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Abstract
The dynamics of polymers are governed by the chain structure, such as chain length, stiff-

ness, and topology. Although “entanglements” is a key concept for understanding the dynamics

of polymer melts, their pictures are much different between linear and ring polymers. Therefore,

“topological constraints” are used as a more general expression for the entanglements in polymers

independent of the chain topology. Interestingly, “topological glasses” are expected to be formed

in ring polymer melts with sufficiently long chain length at the temperature well above the glass

transition temperature Tg. It should be noted that the chain stiffness will increase the topological

constraints in polymers. In this study, we focus on the glassiness of polymers and investigate the

effects of chain stiffness on the glassiness both in linear and ring polymers.

Chapter 1 provides the general introduction of the glassiness of polymers and the topological

effect on entanglements.

In Chapter 2, we characterized the effects of chain stiffness on the glassiness of linear polymer

glasses using molecular dynamics simulations. Amorphous materials exhibit peculiar mechanical

and vibrational properties, including non-affine elastic responses and excess vibrational states, i.e.,

the so-called boson peak. For polymer glasses, these properties are considered to be affected by

the stiffness of the constituent polymer chains. Here, we demonstrate the insensitivity of elastic

heterogeneity by directly measuring the local shear modulus distribution. We conclude that the

chain stiffness does not alter the spatial heterogeneity of the local shear modulus distribution, which

yields vibrational and acoustic properties that are controlled solely by the global shear modulus of

a polymer glass.

In Chapter 3, we investigate the effect of chain topology on the dynamics of polymer melts with

varying chain length. Thus, Rouse mode analysis is performed and compared between ring and

linear polymers. Rouse-like behavior is observed in ring polymers by quantifying the chain length

dependence of the Rouse relaxation time, whereas a crossover from Rouse to reptation behavior is

observed in linear polymers. Furthermore, the non-Gaussian parameters of the monomer bead dis-

placement and chain center-of-mass displacement are analyzed. It is found that the non-Gaussianity
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of ring polymers is remarkably suppressed with slight growth for the center-of-mass dynamics at

long chain length, which is in contrast to the growth in linear polymers both for the monomer bead

and center-of-mass dynamics.

In Chapter 4, we investigate the effect of chain stiffness and monomer density on static and

dynamic behaviors of ring polymer solutions. We introduce a bond-breaking method to analyze the

local structure and its relaxation, which characterize the relationship between the monomer density

dependence of the radius of gyration and the rearrangement of center-of-mass in ring polymers

with varying stiffness. Our results demonstrate that the dynamic heterogeneity of rearrangements

is coupled with the non-Gaussianity in ring polymer melts, highlighting the importance of bond-

breaking method in determining the inter-molecular dynamics of ring polymer melts.

In Chapter 5, we used persistent homology to quantify threading structures of ring polymers

and elucidate mechanisms behind topological glasses. Using coordination data from coarse-grained

molecular dynamics simulations, we analyzed the topology of the union of virtual spheres centered

on each monomer or center of mass. As the radius of each sphere increases, the corresponding

points connect, giving rise to topological entities such as edges, loops, and facets. We then analyzed

how the number of loops per ring chain and penetrated loops varies with sphere radius, focusing

on the effects of chain stiffness and density. The results reveal that loops are larger in stiff ring

chains, whereas flexible ring chains do not generate sufficiently large loops to establish a threading

structure. The stiffness of ring polymer plays a significant role in the formation of topological

glasses in ring polymers.

The general conclusions are presented in Chapter 6.
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Chapter 1

General Introduction

1.1 Topological constraints in polymers

Polymers are ubiquitous in nature and play a significant role in our daily lives, being essential

for the production of plastics, fibers, and rubbers. The physical properties, such as the diffusion

coefficient and elastic viscosity of polymers, are not only crucial for industrial applications but also

play a vital role in biological systems.

The dynamics of polymers are governed by topological constraints (TCs), because of which

the viscosity and relaxation time increase drastically with increasing degree of polymerization.

Linear polymers in dilute solutions or melts can be described as having conformations of random

walks, so-called Gaussian chain. The dynamics of linear polymers are well described by Rouse

and Zimm models in dilute solutions and the reptation model in melts [1, 2]. In reptation model,

linear polymer chains are confined in tube-like regions by surrounding chains, and the relaxation

time is determined by the time required for a Rouse chain to escape from the tube as shown in

Fig. 1.1. Recently, another type of topological constraints in polymer has been proposed, namely,

ring polymer melts without chain ends [3–7]. Despite extensive research, a thorough understanding

of TCs in ring polymer melts remains a significant challenge in polymer physics [8–32] .
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Figure 1.1: A conceptual sketch of entanglement in linear polymers. The reptation model describes
the dynamics of linear polymers in melts as that the chain highlighted in red is confined in tube-like
regions along its contour formed by surrounding chains (gray).

1.2 Polymers in solutions or melts

The static properties of polymers in solutions or melts are often characterized by the Flory exponent

ν, which describes the scaling relationship between the radius of gyration Rg and the degree of

polymerization N: Rg ∝ Nν. The conformations of linear polymers in dilute solutions are well

described with self-avoiding walks, which have the Flory exponent ν ≈ 0.588 in three dimensions.

In melts, the excluded volume interactions between surrounding chains are screened out, resulting

in the Flory exponent ν = 0.5. In dilute solution of good solvent, ring polymers behave similarly

to linear polymers to take extended conformations compared to Gaussian chain, which have the

Flory exponent ν = 0.588. This is concluded both from the theories [33–40] and experiments [41,

42]. It should be noted that nonphantom ring polymers, even in the absence of excluded-volume

interactions, adopt swollen conformations when isolated. This finding suggests that TCs, which

prevent rings from becoming knotted or concatenated, effectively generate a repulsive interaction

between their segments.

In melts, while ring polymers are approximately described as the Gaussian chains at short chain

length N, TCs become more significant and complex as the chain length N increases. The lattice

animal model is often used to describe the ring polymer in solutions or gels [43,44]. Fig. 1.2 shows

5



Figure 1.2: A tree-like lattice animal in two dimensions corresponding to a ring polymer in a
regularly fixed obstacles.

a schematic of the lattice animal in two dimensions. The ring polymer, due to TCs such as non-

crossing conditions, can enclose none of the obstacles, leading to double-folded conformations.

This model concludes that the Flory exponent ν = 1/3 for long ring polymers [43,45,46]. Grosberg

et. al. also proposed the same value of ν = 1/3 from the hypothesis that the equilibrium confor-

mations of ring polymers are the so-called crumpled globule, which each subchain is internally

condensed, resulting in a polymer backbone that exhibits self-similarity with a fractal dimension of

3 [47]. Cates and Deutch proposed a conjecture on the scaling exponent ν = 2/5 for ring polymers

in melts based on the Flory-type mean field theory [3]. This value is the intermediate between the

collapsed conformations (ν = 1/3) and the Gaussian chain (ν = 1/2).

While many theoretical predictions including those not shown above have been suggested for

ring polymer melts [35, 37–40, 48], the Flory exponent is reported as ν ∼ 0.36 by recent molecu-

lar dynamics (MD) simulations with the range of N ≲ 5000 [29, 49], which is consistent with the

experimental results [22]. There are predictions, however, that the Flory exponent ν is expected to

be 1/3 at the large chain length N, which even the static behavior of ring polymers has not been

established yet. Halverson et. al. reported the both dynamic and static properties of ring polymer

melts with the range of 100 ≤ N ≤ 1600 using MD simulations [10,11]. They found that ring poly-

6



mers diffuse approximately 10 times faster than linear polymers with the same chain length N and

the power law exponent of the diffusion coefficient D of center of mass as a function of N is about

−2.4 at long chain length N, which seems consistent with linear polymers in melts. Furthermore,

the stress relaxation time of ring polymers does not show the plateau at the intermediate time scale

even at the longest chain length N = 1600. These results, while the authors maintain that further in-

vestigation is required, suggest a decoupling between the translational motion and stress relaxation

for the rings, which is probably due to the crumpled globule conformations.

The lattice animal model can also predict the dynamics of ring polymers in a gel [4, 50].

The main idea of this model is that the smaller loops diffuse along larger loops in a self-similar

way. It predicts that the longest relaxation time of a non-concatenated ring polymer with N Kuhn

monomers is proportional to N5/2 and the diffusion coefficient is proportional to N−2. Ge et. al.

developed the theory based on concepts of self-similar conformations and dynamics of ring poly-

mers in melts [17]. They found that the longest relaxation time as a function of N is proportional

to N7/3 and the diffusion coefficient is proportional to N−5/3, which is resulted from the compact

conformations with fractal dimension of 3, so-called a fractal loopy globule, and the conjecture

that the overlap parameter of subsections of rings on all length scales is the same and equal to the

Kavassalis–Noolandi number OKN ≈ 10−20 [51–53].

There are several approaches to describe the dynamics of ring polymers in melts based on

the analogy with soft-colloidal systems. Sakaue introduced the topological volume fraction to

characterize TCs by the competition between inter-ring non-concatenation constraints and the intra-

ring constraints involved with self-knotting [48,54,55]. It is predicted that the cross-over from the

Gaussian chains ν = 1/2 to the crumpled globule ν = 1/3 and the flory exponent ν = 2/5 in the

intermediate regimes. Furthermore, the scaling factor of the diffusion coefficient and relaxation

time are found, which are in good agreement with the simulation results. Mei et. al. construct a

microscopic theory for the long-time center-of-mass diffusion constant and intermediate-time non-

Fickian transport in dense solutions and melts of ring polymers [20, 20, 23] , based on the polymer

reference interaction site model theory [56] and mode-coupling theory [57–59].
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1/T
1/Tg

Figure 1.3: Sketch of the non-Arrhenius temperature dependence of the α-relaxation time τα as
function of the inverse temperature 1/T .

1.3 Polymer glasses

Polymer glasses are also an important subject in polymer physics [60]. When the temperature of

a liquid is continuously lowered while avoiding crystallization, it undergoes a glass transition via

a supercooled state. Unlike crystalline solids, glasses posseses a disordered microscopic structures

similar to that of liquids. As the temperature approches Tg, the dynamics of supercooled liquids

slow down drastically, as illustrated by the tempareture dependence of the α-relaxation time τα in

Fig. 1.3. This behavior is one of the great mysteries of the glass transition and is characterized by

the non-Arrhenius temperature dependence that is well fit by empirical Vogel–Fulcher–Tammann

(VFT) equation:

τα = τ0 exp
(

A
T −T0

)
, (1.1)

where τ0,A and T0 are the fitting parameters that depend on the material. The temperature T0 at

which the divergence occurs is called the Vogel temperature and typically located 30 – 50 K below

Tg.

Interestingly, despite their long-chain molecular structure, polymer glasses exhibit properties

similar to those of small-molecule glasses, including a non-Arrhenius temperature dependence

of the α-relaxation time. This is notable given that microscopic structural features are known

to play a crucial role in dynamics above Tg. This universality observed across different glass-
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forming liquids, including polymers, can be attributed to the packing effect associated with the glass

transition occurring at the segmental level in polymers. Thus, the glass transition temperature Tg is

independent of the chain length N or its topology such as whether it is linear or ring. However, the

chain stiffness, which dependes on the chemical species of monomers, influences thermodynamic

properties such as the glass transition temperature Tg and the specific heat.

1.4 Vibrational density of states

The vibrational density of states (vDOS) g(ω) is the density of vibrational modes of atoms in a

solid as a function of frequency ω. Debye model describes the lattice vibrations as phonons and

analysically computes the vDOS g(ω) as

g(ω) =
V

2π2

 2
c3

T

+
1
c3

L

3

ω2, (1.2)

in three dimensions, where V is the volume of the system and cT and cL are the transverse and

longitudinal sound velocities, respectively [61]. If the number of particles is N, the vDOS g(ω)

can be normalized as
∫ ωD

0 g(ω)dω = 3N, where ωD is the Debye frequency that is the maximum

frequency of the phonon modes. Thus, the normalized vDOS g(ω)/3N can be written as

g(ω)
3N
= ADω

2, (1.3)

where AD = 3/ω3
D is the Debye lebel. Noting that phonons are bosons, integration of the vDOS

g(ω) over the frequency ω yields the internal energy U and the specific heat Cv, which are pro-

portional to T 4 and T 3, respectively. In glasses, however, there is an excess vibrational modes at

low frequency, which is called the Boson peak (BP), and the anomalous thermodynamic behavior

at low temperature are related to this BP.
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Polymers 2017, 9, 349 2 of 21

type II topoisomerases, that bind and cut regions of circular double-stranded (ds) DNA to simplify the
topological self-entanglements (knots) or mutual entanglement (catenanes) that may develop, for instance,
during DNA replication. A striking example of topological mutual entanglement is instead observed in
the DNA kinetoplast where thousands of interlinked DNA minicircles form a spanning network filling
the mithocondria whose topology during replication is again controlled by topoisomerases.

There are however situations in which the notion of entanglement is not directly related to a
well defined topological state, such as a knot or a link, but is still extremely relevant in affecting the
physical properties of the system. Architecture-specific entanglements, dubbed “threadings”, have
been recently shown to proliferate in dense solutions of unlinked and unknotted ring polymers and
in the case of dilute rings in disordered environments (see Figure 1). Even more importantly, these
threadings have been shown to entail notable consequences on the rings’ dynamics. For these reasons,
the definition, identification and quantification of these dynamical effects is the focus of the present
topical review.

Figure 1. Examples of entanglement, or topological interactions between ring polymers (A) or ring
polymers and environment (B), which cannot be captured by a simple topological invariant, and provide
the focus of the current review. Linear (or topologically trivial) polymers, do not experience the same
constraints in their motion as ring polymers do in these situations. In (A) we report a possible
configuration where multiple threadings (inter-penetration) strongly affect the diffusive motion of the
central black ring. In (B) we report a snapshot from Molecular Dynamics simulations of charged ring
polymers (gold) dragged upwards by an external electric field and “impaled” by the dangling ends of
a gel (grey), adapted from Reference [9].

The first example is one of mutual threading in a concentrated solution, or melt, of ring polymers
(see Figure 1A). The threadings (see Section 2 for a more formal definition) in the configuration shown
in the Figure are hierarchical, and are numbered from the innermost to the outermost. For instance,
the black ring in the centre is threaded by three other rings (threadings numbered as “1” in the
Figure). The concept of threading is directional, for instance the black ring is (passively) threaded by
three rings, whereas the purple ring (actively) threads the yellow ring. Since rings cannot cross one
another (or self-cross), there is no knot or link at any time in the system, so the global topology will be
described as trivial by using standard topological invariants (such as, e.g., knot or link polynomials).
However, it is intuitive that the threadings will affect the physical properties of the system. For instance,
the mobility of the black ring is severely affected: before it can move away diffusively, all its three
passive threadings need to be resolved (and resolving complex threadings such as that with the blue
ring will likely take a long time). In other words, the threadings act as effective topological constraints
that strongly affect the dynamics of the system.

Imagine now cutting each of the strings in Figure 1A, so as to create a melt of linear (rather than
ring) polymers. The resolution of entanglements can now be faster, as linear polymers can slide past
each other and will not (or barely) be hindered by the threadings. Indeed, the dynamics of linear

Figure 1.4: A schematic of threading network in ring polymers cited from Ref. [67].

1.5 Topological glasses

Interpenetration of ring polymers, so-called threading, is naively expected to play a crucial role in

the dynamics of ring polymers in melts analogous to entanglement in linear polymers. Threading

occurs when one ring polymer penetrates the loop of another ring polymer, with the penetrating

ring classified as active and the penetrated ring as passive, illustrating the asymmetric and hierar-

chical nature of the threading network as shown in Fig. 1.4. It has been challenging to quantify

and characterize the threading in concentrated solutions of ring polymers especially theoretically,

because the topological invariants such as linking number or writhe are not applicable to threading

which is not permanent. The several methods quantifying threading have been proposed based on

minimal surface [62, 63], geometric analysis [64, 65], and persistent homology [66]. However, the

relationship between threading and the dynamics in dense solutions of ring polymers still remains

unclear.

Michieletto and Turner reported the glass-like dynamics in ring polymer solutions [68, 69].

They performed pinning MD simulations of ring polymers adopting a slightly sttiffer polymer chain

model than the that of Halverson [10, 11] to compute effectively long chain length N. While this

model shows the same behavior of the Flory exponent ν ≈ 1/3 as Halverson’s results, ring polymers

10
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background gel. To begin with, we report results from molecular dynamics simulations [24] for the
case in which all the ring polymers are pinned (i.e., permanently immobile), apart from one, which
is left free to move. In addition, to identify more clearly the role of topology, we compare the results
with the case of a single linear chain diffusing through a frozen background of pinned linear polymers.
For reference, we also consider the cases of a “standard” molecular dynamics simulation, where all
polymers are mobile—again, considering the cases of rings and linear chains separately.

