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Abstract

The dynamics of polymers are governed by the chain structure, such as chain length, stiff-
ness, and topology. Although “entanglements” is a key concept for understanding the dynamics
of polymer melts, their pictures are much different between linear and ring polymers. Therefore,
“topological constraints” are used as a more general expression for the entanglements in polymers
independent of the chain topology. Interestingly, “topological glasses” are expected to be formed
in ring polymer melts with sufficiently long chain length at the temperature well above the glass
transition temperature T,. It should be noted that the chain stiffness will increase the topological
constraints in polymers. In this study, we focus on the glassiness of polymers and investigate the
effects of chain stiffness on the glassiness both in linear and ring polymers.

Chapter 1 provides the general introduction of the glassiness of polymers and the topological
effect on entanglements.

In Chapter 2, we characterized the effects of chain stiffness on the glassiness of linear polymer
glasses using molecular dynamics simulations. Amorphous materials exhibit peculiar mechanical
and vibrational properties, including non-affine elastic responses and excess vibrational states, i.e.,
the so-called boson peak. For polymer glasses, these properties are considered to be affected by
the stiffness of the constituent polymer chains. Here, we demonstrate the insensitivity of elastic
heterogeneity by directly measuring the local shear modulus distribution. We conclude that the
chain stiffness does not alter the spatial heterogeneity of the local shear modulus distribution, which
yields vibrational and acoustic properties that are controlled solely by the global shear modulus of
a polymer glass.

In Chapter 3, we investigate the effect of chain topology on the dynamics of polymer melts with
varying chain length. Thus, Rouse mode analysis is performed and compared between ring and
linear polymers. Rouse-like behavior is observed in ring polymers by quantifying the chain length
dependence of the Rouse relaxation time, whereas a crossover from Rouse to reptation behavior is
observed in linear polymers. Furthermore, the non-Gaussian parameters of the monomer bead dis-

placement and chain center-of-mass displacement are analyzed. It is found that the non-Gaussianity



of ring polymers is remarkably suppressed with slight growth for the center-of-mass dynamics at
long chain length, which is in contrast to the growth in linear polymers both for the monomer bead
and center-of-mass dynamics.

In Chapter 4, we investigate the effect of chain stiffness and monomer density on static and
dynamic behaviors of ring polymer solutions. We introduce a bond-breaking method to analyze the
local structure and its relaxation, which characterize the relationship between the monomer density
dependence of the radius of gyration and the rearrangement of center-of-mass in ring polymers
with varying stiffness. Our results demonstrate that the dynamic heterogeneity of rearrangements
is coupled with the non-Gaussianity in ring polymer melts, highlighting the importance of bond-
breaking method in determining the inter-molecular dynamics of ring polymer melts.

In Chapter 5, we used persistent homology to quantify threading structures of ring polymers
and elucidate mechanisms behind topological glasses. Using coordination data from coarse-grained
molecular dynamics simulations, we analyzed the topology of the union of virtual spheres centered
on each monomer or center of mass. As the radius of each sphere increases, the corresponding
points connect, giving rise to topological entities such as edges, loops, and facets. We then analyzed
how the number of loops per ring chain and penetrated loops varies with sphere radius, focusing
on the effects of chain stiffness and density. The results reveal that loops are larger in stiff ring
chains, whereas flexible ring chains do not generate sufficiently large loops to establish a threading
structure. The stiffness of ring polymer plays a significant role in the formation of topological
glasses in ring polymers.

The general conclusions are presented in Chapter 6.
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Chapter 1

General Introduction

1.1 Topological constraints in polymers

Polymers are ubiquitous in nature and play a significant role in our daily lives, being essential
for the production of plastics, fibers, and rubbers. The physical properties, such as the diffusion
coeflicient and elastic viscosity of polymers, are not only crucial for industrial applications but also
play a vital role in biological systems.

The dynamics of polymers are governed by topological constraints (TCs), because of which
the viscosity and relaxation time increase drastically with increasing degree of polymerization.
Linear polymers in dilute solutions or melts can be described as having conformations of random
walks, so-called Gaussian chain. The dynamics of linear polymers are well described by Rouse
and Zimm models in dilute solutions and the reptation model in melts [1,2]. In reptation model,
linear polymer chains are confined in tube-like regions by surrounding chains, and the relaxation
time is determined by the time required for a Rouse chain to escape from the tube as shown in
Fig. 1.1. Recently, another type of topological constraints in polymer has been proposed, namely,
ring polymer melts without chain ends [3—7]. Despite extensive research, a thorough understanding

of TCs in ring polymer melts remains a significant challenge in polymer physics [8-32] .
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Figure 1.1: A conceptual sketch of entanglement in linear polymers. The reptation model describes
the dynamics of linear polymers in melts as that the chain highlighted in red is confined in tube-like
regions along its contour formed by surrounding chains (gray).

1.2 Polymers in solutions or melts

The static properties of polymers in solutions or melts are often characterized by the Flory exponent
v, which describes the scaling relationship between the radius of gyration Ry and the degree of
polymerization N: Ry oc NV. The conformations of linear polymers in dilute solutions are well
described with self-avoiding walks, which have the Flory exponent v = 0.588 in three dimensions.
In melts, the excluded volume interactions between surrounding chains are screened out, resulting
in the Flory exponent v = 0.5. In dilute solution of good solvent, ring polymers behave similarly
to linear polymers to take extended conformations compared to Gaussian chain, which have the
Flory exponent v = 0.588. This is concluded both from the theories [33—40] and experiments [41,
42]. It should be noted that nonphantom ring polymers, even in the absence of excluded-volume
interactions, adopt swollen conformations when isolated. This finding suggests that TCs, which
prevent rings from becoming knotted or concatenated, effectively generate a repulsive interaction
between their segments.

In melts, while ring polymers are approximately described as the Gaussian chains at short chain
length N, TCs become more significant and complex as the chain length N increases. The lattice

animal model is often used to describe the ring polymer in solutions or gels [43,44]. Fig. 1.2 shows
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Figure 1.2: A tree-like lattice animal in two dimensions corresponding to a ring polymer in a
regularly fixed obstacles.

a schematic of the lattice animal in two dimensions. The ring polymer, due to TCs such as non-
crossing conditions, can enclose none of the obstacles, leading to double-folded conformations.
This model concludes that the Flory exponent v = 1/3 for long ring polymers [43,45,46]. Grosberg
et. al. also proposed the same value of v = 1/3 from the hypothesis that the equilibrium confor-
mations of ring polymers are the so-called crumpled globule, which each subchain is internally
condensed, resulting in a polymer backbone that exhibits self-similarity with a fractal dimension of
3 [47]. Cates and Deutch proposed a conjecture on the scaling exponent v = 2/5 for ring polymers
in melts based on the Flory-type mean field theory [3]. This value is the intermediate between the
collapsed conformations (v = 1/3) and the Gaussian chain (v = 1/2).

While many theoretical predictions including those not shown above have been suggested for
ring polymer melts [35,37-40,48], the Flory exponent is reported as v ~ 0.36 by recent molecu-
lar dynamics (MD) simulations with the range of N < 5000 [29,49], which is consistent with the
experimental results [22]. There are predictions, however, that the Flory exponent v is expected to
be 1/3 at the large chain length N, which even the static behavior of ring polymers has not been
established yet. Halverson et. al. reported the both dynamic and static properties of ring polymer

melts with the range of 100 < N < 1600 using MD simulations [10, 11]. They found that ring poly-



mers diffuse approximately 10 times faster than linear polymers with the same chain length N and
the power law exponent of the diffusion coefficient D of center of mass as a function of N is about
—2.4 at long chain length N, which seems consistent with linear polymers in melts. Furthermore,
the stress relaxation time of ring polymers does not show the plateau at the intermediate time scale
even at the longest chain length N = 1600. These results, while the authors maintain that further in-
vestigation is required, suggest a decoupling between the translational motion and stress relaxation
for the rings, which is probably due to the crumpled globule conformations.

The lattice animal model can also predict the dynamics of ring polymers in a gel [4, 50].
The main idea of this model is that the smaller loops diffuse along larger loops in a self-similar
way. It predicts that the longest relaxation time of a non-concatenated ring polymer with N Kuhn
monomers is proportional to N°/? and the diffusion coefficient is proportional to N™2. Ge et. al.
developed the theory based on concepts of self-similar conformations and dynamics of ring poly-
mers in melts [17]. They found that the longest relaxation time as a function of N is proportional

to N’/3 and the diffusion coefficient is proportional to N—>/3

, which is resulted from the compact
conformations with fractal dimension of 3, so-called a fractal loopy globule, and the conjecture
that the overlap parameter of subsections of rings on all length scales is the same and equal to the
Kavassalis—Noolandi number Ogn ~ 10 —-20 [51-53].

There are several approaches to describe the dynamics of ring polymers in melts based on
the analogy with soft-colloidal systems. Sakaue introduced the topological volume fraction to
characterize TCs by the competition between inter-ring non-concatenation constraints and the intra-
ring constraints involved with self-knotting [48,54,55]. It is predicted that the cross-over from the
Gaussian chains v = 1/2 to the crumpled globule v = 1/3 and the flory exponent v = 2/5 in the
intermediate regimes. Furthermore, the scaling factor of the diffusion coefficient and relaxation
time are found, which are in good agreement with the simulation results. Mei et. al. construct a
microscopic theory for the long-time center-of-mass diffusion constant and intermediate-time non-

Fickian transport in dense solutions and melts of ring polymers [20,20,23] , based on the polymer

reference interaction site model theory [56] and mode-coupling theory [57-59].
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Figure 1.3: Sketch of the non-Arrhenius temperature dependence of the a-relaxation time 7, as
function of the inverse temperature 1/7.

1.3 Polymer glasses

Polymer glasses are also an important subject in polymer physics [60]. When the temperature of
a liquid is continuously lowered while avoiding crystallization, it undergoes a glass transition via
a supercooled state. Unlike crystalline solids, glasses posseses a disordered microscopic structures
similar to that of liquids. As the temperature approches T', the dynamics of supercooled liquids
slow down drastically, as illustrated by the tempareture dependence of the a-relaxation time 7, in
Fig. 1.3. This behavior is one of the great mysteries of the glass transition and is characterized by
the non-Arrhenius temperature dependence that is well fit by empirical Vogel-Fulcher—Tammann

(VFT) equation:

A
Ta:T()eXp(T_TO), (1.1)

where 19,A and Ty are the fitting parameters that depend on the material. The temperature Ty at
which the divergence occurs is called the Vogel temperature and typically located 30 — 50 K below
T,.

Interestingly, despite their long-chain molecular structure, polymer glasses exhibit properties
similar to those of small-molecule glasses, including a non-Arrhenius temperature dependence
of the a-relaxation time. This is notable given that microscopic structural features are known

to play a crucial role in dynamics above T,. This universality observed across different glass-
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forming liquids, including polymers, can be attributed to the packing effect associated with the glass
transition occurring at the segmental level in polymers. Thus, the glass transition temperature 7T is
independent of the chain length N or its topology such as whether it is linear or ring. However, the
chain stiffness, which dependes on the chemical species of monomers, influences thermodynamic

properties such as the glass transition temperature 7, and the specific heat.

1.4 Vibrational density of states

The vibrational density of states (vDOS) g(w) is the density of vibrational modes of atoms in a
solid as a function of frequency w. Debye model describes the lattice vibrations as phonons and

analysically computes the vDOS g(w) as

3
vz 1
g =57 2[—3+—3J W, (1.2)
T CT CL

in three dimensions, where V is the volume of the system and ct and cp, are the transverse and
longitudinal sound velocities, respectively [61]. If the number of particles is N, the vDOS g(w)
can be normalized as fowD g(w)dw = 3N, where wp is the Debye frequency that is the maximum

frequency of the phonon modes. Thus, the normalized vDOS g(w)/3N can be written as

89— ane?, (13)

where Ap = 3/ a)3D is the Debye lebel. Noting that phonons are bosons, integration of the vDOS
g(w) over the frequency w yields the internal energy U and the specific heat Cy, which are pro-
portional to 7% and T3, respectively. In glasses, however, there is an excess vibrational modes at
low frequency, which is called the Boson peak (BP), and the anomalous thermodynamic behavior

at low temperature are related to this BP.



Figure 1.4: A schematic of threading network in ring polymers cited from Ref. [67].

1.5 Topological glasses

Interpenetration of ring polymers, so-called threading, is naively expected to play a crucial role in
the dynamics of ring polymers in melts analogous to entanglement in linear polymers. Threading
occurs when one ring polymer penetrates the loop of another ring polymer, with the penetrating
ring classified as active and the penetrated ring as passive, illustrating the asymmetric and hierar-
chical nature of the threading network as shown in Fig. 1.4. It has been challenging to quantify
and characterize the threading in concentrated solutions of ring polymers especially theoretically,
because the topological invariants such as linking number or writhe are not applicable to threading
which is not permanent. The several methods quantifying threading have been proposed based on
minimal surface [62, 63], geometric analysis [64, 65], and persistent homology [66]. However, the
relationship between threading and the dynamics in dense solutions of ring polymers still remains
unclear.

Michieletto and Turner reported the glass-like dynamics in ring polymer solutions [68, 69].
They performed pinning MD simulations of ring polymers adopting a slightly sttiffer polymer chain
model than the that of Halverson [10, 11] to compute effectively long chain length N. While this

model shows the same behavior of the Flory exponent v = 1/3 as Halverson’s results, ring polymers

10
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Figure 1.5: Plots of the mean square displacements of the center of mass for linear and ring poly-
mers. Open green circles: A mobile linear chain in a background of pinned (frozen) linear chains.
Open red squares: A mobile ring polymer in a background of pinned (frozen) ring polymers. Green
curve is for a melt of linear polymers while red line for a melt of ring polymers . Insets sketch melts
of linear (top row) and ring (bottom row) polymers. This figure is cited from Ref. [67].

exhibit the expanded conformations and large value of the radius of gyration R,. The pinning MD is
often used to investigate the glass-forming liquids, preventing the collective motion of particles to
enhance the packing effect. Fig. 1.5 shows the mean squared displacement (MSD) of the center of
mass both for ring and linear polymers with or without pinning. The diffusion in ring polymers are
frozen above the critical pinning fraction, although linear polymers can diffuse even if all polymers
are pinned except for one. Furthermore, the critical chain length N required to achieve a glassy
state without pinning has been estimated to be N ~ 3500. This indicates that the TCs between ring
and linear polymers are significantly different, and the exist of the glassy state is expected in ring
polymers at the long chain length N at the temperature well above the glass transition temperature
T,. Below the glass transition temperature T, the particles are too tightly packed to diffuse. In
contrast, in this glass-like state obtained by pinning MD, the particles are not packed but the centers
of mass of polymer chains are constrained by the TCs, or threading. Thus, the glassy state is called
the “topological glass (TG)”. Although lots of studies on ring polymers have been reported, the TG

has not yet been observed either experimentally and computationally in equilibrium systems.
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1.6 Organization of this dissertation

In this study, we performed (MD) simulations of polymer glasses, melts and solutions both for
linear and ring polymers by utilizing the Kremer—Grest model. The aim of this study is to elucidate
the effects of chain stiffness on the glassiness of polymers and the origin of the TG through cap-
turing the glassy dynamics. Chpater 2 reveals the relationship between the vibrational density of
states (vDOS) and the chain stiffness in linear polymer. In Chapter 3, we examine TCs differences
with and without chain ends in polymer melts by analyzing the Rouse modes and non-Gaussian
parameter (NGP). We found that the both Rouse modes and NGP can characterize the TCs and
flexble ring chains show the Gaussian distribution of the displacement. Chapter 4 focuses on the
effect of chain stiffness on the rearrengement of center of mass (COM) in ring polymer melts and
solutions. By analyzing the bond-breakage dynamics, which quantifies the rearrangement of COM
as the virtual bond between two COMs is broken, it is revealed that the chain stiffness causes the
glassy dynamics. Furthermore, the density dependence of the mean squared radius of gyration was
also investigated. The glassy heterogeneous dynamics and the radius of gyration are found to be
correlated. In Chapter 5, we utilize the persistent homology (PH) to quantify the threading struc-
tures in ring polymers. The PH identified the asymmetry between active and passive threading. It is
possibly to clarify the asymmetry is contributed to dynamic heterogeneity in ring polymers. Thus,

developments of threading networks are expected to result in the formation of TG.
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Chapter 2

Understanding the scaling of boson peak through
insensitivity of elastic heterogeneity to bending

rigidity in polymer glasses

2.1 Introduction

Amorphous materials exhibit anomalous mechanical and vibrational properties that have been stud-
ied for many years by experimental, numerically, and theoretical methods. The vibrational and
acoustical properties of such materials have been investigated in many experiments using neutron,
light, and X-ray scattering, e.g., Refs. [70-78]. Using these methods, anomalies in vibrational and
acoustic excitations have been detected, including excess vibrational states, the so-called boson
peak (BP), and strong damping of sound wave propagation.

