinate

First, we examine the solvent distributions on the energy coordinate at the ground state
of benzonitrile, (p(¢)) (Fig. 2.2(a)). The energy coordinate, ¢, is defined as the difference
of the solute-solvent interaction energy between the excited and the ground states. Thus,
the destabilized and stabilized water molecules due to the excitation contribute to the
distribution at € > 0 and € < 0, respectively.

It is seen for the benzonitrile solute at the ground state that the distribution monoton-
ically increases with € at € < 0. When the MD simulations are done with the excited-state
benzonitrile, a shallow well of the distribution exists at € = —2.8 kcalmol ™, and the pop-
ulation corresponding to the stabilized water molecules (¢ < 0) is increased (see Fig. S3
of the supplementary material). The shapes of the distributions obtained from the MD
simulations with the different box lengths are almost the same as each other except for
e ~ 0. It is well known that the energy distribution function has the system size de-
pendency around € = 0 and shows divergent behavior as the box size increases. As will
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be discussed in Sec. 2.4.2, on the other hand, the system size dependency of (p(¢)) is
cancelled with that of D¢ (¢) for the dynamics.

The locations of stabilized and destabilized water molecules can be illustrated by com-
puting the water CoM densities in the spatial regions corresponding to £ < —2.8 kcal mol ™
and € > 1.5 kcal mol™!, respectively, and determining the spatial distribution functions
(SDFs), gg (), as their ratios to the bulk density of water. SDFs are shown in Fig. 2.2(b),
and they indicate that the most stabilized water molecules are localized around the nitro-
gen atom of benzonitrile, while the destabilized ones are distributed around the benzene
ring. The same trend is also observed in the SDFs with different isovalues (see Fig. S4(a)
of the supplementary material). The stabilized region at the excited state becomes wider
than that at the ground state (see Fig. S4(b) of the supplementary material). It can be
confirmed from the radial distribution function (RDF) for the stabilized region that the
stabilized water molecules dominantly contribute to the first solvation shell around the
nitrogen atom (see Fig. S5 of the supplementary material). Considering the fact that
the excitation makes the nitrogen atom more negative, the distribution of the stabilized
water molecules is reasonable.

2.4.2 Diffusion coefficient on the energy coordinate

The diffusion coefficients on the energy coordinate, D(¢), calculated from Eq. (2.33) are
shown in Fig. 2.3(a). The minimum is located around € = 0, indicating that the difference
of the solute-solvent interaction between the excited and ground states varies slowly in
the region. This is because the bulk water molecules are dominant around € = 0 and
their wandering has little contribution to the change on the energy coordinate. On the
other hand, high diffusivity is observed in both the stabilized (¢ < 0) and destabilized
(e > 0) regions. From the definition (Eq. (2.33)), D¢(e) is large where the large force acts
on the solvent molecules. Therefore, the high diffusivity in the stabilized and destabilized
regions can be interpreted that the difference of the solute-solvent interactions in these
regions varies significantly depending on their configurations. The system size dependency
is slightly discernible around € = 0. As shown in Eq. (2.22), however, D®(¢) appears with

(p(e)). ie.
D*(e) (p(e)) = DY (| £9[*6(e —e(=))) (2.56)

and hence the system size dependency should be discussed with D°(e) (p(e)) instead of
D¢(e). Fig. 2.3(b) reveals that the dependency of D®(g) (p(¢)) on the system size is
negligibly small. The number of bulk molecules corresponding to region ¢ ~ 0 depends
on the system size, but the force |ff| for such molecules are small. Thus, they do not
contribute to D¢(¢) (p(¢)) (Eq. (2.56)), leading to the cancellation of the system size
dependencies appearing in (p (¢)) and D¢ (¢). The water molecules around benzonitrile
which are neither stabilized nor destabilized by the excitation dominantly contribute to
region € ~ 0. According to Fig. 2.2, most of water molecules which belong to the high
peak of D°(g) (p(e)) located at ~—3.5 kcalmol ' in Fig. 2.3(b) coordinate to the nitrogen
atom of benzonitrile. Hence, the well existing at ~—2 kcalmol™ can be interpreted as a
kinetic trap for changing the states of water molecules around benzonitrile.
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Fig. 2.3: Solvent diffusivity on the energy coordinate. (a) Diffusion coefficients, D¢(¢), and (b)
De(e) (p(e)) -

2.4.3 Relaxation of the solvent distribution

(a) ERSV (b) NEMD
4 : 4
T T
6 g’
] =~
ER S 2
S £
‘L / v&
<1 !
) -
) L
—6 —4 -2 0 2 4 6 —6 —4 -2 0 2 4 6
e (keal mol™) ¢ (keal mol™)
= t=10.0 ps t=02ps t=10.5ps = t=10ps
t=0.1ps t=0.3ps t=0.8ps — t=20ps

Fig. 2.4: Time developments of the distributions on the energy coordinate after the excitation
of benzonitrile, obtained from (a) ERSV equation and (b) NEMD simulations. In the case of
ERSV equation, Eq. (2.49) is used for computing (p(e,t)). The box length of the simulations is
60 A for both the cases.
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We discuss the time development of (p (5,t))ne obtained by numerically solving ERSV
equation for @ (g,t). In the computation, the initial value of @ (¢, t) is evaluated through
Eq. (2.53), ie., Q(e,t =0) = QW (e,t =0). The comparison of QY (e,t = 0) with
Q2 (e,t =0) and Q¥ (e,t = 0) (Fig. S6 of the supplementary material) reveals that the
difference between them is sufficiently small. Note that the computed @, (e,t) satisfac-
tory reproduces the conservation law (Eq. (2.47)), revealing the validity of the present
numerical scheme (see Fig. S7 of the supplementary material). In Fig. 2.4, the time de-
velopment of (p (¢,1)) _using Eq. (2.49) is illustrated together with that from the NEMD

simulations. It is seen from (p(e,?)) _ with ERSV equation (Fig. 2.4(a)) that a peak

arises at ~—3.5 kcal mol~! immediately after the excitation and its peak height becomes
higher as time proceeds. A similar trend is also observed in the distribution from the
NEMD simulations (Fig. 2.4(b)). Although the differences of the peak heights and shapes
at 0.1 < t/ps < 0.8 are discernible between ERSV equation and the NEMD simulations,
a good agreement is realized at t > 1.0 ps. The rate of decreasing the population in
e > 0 predicted from ERSV equation is much slower compared with the NEMD simula-
tions, suggesting the importance of the inertial and memory effects, which are neglected
in ERSV equation, for reproducing the fast relaxation process. The time development
of (p(e,t)), , using Eq. (2.48) is similar to that using Eq. (2.49) (see Fig. S8 of the
supplementary material). In Fig. 2.4(a), an unphysical negative distribution is slightly
discernible around e ~ 3 kcalmol ™!, as also reported in the case of the spatial site distri-
bution functions obtained by the surrogate theory. [45] Such a behavior can be interpreted
as a nonlinearlity of the solvation dynamics. Further discussion is found in Sec. S3 and
Fig. S9 of the supplementary material. On the other hand, it should be emphasized that
the negative distribution in Fig. 2.4(a) is negligibly small, and hence the linear response
treatment should be valid for the present system.

For more quantitative comparison, we analyze the change in the number of water
molecules in the stabilized region (¢ < —2.8 kcalmol ") and in the destabilized region
(e > 1.5 kcalmol 1), as shown in Fig. S10 of the supplementary material. It is found that
the difference of the number of water molecules between ERSV equation and the NEMD
simulations is smaller than unity even in the destabilized region. Hence, the prediction of
the time development of (p (e, t)>ne using ERSV equation is useful for understanding the
dynamics on the long timescale in detail.
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2.4.4 Solvation time correlation function
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Fig. 2.5: Time correlation functions for the solvent relaxation process obtained from ERSV
equation and the MD simulation at the equilibrium ground state. (a) Solvation time correlation
functions (STCFs), S(t), and (b) time-dependent relaxation time coefficients, 7(t).
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Fig. 2.6: Time correlation functions for the solvent relaxation process obtained from ERSV and
ERS equations. (a) Solvation time correlation functions (STCFs), S(t), and (b) time-dependent
relaxation time coefficients. For comparison, S(t) obtained from the MD simulation at the
equilibrium ground state is also shown.

In this subsection, we address the accuracy of the solvation time correlation functions
(STCFs), S(t), obtained from ERSV equation. For comparison, we also compute the
function from the MD simulations at the equilibrium ground state by employing an ap-
proximate expression derived from the linear response theory, Eq. (2.39). Note that
the approximated STCF from the MD simulations matches the exact function from the
NEMD simulations with Eq. (2.36), proving the validity of the linear response theory
for the present system (see Fig. S11 of the supplementary material). Fig. 2.5 shows the
STCFs and the time-dependent relaxation time coefficients defined as

() = — (‘““d—f@>_l , (2.57)

obtained from ERSV equation and from the MD simulations at the equilibrium ground
state (Eq. (2.39)). Note that 7(oc0) coincides with the relaxation time constant in the
diffusion regime. The linear plots of the STCFs are available in Fig. S12 of the supple-
mentary material. In order to reduce the statistical noise in S(¢) from the MD simulations,
the moving average scheme was employed. The numbers of points for the average were
5 for 0 < t/ps < 0.5, 21 for 0.5 < t/ps < 1.0 and 51 for 1.0 < t/ps < 2.0, where
the time interval used for computing S(¢) is 0.002 ps. It is confirmed that this opera-
tion hardly changes the curves of S(¢). While S (¢) obtained from ERSV equation decays
monotonically, the initial Gaussian decay followed by the damped oscillation appears on
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a short timescale in S (¢) from the MD simulations (see Fig. S13 of the supplementary
material). As Nishiyama et al. mentioned in their study using SSSV and RISM/mode-
coupling theories, [55] such oscillations reflect the memory effects of solvent motions. In
order to elucidate the origin of the oscillations, we compute the time correlation functions
of the rotational motions of the water molecules coordinating to the nitrogen atom of
benzonitrile with the hydrogen bonding from the MD simulations. The definitions of the
functions are described in Sec. S4 and Fig. S14 of the supplementary material. The time
correlation functions are shown in Fig. S15 of the supplementary material. The phase
and frequency of the damped oscillations appearing in these functions are found to be the
almost same as that in S(¢). Hence, the rotational motion of water molecules restricted
by the hydrogen bonding has a vital role in the dynamics on the short timescale. The
slower decay of S(t) from ERSV equation compared with the MD simulation might stem
from the insufficient description of the rotational motion in D€ (¢) (Eq. (2.33)) due to the
decoupling approximation (Eq. (2.30)). An upgrade of the method so as to include the
memory effect and rotational motion is important for accurately describing the fast relax-
ation dynamics. On the other hand, although the discrepancy between ERSV equation
and the MD simulations is shown due to the difference of S (t) appearing at ¢ < 0.5 ps,
the slopes of S (t) on the logarithmic scale for ERSV equation and the MD simulations
are similar to each other at ¢ > 1.0 ps. As also shown in Fig. 2.5(b), 7(¢) from ERSV
equation is in accord with that from the MD simulations at ¢ > 0.5 ps. It indicates that
the dynamics on the long timescale is well captured by ERSV equation. Furthermore,
it should be emphasized that the present theory can be used for robustly discussing the
dynamics on the long timescale while avoiding the sampling error. In comparison, 7(t)
obtained from the MD simulations shows the noise due to a poor sampling, and this noise
could be problematic to determine the relaxation time constant on the long timescale.

In addition to the usefulness of the present theory for describing the dynamics on
the long timescale, a systematic analysis about the effect of the collective solvent diffu-
sion is available using both ERS and ERSV equations. Since ERS equation is derived
by neglecting the collective diffusion part from ERSV equation, only the single-diffusion
process is considered in ERS equation. Thus, it can be rigorously stated that the differ-
ence of S(t) between ERS and ERSV equations reflects the significance of the collective
diffusion on the relaxation process. The time developments of S (¢) and 7(¢) computed
from these equations are shown in Fig. 2.6. It is seen that the system size dependency of
S (t) is slightly appeared for ERSV equation at ¢ > 20 ps, while such dependency is not
present in the function from ERS equation. In the case of ERS equation, the deviation
of S(t) from the MD simulations is larger as compared to ERSV equation. It is further
observed that S (t) decays more slowly with ERS than with ERSV, showing that the col-
lective motion of solvent molecules facilitates the relaxation. The difference is evident on
the timescale of t < 10.0 ps, and still alive on the longer timescale. Interestingly, the
value of 7(t) from ERS equation becomes close to that from ERSV equation as time pro-
ceeds, as described in Fig. 2.6(b). At ¢ > 15.0 ps, the match of 7(¢) with ERSV equation
is observed when the box length of the system, L, is 80 A. Accordingly, the collective
diffusion has an impact on the relaxation process until 15.0 ps.
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2.5 Concluding remarks

We formulated the energy-represented generalized Langevin equation (ERGLE), an exact
differential equation, based on Zwanzig-Mori projection operator theory. In the equation,
the molecular motions are described over one-dimensional space without any approxima-
tions using the solute-solvent interaction energy as the coordinate. The quantities involved
in ERGLE were introduced on low-dimensional coordinates compared with those employ-
ing the conventional coordinates of the positions and orientations of molecules, and hence
the their evaluation using the molecular dynamics (MD) simulation can be much easier.
Thanks to the exact treatment of the dynamics, ERGLE would be useful for describ-
ing the dynamic processes occurring in the molecular liquids composed of the arbitrary
complicated molecules and in the heterogeneous environments such as lipid membranes.
The energy-represented Smoluchowski-Vlasov (ERSV) and Smoluchowski (ERS) equa-
tions were formulated by systematically neglecting the inertial and memory effects, which
can be important for the short-time dynamics. They are thus a scheme for describing the
long-time dynamics and adopts the (static) solvent distribution and diffusion coefficient
on the energy coordinate as inputs, which can be easily evaluated through MD simula-
tions. It should be noted that the present theory has no assumptions about the chemical
properties of solvents and hence offers a theoretical fundament to analyze the dynamics
in various solvents systems such as protic/aprotic solvents and ionic liquids.

