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Abstract

The k-means clustering is one of the most popular clustering methods,
whereas it cannot perform well or even be inapplicable for data with non-
linear cluster structure or with missing values, which is common in practice
especially when the dimension of data is high.

Existing methods like kernel k-means and k-POD clustering have been
proposed for such complex cases. However, both of them are ineffective for
high-dimensional data, due to the existence of noise features that have no con-
tribution to the underlying cluster structure. Therefore, the purpose of this
thesis is to make the k-means-based clustering effective for high-dimensional
data with non-linear cluster structure and missing values.

The first contribution is to propose the sparse kernel k-means cluster-
ing for high-dimensional data with non-linear cluster structure. It assigns
each feature a binary indicator and conducts the kernel k-means clustering
while penalizing the sum of the indicators. The proposed method extends
the advantages of kernel k-means clustering that can capture the non-linear
cluster structure to the high-dimensional cases. An alternative minimization
algorithm is proposed to estimate both the cluster labels and the feature indi-
cators. We also prove the consistency of both clustering and feature selection
of the proposed method.

The second contribution is to propose the regularized k-POD clustering
for high-dimensional missing data. It introduces a regularization function
of cluster centers to k-POD clustering, which shrinks cluster centers feature-
wisely. The proposed method can reduce the bias of estimated cluster centers
and improve clustering performance, for the high-dimensional missing data,
where noise features that have no contribution to cluster structure are com-
mon. In addition, we propose a general framework of optimization based on
the majorization-minimization algorithm, which has convergence guarantee.

The experiments on synthetic datasets and applications on real-world
datasets verify the effectiveness and show better performance of the proposed
methods. As a consequence, we extend the application of traditional k-means
clustering to more complex data in the big data age.
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Chapter 1

Introduction and preliminaries

This thesis investigates the challenges of clustering high-dimensional data
with noise features, proposing novel k-means-based clustering methods to ad-
dress non-linear cluster structure and missing values issues. The primary
contribution lies in developing sparse kernel k-means clustering and regular-
ized k-POD clustering, with applications in genomic data analysis.

1.1 Clustering

Clustering is one of the most classic tasks in the fields of Statistics and
machine learning. It is a main technique of exploratory data analysis in
Statistics, and also an important branch of unsupervised learning in machine
learning. Compared with traditional regression and classification tasks, the
most special point of clustering analysis is that we have no information about
the response variable or labels for any data points.

The goal of clustering analysis is to group a set of unlabeled data points
into several subsets, such that the data points belonging to the same group
are more similar than those belonging to different groups. The obtained
groups are called clusters, and the clustering result refers to the belonging
relationship between data points and clusters. The clustering result depends
on the measurement of similarity and the rule of belonging. First, the simi-
larity (or dissimilarity) can be measured by different forms for different types
of data and specific problems. The most common choice is to use the distance
between two points to represent the dissimilarity between them, such as the
Euclidean distance, Manhattan distance, as well as Minkowski distance and
its generalizations for continuous data, Jaccard index for binary data and
so on. The cosine similarity and some kernel functions are also widely-used
to measure similarity. Second, the rule of belonging of data points to clus-

1



Chapter 1. Introduction and preliminaries

ters can be deterministic or probabilistic, that is, each data point belongs to
some unique group or belongs to any group with some probabilities, which
is called hard clustering and soft clustering, respectively. With different sim-
ilarity measurements and belonging rules, plenty of clustering methods have
been proposed to characterize the latent cluster structures of data in various
fields.

The methods of clustering can be based on connectivity between clusters,
centroids of clusters, models, and density of data distribution. The most
typical examples include hierarchical clustering, k-means clustering, Gaus-
sian mixture model clustering, and DBSCAN. The hierarchical clustering
gives a dendrogram, of which the leaf nodes are data points and the root
node is a single cluster, and the stems show the path that these data points
are merged to be clusters. Each hierarchy of the dendrogram gives a result
of clustering. The k-means clustering gives k points to be cluster centers
and assigns each data point to its nearest centers. The Gaussian mixture
model clustering assumes that data points are independently sampled from
a Gaussian mixture model and regards each component as a cluster. It gives
the degree of each data point belonging to each cluster by the probability
of it being generated from each component. The DBSCAN gives a result of
clustering by gathering data points with their several nearest neighborhood
points (in the sense that the distance is less than a threshold) and then iden-
tifies the rest isolated points to be noise points. Different clustering methods
are suitable for different purposes of analysis and characteristics of data. In
this thesis, we focus on the k-means clustering.

1.2 The k-means clustering

1.2.1 preliminaries

The k-means clustering is one of the most popular clustering methods. As a
kind of centroids-based clustering, the core of the k-means clustering is the
k cluster centers. The main idea is that those data points should belong to
the same cluster if they are all similar to the same cluster center, where the
dissimilarity is often measured by the Euclidean distance. Then, the k-means
clustering groups data points by assigning each of them to its nearest cluster
center.

Mathematically, suppose that data points x1, . . . , xn are independently
drawn from the distribution P, where we write xi = (xi1, . . . , xip) ∈ Rp for any
i = 1, . . . , n. We also call the set {x1, . . . , xn} a sample. Let µ = {µ1, . . . , µk}
be the k cluster centers, where we write µl = (µl1, . . . , µlp) ∈ Rp for any

2



Chapter 1. Introduction and preliminaries

l = 1, . . . , k. Since the i-th data point xi is assigned to the l∗-th cluster with

l∗ = argmin
l=1,...,k

∥xi − µl∥22,

then the l-th cluster (l = 1, . . . , k) is given by

Cl = {xi, i = 1, . . . , n | ∥xi − µl∥2 ≤ ∥xi − µl′∥2, ∀l′ ̸= l} (1.1)

Suppose that each data point is assigned to a unique cluster, then these Cl’s
are disjoint. We call that C = {C1, . . . , Ck} is a partition of the set of data
points.