To explain these anomalous properties, the heterogeneous elasticity theory was proposed and
developed by Schirmacher and co-workers [79-82] (see also Refs. [83, 84] for the theory in the
context of the jamming transition and Refs. [§5-87] for very recent developments). It is now well-
established that amorphous materials exhibit spatial heterogeneity in their local elastic modulus
distributions, as supported by numerical simulations [88-90] and experiments [91,92]. In the the-
ory, elastic moduli heterogeneities are critical in describing anomalies in the vibrational, acoustic,
and thermal properties. The theory notably predicts that the BP and the attenuation rate of sound

are more significant when moduli distributions are more heterogeneous. This prediction has been
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tested and justified by numerical simulations [93-99].

Anomalous behaviours in polymer glasses have also been reported through both experiments [ 100—
106] and numerical simulations [107-112]. In polymer glasses, the bending rigidity of the con-
stituent polymer chains is an important parameter. In our recent work [113], we studied the effects
of the bending rigidity on the global elastic moduli (shear modulus G and bulk modulus K) and the
vibrational density of states (vDOS) g(w) using coarse-grained molecular dynamics (MD) simula-
tions. We demonstrated that the variation of the BP simply follows that of global shear modulus
G through the Debye frequency wp. If this simple scaling behaviour is considered in terms of the
heterogeneous elasticity theory, we obtain an important implication that the spatial heterogeneity
in local modulus distributions is insensitive to changes in the bending rigidity.

In this study, we examine this correlation by directly measuring the degree of elastic hetero-
geneity with changes in the bending rigidity. We also study transverse acoustic excitations in the
polymer glasses by calculating the dynamic structure factor and examine the connection among the
sound velocity, attenuation rate, and the simple scaling behaviour of the BP. Thus, we comprehen-
sively discuss that the effects of bending rigidity in polymer glasses on vibrational and acoustic
excitations from the perspective of elastic heterogeneities.

The remainder of this paper is organized as follows. Section 2.2 describes the MD simulation
details used to characterise the elastic heterogeneity and the acoustic excitation. In Section 2.3, the

numerical results and discussions are presented. Finally, our conclusions are drawn in Section 2.4.

2.2 Simulation method

2.2.1 Simulation model

We performed MD simulations using the Kremer—Grest model [114], which is a coarse-grained
bead-spring model of the polymer chain. Each polymer chain comprises L monomer beads of mass
m and diameter 0. We studied the case of 200 chains of L = 50, such that the system contained

N =200x50 = 10000 monomer beads in total, in a three-dimensional cubic box of volume V under

14



periodic boundary conditions.
In the Kremer—Grest model, three types of inter-particle potentials are utilised. First, the

Lennard-Jones (LJ) potential
o2 a\6
ULy(r) = 4s1y [( ) -(%) ] @.1)

7 G
acts between all pairs of monomer beads, where r and &1y denote the distance between two monomers
and the energy scale of the LJ potential, respectively. The LJ potential is truncated at the cut-off
distance of r. = 2.50°, where the potential and the force (the first derivative of the potential) are
shifted to zero continuously [115].

Second, sequential monomer beads along the polymer chain are connected by a finitely exten-

sible nonlinear elastic (FENE) potential:

_ €FENE
2

2
RO In

2
1-(L) ] (r<Ro).
Ro 2.2)

O (r > RO)’

UrgNE(r) =

where eppng is the energy scale of the FENE potential, and Ry is the maximum length of the FENE
bond. Following Ref. [111], we employ the values of epgng = 30ery and Ry = 1.50.

Finally, the bending angle 8 formed by three consecutive monomer beads along the polymer
chain is controlled by

Upend(0) = Epend [1 —cos(6—6p)], (2.3)

where &peng 1S the associated bending energy. We set the stabilised angle as 6y = 109.5° [111].
In the present work, we utilise a wide range of &peng values: epend/ELy = 1071, 1, 3, 10, 30, 102,
3% 10% 10°, and 3% 10°.

We performed the MD simulations using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [116]. Hereafter, the length, energy, and time are measured in units of o,

12

eLy, and o(m/ery)'’~, respectively. The temperature is presented in units of &1 j/kg, where kg is the

Boltzmann constant. We first equilibrated the polymer melt system at a temperature 7 = 1.0 and
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polymer bead number density p = N/V = 0.85. We then cooled the system down towards 7" = 0.05
with a constant cooling rate of dT/dt = 10~*, under a fixed pressure of p = 0. Finally, the inherent
structure at 7 = 0 is generated using the steepest descent method. In our recent work [113], we
reported the dependence of the glass transition temperature 7 and the number density p at zero

temperature on Epepd.

2.2.2 Vibrational density of state and boson peak

The vDOS analysis was performed for the configuration at 7 = 0, which corresponds to the inherent
structure. By diagonalizing the Hessian matrix, we obtained the eigenvalues Ak k=1,2,---,3N),

which provide the eigenfrequencies as wf = VK. The vDOS is defined as

1 3N-3
@) = 3 kz; 5(w - wy), (2.4)

where three zero-frequency modes are omitted. The expression of the Hessian matrix of the poly-
meric system was given in Ref. [113]. The Debye law predicts the vDOS as gp(w) = w?Ap, where
Ap = 3/wp’ is the Debye level using the Debye frequency wp = 187%p/(2ct™> +cL.>)!/3. Here,
the transverse and longitudinal sound velocities, ct and cr, are given by the bulk modulus K, shear
modulus G, and the mass density p = mp as ct = \/G_/p and cp = \/m , respectively.
The reduced vDOS g(w)/w? thus characterises the excess vibrational modes exceeding the Debye

prediction, i.e., the BP.

2.2.3 Global and local shear modulus

The global shear modulus G and bulk modulus K were evaluated from the stress-tensor response
to the shear and volume deformations in the “quasi-static” way, respectively, applied to the inher-
ent structure. For perfect crystalline solids, the mechanical equilibrium is maintained during affine
deformation. However, the force balance is generally broken down for amorphous solids under

applied affine deformations. Thus, further energy minimization causes additional non-affine defor-
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mation (relaxation) towards mechanical equilibrium. In other words, G and K are decomposed into
G =Ga—Gna and K = Kp — Kna. Here, Ma and Mna denote the affine and non-affine components
of elastic moduli, with M = G and K, respectively. Our recent work [113] also reported the epeng
dependence of G and K. In particular, we demonstrated that the bulk modulus K is much larger
than the shear modulus G, and thus the shear modulus has important effects on the low-frequency
vibrational properties of the polymeric system.

In this study, we further study the local shear modulus. Specifically, we measure the spatial
distribution of the local shear modulus Gy,, by using the numerical procedure of “affine strain
approach”, given in Ref. [90]. Note that the analysis completely neglects anharmonic effects and
provide zero-temperature limit values of elastic heterogeneities. Briefly, we divided the system into
7x7x7 cubic cells and monitored the local shear stress as a function of the applied shear strain in
each local cell. The linear dimension of the cell is approximately W ~ 30-. Here, the local strain
of the small cell is assumed to be given by the global strain applied to the system. The local shear
modulus G, of cell m was measured as the slope of the local shear stress versus the shear strain.
The expression of the local modulus was also given in Ref. [90]. Finally, we collected the G,, values
for all the cells to calculate the probability distribution of the local shear modulus P(Gy,). Remark
that the average and standard deviation of the local shear modulus distribution is insensitive to the
cell size W [90].

As in the LJ glass [88,90], we found that P(G,,) is well fitted to the Gaussian

2
_M]} 2.5)

1
P(Gy)=—— exp{[
T 275G 26G 2

where the relative standard deviation Gy, /G provides a measure of the spatial heterogeneity in the

local shear modulus distribution.
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2.2.4 Transverse acoustic excitation

The transverse acoustic excitation can be characterised by the (transverse) dynamic structure factor

as a function of the wave vector g and frequency w [93,96,117,118]:

g\* 1 1. " .
ST(q,a»:(a) o f (@0 1@ 0)expiwndr, (2.6)

where g = |q|, ‘*’ indicates complex conjugation, and (- --) denotes the ensemble average over the

initial time and angular components of q. Here, the transverse current is expressed by:

N
Jr(g.0 =) i) - i) Dlexplig- i), 2.7)
i=1

where ¢ = q/q, and r; and v;(= dr;/dt) represent the position and velocity, respectively, of the
monomer bead i. In general, the dynamic structure factor S (g, w) exhibits two kinds of peaks: the
Rayleigh (elastic) peak and the Brillouin (inelastic) peak. The Rayleigh peak is located at w — 0
and is related to the thermal diffusion, while the Brillouin peak is related to the (transverse) sound-
wave propagation.

The Brillouin peak in S (g, w) can be fitted by the damped harmonic oscillator function [93,96,

117,118],
I'r(g)Q3(q)
[w? - Q2()1? + wT2(g)

S1(q,w) (2.8)

which provides information about the propagation frequency Q1(g) and the attenuation rate I't(q)
as functions of the wave number g. The sound velocity is then given by c1(g) = Q1(g9)/gq. Note that
the sound velocity ct(g) converges to the macroscopic value ct = \/G_/p in the long-wavelength
limit of g — 0. We numerically calculated the dynamic structure factor S (g, w) [Eq. (2.6)] of the
inherent structure for each bending energy peng from gpepg = 107! to 3x 103. Note that the thermal
fluctuations are imposed at very low temperature 7" = 0.05, which is small enough that the derived
values are consistent with the zero-temperature limit values. The values of Qr(g) and I't(g) were

then extracted using Eq. (2.8).
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Figure 2.1: (a) The reduced vDOS g(w)/w? with changing the strength of bending rigidity &pend.
(b) The reduced vDOS g(w)/ (w*Ap) scaled by the Debye level Ap as a function of the frequency
w/wp scaled by the Debye frequency wp. The color of line indicates the value of bending rigidity
Ebend according to the color bar.

2.3 Results and Discussion

2.3.1 Scaling of boson peak by the Debye frequency and Debye level

Figure 2.1(a) plots the reduced vDOS g(w)/w?, showing the BP beyond the Debey level Ap for each
evend- The BP frequency wgp is located at wpp = 2, but it slightly shifts to the higher frequency with
increasing the bending rigidity. In addition, the peak height of g(w)/w? gradually decreases when
Ebend 18 Increased. Figure 2.1(b) shows the reduced vDOS g(w)/ (w*Ap) scaled by the Debye level
Ap as a function of the frequency w/wp scaled by the Debye frequency wp. This demonstrates the

scaling of the BP by the Debye frequency wp and Debye level Ap for various bendig rigidities of
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Figure 2.2: Debye frequency wp versus square root of global shear modulus G. The straight line is
a viewing guide for wp oc G/2. From left to right, the bending energy changes from epeng = 107!
to 3% 10°.

the polymer chain. Note that the scaling property of the BP is also shown for shorter polymer chain

with the length L = 3 in our previous paper [113].

2.3.2 Debye frequency and global shear modulus

We next examine the relationship between the Debye frequency wp and the shear modulus G, which
is plotted in Fig. 2.2. As demonstrated in Ref. [113], the bulk modulus K is approximately three to
four times larger than the shear modulus G. Thus the term ¢ ~> becomes negligible, and the Debye

frequency wp can be approximated as

1872 |7
wp = —pg] ~ Orp)Per o VG, 29)

2CT_3 +cL

which is mainly governed by the shear modulus G. Figure 2.2 directly demonstrates the relationship
of wp « VG with changes in &pepg. The density p is also changed by changing epeng, but the effect

of density on wp is close to negligible [113].
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Figure 2.3: (a) Probability distribution of local shear modulus P(G,). The color of the line indicates
the value of the bending energy &peng according to the color bar. (b) Scaled distribution P(G,)G
as a function of the scaled local shear modulus G,/G. The straight lines represent the Gaussian
distribution functions fitted to each distribution.

2.3.3 Local shear modulus distribution

As demonstrated in Fig. 2.1, the reduced vDOS g(w)/w? in the BP frequency wgp regime was
well scaled by using the Debye frequency wp and Debye level Ap = 3/wp> This suggests that the
frequency and intensity of BP are controlled only by the global sear modulus G. In particular, we
obtain the relationship of wgp o« wp o« VG. According to the heterogeneous elasticity theory [79—
82], this observation implies that the degree of the shear modulus heterogeneity Gy, /G is invariant
with changes in the bending energy epeng: this implication is confirmed below.

We plot the probability distribution of the local shear modulus G, in Fig. 2.3(a); this plot
follows the Gaussian form of Eq. (3.18). Figure 2.3(b) then plots the scaled distribution P(G,)G
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Figure 2.4: Shear modulus heterogeneity 6G,/G versus bending energy &peng.

as a function of the scaled local shear modulus G,/G, demonstrating the data of P(G,)G versus

Gm/G nicely collapse for different values of epeng. Because we can transform P(Gp,) (Gaussian
form) to
G 2
(%-1)

1
— exp{|-~—2—2L|}, (2.10)
Var (%) {[ 2(%n) }

this collapse indicates that the scaled standard deviation 6Gy,/G remains unchanged for different

P(Gn)G =

&bend Values. This is verified by direct demonstration in Fig. 2.3(b), where 6G,/G is plotted ex-
plicitly as a function of &yeng. Therefore, we can conclude that the bending rigidity of the polymer
chain does not alter the degree of the shear modulus heterogeneity. This conclusion justifies the the-
oretical prediction [79-82] that vibrational excitations including the BP are controlled only by the

global elastic modulus under the condition of constant heterogeneities in the moduli distributions.