ERSV and ERS equations were applied to the water relaxation process triggered by the
photoexcitation of benzonitrile in conjunction with the linear response theory. The solvent
distribution and diffusion coefficient on the energy coordinate were examined. The energy
coordinate, €, was defined as the difference of the solute-solvent interaction energy between
the excited and ground states of benzonitrile. The distribution showed the populations of
the stabilized and destabilized water molecules due to the excitation of benzonitrile, and
these molecules were found to be localized around the nitrogen atom and benzene ring of
benzonitrile, respectively. The diffusivity of water on the energy coordinate was high in the
stabilized and destabilized regions on the energy coordinate, while that for the bulk water
was quite small. Both the distribution and diffusion coefficient showed the system-size
dependencies around € ~ 0, but we revealed that these dependencies bring no system-size
dependency to the dynamical behavior obtained from ERSV and ERS equations. The time
development of the nonequilibrium distribution obtained from ERSV equation showed
that the growth of the peak in the stabilized region, which is also observed in that from
the nonequilibrium MD (NEMD) simulations. Although the difference of the distribution
between ERSV and the NEMD simulation was discernible especially in the destabilized
region on the short timescale, the good agreement was realized on the long timescale. The
solvation time correlation function (STCF) obtained from ERSV equation deviated from
that from the MD simulations due to the difference appearing on the short timescale.
On the other hand, ERSV equation reproduced the relaxation time coefficient from the
MD simulations on the long timescale, indicating the usefulness of ERSV equation for
describing the long-time dynamics. The comparison of the STCF obtained from ERS
equation with that from ERSV equation clarified the impact of the collective solvent
diffusion on the relaxation time. For further investigation, on the other hand, developing
the methodology to realize the decomposition of S(¢) into the contributions of the optical
and acoustic modes in ER framework would be important for increasing the usefulness of
the present study.

We shall comment on the possibility for improving the description of the dynamics
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based on the present energy-represented theory. In the present study, an approximated
expression of the diffusion coefficient on the energy coordinate uses the translational
diffusion coefficient of water in the bulk, and this treatment should be valid only for
homogeneous systems with weak solute-solvent interactions. Since ERSV and ERS have
been derived without referring to an explicit expression for the diffusion coefficient, any
upgrade for the approximation for the diffusivity will lead to improvement of the theory.
The inertial and memory effects are vital for describing the short-time dynamics. As
well as in the case of the theories using the spatial coordinate, [30] a formulation of the
GLEs for the solvent distribution and its current might be important for treating the
inertial effect. As for the memory effect, importing the approximations utilized in the
viscoelastic [31,32] and mode-coupling [138-140] theories into ER framework might be
promising. We believe that further improvement would lead to deeper understanding of
the dynamical behaviors in complex molecular liquids and in heterogeneous environments.
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Appendix A

Appendix of chapter 1

A.1 Method to build non-uniform grid for energy co-
ordinate

In order to numerically solve ERSV and ERS equations, we constructed a scheme of
treating these equations in the discretized forms. The solvent distribution on the energy
coordinate has a very sharp peak around € = 0. Therefore, to perform discretization
with numerical accuracy and efficiency, we have used following non-uniform grids for the
energy coordinate,

€

1 N +1
= max _ gnhla—|7 — —— =1,---,N). Al
%7 sinh[al 1] [“N(Z 2 )] (=1 N) (A1)

Here, N is the number of grids. ¢ determines the upper and lower bounds of energy
coordinate (£, = —€,,.x, EN = Emax)- @ corresponds to the change ratio of the grid width.

In this study, we have adopted N = 1000, &,,, = 10 kcal mol™! and a = 15.
The relationship between the discretized energy coordinate ¢; and the grid width Ae; =
€i41 — €; 1s shown in Fig. A.1.

max

A.2 Numerical scheme to solve ERSV equation

ERSV equation is given by Eq. (51) and is written as

—¢(5)/dn @Q(ﬂa - (A-2)

For simplicity, we consider the single-component solvent and define

{p(e)), (A.3)

Wi(e) =In
{p(e)) D(e). (A.4)

P(e)
The subscript v is also dropped. We discretize Eq. (2.51) based on finite volume method

(FVM) and 1st-order upwind difference. [135,136] The schematic view of FVM is shown
in Fig. A.2. Here, the subscript ¢ and the superscript n mean ith grid on the energy
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coordinate and nth time-step, respectively. By using the full implicit method, the time
development of Q)7 is written as

Ag;_y Qr—Qrt .
( 5 + 5 ) At =Jiw — Jije (A.5)

Then, we consider the form of currents. The contribution from diffusion term of Eq. (2.51)
to the net current j',, — j7', 1s

Qi — Qi 1 — @
—De 7 7 De z+
»w Agl—l + Ag ’

(2

(A.6)

where D7, and D7, are the harmonic means of the diffusion coefficients in adjacent cells.

2D¢ DS
D?w = e . Zgl ) (A?)
w = DetDe
2D¢, DS
DS, = A (A.8)

ve DL+ DY

Note that W (e) is very sharp near the origin, causing numerical instability for com-
puting the drift term. Then, we used 1st-order upwind difference to obtain the stability of
the solution. Since the current occurs from the small W (e) to the large W(e), we adopt
the following discretized equations

o (oo on Wi oo —w s o)
aw(e)\" _ P T AT o
de R Wi — Wi, - (A9)

(De<e>cz<s,t>

7, D?Q?Tz_l for (W W -1 < O)
W.
n DeQ”M for (W, ., — W, >0)
dW (e Ac. i+1 7
()~ B (a0
be Dfﬂ z+1T for (Wi, —W; <0)
For simplicity, we define the following notations
5WZ+% = W’i—l—l - W’N (SWz,% = WZ - Wi—l’
oW, ;—I—‘5Wo 1 oW, ;—’(5W' 1
5 (+)1 = 15 =5 .(73 — x5 15 ‘ ‘
Wz:t§ 5 , §Wzi§ 5 (A.11)
By using these notations, the net current due to the drift terms is
L pe @ ew) L pegrew) — L peqgrewt) — ! QoW
Ag, | 11705 T Ae, =3 Ag, "7V i3 A Di Qi
(A.12)
The net current due to the direct correlation term is
szAS i Ci— 173Qn wzeZA H‘li :JQn
wi,w wl,e n
T L {Ag. ) A‘Sj(ci,j - Ci—l,j) - A_aAgj(ci-i-l,j - Ci,j) Qj‘ (A.13)
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V; » and 9, . are the harmonic means of ¢ in adjacent cells.

2¢h; 4

L= A.14
wz,w 1/12 + 1/}1'_1, ( )
wﬁ_%‘ﬂ*‘%' (4.15)

Substituting Eqgs. (A.6), (A.12) and (A.13) into Eq. (A.5) yields

<A51—1 " Agi) Qr — Q!
2 2 At

= _D¢ b+De Qi —QF
7/7w AEZ 1 AE:Z

D QP W) 4 D5QI W
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ol —
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Vi A %’GA n A.16
+Z Ac, . gj(cij—Cim1y) — Ae. ej(Civ1— ¢ijy) (QF- (A.16)
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From the simple manipulation, the following simultaneous equation for )7 is derived.
> AuQ) =1b; (A.17)
J
= {_Df,eA%q + D?+1A5ze15Wi(;)%}5z‘+1,j
+ {ai + D, Ac; + DS Ac,_y — DiAe,6W) + DeAe, W) }5 ;
+ {058 - Dy Ac oW s,

- {wi,wAgiAEj(Ci,j - Ci—l,j) - wi,eAEi—lAgj(ci—i-l,j - Ci,j)}? (A.18)

by = a; Q7 (A.19)
o = Ag;_1Agi(Ag;_y + Agy)
L 2At '

(A.20)

Here, §,; is Kronecker’s delta. By conducting LU decomposition of A,;, one can obtain
time development of Q)'. The same scheme can be used for ERS equation by setting the
values of {cij} to be zero.

We impose Neumann boundary condition, in which the current at the boundary is
zero. In addition to the boundary condition, we omit the direct correlation term because
(p(e)) is zero at the boundary. If the current between (i — 1)th point and ith point is
zero, the following equation is satisfied.

_pe 9@ QL

De
1, W A‘SZ 1 + 1Q

6Wi( s+ D5QP 6W

0. (A21)
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Accordingly, the boundary condition is expressed as

D, — DS

2
n— Qz, (A.22)
boDps, + Deswit
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A.3 Nonlinearlity of the solvation dynamics

In the present study, we utilize the linear response theory to describe the solvation dy-
namics. The solvent distribution functions on the energy coordinate obtained from ERSV
equation and the linear response theory, (p (e, t))ne, exhibit an unphysical distribution

around e ~ 3 kealmol " (Fig. 4(a)). In this section, we show that such a negative distri-
bution stems from a nonlinearity of the solvation dynamics. As shown in Sec. II D with
Egs. (2.53), (2.54) and (2.55), there are three expressions of @, (¢,t = 0) in the linear
response limit as

QV (e t=0=Y" / Ay (3p, (2) 6y (1) (A.24)

QP (et=0)=Y" / a0 (69, (£) 8py (1) o (A.25)
QY (et = 0) = % {0 (E)) — (py (D) s} (A.26)

In the main text, we employ Eq. (2.53) for evaluating @, (¢,t = 0). These three functions
agree with one another in the linear response limit. Thus, the difference between them
can be interpreted as a nonlinearity of the solvation dynamics. The time development of
the solvent distribution, (p, (¢,)) . is given by Eq. (49) as

(oo (8:1)) = (P (€)) + 8{Q, (,1) = Q, (6,2 =0)}, (A.27)
and in the limit of ¢ — oo one can obtain
(0 (€)) g = (py (€)) — BQ, (6,8 =0), (A.28)
where we have used the relationships given by
{py (&,8 = 00)) = (py, (€)) g » (A.29)
Q, (e,t — c0) =0. (A.30)

While Q%) (e,t =0) (Eq. (2.55)) always satisfies Eq. (A.28), QLY (e,t =0) and

Qf) (e,t = 0) satisfy this relationship only if the linear response limit exactly describes
the solvation dynamics. The plots of (p(¢)) — BQY (e,t = 0) (Fig. A.9) show that the
deviations from (p (¢)) 4 appear in the cases of QW (e,t = 0) and QP (e,t = 0). Further-

more, (p(g))—BQY (e,t = 0) has a negative distribution around e ~ 3 kcalmol ' as well
as (p(e,t))  obtained from QW (e,t = 0) (Fig. 4(a)). On the other hand, it should be
emphasized that the difference between these expressions is sufficiently small, and hence
the linear response limit is essentially valid for the aqueous solution of benzonitrile.
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A.4 Analysis of the rotational motions of water around
a solute

In order to elucidate the rotational motions of water around a solute, we analyzed the
time correlation functions of the vectors associated with the geometry of a water molecule.
Let us define the positions of the oxygen and two hydrogen atoms in ith water molecule at
time t as rg) (1), rgz (t), and r(}g (t), respectively. Then, the dipole moment of ith water

molecule, f1; (), is defined as

pty = > a0, (A.31)

A€ith water

where ¢, is the charges on A atom. The direction of f1,(¢) is on the plane spanned with
the three atoms in the water molecule, and a vector normal to the plane, 72, (t), is given
by

oy (1) X rhy (1)

(2)
OH,
G, (1) x oy (t)

i, (t) = , (A.32)

where TE\ZI), (t) = ) (t) — r(;) (t). The directions of f1; and n, with respect to a water
molecule are illustrated in Fig. A.14. By introducing the distance between benzonitrile

(solute) and ith water molecule, r;, and cutoff distance, 7, the following time correlation

functions for the rotational motions of water molecules in the vicinity of benzonitrile are

defined.
Z <ﬂz (t) ’ ﬁ’z@ (rcut - (t>) S (rcut o Tz))

C, o) = — , A.33

M< ) Z(ﬂz 0 (rey — 1)) ( )
S {2, () 4,0 (e = 74 () © (1 —7,)

t? Teut) = ! . A.34

( ) Z (fu; - ;0 (1o — 1)) ( )

i

C

n

>

Here, O(+) is Heaviside step function. In the present study, benzonitrile-water distance
is defined as the distance between the nitrogen atom of benzonitrile and oxygen atom of
water molecule. Note that C,(t,7.,) and C,, (¢, 7., ) respectively reflect the pitch and roll
motions. The time developments of C,(t,7.,;) and C,,(t,7.,) at different values of .,
are shown in Fig. A.15 together with the two-dimensional potential of mean force (PMF)
along the benzonitrile-water distance, r, and the energy coordinate, €. It is seen that the
damped oscillation is observed in C, (¢, 7c,,) and C,, (t, 7., ) at small values of 7, and its
phase and frequency are almost the same as that in S(¢). Hence, the rotational motion
of water molecules restricted by the hydrogen bonding to benzonitrile has a vital role in
the dynamics on a short timescale.
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A.5 Supplementary figures
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Fig. A.1: Relationship between the discretized energy coordinate ¢; and the grid width Ae; in
our non-uniform grid.

. 1, W . 1,€ .
-1 ’ ’ 1+1
Oz_:-'\ N — *
\v /'\ Vi
1—1 e AR 141

Fig. A.2: Schematic diagram of finite volume method (FVM)
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Fig. A.3: Solvent distributions on the energy coordinate at the ground and excited states. The
energy coordinate, ¢, is defined as the difference of the interaction energy with the solute at the
excited state from that at the ground state.
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(a) ground state

(b) excited state

Fig. A.4: Spatial distribution functions (SDFs), gg (7), conditioned by the energy coordinate
at (a) the ground state and (b) the excited state. The stabilized region (¢ < —2.8 kcalmol ™ *)
corresponds to the blue (gg (r) = 0.4) and light blue (gg () = 0.08) regions. The destabilized
region (¢ > 1.5 kcalmol ™) corresponds to the red (gg () = 0.4) and light red (gg () = 0.2)
regions.
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Fig. A.5: Radial distribution function (RDF) conditioned by ¢ < —2.8 kcalmol™'. In the
function, the distance between the nitrogen atom and the center-of-mass (CoM) of water is
used. For comparison, the standard RDF is also shown.
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Fig. A.6: Initial values of Q(e,t) using different expressions, Q) (e, =0) (Eq. (53)),
Q? (e,t =0) (Eq. (54)), and Q® (¢,t = 0) (Eq. (55)).
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Fig. A.7: Time development of the integral of Q(e,t) for ERSV equation over the energy
coordinate obtained from our numerical scheme.
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Fig. A.8: Time developments of the solvent distributions on the energy coordinate after the
excitation of benzonitrile obtained from (a) ERSV equation with Eq. (2.49), (b) ERSV equation
with Eq. (2.43), and (c¢) nonequilibrium MD (NEMD) simulation. (a) and (c) are identical to
Figs. 4(a) and 4(b), respectively.
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Fig. A.9: Equilibrium solvent distributions at the excited state using different expressions,
(p(2)) — BQW (2, = 0), (p(e)) — B (e,¢ = 0), and (p(£)), (exact). Note that (p(e))  is
equivalent to (p(¢)) — SR (e,t = 0).
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Fig. A.10: Time developments of (a) the number of stabilized water molecules (¢ <
—2.8 kcal mol~!) and (b) the number of destabilized water molecules (¢ > 1.5 kcal mol~1).
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Fig. A.11: Solvation time correlation functions (STCFs) obtained from NEMD simulation with
Eq. (36) and equilibrium MD (EMD) simulation at the ground state with Eq. (39).
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Chapter 3

Solvation dynamics on the diffusion
timescale elucidated using
energy-represented dynamics theory

3.1 Introduction

Solute-solvent interaction is vital for the mass transport as well as the chemical reaction of
a solute. The friction associated with the solute motion is affected by such an interaction
in addition to the solvent diffusivity. [3,28,141] The motion of the solvent molecules around
a solute is also different from the simple diffusion in the bulk phase due to the inhomoge-
neous environment produced by a solute. [93] Photoexcitation phenomena give us useful
information on the solute-solvent interaction through the spectroscopy techniques. The
local solvent environments can be elucidated by the the fluorescence spectra of solvent-
sensitive probes. The spectra are often characterized with the physicochemical concepts
such Stokes shifts and polarity. [90,91] Furthermore, the solvent response to the change
in the electronic structure of a solute by the photoexcitation, referred to as solvation dy-
namics or dynamic Stokes shift, reflects the dynamic properties of solvents. [93,142,143]
The solvation dynamics can be utilized for investigating the heterogeneous environments
such as the ionic liquids [144-146], biomolecular solutions [147,148] and biological mem-
branes [94,149,150].