In the k-means clustering, the optimal cluster centers are that minimize
the sum of squares of distances between each data point and its nearest
cluster center. Then, the objective (loss) function of k-means clustering is
given by

L̂(KM)
n (µ) =

n∑
i=1

min
l=1,...,k

∥xi − µl∥22. (1.2)

The estimated cluster centers µ̂ = {µ̂1, . . . , µ̂k} are given by

µ̂ = argmin
µ

L̂(KM)
n (µ),

based on which, we can obtain the estimated partition Ĉ = {Ĉ1, . . . , Ĉk} by
Eq. (1.2). Since the minimization problem is known to be NP-hard, plenty of
effective algorithms have been proposed to search for an approximate solution
(local minima), such as Lloyd’s algorithm and Hartigan–Wong method.

The Lloyd’s algorithm first proposed by Lloyd (1982) is the the most
classical one, which is also known as the standard algorithm for k-means
clustering. It is a heuristic algorithm that alternatively updates the partition
and cluster centers until convergence to the local minimum. Specifically, it
considers the equivalent minimization problem with respect to cluster centers
µ and partition C as follows:

min
µ,C

k∑
l=1

∑
xi∈Cl

∥xi − µl∥22. (1.3)

The algorithm starts with initialized cluster centers µ(0), and the (t + 1)-th
iteration (t ∈ N) consists of two steps:

Step 1 Given cluster centers µ(t), update the partition by

C
(t+1)
l =

{
xi | ∥xi − µ(t)

l ∥2 ≤ ∥xi − µ
(t)
l′ ∥2, ∀l

′ ̸= l
}
, ∀l = 1, . . . , k

3



Chapter 1. Introduction and preliminaries

Step 2 Given the partition C(t+1), update cluster centers by

µ
(t+1)
l =

1

|C(t+1)
l |

∑
xi∈C

(t+1)
l

xi, ∀l = 1, . . . , k

The iteration procedure stops when the loss function Eq. (1.3) no longer
changes under a small tolerance. Finally, the Lloyd’s algorithm gives the
current values of µ and C as the estimated cluster centers and partition of
k-means clustering. The convergence of the Lloyd’s algorithm is guaranteed
because essentially the two iterative steps are a kind of alternatively mini-
mization, which makes the decreasing trend of objective function of Eq. (1.3)
in each iteration.

1.2.2 Equivalent forms and relationship to other meth-
ods

Expect for the standard definition Eq. (1.2), the k-means clustering has sev-
eral equivalent expressions, which suggest close relationship to other meth-
ods, especially principle component analysis (PCA) and matrix decomposi-
tion.

First, the k-means clustering can be viewed as a super sparse version
of PCA (Zha et al. 2001, Ding & He 2004). Write X for the n × p data
matrix consisting of x1, . . . , xn. Based on the fact that µl associated with
Cl is given by the average of data points in Cl, the k-means clustering has
another equivalent formulation:

min
U

tr(XXT )− tr(UTXXTU)

s.t. U ∈ {0, 1}n×k, U1k = 1n,
(1.4)

where U = (uil)n×k and uil represents whether xi belongs to Cl. If we relax
U to be arbitrary orthonormal matrix UTU = Ik, then this minimization is
equivalent to the problem of PCA. We can thus regard the solution of PCA
as a relaxed solution of k-means clustering. The Eq. (1.4) will be used in
Chapter 2 of this thesis.

Second, the k-means clustering is a special case of matrix decomposition
(Ding et al. 2005, Kim & Park 2008) and can be expressed as follows:

min
U,M
∥X− UM∥2F

s.t. U ∈ {0, 1}n×k, U1k = 1n,
(1.5)
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where U = (uil)n×k and uil represents whether xi belongs to Cl, and M =
(µlj)k×p ∈ Rk×p is the codebook and the l-th row is µl. Furthermore, the k-
means clustering is also viewed as a technology of vector quantization, which
models the data distribution by several prototype vectors and is originally
used for data compression. We will use the form Eq. (1.5) in Chapter 3.

In addition, the k-means clustering also has a close connection with other
clustering methods like Gaussian mixture model clustering (Bishop 2006).
Specifically, if all components of Gaussian mixture model have the same
known covariance matrix σ2Ip, then the k-means using the Lloyd’s algorithm
and the Gaussian mixture model using EM algorithm have the equivalent
objective functions. Moreover, when σ2 → 0, these two methods tend to give
the same clustering results. The k-means clustering is thus viewed as the
limiting case or hard version of Gaussian mixture model clustering.

1.2.3 The number of clusters

In the k-means clustering, the number of clusters k has a crucial influence
on the clustering result. However, it is difficult to define the true number
of clusters. Thus, we often select the best k from a set of candidates before
conducting k-means clustering. The selection of k is often based on some
heuristic criteria, such as information criterion (AIC and BIC), gap statistics,
and instability.

The AIC and BIC are based on the likelihood function. Considering
that the k-means clustering is a limiting version of Gaussian mixture model
clustering, we can assume the data distribution is a mixture model with the
same and known covariance and then calculate the value of AIC and BIC for
each candidate k (Fraley & Raftery 2002, Hofmeyr 2020).

The gap statistics measures the difference between the within-cluster dis-
persion of the original data and expected that of null data that does not
contain subgroups. The null data can be obtained by independently permut-
ing observations of the original data matrix in each feature. We can then
calculate the expected within-cluster dispersion of null data by averaging
that of different null data (Tibshirani et al. 2002).

The instability measures how stable a clustering method is. It serves as
the cross-validation in the field of clustering. It estimates cluster centers by
conducting k-means clustering on two training datasets, and calculates the
disagreement of prediction results of labels on a testing dataset. The training
and testing datasets can generated by random splitting or bootstrap (Wang
2010, Fang & Wang 2012).

It should be noted that although these criteria were proposed originally
for selecting the number of clusters k, they can also be used for tuning other

5



Chapter 1. Introduction and preliminaries

parameters in clustering. In this thesis, we will apply the gap statistics in
Chapter 2, and the BIC and instability in Chapter 3, where we will further
introduce details of these criteria.