2.3.4 'Transverse acoustic excitation and its link with boson peak

We finally study the transverse acoustic excitation in the frequency regime including the BP. The
generalised Debye model [93, 119] yields the reduced vDOS g(w)/w? in terms of the propagation

frequency Qt(g) and the attenuation rate I't(g), as follows:

g(w) 4
_2 — +

3
S (2.11)
Wy TGHCH(q)

I'r(q) ]

w w?+ F%(q)
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Figure 2.5: (a) Transverse dynamic structure factor S (g, w) as a function of w, at the lowest wave
number gnin. (b) Scaled plot of ST(g, w)wp versus w/wp. The color of the line indicates the value
of the bending energy epeng according to the color bar.

with Debye wavenumber gp = (6729)!/3. This form can be scaled by wp and Ap = 3/w?, as:
D

g L (52) o1
D 3 (Y| () 4 (S |

Thus, the collapse of the reduced vDOSs g(w)/ (w?Ap) for different values of epeng indicates that
ct/wp and I't/wp are both independent of the bending energy &peng.
In addition, Eq. (2.8), which is the damped harmonic oscillator function for the dynamic struc-

ture factor S 1(¢q,w), can be scaled by the Debye frequency wp:
(BT ¢
> )
o - () () (5
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Figure 2.6: (a) Transverse sound velocity scaled by the Debye frequency, ct/wp, versus scaled
frequency Qr/wp. (b) Transverse sound damping scaled by the Debye frequency, I't/wp, versus
Qt/wp. The color of the line indicates the value of bending energy epeng according to the color bar.
which indicates that S (g, w)wp is simply scaled by w/wp, when ct/wp and I't/wp are indepen-
dent of epeng. Below we show that these properties of transverse acoustic excitations are true.

Figure 2.5(a) shows the St1(gq,w) for different values of &pepng. The wave number g is set to
its lowest value guin = 271(0/N)'/3, which ranges from gmin = 0.283 (for gpenq = 0.1) to 0.295 (for
Ebend = 3 X 10%). The frequency of the Brillouin peak shifts to higher values with increasing penq.
We then plot S T(¢, w)wp versus w/wp in Fig. 2.5(b). It is evident that our calculations of S1(g,w)
are in accordance with the predicted scaling description of Eq. (2.13).

We also show the sound velocity ct and attenuation rate I't as functions of the frequency Qr in
Fig. 2.6. As expected from the scaling property of g(w), the data of ¢t and I't collapse for different
values of epeng, although small deviations are detected. These collapses are also consistent with

the prediction from Eq. (2.12) and are explained in terms of the shear modulus heterogeneity.
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The collapses break down in the high frequency regime above the BP frequency, Qrt/wp = 0.2 >
wpp/wp ~ 0.1. Because the generalized Debye model does not hold above the BP frequency [93,

119], this deviation is not unexpected.

2.4 Conclusion

In conclusion, we have numerically studied elastic heterogeneities and acoustic excitations in poly-
mer glasses, with particular attention to the effects of the bending rigidity of the constituent polymer
chains. Our main finding is that the degree of heterogeneity in the local shear modulus distribution
is insensitive to changes in the bending rigidity. According to the heterogeneous elasticity the-
ory, for unchanging elastic heterogeneities, the vibrational and acoustic properties of amorphous
materials are controlled only by global elastic moduli. Consistent with this theoretical prediction,
we demonstrated that the BP and properties of the transverse acoustic excitations are both simply
scaled only by the global shear modulus. The present work therefore clarified remarkably sim-
ple material property relationships in polymer glasses. These originate from the invariance of the
local elastic heterogeneities over an extremely wide range of bending rigidity values for polymer
chains. Our results also provide good demonstrations that verify the heterogeneous elasticity the-
ory [79-82], which is among the central theories used to describe the mechanical and vibrational
properties of amorphous materials.

We note that effects of polymerization on vibrational properties can be scaled by global elastic
moduli [102, 106]. On the contrary, some experiments demonstrate that the pressure-induced shift
of BP cannot be explained by the global elastic moduli [100, 101]. From these observations, we
speculate that the polymerization effect is insensitive to the elastic heterogeneities as is the bending
rigidity, whereas the heterogeneities would be altered by the densification. Furthermore, recent
MD simulations revealed antiplasticizer additives significantly modify the local elastic constant
distribution in glass-forming polymer liquids [120]. It could be interesting to study how boson peak

properties change with evolution of elastic heterogeneities during the antiplasticization process.
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At the end of this paper, we would discuss the relationship between the structural relaxation
time and the elastic properties. Remarkably, numerical work [121] has proposed and demonstrated
a scaling relationship between the structural relaxation time 7, and the Debye—Waller factor (u?) for
many types of glass-forming systems, including polymer glasses, as 7, o« exp (a(u2>_1 +b(u2)_2)
(where a and b are constants). Because the Debye—Waller factor in the harmonic approxima-
tion limit is estimated as (u?) = 3T fooo g(w)/wzdw o« Twgp ™2 o« TG™! (where wgp o« VG is ap-

plied) [122], we obtain

2

4
G G
+ﬁ“’TL§) o exp(a/T +ﬁ’ﬁ), (2.14)

2
WBP
T

Tq O €Xp (a

where «, B, @, and ' are constants. This is the idea of the shoving model [123, 124], which
characterises the activation energy in terms of the global shear modulus G. Interestingly, Eq. (2.14)
has been well demonstrated for polymer glasses by MD simulations, where the plateau modulus G,
of the stress correlation function was effectively utilized as the shear modulus [125]. Our results
suggest an important condition under which Eq. (2.14) holds. When the spatial heterogeneity in the
local shear modulus distribution is unchanged, the excess vibrational excitations, i.e., the BP, are
controlled only by the global shear modulus, indicating that the structural relaxation time is also

controlled solely by the global shear modulus.
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Chapter 3

Effects of chain length on Rouse modes and

non-Gaussianity in linear and ring polymer melts

3.1 Introduction

The dynamics of polymer melts are governed by topological constraints, because of which the
viscosity and relaxation time increase drastically with increasing degree of polymerization. Linear
chain ends play a significant role in determining the slip motion of a single polymer chain, which
is characterized by the well-established reptation model [2]. Recently, another type of topological
constraints in polymer has been proposed, namely, ring polymer melts without chain ends [3-7].

Various molecular dynamics (MD) simulations have been performed to elucidate the topolog-
ical constraint effects in ring polymer melts [9-11, 18,46, 65, 126, 127]. In this regard, the chain
length N dependence of dynamical properties is the central topic. Tsolou et al. reported MD simu-
lation results of a united-atom model for ring polyethylene melts with N ranging from 24 to 400 [9].
They demonstrated that the Rouse model is approximately appropriate for describing the dynam-
ics, in contrast to the cases of linear polymer analogues. Halverson et al. used a coarse-grained
bead-spring model for ring polymers with N ranging from 100 to 1600 [10, 11]. The diffusion
coefficient D obeys a scaling D ~ N-># for large N—interestingly, this is similar to that observed
in linear polymer melts. In contrast, the zero-shear viscosity exhibits a chain length dependence
17 ~ N4, which is weaker than that predicted by the reptation model.

The dynamics of ring polymer melts have been examined using the dynamic structure fac-
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tor measured by neutron scattering experiments [15,22, 128—130]. Bras et al. reported the non-
Gaussian parameter (NGP) of pure poly(ethylene oxide) (PEO) rings [15]. The NGP characterizes
the degree of the deviation of the distribution function of the monomer displacement from the Gaus-
sian distribution, which is important when discussing the relationship between MD simulations
and scattering experiments [131]. Notably, the NGP has frequently been analyzed to characterize
heterogeneous dynamics, which is attributed to cage effects in glass-forming liquids [132-134].
However, the chain length dependence of NGP in ring polymers remains scarcely analyzed. Fur-
thermore, this analysis can be also important when considering the recent microscopic theory pre-
dicting D ~ N~2 in ring polymer melts, which was formulated in analogy with the cage effects of
soft colloid suspensions [20].

In this study, we performed MD simulations using the Kremer—Grest bead-spring model with
different chain lengths (N = 5 —400) for both linear and ring polymer melts. First, we analyzed
the Rouse modes and determined the chain length dependence of the relaxation time. Then, we
calculated the NGP of the monomer bead displacement, and investigated its chain length depen-
dence. The combined results enable us to thoroughly assess the similarities and differences of the

chain-end effects on the dynamics between linear and ring polymer melts.

3.2 Model and simulations

We performed MD simulations using the standard Kremer—Grest model for linear and ring polymer
melts, where the polymer chain comprises N monomer beads of mass m and diameter o [114]. We

utilized three types of inter-particle potentials, as follows. The Lennard-Jones (LLJ) potential

ULi(r) = dep [(0)12_(2)6 +C, 3.1)

r r

acts between all pairs of monomer beads, where r and €1 y denote the distance between two monomers
and the energy scale of the LJ potential, respectively. The LJ potential is truncated at the cut-off

distance of r. = 2.50, and the constant C guarantees that the potential energy shifts to zero at r = r,.
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The bonding potential between two neighboring monomer beads is given by a finitely extensible

nonlinear elastic (FENE) potential,

(3.2)

()

for r < Ry, where K and Ry represent the spring constant and the maximum length of the FENE

1
Ugenge(r) = —EKR(Z) In

bond, respectively. We used the values of K = 30er; Jo? and Ry = 1.50. Finally, the bending angle

0 formed by three consecutive monomer beads along the polymer chain is controlled by

Upend(0) = kg [1 —cos(0—-6p)], (3.3)

where kg denotes the associated bending energy. We set the bending energy and equilibrium angle
as kg = 1.5¢1y and 6y = 180°, respectively.

Henceforth, the length, energy, and time are measured in units of o, €15, and o(m/ SLJ)I/ 2 re-
spectively. The temperature is presented in units of &1 j/kg, where kg is the Boltzmann constant.
The system contains M polymer chains in a three-dimensional cubic box of volume V under peri-
odic boundary conditions. We studied several combinations of the chain length N and the number
of chains M for both linear and ring polymer systems, (N, M) = (5,2000), (10,1000), (20,500),
(40,250), (100,200), (200,100), and (400,50). The number density of the monomer beads p =
(NxM)/V and the temperature T were fixed as p = 0.85 and T = 1.0, respectively, throughout the
simulations. We performed the MD simulations using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) [135]. The NVT ensemble with the Nosé-Hoover thermostat was
used with a time step Az of 0.01. We analyzed the chain length dependence of the radius of gyration
and the center-of-mass diffusion coefficient and confirmed that our results reproduce the results re-
ported in previous studies (results not shown) [10, 11]. In addition, we confirmed the entanglement
length N, ~ 28 in linear polymer melts with N =400 by using the primitive path analysis [136]. The
used code is available from https://github.com/t-murash/USER-PPA (see also Ref. [137]).

The Rouse model is the standard model for the polymer chain dynamics, where the normal
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coordinates X ,(#), so-called Rouse modes, are constructed from the position of the n-th monomer
bead r,(¢) at a time ¢ for n =1, 2, 3, ---, N. Here, we provide several expressions in the Rouse
model, which we employ to analyze our MD results. The Rouse mode analysis for the linear chain
is described in Ref. [138]. Furthermore, the formula for the ring polymer chain was described in
previous papers [9, 139, 140]. To make this paper self-contained, we summarize the formulation
of the Rouse model for the ring polymer chain in A. The expressions of the normal coordinates

X linear(?) and X, 1ing(¢) for linear and ring polymer chains can respectively be expressed as

X pnea ) = | — "OZrna) (”("—”2)), (3.4

X sing(£) = \/% > ra) [cos (2’;’ ”) + sin(z’%)] : (3.5)
n=1

where p (=0,1,---,N — 1) is the mode index, and ¢ denotes the Kronecker delta. The p = 0 mode

describes the center-of-mass translation of the chain, whereas the p > 0 modes characterize the
internal dynamics of the subchains composed of N/p beads.
The static correlation of the Rouse mode (X p(0)2> can be related to the mean square distance

of two beads b? through

bZ
X inear 0 2y = YIS 3.6
(X tinear(0)7) 4sin2(%) (3.6)
2
(X pring(0)%) = bf, (3.7)
4sin (%)

for linear and ring polymers, respectively. Here, (---) denotes an ensemble average.
Each normal coordinate exhibits the Brownian motion in the Rouse model, causing the expo-

nential decay of the autocorrelation function, (X,(7) - X,(0)). The Rouse relaxation times 7 jinear
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and 7 sing for linear and ring polymer chains are respectively given by

4
T Jinear = —————, (3.8)
P dksin? (22)

4
Tpring = ————, (3.9)
P gsin? (22)

where ( is the effective hydrodynamic friction coefficient and k represents the harmonic spring
constant between two neighboring monomer beads. As noted in A k is equal to 3kgT/b?. The
differences of (X p(O)Z) and 7, between linear and ring polymers appear in the phases of the sine
functions. The Rouse modes of p and N — p are degenerate in the case of the ring polymer (see
A). Correspondingly, (X p(0)2> and 7, as functions of p are symmetric with respect to the reflection
at p = N/2. On the other hand, for linear chains, (X p(0)2> and 7, decrease monotonically with p
in the Rouse model. In the continuum limit of p/N < 1, both 7, jinear and 7 ring €xhibit a scaling
behavior (N/ p)2 within the Rouse model.

The motions of monomer beads are described typically by the mean square displacement (MSD)

averaged over all the monomers of a chain, which is defined as

1 N
g1(0) = () = <N > |rn<r>—rn<0>|2>. (3.10)
n=1

The NGP of the monomer bead displacement is defined by

O

Q0= 550y

1, (3.11)

which measures non-Gaussianity, i.e., the degree of the deviation of the distribution function of the
monomer bead displacement from the Gaussian form during the time interval 7. In addition, the

MSD of the center-of-mass of chains is examined from

1 M
g3(t) = (R*(1)) = <Mmzl IR,(2) —Rm<0>|2>, (3.12)
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where R,,() is the position of the center-of-mass of the chain m at time . The corresponding NGP

of the center-of-mass displacement is defined by

3(RH(t))

2O SRz

(3.13)
The NGP of monomer beads was analyzed via MD simulations of linear polymer melts with the
chain length of N =5—-160 [141]. Furthermore, the NGP of supercooled polymer melts was re-
ported with N = 10 [142] and N = 64 [143, 144].

3.3 Results and discussion
The normalized autocorrelation function of the p-th Rouse mode is given by

(Xp(1)-Xp(0))

3.14
(Xp(0)%) G149

¢p(t) =

The results of the slowest mode ¢1(¢) are plotted in Fig. 3.1 by changing the chain length N for
linear (a) and ring (b) polymer melts. For each Rouse mode p, ¢,(?) is fitted using the Kohlrausch—
Williams—Watts (KWW) function, exp[—(t/r}‘,)ﬁp], with the KWW relaxation time T;. Bp(< 1)
represents the degree of non-exponentiality of ¢,(7) [145]. In Fig. 3.1(c) and (d), B, is plotted as
a function of N/p for linear and ring polymers, respectively. As demonstrated in Ref. [146], 3,
deviates from unity and shows a minimum at the slowing down length Ng = 2. Another minimum
of approximate 0.6 is found at around the entanglement length scale N, ~ 28 [147, 148]. As seen
in Fig. 3.1(d), B of ring polymers shows a minimum at Ny ~ 4, which is the same length scale of
N ~ 2 considering the difference in the phase of the Rouse mode between linear and ring polymers.
Furthermore, the non-exponentiality is also found at N > 10> and is weaker for the ring polymers
with 8, ~ 0.8 than for the linear polymers.
In Fig. 3.1(e) and (f), the normalized amplitudes 4 sin?(mp/(2N)){X ,(0)?) and 4 sin*(7p/N)(X ,(0)*)

are plotted as a function of N/p for linear and ring polymers, respectively. As the chain length
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scale N/p increases, 4sin2(7rp/ CN)}X p(0)2> of linear polymers levels off beyond the entangle-
ment length scale Ne ~ 28 [147, 148], whereas 4sin2(7rp/N)(X p(0)2> of ring polymers gradually
decreases with increasing N/p. This behavior is actually consistent with the observation that the
structure of the ring polymer chain becomes more compact than that of the linear polymer. In
fact, N dependence of the mean square radius of gyration Ré approaches a scaling of N>/3 in ring
polymers, which is distinct from the Gaussian behavior Ré ~ N observed in linear polymers [10].