In each of these cases we analyse the behaviour of the mean square displacement of the centre of
mass of the mobile polymers as a function of the lag-time t,

g3(t) = h|rCM(t0) � rCM(t0 + t)|2i , (4)

where rCM(t) is the position of the centre of mass t time t and h . . . i denotes time and ensemble average.
The curves obtained for the four cases (linear and rings, where all but one polymers are frozen, or

where they are all mobile) can be compared and contrasted in Figure 7. The case of a free linear polymer
probe within a system of pinned linear chains (open green circles) shows that, at long times, the diffusion
coefficient is similar to that observed in the “standard” linear case (where all polymers can move, solid
green line in Figure 7). Therefore, the dynamics is not affected by the pinned background in the long
time limit (the initial slowdown in the curve is caused by the infinitely slow relaxation of the nearest
neighbours and therefore of the initial “tube” [53] due to the pinning). In marked contrast with this
behaviour, the diffusion of a single probe ring in a background of frozen rings is heavily suppressed
(g3 ⇠ t0, open red squares in Figure 7), so that pinning now has an enormous effect on the dynamics.

No	pinning

With	pinning

Figure 7. Comparison between the mean square displacements of the centre of mass of the mobile
polymers in four cases. Open green circles: A mobile linear chain in a background of pinned (frozen)
linear chains. Open red squares: A mobile ring polymer in a background of pinned (frozen) ring
polymers. Green curve is for a melt of linear polymers while red line for a melt of ring polymers .
Insets sketch melts of linear (top row) and ring (bottom row) polymers. All systems have the same
monomer density r = 0.1s�3, and include N = 50 polymers, each of length M = 256 beads.

These findings clearly indicate that the closed topology of the rings and their architecture-specific
topological constraints (i.e., inter-ring threadings) dramatically affect their dynamics in solutions
perturbed by random pinning. We now ask whether similar effects can be seen in the limit of no pinned
ring, i.e., in unperturbed solutions. To address this question we report results from Reference [31],
which studied the response of systems of rings to random pinning perturbations which explicitly freeze
only a fraction c of rings. Eventually, we will be therefore interested in the limit c ! 0. As mentioned
before, while this strategy has been inspired by recent works on the study of the glass transition in
colloidal systems subject to random pinning [56,58–64], it has never been employed, to our knowledge,
to directly study the dynamical behaviour of systems of polymers.

Figure 1.5: Plots of the mean square displacements of the center of mass for linear and ring poly-
mers. Open green circles: A mobile linear chain in a background of pinned (frozen) linear chains.
Open red squares: A mobile ring polymer in a background of pinned (frozen) ring polymers. Green
curve is for a melt of linear polymers while red line for a melt of ring polymers . Insets sketch melts
of linear (top row) and ring (bottom row) polymers. This figure is cited from Ref. [67].

exhibit the expanded conformations and large value of the radius of gyration Rg. The pinning MD is

often used to investigate the glass-forming liquids, preventing the collective motion of particles to

enhance the packing effect. Fig. 1.5 shows the mean squared displacement (MSD) of the center of

mass both for ring and linear polymers with or without pinning. The diffusion in ring polymers are

frozen above the critical pinning fraction, although linear polymers can diffuse even if all polymers

are pinned except for one. Furthermore, the critical chain length N required to achieve a glassy

state without pinning has been estimated to be N ∼ 3500. This indicates that the TCs between ring

and linear polymers are significantly different, and the exist of the glassy state is expected in ring

polymers at the long chain length N at the temperature well above the glass transition temperature

Tg. Below the glass transition temperature Tg, the particles are too tightly packed to diffuse. In

contrast, in this glass-like state obtained by pinning MD, the particles are not packed but the centers

of mass of polymer chains are constrained by the TCs, or threading. Thus, the glassy state is called

the “topological glass (TG)”. Although lots of studies on ring polymers have been reported, the TG

has not yet been observed either experimentally and computationally in equilibrium systems.
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1.6 Organization of this dissertation

In this study, we performed (MD) simulations of polymer glasses, melts and solutions both for

linear and ring polymers by utilizing the Kremer–Grest model. The aim of this study is to elucidate

the effects of chain stiffness on the glassiness of polymers and the origin of the TG through cap-

turing the glassy dynamics. Chpater 2 reveals the relationship between the vibrational density of

states (vDOS) and the chain stiffness in linear polymer. In Chapter 3, we examine TCs differences

with and without chain ends in polymer melts by analyzing the Rouse modes and non-Gaussian

parameter (NGP). We found that the both Rouse modes and NGP can characterize the TCs and

flexble ring chains show the Gaussian distribution of the displacement. Chapter 4 focuses on the

effect of chain stiffness on the rearrengement of center of mass (COM) in ring polymer melts and

solutions. By analyzing the bond-breakage dynamics, which quantifies the rearrangement of COM

as the virtual bond between two COMs is broken, it is revealed that the chain stiffness causes the

glassy dynamics. Furthermore, the density dependence of the mean squared radius of gyration was

also investigated. The glassy heterogeneous dynamics and the radius of gyration are found to be

correlated. In Chapter 5, we utilize the persistent homology (PH) to quantify the threading struc-

tures in ring polymers. The PH identified the asymmetry between active and passive threading. It is

possibly to clarify the asymmetry is contributed to dynamic heterogeneity in ring polymers. Thus,

developments of threading networks are expected to result in the formation of TG.
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Chapter 2

Understanding the scaling of boson peak through

insensitivity of elastic heterogeneity to bending

rigidity in polymer glasses

2.1 Introduction

Amorphous materials exhibit anomalous mechanical and vibrational properties that have been stud-

ied for many years by experimental, numerically, and theoretical methods. The vibrational and

acoustical properties of such materials have been investigated in many experiments using neutron,

light, and X-ray scattering, e.g., Refs. [70–78]. Using these methods, anomalies in vibrational and

acoustic excitations have been detected, including excess vibrational states, the so-called boson

peak (BP), and strong damping of sound wave propagation.

To explain these anomalous properties, the heterogeneous elasticity theory was proposed and

developed by Schirmacher and co-workers [79–82] (see also Refs. [83, 84] for the theory in the

context of the jamming transition and Refs. [85–87] for very recent developments). It is now well-

established that amorphous materials exhibit spatial heterogeneity in their local elastic modulus

distributions, as supported by numerical simulations [88–90] and experiments [91, 92]. In the the-

ory, elastic moduli heterogeneities are critical in describing anomalies in the vibrational, acoustic,

and thermal properties. The theory notably predicts that the BP and the attenuation rate of sound

are more significant when moduli distributions are more heterogeneous. This prediction has been
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tested and justified by numerical simulations [93–99].

Anomalous behaviours in polymer glasses have also been reported through both experiments [100–

106] and numerical simulations [107–112]. In polymer glasses, the bending rigidity of the con-

stituent polymer chains is an important parameter. In our recent work [113], we studied the effects

of the bending rigidity on the global elastic moduli (shear modulus G and bulk modulus K) and the

vibrational density of states (vDOS) g(ω) using coarse-grained molecular dynamics (MD) simula-

tions. We demonstrated that the variation of the BP simply follows that of global shear modulus

G through the Debye frequency ωD. If this simple scaling behaviour is considered in terms of the

heterogeneous elasticity theory, we obtain an important implication that the spatial heterogeneity

in local modulus distributions is insensitive to changes in the bending rigidity.

In this study, we examine this correlation by directly measuring the degree of elastic hetero-

geneity with changes in the bending rigidity. We also study transverse acoustic excitations in the

polymer glasses by calculating the dynamic structure factor and examine the connection among the

sound velocity, attenuation rate, and the simple scaling behaviour of the BP. Thus, we comprehen-

sively discuss that the effects of bending rigidity in polymer glasses on vibrational and acoustic

excitations from the perspective of elastic heterogeneities.

The remainder of this paper is organized as follows. Section 2.2 describes the MD simulation

details used to characterise the elastic heterogeneity and the acoustic excitation. In Section 2.3, the

numerical results and discussions are presented. Finally, our conclusions are drawn in Section 2.4.

2.2 Simulation method

2.2.1 Simulation model

We performed MD simulations using the Kremer–Grest model [114], which is a coarse-grained

bead-spring model of the polymer chain. Each polymer chain comprises L monomer beads of mass

m and diameter σ. We studied the case of 200 chains of L = 50, such that the system contained

N = 200×50 = 10000 monomer beads in total, in a three-dimensional cubic box of volume V under
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periodic boundary conditions.

In the Kremer–Grest model, three types of inter-particle potentials are utilised. First, the

Lennard-Jones (LJ) potential

ULJ(r) = 4εLJ

[(
σ

r

)12
−

(
σ

r

)6
]
, (2.1)

acts between all pairs of monomer beads, where r and εLJ denote the distance between two monomers

and the energy scale of the LJ potential, respectively. The LJ potential is truncated at the cut-off

distance of rc = 2.5σ, where the potential and the force (the first derivative of the potential) are

shifted to zero continuously [115].

Second, sequential monomer beads along the polymer chain are connected by a finitely exten-

sible nonlinear elastic (FENE) potential:

UFENE(r) =


−
εFENE

2
R2

0 ln

1− (
r

R0

)2 (r ≤ R0),

∞ (r > R0),

(2.2)

where εFENE is the energy scale of the FENE potential, and R0 is the maximum length of the FENE

bond. Following Ref. [111], we employ the values of εFENE = 30εLJ and R0 = 1.5σ.

Finally, the bending angle θ formed by three consecutive monomer beads along the polymer

chain is controlled by

Ubend(θ) = εbend [1− cos(θ− θ0)] , (2.3)

where εbend is the associated bending energy. We set the stabilised angle as θ0 = 109.5◦ [111].

In the present work, we utilise a wide range of εbend values: εbend/εLJ = 10−1, 1, 3, 10, 30, 102,

3×102, 103, and 3×103.

We performed the MD simulations using the Large-scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS) [116]. Hereafter, the length, energy, and time are measured in units of σ,

εLJ, and σ(m/εLJ)1/2, respectively. The temperature is presented in units of εLJ/kB, where kB is the

Boltzmann constant. We first equilibrated the polymer melt system at a temperature T = 1.0 and
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polymer bead number density ρ̂ = N/V = 0.85. We then cooled the system down towards T = 0.05

with a constant cooling rate of dT/dt = 10−4, under a fixed pressure of p = 0. Finally, the inherent

structure at T = 0 is generated using the steepest descent method. In our recent work [113], we

reported the dependence of the glass transition temperature Tg and the number density ρ̂ at zero

temperature on εbend.

2.2.2 Vibrational density of state and boson peak

The vDOS analysis was performed for the configuration at T = 0, which corresponds to the inherent

structure. By diagonalizing the Hessian matrix, we obtained the eigenvalues λk (k = 1, 2, · · · , 3N),

which provide the eigenfrequencies as ωk =
√
λk. The vDOS is defined as

g(ω) =
1

3N −3

3N−3∑
k=1

δ(ω−ωk), (2.4)

where three zero-frequency modes are omitted. The expression of the Hessian matrix of the poly-

meric system was given in Ref. [113]. The Debye law predicts the vDOS as gD(ω) = ω2AD, where

AD = 3/ωD
3 is the Debye level using the Debye frequency ωD = 18π2ρ/(2cT

−3 + cL
−3)1/3. Here,

the transverse and longitudinal sound velocities, cT and cL, are given by the bulk modulus K, shear

modulus G, and the mass density ρ = mρ̂ as cT =
√

G/ρ and cL =
√

(K +4G/3)/ρ, respectively.

The reduced vDOS g(ω)/ω2 thus characterises the excess vibrational modes exceeding the Debye

prediction, i.e., the BP.

2.2.3 Global and local shear modulus

The global shear modulus G and bulk modulus K were evaluated from the stress-tensor response

to the shear and volume deformations in the “quasi-static” way, respectively, applied to the inher-

ent structure. For perfect crystalline solids, the mechanical equilibrium is maintained during affine

deformation. However, the force balance is generally broken down for amorphous solids under

applied affine deformations. Thus, further energy minimization causes additional non-affine defor-
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mation (relaxation) towards mechanical equilibrium. In other words, G and K are decomposed into

G =GA−GNA and K = KA−KNA. Here, MA and MNA denote the affine and non-affine components

of elastic moduli, with M = G and K, respectively. Our recent work [113] also reported the εbend

dependence of G and K. In particular, we demonstrated that the bulk modulus K is much larger

than the shear modulus G, and thus the shear modulus has important effects on the low-frequency

vibrational properties of the polymeric system.

In this study, we further study the local shear modulus. Specifically, we measure the spatial

distribution of the local shear modulus Gm, by using the numerical procedure of “affine strain

approach”, given in Ref. [90]. Note that the analysis completely neglects anharmonic effects and

provide zero-temperature limit values of elastic heterogeneities. Briefly, we divided the system into

7×7×7 cubic cells and monitored the local shear stress as a function of the applied shear strain in

each local cell. The linear dimension of the cell is approximately W ≈ 3σ. Here, the local strain

of the small cell is assumed to be given by the global strain applied to the system. The local shear

modulus Gm of cell m was measured as the slope of the local shear stress versus the shear strain.

The expression of the local modulus was also given in Ref. [90]. Finally, we collected the Gm values

for all the cells to calculate the probability distribution of the local shear modulus P(Gm). Remark

that the average and standard deviation of the local shear modulus distribution is insensitive to the

cell size W [90].

As in the LJ glass [88, 90], we found that P(Gm) is well fitted to the Gaussian

P(Gm) =
1

√
2πδGm

exp
{[
−

(Gm−G)2

2δGm
2

]}
, (2.5)

where the relative standard deviation δGm/G provides a measure of the spatial heterogeneity in the

local shear modulus distribution.
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2.2.4 Transverse acoustic excitation

The transverse acoustic excitation can be characterised by the (transverse) dynamic structure factor

as a function of the wave vector qqq and frequency ω [93, 96, 117, 118]:

S T(q,ω) =
( q
ω

)2 1
2π

∫
1
N
⟨ jjjT(qqq, t) · jjj∗T(qqq,0)⟩exp(iωt)dt, (2.6)

where q = |qqq|, ‘∗’ indicates complex conjugation, and ⟨· · · ⟩ denotes the ensemble average over the

initial time and angular components of qqq. Here, the transverse current is expressed by:

jjjT(qqq, t) =
N∑

i=1

[vvvi(t)− (vvvi(t) · q̂qq)q̂qq]exp
[
iqqq · rrri(t)

]
, (2.7)

where q̂qq = qqq/q, and rrri and vvvi(= drrri/dt) represent the position and velocity, respectively, of the

monomer bead i. In general, the dynamic structure factor S (q,ω) exhibits two kinds of peaks: the

Rayleigh (elastic) peak and the Brillouin (inelastic) peak. The Rayleigh peak is located at ω→ 0

and is related to the thermal diffusion, while the Brillouin peak is related to the (transverse) sound-

wave propagation.

The Brillouin peak in S T(q,ω) can be fitted by the damped harmonic oscillator function [93,96,

117, 118],

S T(q,ω) ∝
ΓT(q)Ω2

T(q)

[ω2−Ω2
T(q)]2+ω2Γ2

T(q)
, (2.8)

which provides information about the propagation frequency ΩT(q) and the attenuation rate ΓT(q)

as functions of the wave number q. The sound velocity is then given by cT(q) = ΩT(q)/q. Note that

the sound velocity cT(q) converges to the macroscopic value cT =
√

G/ρ in the long-wavelength

limit of q→ 0. We numerically calculated the dynamic structure factor S T(q,ω) [Eq. (2.6)] of the

inherent structure for each bending energy εbend from εbend = 10−1 to 3×103. Note that the thermal

fluctuations are imposed at very low temperature T = 0.05, which is small enough that the derived

values are consistent with the zero-temperature limit values. The values of ΩT(q) and ΓT(q) were

then extracted using Eq. (2.8).
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Figure 2.1: (a) The reduced vDOS g(ω)/ω2 with changing the strength of bending rigidity εbend.
(b) The reduced vDOS g(ω)/(ω2AD) scaled by the Debye level AD as a function of the frequency
ω/ωD scaled by the Debye frequency ωD. The color of line indicates the value of bending rigidity
εbend according to the color bar.

2.3 Results and Discussion

2.3.1 Scaling of boson peak by the Debye frequency and Debye level

Figure 2.1(a) plots the reduced vDOS g(ω)/ω2, showing the BP beyond the Debey level AD for each

εbend. The BP frequency ωBP is located at ωBP ≈ 2, but it slightly shifts to the higher frequency with

increasing the bending rigidity. In addition, the peak height of g(ω)/ω2 gradually decreases when

εbend is increased. Figure 2.1(b) shows the reduced vDOS g(ω)/(ω2AD) scaled by the Debye level

AD as a function of the frequency ω/ωD scaled by the Debye frequency ωD. This demonstrates the

scaling of the BP by the Debye frequency ωD and Debye level AD for various bendig rigidities of
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Figure 2.2: Debye frequency ωD versus square root of global shear modulus G. The straight line is
a viewing guide for ωD ∝G1/2. From left to right, the bending energy changes from εbend = 10−1

to 3×103.

the polymer chain. Note that the scaling property of the BP is also shown for shorter polymer chain

with the length L = 3 in our previous paper [113].

2.3.2 Debye frequency and global shear modulus

We next examine the relationship between the Debye frequencyωD and the shear modulus G, which

is plotted in Fig. 2.2. As demonstrated in Ref. [113], the bulk modulus K is approximately three to

four times larger than the shear modulus G. Thus the term cL
−3 becomes negligible, and the Debye

frequency ωD can be approximated as

ωD =

[
18π2ρ

2cT−3+ cL−3

]1/3

≃ (9π2ρ)1/3cT ∝
√

G, (2.9)

which is mainly governed by the shear modulus G. Figure 2.2 directly demonstrates the relationship

of ωD ∝
√

G with changes in εbend. The density ρ is also changed by changing εbend, but the effect

of density on ωD is close to negligible [113].
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Figure 2.3: (a) Probability distribution of local shear modulus P(Gm). The color of the line indicates
the value of the bending energy εbend according to the color bar. (b) Scaled distribution P(Gm)G
as a function of the scaled local shear modulus Gm/G. The straight lines represent the Gaussian
distribution functions fitted to each distribution.