The theoretical and computational methods are useful for obtaining the atomistic
information on the photoexcitation dynamics in solutions which is difficult to be accessed
from the experiments. Molecular dynamics (MD) simulation is a representative method to
obtain such information. [151,152] The solvation dynamics of small solute molecules such
as coumarin has been extensively studied by means of MD simulations so far. [143,153-155]
The recent advance in computers enables us to investigate the solvation dynamics of
macromolecules such as deoxyribonucleic acids (DNA) [156] and proteins [157] in aqueous
solutions. Ab initio MD (AIMD) simulation [158] is also a powerful tool for realistically
describing solvation dynamics. [159, 160] For instance, the application of this method
to the solvation dynamics of N-methyl-6-oxyquinolinium betaine in water revealed that
the dominant mode for the solvent motion varies depending on the timescale and that
the collective solvent rearrangement plays an important role on a picosecond timescale.
[160] As well as in the case of the spectroscopy experiments, the solvation dynamics in
these studies is characterized in terms of the solvation time correlation functions (STCF).
However, the accurate computation of the time correlation functions on the long timescale
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often suffers from the insufficient sampling.

The dynamics theories based on the integral equation theory of molecular liquids with
the interaction-site representation [1,5, 6] have been also widely used to investigate the
solvation dynamics of the various solutes in molecular liquids. [7, 45, 46, 48, 51-53, 53—
55,161] The governing equations have a mathematically closed form for both the static
and dynamic properties of solutions, and hence the information on the dynamics can be
obtained by solving the equations in an algebraic manner, meaning that the obtained
results are free from the sampling problem. [34, 40, 44,59, 107] The application of these
theories to the solvation dynamics is possible with the aid of a modified linear response
theory [45,46] or time-dependent density functional theory (TD-DFT) of liquids. [57-
59,93] Due to the orientational average of solvent molecules introduced for avoiding the
explicit treatment of the orientational degrees of freedom, however, the theories with the
interaction-site representation are applicable only to the simple polyatomic solvents. In
addition, the rigidity of the molecules is assumed in these theories. Note that the flexibility
of molecules is known to have an impact on the dynamic behavior of solutions. [162,163]

Recently, we have derived an alternative expression of the molecular diffusion based on
the energy representation (ER) which is amenable to MD simulations. [164] In this theory,
the configuration of a solvent molecule is projected onto the solute-solvent interaction
energy, namely energy coordinate. [60,61,64] It should be noted that the intramolecular
degrees of freedom is naturally taken into account using the energy coordinate. This
dimensionality reduction also enables us to construct the one-dimensional free-energy
functional for describing the solvation thermodynamics in complex solutions including
polymer solutions [73] and lipid membrane systems [68,69] by means of MD simulations.
By applying the Zwanzig-Mori projection operator method to the solvent distribution on
the energy coordinate, the energy-represented generalized Langevin equation (ERGLE)
can be derived in an exact way. [164] The systematic approximations about the dynamics
such as the overdamped limit give the energy-represented Smoluchowski-Vlasov (ERSV)
equation, a diffusion equation of solution that describes the self-diffusion, drift motion,
and collective motion of solvents on the energy coordinate. Once we calculate the static
correlation functions and diffusion coefficient of solvents involved in the ERSV equation,
the time development of the solvent distribution functions can be obtained by solving
this equation. Since the sampling of the information on the dynamics is not required
in this treatment, the analysis of the long-timescale dynamics is realized without the
sampling problem. It is confirmed that the ERSV equation reproduces the relaxation
time coefficient on the diffusion timescale for the solvation dynamics of benzonitrile in
water. Furthermore, we revealed the importance of the collective diffusion on the solvent
relaxation on the intermediate timescale.

In the present study, we apply the ERSV equation to the solvation dynamics of 6-
propionyl-2-dimethylamino naphthalene (Prodan) in water and alcohol solvents (methanol,
ethanol, and 1-propanol) for clarifying the differences of the relaxation processes among
these solvents. Prodan is a solvent-sensitive fluorescence probe that exhibits the signifi-
cant Stokes shifts, making it possible to analyze the local environments of the systems of
interests. [165-170] The excited states of Prodan are well characterized with the quantum
chemical calculations [171-174] Prodan is widely used for analyzing the membrane prop-
erties such as local polarity and gel phase transition. [175-178] The time-resolved infrared
(IR) spectroscopy analysis of the solvent-dependent feature of the excited state for Pro-
dan probed that the S; (m — 7*) state undergoing a solvent-driven charge redistribution
from dimethylamine (DMA) to carbonyl (C=O) group dynamically alters the solvation
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structure such as the patterns in hydrogen-bonding of Prodan with the surrounding sol-
vent molecules, suggesting the importance of the atomistic description of the solvation
dynamics. [170] Very recently, the systematic analysis of the membrane properties at the
interfacial region was proposed based on the fluorescence decays of Prodan in a series of
solvent mixtures. [179] The microscopic information on the solvation dynamics in various
solvents could thus be useful to deepen our understanding of heterogeneous environments.

We focus on the solvation dynamics of Prodan triggered by S; (m — 7*) excitation
described by means of the TD-DFT of electronic structures. The solvation time correlation
correlation function (STCF) for each solvent is calculated with the ERSV equation based
on the MD simulations with Prodan in its ground state. Furthermore, we introduce a
scheme of decomposing the diffusion coefficients in the energy representation into the
contributions of the moieties in Prodan to unveil the difference of the relaxation processes
depending on the solvent species.

3.2 Methods

3.2.1 Energy-represented Smoluchowski-Vlasov (ERSV) equa-
tion

In this section, we briefly summarize the energy-represented dynamics theory and its
application to the solvation dynamics. [164] The energy representation means that the
solvent configuration around a solute is projected onto the solute-solvent pair interaction
energy, energy coordinate. Then, the dynamic processes of solvents are represented as
the time development of the solvent distribution on the energy coordinate in the theory.
This treatment enables us to effectively treat the solvent position and orientation on one-
dimensional space.

Let us consider a dilute solution containing a solute molecule in a single-component
solvent. The formulation for multi-component solvents is available in Ref. [164]. Further-
more, we assume that the solute molecule is fixed in space. We define the full coordinate
(position and orientation with the intramolecular degrees of freedom) of the ith solvent
molecule as x;. The instantaneous solvent distribution on the energy coordinate (energy
distribution), p(e,t), is defined as,

plet) = 25(%6(%(15)) —e), (3.1)

where u(+) is an energy function between the solute and solvent (defining potential). The
fluctuation of p(e,t) is also defined as

dp(e;t) = ple,t) — (p(e)), (3:2)

where (---) represents the ensemble average at the equilibrium state. The Zwanzig-Mori
projection operator method gives the energy-represented generalized Langevin equation
(ERGLE), an exact partial differential equation of dp(e,t). Imposing the overdamped
limit on the ERGLE, one can derive the energy-represented Smoluchowski-Vlasov (ERSV)
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equation given by

85p(§:,t) _ aﬁg {De(@@épa(?t) B De(s)dlnfig(g»ép(a,t)

D) (p(e)) [ an i,

+ F(e,t). (3.3)

Here, D°(e) and F'(e,t) represent the energy-represented diffusion coefficient and fluc-
tuating force, respectively. c(e,n) is the direct correlation function that describes the
relationship between the solvent molecules whose values of the defining potential are e
and 7. The approximate expression of D°(¢) is given by

De(e) = D(| £ ]%)_, (3.4)

where D and f& are the translational diffusion coefficient of the solvent and the force
acting on the center of mass (CoM) of the ith solvent molecule corresponding to the
defining potential. ()E means the ensemble average conditioned by the energy coordinate
e defined as

.= 7 ! $3 () () — ) (3.5)

p(e)) 5

Thanks to the additivity of the solute-solvent interaction, fiG can be decomposed into the
forces acting on the moieties (m) of the solute molecule, fI™, as

all moieties

= > (3.6)

Thus, D¢ (¢) can be rewritten as

all moieties

De(e)= Y DM(e), (3.7)

Deme) = Df - £9) 3.9

13
Note that D™ (¢) can be regarded as the contribution of moiety m to D¢ (¢).
Each term in the ERSV equation (Eq. (3.3)) has a clear physical meaning. The first
term in the square bracket of Eq. (3.3) describes the simple diffusion of solvents due
to the gradient of the solvent distribution. Since —In (p (¢)) multiplied by the inverse
temperature is the free energy profile on the energy coordinate, the drift motion caused
by the free energy gradient is expressed with the second term. The third term describes
the collective diffusion through the direct correlation function, ¢ (e,n). If the collective
term is neglected in the ERSV equation (Eq. (3.3)), one can obtain the energy represented
Smoluchowski equation (ERS) describing the single-particle diffusion process as

Dolest) _ 0 [ PHED) gy oleg,
+ F(e,t). (3.9)
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The solvation dynamics triggered by the sudden change of a solute molecule can be
described based on the ERSV equation and linear response theory. [30,124] Let us consider
an nonequilibrium process that the solute-solvent pair interaction energy is changed from
u® (x;) to u®™ (x;) due to the photoexcitation of a solute at ¢ = 0. If we approximate
that the intramolecular energy of the solute is unchanged during the relaxation process,
the solvation time correlation function (STCF) is expressed as

(AE())  —(AE(c0))

)= 1aE0), — (AB(). (3.10)

e ne

where () is the nonequilibrium ensemble average and
AE(t) =) {u™(@,;) — ut (z,)}. (3.11)

Next, we introduce a scheme for describing the solvation dynamics. The solvation
dynamics is characterized with the solvation time correlation function (STCF), S(¢).
Based on the linear response theory, S(t) can be expressed as

(SAE(t)SAE)
(SAESAE)

S(t) = (3.12)

Here, (--) is the ensemble average at the ground state and JAE(t) is the fluctuation of
AFE (t) defined as AE(t) = AE(t) — (AE). If the defining potential is the difference
of the solute-solvent pair interaction energies between the excited and ground states as

u(x;) = u™ (x;) —u® (x;), SAE(t) and its autocorrelation function can be written as

SAE(t) = / de £8p(e, 1), (3.13)
GAB®IAE) = [[ dedn en (6p(e. )30(n)
— / de £Q(e, 1), (3.14)
where we have introduced a new function Q(e, ) defined as
Qeit) = [ n(Gp(e,1160(n) dn = Gpe,H1BAE) (3.15)
Substituting Eq. (3.14) into Eq. (3.12) yields
/ de £Q(z, 1)

S(t) = . (3.16)
/ds eQ(e,t =0)

By using Eq. (3.3), one can obtain the ERSV equation for Q(e,t) as

R0 _ 0 [ ME gy dinblo)
ot Os Os de

0 (p(e)) [ an 12000, (3.17)

— D%(e) Q(e,1)
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The ERS equation for @ (e,t) can be also derived from Eq. (3.9) as

0QEt) _ O . et . dnlp)
ot :@[ (€) e (¢) de

The STCF can be computed by solving the ERSV or ERS equation under the following
initial condition.

Qe t)| . (3.18)

Qet=0)= / (60 (<) 80 (n)) dn. (3.19)

3.2.2 Computational Details

System modeling

The structure of Prodan (Fig. 3.1) was obtained by performing the geometry optimiza-
tion with CAM-B3LYP/cc-pVDZ level calculation [180] at the ground state. Then, the
S, (m — 7*) excited state was computed using TD-DFT (CAM-B3LYP)/cc-pVDZ calcu-
lation. Charges from electrostatic potentials using a grid based method (CHelpG) [181]
was used for calculating the atomic point charges for both the ground and excited states
(Table S1, Fig. S1, ESI). All the quantum chemical calculations were performed with
Gaussianl6. [125]

We prepared four different solution systems consisting of one Prodan molecule and
solvent molecules, water, methanol (MeOH), ethanol (EtOH), and 1-propanol (PrOH).
The force field for Prodan, MeOH, EtOH, and PrOH was the CHARMM generalized force
field (CGenFF) [182] and the parameters were obtained using CHARMM-GUI server, [183]
while the atomic charges on Prodan for the ground and excited states were evaluated
using the quantum chemical calculations mentioned above. CHARMM-compatible TTP3P
model was used for water. [184] The numbers of solvent molecules were 7200, 3100, 2210,
and 1690 for water, methanol, ethanol, and 1-propanol systems, respectively. For all the
systems, the initial configurations were prepared using Packmol [127] with the cubic box
whose volume is 60% A3. We also prepared the pure solvent systems for calculating the
diffusion coefficients of the solvents. The numbers of solvent molecules and the volume
are the same as those of corresponding solution systems.