The effective Rouse relaxation time of the p-th mode is calculated by

00 * 1
Tp = j(; exp[—(t/r}‘,)ﬁf’]dt = ;—I;F(ﬁ—p), (3.15)

where I'(x) is the Gamma function. The Rouse relaxation time 7, is plotted as a function of N/p in
Fig. 3.1 for linear (g) and ring (h) polymer melts. In linear polymer melts, 7, rapidly deviates from
the Rouse regime (N/p)? as the chain length N is increases. In particular, the power-law behavior
T, ~ (N/ p)>* was observed, indicating entanglement effects [147, 148]. This crossover from the
Rouse to the reptation behavior was reported in Refs. [147, 148]. 7, of ring polymers also deviates
from the Rouse-like power-law behavior with increasing N/p. However, the exponent becomes
2.4, which is smaller than that of linear polymers for the chain lengths investigated in this study.
Further, it is important to compare the segmental relaxation rate Weg = 3kgT /¢ br=k/ { between
linear and ring polymer melts, which is related to the Rouse relaxation time 7, (see Eqgs. (3.8) and

(3.9)). Specifically, we evaluated W g using the slowest mode (p = 1) by

Weff,linear = 1/[4T1,linear sin2(7r/2N)], (3.16)

Weftring = 1/[471 sing sin®(/N)], (3.17)

for linear and ring polymers, respectively, and the results are plotted in Fig. 3.2. For linear poly-
mers, Weg exhibits a roughly constant independent of N up to the entanglement length N, =~ 28.
A similar value is also observed for ring polymers, indicating the same Rouse dynamics in melts

of linear and ring chains. The power-law behavior Weg ~ N~!# is observed for the longer linear
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polymer, which is consistent with the scaling of 7, ~ (N/ p)>4, as demonstrated in Fig. 3.1(e). Note
that N and p are both varied in Fig. 3.1(e), and the scaling at p = 1 is rephrased as 71 ~ N> at large
N. In contrast, Wg of ring polymers shows a weak N dependence and the scaling Weg ~ N4
is observed for the longer chain length N > 100. This exponent corresponds to the scaling of
7, ~ (N/p)**, as observed in Fig. 3.1(f).

The NGPs of the segment displacement a5'*"(#) and the center-of-mass displacement a5°"(7)
were investigated using Egs. (3.11) and (3.13), respectively. Figure 3.3 shows a}'*"(¢) for linear
(a) and ring (b) polymers. For comparison, the time evolusions of MSD (r3(r)) are displayed
in inset of Fig. 3.3(a) and (b). It is seen that a3'*"(r) exhibits peaks of 0.1 for both linear and
ring polymers. The peak occurs at # = 1, beyond which each segment begins to escape from the
regime of ballistic motion, (r2(f)) ~ ¢, at small times. The height and position a5 (1) in the
ballistic regime are independent of the chain length N, indicating that the effects of polymer chain
ends are negligible in this regime, where the effect of the chain connectivity plays the role on
the segmental dynamics [142]. For linear polymers, the second peak appears at a larger time
regime, where (r2(1)) approaches the diffusive behavior, as demonstrated in Fig. 3.3(c). The second
peak develops for longer time scales with increasing chain length N, which was demonstrated in
the previous study [141]. The height of the second peak becomes 0.5 for N = 400. This non-
Gaussianity can be regarded as the chain end effect with higher mobility due to less topological
constrains [149]. Note that the mechanism of non-Gaussianity in linear polymer melts is different
from that of the cage effects in glass-forming liquids [132—134]. On the contrary, it is unlikely that
a5 (7) of ring polymers shows clear peaks for chain lengths up to N = 400 despite the diffusive
behavior being realized in (r3(f)) at larger time scales (see Fig. 3.3(d)). This implies that all the
monomer beads show similar dynamics in ring polymers without chain ends. The non-Gaussianity

of the center-of-mass displacement is additionally examined in Fig. 3.3 for linear (c) and ring (d)

com

polymers. The behavior of a5

(#) is analogous to that of @;'*"(¢) both for linear and ring polymers.

com

However, the first peak of @

(t) at t = 1 becomes smaller with increasing N for both linear and

ring polymers. This indicates that regardless of the chain connectivity, the center-of-mass dynamics
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com

is more Gaussian for longer chains. Furthermore, o

() of ring polymers with N = 400 shows a
peak of 0.1 at ¢ ~ 10°, which shows very small non-Gaussianity as the chain length is increased.
Finally, to characterize the difference in the NGP between linear and ring polymers in more
detail, we calculated the self-part of the van-Hove correlation function G(r,t) = (quvzl o(|r,(t) —
r,(0)|—r)), i.e., the distribution function of the segmental displacement r at time 7. The probability
distribution of the logarithm displacement is then defined as P(log;,(r),?) = In(10)473G(r, 1) [150—
152]. It is defined such that the integral fx zl P(x,t)dx is the fraction of particles whose value of

log;y(r) is between x¢ and x;. When the Gaussian distribution is assumed as

32 —3r2
e~ ]| st o

with the mean square displacement (r3(f)) at time , P(log;y(r),1) has a peak of In(10) V34 me 32 ~
2.13 irrespective of time ¢. In Fig. 3.4, P(log((r),?) is plotted for linear (a) and ring (b) polymers
with the chain length N = 400 by changing ¢ from 1 to 10°. For a comparison, we also showed
P(log(10)(r),t) determined from the Gaussian distribution Eq. (3.18) at each time. As observed
in Fig. 3.4(a), the peak height of P(log;y(r),t) for the linear polymer decreases as t increases.
This decrease in the peak indicates that the distribution deviates from the Gaussian behavior and
becomes broader, which is also observed in glass-forming liquids [152]. Figure 3.4(b) demonstrates
that the peak height of P(log;q(r),?) for ring polymers remains at the Gaussian level, providing
clear evidence that the segment displacement follows the Gaussian distribution even for longer
time scales.

Furthermore, Fig. 3.4(c) and Fig. 3.4(d) show the probability distributions of the center-of-
mass displacement P(log;,(R),?) for linear and ring polymers, respectively. The deviation from the
Gaussian form G4(R, 1) = [3/2n(R2(1))]?/? exp[—3R2 / (2<R2(t)))] is noticeable for linear polymers,
particularly for longer times. Analogous to Fig. 3.4(b), P(log;((R),?) of ring polymers is in ac-
cordance with the Gaussian distribution at any time. Note that small deviation from the Gaussian

distribution at long times were observed in Fig. 3.3(d) for the chain length N = 400, while the peak
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value remains the Gaussian level of 2.13. This observation suggests the possibility that the center-
of-mass dynamics of a long ring polymer chain in melts can be influenced by the neighboring

rings.

3.4 Conclusion

We presented the MD simulation results using the Kremer—Grest model for linear and ring polymer
melts with chain lengths up to N = 400. We focused on the chain length dependence of the Rouse
relaxation time and non-Gaussianity for characterizing both the segmental and center-of-mass mo-
bility with or without chain ends.

For linear polymers, the deviation from the Rouse model behavior becomes remarkable with
increasing the chain length N by showing the scaling 7, ~ (N/ p)>#, which is consistent with pre-
viously reported results [11]. The NGP of the monomer bead dynamics shows two peaks: the
first peak appears on the time scale where the MSD escapes from the segmental ballistic motion,
whereas the second peak corresponds to the realization of the diffusive behavior of the MSD. This
indicates that the segment dynamics becomes spatially heterogeneous because of the higher mo-
bility of chain ends in the linear polymer chain. The NGP of the center-of-mass dynamics also
exhibits two peaks, but the first peak becomes weaker due to less chain connectivity effects as the
chain length is increased.

For ring polymers, the Rouse-like behavior with the scaling 7, ~ (N/ p)>* was observed. Al-
though the peak of NGP was observed at short times similar to that of linear polymers, the non-
Gaussianity was found to be strongly suppressed even for a longer time regime. The segmental
dynamics in ring polymers without chain ends becomes spatially homogeneous and the mecha-
nism of the chain motion is essentially different from the reptation model for linear polymers. The
center-of-mass dynamics in ring polymers also shows the Gaussian behavior, while a very small
non-Gaussianity is observed with increasing chain length suggesting cooperative motions between

neighboring rings.
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As mentioned in Introduction, Brés et al. reported the NGP of the center-of-mass dynamics in
PEO ring polymers from a neutron scattering experiment [15]. The molecular weight 5 kg/mol was
chosen to be 2.5 times larger than the entanglement mass, which approximately corresponds to the
chain length N = 100 in the present MD simulation study. The NGP from the neutron scattering
experiment shows a peak of 0.2-0.3 at around 30 ns, which corresponds to the crossover from a
sub-diffusion to diffusion regime. It seems that the experimental result is not in agreement with the
present MD simulation result of @5°™ ~ 0.1 with N = 400. The effects of the chain lengths and the
chemical species of the segments need to be studied in further depths to resolve the difference.

A plausible key feature for topological constraints in ring polymers is an inter-ring threading
event [67, 68, 153—-159]. In particular, Michieletto et al. have proposed the “random pinning”
procedure, wherein some fractions of rings are frozen, to investigate the role of threadings on the
dynamics [156]. They demonstrated that random pinning can enhance the glass-like heterogeneous
dynamics in ring polymers. Furthermore, it was reported that the distribution of the center-of-mass
displacement deviates from the Gaussian distribution even in a zero “random pinning” field. In
contrast, the non-Gaussianity is much weaker in this work, where agom(t) becomes 0.1 with the
chain length N = 400 without the pinning procedure. One possible interpretation could be that
the thermodynamic states analyzed here are different: monomer density p = 0.85 in this study is
frequently used for MD simulations of polymer melts [10, 11], whereas densities in Ref. [156]
were chosen up to p = 0.4. Therefore, further investigation is necessary for a strict assessment with
regard to the monomer density dependence of the non-Gaussianity with increasing the chain length

N, which is a subject of future study.
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Figure 3.1: Normalized autocorrelation function ¢(¢) of the Rouse mode p = 1 for linear (a) and
ring (b) polymers. Symbols and lines represent MD simulation results and the fitting curves using
the Kohlrausch—Williams—Watts function, exp[—(t/ Tp)ﬂp]. The exponent §,, is plotted as a function
of N/p for linear (c) and ring (d) polymers. Normalized amplitude of autocorrelations of the Rouse
mode, 4sin2(7rp/ CN)X p(0)2> (e) and 4sin2(7rp/N )10 ¢ p(0)2> (f), are plotted as a function of N/p
for linear and ring polymers, respectively. Rouse relaxation time 7, as a function of N/ p for linear
(g) and ring (h) polymers. Two scaling behaviors, i.e., the Rouse model behavior 7, ~ (N/ p)? and
the reptation model behavior 7, ~ (N/ p)3'4, are represented in (g). In (h), 7, ~ (N/ p)2 is indicated
for smaller N/p, whereas the different power-law 7, ~ (N/ p)*>* is observed for larger N/p. In
(d), (f), and (h), the results for N/p < 2 are omitted because of the symmetric structure of N/p
dependencies on (X p(0)2> and 7, (see Egs. (3.7) and (3.9)). Note that only two points with p =1
and 2 are plotted for N =5 ring polymers, where each ring tends to form a pentagonal structure,
causing fluctuations more than other length chains.
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Figure 3.2: Chain length N dependence of the effective segmental relaxation rate Weg for linear
(squares) and ring (circles) polymers. Two straight lines are eye guides indicating, Weg ~ N~
and Weg ~ N704,
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Figure 3.4: Probability distributions of the logarithm displacement of monomer beads and center-
of-mass chains, P(log;((r),t) and P(log;y(R),1), for linear [(a) and (c)] and ring [(b) and (d)] poly-
mers with the chain length N = 400. The time ¢ is chosen as = 1, 102, 10*, and 10° from left to
right. The horizontal line denotes the Gaussian level, In(10) \V54/me=3/2 ~ 2.13. The solid curve
represent the form using the Gaussian distribution, G(r,t) = [3/ PG ONEE exp[—3r2 / (2(r2(t)>)]

[(a) and (b)] and G(R, 1) = [3/Q2r(R*(1))]*/? exp[—3R2 /(2(R2(t)>)] [(c) and (d)] at each time.
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Chapter 4

Unraveling the Glass-like Dynamic Heterogeneity in
Ring Polymer Melts:

From Semiflexible to Stiff Chain

4.1 Introduction

The dynamic properties of polymers melts are governed by structural features, such as the chain
length N and “topological constraints” (TCs) [1,2]. In linear polymer melts, entanglement effects
are common TCs and play a key role in describing the N dependence of the diffusion constant D.
However, defining and characterizing TCs in ring polymers is still challenging due to the absence
of chain ends [3,17,47,54,160, 161].

In ring polymer melts, the simple picture of TCs is that they inhibit each other’s dynamics due
to inter-ring “threadings” [5, 26, 62,66]. As N increases, the number of threading configurations
also increases, making it more difficult for the system to find the equilibrium configuration to relax
the threading. The threading event of large N rings suggests a slowing-down of the dynamics,
similar to the slow dynamics in glass-forming liquids, where cage effects are imposed by the local
density environment [162]. The concept of “topological glass” has been used to understand the
dynamics of ring polymer melts, highlighting the unique role of TCs in these systems compared
to the entanglements in linear polymers [25, 27,55, 67,68, 155, 156, 159, 163—165]. Interestingly,

techniques such as random pinning [68, 156] and activeness [25,27, 165] have been introduced to
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enhance the glassiness in ring polymers through molecular dynamics (MD) simulations.

Dynamic heterogeneity (DH) is a key concept used to describe the significant slowing-down
of glass-former liquids as they approach the glass transition temperature [166—168]. The slowing-
down is accompanied by the collective structural relaxation of spatially heterogeneous regions that
exceeds the molecular size [132,169-171]. DH is conventionally measured by the non-Gaussian
parameter (NGP), i.e., the degree of the deviation from the Gaussian distribution for the molecular
displacement within a given time interval [132,134,152,172—-174]. The NGP was utilized to quan-
tify the non-Gaussianity in supercooled linear polymer melts [141-143]. In addition, we conducted
calculations on the NGP for linear polymer melts by MD simulations using the Kremer—Grest (KG)
bead-spring model [24]. The chain lengths varied from N = 5 to 400, and the monomer density was
set at p = 0.85 (in the unit of o> using the size of the bead o). Our findings revealed that a notable
increase in the peak of the NGP as N increases. This suggests that the dynamics of the system
becomes spatially heterogeneous. However, note that the mechanism of non-Gaussianity in lin-
ear polymer melts is due to the enhanced mobility of chain ends, which is different from the cage
effects observed in glass-forming liquids.

Michieletto et al. conducted MD simulations of ring polymers using the KG model and ana-
lyzed the center-of-mass (COM) displacement distribution [156]. They found that the non-Gaussian
behavior was pronounced even in the absence of random pinning fields, when the monomer density
p increased with the chain length N = 500. This finding is consistent with the experimental obser-
vation of polyethylene oxide ring melts by Bras ef al. [15] However, our previous study, which also
used the same model for MD simulations of ring polymer melts, showed that the NGP remained
quite small at all time regimes, even when the chain length was increased up to N =400 [24]. It
should be noted that the chain stiffness differed between the two studies. Specifically, the bending
potential £g(1 +cos6) (in the unit of energy scale in the Lennard-Jones potential) acts on the bending
angle 6 formed by three consecutive monomer beads along the polymer chain (refer to Eq. (4.3)).
Michieletto et al. utilized a stiff ring chain with the bending energy of &9 = 5 for densities up to

p = 0.4. More recently, the glass-like slow dynamics has also been demonstrated at low densities
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by increasing the chain stiffness up to gy = 20 [28]. By contrast, we simulated semi-flexible ring
chains with g9 = 1.5 at a higher density of p = 0.85, which is the same as that used in the MD study
by Halverson et al. [10, 11, 175]

Thus, there is still much to be explored regarding the influence of chain stiffness on DH in
ring polymer melts. To address this gap, we performed MD simulations using the KG model by
varying &g and p. Our analysis began by examining the NGP, and characterized the effect of chain
stiffness on the DH in ring polymer melts. We also investigated the conformation of ring chains by
analyzing the radius of gyration, as well as asphericity and prolateness based on the diagonalization
of the gyration tensor. Additionally, we introduced the concept of inter-molecular bonds virtually
connected by ring COM positions, which enabled us to investigate the rearrangement of inter-
molecular connectivity of ring polymers. By combining the results obtained from these analyses,
we aim to identify similarities and differences in the effects of chain stiffness and monomer density

on ring polymer dynamics.