2.3.3 Local shear modulus distribution

As demonstrated in Fig. 2.1, the reduced vDOS g(ω)/ω2 in the BP frequency ωBP regime was

well scaled by using the Debye frequency ωD and Debye level AD = 3/ωD
3 This suggests that the

frequency and intensity of BP are controlled only by the global sear modulus G. In particular, we

obtain the relationship of ωBP ∝ ωD ∝
√

G. According to the heterogeneous elasticity theory [79–

82], this observation implies that the degree of the shear modulus heterogeneity δGm/G is invariant

with changes in the bending energy εbend: this implication is confirmed below.

We plot the probability distribution of the local shear modulus Gm in Fig. 2.3(a); this plot

follows the Gaussian form of Eq. (3.18). Figure 2.3(b) then plots the scaled distribution P(Gm)G
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as a function of the scaled local shear modulus Gm/G, demonstrating the data of P(Gm)G versus

Gm/G nicely collapse for different values of εbend. Because we can transform P(Gm) (Gaussian

form) to

P(Gm)G =
1

√
2π

(
δGm

G

) exp


−

(
Gm
G −1

)2

2
(
δGm

G

)2


, (2.10)

this collapse indicates that the scaled standard deviation δGm/G remains unchanged for different

εbend values. This is verified by direct demonstration in Fig. 2.3(b), where δGm/G is plotted ex-

plicitly as a function of εbend. Therefore, we can conclude that the bending rigidity of the polymer

chain does not alter the degree of the shear modulus heterogeneity. This conclusion justifies the the-

oretical prediction [79–82] that vibrational excitations including the BP are controlled only by the

global elastic modulus under the condition of constant heterogeneities in the moduli distributions.

2.3.4 Transverse acoustic excitation and its link with boson peak

We finally study the transverse acoustic excitation in the frequency regime including the BP. The

generalised Debye model [93, 119] yields the reduced vDOS g(ω)/ω2 in terms of the propagation

frequency ΩT(q) and the attenuation rate ΓT(q), as follows:

g(ω)
ω2 =

3
ω3

D

+
4

πq2
Dc2

T(q)

 ΓT(q)
ω2+Γ2

T(q)

 , (2.11)
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Figure 2.5: (a) Transverse dynamic structure factor S T(q,ω) as a function of ω, at the lowest wave
number qmin. (b) Scaled plot of S T(q,ω)ωD versus ω/ωD. The color of the line indicates the value
of the bending energy εbend according to the color bar.

with Debye wavenumber qD = (6π2ρ̂)1/3. This form can be scaled by ωD and AD = 3/ω3
D as:

g(ω)
ω2AD

= 1+
4

3πq2
D

( cT(q)
ωD

)2


(
ΓT(q)
ωD

)
(
ω
ωD

)2
+

(
ΓT(q)
ωD

)2

 . (2.12)

Thus, the collapse of the reduced vDOSs g(ω)/(ω2AD) for different values of εbend indicates that

cT/ωD and ΓT/ωD are both independent of the bending energy εbend.

In addition, Eq. (2.8), which is the damped harmonic oscillator function for the dynamic struc-

ture factor S T(q,ω), can be scaled by the Debye frequency ωD:

S T(q,ω)ωD ∝

(
ΓT(q)
ωD

) ( cT(q)
ωD

)2
q2[(

ω
ωD

)2
−

( cT(q)
ωD

)2
q2

]2
+

(
ω
ωD

)2 (
ΓT(q)
ωD

)2
, (2.13)
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Figure 2.6: (a) Transverse sound velocity scaled by the Debye frequency, cT/ωD, versus scaled
frequency ΩT/ωD. (b) Transverse sound damping scaled by the Debye frequency, ΓT/ωD, versus
ΩT/ωD. The color of the line indicates the value of bending energy εbend according to the color bar.

which indicates that S T(q,ω)ωD is simply scaled by ω/ωD, when cT/ωD and ΓT/ωD are indepen-

dent of εbend. Below we show that these properties of transverse acoustic excitations are true.

Figure 2.5(a) shows the S T(q,ω) for different values of εbend. The wave number q is set to

its lowest value qmin = 2π(ρ̂/N)1/3, which ranges from qmin = 0.283 (for εbend = 0.1) to 0.295 (for

εbend = 3×103). The frequency of the Brillouin peak shifts to higher values with increasing εbend.

We then plot S T(q,ω)ωD versus ω/ωD in Fig. 2.5(b). It is evident that our calculations of S T(q,ω)

are in accordance with the predicted scaling description of Eq. (2.13).

We also show the sound velocity cT and attenuation rate ΓT as functions of the frequency ΩT in

Fig. 2.6. As expected from the scaling property of g(ω), the data of cT and ΓT collapse for different

values of εbend, although small deviations are detected. These collapses are also consistent with

the prediction from Eq. (2.12) and are explained in terms of the shear modulus heterogeneity.
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The collapses break down in the high frequency regime above the BP frequency, ΩT/ωD ≳ 0.2 >

ωBP/ωD ≈ 0.1. Because the generalized Debye model does not hold above the BP frequency [93,

119], this deviation is not unexpected.

2.4 Conclusion

In conclusion, we have numerically studied elastic heterogeneities and acoustic excitations in poly-

mer glasses, with particular attention to the effects of the bending rigidity of the constituent polymer

chains. Our main finding is that the degree of heterogeneity in the local shear modulus distribution

is insensitive to changes in the bending rigidity. According to the heterogeneous elasticity the-

ory, for unchanging elastic heterogeneities, the vibrational and acoustic properties of amorphous

materials are controlled only by global elastic moduli. Consistent with this theoretical prediction,

we demonstrated that the BP and properties of the transverse acoustic excitations are both simply

scaled only by the global shear modulus. The present work therefore clarified remarkably sim-

ple material property relationships in polymer glasses. These originate from the invariance of the

local elastic heterogeneities over an extremely wide range of bending rigidity values for polymer

chains. Our results also provide good demonstrations that verify the heterogeneous elasticity the-

ory [79–82], which is among the central theories used to describe the mechanical and vibrational

properties of amorphous materials.

We note that effects of polymerization on vibrational properties can be scaled by global elastic

moduli [102, 106]. On the contrary, some experiments demonstrate that the pressure-induced shift

of BP cannot be explained by the global elastic moduli [100, 101]. From these observations, we

speculate that the polymerization effect is insensitive to the elastic heterogeneities as is the bending

rigidity, whereas the heterogeneities would be altered by the densification. Furthermore, recent

MD simulations revealed antiplasticizer additives significantly modify the local elastic constant

distribution in glass-forming polymer liquids [120]. It could be interesting to study how boson peak

properties change with evolution of elastic heterogeneities during the antiplasticization process.

25



At the end of this paper, we would discuss the relationship between the structural relaxation

time and the elastic properties. Remarkably, numerical work [121] has proposed and demonstrated

a scaling relationship between the structural relaxation time τα and the Debye–Waller factor ⟨u2⟩ for

many types of glass-forming systems, including polymer glasses, as τα ∝ exp
(
a⟨u2⟩−1+b⟨u2⟩−2

)
(where a and b are constants). Because the Debye–Waller factor in the harmonic approxima-

tion limit is estimated as ⟨u2⟩ = 3T
∫ ∞

0 g(ω)/ω2dω ∝ TωBP
−2 ∝ TG−1 (where ωBP ∝

√
G is ap-

plied) [122], we obtain

τα ∝ exp
(
α
ωBP

2

T
+β
ωBP

4

T 2

)
∝ exp

(
α′

G
T
+β′

G2

T 2

)
, (2.14)

where α, β, α′, and β′ are constants. This is the idea of the shoving model [123, 124], which

characterises the activation energy in terms of the global shear modulus G. Interestingly, Eq. (2.14)

has been well demonstrated for polymer glasses by MD simulations, where the plateau modulus Gp

of the stress correlation function was effectively utilized as the shear modulus [125]. Our results

suggest an important condition under which Eq. (2.14) holds. When the spatial heterogeneity in the

local shear modulus distribution is unchanged, the excess vibrational excitations, i.e., the BP, are

controlled only by the global shear modulus, indicating that the structural relaxation time is also

controlled solely by the global shear modulus.
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Chapter 3

Effects of chain length on Rouse modes and

non-Gaussianity in linear and ring polymer melts

3.1 Introduction

The dynamics of polymer melts are governed by topological constraints, because of which the

viscosity and relaxation time increase drastically with increasing degree of polymerization. Linear

chain ends play a significant role in determining the slip motion of a single polymer chain, which

is characterized by the well-established reptation model [2]. Recently, another type of topological

constraints in polymer has been proposed, namely, ring polymer melts without chain ends [3–7].

Various molecular dynamics (MD) simulations have been performed to elucidate the topolog-

ical constraint effects in ring polymer melts [9–11, 18, 46, 65, 126, 127]. In this regard, the chain

length N dependence of dynamical properties is the central topic. Tsolou et al. reported MD simu-

lation results of a united-atom model for ring polyethylene melts with N ranging from 24 to 400 [9].

They demonstrated that the Rouse model is approximately appropriate for describing the dynam-

ics, in contrast to the cases of linear polymer analogues. Halverson et al. used a coarse-grained

bead-spring model for ring polymers with N ranging from 100 to 1600 [10, 11]. The diffusion

coefficient D obeys a scaling D ∼ N−2.4 for large N–interestingly, this is similar to that observed

in linear polymer melts. In contrast, the zero-shear viscosity exhibits a chain length dependence

η ∼ N1.4, which is weaker than that predicted by the reptation model.

The dynamics of ring polymer melts have been examined using the dynamic structure fac-
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tor measured by neutron scattering experiments [15, 22, 128–130]. Brás et al. reported the non-

Gaussian parameter (NGP) of pure poly(ethylene oxide) (PEO) rings [15]. The NGP characterizes

the degree of the deviation of the distribution function of the monomer displacement from the Gaus-

sian distribution, which is important when discussing the relationship between MD simulations

and scattering experiments [131]. Notably, the NGP has frequently been analyzed to characterize

heterogeneous dynamics, which is attributed to cage effects in glass-forming liquids [132–134].

However, the chain length dependence of NGP in ring polymers remains scarcely analyzed. Fur-

thermore, this analysis can be also important when considering the recent microscopic theory pre-

dicting D ∼ N−2 in ring polymer melts, which was formulated in analogy with the cage effects of

soft colloid suspensions [20].

In this study, we performed MD simulations using the Kremer–Grest bead-spring model with

different chain lengths (N = 5− 400) for both linear and ring polymer melts. First, we analyzed

the Rouse modes and determined the chain length dependence of the relaxation time. Then, we

calculated the NGP of the monomer bead displacement, and investigated its chain length depen-

dence. The combined results enable us to thoroughly assess the similarities and differences of the

chain-end effects on the dynamics between linear and ring polymer melts.

3.2 Model and simulations

We performed MD simulations using the standard Kremer–Grest model for linear and ring polymer

melts, where the polymer chain comprises N monomer beads of mass m and diameter σ [114]. We

utilized three types of inter-particle potentials, as follows. The Lennard-Jones (LJ) potential

ULJ(r) = 4εLJ

[(
σ

r

)12
−

(
σ

r

)6
]
+C, (3.1)

acts between all pairs of monomer beads, where r and εLJ denote the distance between two monomers

and the energy scale of the LJ potential, respectively. The LJ potential is truncated at the cut-off

distance of rc = 2.5σ, and the constant C guarantees that the potential energy shifts to zero at r = rc
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The bonding potential between two neighboring monomer beads is given by a finitely extensible

nonlinear elastic (FENE) potential,

UFENE(r) = −
1
2

KR2
0 ln

1− (
r

R0

)2 (3.2)

for r < R0, where K and R0 represent the spring constant and the maximum length of the FENE

bond, respectively. We used the values of K = 30εLJ/σ
2 and R0 = 1.5σ. Finally, the bending angle

θ formed by three consecutive monomer beads along the polymer chain is controlled by

Ubend(θ) = kθ [1− cos(θ− θ0)] , (3.3)

where kθ denotes the associated bending energy. We set the bending energy and equilibrium angle

as kθ = 1.5εLJ and θ0 = 180◦, respectively.

Henceforth, the length, energy, and time are measured in units of σ, εLJ, and σ(m/εLJ)1/2, re-

spectively. The temperature is presented in units of εLJ/kB, where kB is the Boltzmann constant.

The system contains M polymer chains in a three-dimensional cubic box of volume V under peri-

odic boundary conditions. We studied several combinations of the chain length N and the number

of chains M for both linear and ring polymer systems, (N,M) = (5,2000), (10,1000), (20,500),

(40,250), (100,200), (200,100), and (400,50). The number density of the monomer beads ρ =

(N ×M)/V and the temperature T were fixed as ρ = 0.85 and T = 1.0, respectively, throughout the

simulations. We performed the MD simulations using the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS) [135]. The NVT ensemble with the Nosé–Hoover thermostat was

used with a time step ∆t of 0.01. We analyzed the chain length dependence of the radius of gyration

and the center-of-mass diffusion coefficient and confirmed that our results reproduce the results re-

ported in previous studies (results not shown) [10,11]. In addition, we confirmed the entanglement

length Ne ≈ 28 in linear polymer melts with N = 400 by using the primitive path analysis [136]. The

used code is available from https://github.com/t-murash/USER-PPA (see also Ref. [137]).

The Rouse model is the standard model for the polymer chain dynamics, where the normal
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coordinates XXXp(t), so-called Rouse modes, are constructed from the position of the n-th monomer

bead rrrn(t) at a time t for n = 1, 2, 3, · · · , N. Here, we provide several expressions in the Rouse

model, which we employ to analyze our MD results. The Rouse mode analysis for the linear chain

is described in Ref. [138]. Furthermore, the formula for the ring polymer chain was described in

previous papers [9, 139, 140]. To make this paper self-contained, we summarize the formulation

of the Rouse model for the ring polymer chain in A. The expressions of the normal coordinates

XXXp,linear(t) and XXXp,ring(t) for linear and ring polymer chains can respectively be expressed as

XXXp,linear(t) =

√
2−δp,0

N

N∑
n=1

rrrn(t)cos
(
πp(n−1/2)

N

)
, (3.4)

XXXp,ring(t) =

√
1
N

N∑
n=1

rrrn(t)
[
cos

(
2πpn

N

)
+ sin

(
2πpn

N

)]
, (3.5)

where p (= 0,1, · · · ,N −1) is the mode index, and δ denotes the Kronecker delta. The p = 0 mode

describes the center-of-mass translation of the chain, whereas the p > 0 modes characterize the

internal dynamics of the subchains composed of N/p beads.

The static correlation of the Rouse mode ⟨XXXp(0)2⟩ can be related to the mean square distance

of two beads b2 through

⟨XXXp,linear(0)2⟩ =
b2

4sin2
(
πp
2N

) , (3.6)

⟨XXXp,ring(0)2⟩ =
b2

4sin2
(
πp
N

) , (3.7)

for linear and ring polymers, respectively. Here, ⟨· · · ⟩ denotes an ensemble average.

Each normal coordinate exhibits the Brownian motion in the Rouse model, causing the expo-

nential decay of the autocorrelation function, ⟨XXXp(t) ·XXXp(0)⟩. The Rouse relaxation times τp,linear

30



and τp,ring for linear and ring polymer chains are respectively given by

τp,linear =
ζ

4k sin2
(
πp
2N

) , (3.8)

τp,ring =
ζ

4k sin2
(
πp
N

) , (3.9)

where ζ is the effective hydrodynamic friction coefficient and k represents the harmonic spring

constant between two neighboring monomer beads. As noted in A k is equal to 3kBT/b2. The

differences of ⟨XXXp(0)2⟩ and τp between linear and ring polymers appear in the phases of the sine

functions. The Rouse modes of p and N − p are degenerate in the case of the ring polymer (see

A). Correspondingly, ⟨XXXp(0)2⟩ and τp as functions of p are symmetric with respect to the reflection

at p = N/2. On the other hand, for linear chains, ⟨XXXp(0)2⟩ and τp decrease monotonically with p

in the Rouse model. In the continuum limit of p/N ≪ 1, both τp,linear and τp,ring exhibit a scaling

behavior (N/p)2 within the Rouse model.

The motions of monomer beads are described typically by the mean square displacement (MSD)

averaged over all the monomers of a chain, which is defined as

g1(t) = ⟨r2(t)⟩ =
〈

1
N

N∑
n=1

|rrrn(t)− rrrn(0)|2
〉
. (3.10)

The NGP of the monomer bead displacement is defined by

αmon
2 (t) =

3⟨r4(t)⟩
5⟨r2(t)⟩2

−1, (3.11)

which measures non-Gaussianity, i.e., the degree of the deviation of the distribution function of the

monomer bead displacement from the Gaussian form during the time interval t. In addition, the

MSD of the center-of-mass of chains is examined from

g3(t) = ⟨R2(t)⟩ =
〈

1
M

M∑
m=1

|RRRm(t)−RRRm(0)|2
〉
, (3.12)
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where RRRm(t) is the position of the center-of-mass of the chain m at time t. The corresponding NGP

of the center-of-mass displacement is defined by

αcom
2 (t) =

3⟨R4(t)⟩
5⟨R2(t)⟩2

−1. (3.13)

The NGP of monomer beads was analyzed via MD simulations of linear polymer melts with the

chain length of N = 5− 160 [141]. Furthermore, the NGP of supercooled polymer melts was re-

ported with N = 10 [142] and N = 64 [143, 144].