The k-means clustering has been widely applied in many fields from its
first proposed by Steinhaus et al. (1956), such as computer science, biology,
psychology, astronomy and business over the past 70 years due to its easy and
fast implementation. Even in 2020s, the era of AI, the k-means clustering as
well as its variants and adaptions still play an important role in addressing the
complex analysis demands of big data. Among these demands of diverse data,
the high-dimensionality of data particularly makes the k-means clustering
challenging, and addressing the high-dimensional clustering is critical for
modern applications such as genomics, where feature sparsity is common.
Therefore, we focus on the high-dimensional data in this thesis.

1.3 The k-means clustering for high-dimensional

data

In the big data age, it is very common for the data to be high-dimensional
and with complex structure. A typical characteristic of high-dimensional
data is the existence of noise dimensions, which we call “noise feature” in
this thesis. In the field of clustering, the noise feature is defined to be one
that has no contribution to clustering. For example, in genomic data, many
genes do not contribute to the disease outcome, thus considered as noise
features for the specific analysis.1 The k-means clustering often works well
for low-dimensional data and even with few noise features. However, due to
the existence of plenty of noise features in high-dimensional data, traditional
k-means clustering could fail to give a reasonable clustering result.

Example 1.1. The Lymphoma dataset is a particular real-world case of high-
dimensional data for clustering, which consists of 62 sample points (n = 62)
collected from 3 types of cells of patients (k = 3). Out of the total 4026
gene expressions (p = 4026), more than 90% are noise features and have
no contribution to clustering. If we apply the standard k-means clustering
directly on the data with all features, the error rate of clustering is about 0.3.
Figure 1.1 illustrates the estimated labels by the color of each dot, where the
shape of each dot is the ground truth of labels. However, in this case, the

1It should be noted that since the real “ground truth” about cluster labels of data
points is unknown, we can not judge whether a feature is related or noise according to the
correlation between it and the true label.
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error rate on data with only relevant features is only 0.05. This suggests the
importance of eliminating the negative influence of noise features for k-means
clustering.
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Figure 1.1: The result of k-means clustering on Lymphoma dataset. The
x-axis and y-axis are the first two principle components of PCA conducted
on original data points. The left panel is the ground truth and the right
panel is the k-means clustering result, where the color of each dot represents
the estimated label and the shape is the true label.

The methods to cope with high-dimensional data for k-means clustering
mainly fall into two categories: feature selection and regularization.

Feature selection: The feature selection for clustering is tailored to
choose a subset of features and use them for clustering data points. The
main idea is to consider a non-negative weight for each feature of data and
to optimize the weighted version of Eq. (1.2) with respect to cluster centers
and feature weights, and in this way, the sparse solution of weights shows
which features are selected and relevant to clustering.

Specifically, let ω = (ω1, . . . , ωp) be the weight vector for p features, where
ωj ≥ 0 for any j = 1, . . . , p. Then a weighted version of objective function is
given by

n∑
i=1

min
l=1,...,k

p∑
j=1

ωj(xij − µlj)
2. (1.6)

Different constraints on ω are used to get reasonable solutions. For exam-
ple, Friedman & Meulman (2004) combine the constraint ∥ω∥1 = 1 with∑p

j=1 ωj logωj ≤ s, whereas the solution is not sparse. The sparse solution
of ω can be obtained by using the constraint ∥ω∥1 = 1 and substituting ωj

of Eq. (1.6) by ωβ
j , where β > 1 is a pre-specified constant, as proposed by
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Huang et al. (2005). Alternatively, Witten & Tibshirani (2010) use the con-
straints ∥ω∥2 = 1 and ∥ω∥1 ≤ s, and they transform the objective function to
an equivalent formulation based on the relationship of total variance, within-
cluster variance and between-clusters variance, so that the trivial solution
can also be avoided. We will use similar trick in Chapter 2.

In addition to using weights, one can also rank all p features by measuring
the difference of total variance and within-cluster variance in each feature
(Zeng & Cheung 2009, Zhang et al. 2020), or by testing the multi-modality of
the density in each feature (Chan & Hall 2010, Jin & Wang 2016). However,
the ranking result does not directly give a subset of relevant features.

Regularization: The regularization for clustering is aimed to yield
cluster centers that have the same values in some features. The main idea is
based on the following assumption: The j-th feature (j = 1, . . . , p) is called
noise if the k cluster centers satisfy µ1j = · · · = µkj. Accordingly, adding a
penalty on cluster centers to the original k-means objective helps to obtain
such a solution.

Specifically, let J : Rk → R be a regularization function and {λj}pj=1

adaptive regularization parameters. Then the regularized version of Eq. (1.2)
is given by

n∑
i=1

min
l=1,...,k

∥xi − µl∥22 +
p∑

j=1

λjJ(µ1j, . . . , µkj). (1.7)

The penalty term is the summation of regularization on each feature. It
follows that the large dispersion of cluster centers in a feature is more likely
to be penalized. Write M ∈ Rk×p, the l-th row of which is the l-th cluster
center µl. Denote by M(j) the j-th column. The common used forms of
J(M(j)) for a sparse solution include ∥M(j)∥1 and ∥M(j)∥0 by Sun et al. (2012)
and Raymaekers & Zamar (2022). We will use similar technique in Chapter 3.

It should be noted that, although feature selection methods for cluster-
ing have shown good performance in high-dimensional data according to
numerical experiments, there are a few discussions on its asymptotic proper-
ties, such as the consistency of clustering and feature selection (Chang et al.
2018, Zhang et al. 2020). The difficulties mainly lie in the identifiability of
“true cluster centers” and “noise features”, which rely on some considerably
strong assumptions. On the other hand, regularization methods for cluster-
ing usually have good statistical guarantees (Sun et al. 2012, Levrard 2018,
Raymaekers & Zamar 2022), which are based on some well-built theoretical
frameworks for k-means clustering and under assumptions on specific forms
of ground truth of cluster centers.
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Furthermore, as the increasing demands for deep and precise analysis of
real-world high-dimensional data, in practical applications, the k-means clus-
tering for high-dimensional data also faces other complex issues, except for
the existence of noise features. In this thesis, we mainly focus on two kinds of
complex high-dimensional data: (1) The ground truth of cluster structure is
non-linearly separable; (2) The data matrix has missing values. The methods
of feature selection and regularization can help to recognize noise features,
while unable to deal with non-linear cluster structure or missing values in
high-dimensional data. Therefore, it is necessary to propose novel improve-
ment of k-means clustering to address these problems, so as to satisfy the
practical analysis demands for complex high-dimensional data in real-world
applications. We will introduce the two kinds of complex high-dimensional
data and the difficulties to deal with them in next section.