Simulation setups

For each solution system with Prodan in its ground state, we performed three types of
NVT simulations: (i) equilibration, (ii) sampling of the system configurations and (iii)
production simulations started from the configurations obtained from (ii). For equilibra-
tion (i), the MD simulations were performed for 1 ns. Then, we conducted the simulation
(ii) for 1 ns to extract the configurations every 1 ps (The total number of the samples was
1000 for each system). After re-distributing the velocities of the sampled configurations
so as to generate the Maxwell-Boltzmann distribution, we performed the simulations (iii)
for 0.1 ns equilibration, followed by 1 ns production simulation for each trajectory. As for
each pure-solvent system, we performed 0.4 ns production simulation after 1 ns simulation
for equilibration.

For all the simulations, the equation of motion was integrated using the velocity Ver-
let algorithm [128] with a time interval of 2 fs. The temperature was set at 300 K with
the Bussi thermostat. [129] The Prodan molecule was fixed in space by making the ve-
locities of its atoms zero. The Lennard-Jones (LJ) interaction was truncated by applying
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the switching function, with the switching range of 10-12 A. The smoothed particle mesh
Ewald (SPME) method [185,186] was used to calculate the electrostatic potential. Water
molecules were kept rigid using the SETTLE algorithm [130] and the bonds involving the
hydrogen atoms were fixed with SHAKE/RATTLE algorithm. [187,188] All the simula-
tions were performed with GENESIS 2.0. [131-133] All the analyses were performed using
in-house Fortran90/95 programs combined with the visual molecular dynamics (VMD)
package (ver. 1.9.3), [134] PyMOL, [137] and ERmod 0.3.7. [116]

3.2.3 Solver for ERSV and ERS equations

To solve the ERSV and ERS equation, we used the scheme developed in our previous
study. [164] We used the finite volume method (FVM) to discretize the energy coordinate.
For numerical efficiency and accuracy, we used non-uniform grids on the energy coordinate
which are fine around € = 0. The drift term of these equations was discretized by the 1st-
order upwind difference scheme. The full implicit algorithm was employed to integrate
these equation for the numerical stability. The time grid At was set to be 1 fs. The
translational diffusion coefficients used as the inputs of the ERSV equations (Table 3.1)
were calculated from the mean square displacements (MSD) of the solvent molecules in
the pure solvent systems.

Table 3.1: Translational diffusion coefficients of the solvents (D) obtained from the MD simu-
lations for the pure solvent systems. These values are used as the inputs of the ERSV equation.

Water Methanol Ethanol 1-propanol
D (107 ecm?s™)  5.91 3.28 1.51 0.94

Propionyl

Dimethylamine
(PRO) Naphthalene (DMA)

(NAP)

Fig. 3.1: Structure of Prodan. The hydrogen, carbon, nitrogen and oxygen atoms are depicted
in gray, green, blue and red, respectively.
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3.3 Results and Discussion

3.3.1 Distribution functions on the energy coordinate
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Fig. 3.2: Solvent distribution functions on the energy coordinate (energy distribution distri-
bution function), (p(e)). The distribution functions on the decomposed defining potentials
based on the moieties (m) of Prodan, (p(e,,)), are also shown. (a) (p(g)), (b) (p(epma)), (¢)
(p(enap)), and (d) (p(epro))- DMA, NAP, and PRO respectively denote N,N-dimethylamine,
naphtalene, and propionyl moieties of Prodan (Fig. 3.1).

We first examine the energy distribution function, (p(¢)), for different solvent systems,
water, methanol (MeOH), ethanol (EtOH), and 1-propanol (PrOH) (Fig. 3.2 (a)). The
defining potential, u, is defined as the difference in the solute-solvent pair interaction
energy between the excited and ground states. Hence, the distributions at ¢ < 0 and
e > 0 respectively correspond to the stabilized and destabilized solvent molecules due to
the excitation of Prodan. The sharp peak at € ~ 0 observed for all the systems comes
from the bulk solvent molecules that are not interacted with Prodan. It is seen that
the shapes of the energy distributions in the different solvents are similar, although the
populations of both the stabilized and destabilized molecules for water are slightly higher
than those for the alcohol solvents. The distribution becomes broader in the order of
water > MeOH > EtOH > PrOH. This ordering coincides with ascending order of the
solvent polarity. For further analysis, we decompose the defining potential (u) into the
contribution from the moieties of Prodan as N,N-dimethylamine (upys), naphthalene
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(unap), and propionyl (upgo) moieties (Fig. 3.1).
u = uppma t Unap T UPRO- (3.20)
The distribution functions on the decomposed defining potentials defined as

(p(em)) =D (6 (uy () —¢,)), m=DMA,NAP,PRO, (3.21)

%

are shown in Figs. 3.2(b)-(d). The profile of (p (eppa)) reveals that the water molecules
are more destabilized by DMA than other solvent molecules (Fig. 3.2(b)). From the spatial
distribution functions (SDFs) corresponding to the destabilized region (Fig. S2, ESI), it
is confirmed that the destabilized water molecules are distributed around DMA. On the
other hand, the water molecules are more stabilized by NAP and PRO than the other
solvent molecules (Figs. 3.2(c) and (d), and Fig. S3, ESI). (p (epro)) has a small peak
around —0.8 kcal mol™!, while the other distribution functions change monotonically at
€, < 0 for all the solvents. The radial densities around the carbonyl oxygen of Prodan
indicate that the carbonyl group forms the hydrogen bonds with the hydroxyl group of the
solvent molecules (Fig. S4, ESI). The oxygen atom of Prodan becomes more negative upon
excitation (—0.441e — —0.456¢). Thus, the peak in (p(epr)) around —0.8 kcal mol~!
stems from the strengthened hydrogen bonding by the excitation.
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3.3.2 Diffusivity on the energy coordinate
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Fig. 3.3: (a) Energy-represented diffusion coefficients scaled with the translational diffusion coef-
ficients, D€ (¢) /D, and their decomposition into the contributions from the moieties (m) of Pro-
dan, D®™ (&) /D. (a) D°(¢) /D, (b) D&PMA (¢) /D, (c) D*NAP (¢) /D, and (d) D*FRO (¢) /D.
DMA, NAP, and PRO respectively denote N,N-dimethylamine, naphthalene, and propionyl moi-
eties of Prodan (Fig. 3.1).

The energy-represented diffusion coefficients, D(¢), are calculated using Eq. (3.4). D¢ (¢)
can be expressed in terms of the translational diffusion coefficient of the solvent, D, and
the force associated with the defining potential acting on the solvent molecule, f*. Since
De(e)/D = (| f&] 2>€ is a static correlation function, Eq. (3.4) realizes the decompo-
sition of the diffusivity on the energy coordinate into the dynamic contribution (D) and
static contribution ({ ‘ e | 2>6). As shown in Table 3.1, water shows the highest diffu-
sivity. In the case of the alcohol solvents, the translational diffusivity becomes low as
the molecular size increases. For all the systems, D°(¢) /D has a minimum at € ~ 0
(Fig. 3.3(a)). Since fC is negligibly small for the solvent molecules in the bulk that has a
dominant population at € ~ 0, the appearance of such a minimum is a typical behavior of
D¢ () /D. Interestingly, all the examined alcohol solvents show almost identical profiles
of D®(e) /D , indicating that the difference in the diffusivity on the energy coordinate
among the alcohol solvents dominantly originates from the translational diffusion coeffi-
cients. While the profile of D¢ (¢) /D for water is close to those for the alcohol solvents
at € > —1 kcal mol™!, it exhibits a higher diffusivity of water at ¢ < —1 kcal mol~".
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The decomposition of D°(¢) /D into the contributions of the moieties of Prodan is
performed based on Egs. (3.7) and (3.8). As well as in the case of the solvent distributions,
we decompose Prodan into the three moieties;, DMA, NAP, and PRO (Fig. 3.1). The
decomposed profiles of D*™ (¢) /D are shown in Figs. (3.3)(b)-(d). The contributions
from the DMA (Fig. 3.3(b)) and PRO (Fig. 3.3(d)) are almost the same for all the solvents.
Furthermore, the contribution from PRO is found to be negligibly small compared with the
other contributions. As for NAP, water shows a higher diffusivity at ¢ < —1 kcal mol™?
than the alcohol solvents. It indicates that the difference of D¢ (¢) /D between the water
and alcohol solvents originates from NAP. This behavior corresponds to the fact that the
stabilized water molecules are highly populated around NAP (Fig. 3.2 and Fig. S3, ESI).

3.3.3 Solvation time correlation functions (STCFs)
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Fig. 3.4: (a) Solvation time correlation functions (STCFs), S (¢), and (b) relaxation time coeffi-
cients, 7(t), defined as the time derivative of In S (¢). These functions obtained from the ERSV
equation and MD simulations are shown. The timescale is scaled with the diffusion coefficient
for each solvent (D).

The ERSV equation enables us to compute the solvation time correlation functions
(STCFs), S(t), describing the nonequilibrium solvent relaxation process triggered by the
photoexcitation of Prodan with the aid of the linear response theory (Eq. (3.16)). S(t)
can be also computed using the MD simulations at the ground state using the linear re-
sponse theory (Eq. (3.12)).The comparison of S (¢) obtained from the two approaches is
useful to understand how the approximations introduced in the ERSV equation affect
the description of the dynamics. The time derivative of S(¢) gives the relaxation time

coefficient, 7(t).
T(t) = — (dlnd—f(t)) - (3.22)

The time developments of S (t) and D7 (t) are plotted in Fig. 3.4(a) and (b), respec-
tively. In these plots, we use the timescale scaled with the diffusion coefficients. For all
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the solvents, S (t) calculated with the MD simulation shows the fast decay of S (t) on the
short timescale. In addition, S (¢) in water shows the damped oscillation at Dt < 0.2
A2, In our previous study, [164] a similar oscillation is observed for the solvation dynam-
ics of benzonitrile in water due to the rotational motion of the water molecules hydrogen
bonded with benzonitrile. The rotational motion of the water molecules would also bring
the oscillation observed in the present water system. As for S (¢) obtained from the ERSV
equations, the fast decay on the short timescale is not observed for all the solvents. Since
the ERSV equation is derived with the overdamped limit that causes the neglects of
the memory and inertial effects of solvent motions, the discrepancy between the ERSV
equation and MD simulations clearly reveals the importance of these effects on the short
timescale. In the case of the long timescale (Dt > 1 A?), the slope of S (¢) on the logarith-
mic scale obtained from the ERSV equation are similar to those from the MD simulations,
as also shown in the plots of D7 (t) (Fig. 3.4). Petrone et al. revealed that the collective
solvent rearrangement dominates the solvation dynamics on a picosecond timescale in the
case of N-methyl-6-oxyquinolinium betaine in water. [160] Since Dt = 1 A2 corresponds
to t ~ 1.7 ps in water, the good agreement between the ERSV equation and MD simula-
tions on this timescale for the Prodan system suggests that such a solvent motion can be
described using the ERSV equation through the collective term expressed with the direct
correlation function, ¢(g,7n). Note that the ERSV equation can compute the time devel-
opments of 7(t) without the statistical noise observed in those from the MD simulations.
Thus, the rigorous estimation of the time coefficient on the diffusion timescale is possible
using the ERSV equation.

3.3.4 Importance of collective motion of solvents

(a) (b)

10 100

8 e 80
— FT . 4
&6 G — 60
=0 g & O
g ./ / \Q/
- o4 ‘,/ _— & 40
Q /
f / o
2 20 i
a} (o]
0 0
0 10 20 30 0 5 10
2 =
Dt (A% 1/D (A7 ps)
Water MeOH EtOH PrOH Water MeOH EtOH PrOH
ERSV —_ ERSV (o] (o] (o]
ERS == e e ERS O O O

Fig. 3.5: Comparison of 7(t) obtained from the ERSV and ERS equations. (a) D7 (), and (b)
correlation plots of the relaxation time coefficient on the diffusion timescale, 1, against 1/D.
The values of 7(t) at Dt = 30 A? are defined as 7.

In this subsection, we focus on analyzing the collective motion of solvents based on the
energy representation. The neglect of the term for the collective motion of solvents in
the ERSV equation (Eq. (3.17)) leads to the energy-represented Smoluchowski (ERS)
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equation for @ (e,t) (Eq. (3.18)). Therefore, the comparison of 7(t) (Eq. (3.22)) obtained
from the ERSV and ERS equations enables us to elucidate the importance of the collective
motion on the solvation dynamics.

Fig. 3.5(a) shows the time development of D7 (t) obtained from the ERS equation,
together with those from the ERSV equation. It is seen that the ERS equation overes-
timates the values of 7(¢) on the short timescale, indicating that the collective motion
of solvents promotes the relaxation of the solvation structure. For both the equations,
7(t) for all the solvents converge at Dt > 25 A2, The convergence for water is faster
on the scaled timescale (Dt) than for the other solvents in the case of the ERS equa-
tion. It reflects the high diffusivity of water observed in D¢ (g) /D at ¢ < —1 kcal mol™!
(Fig. 3.3(a)). A small difference in the converged values of 7(¢) for water is discernible
between the ERSV and ERS equations. As for the alcohol solvents, on the other hand,
the converged values for the ERS equation are larger than those for the ERSV equation.
Hence, treating the collective motion is necessary for the quantitative estimation of 7(t)
on the long timescale for the alcohol solvents.

We examine how the relaxation time coefficient on the diffusion timescale, 1, depends
on the solvent species for both the ERSV and ERS equations. The values of 7(t) at
Dt = 30 A? are used as 7. Fig. 3.5(b) shows the correlation plots of 7, against 1/D.
For both the ERSV and ERS equations, the value of 7, is larger in the order of PrOH >
EtOH > MeOH > water. It indicates that the contribution of the collective motion does
not alter the ordering, while the absolute values of m, are affected by that motion for the
alcohol solvents. Note that the ordering is apparently changed when 7(¢) obtained from
the ERSV equation is multiplied by D (Fig. 3.5(a)). In the case of the ERS equation, the
correlation plot falls into a single line. Since the ERS equation expresses time development
by the terms involving D as a product (see Egs. (3.4) and (3.18)), the linear relationship
between 7(t) and 1/D holds when (p(¢)) and D¢ (¢) /D are similar among the different
solvents. Furthermore, on the diffusion timescale, the dynamic behaviors are dominated
by (p(€)) and D°®(e) around £ ~ 0, because the energy distribution functions decay
slowly in this region (almost corresponding to the bulk). Thus, it can be concluded
that the similarities of (p(e)) and D°(e) /D around € ~ 0 among different solvents
(Figs. 3.2(a) and 3.3(a)) give the linear relationship between 7 and 1/D. As for the
ERSV equation, the alcohol solvents show the same linear relationship, suggesting that
the collective motions (Eq. (3.17)) in different alcohol solvents are similar except for the
contribution from the translational diffusion coefficient. On the other hand, m, for water
deviates from the linear relationship observed in the case of the alcohol solvents. Since
only the water system shows the small difference of 7, between the ERSV and ERS
equations, this deviation reflects the difference in the importance of the collective motion
on the diffusion timescale between the water and alcohol solvents.