3.3 Results and discussion

The normalized autocorrelation function of the p-th Rouse mode is given by

ϕp(t) =
⟨XXXp(t) ·XXXp(0)⟩
⟨XXXp(0)2⟩

. (3.14)

The results of the slowest mode ϕ1(t) are plotted in Fig. 3.1 by changing the chain length N for

linear (a) and ring (b) polymer melts. For each Rouse mode p, ϕp(t) is fitted using the Kohlrausch–

Williams–Watts (KWW) function, exp
[
−(t/τ∗p)βp

]
, with the KWW relaxation time τ∗p. βp(< 1)

represents the degree of non-exponentiality of ϕp(t) [145]. In Fig. 3.1(c) and (d), βp is plotted as

a function of N/p for linear and ring polymers, respectively. As demonstrated in Ref. [146], βp

deviates from unity and shows a minimum at the slowing down length Ns ≈ 2. Another minimum

of approximate 0.6 is found at around the entanglement length scale Ne ≈ 28 [147, 148]. As seen

in Fig. 3.1(d), βp of ring polymers shows a minimum at Ns ≈ 4, which is the same length scale of

Ns ≈ 2 considering the difference in the phase of the Rouse mode between linear and ring polymers.

Furthermore, the non-exponentiality is also found at N ≳ 102 and is weaker for the ring polymers

with βp ≈ 0.8 than for the linear polymers.

In Fig. 3.1(e) and (f), the normalized amplitudes 4sin2(πp/(2N))⟨XXXp(0)2⟩ and 4sin2(πp/N)⟨XXXp(0)2⟩

are plotted as a function of N/p for linear and ring polymers, respectively. As the chain length
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scale N/p increases, 4sin2(πp/(2N))⟨XXXp(0)2⟩ of linear polymers levels off beyond the entangle-

ment length scale Ne ≈ 28 [147, 148], whereas 4sin2(πp/N)⟨XXXp(0)2⟩ of ring polymers gradually

decreases with increasing N/p. This behavior is actually consistent with the observation that the

structure of the ring polymer chain becomes more compact than that of the linear polymer. In

fact, N dependence of the mean square radius of gyration R2
g approaches a scaling of N2/3 in ring

polymers, which is distinct from the Gaussian behavior R2
g ∼ N observed in linear polymers [10].

The effective Rouse relaxation time of the p-th mode is calculated by

τp =

∫ ∞

0
exp

[
−(t/τ∗p)βp

]
dt =

τ∗p

βp
Γ

(
1
βp

)
, (3.15)

where Γ(x) is the Gamma function. The Rouse relaxation time τp is plotted as a function of N/p in

Fig. 3.1 for linear (g) and ring (h) polymer melts. In linear polymer melts, τp rapidly deviates from

the Rouse regime (N/p)2 as the chain length N is increases. In particular, the power-law behavior

τp ∼ (N/p)3.4 was observed, indicating entanglement effects [147, 148]. This crossover from the

Rouse to the reptation behavior was reported in Refs. [147, 148]. τp of ring polymers also deviates

from the Rouse-like power-law behavior with increasing N/p. However, the exponent becomes

2.4, which is smaller than that of linear polymers for the chain lengths investigated in this study.

Further, it is important to compare the segmental relaxation rate Weff = 3kBT/ζb2 = k/ζ between

linear and ring polymer melts, which is related to the Rouse relaxation time τp (see Eqs. (3.8) and

(3.9)). Specifically, we evaluated Weff using the slowest mode (p = 1) by

Weff,linear = 1/[4τ1,linear sin2(π/2N)], (3.16)

Weff,ring = 1/[4τ1,ring sin2(π/N)], (3.17)

for linear and ring polymers, respectively, and the results are plotted in Fig. 3.2. For linear poly-

mers, Weff exhibits a roughly constant independent of N up to the entanglement length Ne ≈ 28.

A similar value is also observed for ring polymers, indicating the same Rouse dynamics in melts

of linear and ring chains. The power-law behavior Weff ∼ N−1.4 is observed for the longer linear
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polymer, which is consistent with the scaling of τp ∼ (N/p)3.4, as demonstrated in Fig. 3.1(e). Note

that N and p are both varied in Fig. 3.1(e), and the scaling at p = 1 is rephrased as τ1 ∼ N3.4 at large

N. In contrast, Weff of ring polymers shows a weak N dependence and the scaling Weff ∼ N−0.4

is observed for the longer chain length N ≳ 100. This exponent corresponds to the scaling of

τp ∼ (N/p)2.4, as observed in Fig. 3.1(f).

The NGPs of the segment displacement αmon
2 (t) and the center-of-mass displacement αcom

2 (t)

were investigated using Eqs. (3.11) and (3.13), respectively. Figure 3.3 shows αmon
2 (t) for linear

(a) and ring (b) polymers. For comparison, the time evolusions of MSD ⟨r2(t)⟩ are displayed

in inset of Fig. 3.3(a) and (b). It is seen that αmon
2 (t) exhibits peaks of 0.1 for both linear and

ring polymers. The peak occurs at t ≈ 1, beyond which each segment begins to escape from the

regime of ballistic motion, ⟨r2(t)⟩ ∼ t2, at small times. The height and position αmon
2 (t) in the

ballistic regime are independent of the chain length N, indicating that the effects of polymer chain

ends are negligible in this regime, where the effect of the chain connectivity plays the role on

the segmental dynamics [142]. For linear polymers, the second peak appears at a larger time

regime, where ⟨r2(t)⟩ approaches the diffusive behavior, as demonstrated in Fig. 3.3(c). The second

peak develops for longer time scales with increasing chain length N, which was demonstrated in

the previous study [141]. The height of the second peak becomes 0.5 for N = 400. This non-

Gaussianity can be regarded as the chain end effect with higher mobility due to less topological

constrains [149]. Note that the mechanism of non-Gaussianity in linear polymer melts is different

from that of the cage effects in glass-forming liquids [132–134]. On the contrary, it is unlikely that

αmon
2 (t) of ring polymers shows clear peaks for chain lengths up to N = 400 despite the diffusive

behavior being realized in ⟨r2(t)⟩ at larger time scales (see Fig. 3.3(d)). This implies that all the

monomer beads show similar dynamics in ring polymers without chain ends. The non-Gaussianity

of the center-of-mass displacement is additionally examined in Fig. 3.3 for linear (c) and ring (d)

polymers. The behavior of αcom
2 (t) is analogous to that of αmon

2 (t) both for linear and ring polymers.

However, the first peak of αcom
2 (t) at t ≈ 1 becomes smaller with increasing N for both linear and

ring polymers. This indicates that regardless of the chain connectivity, the center-of-mass dynamics
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is more Gaussian for longer chains. Furthermore, αcom
2 (t) of ring polymers with N = 400 shows a

peak of 0.1 at t ≈ 106, which shows very small non-Gaussianity as the chain length is increased.

Finally, to characterize the difference in the NGP between linear and ring polymers in more

detail, we calculated the self-part of the van-Hove correlation function Gs(r, t) = ⟨
∑N

n=1 δ(|rrrn(t)−

rrrn(0)| − r)⟩, i.e., the distribution function of the segmental displacement r at time t. The probability

distribution of the logarithm displacement is then defined as P(log10(r), t)= ln(10)4πr3Gs(r, t) [150–

152]. It is defined such that the integral
∫ x1

x0
P(x, t)dx is the fraction of particles whose value of

log10(r) is between x0 and x1. When the Gaussian distribution is assumed as

Gs(r, t) =
[

3
2π⟨r2(t)⟩

]3/2

exp
[
−3r2

2⟨r2(t)⟩

]
, (3.18)

with the mean square displacement ⟨r2(t)⟩ at time t, P(log10(r), t) has a peak of ln(10)
√

54/πe−3/2 ≈

2.13 irrespective of time t. In Fig. 3.4, P(log10(r), t) is plotted for linear (a) and ring (b) polymers

with the chain length N = 400 by changing t from 1 to 106. For a comparison, we also showed

P(log(10)(r), t) determined from the Gaussian distribution Eq. (3.18) at each time. As observed

in Fig. 3.4(a), the peak height of P(log10(r), t) for the linear polymer decreases as t increases.

This decrease in the peak indicates that the distribution deviates from the Gaussian behavior and

becomes broader, which is also observed in glass-forming liquids [152]. Figure 3.4(b) demonstrates

that the peak height of P(log10(r), t) for ring polymers remains at the Gaussian level, providing

clear evidence that the segment displacement follows the Gaussian distribution even for longer

time scales.

Furthermore, Fig. 3.4(c) and Fig. 3.4(d) show the probability distributions of the center-of-

mass displacement P(log10(R), t) for linear and ring polymers, respectively. The deviation from the

Gaussian form Gs(R, t) = [3/(2π⟨R2(t)⟩)]3/2 exp
[
−3R2/(2⟨R2(t)⟩)

]
is noticeable for linear polymers,

particularly for longer times. Analogous to Fig. 3.4(b), P(log10(R), t) of ring polymers is in ac-

cordance with the Gaussian distribution at any time. Note that small deviation from the Gaussian

distribution at long times were observed in Fig. 3.3(d) for the chain length N = 400, while the peak
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value remains the Gaussian level of 2.13. This observation suggests the possibility that the center-

of-mass dynamics of a long ring polymer chain in melts can be influenced by the neighboring

rings.

3.4 Conclusion

We presented the MD simulation results using the Kremer–Grest model for linear and ring polymer

melts with chain lengths up to N = 400. We focused on the chain length dependence of the Rouse

relaxation time and non-Gaussianity for characterizing both the segmental and center-of-mass mo-

bility with or without chain ends.

For linear polymers, the deviation from the Rouse model behavior becomes remarkable with

increasing the chain length N by showing the scaling τp ∼ (N/p)3.4, which is consistent with pre-

viously reported results [11]. The NGP of the monomer bead dynamics shows two peaks: the

first peak appears on the time scale where the MSD escapes from the segmental ballistic motion,

whereas the second peak corresponds to the realization of the diffusive behavior of the MSD. This

indicates that the segment dynamics becomes spatially heterogeneous because of the higher mo-

bility of chain ends in the linear polymer chain. The NGP of the center-of-mass dynamics also

exhibits two peaks, but the first peak becomes weaker due to less chain connectivity effects as the

chain length is increased.

For ring polymers, the Rouse-like behavior with the scaling τp ∼ (N/p)2.4 was observed. Al-

though the peak of NGP was observed at short times similar to that of linear polymers, the non-

Gaussianity was found to be strongly suppressed even for a longer time regime. The segmental

dynamics in ring polymers without chain ends becomes spatially homogeneous and the mecha-

nism of the chain motion is essentially different from the reptation model for linear polymers. The

center-of-mass dynamics in ring polymers also shows the Gaussian behavior, while a very small

non-Gaussianity is observed with increasing chain length suggesting cooperative motions between

neighboring rings.
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As mentioned in Introduction, Brás et al. reported the NGP of the center-of-mass dynamics in

PEO ring polymers from a neutron scattering experiment [15]. The molecular weight 5 kg/mol was

chosen to be 2.5 times larger than the entanglement mass, which approximately corresponds to the

chain length N = 100 in the present MD simulation study. The NGP from the neutron scattering

experiment shows a peak of 0.2-0.3 at around 30 ns, which corresponds to the crossover from a

sub-diffusion to diffusion regime. It seems that the experimental result is not in agreement with the

present MD simulation result of αcom
2 ≈ 0.1 with N = 400. The effects of the chain lengths and the

chemical species of the segments need to be studied in further depths to resolve the difference.

A plausible key feature for topological constraints in ring polymers is an inter-ring threading

event [67, 68, 153–159]. In particular, Michieletto et al. have proposed the “random pinning”

procedure, wherein some fractions of rings are frozen, to investigate the role of threadings on the

dynamics [156]. They demonstrated that random pinning can enhance the glass-like heterogeneous

dynamics in ring polymers. Furthermore, it was reported that the distribution of the center-of-mass

displacement deviates from the Gaussian distribution even in a zero “random pinning” field. In

contrast, the non-Gaussianity is much weaker in this work, where αcom
2 (t) becomes 0.1 with the

chain length N = 400 without the pinning procedure. One possible interpretation could be that

the thermodynamic states analyzed here are different: monomer density ρ = 0.85 in this study is

frequently used for MD simulations of polymer melts [10, 11], whereas densities in Ref. [156]

were chosen up to ρ = 0.4. Therefore, further investigation is necessary for a strict assessment with

regard to the monomer density dependence of the non-Gaussianity with increasing the chain length

N, which is a subject of future study.
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Figure 3.1: Normalized autocorrelation function ϕ1(t) of the Rouse mode p = 1 for linear (a) and
ring (b) polymers. Symbols and lines represent MD simulation results and the fitting curves using
the Kohlrausch–Williams–Watts function, exp

[
−(t/τp)βp

]
. The exponent βp is plotted as a function

of N/p for linear (c) and ring (d) polymers. Normalized amplitude of autocorrelations of the Rouse
mode, 4sin2(πp/(2N))⟨XXXp(0)2⟩ (e) and 4sin2(πp/N)⟨XXXp(0)2⟩ (f), are plotted as a function of N/p
for linear and ring polymers, respectively. Rouse relaxation time τp as a function of N/p for linear
(g) and ring (h) polymers. Two scaling behaviors, i.e., the Rouse model behavior τp ∼ (N/p)2 and
the reptation model behavior τp ∼ (N/p)3.4, are represented in (g). In (h), τp ∼ (N/p)2 is indicated
for smaller N/p, whereas the different power-law τp ∼ (N/p)2.4 is observed for larger N/p. In
(d), (f), and (h), the results for N/p < 2 are omitted because of the symmetric structure of N/p
dependencies on ⟨XXXp(0)2⟩ and τp (see Eqs. (3.7) and (3.9)). Note that only two points with p = 1
and 2 are plotted for N = 5 ring polymers, where each ring tends to form a pentagonal structure,
causing fluctuations more than other length chains.
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Figure 3.3: Non-Gaussian parameters of monomer beads αmon
2 (t) and center-of-mass αcom

2 (t) for
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Figure 3.4: Probability distributions of the logarithm displacement of monomer beads and center-
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mers with the chain length N = 400. The time t is chosen as t = 1, 102, 104, and 106 from left to
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√
54/πe−3/2 ≈ 2.13. The solid curve

represent the form using the Gaussian distribution, Gs(r, t) = [3/(2π⟨r2(t)⟩)]3/2 exp
[
−3r2/(2⟨r2(t)⟩)

]
[(a) and (b)] and Gs(R, t) = [3/(2π⟨R2(t)⟩)]3/2 exp

[
−3R2/(2⟨R2(t)⟩)

]
[(c) and (d)] at each time.

41



Chapter 4

Unraveling the Glass-like Dynamic Heterogeneity in

Ring Polymer Melts:

From Semiflexible to Stiff Chain

4.1 Introduction

The dynamic properties of polymers melts are governed by structural features, such as the chain

length N and “topological constraints” (TCs) [1, 2]. In linear polymer melts, entanglement effects

are common TCs and play a key role in describing the N dependence of the diffusion constant D.

However, defining and characterizing TCs in ring polymers is still challenging due to the absence

of chain ends [3, 17, 47, 54, 160, 161].

In ring polymer melts, the simple picture of TCs is that they inhibit each other’s dynamics due

to inter-ring “threadings” [5, 26, 62, 66]. As N increases, the number of threading configurations

also increases, making it more difficult for the system to find the equilibrium configuration to relax

the threading. The threading event of large N rings suggests a slowing-down of the dynamics,

similar to the slow dynamics in glass-forming liquids, where cage effects are imposed by the local

density environment [162]. The concept of “topological glass” has been used to understand the

dynamics of ring polymer melts, highlighting the unique role of TCs in these systems compared

to the entanglements in linear polymers [25, 27, 55, 67, 68, 155, 156, 159, 163–165]. Interestingly,

techniques such as random pinning [68, 156] and activeness [25, 27, 165] have been introduced to
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enhance the glassiness in ring polymers through molecular dynamics (MD) simulations.

Dynamic heterogeneity (DH) is a key concept used to describe the significant slowing-down

of glass-former liquids as they approach the glass transition temperature [166–168]. The slowing-

down is accompanied by the collective structural relaxation of spatially heterogeneous regions that

exceeds the molecular size [132, 169–171]. DH is conventionally measured by the non-Gaussian

parameter (NGP), i.e., the degree of the deviation from the Gaussian distribution for the molecular

displacement within a given time interval [132,134,152,172–174]. The NGP was utilized to quan-

tify the non-Gaussianity in supercooled linear polymer melts [141–143]. In addition, we conducted

calculations on the NGP for linear polymer melts by MD simulations using the Kremer–Grest (KG)

bead-spring model [24]. The chain lengths varied from N = 5 to 400, and the monomer density was

set at ρ = 0.85 (in the unit of σ−3 using the size of the bead σ). Our findings revealed that a notable

increase in the peak of the NGP as N increases. This suggests that the dynamics of the system

becomes spatially heterogeneous. However, note that the mechanism of non-Gaussianity in lin-

ear polymer melts is due to the enhanced mobility of chain ends, which is different from the cage

effects observed in glass-forming liquids.