1.4 Two kinds of complex high-dimensional

data

1.4.1 Non-linear cluster structure

Since the k-means clustering gives a partition in the form of Eq. (1.1), the
clusters boundaries are linear in Rp. Specifically, given l-th and l′-th cluster
centers µl and µl′ , the boundary between two clusters is given by f(x) = 0,
where

f(x) = ⟨µl − µl′ , x⟩2 −
1

2

(
∥µl∥22 − ∥µl′∥22

)
is a linear function with respect to x ∈ Rp. For any x ∈ Rp (not necessarily
the sample points), whether it should be assigned to l-th cluster or l′-th
cluster is decided by the sign of f(x). Therefore, instead of grouping the
sample, we can also use these linear boundaries to divide the whole data space
into k convex hulls, which are also called Voronoi cells. In this thesis, when
the ground truth of cluster structure (i.e., true partition of data space) can
be characterized by linear boundaries, we call it by linear cluster structure.
In addition, we also call the data with linear cluster structure as linear data
for short. Figure 1.2 gives toy examples for different cluster structures in R2.

When the ground truth of cluster structure is non-linear, using k-means
clustering to partition the sample and data space is obviously not appropri-
ate. Moreover, in high-dimensional data, even if the noise features have been
eliminated by using feature selection and regularization, the cluster structure
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Figure 1.2: The examples of linear cluster structure and non-linear cluster
structure in R2. The lines are boundaries between clusters.

in relevant features can be quite complex. It suggests that apart from coping
with noise features, we need to handle non-linear cluster structure as well.

To do so, a popular method is to transform the data. That is, consider
a mapping ψ : X → H, where X is the data space in Rp, such that the
cluster structure of transformed data ψ(x) is linear in the space H. Since
the mapping is usually connected to a kernel function (Fukumizu 2010), the
transformed version is called kernel k-means clustering (Dhillon et al. 2004).
We will introduce the detail in Chapter 2.

The kernel k-means clustering is famous for its applicability to charac-
terize the non-linear cluster structure of data. However, since the mapping
considers the data space of all p features, the existence of plenty of noise
features also has a negative influence on the kernel k-means clustering, and
even makes it fail. On the other hand, the existing feature selection method
(Eq. (1.6)) is only for k-means clustering.

Example 1.2. The ORL data is a face image dataset with 1024 pixel val-
ues (p = 1024), consisting of 40 images (n = 40) from 4 distinct subgroups
(k = 4). The CER of k-means clustering on the ORL data is 0.3, which
is only improved to about 0.24 by combining feature selection. The limited
improvement is due to the non-linear cluster structure. However, directly
applying kernel k-means clustering on the full data only leads to a CER 0.23,
which implies the potential for further improvement. Moreover, in Exam-
ple 1.1 of Lymphoma data, although the error rate of clustering of k-means
clustering on data without noise features is about 0.05, which can also be
further improved if we model the boundaries by non-linear transformations.

Therefore, it is necessary to develop new methods for clustering high-
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dimensional data with non-linear cluster structure. From this, we expect to
capture more complex cluster structure and to get rid of the negative effects
of noise features. Moreover, based on the new proposal, we also hope to
realize the extension of kernel clustering to the high-dimensional cases as
well.

1.4.2 Missing data

Since the k-means clustering relies on Euclidean distance of each data point
to cluster centers, i.e., ∥xi − µl∥2 in Eq. (1.2), the sample (or say data ma-
trix) need to be complete and with no missing values. Otherwise, directly
conducting k-means clustering is infeasible.

In the past decades, a vast literature has investigated how to deal with
missing data2. However, in practical clustering analysis with missing data,
the most widely used methods are still naive, for example, deleting the data
points including missing values and clustering for the rest data points. More-
over, various imputation methods are also applied for small proportions of
missingness, the most simple examples of which are zero-imputation, mean-
imputation and regression-imputation. Unfortunately, these traditional meth-
ods only work for a small proportion of missingness, and rely on the mech-
anisms of missingness (that is, assumptions on how the missing values are
generated).

In high-dimensional data, the problem of missingness is more ubiquitous,
since it is hard to make sure each value of a matrix with millions of entries to
be exactly observed. Even if the noise features can be eliminated in the case
of including missing values, the rest relevant features may still have missing
values and the missingness mechanisms could be complex. In this case, the
above traditional methods are no longer effective, or the computational cost
is too high to be used in practice. It suggests that except for identifying
noise features, we also need to deal with missing data effectively.

For this problem, an existing method called k-POD clustering is effective,
even when the missingness proportion is large and the missingness mechanism
is unknown (Chi et al. 2016). It reformulates k-means clustering to the
matrix decomposition problem with special constraints, and then for the
incomplete data matrix, it combines this new formulation with a mapping
of the data matrix, such that only observed positions are involved in the
objective function. We will introduce the detail in Chapter 3.

However, in high-dimensional data, the effectiveness of the k-POD clus-
tering would be inevitably reduced, due to the existence of plenty of noise

2We refer to https://rmisstastic.netlify.app/ for more information.
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features. Especially, the estimated cluster centers by k-POD clustering would
be biased in the noise features. The main reason is the difference in objec-
tive function of k-POD clustering compared to k-means clustering (Terada
& Guan 2024). As a consequence, the clustering result would be reduced.

Example 1.3. In Example 1.1 of Lymphoma data, we consider random miss-
ingness of each entry and construct an incomplete data matrix with 30% en-
tries missing. The CER of k-POD clustering on the incomplete data matrix
would be 0.3, whereas that of k-means clustering on the complete data matrix
after feature selection is only 0.05.