4.2 Model and Methodology

We employed MD simulations for ring polymer melts utilizing the KG model [114]. Each ring
polymer was represented by N monomer beads of mass m and diameter 0. Our system consisted of
M polymer chains contained within a three-dimensional cubic box with volume of V and periodic
boundary conditions. All monomer beads were subject to three types of inter-particle potentials,

namely: the Lennard-Jones (LJ) potential, which acted between all pairs of monomer beads,

UpLi(r) = 4su[(%)12 - (3)6 +C. 4.1

r

Here r and g1 represent the distance between two monomer beads and the energy scale of LJ
potential, respectively. The LJ potential was truncated at the cut-off distance of r. = 2!/6 &, and

the constant C ensured that the potential energy shifted to zero at r = r.. Additionally, two adjacent
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monomer beads along the chain also interacted via the bond potential

()

for r < Rg, where K and Ry represent the spring constant and the maximum length of the bond,

1
Ubond(r) = —EKRg In , (4.2)

respectively. Note that Eqs (4.1) and (4.2) define the finitely extensible nonlinear elastic (FENE)
bond potential of the KG model. We adopted the values of K =30 g5/ ocrand Ry=150. Lastly,

we controlled the chain stiffness by incorporating a bending potential

Upend(6) = €9l 1 —cos(0—6p)], (4.3)

where the bending angle 6 is formed by three consecutive monomer beads along the polymer chain.
In this study, we explored two bending energy cases: a semi-flexible chain with €9 = 1.5¢1y and a
stiff chain with &9 = 5e1; both with an equilibrium angle of 8y = 180°.

We conducted MD simulations using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [135]. Hereafter, the length, energy and time are conventionally represented
in units of o, &g and (m/ep )2, respectively. Moreover, the temperature is also presented in units
of &15/kg, where kg is Boltzmann constant.

We fixed the temperature 7', chain length N, number of chains M as T = 1.0 and N = 400,
and M = 100, respectively. During all simulations, the temperature was controlled using the Nosé—
Hoover thermostat, with a time step of Ar = 0.01. We varied the monomer density po (= NMc>/V)
as 0.1, 0.3, 0.4, 0.5, and 0.55 both for the semi-flexible and stiff chains. Besides, we adopted the
monomer density p = 0.85 for the semi-flexible chain with gy = 1.5, which was a common choice
for MD simulations both for linear [148,176] and ring [10, 11,24, 175, 177] polymers. It should be
noted that a stiff chain system with g9 = 5 displayed nematic ordering when the monomer densities
exceeded p = 0.55, which is in agreement with the recent MD simulations reported in ref. 30.
Therefore, the system of g9 = 5 at p = 0.85 was excluded from the analysis. For each combination of

gy and p with the chain length N = 1,000, we calculated the Kuhn length /i using /i = (R®)/lL,(N—1),
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Table 4.1: Kuhn length /x and entanglement length N, by varying bending energy &y and monomer
dnesity p. (*: No entanglement effects were observed.)

&p P Ik N

1.5 01 41 *

1.5 03 38 121

1.5 04 37 85

1.5 05 3.0 60

1.5 055 3.0 59

1.5 085 2.8 28

5 01 10 *
5 03 78 32
5 04 72 24
5 05 64 19
5 055 64 15

in the linear chain melt [178]. Here, (R?) represents the mean square end-to-end distance of the
chain, and /, ~ 0.97 denotes the average distance between two neighboring beads in the KG model.
Another important characteristic is the entanglement length N,, which we determined through the
primitive path analysis [136, 137]. The values of /x and N, are presented in Table 4.1. Note that in
previous studies, /x was reported to be /x ~2.79 for gg = 1.5 at p = 0.85 and /x ~ 10 for gy =5 at
p = 0.1, respectively [10, 156]. Additionally, N. was reported to be N ~ 28 for gg = 1.5 at p = 0.85
and N, ~ 40 for gy = 5 at p = 0.1, respectively [68, 179]. However, we encountered difficulties in
estimating N, at the density p = 0.1 both for both £y = 1.5 and 5 due to the absence of entanglement

effects with N = 1,000.

4.3 Results and Discussion

4.3.1 Mean Square Displacement and Non-Gaussian Parameter

We first analyzed the mean square displacement (MSD) of the COM of ring polymer chains and

the NGP of the COM displacement distribution. The mean value of the even power of the COM
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Figure 4.1: Monomer density p dependence of MSD <Ar%OM(t)> and NGP a» () for gg = 1.5 [(a)
and (c)] and for g9 = 5 [(b) and (d)], respectively. Note that MSD is scaled by mean square gyration
of radius (Ré). In (a) and (b), the ballistic, sub-diffusive, and diffusive behaviors, <A’%0M(t)> ~ 17,
are represented by black lines with @ = 2, 3/4, and 1, respectively. Insets of (a) and (b): semi-log
plots of the diffusion constant D as a function of the monomer density p, respectively. Note that the
monomer density p = 0.85 was analyzed only for gy = 1.5.

displacement is defined by

1 M
(Argom®) = <M D IRu() —Rm<0>|2">, n=12,-), (4.4)
m=1

where R,, () represents the COM position of m-th polymer chain at time 7. Here, (:--) denotes an
average over the initial time. The second order with n = 1 corresponds to the MSD. Furthermore,

the NGP for the center of mass (COM) displacement a;(¢) is defined by

A 4
ar(t) = EM 1. (4.5)

S A2y
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The NGP is a typical quantity to characterize DH in glass-forming liquids, which measures the non-
Gaussianity, i.e., the degree of the deviation of the distribution function of the COM displacement
from the Gaussian form during the time interval 7.

The results of MSD and NGP are displayed in Fig. 4.1 by changing the monomer density p for
gp=1.5[(a) and (c)] and €9 = 5 [(b) and (d)], respectively. As the monomer density p increased,
the diffusion of ring polymer chains significantly slowed down both for €9 = 1.5 and 5. Moreover,
at higher densities, the MSD exhibits a sub-diffusive behavior with (Arg,, (1)) ~ /4, followed by
diffusion behavior observed at displacements larger than mean square gyration of radius (Ré). The
COM diffusion constant D was determined from the Einstein relation, D = limt_)oo<Ar(2:OM(t)> /6t.
The monomer density p dependence of D for g9 = 1.5 and 5 is shown in the insets of Fig. 4.1(a)
and (b), respectively. The reduction in diffusion was more pronounced for the stiff chains with
gy = 5 compared to semi-flexible chains with gy = 1.5 at time scales corresponding to the onset
of the diffusion process at the same monomer density. These observations are consistent with the
calculations by Michieletto ef al. [156] and Halverson et al. [11] The mean square radius of gyration
(Ré) will be discussed in the next subsection with respect to Fig. 4.2.

As demonstrated in Fig. 4.1(c), the NGP’s value of semi-flexible ring chains with g9 = 1.5
remained relatively small (a2(#) < 0.1) at all investigated times and densities. This suggests that
the distribution of the COM displacement |R,,(¢) — R,,(0)| follows a Gaussian distribution, which
was previously reported in our work. [24] The observation of Gaussian behavior in semi-flexible
ring polymers, even at the dense melt density of p = 0.85, is noteworthy and provides a unique
perspective on the dynamics of ring polymers. By contrast, for stiff ring chains, the increase in
as(t) was more significant, showing peaks in a long time regime that approximately corresponded
to the onset time scale of the diffusive behavior with (AréOM(t» ~ t, as demonstrated in Fig. 4.1(b)
and (d). Namely, the DH was found to be more pronounced in stiff ring chains with €9 =5, similar to
common observations in glass-forming liquids. An analogous glass-like heterogeneous dynamics
was reported by Michieletto et al., who analyzed the displacement distribution of stiff ring chains

with g9 = 5 up to p = 0.4 with N = 500 [156]. Therefore, the contracting observations in the NGP
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Figure 4.2: Monomer density p dependence of chain conformation characteristics: (a) mean square
radius of gyration (Ré)/ <R§2>, (b) asphericity A, and (c) prolateness P. In (a), the mean square

radius of gyration is normalized by (Rzz), which represents the mean square radius of gyration at
a density of p = 0.001. The raw data of (Ré) as a function of p is also shown in Inset of panel (a).
The black dotted line in (a) is the master curve, (Ré) / (Rgz) =[1+ O.45(p/p*)]_0'59. In each panel,
the density is scaled density p* = 3N/(4r(Rg?)*/?).

call for further investigations into the COM mobility, which could entail significant differences

between semi-flexible and stiff ring chains.

4.3.2 Conformation of the Ring Chains: Radius of Gyration, Asphericity

and Prolateness

It is important to examine the details regarding the conformation of rings and its relationship with
the DH both for semi-flexible and stiff chain. The radius of gyration provides a measure of the
size of polymer chains. To gain a more sophisticated understanding of the shapes, the principal
components the gyration tensor I can be utilized, which allows for examination of the asphericity
and prolateness of the polymer chains [180-183]. The gyration tensor for each ring chain is defined
as lop = N1 Zf\i 1 Z?’: (@i —aj)(B; — Bj), where a; represents the @ element of i-th bead with «,
B (= x,y,z). Here, the square radius of gyration Ré can be calculated as the summation of the
eigenvalues 4; (i = 1,2,3) of the gyration tensor I as Ré = A1 + A2 + A3, where the principle axes of

inertia are chosen such that the diagonal elements are ordered as A; > A» > A3. Furthermore, the
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asphericity A and prolateness P were calculated from the following equations:

4o A=)+ =) + (- A)°
2(A + A + 3)?
_ QA -2 -3)2A -1 —A3) 23— A1 — A2)

3/2
2(1{ + 2+ 2 -2 - 123 —12/13)

, (4.6)

P 4.7)
The asphericity takes on values of 0 < A < 1, where A = 0 corresponds to spherically symmetric
object, and A = 1 corresponds to a polymer that is fully extended to form a rigid rod shape. The
prolateness P is bounded between —1 and 1, where P = —1 represents a fully oblate object such as
a disk, and P = 1 represents a prolate object in the shape of a rigid rod. The gyration tensor was
calculated for each chain and the time evolutions of Ré, A, P were computed. The mean values
(Ré), (A) and (P) were evaluated by taking the average of these quantities over the time series data
for each chain. It should be noted that the analysis of the gyration tensor was performed in various
simulations of ring polymers [29,49, 183-188].

Reigh and Yoon reported a universal scaling behavior of (Rg) ~ p~%° for long ring polymers by
Monte Carlo simulation of a lattice model [49]. This exponent —0.59 is significantly different from
the value of —0.25 observed for linear polymers, which was a well-established prediction based
on scaling arguments. This observation suggests ring chains form more compact conformations
than linear chains. More recently, Cai et al. performed MD simulations of ring polymers using
the KG model by varying chain lengths N up to 5120, and reported the same scaling behavior of

(Ré) ~ p~039 [29]. The master curve was heuristically proposed and given by
(R3Y/(R?) = [1+0.45(p/p")] "%, (4.8)

where <R§2> denotes the mean square radius of gyration in the dilute solutions. In addition, p*
corresponds to the overlap density defined by p* = 3N/ (47T<R§2>3/ 2). They also compared their
simulation results with available experimental data, and found good agreement between simulations

and experiments. Note that the ring polymer chains in their simulations were fully flexible because
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they did not incorporate any bending potentials.

Figure 4.2(a) shows the relative mean square radii of gyration (Ré) / (R;Z) as a function of the
scaled density p/p*. We estimated (R;z) as the value of mean square radii of gyration (Ré) both for
semi-flexible and stiff chains at a density of p = 0.001. This density corresponds to a sufficiently
low scaled density (p/p* < 10~1), making it appropriate to consider p = 0.001 as a dilute solution
both for semi-flexible and stiff ring polymers. The data for semi-flexible rings with gy = 1.5 follow
the master curve given by Eq. (4.8). However, a deviation from Eq. (4.8) was observed for stiff
rings with &g = 5, indicating that (Ré} of stiff ring chains decreases slightly slower than that of
semi-flexible ring chains as the density is increased beyond p/p* > 10. The inset in Fig. 4.2 (a)
shows the density p dependence of the mean square radii of gyrations (Ré}. This represents that the
stiff rings are larger than semi-flexible ones in all densities p.

Figure 4.2(b) and (c) show the average asphericity (A) and average prolateness (P), respectively,
as functions of p/p*. Interestingly, we found that the values of (A) and (P) approached saturation
regardless of the bending energy &¢. In particular, the relatively small values of (A) ~ 0.2 suggest
that the ring polymer adopt globular conformations, which remain valid across the densities exam-
ined. However, slightly large values of (P) =~ 0.5 indicate that the rings extend moderately in the
direction of longest inertia axis. These imply that the shape of the rings is alomost spherical and
relatively insensitive to both &g and p, provided that the chain length is sufficiently long compared

to the Kuhn length scale.

4.3.3 Inter-penetration of Ring Chains

As shown in Fig. 4.2, while the shape of the polymer remained largely unchanged on average, there
was a increase in the mean square radius of gyration (Ré) when the chain stiffness increased to
gp = 5. This suggests that the inter-molecular connectivity of ring chains may differs significantly
between semi-flexible and stiff chains. To explore this further, we calculated the radial distribution
function for the COM of ring chains g(r), and the results are presented in Fig. 4.3 as a function of

the scaled length of r/ (Ré)l/ 2,
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Figure 4.3: Radial distribution function g(r) for COM of ring polymers as a function of the scaled
distance r/ (Ré)l/ 2. Results are shown for gg = 1.5 (a) and &g = 5 (b).
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Figure 4.4: Probability distributions of the number of virtual bonds, f(Zy), for ring polymers of
gg = 1.5 (a) and &y = 5 (b). The virtual bonds are defined based on Eq. (4.9). Panel (c) shows the
monomer density p dependence of the mean value of Zj,.

As observed in Fig. 4.3, g(r) allowed us to characterize the degree of inter-penetration of ring
polymers. In fact, we did not observe a pronounced peak of g(r), but instead found finite values at
the length scale of r < (Ré)l/ 2, indicating that there is some degree of inter-penetration between the
ring chains. The g(r) became more broad with increasing the monomer density, suggesting that the
chains are less separated from each other. Similar results of g(r) were reported for flexible chains
without the bending potential by Cai et al. [29] Additionally, as shown in Fig. 4.3(b), the degree
of the inter-penetration became more significant as the bending energy increased to €9 = 5. This

observation is consistent with the larger mean square radius of gyration (Ré) of stiff rings with gg =5
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Figure 4.5: Visualization of virtual bonds (yellow lines) between the COM of rings (blue spheres)
for g9 = 1.5 [(a), (c) and (e)] and &g = 5 [(b), (d) and (f)]. The monomer density p increases as
p=0.1,0.3, and 0.5 from top to bottom.
compared to that of semi-flexible rings of €9 = 1.5 at the same density p. The difference in (Ré)
is also evident in Fig. 4.2, where the curve for g9 = 5 is shifted to higher values of p/p* compared
to &g = 1.5. These results suggest that the competition between repulsive forces inside the ring
and from adjacent rings plays a crucial role in determining the loop structure. While sufficiently
semi-flexible polymers tend to be more compact because the repulsion between neighboring rings
overcomes the monomer bead repulsion inside a single chain, the stiff polymers tend to expand due
to the long Kuhn length, leading to the inter-penetration of rings.