Michieletto et al. conducted MD simulations of ring polymers using the KG model and ana-

lyzed the center-of-mass (COM) displacement distribution [156]. They found that the non-Gaussian

behavior was pronounced even in the absence of random pinning fields, when the monomer density

ρ increased with the chain length N = 500. This finding is consistent with the experimental obser-

vation of polyethylene oxide ring melts by Brás et al. [15] However, our previous study, which also

used the same model for MD simulations of ring polymer melts, showed that the NGP remained

quite small at all time regimes, even when the chain length was increased up to N = 400 [24]. It

should be noted that the chain stiffness differed between the two studies. Specifically, the bending

potential εθ(1+cosθ) (in the unit of energy scale in the Lennard-Jones potential) acts on the bending

angle θ formed by three consecutive monomer beads along the polymer chain (refer to Eq. (4.3)).

Michieletto et al. utilized a stiff ring chain with the bending energy of εθ = 5 for densities up to

ρ = 0.4. More recently, the glass-like slow dynamics has also been demonstrated at low densities
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by increasing the chain stiffness up to εθ = 20 [28]. By contrast, we simulated semi-flexible ring

chains with εθ = 1.5 at a higher density of ρ = 0.85, which is the same as that used in the MD study

by Halverson et al. [10, 11, 175]

Thus, there is still much to be explored regarding the influence of chain stiffness on DH in

ring polymer melts. To address this gap, we performed MD simulations using the KG model by

varying εθ and ρ. Our analysis began by examining the NGP, and characterized the effect of chain

stiffness on the DH in ring polymer melts. We also investigated the conformation of ring chains by

analyzing the radius of gyration, as well as asphericity and prolateness based on the diagonalization

of the gyration tensor. Additionally, we introduced the concept of inter-molecular bonds virtually

connected by ring COM positions, which enabled us to investigate the rearrangement of inter-

molecular connectivity of ring polymers. By combining the results obtained from these analyses,

we aim to identify similarities and differences in the effects of chain stiffness and monomer density

on ring polymer dynamics.

4.2 Model and Methodology

We employed MD simulations for ring polymer melts utilizing the KG model [114]. Each ring

polymer was represented by N monomer beads of mass m and diameter σ. Our system consisted of

M polymer chains contained within a three-dimensional cubic box with volume of V and periodic

boundary conditions. All monomer beads were subject to three types of inter-particle potentials,

namely: the Lennard-Jones (LJ) potential, which acted between all pairs of monomer beads,

ULJ(rrr) = 4εLJ

[(
σ

r

)12
−

(
σ

r

)6
]
+C. (4.1)

Here r and εLJ represent the distance between two monomer beads and the energy scale of LJ

potential, respectively. The LJ potential was truncated at the cut-off distance of rc = 21/6 σ, and

the constant C ensured that the potential energy shifted to zero at r = rc. Additionally, two adjacent
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monomer beads along the chain also interacted via the bond potential

Ubond(r) = −
1
2

KR2
0 ln

1− (
r

R0

)2, (4.2)

for r < R0, where K and R0 represent the spring constant and the maximum length of the bond,

respectively. Note that Eqs (4.1) and (4.2) define the finitely extensible nonlinear elastic (FENE)

bond potential of the KG model. We adopted the values of K = 30 εLJ/σ
2 and R0 = 1.5 σ. Lastly,

we controlled the chain stiffness by incorporating a bending potential

Ubend(θ) = εθ[1− cos(θ− θ0)], (4.3)

where the bending angle θ is formed by three consecutive monomer beads along the polymer chain.

In this study, we explored two bending energy cases: a semi-flexible chain with εθ = 1.5εLJ and a

stiff chain with εθ = 5εLJ both with an equilibrium angle of θ0 = 180◦.

We conducted MD simulations using the Large-scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS) [135]. Hereafter, the length, energy and time are conventionally represented

in units of σ, εθ and (m/εLJ)1/2, respectively. Moreover, the temperature is also presented in units

of εLJ/kB, where kB is Boltzmann constant.

We fixed the temperature T , chain length N, number of chains M as T = 1.0 and N = 400,

and M = 100, respectively. During all simulations, the temperature was controlled using the Nosé–

Hoover thermostat, with a time step of ∆t= 0.01. We varied the monomer density ρσ3 (=NMσ3/V)

as 0.1, 0.3, 0.4, 0.5, and 0.55 both for the semi-flexible and stiff chains. Besides, we adopted the

monomer density ρ = 0.85 for the semi-flexible chain with εθ = 1.5, which was a common choice

for MD simulations both for linear [148,176] and ring [10,11,24,175,177] polymers. It should be

noted that a stiff chain system with εθ = 5 displayed nematic ordering when the monomer densities

exceeded ρ = 0.55, which is in agreement with the recent MD simulations reported in ref. 30.

Therefore, the system of εθ = 5 at ρ= 0.85 was excluded from the analysis. For each combination of

εθ and ρwith the chain length N = 1,000, we calculated the Kuhn length lk using lk = ⟨R2⟩/lb(N−1),
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Table 4.1: Kuhn length lk and entanglement length Ne by varying bending energy εθ and monomer
dnesity ρ. (*: No entanglement effects were observed.)

εθ ρ lk Ne
1.5 0.1 4.1 *
1.5 0.3 3.8 121
1.5 0.4 3.7 85
1.5 0.5 3.0 60
1.5 0.55 3.0 59
1.5 0.85 2.8 28
5 0.1 10 *
5 0.3 7.8 32
5 0.4 7.2 24
5 0.5 6.4 19
5 0.55 6.4 15

in the linear chain melt [178]. Here, ⟨R2⟩ represents the mean square end-to-end distance of the

chain, and lb ≃ 0.97 denotes the average distance between two neighboring beads in the KG model.

Another important characteristic is the entanglement length Ne, which we determined through the

primitive path analysis [136, 137]. The values of lk and Ne are presented in Table 4.1. Note that in

previous studies, lk was reported to be lk ≃ 2.79 for εθ = 1.5 at ρ = 0.85 and lk ≃ 10 for εθ = 5 at

ρ = 0.1, respectively [10,156]. Additionally, Ne was reported to be Ne ≃ 28 for εθ = 1.5 at ρ = 0.85

and Ne ≃ 40 for εθ = 5 at ρ = 0.1, respectively [68, 179]. However, we encountered difficulties in

estimating Ne at the density ρ = 0.1 both for both εθ = 1.5 and 5 due to the absence of entanglement

effects with N = 1,000.

4.3 Results and Discussion

4.3.1 Mean Square Displacement and Non-Gaussian Parameter

We first analyzed the mean square displacement (MSD) of the COM of ring polymer chains and

the NGP of the COM displacement distribution. The mean value of the even power of the COM
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Figure 4.1: Monomer density ρ dependence of MSD ⟨∆r2
COM(t)⟩ and NGP α2(t) for εθ = 1.5 [(a)

and (c)] and for εθ = 5 [(b) and (d)], respectively. Note that MSD is scaled by mean square gyration
of radius ⟨R2

g⟩. In (a) and (b), the ballistic, sub-diffusive, and diffusive behaviors, ⟨∆r2
COM(t)⟩ ∼ tα,

are represented by black lines with α = 2, 3/4, and 1, respectively. Insets of (a) and (b): semi-log
plots of the diffusion constant D as a function of the monomer density ρ, respectively. Note that the
monomer density ρ = 0.85 was analyzed only for εθ = 1.5.

displacement is defined by

⟨∆r2n
COM(t)⟩ =

〈
1
M

M∑
m=1

|RRRm(t)−RRRm(0)|2n
〉
, (n = 1,2, · · · ), (4.4)

where RRRm(t) represents the COM position of m-th polymer chain at time t. Here, ⟨· · · ⟩ denotes an

average over the initial time. The second order with n = 1 corresponds to the MSD. Furthermore,

the NGP for the center of mass (COM) displacement α2(t) is defined by

α2(t) =
3
5

⟨∆r4
COM(t)⟩

⟨∆r2
COM(t)⟩2

−1. (4.5)
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The NGP is a typical quantity to characterize DH in glass-forming liquids, which measures the non-

Gaussianity, i.e., the degree of the deviation of the distribution function of the COM displacement

from the Gaussian form during the time interval t.

The results of MSD and NGP are displayed in Fig. 4.1 by changing the monomer density ρ for

εθ = 1.5 [(a) and (c)] and εθ = 5 [(b) and (d)], respectively. As the monomer density ρ increased,

the diffusion of ring polymer chains significantly slowed down both for εθ = 1.5 and 5. Moreover,

at higher densities, the MSD exhibits a sub-diffusive behavior with ⟨∆r2
COM(t)⟩ ∼ t3/4, followed by

diffusion behavior observed at displacements larger than mean square gyration of radius ⟨R2
g⟩. The

COM diffusion constant D was determined from the Einstein relation, D = limt→∞⟨∆r2
COM(t)⟩/6t.

The monomer density ρ dependence of D for εθ = 1.5 and 5 is shown in the insets of Fig. 4.1(a)

and (b), respectively. The reduction in diffusion was more pronounced for the stiff chains with

εθ = 5 compared to semi-flexible chains with εθ = 1.5 at time scales corresponding to the onset

of the diffusion process at the same monomer density. These observations are consistent with the

calculations by Michieletto et al. [156] and Halverson et al. [11] The mean square radius of gyration

⟨R2
g⟩ will be discussed in the next subsection with respect to Fig. 4.2.

As demonstrated in Fig. 4.1(c), the NGP’s value of semi-flexible ring chains with εθ = 1.5

remained relatively small (α2(t) ≲ 0.1) at all investigated times and densities. This suggests that

the distribution of the COM displacement |RRRm(t)−RRRm(0)| follows a Gaussian distribution, which

was previously reported in our work. [24] The observation of Gaussian behavior in semi-flexible

ring polymers, even at the dense melt density of ρ = 0.85, is noteworthy and provides a unique

perspective on the dynamics of ring polymers. By contrast, for stiff ring chains, the increase in

α2(t) was more significant, showing peaks in a long time regime that approximately corresponded

to the onset time scale of the diffusive behavior with ⟨∆r2
COM(t)⟩ ∼ t, as demonstrated in Fig. 4.1(b)

and (d). Namely, the DH was found to be more pronounced in stiff ring chains with εθ = 5, similar to

common observations in glass-forming liquids. An analogous glass-like heterogeneous dynamics

was reported by Michieletto et al., who analyzed the displacement distribution of stiff ring chains

with εθ = 5 up to ρ = 0.4 with N = 500 [156]. Therefore, the contracting observations in the NGP
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Figure 4.2: Monomer density ρ dependence of chain conformation characteristics: (a) mean square
radius of gyration ⟨R2

g⟩/⟨R
◦2
g ⟩, (b) asphericity A, and (c) prolateness P. In (a), the mean square

radius of gyration is normalized by ⟨R◦2g ⟩, which represents the mean square radius of gyration at
a density of ρ = 0.001. The raw data of ⟨R2

g⟩ as a function of ρ is also shown in Inset of panel (a).
The black dotted line in (a) is the master curve, ⟨R2

g⟩/⟨R
◦2
g ⟩ = [1+0.45(ρ/ρ∗)]−0.59. In each panel,

the density is scaled density ρ∗ = 3N/(4π⟨R◦2g ⟩
3/2).

call for further investigations into the COM mobility, which could entail significant differences

between semi-flexible and stiff ring chains.

4.3.2 Conformation of the Ring Chains: Radius of Gyration, Asphericity

and Prolateness

It is important to examine the details regarding the conformation of rings and its relationship with

the DH both for semi-flexible and stiff chain. The radius of gyration provides a measure of the

size of polymer chains. To gain a more sophisticated understanding of the shapes, the principal

components the gyration tensor III can be utilized, which allows for examination of the asphericity

and prolateness of the polymer chains [180–183]. The gyration tensor for each ring chain is defined

as Iαβ = N−1 ∑N
i=1

∑N
j=1(αi −α j)(βi − β j), where αi represents the α element of i-th bead with α,

β (= x,y,z). Here, the square radius of gyration R2
g can be calculated as the summation of the

eigenvalues λi (i = 1,2,3) of the gyration tensor III as R2
g = λ1+λ2+λ3, where the principle axes of

inertia are chosen such that the diagonal elements are ordered as λ1 ≥ λ2 ≥ λ3. Furthermore, the
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asphericity A and prolateness P were calculated from the following equations:

A =
(λ1−λ2)2+ (λ1−λ3)2+ (λ2−λ3)2

2(λ1+λ2+λ3)2 , (4.6)

P =
(2λ1−λ2−λ3) (2λ2−λ1−λ3) (2λ3−λ1−λ2)

2
(
λ2

1+λ
2
2+λ

2
3−λ1λ2−λ1λ3−λ2λ3

)3/2 . (4.7)

The asphericity takes on values of 0 ≤ A ≤ 1, where A = 0 corresponds to spherically symmetric

object, and A = 1 corresponds to a polymer that is fully extended to form a rigid rod shape. The

prolateness P is bounded between −1 and 1, where P = −1 represents a fully oblate object such as

a disk, and P = 1 represents a prolate object in the shape of a rigid rod. The gyration tensor was

calculated for each chain and the time evolutions of R2
g, A, P were computed. The mean values

⟨R2
g⟩, ⟨A⟩ and ⟨P⟩ were evaluated by taking the average of these quantities over the time series data

for each chain. It should be noted that the analysis of the gyration tensor was performed in various

simulations of ring polymers [29, 49, 183–188].

Reigh and Yoon reported a universal scaling behavior of ⟨R2
g⟩ ∼ ρ

−0.59 for long ring polymers by

Monte Carlo simulation of a lattice model [49]. This exponent −0.59 is significantly different from

the value of −0.25 observed for linear polymers, which was a well-established prediction based

on scaling arguments. This observation suggests ring chains form more compact conformations

than linear chains. More recently, Cai et al. performed MD simulations of ring polymers using

the KG model by varying chain lengths N up to 5120, and reported the same scaling behavior of

⟨R2
g⟩ ∼ ρ

−0.59 [29]. The master curve was heuristically proposed and given by

⟨R2
g⟩/⟨R

◦2
g ⟩ = [1+0.45(ρ/ρ∗)]−0.59, (4.8)

where ⟨R◦2g ⟩ denotes the mean square radius of gyration in the dilute solutions. In addition, ρ∗

corresponds to the overlap density defined by ρ∗ = 3N/(4π⟨R◦2g ⟩
3/2). They also compared their

simulation results with available experimental data, and found good agreement between simulations

and experiments. Note that the ring polymer chains in their simulations were fully flexible because
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they did not incorporate any bending potentials.

Figure 4.2(a) shows the relative mean square radii of gyration ⟨R2
g⟩/⟨R

◦2
g ⟩ as a function of the

scaled density ρ/ρ∗. We estimated ⟨R◦2g ⟩ as the value of mean square radii of gyration ⟨R2
g⟩ both for

semi-flexible and stiff chains at a density of ρ = 0.001. This density corresponds to a sufficiently

low scaled density (ρ/ρ∗ < 10−1), making it appropriate to consider ρ = 0.001 as a dilute solution

both for semi-flexible and stiff ring polymers. The data for semi-flexible rings with εθ = 1.5 follow

the master curve given by Eq. (4.8). However, a deviation from Eq. (4.8) was observed for stiff

rings with εθ = 5, indicating that ⟨R2
g⟩ of stiff ring chains decreases slightly slower than that of

semi-flexible ring chains as the density is increased beyond ρ/ρ∗ ≳ 10. The inset in Fig. 4.2 (a)

shows the density ρ dependence of the mean square radii of gyrations ⟨R2
g⟩. This represents that the

stiff rings are larger than semi-flexible ones in all densities ρ.

Figure 4.2(b) and (c) show the average asphericity ⟨A⟩ and average prolateness ⟨P⟩, respectively,

as functions of ρ/ρ∗. Interestingly, we found that the values of ⟨A⟩ and ⟨P⟩ approached saturation

regardless of the bending energy εθ. In particular, the relatively small values of ⟨A⟩ ≃ 0.2 suggest

that the ring polymer adopt globular conformations, which remain valid across the densities exam-

ined. However, slightly large values of ⟨P⟩ ≃ 0.5 indicate that the rings extend moderately in the

direction of longest inertia axis. These imply that the shape of the rings is alomost spherical and

relatively insensitive to both εθ and ρ, provided that the chain length is sufficiently long compared

to the Kuhn length scale.

4.3.3 Inter-penetration of Ring Chains

As shown in Fig. 4.2, while the shape of the polymer remained largely unchanged on average, there

was a increase in the mean square radius of gyration ⟨R2
g⟩ when the chain stiffness increased to

εθ = 5. This suggests that the inter-molecular connectivity of ring chains may differs significantly

between semi-flexible and stiff chains. To explore this further, we calculated the radial distribution

function for the COM of ring chains g(r), and the results are presented in Fig. 4.3 as a function of

the scaled length of r/⟨R2
g⟩

1/2.
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Figure 4.3: Radial distribution function g(r) for COM of ring polymers as a function of the scaled
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Figure 4.4: Probability distributions of the number of virtual bonds, f (Zb), for ring polymers of
εθ = 1.5 (a) and εθ = 5 (b). The virtual bonds are defined based on Eq. (4.9). Panel (c) shows the
monomer density ρ dependence of the mean value of Zb.