3.4 Conclusion

We investigated the solvation dynamics of Prodan triggered by the photoexcitation

(S; (m — 7)) using the energy-represented Smoluchowski-Vlasov (ERSV) equation. The
difference in the dynamics for different solvents (water, methanol (MeOH), ethanol (EtOH),
and 1-propanol (PrOH)) was elucidated. The ERSV equation enables us to calculate the
time development of the systems from the several quantities on the energy coordinate, sol-
vent static distribution (energy distribution), (p (¢)), direct correlation function, ¢ (g,7),
and diffusion coefficient, D¢ (¢) /D, computed using the molecular dynamics (MD) sim-
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ulations at the ground state. The defining potential was set to the difference in the
solute-solvent pair interaction energy between the excited and ground states.

We found that the all the solvents had the similar energy distributions, although the
populations of both the stabilized and destabilized molecules are higher for water. The
detailed analysis of the distributions was realized with the decomposition of the defin-
ing potential into the contributions from the moieties of Prodan, N,N-dimethyl (DMA),
naphthalene (NAP), and propionyl (PRO) moieties. The profiles of D¢ (¢) /D, where D is
the translational diffusion coefficient of a solvent, showed no significant difference among
the alcohol solvents, indicating that the difference in the diffusivity on the energy coor-
dinate is brought by D. D¢ (g) /D for water revealed the higher diffusivity than those
for the alcohol solvents at ¢ < —1 kcal mol~! that stems from the water molecules coor-
dinating to NAP. Using the ERSV equation, we computed the time development of the
relaxation time coefficient, 7(¢), defined as the time derivative of the logarithm of solva-
tion time correlation function (STCF). On the short timescale, 7(¢) calculated with the
ERSV equation largely deviates from those with the MD simulations for all the solvents.
This deviation clearly reveals the importance of the memory and inertial effects ignored
in the ERSV equation on that timescale. 7(¢) on the long timescale from the MD simu-
lations were well reproduced with the ERSV equation. We also computed 7(¢) using the
energy-represented Smoluchowski (ERS) equation derived by neglecting the term for the
collective motion of solvents in the ERSV equation. As for water, the time coefficient on
the diffusion timescale, 7, obtained from the ERS equation was similar to that from the
ERSV equation. On the other hand, 7 for the alcohol solvents from the ERS equation
were larger than those from the ERSV equation, indicating that the collective motion
tends to promote the solvent relaxation for these solvents. We found that the set of
from the ERS equation linearly correlates with 1/D because of the similarities of (p (¢))
and D° (¢) /D among the different solvents. In the case of the ERSV equation, m, for the
alcohol solvents also fell into a single line, but 7, for water deviated from that line. It
reveals that the importance of the collective motion on the diffusion timescale is different
between the water and alcohol solvents.

An advantage of employing the energy representation is that molecular motion can be
effectively described in one-dimensional space without explicitly treating the orientational
degree of freedom. On the other hand, the dielectric models, such as the Debye model,
have focused upon the reorientational relaxations within the framework of the continuum
treatment of the solvent. [93,142,189-191] Then, to compare the dielectric and the ERSV
methods, the collective reorientation modes need to be extracted in the energy represen-
tation. It will be an interesting subject to express a variety of solvent motions effectively
over the energy coordinate.

To realize the more realistic description of the solvation dynamics on the diffusion
timescale, sophisticating the theoretical treatment of the electronic structure of a fluo-
rescent probe (solute) is necessary. In this study, we approximated that the electronic
structure of the solute was unchanged during the solvation dynamics. However, it is well
known that solute molecules are polarized depending on the surrounding environments,
affecting the solvation dynamics. In the case of the integral equation theory with the inter-
action site representation, the formulations for treating the polarization effects have been
developed so far. Naka et al. proposed the methodologies of incorporating the polarization
effects [17, 18] into the reference interaction site model self-consistent field (RISM-SCF)
method [13, 14] using the charge-response kernel (CRK) model. [21] The recently devel-
oped theory by Yamaguchi and Yoshida can describe the solvent polarization effects on

23



the solvation dynamics [59] based on the solvent-polarizable 3D-RISM theory [19] and
time-dependent density functional theory (TD-DFT). [58] Since the energy coordinate is
suitable for treating the flexibility of solvents and heterogenous environments compared
with the spatial coordinate employed in the above theories, the energy-represented dy-
namics theory incorporating the polarization effects based on the CRK model could be
promising for a realistic description of the solvation dynamics in complex systems such as
polymer solutions and lipid membrane systems. The importance of solute motion should
also be noted. Recent experimental and simulation studies revealed that the vibrational
solute motion has a non-negligible influence on the dynamics of the solvents inside the
first solvation shell for small probes in water. [192,193] Thus, including the solute motion
in the framework of the energy-represented dynamics theory is also crucial for a more re-
alistic description of the solvation dynamics. We believe that the ERSV equation and its
extension will deepen our understanding of the nonequilibrium processes at the excited
states.
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Appendix B

Appendix of chapter 2

B.1 Supplementary figures

Fig. B.1: Definitions of the atom labels for Prodan.
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Table B.1: Atomic charges on Prodan at the ground and excited states. The label of each atom
is shown in Fig. B.1.

site name atomic charge at GS (e) atomic charge at ES (e) difference
C1 -0.16703 -0.20922 -0.04219

C2 -0.21334 -0.30112 -0.08778

C3 0.30188 0.30558 0.00370

C4 -0.40712 -0.30964 0.09748

C5h 0.20250 0.16139 -0.04111

C6 0.11120 0.20825 0.09705

Cc7 -0.21616 -0.33364 -0.11748

C8 -0.07123 0.02150 0.09273

C9 -0.01159 -0.05330 -0.04171

C10 -0.23902 -0.25537 -0.01635

C11 0.09300 0.06970 -0.02330

C12 0.09210 0.08956 -0.00254

N -0.26505 -0.19167 0.07338

C13 0.38845 0.31197 -0.07648

O -0.44136 -0.45568 -0.01432

C14 0.15965 0.24546 0.08581

C15 -0.14782 -0.19386 -0.04604

H1 0.11247 0.11805 0.00558

H2 0.12682 0.13465 0.00783

H3 0.16547 0.13830 -0.02717

H4 0.11577 0.10156 -0.01421

H5 0.08113 0.08488 0.00375

H6 0.11117 0.10350 -0.00767

H7, H8, H9 0.01343 0.03329 0.01986
H10, H11, H12 0.01296 0.02878 0.01582
H13, H14 -0.02970 -0.04745 -0.01775
H15, H16, H17 0.03278 0.03928 0.00650
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Fig. B.2: Spatial distribution functions (SDFs) of the hydroxyl hydrogens corresponding to the
destabilized region (¢ > 1.0 kcal mol™!) for (a) water, (b) MeOH, (c¢) EtOH, and (d) PrOH.
The isovalues of SDFs for solid and transparent surfaces are 0.1 and 0.05, respectively.

(b) MeOH

Fig. B.3: Spatial distribution functions (SDFs) of the hydroxyl hydrogens corresponding to the
stabilized region (¢ < —1.0 kcal mol™!) for (a) water, (b) MeOH, (c) EtOH, and (d) PrOH,
respectively. The isovalues of SDFs for solid and transparent surfaces are 0.1 and 0.05, respec-
tively.
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Fig. B.4: Radial densities of the hydroxyl hydrogens around the oxygen atom of Prodan, pg (r).
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Chapter 4

Flexible framework of computing
binding free energy using the energy
representation theory of solution

4.1 Introduction

Host-guest binding has been recognized as one of the most fundamental processes in vari-
ous fields of science. For instance, substrate binding to its target protein is a central issue
in biology because most proteins exert their biological functions upon binding. [194] The
binding process is also crucial for drug molecules, which regulate (promote or inhibit)
cellular functions such as cell proliferation mediated by signal transduction. [195, 196]
Molecular dynamics (MD) simulation has played an important role in drug discovery and
design [197,198] thanks to its capability of elucidating the binding mechanisms at the
atomistic detail based on classical mechanics. For instance, an inhibitor of HIV integrase
was successfully identified through the MD simulations combined with molecular dock-
ing techniques. [199] Binding free energy, the free-energy difference between the bound
and dissociated states, is regarded as a useful indicator for the efficiency of binding pro-
cesses and has been extensively evaluated through the MD-based approaches. [200-203]
Therefore, developing methodologies to efficiently compute the binding free energy while
enabling systematic analysis would be beneficial for in-silico screening of drug candidates.

The thermodynamic integration (TT), [204] free-energy perturbation (FEP), [205] and
Bennett acceptance ratio (BAR) [206] methods offer a theoretical foundation for estimat-
ing the free-energy difference between the two states of interest (endpoints) in an exact
manner using MD simulations. In these methods, the free-energy difference can be evalu-
ated by considering a set of intermediate states that connect the endpoint states, which is
often referred to as the alchemical pathway. The double-annihilation scheme (DAS) [207]
and double-decoupling scheme (DDS) [208] are representative approaches for computing
the binding free energy using the alchemical pathways. The DAS describes the binding
process using the alchemical pathways associated with the gradual vanishing of the guest
in both the dissociated state and bound state. An effective setting of the intermediate
states on the pathways is proposed for the DAS. [209,210] The alchemical pathways em-
ployed in the DDS are similar to those in the DAS, but the restraint is imposed on the
guest in the bound state to keep it within the binding pocket of the host for all the in-
termediate states on the pathway. [211,212] Note that the effect of the restraints on the
free energy can be removed analytically. The potential of mean force (PMF) approach
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coupled with the FEP realizes the free-energy calculation for large and flexible guest
molecules. [213,214] The automation of the free-energy calculation based on the method-
ologies mentioned above has expanded the versatility. [215-220] However, these methods
require conducting the MD simulations for all the intermediate states along the alchemi-
cal pathway. Therefore, the reduction in the computational cost is one of the important
subjects.

The free-energy estimation of binding can be made efficient by adopting approximate
methods. [197,221,222] The method of linear interaction energy belongs to this category
and performs an approximate evaluation of free energy from the energetics of the bound
and unbound states. [223] The effect of entropy was incorporated by mining local energy
minima and quantifying the extents of local fluctuations. [224] The balance between the
accuracy and speed of free-energy estimation is pursed when an approximate method is
developed.

The classical density functional theory (DFT) of liquids allows for the analytical treat-
ment of alchemical pathways in an approximate manner. [65] The energy representation
(ER) theory of solution is a DFT theory that employs the solute-solvent pair interac-
tion energy as a reaction coordinate for effectively describing the relative position and
orientation of the solvent molecules around a solute on one-dimensional space. [60, 64]
This treatment enables us to construct an approximate free-energy functional represented
in terms of only the information on the endpoint states obtained through the MD sim-
ulations, leading to the reduction in the computational cost as compared to the other
alchemical free-energy methods. The ER theory was formulated to estimate the solvation
free energy of a solute, which is a free-energy difference associated with the transfer of a
solute from the gas phase to the solution phase. It has proven useful to analyze the solva-
tion energetics for various systems including lipid bilayers, [64] polymer solutions, [70,73]
and crystal-surface systems. [83] Recently, the ER theory has been extended to compute
the binding free energy for host-guest systems using an alchemical pathway similar to that
of the DDS. [89] However, this method is applicable only to host molecules whose holo-
form structures resemble their apo-form structures. Since a number of host molecules
exhibiting the significant structural changes in the structure due to the binding has been
reported, [225-227] further development could enhance the applicability and versatility of
the ER theory.

Here, we present an ER-based methodology of computing the binding free energy
applicable to the host-guest systems where the binding event induces a structural change
in the host molecule. In this approach, the difference in the host structure between the
holo- and apo-forms is characterized using the distribution on the host-guest interaction
energy. The problematic energy domain in these distributions, which affects the free-
energy calculation using the ER theory, is theoretically addressed by introducing a suitable
intermediate state. This intermediate state was proposed in a previous study on the
dissolution of water into polymer membranes. [70]

We apply the developed method to two systems: the self association of N-methylac-
etamide (NMA) in different solvents and the binding of aspirin to S-cyclodextrin in water.
In the first system, NMA molecules are known to weakly bind to each other, [228] allow-
ing for the accurate evaluation of the binding free energy through the brute-force MD
simulations. This makes the system suitable for verifying the accuracy of the present
method. In the second system, [-cyclodextrin exhibits different structural populations
between the apo- and holo-forms. [227], and thus it can be used for testing the applica-
bility of the present method. We also discuss the contributions of the interaction energies
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between the guest and surrounding environments to the binding thermodynamics, aiming
to clarify the driving force of the binding processes.

4.2 Theory

4.2.1 Theoretical expression of binding free energy

In this subsection, we describe the theoretical expression of the binding free energy in
terms of solvation free energy. The reaction scheme for host-guest binding is given by

H+G+=B. (4.1)

Here, H, G, and B signify host, guest and bound complex, respectively. The equilibrium
constant of the above reaction, K, is related with the binding free energy, AGy, as

1
AG® = —=logc’ K,
3 )

where ¢ is the standard concentration (¢> = 1 M, typically), and [H], [G], and [B] are
the concentrations of H, G, and B, respectively. The equilibrium condition of Eq. (4.1) is
expressed as

pp — (pg + pg) =0, (4.3)

where py, ptq, and pp are the chemical potentials of H, G, and B, respectively. The
chemical potential of species S (S = H or G) is given by [89]

ps = %log([s] Ag)

/dxs/dX e BUs+Usy+Uy)
(4.4)

/alXV e~ PUv

where (3 is the inverse temperature, V'is the system volume, and Ag is the kinetic contri-
bution for species S obtained by the integration of the Maxwell-Boltzmann velocity dis-
tribution. xg is the full-coordinate of species S, and Xy, is the set of the full-coordinates
of solvents. Uy, Ugy, and Uy, are the intramolecular energy of S, the interaction energy
between S and the solvents, and the total potential of the solvents, respectively. Regard-
ing species B, the mathematical form of pp is similar to Eq. (4.4), but the configurational
integral over the full-coordinates of H and G, xp¢ = {Xg, X}, needs to be restricted to
the region corresponding to the bound state. Let O (xyp) be the characteristic function
whose value is unity when the bound complex is formed and zero otherwise. Then, ug is
expressed as

1
s = 5 log (1B] Ao
/dXH(;/dXV @B <XHG> e_B(UB+UBv+UV)

V / dX,, e PUv

~3 log : (4.5)
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where dxpg = dxpdxg. Uy is the potential of H and G that is composed of the in-
tramolecular energies of H, Uy, and of G, Uy, and the interaction energy between H and
G, UHG’ as

Ugy is defined as the sum of the interaction energy between H and the solvents, Uyy,
and that between G and the solvents, Ugy, .