Therefore, it is necessary to develop new methods for clustering high-
dimensional data with missing data. From this, we expect to obtain reason-
able estimators of cluster centers when missing data exists. Moreover, based
on the new proposal, we also hope to improve the effectiveness of k-POD
clustering to the high-dimensional cases as well.

1.5 Aim, objectives and outline

The general aim of this thesis is to make k-means-based clustering meth-
ods applicable for high-dimensional data. Specifically, this thesis expects to
address the following questions:

• How to capture the non-linear cluster structure in high-dimensional
data with noise features?

• How to handle missing values in high-dimensional data with noise fea-
tures?

To this end, in this thesis, we will propose two novel clustering meth-
ods that cope with the two problems, respectively. The novelties of these
two methods are as follows. (1) We combine the kernel k-means clustering
with feature selection, so that we can simultaneously find relevant features
and recover the non-linear cluster structure they construct. (2) We apply
the regularization to the k-POD clustering, so that we can recognize noise
features and get reasonable results for missing data clustering.

The main results indicate the effectiveness and better performance of the
proposed methods, which will be verified by the experiments on synthetic
datasets and applications on real-world datasets. As a consequence, we can
extend the application of traditional k-means clustering to more complex
data in the big data age.
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Throughout this thesis, the number of clusters k is fixed and known, and
suppose k ≥ 2. The number of data dimensions p is large while not change
as sample size n increases.

The rest of this thesis is organized as follows.
In Chapter 2, we will address the problem of non-linear cluster structure

by proposing sparse kernel k-means clustering. The proposed method as-
signs each feature a binary indicator to show whether it is selected or not,
and then conducts the kernel k-means clustering while penalizing the sum
of indicators. The proposed method enables us to capture the ground truth
of non-linear cluster structure by the kernel k-means clustering with only
selected features. Moreover, it can also be viewed as the extension of kernel
k-means clustering to the high-dimensional cases. We would further pro-
vide a specific iterative algorithm for optimization and theoretical analysis
for consistency. The result of this chapter has been published in Pattern
Recognition (Guan & Terada 2023).

In Chapter 3, we will address the problem of missingness by proposing
regularized k-POD clustering. The proposed method introduces a regulariza-
tion function of cluster centers to k-POD clustering. By penalizing the cluster
centers by features, we are able to get a sparse estimator for cluster centers.
It implies that for the high-dimensional missing data, when noise features
exist that have no contribution to cluster structure, the proposed method
would provide less biased estimators. We would further propose a general
framework of optimization for various types of regularization functions. The
results of this chapter has been submitted to Statistics and Computing and
is under the first round of review.

In Chapter 4, we will summarize our contributions, followed by discussing
the limitations and possible improvements for future works. For both propos-
als, numerical experiments and real-world data applications will be conducted
to verify the performance of proposed methods. Supplementary details and
experiments are provided in Appendix.
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Chapter 2

Sparse kernel k-means
clustering

2.1 Background

In this chapter, we focus on the high-dimensional data with non-linear cluster
structure. In the high-dimensional cases, in most scenarios, the underlying
clusters differ in only a small fraction of the features (Witten & Tibshirani
2010), and the redundant features may make traditional clustering methods
ineffective.

Conventional clustering methods for high-dimensional data include sub-
space clustering and dimension reduction-based approaches. However, using
these approaches, it is difficult to select relevant features that are highly re-
lated to a hidden cluster structure. To find relevant features, one possible
way is to compute a clustering relevance measure for each feature and then
pick up features with higher scores (Zeng & Cheung 2009, Jin & Wang 2016,
Chan & Hall 2010, Zhang et al. 2020). Based on the Gaussian mixture model,
a score that measures the dissimilarity between the variance in each cluster
and the global variance on each dimension is proposed by Zeng & Cheung
(2009) as a relevant feature selection criterion. According to Jin & Wang
(2016), Chan & Hall (2010), the relevance measure is characterized by the
value of a test statistic used to test for normality. In addition, the score for
ranking features used by Zhang et al. (2020) is the amount a feature affects
the k-means objective. Another way is to conduct clustering and feature
selection simultaneously by adding penalties (Pan & Shen 2007, Wang et al.
2018, Witten & Tibshirani 2010, Chang et al. 2018, Arias-Castro & Pu 2017,
Dey et al. 2020). For example, Pan & Shen (2007) considers the Gaussian
mixture model and uses the l1 norm of the mean vector of each component as
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the penalty term, and Wang et al. (2018) investigates the convex clustering
with fused lasso term of the cluster centers. This finally results in a set of
sparse cluster centers, and thus the non-zero positions in these cluster cen-
ters correspond to relevant features. Witten & Tibshirani (2010) proposes
a framework for feature selection in clustering, along with its various exten-
sions (Dey et al. 2020, Chakraborty & Das 2020, Arias-Castro & Pu 2017,
Chang et al. 2018, Yang & Benjamin 2023). In this framework, one assigns a
weight to each feature and penalizes the sum of the weights when optimizing
the objective function of k-means clustering.

However, the k-means clustering has a critical disadvantage in that it can-
not capture a complex cluster structure. More specifically, the k-means clus-
tering cannot separate complex clusters with non-linear boundaries, which
can be solved by kernel k-means clustering. In kernel k-means clustering, be-
fore clustering, the data points are mapped to a higher-dimensional feature
space by using a non-linear function, and then kernel k-means clustering par-
titions the data points by linear separators in the higher-dimensional feature
space (Dhillon et al. 2004). As a result, we can capture a non-linear cluster
structure in the original input space. However, kernel k-means clustering
also faces the curse of dimensionality. Figure 2.1 illustrates this problem.
The shape of the points represents the ground truth of the clusters, while
the color of the points represents the estimated label. The underlying cluster
structure is only generated by the first two features and several irrelevant
features are artificially added. As illustrated in left panel, when several fea-
tures are not relevant to the underlying cluster structure, the kernel k-means
clustering with all features fails to capture the reasonable cluster structure.
Moreover, the sparse k-means clustering performs poorly to recognize the
non-linear cluster structure, as shown in central panel. Therefore, it is im-
portant to develop an appropriate feature selection method for the kernel
k-means clustering.