As observed in Fig. 4.3, g(r) allowed us to characterize the degree of inter-penetration of ring

polymers. In fact, we did not observe a pronounced peak of g(r), but instead found finite values at

the length scale of r < ⟨R2
g⟩

1/2, indicating that there is some degree of inter-penetration between the

ring chains. The g(r) became more broad with increasing the monomer density, suggesting that the

chains are less separated from each other. Similar results of g(r) were reported for flexible chains

without the bending potential by Cai et al. [29] Additionally, as shown in Fig. 4.3(b), the degree

of the inter-penetration became more significant as the bending energy increased to εθ = 5. This

observation is consistent with the larger mean square radius of gyration ⟨R2
g⟩ of stiff rings with εθ = 5
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Figure 4.5: Visualization of virtual bonds (yellow lines) between the COM of rings (blue spheres)
for εθ = 1.5 [(a), (c) and (e)] and εθ = 5 [(b), (d) and (f)]. The monomer density ρ increases as
ρ = 0.1, 0.3, and 0.5 from top to bottom.

compared to that of semi-flexible rings of εθ = 1.5 at the same density ρ. The difference in ⟨R2
g⟩

is also evident in Fig. 4.2, where the curve for εθ = 5 is shifted to higher values of ρ/ρ∗ compared

to εθ = 1.5. These results suggest that the competition between repulsive forces inside the ring

and from adjacent rings plays a crucial role in determining the loop structure. While sufficiently

semi-flexible polymers tend to be more compact because the repulsion between neighboring rings

overcomes the monomer bead repulsion inside a single chain, the stiff polymers tend to expand due

to the long Kuhn length, leading to the inter-penetration of rings.

To analyze the number of inter-molecular connectivity, we considered virtually connected bonds

between the COM of ring chains. In particular, for two polymers i and j with the COM positions
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rrri and rrr j, they were considered to be virtually bonded if

ri j < A1⟨R2
g⟩

1/2, (4.9)

with the value of A1 = 1. Here, ri j = |RRRi−RRR j| is the distance between these COM. For each polymer,

the number of virtual bonds Zb, which represents the static coordination number, was counted.

Figure 4.4 depicts the probability distribution f (Zb) for ring polymers of εθ = 1.5 (a) and εθ = 5 (b)

at varying the density ρ. In the case of semi-flexible rings with εθ = 1.5, the peak was observed at

around 2 for most densities, except for ρ = 0.1, where Zb was predominantly 0, indicating that each

ring chain was mostly isolated and did not correlated with each other. However, for stiff rings with

εθ = 5, we observed an increase in the peak position and width of f (Zb) as the density ρ increased.

The monomer density ρ dependence of the mean value of Zb is shown in Fig. 4.4(c). Here, ⟨Zb⟩ can

be evaluated by

⟨Zb⟩ =

∫ ⟨R2
g⟩

1/2

0
4πr2

(
ρ

N

)
g(r)dr. (4.10)

In cases of g(r)= 1 and ⟨R2
g⟩ ∼ ρ

−0.6, ⟨Zb⟩may exhibit a scaling behavior of ⟨Zb⟩ ∼ ρ⟨R2
g⟩

3/2 ∼ ρ0.1 at

a fixed chain length N. This suggests that ⟨Zb⟩ increases slowly as the density increases. However,

the presence of g(r) < 1 for r < ⟨R2
g⟩

1/2, as observed in Fig. 4.3 both for εθ = 1.5 and 5, leads to the

deviates from the expected ⟨Zb⟩ ∼ ρ
0.1. Notably, as shown in Fig. 4.2(a), ⟨R2

g⟩ of εθ = 5 does not

follow the ⟨R2
g⟩ ∼ ρ

−0.6 scaling, resulting in a more pronounced increase in ⟨Zb⟩ with increasing the

density.

Moreover, the spatial distribution of inter-molecular connectivity is visualized in Fig. 4.5. For

semi-flexible ring polymers with εθ = 1.5, bonds describing the connectivity of COM are sparse

irrespective of the monomer density ρ. In contrast, as the density increases, ring polymers with

higher stiffness (εθ = 5) exhibit a stronger percolation, indicating a more interconnected network

bond. It is noteworthy that there exists a critical coordination number around 3, beyond which the

linked ring polymers percolate through the entire system [189].
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Figure 4.6: Monomer density dependence of the bond correlation function Fb(t) for εθ = 1.5 (a)
and εθ = 5 (b), respectively. The solid line represents the fitting result obtained using the stretched
exponential function, Fb(t) ≈ exp

[
−(t/τb)β

]
. Panel (c) shows the monomer density ρ dependence

of the average relaxation time ⟨τb⟩ of the bond correlation function Fb(t) and the diffusion time
τd = ⟨R2

g⟩/6D.

4.3.4 Rearrangements of Inter-molecular Connectivity

To examine rearrangements of inter-molecular connectivity of ring polymers, we analyzed the time

evolution of virtual bonds. This reflects the exchange of initially bonded neighbors because the

COM motion breaks old bonds and forms new ones. Although the average coordination number

⟨Zb⟩ may remain constant, the neighboring COMs will be replaced with the new ones, thereby

reshaping the cages around a tagged COM. A similar methodology, known as the bond-breakage

method, is used to study the DH observed in glass-forming liquids [170, 190–193].

The virtual bond between two polymers i and j which had been counted to be formed at an

initial time 0 through Eq. (4.9) was considered broken when

ri j(t) > A2⟨R2
g⟩

1/2, (4.11)

after a time interval of t. To ensure bond-breaking insensitive to thermal fluctuations, the threshold

value of A2 = 1.2 was set slightly larger than A1=1. The total number of surviving bonds, Nb(t),

was calculated from the initial time 0. The bond correlation function, Fb(t) = ⟨Nb(t)/Nb(0)⟩, was

obtained by averaging over the configurations at t = 0. Figure 4.6 shows the results of Fb(t) for
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Figure 4.7: Monomer density dependence of the dynamic susceptibility of bond-breakage χb(t) for
εθ = 1.5 (a) and εθ = 5 (b), respectively.

εθ = 1.5 (a) and εθ = 5 (b), respectively. The characteristic time scale of Fb(t) is related to that of

the rearrangement of the local coordination by the neighboring COMs, according to the definition

of the bond. The Fb(t) was fitted to the stretched exponential function Fb(t) = exp
[
− (t/τb)β

]
,

where the exponent β represents the degree of the deviation from the exponential decay with β = 1.

The average relaxation time ⟨τb⟩ was then calculated from ⟨τb⟩ =
∫ ∞

0 Fb(t)dt, and estimated by

⟨τb⟩ = (τb/β)Γ(1/β) with the Gamma function Γ(· · · ). Figure 4.6(c) shows ⟨τb⟩ as a function of

the monomer density ρ. Our results demonstrate the increase in the average relaxation time ⟨τb⟩

of Fb(t) as the monomer density ρ increased, both for εθ = 1.5 and εθ = 5. The increase in ⟨τb⟩

apparently obeys an exponential trend as a function of ρ, except at the dilute density of ρ = 0.1 for

εθ = 1.5, where the average coordination number ⟨Zb⟩ is less than 1, indicating that polymer rings

are nearly isolated (see Fig. 4.4(c)). Furthermore, we observed a more pronounced increase in ⟨τb⟩

for stiff ring polymers with εθ = 5, which is in accordance with the monomer density ρ dependence

of ⟨Zb⟩ (see again Fig. 4.4(c)).

Another significant time scale to consider is the diffusion time, τd, defined as τd = ⟨R2
g⟩/6D,

which corresponds to the time at which the MSD reaches the length scale of the mean square

radius of gyration ⟨R2
g⟩. The monomer density dependence of τd is illustrated in Fig. 4.6(c). It is

observed that for semi-flexible rings with εθ = 1.5, τd increases in a similar manner to ⟨τb⟩, while

for stiff rings with εθ = 5, τd exhibits a significant increase and becomes decoupled from ⟨τb⟩ as
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the density ρ increases. These observations suggest the COM diffusion of stiff rings is not solely

driven by local bond rearrangements, but requires a cooperative mechanism.

We then examined the collective effects of bond rearrangements in ring polymers. For this

purpose, the dynamic susceptibility of bond-breakage was calculated by the fluctuation function of

the number of broken-bonds at different time intervals, t [191]. The number of the breakage-bond

Bi(t) between two times 0 and t for the i-th polymer was counted based on the conditions given

in Eqs. (4.9) and (4.11). The degree of bond-breakage correlations can be characterized by the

susceptibility χb(t), which is defined as

χb(t) =
1
M

〈 M∑
i=1

M∑
j=1

δBi(t)δB j(t)
〉
, (4.12)

where δBi(t) = Bi(t)/2−⟨B(t)⟩ represents the deviation from the average number of broken bonds.

The average number of broken bonds can be estimated as ⟨B(t)⟩ = ⟨
∑M

i=1 Bi(t)/2⟩/M. Note that the

factor 1/2 avoided double-counting of the bond-breakage between polymers i and j. Figure 4.7

illustrates the susceptibility of bond-breakage, χb(t), for different values of εθ and ρ. For semi-

flexible rings with εθ = 1.5, the χb(t) shows relatively small values, whereas the peak of χb became

pronounced (χb ∼ 30) at the highest density ρ = 0.85 investigated. In contrast, for stiff rings with

εθ = 5, the peaks show significant development with increasing monomer density, particularly at

the time regimes where the MSD nearly reaches the diffusive behavior. At the density of ρ = 0.55,

the peak height reaches χb ∼ 90. Therefore, the observed NGP behavior in Fig. 4.1(c) and (d) is

related to DH, which is also characterized by the bond-breakage susceptibility, χb(t). Interestingly,

the results of α2(t) and χb(t) suggest that ring polymers with εθ = 1.5 exhibit spatial homogeneous

dynamics, even in the sub-diffusion regime. In this perspective, the inter-chain interactions in semi-

flexible ring polymer melts display notable characteristics, while stiff ring polymer melts exhibit

interactions reminiscent of “entanglements” in linear polymer melts.

Mei et al. have recently developed the polymer interaction site model (PRISM) as a microscopic

theory for dense ring polymer melts [20, 194]. This theory proposes a partially inter-penetrating,
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two-step fractal structure model for each ring chain and provides a master curve for the chain

length N dependence of the COM diffusion constant D. Although the PRISM theory has shown

good agreement with MD simulations data for semi-flexible ring polymers with εθ = 1.5 [11],

deviations from the master curve have been observed for stiff rings of εθ = 5 [156]. To gain a

deeper understanding of the underlying mechanism of emergence of DH in ring polymers melts, a

combined effort between theory and simulation may be necessary. In particular, our MD simulation

results analyzing DH can provide insights into the deviation from the master curves reported in

ref. 20, and may facilitate a generalization of the theory by incorporating an activated hopping

process [23].

4.4 Conclusion

In conclusion, our MD simulations of ring polymer melts using the KG model have provided in-

sights into the dynamics of semi-flexible and stiff ring chains. By analyzing the NGP in the dis-

tribution of the COM displacement, we have found that more stiff ring chains exhibit a peak in

the NGP in long time regimes, which increases with the monomer density. This suggests that the

dynamics of stiff ring chains are affected by strong inter-molecular interactions and that the motion

of the COM is correlated with each other. In contrast, more semi-flexible ring polymers exhibit rel-

atively small non-Gaussianity, indicating that the COM mobility is almost uncorrelated with each

other. The difference in non-Gaussianity between the two types of ring polymers suggests that the

nature of the inter-molecular interactions changes significantly depending on the degree of chain

stiffness.

The behavior of the radius of gyration Rg in relation to ρ depends on the stiffness of the ring

polymer chains. In the case of more semi-flexible rings, the Rg follows a master curve described by

Eq. (4.8). However, this curve does not apply to stiff ring polymer melts. The deviation from the

master curve can be explained by the competition between the shrinkage caused by the excluded

volume of neighboring polymers and the expansion due to the chain stiffness. Specifically, semi-
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flexible ring polymers tend to adopt a compact globule conformation due to the excluded volume

interaction with their neighbors, while more stiff rings expand due to the long Kuhn length.

We have also analyzed the dynamics of bond-breakage between the COM of rings defined by

using averaged radius of gyration, ⟨R2
g⟩

1/2. The network of virtual bonds in stiff rings are perco-

lating, while those in semi-flexible rings are sparsely distributed. Furthermore, the results for the

dynamic susceptibility of bond-breakage are consistent with the non-Gaussianity in the displace-

ment distribution, indicating that the DH of bond-breakage is coupled with the non-Gaussianity in

diffusion in ring polymer melts. Furthermore, it is crucial to investigate the dynamics of ring-linear

blend melts [137, 195–198]. In practical terms, the analysis of the bond-breakage is particularly

well-suited for this system, enabling the assessment of the inter-connectivity dynamics of polymer

chain COMs.

Threading is commonly discussed in ring polymer melts, but the relationship with the bond-

breakage dynamics remains unclear. Further investigation into the properties of threading in ring

polymer melts with varying chain stiffness is warranted. Finally, we have found that semi-flexible

ring polymers exhibit sub-diffusion yet Gaussian distribution with unique dynamics. We suggest

that the microscopic theory based on the PRISM for ring polymer melts will be useful for un-

derstanding the diffusion mechanisms of these systems. Drawing on another crucial insight from

ref. 189, we put forward the notion that the value of ⟨Zb⟩ = 3 acts as a threshold for the percola-

tion of virtual bond networks and the emergence of DH in ring polymers. To gain deeper insights,

further analysis is required, including the cluster size distribution by varying the chain stiffness εθ

and extending the study to longer chain length N. Currently, we are pursuing the application of

persistent homology analysis to explore this perspective further [66].
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Chapter 5

Persistent Homology Reveals the Origin of

Topological Glasses in Ring Polymer Melts

5.1 Introduction

Ring polymers exhibit distinctive properties compared to their linear counterparts [3, 5, 54, 199].

One key feature thought to define topological constraints in ring polymers is the interpenetrating

structure known as “threading”. Threading occurs when one ring polymer penetrates the loop of

another ring polymer, with the penetrating ring classified as active and the penetrated ring as pas-

sive, illustrating the asymmetric and hierarchical nature of the threading network. For sufficiently

long rings, this threading network can evolve, eventually leading to the formation of “topological

glasses,” where the relaxation time is expected to increase drastically with respect to the extent of

threading [55, 67, 68, 163].

Analyzing threading and clarifying its relationship with glass-like properties is crucial. While

several approaches for quantifying threading have been proposed, including methods based on

minimal surface [62, 63] and geometric analysis [64, 65], Landuzzi et al. introduced a method for

quantifying the threading of ring polymers using persistent homology (PH) [66]. PH is a math-

ematical tool that characterize topological features such as “loops” from point cloud [200–202].

Specifically, Landuzzi et al. investigated threading structures using PH from MD simulations with

the Kremer–Grest (KG) model [114] for ring polymers. Of particular interest was the chain length

N dependence of ring polymers up to N = 2048 at a monomer number density of 0.1, incorporating
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a bending potential Ubend(θ) = εθ(1+ cosθ), where θ represents the angle formed by consecutive

bonds and εθ = 5 (see Eq. (5.3) for details). This bending potential effectively models the polymers

as worm-like chains, analogous to the Kratky–Porod model [203].

We recently performed MD simulations using the KG with two types of ring polymers: semi-

flexible (εθ = 1.5) and stiff (εθ = 5) rings with a fixed chain length N = 400 to investigate the

influence of chain stiffness on their dynamic properties [204]. The rearrangement dynamics of

the center of mass (COM) were analyzed, with a focus on dynamic heterogeneity to clarify glassy

behavior. Our results demonstrated that stiff ring polymers exhibit pronounced glassy behavior

accompanied by dynamic heterogeneity, whereas semi-flexible ring polymers display homogeneous

dynamics characterized by a Gaussian distribution of COM displacement. This distinction suggests

that the dynamic properties of ring polymers are fundamentally influenced by the chain stiffness,

emphasizing the need to examine threading structures across varying degrees of chain stiffness.

The purpose of this study is to elucidate the influence of the chain stiffness and monomer

number density of ring polymers on their threading structures. We first analyze the connectivity of

COM using PH. Subsequently, we characterize the active and passive threading structures between

pairs of ring chains through PH. Through these analyses, we clarify the topological characteristics

of ring polymers and their relationship to glassy behavior, informed by insights gained from the

rearrangement dynamics of COM.