To analyze the number of inter-molecular connectivity, we considered virtually connected bonds

between the COM of ring chains. In particular, for two polymers i and j with the COM positions
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r; and r;, they were considered to be virtually bonded if
rij < Al(R)'?, (4.9)

with the value of Ay = 1. Here, r;; = |R; — R || is the distance between these COM. For each polymer,
the number of virtual bonds Z;,, which represents the static coordination number, was counted.
Figure 4.4 depicts the probability distribution f(Z) for ring polymers of g = 1.5 (a) and €9 = 5 (b)
at varying the density p. In the case of semi-flexible rings with gy = 1.5, the peak was observed at
around 2 for most densities, except for p = 0.1, where Z;, was predominantly 0, indicating that each
ring chain was mostly isolated and did not correlated with each other. However, for stiff rings with
gy =5, we observed an increase in the peak position and width of f(Z,) as the density p increased.
The monomer density p dependence of the mean value of Z;, is shown in Fig. 4.4(c). Here, (Z) can

be evaluated by

(RD'V?
(Zy) = fo A2 (%) (r)dr. (4.10)

In cases of g(r) =1 and (Ré) ~ p‘0'6, (Zy) may exhibit a scaling behavior of (Z},) ~ p(R§>3/ Z. ,oo'1 at
a fixed chain length N. This suggests that (Z,) increases slowly as the density increases. However,
the presence of g(r) < 1 for r < (Ré)l/z, as observed in Fig. 4.3 both for gy = 1.5 and 5, leads to the
deviates from the expected (Z;,) ~ po'l. Notably, as shown in Fig. 4.2(a), <R§) of gy = 5 does not
follow the (Rg} ~ p~06 scaling, resulting in a more pronounced increase in (Zy) with increasing the
density.

Moreover, the spatial distribution of inter-molecular connectivity is visualized in Fig. 4.5. For
semi-flexible ring polymers with g9 = 1.5, bonds describing the connectivity of COM are sparse
irrespective of the monomer density p. In contrast, as the density increases, ring polymers with
higher stiffness (g9 = 5) exhibit a stronger percolation, indicating a more interconnected network
bond. It is noteworthy that there exists a critical coordination number around 3, beyond which the

linked ring polymers percolate through the entire system [189].
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Figure 4.6: Monomer density dependence of the bond correlation function Fy(f) for €9 = 1.5 (a)
and gy = 5 (b), respectively. The solid line represents the fitting result obtained using the stretched
exponential function, Fy(t) ~ exp[—(t/rb)ﬁ]. Panel (c) shows the monomer density p dependence
of the average relaxation time (1) of the bond correlation function Fy(¢) and the diffusion time
74 = (Rg)/6D.

4.3.4 Rearrangements of Inter-molecular Connectivity

To examine rearrangements of inter-molecular connectivity of ring polymers, we analyzed the time
evolution of virtual bonds. This reflects the exchange of initially bonded neighbors because the
COM motion breaks old bonds and forms new ones. Although the average coordination number
(Zp) may remain constant, the neighboring COMs will be replaced with the new ones, thereby
reshaping the cages around a tagged COM. A similar methodology, known as the bond-breakage
method, is used to study the DH observed in glass-forming liquids [170, 190-193].

The virtual bond between two polymers i and j which had been counted to be formed at an

initial time O through Eq. (4.9) was considered broken when
rij(t) > Ap(R)'V?, (4.11)

after a time interval of 7. To ensure bond-breaking insensitive to thermal fluctuations, the threshold
value of A = 1.2 was set slightly larger than Aj=1. The total number of surviving bonds, N(?),
was calculated from the initial time 0. The bond correlation function, Fy,(¢) = (Np(¢)/Np(0)), was

obtained by averaging over the configurations at t = 0. Figure 4.6 shows the results of Fy,(¢) for
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Figure 4.7: Monomer density dependence of the dynamic susceptibility of bond-breakage y(¢) for
gp= 1.5 (a) and g9 = 5 (b), respectively.

gp=1.5 (a) and &g = 5 (b), respectively. The characteristic time scale of Fy () is related to that of
the rearrangement of the local coordination by the neighboring COMs, according to the definition
of the bond. The Fy(7) was fitted to the stretched exponential function Fj(f) = exp[— (t/Tb)B] ,
where the exponent 3 represents the degree of the deviation from the exponential decay with 8= 1.
The average relaxation time (1) was then calculated from (1) = fooo Fp(t)dt, and estimated by
(tp) = (1p/B)T'(1/B) with the Gamma function I'(---). Figure 4.6(c) shows (1) as a function of
the monomer density p. Our results demonstrate the increase in the average relaxation time (7y,)
of Fy(f) as the monomer density p increased, both for g = 1.5 and €9 = 5. The increase in (1)
apparently obeys an exponential trend as a function of p, except at the dilute density of p = 0.1 for
gp = 1.5, where the average coordination number (Z,) is less than 1, indicating that polymer rings
are nearly isolated (see Fig. 4.4(c)). Furthermore, we observed a more pronounced increase in (7y)
for stiff ring polymers with gy = 5, which is in accordance with the monomer density p dependence
of (Zy) (see again Fig. 4.4(c)).

Another significant time scale to consider is the diffusion time, 74, defined as 74 = (Ré)/ 6D,
which corresponds to the time at which the MSD reaches the length scale of the mean square
radius of gyration <R§). The monomer density dependence of 74 is illustrated in Fig. 4.6(c). It is
observed that for semi-flexible rings with &g = 1.5, 74 increases in a similar manner to (7y), while

for stiff rings with g9 = 5, 74 exhibits a significant increase and becomes decoupled from (7},) as
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the density p increases. These observations suggest the COM diffusion of stiff rings is not solely
driven by local bond rearrangements, but requires a cooperative mechanism.

We then examined the collective effects of bond rearrangements in ring polymers. For this
purpose, the dynamic susceptibility of bond-breakage was calculated by the fluctuation function of
the number of broken-bonds at different time intervals, 7 [191]. The number of the breakage-bond
B;(t) between two times 0 and ¢ for the i-th polymer was counted based on the conditions given
in Egs. (4.9) and (4.11). The degree of bond-breakage correlations can be characterized by the

susceptibility yy(¢), which is defined as

1 M M
() =~ <Z > 6B(1)B J-(r)>, (4.12)

=1 J:l

where 0B;(t) = B;(t)/2 — (B(t)) represents the deviation from the average number of broken bonds.
The average number of broken bonds can be estimated as (B(7)) = (Zfz | Bi(1)/2)/M. Note that the
factor 1/2 avoided double-counting of the bond-breakage between polymers i and j. Figure 4.7
illustrates the susceptibility of bond-breakage, yy(#), for different values of g9 and p. For semi-
flexible rings with g¢ = 1.5, the y,(7) shows relatively small values, whereas the peak of yp became
pronounced (yp ~ 30) at the highest density p = 0.85 investigated. In contrast, for stiff rings with
gy = 5, the peaks show significant development with increasing monomer density, particularly at
the time regimes where the MSD nearly reaches the diffusive behavior. At the density of p = 0.55,
the peak height reaches yp ~ 90. Therefore, the observed NGP behavior in Fig. 4.1(c) and (d) is
related to DH, which is also characterized by the bond-breakage susceptibility, yp(#). Interestingly,
the results of a(¢) and y,(¢) suggest that ring polymers with gy = 1.5 exhibit spatial homogeneous
dynamics, even in the sub-diffusion regime. In this perspective, the inter-chain interactions in semi-
flexible ring polymer melts display notable characteristics, while stiff ring polymer melts exhibit
interactions reminiscent of “entanglements” in linear polymer melts.

Mei et al. have recently developed the polymer interaction site model (PRISM) as a microscopic

theory for dense ring polymer melts [20, 194]. This theory proposes a partially inter-penetrating,
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two-step fractal structure model for each ring chain and provides a master curve for the chain
length N dependence of the COM diffusion constant D. Although the PRISM theory has shown
good agreement with MD simulations data for semi-flexible ring polymers with g = 1.5 [11],
deviations from the master curve have been observed for stiff rings of €9 =5 [156]. To gain a
deeper understanding of the underlying mechanism of emergence of DH in ring polymers melts, a
combined effort between theory and simulation may be necessary. In particular, our MD simulation
results analyzing DH can provide insights into the deviation from the master curves reported in
ref. 20, and may facilitate a generalization of the theory by incorporating an activated hopping

process [23].

4.4 Conclusion

In conclusion, our MD simulations of ring polymer melts using the KG model have provided in-
sights into the dynamics of semi-flexible and stiff ring chains. By analyzing the NGP in the dis-
tribution of the COM displacement, we have found that more stiff ring chains exhibit a peak in
the NGP in long time regimes, which increases with the monomer density. This suggests that the
dynamics of stiff ring chains are affected by strong inter-molecular interactions and that the motion
of the COM is correlated with each other. In contrast, more semi-flexible ring polymers exhibit rel-
atively small non-Gaussianity, indicating that the COM mobility is almost uncorrelated with each
other. The difference in non-Gaussianity between the two types of ring polymers suggests that the
nature of the inter-molecular interactions changes significantly depending on the degree of chain
stiffness.

The behavior of the radius of gyration R, in relation to p depends on the stiffness of the ring
polymer chains. In the case of more semi-flexible rings, the R, follows a master curve described by
Eq. (4.8). However, this curve does not apply to stiff ring polymer melts. The deviation from the
master curve can be explained by the competition between the shrinkage caused by the excluded

volume of neighboring polymers and the expansion due to the chain stiffness. Specifically, semi-
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flexible ring polymers tend to adopt a compact globule conformation due to the excluded volume
interaction with their neighbors, while more stiff rings expand due to the long Kuhn length.

We have also analyzed the dynamics of bond-breakage between the COM of rings defined by
using averaged radius of gyration, (Ré)l/ 2. The network of virtual bonds in stiff rings are perco-
lating, while those in semi-flexible rings are sparsely distributed. Furthermore, the results for the
dynamic susceptibility of bond-breakage are consistent with the non-Gaussianity in the displace-
ment distribution, indicating that the DH of bond-breakage is coupled with the non-Gaussianity in
diffusion in ring polymer melts. Furthermore, it is crucial to investigate the dynamics of ring-linear
blend melts [137, 195-198]. In practical terms, the analysis of the bond-breakage is particularly
well-suited for this system, enabling the assessment of the inter-connectivity dynamics of polymer
chain COMs.

Threading is commonly discussed in ring polymer melts, but the relationship with the bond-
breakage dynamics remains unclear. Further investigation into the properties of threading in ring
polymer melts with varying chain stiffness is warranted. Finally, we have found that semi-flexible
ring polymers exhibit sub-diffusion yet Gaussian distribution with unique dynamics. We suggest
that the microscopic theory based on the PRISM for ring polymer melts will be useful for un-
derstanding the diffusion mechanisms of these systems. Drawing on another crucial insight from
ref. 189, we put forward the notion that the value of (Z,) = 3 acts as a threshold for the percola-
tion of virtual bond networks and the emergence of DH in ring polymers. To gain deeper insights,
further analysis is required, including the cluster size distribution by varying the chain stifthess &y
and extending the study to longer chain length N. Currently, we are pursuing the application of

persistent homology analysis to explore this perspective further [66].
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Chapter 5

Persistent Homology Reveals the Origin of

Topological Glasses in Ring Polymer Melts

5.1 Introduction

Ring polymers exhibit distinctive properties compared to their linear counterparts [3, 5, 54, 199].
One key feature thought to define topological constraints in ring polymers is the interpenetrating
structure known as “threading”. Threading occurs when one ring polymer penetrates the loop of
another ring polymer, with the penetrating ring classified as active and the penetrated ring as pas-
sive, illustrating the asymmetric and hierarchical nature of the threading network. For sufficiently
long rings, this threading network can evolve, eventually leading to the formation of “topological
glasses,” where the relaxation time is expected to increase drastically with respect to the extent of
threading [55,67, 68, 163].

Analyzing threading and clarifying its relationship with glass-like properties is crucial. While
several approaches for quantifying threading have been proposed, including methods based on
minimal surface [62,63] and geometric analysis [64,65], Landuzzi et al. introduced a method for
quantifying the threading of ring polymers using persistent homology (PH) [66]. PH is a math-
ematical tool that characterize topological features such as “loops” from point cloud [200-202].
Specifically, Landuzzi et al. investigated threading structures using PH from MD simulations with
the Kremer—Grest (KG) model [114] for ring polymers. Of particular interest was the chain length

N dependence of ring polymers up to N = 2048 at a monomer number density of 0.1, incorporating
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a bending potential Uypeng(8) = €9(1 + cosf), where 6 represents the angle formed by consecutive
bonds and g9 = 5 (see Eq. (5.3) for details). This bending potential effectively models the polymers
as worm-like chains, analogous to the Kratky—Porod model [203].

We recently performed MD simulations using the KG with two types of ring polymers: semi-
flexible (g9 = 1.5) and stiftf (gp = 5) rings with a fixed chain length N = 400 to investigate the
influence of chain stiffness on their dynamic properties [204]. The rearrangement dynamics of
the center of mass (COM) were analyzed, with a focus on dynamic heterogeneity to clarify glassy
behavior. Our results demonstrated that stiff ring polymers exhibit pronounced glassy behavior
accompanied by dynamic heterogeneity, whereas semi-flexible ring polymers display homogeneous
dynamics characterized by a Gaussian distribution of COM displacement. This distinction suggests
that the dynamic properties of ring polymers are fundamentally influenced by the chain stiffness,
emphasizing the need to examine threading structures across varying degrees of chain stiffness.

The purpose of this study is to elucidate the influence of the chain stiffness and monomer
number density of ring polymers on their threading structures. We first analyze the connectivity of
COM using PH. Subsequently, we characterize the active and passive threading structures between
pairs of ring chains through PH. Through these analyses, we clarify the topological characteristics
of ring polymers and their relationship to glassy behavior, informed by insights gained from the

rearrangement dynamics of COM.

5.2 Methods

We employed MD simulations for ring polymer melts utilizing the KG model. Each ring polymer
is represented by N monomer beads, each with mass m and diameter 0. The system comprises
M ring chains contained within a three-dimensional cubic box with volume of V, with periodic
boundary conditions. The monomer beads interact through three types of inter-particle potentials:

the Lennard-Jones (LJ) potential governs the interaction between all pairs of monomer beads and
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is defined as

+C, (5.1)

r

ULi(r) = 4<9LJ[(%)12 - (2)6

where r is the distance between two beads, €1 is the depth of the potential well, and C is a constant
that shifts the potential at the cut-off distance of r. = 2!/ ¢. Two adjacent monomer beads along

the chain also interacted via the finitely extensible nonlinear elastic (FENE) bond potential

r 2
()] 5

for r < Rg, where K and Ry represent the spring constant and the maximum length of the bond,

1
Urgne(r) = —EKR% In

respectively. We used the values of K = 30e15/0> and Ry = 1.50. Lastly, the chain stiffness is

controlled by incorporating a bending potential

Ubend(0) = ¢ 1 —cos(6 - 6p)]1, (5.3)

where 6 is the bending angle formed by three consecutive monomer beads along the polymer chain.
In this study, the bending energy was set as gg/e1; =0, 1.5, 2, 3, 4, and 5, with an equilibrium angle
of 6y = 180°.