There are some difficulties in conducting feature selection for kernel k-
means clustering. Since there are no explicit cluster centers in the input space
for kernel k-means clustering, we cannot penalize the cluster centers directly
to select relevant features, like Pan & Shen (2007), Wang et al. (2018). On
the other hand, although sparse clustering framework of Witten & Tibshirani
(2010) can be applied, unlike many other extensions of k-means clustering
such as Dey et al. (2020), Chakraborty & Das (2020), we cannot derive the
explicit expression of the solution of the feature weights. In fact, it requires
that the similarity measurement between data points in the entire input space
is the sum of that in each dimension, such as the similarity based on the
Euclidean norm. Unfortunately, for kernel k-means clustering, the similarity
measurement depends on the non-linear mapping before clustering, which
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Kernel k-means Sparse k-means Proposed method

Figure 2.1: A simple example shows how kernel k-means clustering fails in
the high-dimensional case. The two illustrated axes are the first two features.
The color of each point represents the estimated cluster it is assigned to. The
central and right panel are the results of sparse k-means clustering and the
proposed method, respectively.

does not satisfy the requirement. Furthermore, although Maldonado et al.
(2015) proposes a kernel penalized k-means clustering for feature selection,
its objective function is actually based on the soft clustering criterion rather
than the kernel k-means clustering itself. Moreover, to our limited knowledge,
the theoretical analysis in this area has not yet been fully discussed.

In this chapter, we therefore propose the novel sparse kernel k-means clus-
tering. It assigns a 0-1 indicator to each feature and optimizes an equivalent
kernel k-means loss function while penalizing the number of active features.
The proposed method can extend the advantages of kernel k-means cluster-
ing to the high-dimensional cases. We prove the consistency of both clus-
tering and feature selection of the proposed method under some regularity
conditions, and verify the efficacy of the proposed method through detailed
experimental studies on several real and synthetic datasets. In addition, we
apply the proposed method to normalized cut. Detailed experiments show
superior performance.

2.2 Preliminaries for kernel k-means

In this section, we briefly introduce the kernel k-means clustering. It en-
hances the classical k-means clustering by using an appropriate non-linear
mapping from the original data space X ⊂ Rp to a complex space H, so
that the non-linear cluster structure in the original space can be extracted
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(Dhillon et al. 2004). Moreover, it is usually combined with a non-negative
weight wi for each data point xi, which is also called weighted kernel k-means
clustering (WKKM).

Specifically, for data points x1, . . . , xn in X , denote by wi ≥ 0 the cor-
responding weight for xi, i = 1, . . . , n. Consider a non-linear mapping
ψ : X → H, where the space H is equipped with an inner product ⟨·, ·⟩H.
We write ∥ · ∥H for the norm on H given by ∥g∥H =

√
⟨g, g⟩H for any g ∈ H.

The objective function of the weighted kernel k-means clustering (WKKM)
is given by

L̂(WKKM)
n (C,µ) = 1

n

k∑
l=1

∑
xi∈Cl

wi∥ψ(xi)− µl∥2H, (2.1)

where C = {C1, . . . , Ck} is a partition of sample, and µ = {µ1, . . . , µk} is the
set of centers in H.

The goal of WKKM is to find (C,µ) that minimizes L̂
(WKKM)
n . The opti-

mization is usually solved in a greedy fashion the same as Lloyd’s algorithm
for the standard k-means clustering, which updates the partition and cluster
centers iteratively as follows:

Step 1 Given a partition C = {Cl}kl=1, update cluster centers by the “best”
cluster representatives of the partition, that is, for l = 1, . . . , k,

µl =

∑
xi∈Cl

wiψ(xi)∑
xi∈Cl

wi

.

Step 2 Given cluster centers µ = {µl}kl=1, update the partition by assigning
each data point xi to its nearest center, that is, for l = 1, . . . , k,

Cl = {xi, i = 1, . . . , n | ∥ψ(xi)− µl∥H ≤ ∥ψ(xi)− µl′∥H,∀l′ ̸= l}.

The choice of ψ(·) is crucial for the clustering effect. It is usually con-
structed via a kernel function, and this is why it is called kernel k-means.
Specifically, suppose that H is a reproducing kernel Hilbert space (RKHS)
associated with a reproducing kernel denoted by h : X × X → R. We can
define the mapping ψ : X → H by ψ(x) = h(·, x) for any x ∈ X , which leads
to h(x, x̃) = ⟨ψ(x), ψ(x̃)⟩H for any x, x̃ ∈ X . Then, the objective function of
WKKM using kernel h is given by

L̂(WKKM)
n (C) = 1

n

n∑
i=1

wih(xi, xi)−
1

n

k∑
l=1

1∑
xi∈Cl

wi

∑
xi,xi′∈Cl

wiwi′h(xi, xi′),

(2.2)
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where we often encode hii′ = h(xi, xi′) for all i, i′ = 1, . . . , n into a kernel
matrix H = (hii′)n×n.

It should be noted that although the mapping ψ(·) is complex, the kernel
function h often has simple explicit form (e.g., h(x, x̃) = exp(−∥x − x̃∥22)).
The formulation of Eq. (2.2) allows us to focus on updating the partition C
without updating µ explicitly, which means that L̂

(WKKM)
n can be viewed as

a function only with respect to C. We provide Algorithm 2.1 for WKKM.

Algorithm 2.1 Weighted kernel k-means clustering

Input: Kernel matrix H, number of clusters k.

Initialize partition C.
while L̂

(WKKM)
n (C) does not converge do

Step 1: For each i = 1, . . . , n, find the index l∗(i) = argmin
l=1,...,k

dil, where

dil = hii −
2∑

xi′∈Cl
wi′

∑
xi′∈Cl

wi′hii′ +
1(∑

xi′∈Cl
wi′

)2 ∑
xi′ ,xi′′∈Cl

wi′wi′′hi′i′′

Step 2: Update C = {Cl}kl=1 by

Cl = {xi, i = 1, . . . , n | l∗(i) = l}

end while

Output: Partition C.