Ugy = Unv + Ugy- (4.7)

The solvation free energy of species G represents the change in free energy associated
with the solvation process. This quantity is useful to derive the tractable expression of
AGYy from Eq. (4.2), as will be discussed later. As for the dissociate state, let us introduce
the solution and reference systems whose total potentials are respectively defined as

V2, =Ug + Ugy + Uy, (4.8)
V]rjef =Uqg + Uy,. (4.9)

The solvation free energy, A,ug, can be described as

1 /de/dXv e PVi
. (4.10)
9D

Since the interaction between G and the solvents, Ugy, is present in Vslf)l and absent in
Vrzf, Aug can be interpreted as the free-energy change resulting from the appearance of
Ugy for the dissociate state. Similarly, we define the “solvation free energy” of G in the

bound complex, A,u]é, as

: (4.11)

where VB and VB, are the potentials for the solution and reference systems corresponding
to the bound state, respectively, defined as

VB =Uq + Uy + Uyg + Ugy + Uny + Uy, (4.12)

In Eq. (4.12), all the interactions among G, H, and V are operative, and in Eq. (4.13), the
interactions between G and H and between G and V are turned off. Au2, is thus the free-
energy change for introducing the interactions of G with H and V. It is called solvation
free energy by viewing G as the solute and H and V as the solvent. The presence of Oy
in both the numerator and denominator of Eq. (4.11) means that the solvation process of
species G, which forms the bound complex in both the solution and reference systems, is
represented by Aud.
Substituting Eqgs. (4.4) and (4.5) into Eq. (4.2) yields

AG® = A:U’g - A,UJE + AC;?:orra (414)
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where we have used Eqs. (4.10) and (4.11), and AG;,,, is the standard-state correction

T
term, ensuring the concentration of G in the dissociate state is ¢°, expressed as

AG?

corr

/ dXpg / dXy Op (xgg) e Vit

1
=——log | ¢V
B /dXHG/dX\/e Bvref

The configurations of G and those of H and the solvent molecules are independently
generated by Uy and Uy + Uy + Uy, respectively, in the reference system, and thus
the logarithm in Eq. (4.15) can be computed by the test-particle insertion of G into the
configurations of H and the solvent molecules. Furthermore, AGY ., is intensive and the
spatial region for insertion can be made smaller than the simulation cell. [89]

To utilize Eq. (4.14), the definition of O is needed for Aud (Eq. (4.14)) and AGS,,,
(Eq. (4.15)). The determination from the shape of the free-energy profile on certain
reaction coordinates is a straightforward approach. If species G remains inside the binding
site of species H during the simulations starting from the bound complex in the solution
system, Op can be set to accept all the sampled configurations. In this case, on the other
hand, the explicit form of O is needed in the reference system to distinguish between the
bound complex and others. The unique determination of O is generally impossible except
for simple host and guest molecules, such as monoatomic molecules, and AG® appears to
be dependent on the choice of ©f through the sampling in the reference system. Actually,
it can be proved that AG” is not affected by the choice of Oy for the reference solvent as
described below. Let us introduce the characteristic function that is different from Oy,
O, and the following quantities.

(4.15)

/dXHG/dXV Op (Xgg) e~ BV ret

/dXHG/dXV XHG)e ﬁ ref
—pVB

Au =Aud — = log

——log , (4.16)
& /dXHG/dXV Op (xpg) e Vrer
AG;?)I‘I‘ = AGZOI‘I‘
1 /dXHG/dXV Op (xgg) e BV res
+ B log
/dXHG/dXV O3 (xpg) e OV res
1 /dXHG/dXV @/ (XHG>€ BV‘"Ef
=——log | V- (4.17)

ﬁ /dXHG/dxve Bvref

By substituting Eqgs. (4.16) and (4.17) into Eq. (4.14), one can rewrite Eq. (4.14) without
any approximations as

AGOB = AMG A:U’G + AGCOI‘I‘? (418)
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indicating that AG} does not depend on the choice of ©f when all the terms in the above
equation are computed in an exact manner.

4.2.2 Energy representation (ER) theory of solution

The energy representation (ER) theory offers an efficient method for computing solvation
free energies using information about the endpoint states. In this approach, the full
coordinates of the solvents are projected onto the solute-solvent pair interaction energy,
and the free-energy functional is constructed based on the solvent distribution on the
interaction energy, referred to as the energy distribution. In this subsection, it is our intent
here to describe the ER theory only for Aug (Eq. (4.11)), as the theoretical developments
of the ER theory for Aug (Eq. (4.10)) have been already reported elsewhere. [61,64,116]

Let p,, () denotes the instantaneous distribution for the ath species, defined as follows.

Pa (€)= 0 (ug (Xq:Xa) —€) - (4.19)
e
Here, u,, is the pair interaction-energy function between G and the ath species, and x,, ;
is the full-coordinate of the ith molecule of the ath species. « refers to the solvent species
(such as water) or H. By defining the ensemble average in the solution system conditioned
by ©p and that in the reference system conditioned by Oy respectively as

/dXHG/dXV () Op <XHG)€_W§°l
<.”>sol,®B - B
/ dXpg / dXy O (xgq) e Ve

/dXHG/dXV () Op (XHG>€_WE*

<“.>ref® o
o / dXpg / dXy O (xgq) e Vies

the ath solvent distributions in the solution and in the reference system when the bound
complex is formed can be expressed as

P, (8) = (a (&) (4.22)

Preta (6) = (Do (&), - (4.23)
respectively. According to the Kirkwood’s charging formula for the alchemical pathway
connecting the solution and reference systems through the coupling parameter, A,ug is
expressed using the integral over the coupling parameter. Introducing the Percus-Yevick

(PY)-type and hypernetted-chain (HNC)-type approximations against the distributions
for the non-endpoint systems on the alchemical pathway yields [64]

AM?; = Z/ds spSBOl,a (e)
1
SN LD INCEVINC)
1 g’ o \E
FE0 [ ety (@0 S

pr%f,a <8>
+F [psBol,a (5) 7p2f,a <5> 7X§6 (5> 77)} ’ (4'24)

: (4.20)

, (4.21)
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Fig. 4.1: Thermodynamic cycle employed in the energy representation (ER) method incorpo-
rating a solution state with overlapped distributions with reference (ER-OR).

where XE 3 (e,m) is the two-body density-correlation function defined as
B A A
Xap (&:1) = {Pa () g (M) ;o

(o (€)yg, (B ) (4.25)

ref,Op '

The first three terms in Eq. (4.24) are the pair free-energy components without approx-
imations and F is the approximate free-energy functional for the many-body entropic
contributions. The explicit form of F is available in Ref. 64.

Evaluating the free energy using Eq. (4.24) is effective when the distributions in the
solution (p2, ()) and reference (p2; (¢)) systems overlap well with each other. However,
if the holo-form structures of host molecules observed in the solution system differ from
their apo-form structures in the reference system, the distributions p) , (¢) and pf; , (€)
may not overlap well. In such host-guest systems, the e-region with pSBOLH () # 0 and
Pref.o (€) = 0, which is problematic due to the integrand of the third term in Eq. (4.24)

p?ol,a (6)

: (4.26)
pI]-—j’eﬂa (6)

Pror,a (€)10g

may be too broad, especially in the energy distribution for H (,os'i)LH (¢) and p11~3ef,H (€)).
Then, we introduce a solution state with overlapped distributions with the reference (OR
state), in which the above problematic e-region is absent (Fig. 4.1). Such a state can be
defined using the following characteristic function.

Oor (Xpa, Xy)

= Og (xp¢) H H 0 (pif,a (ua (3, Xa,i))) : (4.27)

o e
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(a) N-methylacetamide (NMA) (b) p-cyclodextrin (CD)—Aspirin
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Fig. 4.2: Target binding systems. (a) Self-association of N-methylacetamide (NMA). (b) 5-
cyclodextrin (CD)-aspirin binding. The CD-aspirin complexes in which the hydroxyl group of
aspirin points towards the primary and secondary faces are labeled as P and S, respectively.

Here, 0 (x) is the Heaviside’s step function given by

0(z) = {O r=0 (4.28)

1 2>0

By defining the free-energy change associated with the transition from B in the reference
system to the OR state in the solution system expressed as

1 / dXpg / dXyOpr (Xpa, Xy) e Ve

A,ugR = ——log
b / dxpg / dXyOg (XHG)(B Vi

, (4.29)

A,u]é can be decomposed into AugR and the free-energy change due to the transition

from OR to B in the solution system, A,ugRﬁB as

Apd = ApgR + ApdR—8 (4.30)
where AugR_)B is described as
OR—B 1
AP = < log Poy, (431)

and Pyy is the probability of finding the OR state among the bound-complex configura-
tions, given by

/ dxXpg / dXyOor (XHG7XV)€_BVSBOI

Por = N
/ dxyg / dXyOp (xyg) e Ve

(4.32)

Since ps]il’a (¢) is the product of p?ef’a (¢) and a term referring to the solvent-mediated
contribution to the potential of mean force, in principle p?ef’a () # 0 when PsBol,a () #0.
The difficulty related to Eq. (4.26) is a practical problem due to finite sampling,. prBéf’a ()
appearing in Eq. (4.27) should thus be understood as a numerically computed one, and in
actual simulations, its argument (energy coordinate ¢) is discretized to a set of bins with
finite widths. According to Eq. (4.27), the OR state is a subset of the B state consisting
only of the configurations for which all the pair-interaction energies of G with each species
«a fall into energy bins with non-zero Pif,a (¢). If a sampled configuration in the B state

contains a pair energy which corresponds to zero p2. (g, that configuration is excluded

66



from OR. The OR state was called intermediate state in Refs. 70 and 116, however, to
avoid possible confusion with an intermediate state in BAR, it is denoted with OR in
this work. The interaction of the solute with the surroundings is partially turned on in
intermediate states of BAR, while the solute’s interactions are fully turned on in the OR
state. Hereafter, the ER theory incorporating the OR state is referred to as ER-OR. The
ER-OR procedures are schematically depicted in Fig. C.1 of the supplementary material.

4.3 Computational methods

4.3.1 System setups

We investigated the self-association of N-methylacetamide (NMA) in different solvents
(acetone, 1,4-dioxane, and chloroform) and the binding of aspirin to S-cyclodextrin (CD)
in water (Fig. 4.2).

TIP3P model was used for water, and the general Amber force field (GAFF) [126,229]
was used for the other species. Following modeling scheme was adopted to all the species
except for water. We employed the restrained electrostatic potential (RESP) method [230)]
to determine the point charges on the atoms at HF /6-31G(d) level calculations. The op-
timized structures used for the RESP method were prepared at MP2/6-31G(d) level cal-
culations except for water and S-cyclodextrin (CD). According to our previous study, [88]
we optimized the CD structure at HF /6-31G(d) level calculations. The quantum chemical
calculations mentioned above were performed with Gaussian 16 [125] and Antechamber
program was used for the RESP method. [231] The initial configurations of the systems
of interest were built using Packmol. [127]

All the simulations were performed with GENESIS 2.0. [131-133] The Bussi method
was used for generating the NVT and NPT ensembles. [129, 232] The velocity Verlet
(VVER) [128] and reversible reference system propagator algorithm (r-RESPA) [233] in-
tegrators were employed for the equilibration and production runs, respectively. The
time intervals for VVER and r-RESPA were 2 fs and 2.5 fs, respectively. The cutoff dis-
tance for the Lennard-Jones (LJ) interactions was 9 A, and smooth particle-mesh Ewald
(SPME) [186] was used for computing the electrostatic interactions. The number of
grids for SPME was automatically determined in GENESIS so that the grid spacing was
shorter than 1.4 A. All the bonds that involve hydrogen atoms were constrained with the
SHAKE/RATTLE method, [187,188] and water molecules were treated as rigid molecules
using SETTLE method. [130]

4.3.2 N-methylacetamide (NMA) systems

Simulation setups

For the computation of Aug (Eq. (4.10)), we prepared the trajectories for the system
containing an NMA molecule in solvents and for the pure solvent systems, respectively
corresponding to the solution and reference systems for the D state. For both systems,
the box size was 60° A3, and the numbers of solvent molecules were set to 1809, 1605,
and 1545 in acetone, 1,4-dioxane, and chloroform, respectively. The numbers of solvent
molecules were determined using the NPT simulations to ensure that the system volume
fluctuated around 603 A3 at 300 K and 1 atm. For each system, we conducted 2 ns NVT
simulation for equilibration, followed by 10 ns NVT simulation for production.
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Regarding AuZ (Eq. (4.11)), the trajectories for the solution and reference systems
for the B state, respectively containing 2 and 1 NMA molecules, are needed. As for the
latter system (reference), the trajectory of the solution system for the D state can be
used. In the case of the former systems (solution), we conducted 2 ns NVT simulation for
equilibration, followed by 100 ns NVT simulation for production. These simulations were
conducted while applying a following half-flat bottom (HFB) potential on the distance
between the centers of mass (CoM) of the two NMA molecules (d).

0 d < d,

. 4.33
k(d—dy)? d>d, (4.33)

Here, dy = 7 A and k = 10 kcal mol ' A=2,

We performed the NVT simulations for an isolated NMA molecule that is required
for the test-particle insertion in the ER-based methods. After 1 ns NVT simulation for
equilibration, we performed 1 ns NVT simulation for production.

To calculate AG® using the PMF-based method (exact), [88,234] we also conducted
100 ns NVT simulations in the solution system from the 2 ns equilibration mentioned
above while applying Ugpg (d) (Eq. (4.33)) with dy = 15 A and k = 10 kcalmol ' A~2,

Binding free-energy calculations

The binding free energies, AG®, were evaluated through the computation of Aug, Aud,
and AG;,,,. In the case of Aug, the energy distributions for the solution and refer-
ence systems for the D state were computed. For the reference system, the test-particle
insertion was performed for computing the distribution, with 1000 insertions for each con-
figuration of the reference system. The error estimation of A,ug was done by dividing the
solution trajectories into 10 blocks for averaging.