All MD simulations were performed using the Large-scale Atomic/Molecular Massively Par-
allel Simulator (LAMMPS) [135]. Length, energy and time are represented in units of o, &g and

172 respectively. Additionally, the temperature is expressed in units of &pj/kg, where kg is

(m/eLy)
Boltzmann constant. We fixed the temperature 7', chain length N, number of chains M as T = 1.0
and N =400, and M = 100, respectively. Throughout the simulations, temperature was controlled
using the Nosé—Hoover thermostat, with a time step of Af = 0.01. The monomer number den-
sity pO'3 (= NMo3/V) was varied as 0.1, 0.2, 0.3, 0.4, and 0.5 for each degree of chain stiffness.
Henceforth, p will be referred to as density.

Here, we briefly outline PH: A set of coordinates such as beads of chains or COM, denoted as

{r}={r1,r2,...,r:}, 1s used as input data, where « is the number of coordinates. At each coordinate,
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Figure 5.1: Density p dependence of A(a) as a function of 2 va/ 4 /<R§> by varying the bending
energy g9 =0 (a), g =1.5(b), g9 =2 (c), g =3 (d), g9 = 4 (e), and &y = 5 (f). The horizontal and
vertical dashed lines represent 4 =0 and o = <R§> /2, respectively.

assign a virtual sphere with radius +/a, where « is a parameter. Initially, when @ = 0, all points are
treated as disconnected components. As « increases, the spheres begin to overlap, and connected
components form, creating edges and facets. During this process, the topological features varies
discontinuously with respect to «, i.e., the loops will appear and disappear. We record the radii for
appearance and disappearance as b (birth) and d (death) respectively for each hole, and introduce
persistence diagram (PD) as a collection (b, d) of all holes. In this context, a zero-dimensional hole
represents a connected component, while a one-dimensional hole represents a loop. PD captures not
only the topological features at a specific radius, i.e., a threshold of connection, but also how these

features change as the threshold increases. All analysis were performed using the HomCloud [205].
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5.3 Results and Discussion

The first analysis aims to reveal the connectivity of the COM coordinates of ring polymer chains
using PH. The number of connected components at a given «, denoted as So(@) and referred to as
the zero-th Betti number, is calculated. As the radius of the virtual sphere with a radius of Va
expands, spheres will connect each other and finally become one lump. Thus, So(@) converges to

unity as a approaches infinity. We define the function representing the decrease in Sy(a) as

Bo(a)—1
= (= 4
Ae) <ﬁ0(0)_1>, (5.4)

where (---) represents the statistical average over the snapshot configurations generated by MD
simulations; note that Sy(«@) can be determined for each snapshot. Accordingly, this function takes
the value A(a =0) = 1 and A(@ — o0) = 0. The density p dependence of A(«) is plotted in Fig. 5.1 by
varying the bending energy &y. In the plot, the horizontal axis is represented by 2 va/ <R§> with
the mean square gyration of radius <R§> of the ring chains. Note that the COM distance between
any pair of two ring polymers, i and j, is related as r;; = 2 v/a when the rings are in contact, since
the radius of the sphere in the PH analysis is va.

Figure 5.1 demonstrates that A(a) decreases and converges to zero at a specific length scale
a. This behavior indicates percolation, where clusters are formed by virtually connected COMs.
The characteristic length scale is @ = <R§> /2, where a virtual bond is considered to have formed
if the distance r;; between the COMSs of ring polymer pair (i, j) satisfies r;; < <R§> (see horizontal
lines in Fig. 5.1). For flexible ring chains with g = 0, A takes finite values for @ < <R§> across
all densities, indicating the presence of numerous small clusters. In contrast, stiff ring chains with
gg=5SexhibitA~0ata = <R§> /2, suggesting the formation of percolated networks among COMs
of ring chains. Furthermore, the length scale of a exhibiting a plateau of 4 ~ 1 approximately
corresponds to the characteristic core length, analogous to the behavior of ring polymers modeled

as soft macromolecules. As &y increases, this core length is reduced, as shown in Fig. 5.1. These
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findings indicate that in flexible ring chains, the cores are large and overlap each other, but their
COMs are not connected with one another. In contrast, for stiff ring chains, the smaller cores and
relatively larger radius of gyration lead to an increase in the number of virtual bonds between. Thus,
the degree of density and chain stiffness strongly influence the structural and dynamic behavior of
ring polymer systems.

For flexible ring polymers with the chain stiffness gy = 0 in semidilute solutions, molecular
dynamics (MD) simulations using the Kremer—Grest (KG) model reveal that the mean square radius
of gyration <R§> as a function of density p follows the scaling behavior of <R§> ~ p~939129]. More
specifically, using the mean square radius of gyration in the dilute limit, denoted as <R§2>, and the

overlap density 3N/ (47T(R§2)3/ 2. the scaling relation

b
1+a(ﬁ*)] : (5.5)
o

(RD)
(R?)

was proposed. Here, a = 0.45 and b = —0.59 were the fitting parameters.

Figure 5.2 shows the chain stiffness €9 dependence of the relationship between (Ré) / <R§2> and
p/p* from our MD simulations. Note that <R§2> was calculated at p = 0.001. The results reveal
that <R§> decreases with increasing density p and exhibits significant deviation from the scaling of
Eq. (5.5) when chain stiffness &y is large, particularly noticeable for p/p* > 1.This deviation from
Eq. (5.5) implies that the influence of density p on chain conformation varies depending on the

chain stiffness &g.
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Figure 5.2: density p scaled by the overlap density p* dependence of mean square radius of gyration

<R§> scaled by its dilute limit value <RZ,2>.

We calculated the radial distribution function, g(r), for center of mass (COM) of ring chains.
The results are illustrated in Fig. 5.3. As demonstrated in Fig. 4.3, g(r) exhibits finite values at
the length scale r < <R§>, indicating significant interpenetration between the ring chains. For
flexible ring polymers with gy = 0, g(r) broadens with increasing density p, suggesting that the
chains become less spatially separated from one another. In addition, for stiff ring polymers with
gy = 5, the degree of interpenetration becomes more pronounced as the density p increases. This
observation is attributed to the larger mean square radius of gyration, <R§>, compared to that of
flexible ring chains with &g = 0 at the same p for dense systems (see Fig. 5.2). An analogous
observation with respect to the chain stiffness and density dependence of g(r) for ring polymers

was reported in a previous study [13].
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Figure 5.3: Radial distribution function g(r) for COM of ring polymers as a function of the scaled

distance r/ \/(R2) at 29 = 0 (a), £9 = 1.5 (b), &9 =2 (¢), &9 = 3 (d), 9 = 4 (), and &9 = 5 (f).

As shown in Figs. 5.2 and 5.3, the influence of density p on <R§> and g(r) significantly varies
with chain stiffness &g. To characterized the connectivity between COMs by varying p and &g, we
introduced a virtual bond between ring polymers i and j. Specifically, if the distance between the

COMs of polymers i and j, denoted as r;j, satisfies

rij < AJ(R2), (5.6)

the two polymer chains are considered to be virtually bonded [204]. The number of virtual bond is

denoted as Zy,. The average number of virtual bonds can be expressed by

(R2)
(Zo) = fo \/_47rr2 (%) 2(r)dr. 5.7)
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Note that the threshold of the virtual bond is less than the contact distance, 2 <R§>, to emphasize
the overlapping between COMs.

Figure 5.4 shows (Z,) as a function of density p by varying the chain stiffness €9. The (Z;,)
is an increasing function of p. As &y increases, the slope becomes steeper, indicating a greater
dependence on p. In contrast, for flexible ring chains with g9 =0, g(r/ <Ré>) was found to saturate
with increasing p, as demonstrated in the previous study [29]. Similarly, (Z;,) 1s also expected to
approach saturation towards a finite value. This distinction in the density p dependence on the
average number of virtual bonds (Z,) implies a significant difference in intermolecular interaction

between ring polymers as the chain stiffness &y varies.

RER

Figure 5.4: Density p dependence of the average number of virtual bonds, (Z) by varying the chain

stiffness &y.

The next analysis focuses on the one-dimensional hole, i.e. “loop” structure, characterized by
PH. Specifically, PH is performed on each individual ring polymer i by using the monomer coordi-
nates as input, which generates a persistent diagram (PD) denoted as PD(i). This analysis reveals
the birth and death of topological features such as loops within the structure of the polymer. Fur-
thermore, the “life” of the loop is defined as the vertical distance from the diagonal line in the PD,
denoted as [ = d — b, which quantifies how long during the increase of a the loop persists before

disappearing. Thus, larger values of / indicates longer-lived loops, reflecting more stable topologi-
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Figure 5.5: Density p dependence of 81 (a) (points) and 31 (@) (solid curves) by varying the bending
energy €9 =0 (a), gg =1.5(b),e9=2(c), g9 =3 (d), g9 =4 (e), and &g = 5 ().

cal features of the system against the change of threshold. Next, we performed PH for (i, j) pairs of
ring polymer chains using the set of their coordinates as input, generating PD denoted as PD( U j).
Since threading occurs when the loop of one ring polymer disappears due to penetration by another
polymer, PD(j — i) = PD(i)\PD(iU j) allows us to quantify the loops being threaded [66]. Here, the
set difference operator \ represents the subtraction of topological features that vanish when poly-
mer j interacts with polymer i. In this context, polymer i is considered “passive” while polymer
J 1s the “active” participant in the threading process. Thus, this approach quantifies the threading
structures between pairs of ring polymers. The probability density distributions of PD(7), PD(iU j),
and PD(j — i) with gg = 1.5 and 5 at densities p = 0.1 and 0.5 are shown in Fig. B1, B2, B3, and
B4 in B.

To analyze the threading structure by varying the density p and chain stiffness €y, we quantify

69



the first Betti number, B(li)(a), in the PD(7). This is defined by
B(a) = f dd fo db > 6(b—bo(d—dy), (5.8)
a k

where k refers to the k-th loop on the ring chain i. This 8;(a) quantifies the number of loops in the
region where b < @ and d > a, quantifying the number of loops observed at a given a. The average

of ﬁ(li)(a) over all ring chains can be expressed as

1 i
Bi(e) = <N Z,B(l)(a)>- (5.9)

The same calculation can be performed for PD(j — i), and the average over all pairs of ring chains
(i, j) are denoted as 81 (). This 81 («) measures the number of loops that are being threaded between
by other ring chains. Consequently, it is assured that 8 (@) > 81 (). Furthermore, 81(a) and 3 (@)
converges asymptotically to zero with respect to each other as @ becomes sufficiently large.

Figure 5.5 shows 81 () and 31 () for varying p and &¢. The stiff ring exhibits a broader peak at
larger length scales @ compared to that of the flexible ring, indicating the presence of large loops.
As the density increases, this peak sharpens, with its position shifting to smaller «, signifying
the formation of smaller loops. However, the discrepancy in S1(a) and B1(a) between flexible
and stiff rings becomes more pronounced with increasing density p. This observation aligns with
the fact that the density p dependence of the mean square radius of gyration <R§> exceeds the
expected scaling behavior of <R§> ~ p~039 for stiff rings as p increases (see Fig. S1 in Supporting
Information). Finally, for sufficiently large @, the convergence of 81 ~ 31 indicates that all large
loops are involved in threading.

We further examine the active threading number N,, which represents the number of rings

penetrated by a given ring, and the passive threading number N,, which denotes the number of
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Figure 5.6: Density p dependence of probability density distribution of active threading number N,
(points) and passive threading number N, (solid curves) by varying the bending energy £y = 0 (a),
gg=15(),e9=2(c),e9g=3(d), gg =4 (e), and gg = 5 (f). The threshold value is fixed at /i, = 0.

rings that experience penetration by that same ring. For the pair (i, j), we define

1 ity >y (5.10)

0 if lk < lth

IG

Jol

where [; represents the life of the k-th loop in PD(j — i), and [, is a threshold value for the life
used to characterize the length scale of threading. By summing over loop k and polymer j (i), the

active (passive) threading number, N, ; (Np, ;) for polymer j (i) are obtained, expressed as follows:

— (k) L (k)
Naj= > 310 Npi=> Y10, (5.11)
ik 7k

Furthermore, the averages over all ring chains are denoted by N, and N,, respectively. Their sta-
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Figure 5.7: Density p dependence of probability density distribution of active threading number N,
(points) and passive threading number N, (solid curves) by varying the bending energy £y = 0 (a),
gg=15(),e9=2(c),eg=3(d), eg =4 (e), and gy = 5 (f). The threshold value is fixed at /i, =9.

tistical averages over all chains ensure (N,) = <Np> because, when threading occurs, active and

passive threading are always counted once, respectively.

Figure 5.6 presents the probability density distribution of N, and N, respectively. Note that

N, and N, were calculated by including threading at all length scales, with the threshold /g, set to

zero. It is demonstrated that for both N, and N,, the peak shifts to higher values with increasing

chain stiffness €y and density p, indicating a greater occurrence of threading. Notably, the density

dependence of the distribution becomes more pronounced for stiff rings compared to that of flexible

rings. In addition, N, exhibits a slightly broader distribution than N, at high density for stiff rings.

This asymmetric property between N, and N, was found to be pronounced for longer stiff rings,

suggesting that the passive threading is significantly influenced by the presence of long-lived loops.

In other words, larger loops are likely to be involved in the passive threading.
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We further characterize the long-lived active and passive threading structures by introducing
the threshold value Iy, which has a dimension is o®. Since points near the diagonal line are con-
sidered noisy, we introduce Iy, to filter out threading associated with loops of short life, thereby
characterizing loops that are mostly correlated with topological constraints. While the results for
varying /y, are not displayed, the threshold value /i, =9 was determined to capture the most relevant
characteristics, and the corresponding results are shown below.

Figure 5.7 illustrates the density dependence of probability density distribution of active and
passive threading numbers, N, and Ny, at [y, = 9. For flexible ring chains, both N, and N, show the
tendency of the decrease toward zero as the density p increases. This trend is expected to become
more pronounced as the threshold value /y, increases. This observation suggests that the number of
loops necessary for threading becomes minimal in higher densities, consistent with the overlapping
structures between the crumbled globules characteristic of flexible ring chains. In contrast, for
stiff ring chains, the distribution of N, exhibit a peak at N, ~ 20 across all densities, whereas the
distribution of N, shows two distinct peaks, one at N, = 0 and another at N}, ~ 20. In addition, the
latter peak broadens as the density p increases. This observation implies that, when focusing on
passive threading of stiff ring chains, they can be categorized into two different types: those having
large loops facilitate threading and those lacking such structures. The latter rings are regarded as

exhibiting more compact characteristic rather than those of the former.