Moreover, the weights {wi}ni=1 are pre-specified, and with some specific
weights, the weighted kernel k-means clustering is equivalent to the normal-
ized cut (Ncut) problem (Dhillon et al. 2004, Terada & Yamamoto 2019).

2.3 Proposed method

Suppose that the underlying cluster structure differs only in a subset of
features. Our main idea is to assign an indicator to each feature to show
whether it is relevant or not. Specifically, we introduce an indicator vector
ξ = (ξ1, . . . , ξp) ∈ {0, 1}p. If ξj = 1, then the j-th feature is regarded to be
relevant, 0 otherwise. Then, the new data x1◦ξ, . . . , xn◦ξ will be used in the
weighted kernel k-means clustering, instead of the original data x1, . . . , xn,
where ◦ denotes the element-wised product. Mathematically, we first define
ψξ : X → H by ψξ(x) = h(· ◦ ξ, x ◦ ξ). Then, by substituting ψ(xi) in
Eq.(2.1) by ψξ(xi), it is natural to give the following minimization problem
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with respect to partition C and indicator ξ:

min
C, ξ

1

n

k∑
l=1

∑
xi∈Cl

wi∥ψξ(xi)− µ̂ξ
l ∥

2
H

s.t. ξ ∈ {0, 1}p and ∥ξ∥0 ≤ d,

(2.3)

where for all l = 1, . . . , k,

µ̂ξ
l =

∑
xi∈Cl

wiψ
ξ(xi)∑

xi∈Cl
wi

.

Denote this objective function byWCSS(C, ξ). Then, minimizingWCSS(C, ξ)
with a fixed C would lead to a trivial solution ξ̂ = 0.

Example 2.1. Consider ψ(·) constructed by the kernel function h(x, x̃) =
exp(−∥x− x̃∥22) and let wi = 1 for all i = 1, . . . , n. Then we have

WCSS(C, ξ) = 1− 1

n

k∑
l=1

1

|Cl|
∑

xi,xi′∈Cl

exp
(
−∥(xi − xi′) ◦ ξ∥22

)
,

which implies that ξ̂ = 0 is a minimizer of WCSS(C, ξ) when C is fixed.

To avoid the trivial solution, we consider a contrast expression and pro-
pose the sparse (weighted) kernel k-means clustering (SKKM) as follows:

max
C, ξ

{
1

n

n∑
i=1

wi∥ψξ(xi)− µ̂ξ
0∥2H −

1

n

k∑
l=1

∑
xi∈Cl

wi∥ψξ(xi)− µ̂ξ
l ∥

2
H

}
s.t. ξ ∈ {0, 1}p and ∥ξ∥0 ≤ d,

(2.4)

where for all l = 1, . . . , k,

µ̂ξ
0 =

∑n
i=1wiψ

ξ(xi)∑n
i=1wi

and µ̂ξ
l =

∑
xi∈Cl

wiψ
ξ(xi)∑

xi∈Cl
wi

.

Denote the objective function by BCSS(C, ξ). There are two advantages of
Eq.(2.4):

(1) Since the first term does not rely on the partition C (thus denoted by
TSS(ξ)) and the second term is actually WCSS(C, ξ), then for a given
indicator ξ, maximizing BCSS(C) is equivalent to minimizing WCSS(C)
and thus they provide the same clustering result.
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(2) For a given partition C, since maximizing BCSS(ξ) implies not only
minimizing WCSS(ξ) but also maximizing TSS(ξ), it helps to avoid
the trivial solution and thus provides a reasonable result for feature
selection.

Moreover, the relationship of WCSS, BCSS and TSS can be explained as
that the distortion of the whole sample (TSS) can be decomposed by the
distortion of sample within k clusters (WCSS) and the distortion between
k clusters (BCSS). The similar trick is also used by Witten & Tibshirani
(2010), Dey et al. (2020).

It should be noted that the proposed method is different from Maldon-
ado et al. (2015). The indicator ξ used in our method is assumed to be
binary, while the similar parameter used in their method is continuous and
meanwhile serves as the bandwidth of the kernel function. The standard ob-
jective function of (weighted) kernel k-means clustering is not considered in
their method, whereas directly involved in our method. Moreover, it should
be noted that the weights used in our method are assigned to data points,
which is aimed to improve the effect of clustering. However, the weights
used by Witten & Tibshirani (2010), Chang et al. (2018), Dey et al. (2020),
Chakraborty & Das (2020) are assigned to features, which play the similar
role as ξ used in our method.

In addition to Eq. (2.4), we also propose an equivalent expression of
SKKM based on the kernel function h as follows, which facilitates the imple-
mentation:

max
C, ξ

 1

n

k∑
l=1

1∑
xi∈Cl

wi

∑
xi,xi′∈Cl

wiwi′h
ξ
i,i′ −

1

n
∑n

i=1wi

n∑
i,i′=1

wiwi′h
ξ
i,i′


s.t. ξ ∈ {0, 1}p and ∥ξ∥0 ≤ d,

(2.5)

where hξi,i′ = h(xi ◦ ξ, xi′ ◦ ξ) for any i, i′ = 1, . . . , n, which is also encoded

into a matrix Hξ = (hξi,i′)n×n.

Remark 2.1. The motivation for using the l0 constraint of ξ is due to the
consideration of practical optimization. To solve the l0 regularized optimiza-
tion problem, a common way is to relax l0 to l1 so that the NP-hard problem
can be avoided. That is, the constraint ξ ∈ {0, 1}p and ∥ξ∥0 ≤ d is relaxed
to ξ ∈ [0, 1]p and ∥ξ∥1 ≤ d. Then, the original l0 solution could be given by
taking the sign of the relaxed l1 solution. However, in our case, due to the
non-convexity of the objective function, we can hardly benefit much from the
l1 relaxation. In fact, the relaxed version is a constrained non-convex opti-
mization problem, solving which is quite challenging for the existing well-built
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solvers. Moreover, even for the l1 penalty function, there are several well-
known issues (e.g., see Fan & Li (2001)). Therefore, our algorithm focuses
on directly finding a local solution to the original l0 optimization problem as
introduced in the next section.