5.2 Methods

We employed MD simulations for ring polymer melts utilizing the KG model. Each ring polymer

is represented by N monomer beads, each with mass m and diameter σ. The system comprises

M ring chains contained within a three-dimensional cubic box with volume of V , with periodic

boundary conditions. The monomer beads interact through three types of inter-particle potentials:

the Lennard-Jones (LJ) potential governs the interaction between all pairs of monomer beads and
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is defined as

ULJ(r) = 4εLJ

[(
σ

r

)12
−

(
σ

r

)6
]
+C, (5.1)

where r is the distance between two beads, εLJ is the depth of the potential well, and C is a constant

that shifts the potential at the cut-off distance of rc = 21/6 σ. Two adjacent monomer beads along

the chain also interacted via the finitely extensible nonlinear elastic (FENE) bond potential

ULENE(r) = −
1
2

KR2
0 ln

1− (
r

R0

)2, (5.2)

for r < R0, where K and R0 represent the spring constant and the maximum length of the bond,

respectively. We used the values of K = 30εLJ/σ
2 and R0 = 1.5σ. Lastly, the chain stiffness is

controlled by incorporating a bending potential

Ubend(θ) = εθ[1− cos(θ− θ0)], (5.3)

where θ is the bending angle formed by three consecutive monomer beads along the polymer chain.

In this study, the bending energy was set as εθ/εLJ = 0, 1.5, 2, 3, 4, and 5, with an equilibrium angle

of θ0 = 180◦.

All MD simulations were performed using the Large-scale Atomic/Molecular Massively Par-

allel Simulator (LAMMPS) [135]. Length, energy and time are represented in units of σ, εθ and

(m/εLJ)1/2, respectively. Additionally, the temperature is expressed in units of εLJ/kB, where kB is

Boltzmann constant. We fixed the temperature T , chain length N, number of chains M as T = 1.0

and N = 400, and M = 100, respectively. Throughout the simulations, temperature was controlled

using the Nosé–Hoover thermostat, with a time step of ∆t = 0.01. The monomer number den-

sity ρσ3 (= NMσ3/V) was varied as 0.1, 0.2, 0.3, 0.4, and 0.5 for each degree of chain stiffness.

Henceforth, ρ will be referred to as density.

Here, we briefly outline PH: A set of coordinates such as beads of chains or COM, denoted as

{rrr} = {rrr1,rrr2, . . . ,rrrκ}, is used as input data, where κ is the number of coordinates. At each coordinate,
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Figure 5.1: Density ρ dependence of λ(α) as a function of 2
√
α/

√〈
R2

g

〉
by varying the bending

energy εθ = 0 (a), εθ = 1.5 (b), εθ = 2 (c), εθ = 3 (d), εθ = 4 (e), and εθ = 5 (f). The horizontal and
vertical dashed lines represent λ = 0 and α =

〈
R2

g

〉
/2, respectively.

assign a virtual sphere with radius
√
α, where α is a parameter. Initially, when α = 0, all points are

treated as disconnected components. As α increases, the spheres begin to overlap, and connected

components form, creating edges and facets. During this process, the topological features varies

discontinuously with respect to α, i.e., the loops will appear and disappear. We record the radii for

appearance and disappearance as b (birth) and d (death) respectively for each hole, and introduce

persistence diagram (PD) as a collection (b, d) of all holes. In this context, a zero-dimensional hole

represents a connected component, while a one-dimensional hole represents a loop. PD captures not

only the topological features at a specific radius, i.e., a threshold of connection, but also how these

features change as the threshold increases. All analysis were performed using the HomCloud [205].
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5.3 Results and Discussion

The first analysis aims to reveal the connectivity of the COM coordinates of ring polymer chains

using PH. The number of connected components at a given α, denoted as β0(α) and referred to as

the zero-th Betti number, is calculated. As the radius of the virtual sphere with a radius of
√
α

expands, spheres will connect each other and finally become one lump. Thus, β0(α) converges to

unity as α approaches infinity. We define the function representing the decrease in β0(α) as

λ(α) =
〈
β0(α)−1
β0(0)−1

〉
, (5.4)

where ⟨· · ·⟩ represents the statistical average over the snapshot configurations generated by MD

simulations; note that β0(α) can be determined for each snapshot. Accordingly, this function takes

the value λ(α = 0) = 1 and λ(α→∞) = 0. The density ρ dependence of λ(α) is plotted in Fig. 5.1 by

varying the bending energy εθ. In the plot, the horizontal axis is represented by 2
√
α/

√〈
R2

g

〉
with

the mean square gyration of radius
〈
R2

g

〉
of the ring chains. Note that the COM distance between

any pair of two ring polymers, i and j, is related as ri j = 2
√
α when the rings are in contact, since

the radius of the sphere in the PH analysis is
√
α.

Figure 5.1 demonstrates that λ(α) decreases and converges to zero at a specific length scale

α. This behavior indicates percolation, where clusters are formed by virtually connected COMs.

The characteristic length scale is α =
〈
R2

g

〉
/2, where a virtual bond is considered to have formed

if the distance ri j between the COMs of ring polymer pair (i, j) satisfies ri j ≤
〈
R2

g

〉
(see horizontal

lines in Fig. 5.1). For flexible ring chains with εθ = 0, λ takes finite values for α ≤
〈
R2

g

〉
across

all densities, indicating the presence of numerous small clusters. In contrast, stiff ring chains with

εθ = 5 exhibit λ ≈ 0 at α =
〈
R2

g

〉
/2, suggesting the formation of percolated networks among COMs

of ring chains. Furthermore, the length scale of α exhibiting a plateau of λ ≈ 1 approximately

corresponds to the characteristic core length, analogous to the behavior of ring polymers modeled

as soft macromolecules. As εθ increases, this core length is reduced, as shown in Fig. 5.1. These
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findings indicate that in flexible ring chains, the cores are large and overlap each other, but their

COMs are not connected with one another. In contrast, for stiff ring chains, the smaller cores and

relatively larger radius of gyration lead to an increase in the number of virtual bonds between. Thus,

the degree of density and chain stiffness strongly influence the structural and dynamic behavior of

ring polymer systems.

For flexible ring polymers with the chain stiffness εθ = 0 in semidilute solutions, molecular

dynamics (MD) simulations using the Kremer–Grest (KG) model reveal that the mean square radius

of gyration
〈
R2

g

〉
as a function of density ρ follows the scaling behavior of

〈
R2

g

〉
∼ ρ−0.59 [29]. More

specifically, using the mean square radius of gyration in the dilute limit, denoted as
〈
R◦2g

〉
, and the

overlap density 3N/(4π⟨R◦2g ⟩
3/2), the scaling relation

⟨R2
g⟩

⟨R◦2g ⟩
=

[
1+a

(
ρ

ρ∗

)]b

, (5.5)

was proposed. Here, a = 0.45 and b = −0.59 were the fitting parameters.

Figure 5.2 shows the chain stiffness εθ dependence of the relationship between ⟨R2
g⟩/⟨R

◦2
g ⟩ and

ρ/ρ∗ from our MD simulations. Note that
〈
R◦2g

〉
was calculated at ρ = 0.001. The results reveal

that
〈
R2

g

〉
decreases with increasing density ρ and exhibits significant deviation from the scaling of

Eq. (5.5) when chain stiffness εθ is large, particularly noticeable for ρ/ρ∗ > 1.This deviation from

Eq. (5.5) implies that the influence of density ρ on chain conformation varies depending on the

chain stiffness εθ.
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Figure 5.2: density ρ scaled by the overlap density ρ∗ dependence of mean square radius of gyration〈
R2

g

〉
scaled by its dilute limit value

〈
R◦2g

〉
.

We calculated the radial distribution function, g(r), for center of mass (COM) of ring chains.

The results are illustrated in Fig. 5.3. As demonstrated in Fig. 4.3, g(r) exhibits finite values at

the length scale r <
√〈

R2
g

〉
, indicating significant interpenetration between the ring chains. For

flexible ring polymers with εθ = 0, g(r) broadens with increasing density ρ, suggesting that the

chains become less spatially separated from one another. In addition, for stiff ring polymers with

εθ = 5, the degree of interpenetration becomes more pronounced as the density ρ increases. This

observation is attributed to the larger mean square radius of gyration,
〈
R2

g

〉
, compared to that of

flexible ring chains with εθ = 0 at the same ρ for dense systems (see Fig. 5.2). An analogous

observation with respect to the chain stiffness and density dependence of g(r) for ring polymers

was reported in a previous study [13].
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Figure 5.3: Radial distribution function g(r) for COM of ring polymers as a function of the scaled

distance r/
√〈

R2
g

〉
at εθ = 0 (a), εθ = 1.5 (b), εθ = 2 (c), εθ = 3 (d), εθ = 4 (e), and εθ = 5 (f).

As shown in Figs. 5.2 and 5.3, the influence of density ρ on
〈
R2

g

〉
and g(r) significantly varies

with chain stiffness εθ. To characterized the connectivity between COMs by varying ρ and εθ, we

introduced a virtual bond between ring polymers i and j. Specifically, if the distance between the

COMs of polymers i and j, denoted as ri j, satisfies

ri j ≤

√
⟨R2

g⟩, (5.6)

the two polymer chains are considered to be virtually bonded [204]. The number of virtual bond is

denoted as Zb. The average number of virtual bonds can be expressed by

⟨Zb⟩ =

∫ √
⟨R2

g⟩

0
4πr2

(
ρ

N

)
g(r)dr. (5.7)
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Note that the threshold of the virtual bond is less than the contact distance, 2
√〈

R2
g

〉
, to emphasize

the overlapping between COMs.

Figure 5.4 shows ⟨Zb⟩ as a function of density ρ by varying the chain stiffness εθ. The ⟨Zb⟩

is an increasing function of ρ. As εθ increases, the slope becomes steeper, indicating a greater

dependence on ρ. In contrast, for flexible ring chains with εθ = 0, g(r/
√〈

R2
g

〉
) was found to saturate

with increasing ρ, as demonstrated in the previous study [29]. Similarly, ⟨Zb⟩ is also expected to

approach saturation towards a finite value. This distinction in the density ρ dependence on the

average number of virtual bonds ⟨Zb⟩ implies a significant difference in intermolecular interaction

between ring polymers as the chain stiffness εθ varies.
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Figure 5.4: Density ρ dependence of the average number of virtual bonds, ⟨Zb⟩ by varying the chain

stiffness εθ.

The next analysis focuses on the one-dimensional hole, i.e. “loop” structure, characterized by

PH. Specifically, PH is performed on each individual ring polymer i by using the monomer coordi-

nates as input, which generates a persistent diagram (PD) denoted as PD(i). This analysis reveals

the birth and death of topological features such as loops within the structure of the polymer. Fur-

thermore, the “life” of the loop is defined as the vertical distance from the diagonal line in the PD,

denoted as l = d− b, which quantifies how long during the increase of α the loop persists before

disappearing. Thus, larger values of l indicates longer-lived loops, reflecting more stable topologi-
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Figure 5.5: Density ρ dependence of β1(α) (points) and β̃1(α) (solid curves) by varying the bending
energy εθ = 0 (a), εθ = 1.5 (b), εθ = 2 (c), εθ = 3 (d), εθ = 4 (e), and εθ = 5 (f).

cal features of the system against the change of threshold. Next, we performed PH for (i, j) pairs of

ring polymer chains using the set of their coordinates as input, generating PD denoted as PD(i∪ j).

Since threading occurs when the loop of one ring polymer disappears due to penetration by another

polymer, PD( j→ i)= PD(i)\PD(i∪ j) allows us to quantify the loops being threaded [66]. Here, the

set difference operator \ represents the subtraction of topological features that vanish when poly-

mer j interacts with polymer i. In this context, polymer i is considered “passive” while polymer

j is the “active” participant in the threading process. Thus, this approach quantifies the threading

structures between pairs of ring polymers. The probability density distributions of PD(i), PD(i∪ j),

and PD( j→ i) with εθ = 1.5 and 5 at densities ρ = 0.1 and 0.5 are shown in Fig. B1, B2, B3, and

B4 in B.

To analyze the threading structure by varying the density ρ and chain stiffness εθ, we quantify
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the first Betti number, β(i)
1 (α), in the PD(i). This is defined by

β(i)
1 (α) =

∫ ∞

α
dd

∫ ∞

0
db

∑
k

δ(b−b(i)
k )δ(d−d(i)

k ), (5.8)

where k refers to the k-th loop on the ring chain i. This β1(α) quantifies the number of loops in the

region where b < α and d > α, quantifying the number of loops observed at a given α. The average

of β(i)
1 (α) over all ring chains can be expressed as

β1(α) =
〈

1
N

∑
i

β(i)
1 (α)

〉
. (5.9)

The same calculation can be performed for PD( j→ i), and the average over all pairs of ring chains

(i, j) are denoted as β̃1(α). This β̃1(α) measures the number of loops that are being threaded between

by other ring chains. Consequently, it is assured that β1(α) ≥ β̃1(α). Furthermore, β1(α) and β̃1(α)

converges asymptotically to zero with respect to each other as α becomes sufficiently large.

Figure 5.5 shows β1(α) and β̃1(α) for varying ρ and εθ. The stiff ring exhibits a broader peak at

larger length scales α compared to that of the flexible ring, indicating the presence of large loops.

As the density increases, this peak sharpens, with its position shifting to smaller α, signifying

the formation of smaller loops. However, the discrepancy in β1(α) and β̃1(α) between flexible

and stiff rings becomes more pronounced with increasing density ρ. This observation aligns with

the fact that the density ρ dependence of the mean square radius of gyration
〈
R2

g

〉
exceeds the

expected scaling behavior of
〈
R2

g

〉
∼ ρ−0.59 for stiff rings as ρ increases (see Fig. S1 in Supporting

Information). Finally, for sufficiently large α, the convergence of β1 ∼ β̃1 indicates that all large

loops are involved in threading.

We further examine the active threading number Na, which represents the number of rings

penetrated by a given ring, and the passive threading number Np, which denotes the number of
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Figure 5.6: Density ρ dependence of probability density distribution of active threading number Na
(points) and passive threading number Np (solid curves) by varying the bending energy εθ = 0 (a),
εθ = 1.5 (b), εθ = 2 (c), εθ = 3 (d), εθ = 4 (e), and εθ = 5 (f). The threshold value is fixed at lth = 0.

rings that experience penetration by that same ring. For the pair (i, j), we define

I(k)
j→i =


1 if lk ≥ lth

0 if lk < lth

(5.10)

where lk represents the life of the k-th loop in PD( j→ i), and lth is a threshold value for the life

used to characterize the length scale of threading. By summing over loop k and polymer j (i), the

active (passive) threading number, Na, j (Np, j) for polymer j (i) are obtained, expressed as follows:

Na, j =
∑

i

∑
k

I(k)
j→i, Np,i =

∑
j

∑
k

I(k)
j→i. (5.11)

Furthermore, the averages over all ring chains are denoted by Na and Np, respectively. Their sta-
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Figure 5.7: Density ρ dependence of probability density distribution of active threading number Na
(points) and passive threading number Np (solid curves) by varying the bending energy εθ = 0 (a),
εθ = 1.5 (b), εθ = 2 (c), εθ = 3 (d), εθ = 4 (e), and εθ = 5 (f). The threshold value is fixed at lth = 9.

tistical averages over all chains ensure ⟨Na⟩ =
〈
Np

〉
because, when threading occurs, active and

passive threading are always counted once, respectively.

Figure 5.6 presents the probability density distribution of Na and Np, respectively. Note that

Na and Np were calculated by including threading at all length scales, with the threshold lth set to

zero. It is demonstrated that for both Na and Np, the peak shifts to higher values with increasing

chain stiffness εθ and density ρ, indicating a greater occurrence of threading. Notably, the density

dependence of the distribution becomes more pronounced for stiff rings compared to that of flexible

rings. In addition, Np exhibits a slightly broader distribution than Na at high density for stiff rings.

This asymmetric property between Na and Np was found to be pronounced for longer stiff rings,

suggesting that the passive threading is significantly influenced by the presence of long-lived loops.

In other words, larger loops are likely to be involved in the passive threading.
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We further characterize the long-lived active and passive threading structures by introducing

the threshold value lth, which has a dimension is σ2. Since points near the diagonal line are con-

sidered noisy, we introduce lth to filter out threading associated with loops of short life, thereby

characterizing loops that are mostly correlated with topological constraints. While the results for

varying lth are not displayed, the threshold value lth = 9 was determined to capture the most relevant

characteristics, and the corresponding results are shown below.

Figure 5.7 illustrates the density dependence of probability density distribution of active and

passive threading numbers, Na and Nb, at lth = 9. For flexible ring chains, both Na and Np show the

tendency of the decrease toward zero as the density ρ increases. This trend is expected to become

more pronounced as the threshold value lth increases. This observation suggests that the number of

loops necessary for threading becomes minimal in higher densities, consistent with the overlapping

structures between the crumbled globules characteristic of flexible ring chains. In contrast, for

stiff ring chains, the distribution of Na exhibit a peak at Na ≈ 20 across all densities, whereas the

distribution of Np shows two distinct peaks, one at Np = 0 and another at Np ≈ 20. In addition, the

latter peak broadens as the density ρ increases. This observation implies that, when focusing on

passive threading of stiff ring chains, they can be categorized into two different types: those having

large loops facilitate threading and those lacking such structures. The latter rings are regarded as

exhibiting more compact characteristic rather than those of the former.