5.4 Conclusion

In summary, we employed PH analysis to characterize threading from MD simulations of the KG
model for ring polymers. Specifically, we focused on the threading structure as influenced by the
density p and chain stiffness &y, while maintaining the chain length of N = 400. Our analyses con-
sists of three components: First, we examined the zero-th Betti number Sy(a) to quantify the num-
ber of connected components formed by COMs of the polymers. This analysis demonstrates that

numerous small clusters of COMs persist for flexible ring chains even at high densities, whereas
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a percolated network of COMs develops for stiff ring chains as the density increases. Second, we
calculated the first Betti numbers, 31(a) and B;(«), from PD(j — i) to characterize the threading
structure between pairs of ring chains. It is shown that stiff ring chains exhibit large-scale loops
that facilitate threading as the density p increases. Furthermore, we also computed the active and
passive threading numbers, N, and N,. As both &g and p increase, their averages become larger,
indicating greater generations of threading, accompanied by the asymmetric behavior of the dis-
tributions of N, and N,. Finally, we introduced the threshold value [y to emphasize long-lived
threading structures in the calculations of N, and Np,. This analysis reveals that the distributions
of N, and N, converges to zero for flexible ring chains as the density increases. In contract, for
stiff ring chains, the distribution of N, bifurcates into two distinct peaks, indicating heterogeneous
threading structure characterized by rings with large-scale loops that facilitate threading and those
that have compact ring characteristic. This heterogeneous threading structure observed in stiff ring
chains serves as the underlying mechanism for topological glasses, which exhibit heterogeneous

rearrangement dynamics of COMs analogous to those of glass-forming liquids.
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Chapter 6

General Conclusion

We quantitatively investigated the role of chain stiffness on the glassy dynamics both in linear and
ring polymers by using MD simulations. The main results are summarized as follows:

In Chapter 2, we have numerically studied elastic heterogeneities and acoustic excitations in
linear polymer glasses, with particular attention to the effects of the chain stiffness. Our main
finding is that the degree of heterogeneity in the local shear modulus distribution is insensitive to
changes in the bending rigidity. According to the heterogeneous elasticity theory, for unchanging
elastic heterogeneities, the vibrational and acoustic properties of amorphous materials are con-
trolled only by global elastic moduli. Consistent with this theoretical prediction, we demonstrated
that the BP and properties of the transverse acoustic excitations are both simply scaled only by the
global shear modulus. The present work therefore clarified remarkably simple material property
relationships in polymer glasses. These originate from the invariance of the local elastic hetero-
geneities over an extremely wide range of bending rigidity values for polymer chains. Our results
also provide good demonstrations that verify the heterogeneous elasticity theory [79-82], which is
among the central theories used to describe the mechanical and vibrational properties of amorphous
materials. We note that effects of polymerization on vibrational properties can be scaled by global
elastic moduli [102, 106].

Chapter 3 focused on the chain length dependence of the Rouse relaxation time and non-
Gaussianity for characterizing both the segmental and center-of-mass (COM) mobility with or
without chain ends. For linear polymers, the deviation from the Rouse model behavior becomes

remarkable with increasing the chain length N by showing the scaling 7, ~ (N/ p)>*, which is con-
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sistent with previously reported results. The NGP shows two peaks: the first peak appears on the
time scale where the MSD escapes from the segmental ballistic motion, whereas the second peak
corresponds to the realization of the diffusive behavior of the MSD. This indicates that the segment
dynamics becomes spatially heterogeneous because of the higher mobility of chain ends in the lin-
ear polymer chain. For ring polymers, the Rouse-like behavior with the scaling 7, ~ (N/ p)** was
observed. Although the peak of NGP was observed at short times similar to that of linear poly-
mers, the non-Gaussianity was found to be strongly suppressed even for a longer time regime. The
segmental dynamics in ring polymers without chain ends becomes spatially homogeneous and the
mechanism of the chain motion is essentially different from the reptation model for linear poly-
mers. The center-of-mass dynamics in ring polymers also shows the Gaussian behavior, while a
very small non-Gaussianity is observed with increasing chain length.

In Chapter 4, we investigated the glassy dynamics of COM rearrangement in ring polymers
with varying the chain stiffness gy and the monomer density p. NGP in the distribution of the
COM displacement, we have found that more stiff ring chains exhibit a peak in the NGP in long
time regimes, which increases with the monomer density. This suggests that the dynamics of stiff
ring chains are affected by strong inter-molecular interactions and that the motion of the COM is
correlated with each other. In contrast, more semi-flexible ring polymers exhibit relatively small
non-Gaussianity, indicating that the COM mobility is almost uncorrelated with each other. The
difference in non-Gaussianity between the two types of ring polymers suggests that the nature of
the inter-molecular interactions changes significantly depending on the degree of chain stiffness.
The behavior of the radius of gyration R, in relation to p depends on the stiffness of the ring poly-
mer chains. In the case of more semi-flexible rings, the R, follows a master curve described by
Eq. (4.8). However, this curve does not apply to stiff ring polymer melts. The deviation from the
master curve can be explained by the competition between the shrinkage caused by the excluded
volume of neighboring polymers and the expansion due to the chain stiffness. Specifically, semi-
flexible ring polymers tend to adopt a compact globule conformation due to the excluded volume

interaction with their neighbors, while more stiff rings expand due to the long Kuhn length. We
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have also analyzed the dynamics of bond-breakage between the COM of rings defined by using
averaged radius of gyration, (Ré)l/ 2. The network of virtual bonds in stiff rings are percolating,
while those in semi-flexible rings are sparsely distributed. Furthermore, the results for the dynamic
susceptibility of bond-breakage are consistent with the non-Gaussianity in the displacement distri-
bution, indicating that the DH of bond-breakage is coupled with the non-Gaussianity in diffusion
in ring polymer melts.

Chapter 5 showed the chain stiffness gy and density p dependence of the threading structures in
ring polymer solutions by using the persistent homology (PH). First, we examined the zero-th Betti
number Sy(@) to quantify the number of connected components formed by COMs of the polymers.
This analysis demonstrates that numerous small clusters of COMs persist for flexible ring chains
even at high densities, whereas a percolated network of COMs develops for stiff ring chains as the
density increases. Second, we calculated the first Betti numbers, 81 () and 3 (@), from PD(j — i)
to characterize the threading structure between pairs of ring chains. It is shown that stiff ring chains
exhibit large-scale loops that facilitate threading as the density p increases. Furthermore, we also
computed the active and passive threading numbers, N, and N,,. As both &y and p increase, their av-
erages become larger, indicating greater generations of threading, accompanied by the asymmetric
behavior of the distributions of N, and N,. Finally, we introduced the threshold value Iy, to empha-
size long-lived threading structures in the calculations of N, and N,. This analysis reveals that the
distributions of N, and N, converges to zero for flexible ring chains as the density increases.

Throughout this study, it is unraveled that the glassy dynamics in ring polymers are significantly
affected by the threading with large loops. We characterized the dynamic heterogeneity of COM
rearrangement in ring polymers by utilizing the bond-breakage analysis. Stiff ring chains show
heterogenous dynamics with dense virtual bonds network. In contrast, semi-flexible ring chains
exhibit homogeneous dynamics with sparse virtual bonds. These results are attributed to the devia-
tion of the radius of gyration from the master curve for fully flexible ring chains. While flexible ring
chains exhibit a compact globule conformations, stiff ring chains expand and form large loops that

facilitate threading. The dynamics of threading have not been fully understood yet, while we are
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investigating it by using machine learning to predict the displacement from threading connectivity.

We are also planning to examine the dynamic elastic modulus to characterize the properties of TG.
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Appendices

A Formulation of the Rouse model for ring polymer chain

In the Rouse model, the equation of motion for the polymer chain composed of N beads is given

by the following Langevin equation:

dr
(= =k 2y = rpoy = Fas) + Wa(0), (A.1)
where r, represents the coordinates of the n-th bead for n = 1,2,3,--- ,N and { denotes the ef-

fective hydrodynamic friction coefficient. Furthermore, two successive beads are connected by a
harmonic spring with the modulus k. Here, the random force w,, acting on the bead is related to the

temperature 7 and friction coefficient £ by obeying the fluctuation-dissipation theorem:

(Wi (1) win(t')) = 6kgT {6pmd(t —1'). (A.2)

According to the statistical description for the freely-jointed chain model, the spring constant k
is equal to 3kgT/b*> with the mean square distance b> between two beads. Note that the periodic
boundary conditions

ro=7rnN, Iyy1=T1 (A.3)

should be imposed on the ring polymer chain. If we define two N X3 matrices, R=(r{,ra,r3, -, rN)T
and W =" '(wi,wa, w3, ,wy) T (the superscript T denotes the transpose), Eq.(A.1) can be ex-
pressed as

R
R _ _Karsw, (A.4)

dr ¢
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with the matrix N XN A:

2 -1 0 0 0 -l
-1 2 -1 0 0 0
0 -1 2 0 0 0

A=[0 0 -1 0 0 o0 (A-5)
0 0 0 -1 2 -1
-1 0 0 0 -1 2

Equation (A.4) can be solved by the diagonalization of the matrix A. The eigenvalue A equation is
given as

(A—AE)F =0, (A.6)

with the eigenvector F = (f1, >, f3,-+-» fy)! and the unit matrix E. If the function form of f, is

assumed to be

=7, (A.7)

with the complex number z, Eq. (A.6) reduces to the following multiple linear equations:

Q2-Nz-22-7V =0, (A.8)
7l -n - =0, (A.9)
—z-Nr2-p =o0. (A.10)

From Eq. (A.9), the characteristic equation

—1+Q2-2)z-7>=0, (A.11)
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is obtained. The two roots are denoted as z; and z», then
+22=2-4, zzn=1 (A.12)
Furthermore, the function form of z is assumed to be
=€, zp=e" (A.13)

such that z;zp = 1 with the imaginary unit i and an arbitrary argument 6 in the complex plane. We
obtain the identity:

N =1 (A.14)
to satisfy Egs. (A.8), (A.9), and (A.10) in a consistent manner. The argument 6 should be

2
g=""PL (A.15)
N

where p denotes the Rouse mode index with p =0, 1, 2, ---, N—1. Thus, the eigenvalue of the

mode p is obtained as

2,=2-(z +Zz)=2(1—cos(2ﬂTp)):4sin2(%). (A.16)

Note that A, = Ay_p. Accordingly, the Rouse modes are symmetric with respect to the reflection at
p = N/2 and the two modes of p =n and p = N —n are degenerate for ring polymers.

The general solution for the element of the eigenvector F can be given by
fop =A™ + A%, (A.17)

with a complex constant A. Note that Eq. (A.17) ensures fy , = f, ,, where the superscript * denotes

104



the complex conjugate. The orthogonal condition for f, , is given by

N
> Fanfrg=0pa (A.18)
n=1

The L.h.s of Eq. (A.18) can be expressed as

N
(Aei27mp/N +A*e—i27rnp/N) X (A*e—iZan/N +Aei27rnq/N)

n=1

N
_ Z ( A22mp+q)IN | A A* pi27(p=q)IN

n=1

+A*Ae—i27rn(p—q)/N + (A*)Ze—i27m(p+q)/N). (A.19)

To obtain the condition for determining A, we assume the special case p+¢g = N (p # g); then,

Eq. (A.19) further reduces to
N
DA+ an?), (A.20)
i=1

where 3V | ¢?21P=/N = ( is used. Thus, the first relationship A? + (A4*)? = 0 is obtained from the

orthogonal condition, Eq. (A.18). Furthermore, the normalization condition for f, , is given by

N
> Fapkip=1, (A21)

n=1
which can be expressed at p # 0 or N/2 as
N . ' N
D (A% PN L 247" + (A7) 2 meIN) = > 244° - 1, (A22)
n=1 i=1

and the second relationship AA* = 1/(2N) is obtained. We again use Zf\i | e*™mPIN = () in the cases
of p #0 and p # N/2. Note that AA* = 1/(2N) is also obtained in the two cases p =0 and p =

N/2 according to A%+ (A*)?> = 0. From the two relationships, the complex constant A can be
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determined, and its expression is chosen from four candidates: A = (1+1)/(2 VN), (-1 -i)/(2VN),
(=1+i)/(2VN), and (1 —i)/(2 VN). The functional form of f;, , is then determined as

fop = \/g lcos(zjr%)+sin(27:;p )} (A.23)

and Eq. (A.23) satisfies Eq. (A.18). Note that a different expression for f; , is described and utilized

in the path integral molecular dynamics. [206]
Here, we define the block matrix composed of the orthonormal eigenvectors, U = (Uo, Uy, -+ ,Un-1),

with U, = (fi,p, f2.p> " » fN,p)T, which diagonalizes the matrix A as

Ao 0 - 0
T 0o A - 0
U'AU = . (A.24)
0 0 AN_1

The normal coordinates are finally described as

X =U"R, (A.25)

with the element

N
1 2 2
X, = /N Z:; ro(0) [cos( 7;”’ ) + sin( 7;']”9 )] (A.26)
for the ring polymer chain.

From Eq. (A.4), the normal coordinates of mode p obeys the following equation:

dX, k
7 = —Z/lep'i‘W N (A27)
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where W, = UTW is the random force, which satisfies
(Wpy(t)-Wy(t)) = 6kBT{_16p,q6(t— ). (A.28)

The formal solution of Eq. (A.27) is given by

1
X (1) = X ,(0)exp(—t/7)) + fo dt' W (' yexp(—=(t 1)/ 7). (A.29)
where
4 4
. — A.30
TR, aksin? () (A0

represents the Rouse relaxation time. The autocorrelation function of X ,(¢) is generally described

by
3kgT
kA,

(X, (1) X,(0)) = exp(t/7p). (A31)

The static correlation of the Rouse mode is expressed as

3kgT ~ b?

<Xp(0)2> B kdp  4sin? (ﬂp)

(A.32)

N

from the the initial value of Eq. (A.31).
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B Persistent diagrams of ring polymers

Figures B1, B2, B3, and B4 present the probability density distributions of PD(i), PD(i U j), and
PD(j — i) at combinations of (gg,p) = (1.5,0.1), (1.5,0.5), (5,0.1), and (5,0.5), respectively. The
general shape of PD(i) remains consistent regardless of variations in density p or chain hardness
gy. The area with the highest frequency appears close to the diagonal with a prominent vertical
distribution at b ~ 0.22. The distribution along the diagonal line represents loops that are formed
and quickly disappear. These short-lived loops, characterized by small values of life /, are typically
regarded as noise because they do not significantly contribute to threading structures. In contrast,
the distribution along b ~ 0.22 is interpreted as loops generated by the inherent stiffness of the
polymer chain backbone. Specifically, this value corresponds to the characteristic loop size related
to the average bond length, Iy = 0.965 ~ 2v0.22 of the KG model. The loops observed in the
intermediate region, between the diagonal line and b ~ (.22, are thought to be associated with
secondary structures [202], such as the folding or compact configurations of ring polymers. These
loops arise from internal conformational changes, bringing different parts of the polymer chain
closer together, forming transient or quasi-stable folded structures. Unlike short-lived loops near
the diagonal line, these intermediate loops contribute to the overall topological complexity of the
system.

In the PD(i U j), the distribution along the diagonal is more extended compared to that of PD(i).
In addition, the intermediate distribution exhibits a more elongated shape. This is attributed to the
creation of new loops caused by the contact between pairs of ring chains. These newly formed loops
arise from the threading of ring chains, leading to an increase in the complexity of the structures,
characterized by longer life /, due to the interaction between different chains. The distribution
PD(j — i), representing the difference between PD(i) and PD(i U j), does not exhibit significant
changes compared to the shape of PD(i). This indicates that the loops of one ring polymer are
significantly influenced by the threading interaction with other ring polymers. A detailed discussion

regarding the chain stiffness &y and density p is provided in the main text, where the analysis of the
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zero-th and first Betti numbers offers further insights.

Eg = 1.5, p= 0.1
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Figure B1: Persistent diagrams, PD(i) (a), PD(iU j), and PD(i — j), with e = 1.5 and p = 0.1.
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Figure B2: Persistent diagrams, PD(i) (a), PD(iU j), and PD(i — j), with e = 1.5 and p = 0.5.
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Figure B3: Persistent diagrams, PD(i) (a), PD(iU j), and PD(i — j), withe =5 and p = 0.1.
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gg=5,p=0.5
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Figure B4: Persistent diagrams, PD(i) (a), PD(iU j), and PD(i — j), with e =5 and p = 0.5.
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