Regarding Aug, the energy distributions in the solution system, pslil’H (€), was com-
puted using the configurations that satisfy the bound-complex criteria. In this work, the
criteria were defined using the interatomic distances involving the oxygen (O) atoms of
the carbonyl group and nitrogen (N) atoms of the secondary amine. If the minimum dis-
tance among the O-O, N-N, and O-N interatomic distances, d was shorter than 3.5 A,
the NMA dimer was considered a bound complex.

The configurations of the system that satisfy this criterion are part of the configu-
rations generated with the restraining potential of Eq. (4.33). pSBOLH (¢) was constructed

min»

by using only those configurations within the distance threshold of 3.5 A, and the other
configurations were discarded. See Fig. S2 of the supplementary material for how the
choice of the threshold affects the binding free energy. For the computation of the energy
distribution in the reference system, prBef’ (€), the characteristic function for the B state,
Op (Xp), was constructed using the spatial distribution function for the guest NMA,
g (r), and Weeks-Chandler-Andersen (WCA) potential, [235] uywca (Xgg), in addition to
dyg. Here, r is the CoM of the guest NMA and g (r) was computed using the solution
trajectories. piﬂa (¢) was constructed using the configurations obtained from the test-

particle insertion that satisfy d_;, < 3.5 A, g(r) > 0 and uycs (Xgp) < 15 keal mol~.,
The same characteristic function was used to perform the test-particle insertion for AG?; .
The number of insertion was 1000 for each configuration of the reference system. We es-
timated the statistical error in A,u(B; by dividing the solution trajectories into 10 blocks

for averaging.
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Table 4.1: Information on the trajectories used for the free-energy calculations in the CD-aspirin
systems. The values in parentheses indicate the numbers of replicas for the BAR simulations.
For the BAR simulations, the last 40 ns and 30 ns were used for the D and B states, respectively.

States
D B
# of Traj. Simul. length Total # of Traj. Simul. length Total
BAR 1(24) 100 ns 2400 ns 10 (57) 150 ns 85500 ns
ER, ER-OR (Solution) 1 20ns 20 ns 25 20 ns 500 ns
ER, ER-OR (Reference) 1 10ns 10ns 25 20 ns 500 ns

For comparison, we also computed AG® using the PMF-based approach. [88] In this
calculation, only d, ;. < 3.5 A was used for the bound-complex criteria as well as in the
calculation of pim (¢). Note that the standard-state concentration was properly treated
in this method, allowing for a valid comparison of the AG® values obtained from this
method with those from the ER-based methods.

4.3.3 p-cyclodextrin (CD)-aspirin system
Simulation setups

We prepared the trajectories required for the computation of Aug and Apg (Table 4.1).
The simulation scheme was constructed according to our previous study. [88] The pure
water system composed of 7200 water molecules with the box size of 603 A3 was built as
the reference system for the D state. After the annealing of the system from 548 K to 298
K during 0.1 ns NVT simulation, we performed 1 ns NVT simulation for equilibration.
Then, we decided the system size by 1 ns NPT simulation at 1 atm. The system size
at the final step was 60.20° A3, and this size was used for the other systems described
below. After further equilibration (0.1 ns NVT), we conducted 10 ns NVT simulation
for production. The solution system for the D state contains an aspirin and 7200 water
molecules. The system was annealed from 548 K to 298 K during 0.1 ns NVT simulation,
followed by 0.1 ns NVT simulation for equilibration. Then, we conducted 10 ns NVT
simulation for production.

In the CD-guest systems, it is well known that there are two distinct bound complexes,
referred to as primary (P) and secondary (S) complexes. [236] In the P and S complexes,
the hydroxyl group of aspirin points towards the primary and secondary faces of CD,
respectively. We selected 25 different conformations from the trajectories in our previous
study for each complex. [88] Using these conformations, 25 initial configurations of the
solution system for the B state, each containing an aspirin, a CD, and 7200 water molecules
were constructed for each complex. For each initial configuration, we performed 0.1 ns
NVT simulation for equilibration while imposing the positional restraints on the heavy
atoms of the CD and aspirin with the force constant of 1 kcalmol™ A=2. Then, 0.1 ns
NVT equilibration was performed. Following this, we conducted 25 ns NVT production
run, and the final 20 ns trajectory was used for analysis. In the case of the reference
system, a CD and 7200 water molecules are involved. We prepared 25 initial configurations
for this system. Then, we equilibrated the system using 0.1 ns NVT simulation for each
configuration, followed by 25 ns NVT simulations for production. The last 20 ns trajectory
was used for analysis.

We also performed the Bennett acceptance ratio (BAR) [206] simulations for the D
and B states to compute AG° based on the double-annihilation scheme (DAS). In the
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case of the D state, the initial configuration was taken from the final snapshot after the
equilibration for the solution system. The BAR method combined with Hamiltonian
replica-exchange MD (BAR/H-REMD) [237] implemented in GENESIS [238, 239] was
performed with a simulation time of 100 ns. The setup of the intermediate states (24
states) was the same as that in our previous study on the membrane permeation. [240]
The last 40 ns trajectory for each state was used for the analysis. Regarding the B
state, we selected the 10 configurations of the solution system obtained after the 5 ns
production simulations for each bound complex. Then, we conducted the 150 ns BAR/H-
REMD simulation for each configuration. The last 30 ns trajectory for each state was
used for the analysis. The intermediate states were defined using the soft-core electrostatic
(elec) and van der Waals (vdW) interactions with the coupling parameters A, (1.000,
0.950, 0.900, 0.850, 0.800, 0.750, 0.700, 0.650, 0.600,0.550, 0.500, 0.450, 0.400, 0.350,
0.300, 0.250, 0.200, 0.150, 0.100, 0.050, and 0.000) and A 4w (1.000, 0.950, 0.900, 0.850,
0.800, 0.750, 0.700, 0.650, 0.600, 0.550, 0.500, 0.450, 0.400, 0.350, 0.325, 0.300, 0.275,
0.250, 0.225, 0.200, 0.175, 0.150, 0.140, 0.130, 0.120, 0.110, 0.100, 0.090, 0.080, 0.070,
0.060, 0.050, 0.040, 0.030, 0.020, 0.010, and 0.000). A, = 0 and 1 correspond to the
fully coupled and decoupled states for each interaction-energy component, respectively.
The total number of states is 57. For all the states, we imposed the HFB potential
(Eq. (4.33)) on the distance between the CoMs of CD and aspirin, d, with d, = 6 A and
k = 10 kealmol™" A=2 and on the attractive part of the LJ interaction [88] between CD
and aspirin, ., (Xga), defined as

2
k (uattr - ulower) U <

attr = Ulower
uattr —
UFB (uattr> - 0 Ulower < Uatty < uupper ’ (434)
k (uattr - uupper) Uty > uupper
The force constant, k, was set to 10 kcal™ mol, and (uyyer uupper) was set to

(—38.86, —9.35) for P and to (—37.71, —11.95) for S in units of kcal mol~. Note that
the values of (ulower,uupper) were determined from the lower and upper limits of u,,
observed in the solution systems.

Binding free-energy calculations

The scheme for computing AG° using the ER-based methods was almost parallel to
that used for the NMA systems (Sec. 4.3.2), and the same approach was applied for
Apg. Therefore, only the settings specific to the computation of Aud in the CD-aspirin
system are described here. In the simulations for the B state in the solution system,
we confirmed that aspirin maintained its initial bound pose throughout the simulations.
Thus, all the configurations generated in the solution system for the B state were used to
compute piﬁa (¢) for each bound pose. For the computation of p2; (¢) and AG:,,,, we
constructed the characteristic function for the B state, © (xpyq), in terms of the spatial
distribution function for the CoM of aspirin, g (r), and u,,,. We computed pif, . (€) using
the configurations obtained from the test-particle insertion of aspirin into the reference
trajectories that satisfy g(r) > 0 and Uy, < Unger (Xpg) < Unpper- (ulower,uupper) was
set to (—38.86, —9.35) for P and to (—37.71, —11.95) for S in units of kcal mol™. The

number of insertion for each configuration was 10000 for both piﬂ o (6) and AGY,,. As
noted in the last paragraph of Sec. 4.2.2, pifva () was constructed by discretizing the
energy coordinate . The bin width of discretization was 0.05 kcal mol™! in the relevant
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energy range. In the case of AG?,,, the structure of an isolated aspirin was inserted
to the spatial region containing CD, with the volume of 203 A. The error in Au]é was
estimated from the different trajectories for the solution system.

We also computed AG® using the BAR simulations. Let AGgygp and AGpag
represent the free-energy changes along the alchemical pathways in the BAR simulations
associated with the appearance of the interactions between aspirin and its surrounding

environments for the D and B states, respectively. Then, AG® can be expressed as
AG® = AGgpgr g — AGpar,p + AGBAR corrs (4.35)

where AGR R ooy 18 the standard-state correction. For the computation of AGpag g,

the snapshots satisfying e, < Upptr < Uyppers d < 6 A, and the primary/secondary
poses criteria for the aspirin’s orientation (Fig. S3 of the supplementary material) were
used for the fully coupled (Ao = Ayqw = 1) and intermediate states. As for the fully
decoupled state (Ao = Aygw = 1), the aspirin’s orientation was not used for the selecting
the snapshots. According to Eq. (4.15), the standard-state correction, AGEZaAR coprs 19
expressed as ’

/ dxq / dXy O (xpyg) e Ve
c’V:

1
AG%AR,COI‘I‘ - 77 log , (436)
b / dxgg / dX g e BVE
where
@EAR (XHG) — 1 Ulower S Uattr S uupper and d S 6 A ) (437)
0 otherwise

AGHAR o Was computed using the test-particle insertion of aspirin to the reference
trajectories. The number of insertion was 10000. The error in AGgyg p was estimated
by dividing the trajectory of each state into 8 blocks for averaging, and that in AGgug
was estimated from the different BAR simulation runs.

4.4 Results and discussion

4.4.1 Self-association of N-methylacetamide (NMA) in different
solvents

Energy distribution

We examine the energy distributions of the host NMA molecule in the solution <p§>1,H (€))
and reference (pr%f’H (€)) systems for the bound complex (Fig. 4.3). Note that one of the
NMA molecules is regarded as the host, while the other is considered guest. In acetone
(Fig. 4.3(a)), piyy (€) exhibits a broad peak at & ~—8.5 kcal mol™". As illustrated in
Fig. 4.2(a), the bound complex is stabilized by the hydrogen bond between the carbonyl
oxygen atom and the hydrogen atom in the secondary amine, and thus the electrostatic
interaction has a dominant contribution to pSBOLH (). We confirm that the average value of
the interaction energies between the two NMA molecules for the electrostatic component
is —6.284-0.01 kcal mol~!, which is significantly larger in magnitude than that for the van
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Fig. 4.3: Energy distributions of the host NMA molecule in (a) acetone, (b) 1,4-dioxane, and

(c) chloroform.
Table 4.2: Binding free energies for the NMA systems obtained through PMF, ER, and ER-

OR methods. The errors are provided at the standard error.

AG"® (kcalmol ™)
Solvent PMF ER ER-OR
Acetone 0.84+0.1 0.61 +0.02 0.60 4+ 0.02
1,4-dioxane 0.1+0.1 0.524+0.03 0.52+0.03
Chloroform —0.36 +0.07 0.04 +£0.03 0.03 +0.04

der Waals component, —1.049 4 0.006 kcal mol~!. It is found that the profile of pil’H (€)
is largely independent on the solvent species, meaning that the distribution of the bound-
complex structures is insensitive to the surrounding environments. Similar to pslil’H (e),
p?ef,H (¢) hardly changes its profile across the solvent species. Since the non-overlapping e-
region (ps'i)l’H () # 0 and pll?eﬁH () = 0) is sufficiently narrow in all the solvent systems, it

is expected that the “solvation free energy” in the bound complex, AMCB;, can be computed
using the ER method without introducing the OR state (Eq. (4.27)), as will be discussed
in the next subsection.

Binding free energy

In this subsection, we compare the values of the binding free energies, AG°, obtained from
the potentials of mean force (PMF) in an exact way with those from the ER and ER-OR
methods to verify the accuracy of the ER-based methods. The ER and ER-OR methods
yield virtually identical AG® values in all the solvents examined. Given that the energy
distributions in the solution and reference systems (pEOLH (¢) and pif’H (€)) overlap well,
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Fig. 4.4: Correlation plots of the binding free energies obtained from the ER-OR method,
AGHR oR» against those from the PMF, AGpyp. The error bars are not shown in the figure
because the standard errors are smaller than 0.1 kcal mol~! in all the solvent systems.

it is reasonable for the ER-based methods to yield the identical AG® values, regardless of
the introduction of the overlapped state. The values of AG® evaluated in this work are
listed in Table 4.2, and the correlation plots of the binding free energies obtained from the
ER-OR method, AGLi_og, against those from the PMF, AGpyp, are shown in Fig. 4.4.
The PMF method estimates that AG® decreases in the order of acetone > 1,4-dioxane >
chloroform. This ordering is consistent with the experimental findings that the binding
constant for the self-association of NMA increases as solvent polarity decreases. [228] It
is seen that the ER and ER-OR methods reproduce the AG® ordering predicted from the
PMF method. Furthermore, the deviation from the PMF method is within 0.5 kcal mol~!
in all the solvents. Since the NMA dimer has the shallow free-energy minimum in the
PMF, AG"® is sensitive to the variation in the bound-complex criteria (Fig. S2 of the
supplementary material). However, we confirm that both the ER and PMF methods
exhibit the similar behaviors against the variation, and the AG® ordering is not altered.

4.4.2 f-cyclodextrin (CD)-aspirin system
Structure and energy distribution of CD

We first assess the impact of binding on the structural population of CD. Fig. 4.5(a) il-
lustrates the distribution of the minimum distance between the cavity center of CD and
its carbon atoms, denoted as P(d). The cavity center is defined as the center of mass for
the ether oxygen atoms in CD. For the holo-forms of CD in complexes P and S, peaks in
P(d) at d = 4.5 A and 4 A, respectively, indicate open conformations where the internal
cavity of CD is accessible to the guest molecule. In addition to these open conformations,
the apo-form exhibits a sharp peak at d = 2 A, reflecting closed conformations where the
center of CD is occupied by its own atoms. In such conformations, one of the sugar rings
in CD rotates so that its plane is closer to the cavity center. The open and closed con-
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Fig. 4.5: Structural difference of CD between apo- and holo-forms, and energy distributions
of CD. (a) Minimum-distance distribution between the cavity center and carbon atoms in CD.
(b) and (c) Energy distributions of CD in the solution, pil,H (€), and in the reference system,
p?eﬂH (€), for complex P (b) and those for complex S (¢). The cavity center of CD is defined as
the center of mass for the ether oxygen atoms.