5.4 Conclusion

In summary, we employed PH analysis to characterize threading from MD simulations of the KG

model for ring polymers. Specifically, we focused on the threading structure as influenced by the

density ρ and chain stiffness εθ, while maintaining the chain length of N = 400. Our analyses con-

sists of three components: First, we examined the zero-th Betti number β0(α) to quantify the num-

ber of connected components formed by COMs of the polymers. This analysis demonstrates that

numerous small clusters of COMs persist for flexible ring chains even at high densities, whereas
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a percolated network of COMs develops for stiff ring chains as the density increases. Second, we

calculated the first Betti numbers, β1(α) and β̃1(α), from PD( j→ i) to characterize the threading

structure between pairs of ring chains. It is shown that stiff ring chains exhibit large-scale loops

that facilitate threading as the density ρ increases. Furthermore, we also computed the active and

passive threading numbers, Na and Np. As both εθ and ρ increase, their averages become larger,

indicating greater generations of threading, accompanied by the asymmetric behavior of the dis-

tributions of Na and Np. Finally, we introduced the threshold value lth to emphasize long-lived

threading structures in the calculations of Na and Np. This analysis reveals that the distributions

of Na and Np converges to zero for flexible ring chains as the density increases. In contract, for

stiff ring chains, the distribution of Np bifurcates into two distinct peaks, indicating heterogeneous

threading structure characterized by rings with large-scale loops that facilitate threading and those

that have compact ring characteristic. This heterogeneous threading structure observed in stiff ring

chains serves as the underlying mechanism for topological glasses, which exhibit heterogeneous

rearrangement dynamics of COMs analogous to those of glass-forming liquids.
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Chapter 6

General Conclusion

We quantitatively investigated the role of chain stiffness on the glassy dynamics both in linear and

ring polymers by using MD simulations. The main results are summarized as follows:

In Chapter 2, we have numerically studied elastic heterogeneities and acoustic excitations in

linear polymer glasses, with particular attention to the effects of the chain stiffness. Our main

finding is that the degree of heterogeneity in the local shear modulus distribution is insensitive to

changes in the bending rigidity. According to the heterogeneous elasticity theory, for unchanging

elastic heterogeneities, the vibrational and acoustic properties of amorphous materials are con-

trolled only by global elastic moduli. Consistent with this theoretical prediction, we demonstrated

that the BP and properties of the transverse acoustic excitations are both simply scaled only by the

global shear modulus. The present work therefore clarified remarkably simple material property

relationships in polymer glasses. These originate from the invariance of the local elastic hetero-

geneities over an extremely wide range of bending rigidity values for polymer chains. Our results

also provide good demonstrations that verify the heterogeneous elasticity theory [79–82], which is

among the central theories used to describe the mechanical and vibrational properties of amorphous

materials. We note that effects of polymerization on vibrational properties can be scaled by global

elastic moduli [102, 106].

Chapter 3 focused on the chain length dependence of the Rouse relaxation time and non-

Gaussianity for characterizing both the segmental and center-of-mass (COM) mobility with or

without chain ends. For linear polymers, the deviation from the Rouse model behavior becomes

remarkable with increasing the chain length N by showing the scaling τp ∼ (N/p)3.4, which is con-
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sistent with previously reported results. The NGP shows two peaks: the first peak appears on the

time scale where the MSD escapes from the segmental ballistic motion, whereas the second peak

corresponds to the realization of the diffusive behavior of the MSD. This indicates that the segment

dynamics becomes spatially heterogeneous because of the higher mobility of chain ends in the lin-

ear polymer chain. For ring polymers, the Rouse-like behavior with the scaling τp ∼ (N/p)2.4 was

observed. Although the peak of NGP was observed at short times similar to that of linear poly-

mers, the non-Gaussianity was found to be strongly suppressed even for a longer time regime. The

segmental dynamics in ring polymers without chain ends becomes spatially homogeneous and the

mechanism of the chain motion is essentially different from the reptation model for linear poly-

mers. The center-of-mass dynamics in ring polymers also shows the Gaussian behavior, while a

very small non-Gaussianity is observed with increasing chain length.

In Chapter 4, we investigated the glassy dynamics of COM rearrangement in ring polymers

with varying the chain stiffness εθ and the monomer density ρ. NGP in the distribution of the

COM displacement, we have found that more stiff ring chains exhibit a peak in the NGP in long

time regimes, which increases with the monomer density. This suggests that the dynamics of stiff

ring chains are affected by strong inter-molecular interactions and that the motion of the COM is

correlated with each other. In contrast, more semi-flexible ring polymers exhibit relatively small

non-Gaussianity, indicating that the COM mobility is almost uncorrelated with each other. The

difference in non-Gaussianity between the two types of ring polymers suggests that the nature of

the inter-molecular interactions changes significantly depending on the degree of chain stiffness.

The behavior of the radius of gyration Rg in relation to ρ depends on the stiffness of the ring poly-

mer chains. In the case of more semi-flexible rings, the Rg follows a master curve described by

Eq. (4.8). However, this curve does not apply to stiff ring polymer melts. The deviation from the

master curve can be explained by the competition between the shrinkage caused by the excluded

volume of neighboring polymers and the expansion due to the chain stiffness. Specifically, semi-

flexible ring polymers tend to adopt a compact globule conformation due to the excluded volume

interaction with their neighbors, while more stiff rings expand due to the long Kuhn length. We
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have also analyzed the dynamics of bond-breakage between the COM of rings defined by using

averaged radius of gyration, ⟨R2
g⟩

1/2. The network of virtual bonds in stiff rings are percolating,

while those in semi-flexible rings are sparsely distributed. Furthermore, the results for the dynamic

susceptibility of bond-breakage are consistent with the non-Gaussianity in the displacement distri-

bution, indicating that the DH of bond-breakage is coupled with the non-Gaussianity in diffusion

in ring polymer melts.

Chapter 5 showed the chain stiffness εθ and density ρ dependence of the threading structures in

ring polymer solutions by using the persistent homology (PH). First, we examined the zero-th Betti

number β0(α) to quantify the number of connected components formed by COMs of the polymers.

This analysis demonstrates that numerous small clusters of COMs persist for flexible ring chains

even at high densities, whereas a percolated network of COMs develops for stiff ring chains as the

density increases. Second, we calculated the first Betti numbers, β1(α) and β̃1(α), from PD( j→ i)

to characterize the threading structure between pairs of ring chains. It is shown that stiff ring chains

exhibit large-scale loops that facilitate threading as the density ρ increases. Furthermore, we also

computed the active and passive threading numbers, Na and Np. As both εθ and ρ increase, their av-

erages become larger, indicating greater generations of threading, accompanied by the asymmetric

behavior of the distributions of Na and Np. Finally, we introduced the threshold value lth to empha-

size long-lived threading structures in the calculations of Na and Np. This analysis reveals that the

distributions of Na and Np converges to zero for flexible ring chains as the density increases.

Throughout this study, it is unraveled that the glassy dynamics in ring polymers are significantly

affected by the threading with large loops. We characterized the dynamic heterogeneity of COM

rearrangement in ring polymers by utilizing the bond-breakage analysis. Stiff ring chains show

heterogenous dynamics with dense virtual bonds network. In contrast, semi-flexible ring chains

exhibit homogeneous dynamics with sparse virtual bonds. These results are attributed to the devia-

tion of the radius of gyration from the master curve for fully flexible ring chains. While flexible ring

chains exhibit a compact globule conformations, stiff ring chains expand and form large loops that

facilitate threading. The dynamics of threading have not been fully understood yet, while we are
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investigating it by using machine learning to predict the displacement from threading connectivity.

We are also planning to examine the dynamic elastic modulus to characterize the properties of TG.
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Appendices

A Formulation of the Rouse model for ring polymer chain

In the Rouse model, the equation of motion for the polymer chain composed of N beads is given

by the following Langevin equation:

ζ
drrrn

dt
= −k(2rrrn− rrrn−1− rrrn+1)+wwwn(t), (A.1)

where rrrn represents the coordinates of the n-th bead for n = 1,2,3, · · · ,N and ζ denotes the ef-

fective hydrodynamic friction coefficient. Furthermore, two successive beads are connected by a

harmonic spring with the modulus k. Here, the random force wwwn acting on the bead is related to the

temperature T and friction coefficient ζ by obeying the fluctuation-dissipation theorem:

⟨wwwn(t) ·wwwm(t′)⟩ = 6kBTζδnmδ(t− t′). (A.2)

According to the statistical description for the freely-jointed chain model, the spring constant k

is equal to 3kBT/b2 with the mean square distance b2 between two beads. Note that the periodic

boundary conditions

rrr0 = rrrN , rrrN+1 = rrr1 (A.3)

should be imposed on the ring polymer chain. If we define two N×3 matrices, RRR= (rrr1,rrr2,rrr3, · · · ,rrrN)T

and WWW = ζ−1(www1,www2,www3, · · · ,wwwN)T (the superscript T denotes the transpose), Eq.(A.1) can be ex-

pressed as
dRRR
dt
= −

k
ζ

AAARRR+WWW, (A.4)
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with the matrix N ×N AAA:

AAA =



2 −1 0 · · · 0 0 −1

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0

0 0 −1 · · · 0 0 0
...

. . .
...

0 0 0 · · · −1 2 −1

−1 0 0 · · · 0 −1 2



. (A.5)

Equation (A.4) can be solved by the diagonalization of the matrix AAA. The eigenvalue λ equation is

given as

(AAA−λEEE)FFF = 0, (A.6)

with the eigenvector FFF = ( f1, f2, f3, · · · , fN)T and the unit matrix EEE. If the function form of fn is

assumed to be

fn = zn, (A.7)

with the complex number z, Eq. (A.6) reduces to the following multiple linear equations:

(2−λ)z− z2− zN = 0, (A.8)

...

−zn−1+ (2−λ)zn− zn+1 = 0, (A.9)

...

−z− zN−1+ (2−λ)zN = 0. (A.10)

From Eq. (A.9), the characteristic equation

−1+ (2−λ)z− z2 = 0, (A.11)
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is obtained. The two roots are denoted as z1 and z2, then

z1+ z2 = 2−λ, z1z2 = 1. (A.12)

Furthermore, the function form of z is assumed to be

z1 = eiθ, z2 = e−iθ (A.13)

such that z1z2 = 1 with the imaginary unit i and an arbitrary argument θ in the complex plane. We

obtain the identity:

eiNθ = 1 (A.14)

to satisfy Eqs. (A.8), (A.9), and (A.10) in a consistent manner. The argument θ should be

θ =
2πp
N
, (A.15)

where p denotes the Rouse mode index with p = 0, 1, 2, · · · , N − 1. Thus, the eigenvalue of the

mode p is obtained as

λp = 2− (z1+ z2) = 2
(
1− cos

(
2πp
N

))
= 4sin2

(
πp
N

)
. (A.16)

Note that λp = λN−p. Accordingly, the Rouse modes are symmetric with respect to the reflection at

p = N/2 and the two modes of p = n and p = N −n are degenerate for ring polymers.

The general solution for the element of the eigenvector FFF can be given by

fn,p = Aeinθ +A∗e−inθ, (A.17)

with a complex constant A. Note that Eq. (A.17) ensures fn,p = f ∗n,p, where the superscript * denotes
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the complex conjugate. The orthogonal condition for fn,p is given by

N∑
n=1

fn,p f ∗n,q = δp,q. (A.18)

The l.h.s of Eq. (A.18) can be expressed as

N∑
n=1

(Aei2πnp/N +A∗e−i2πnp/N)× (A∗e−i2πnq/N +Aei2πnq/N)

=

N∑
n=1

(
A2ei2πn(p+q)/N +AA∗ei2πn(p−q)/N

+A∗Ae−i2πn(p−q)/N + (A∗)2e−i2πn(p+q)/N
)
. (A.19)

To obtain the condition for determining A, we assume the special case p+ q = N (p , q); then,

Eq. (A.19) further reduces to

N∑
i=1

(A2+ (A∗)2), (A.20)

where
∑N

n=1 ei2n(p−q)/N = 0 is used. Thus, the first relationship A2 + (A∗)2 = 0 is obtained from the

orthogonal condition, Eq. (A.18). Furthermore, the normalization condition for fn,p is given by

N∑
n=1

fn,p f ∗n,p = 1, (A.21)

which can be expressed at p , 0 or N/2 as

N∑
n=1

(
A2ei4πnp/N +2AA∗+ (A∗)2e−i4πnp/N

)
=

N∑
i=1

2AA∗ = 1, (A.22)

and the second relationship AA∗ = 1/(2N) is obtained. We again use
∑N

i=1 ei4πnp/N = 0 in the cases

of p , 0 and p , N/2. Note that AA∗ = 1/(2N) is also obtained in the two cases p = 0 and p =

N/2 according to A2 + (A∗)2 = 0. From the two relationships, the complex constant A can be
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determined, and its expression is chosen from four candidates: A = (1+ i)/(2
√

N), (−1− i)/(2
√

N),

(−1+ i)/(2
√

N), and (1− i)/(2
√

N). The functional form of fn,p is then determined as

fn,p =

√
1
N

[
cos

(
2πnp

N

)
+ sin

(
2πnp

N

)]
, (A.23)

and Eq. (A.23) satisfies Eq. (A.18). Note that a different expression for fn,p is described and utilized

in the path integral molecular dynamics. [206]

Here, we define the block matrix composed of the orthonormal eigenvectors, UUU = (UUU0,UUU1, · · · ,UUUN−1),

with UUU p = ( f1,p, f2,p, · · · , fN,p)T, which diagonalizes the matrix AAA as

UUUTAAAUUU =



λ0 0 · · · 0

0 λ1 · · · 0
...
...
. . .

...

0 0 · · · λN−1


. (A.24)

The normal coordinates are finally described as

XXX = UUUTRRR, (A.25)

with the element

XXXp =

√
1
N

N∑
n=1

rrrn(t)
[
cos

(
2πnp

N

)
+ sin

(
2πnp

N

)]
, (A.26)

for the ring polymer chain.

From Eq. (A.4), the normal coordinates of mode p obeys the following equation:

dXXXp

dt
= −

k
ζ
λpXXXp+WWW p, (A.27)
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where WWW p = UUUTWWW is the random force, which satisfies

⟨WWW p(t) ·WWWq(t′)⟩ = 6kBTζ−1δp,qδ(t− t′). (A.28)

The formal solution of Eq. (A.27) is given by

XXXp(t) = XXXp(0)exp
(
−t/τp

)
+

∫ t

0
dt′WWW p(t′)exp

(
−(t− t′)/τp

)
, (A.29)

where

τp =
ζ

kλp
=

ζ

4k sin2
(
πp
N

) (A.30)

represents the Rouse relaxation time. The autocorrelation function of XXXp(t) is generally described

by

⟨XXXp(t) ·XXXp(0)⟩ =
3kBT
kλp

exp
(
−t/τp

)
. (A.31)

The static correlation of the Rouse mode is expressed as

⟨XXXp(0)2⟩ =
3kBT
kλp

=
b2

4sin2
(
πp
N

) (A.32)

from the the initial value of Eq. (A.31).
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B Persistent diagrams of ring polymers

Figures B1, B2, B3, and B4 present the probability density distributions of PD(i), PD(i∪ j), and

PD( j→ i) at combinations of (εθ,ρ) = (1.5,0.1), (1.5,0.5), (5,0.1), and (5,0.5), respectively. The

general shape of PD(i) remains consistent regardless of variations in density ρ or chain hardness

εθ. The area with the highest frequency appears close to the diagonal with a prominent vertical

distribution at b ≈ 0.22. The distribution along the diagonal line represents loops that are formed

and quickly disappear. These short-lived loops, characterized by small values of life l, are typically

regarded as noise because they do not significantly contribute to threading structures. In contrast,

the distribution along b ≈ 0.22 is interpreted as loops generated by the inherent stiffness of the

polymer chain backbone. Specifically, this value corresponds to the characteristic loop size related

to the average bond length, lb = 0.965 ≈ 2
√

0.22 of the KG model. The loops observed in the

intermediate region, between the diagonal line and b ≈ 0.22, are thought to be associated with

secondary structures [202], such as the folding or compact configurations of ring polymers. These

loops arise from internal conformational changes, bringing different parts of the polymer chain

closer together, forming transient or quasi-stable folded structures. Unlike short-lived loops near

the diagonal line, these intermediate loops contribute to the overall topological complexity of the

system.

In the PD(i∪ j), the distribution along the diagonal is more extended compared to that of PD(i).

In addition, the intermediate distribution exhibits a more elongated shape. This is attributed to the

creation of new loops caused by the contact between pairs of ring chains. These newly formed loops

arise from the threading of ring chains, leading to an increase in the complexity of the structures,

characterized by longer life l, due to the interaction between different chains. The distribution

PD( j→ i), representing the difference between PD(i) and PD(i∪ j), does not exhibit significant

changes compared to the shape of PD(i). This indicates that the loops of one ring polymer are

significantly influenced by the threading interaction with other ring polymers. A detailed discussion

regarding the chain stiffness εθ and density ρ is provided in the main text, where the analysis of the
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zero-th and first Betti numbers offers further insights.
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Figure B1: Persistent diagrams, PD(i) (a), PD(i∪ j), and PD(i→ j), with ε = 1.5 and ρ = 0.1.
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Figure B2: Persistent diagrams, PD(i) (a), PD(i∪ j), and PD(i→ j), with ε = 1.5 and ρ = 0.5.
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Figure B3: Persistent diagrams, PD(i) (a), PD(i∪ j), and PD(i→ j), with ε = 5 and ρ = 0.1.
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Figure B4: Persistent diagrams, PD(i) (a), PD(i∪ j), and PD(i→ j), with ε = 5 and ρ = 0.5.
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