Table 4.3: Binding free energies for the CD-aspirin system obtained through BAR, ER, and
ER-OR methods. The errors are provided at the standard error.

AG° (keal molfl)

Bound complex BAR ER ER-OR
P —4.2402 —-3.1440.09 —-52+0.1
S —414+£02 —22401 —5.03+0.09

formations in the apo-form are also reported by Tang et al. [227] as well as by Harris et
al. [241] The localization of P(d) to the distribution corresponding to the open confor-
mations upon binding indicates that the structural fluctuations of CD are suppressed by
aspirin.

The energy distributions of CD in the solution (pSP:)LH (¢)) and reference systems
(pif’H (¢)) for P and those for S are shown in Fig. 4.5(b) and (c), respectively. The
peak of pEOLH (¢) is located at & ~—25 kcal mol™! for P and & ~—31.5 kcal mol™! for S.
Furthermore, the tail of pS)LH (¢) extends further into the negative region for S than for
P. This indicates that the direct interaction between aspirin and CD is stronger for S than
for P. In the case of the reference system, the difference in prBef’H (€) between P and S is
found to be negligibly small. The peak position of Pif,H (¢) is € ~—10 kcal mol™!, and
it is shifted in the positive direction from that of p2) i (¢) (=25 and —31.5 kcal mol™!
for P and S, respectively). As shown in the profiles of P(d) (Fig. 4.5(a)), the accessible
d-region in the holo-form (solution system) is fully covered by that in the apo-form (refer-
ence system). However, a wide non-overlapping region between pslil’H (e) and pr%va (€) is
present. This suggests the presence of a difference in the CD structure between the apo-
and holo-forms that is not captured by P(d) (Fig. 4.5(a)).
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Fig. 4.6: Binding free energy, AG, and the decomposition analysis based on the interaction
energy. (a) AG® evaluated through the BAR, ER, and ER-OR methods. (b) Decomposition of
AG" into the interaction-energy (AU) and other (AG,.) contributions using Eq. (4.38). In this
analysis, the values of AG° obtained from the ER-OR methods are used. (c) Decomposition of
AU into the interaction-energy components for each species a (e = H (CD) or V (water)). The
errors are provided at the standard error.

Binding free energy

We summarize the binding free energies, AG°, evaluated using the BAR, ER, and ER-OR
methods in Fig. 4.6(a) and Table 4.3. According to the results from the BAR method,
the thermodynamic stabilities of complexes P and S are nearly comparable to each other.
In the case of the ER method, the stability of P is predicted to be higher than that of S.
The values of AG® for S obtained from the ER method differ by more than 2 kcal mol~!
from those obtained using the BAR method. On the other hand, the ER-OR method
reproduces the result revealed by the BAR method that the values of AG® for P and S
are similar to each other. The improvement achieved by the ER-OR method indicates
that the introduction of the OR state into the ER method is beneficial for robust free-
energy calculations, when the non-overlapping e-region (ps'i)LH () # 0 and pF‘ef’H () =0)
is too broad and the interpolation/extrapolation scheme employed in the ER method does
not work properly. The most time-consuming part of the AG® calculation for both the
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ER-OR and BAR methods is the MD simulations for the B state.

The convergence of the computed AG® with respect to the simulation timescale is much
faster with the ER-OR method than with the BAR method (Fig. S4 of the supplementary
material). It is also found that sufficiently long equilibration (> 120 ns in this system)
is required to obtain the reliable estimates of AG® using the BAR method. According to
Table 4.1, the computational cost of these simulations required in the ER-OR method is
orders-of-magnitude lower than in BAR given that the error in ER-OR is smaller by a
factor of ~2. Introducing a sophisticated scheme of applying the restraint potentials in
the BAR simulation, such as the virtual bond algorithm (VBA), [211,212] could accelerate
the convergence while maintaining the robustness.

To clarify the driving force of the binding, we elucidate the importance of the in-
teraction energy between aspirin and the surrounding environments on AG°. According
to the endpoint DFT theory, one can decompose the solvation free energy of aspirin,
Apg (X =B or D) (Egs. (4.10) and (4.11)), into the ensemble average of the interaction
energy between aspirin and its surrounding environments in the solution system at state
X, UX, and the residual part, Ag,. Thus, AG® can be expressed from Eq. (4.14) as

res*

AG° = AU + AG,,, (4.38)

where
AU =UB —UP, (4.39)
AG. . = ApB, — Aul + AGS, .. (4.40)

Note that AG,., consists of the contribution from the pair free-energy components, the
many-body entropic contributions, and the standard-state correction. Fig. 4.6(b) shows
the decomposition of AG® using Eq. (4.38). In this analysis, the values of AG® obtained
from the ER-OR methods are used. In both bound complexes, it is found that the binding
is facilitated by AU and suppressed by AG,., and that the trend of |AU| > AG,, leads
to a negative AG°. The value of AU for S is decreased from that for P, but this decrease
is almost canceled out by the increase of AG,,, resulting in comparable stability of P
and S. Since the distribution of P(d) for S is sharper than that for P (Fig. 4.6(a)), the
entropic penalty due to the restriction of the CD structure in S may account for the larger
value of AG for S.

AU is decomposed into the van der Waals and electrostatic interaction-energy com-
ponents of aspirin with species a (« = H (CD) or V (water)), denoted as AU 4y ., and
AU,jec. o, Tespectively. The analysis based on this decomposition is presented in Fig. 4.6(c).
Regardless of the complex types, the attractive interaction between aspirin and CD, AUy,
primarily contributes to AU through the van der Waals component, AU, 4y . This ob-
servation is consistent with the well-known binding mechanism in which the CD cavity
provides a hydrophobic environment, enabling guest molecules to be captured through
the hydrophobic interactions with CD. [242] The contribution of the interaction energy
between aspirin and water, AUy, tends to inhibit binding, reflecting the dehydration
penalty. It is observed that both AU 4w v and AUy, v contribute almost equally to this
penalty.

4.5 Conclusion

In this study, we developed a methodology to compute the binding free energies based
on the energy representation (ER) theory. The ER theory enables us to calculate the
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free-energy difference between the two systems of interest, referred to as the solution and
reference systems. Unlike other free-energy methods, there is no need to conduct the MD
simulations for the intermediate states connecting the solution and reference systems,
leading to the reduction in the computational cost. In applications to the calculation of
the binding free energy for the host-guest systems (AG®), however, the applicability of the
ER theory was limited to the host molecules whose structures in the holo-form resemble
those in the apo-form. In the present method, this problematic structural difference was
identified through the distributions on the host-guest interaction energy (energy distribu-
tions) for the solution and reference systems. By introducing a solution state involving
the overlapped distributions with the reference (OR state), we achieved a robust bind-
ing free-energy calculation for such host molecules. The original method is referred to
as the ER method, while the present method is referred to as the ER-OR method. It is
noteworthy that, since this state is a subset of the target solution state, introducing the
additional state into the ER method brings no extra computational costs compared to
the ER method.

The present method (ER-OR) was first applied to the self-association of N-methylac-
etamide (NMA) in different solvents (acetone, 1,4-dioxane, and chloroform). It was found
that AG® decreases in the order of acetone > 1,4-dioxane > chloroform, which aligns with
the experimental observations. Since the energy distribution for the guest NMA in the so-
lution and in the reference system overlapped well, the AG° values evaluated through the
ER and ER-OR methods were virtually identical. The comparison of the obtained AG®
values with those from the exact method revealed that the differences in AG* between
the two methods were within 0.5 kcal mol~! in all the solvents.

The binding of aspirin to f-cyclodextrin (CD) in water was selected as the second
target. In this system, there are two distinct bound complexes, primary (P) and secondary
(S) complexes, and the CD structure in the holo-form is significantly different from that
in the apo-form. For the bound state, the energy distribution of CD for the solution
system was found to be not overlapped well with those for the reference system due to
the difference in the CD structures between the holo- and apo-forms. As a result, the
differences in AG® between the ER and ER-OR methods were larger than 1 kcal mol™!
for both P and S. The ER-OR method reproduced the result revealed by the BAR method
that the thermodynamic stabilities of P and S are similar to each other, indicating an
increase in reliability with the introduction of the OR state.

The present method works when both of the bound and unbound structures are pro-
vided. Still, it can be employed with any schemes of structure prediction. For instance,
AlphaFold 2/3 [243,244] is a choice for preparing a structure which is not known in
advance. The combination of the machine learning (ML)-based schemes of structure pre-
diction and an all-atom scheme for free-energy evaluation, such as the present method,
will be a promising direction.

Since the computational cost is lower in the present method compared to the other
free-energy calculation methods, its application to the complex host-guest binding systems
appears promising. For instance, peptide compounds that bind to their target exhibit the
high flexibility. [245] In the present method, the simulations are required only for the
endpoint (solution and reference) states, allowing for the incorporation of advanced sam-
pling techniques to treat such high flexibility, despite their high computational cost. On
the other hand, challenges still remain in the theoretical treatment of the host conforma-
tions. In the present method, we assumed the existence of an overlapped region in the
energy distributions between the solution and reference systems. However, such a region
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may be absent in proteins (hosts) that exhibit global conformational changes through the
induced-fit mechanism. [246] Introducing an additional state, in which the host molecule
has structures close to those at the bound state but does not bind the guest, into the
thermodynamic cycle for AG® might be useful for overcoming this challenge. We be-
lieve that the present method and its extensions would be beneficial for unveiling binding
mechanisms in various host-guest binding systems.
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Appendix C

Appendix of chapter 5

C.1

supplementary figures
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Fig. C.1: Protocols for computing binding free energy, AG®, through (a) energy-representation
(ER) and (b) ER incorporating a solution state with overlapped distributions with reference (ER~
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(¢) are the energy distributions for the bound (B), dissociate

(D), and OR states, respectively. xifﬁ (e,m) (X = B or D) is the two-body density-correlation
function, Py is the probability of finding the OR state in the B state, Aud (X = B or D) is

the solvation free energy of guest in the X state, and AG¢
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as the vector product of r; and ry. The angle between e, and rj is defined as 6, and the P and
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Chapter 5

(General Conclusion

The new molecular theory of solvation thermodynamics and kinetics are formulated based
on the theory of solutions and the nonequilibrium statistical mechanics. The following
findings have been obtained.

In Chapter 2, the new dynamics theory in the energy representation (ER) solution
theory is derived. The Zwanzig-Mori projection operator method and the ER solution
theory give the energy-represented generalized Langevin equation (ERGLE). In this equa-
tion, the molecular motions are expressed as the time-dependent distribution function
on the solute-solvent interaction energy (energy coordinate). Since its derivation does
not depend on any approximations, it will be the theoretical basis of the dynamic pro-
cess in functional molecular systems. Neglecting the inertial and memory effects yields
the energy-represented Smoluchowski-Vlasov (ERSV) equation and Smoluchowski (ERS)
equation. Although these equations need input functions, such as the energy-represented
diffusion coefficient, the free energy profile and the direct correlation function on the
energy coordinate, they are easily evaluated by MD simulations. The ERSV and ERS
equation have were applied to the solvation dynamics of water triggered by the photoex-
citation of benzonitrile. The time constant of the relaxation of the solvation structure
showed the validity of the new theory in the long-time region. The comparison of the re-
sults obtained by the ERSV equation and the ERS equation respectively indicated the
importance of the collective motion during the initial stage of the relaxation.

Chapter 3 has applied the new theory introduced in Chapter 2 to the solvation dy-
namics of Prodan in water and alcohol solvents (methanol, ethanol, and 1-propanol). It
is found that the populations of both the stabilized and destabilized molecules are higher
for water. Although the profiles of the energy-represented diffusion coefficient divided by
the translational diffusion coefficient of the solvent are almost the same for the alcohol
solvents, that of water is higher than that of alcohol solvents in the stabilized region. The
decomposition analysis has shown that the high diffusivity of water is due to the presence
of water molecules that are highly stabilized by the naphthalene moiety of Prodan. The
solvation time correlation functions (STCFs) and their time coefficients are calculated by
the ERSV equation. The time coefficients are well reproduced with the ERSV equation
in the long-time region, indicating the validity of the ERSV equation in this time region.
The time coefficients calculated by the ERSV equation are always smaller than those by
the ERS equation for all solvents. This result is consistent with that obtained in Chapter
2 and show that the collective motion tends to promote the relaxation of the solvation
structure.

In Chapter 4, the new framework of computing the binding free energy is formu-
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lated. First, the rigorous thermodynamic cycle for the binding free energy calculation
was introduced. In this cycle, the binding free energy is decomposed into three terms,
the conditional solvation free energy in the bound state, the solvation free energy in the
bulk, and the standard state correction term, and the former two terms can be calcu-
lated based on the ER theory. When the structure of the host molecule is changed by
the guest molecule, the overlap between the energy distribution functions in the solution
and reference systems is small, making it difficult to calculate the conditional solvation
free energy in the bound state. To avoid this difficulty, the intermediate solution state
which has the overlapped distribution with the reference (OR state) is introduced. This
intermediate state allows the more robust protocol (ER-OR) for the conditional solva-
tion free energy in the bound state. The new method was applied to the self-association,
or dimerization of N-methylacetamide (NMA) in different solvents (acetone, 1,4-dioxane,
and chloroform). Since the energy distribution of the solution system has enough over-
lapped region with that of the reference systems, the values of the binding free energy
were almost identical with and without the OR method. Their deviations from those by
the rigorous method were within 0.5 kcal mol~! for all solvents. The binding free energy
of aspirin to f-cyclodextrin (CD) in water was the next target. In this system the struc-
ture of CD is affected by aspirin molecule, leading to the poor overlap between the energy
distributions of the solution and the reference systems. The values of the binding free en-
ergy differed by more than 1 kcal mol~!, and those obtained from the ER-OR method
were much closer to those from the rigorous method, showing the robustness of the new
method.

Finally, we will show the summary of this dissertation. The new theoretical frameworks
based on the concept of solvation were formulated through the theory of solutions and
the nonequilibrium statistical mechanics. Chapter 2 and 3 introduced the new diffusion
equation theory on the energy coordinate. It can describe the long-timescale dynamics,
and the systematic analyses based on it were shown. In Chapter 4, the new scheme
of calculating the binding free energy using the endpoints density-functional theory was
derived. The new scheme was shown to be robust and to produce results consistent with
the rigorous method. We believe that these theoretical frameworks developed in this
work will deepen our understanding of the thermodynamics and the kinetics in solution
systems.
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