2.4 Optimization

2.4.1 Algorithms

For implementation, similar to WKKM, we consider the maximization prob-
lem of Eq.(2.5) with respect to partition C and indicator ξ, where a pre-
specified kernel function h is used, so that we can avoid updating cluster
centers explicitly. Then, since the objective function is generally non-convex,
we consider the alternative maximization between ξ and C until convergence,
and propose Algorithm 2.2 to obtain a local solution for SKKM.

Specifically, for the (t + 1)-th iteration, in Step 1, we keep C(t) fixed
and find a maximizer ξ(t+1) of the objective function, which is denoted by
fn(ξ | C(t)) here for short. That is, our goal in this step is to maximize
fn(ξ | C(t)) with ξ ∈ {0, 1}p and ∥ξ∥0 ≤ d. To this end, it suffices to find
the optimal support set S of ξ with the cardinality |S| ≤ d. Therefore, we
consider a stepwise method as follows to find S. We start from the empty
set S = ∅, and repeat the following until the |S| = d:

(a) Find j∗ = argmax
j∈[p]\S

fn(eS∪{j} | C(t)), where eΩ ∈ Rp is the 0-1 valued

vector supported on the index set Ω, and [p] = {1, . . . , p};

(b) Update S by adding j∗ into it.

Then we can get ξ(t+1) by taking its j-th component ξ
(t+1)
j = 1 if j ∈ S, 0

otherwise.

In Step 2, we keep ξ(t+1) fixed and find the optimal partition C(t+1). Here
the objective function is equivalent to that of the classical weighted kernel
k-means clustering on the new sample {x1◦ξ(t+1), . . . , xn◦ξ(t+1)}. Therefore,
we calculate a new kernel matrix Hξ(t+1)

= (hξ
(t+1)

ii′ )n×n with elements being

hξ
(t+1)

ii′ = h(xi ◦ ξ(t+1), xi′ ◦ ξ(t+1)), for all i, i′ = 1, . . . , n. Then, update C(t+1)

by conducting Algorithm 2.1 with the input Hξ(t+1)
and k.

It should be noted that when the weighted version is used, the weights
{w1, . . . , wn} should be pre-specified as an input, which is omitted in Algo-
rithm 2.2 for the simplification of notations.
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Algorithm 2.2 Sparse (weighted) kernel k-means clustering

Input: Sample {x1, . . . , xn}, number of clusters k, kernel function h.
Parameters: Number of active features d.

Initialize partition C(0).
while not converge do

Step 1: Keeping C(t) fixed, solve Eq. (2.5) w.r.t. ξ as follows:
Let S = ∅.
while |S| < d do

(a) Find j∗ = argmax
j∈[p]\S

fn(eS∪{j} | C(t));

(b) Update S ← S ∪ {j∗}.
end while
Update ξ(t+1) = (ξ

(t+1)
1 , . . . , ξ

(t+1)
p ) by

ξ
(t+1)
j =

{
1 if j ∈ S
0 otherwise

Step 2: Keeping ξ(t+1) fixed, solve Eq. (2.5) w.r.t. C as follows:

Apply Algorithm 2.1 with input Hξ(t+1)
= (hξ

(t+1)

ii′ )n×n, where

hξ
(t+1)

ii′ = h(xi ◦ ξ(t+1), xi′ ◦ ξ(t+1));

Update C(t+1) by the output.
end while

Output: Partition C(t+1), indicator ξ(t+1).
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Moreover, as for the convergence issue, we iterate Step 1 and Step 2
until the update of ξ does not change. According to our numerical exper-
iments, for most datasets, the stop criterion would be met within several
times of iterations. In Figure 2.2, we empirically demonstrate the gradual
convergence of the proposed algorithm to a local stationary point on several
selected datasets. For other datasets, the convergence trends are similar.
We further note that the number of iterations to convergence is generally
related to the complexity of the clustering problem. For a more complicated
clustering problem, more iterations are needed. It is also worth noting that
the immediate convergence may be the common characteristic of the alterna-
tive algorithms for the simultaneous clustering and feature selection issue, as
mentioned in other related works (Dey et al. 2020, Chakraborty & Das 2020).
For the sake of space economy, we have a detailed discussion in Section A.1
of Appendix A.

1 2 3 4 5 6 7 8 9 10

Brain

1 2 3 4 5 6 7 8 9 10

Colon

1 2 3 4 5 6 7 8 9 10

Leukemia

Figure 2.2: Examples of empirical convergence of the proposed algorithm.
The x-axis is the index of iteration. The y-axis is the value of objective
function of each iteration. Each panel shows the result of each dataset.

In addition, we analyze the complexity of the proposed algorithm. In
Step 1, the stepwise method has the complexity O(n2pd). In Step 2, the
complexity of constructing the kernel matrix is O(n2p) while the complexity
of estimating partition by WKKM is O(n2τ), where τ is the total number
of iterations within WKKM. Thus, Step 2 has a complexity of O(n2(p +
τ)). Therefore, the asymptotic complexity of each iteration of the proposed
algorithm is nearly O(n2pd).
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2.4.2 Selection of tuning parameter

To apply the proposed method, we need to pre-specify a kernel function h,
the number of active features d and the weights {wi}ni=1 if needed.

For the kernel function, we generally consider the form h(x, x̃) = ϕ(∥x−
x̃∥2/ν), where ϕ : R+ → R+ is a function, ν ≥ 0 is the bandwidth. In our
experiments, we mainly consider ϕ(t) = exp(−t2), and use the corresponding
Gaussian kernel

h(x, x̃) = exp(−∥x− x̃∥22/ν2)

The bandwidth is chosen by using an empirical formula called the median
heuristic (Garreau et al. 2017, Paul et al. 2022),

ν2 =
1

2
Median{∥xi − xi′∥22 | 1 ≤ i < i′ ≤ n}. (2.6)

According to our experiments in Section 2.6.5, we found that Eq. (2.6) per-
forms better compared with other smaller scales of it.

For the number of active features, we use gap statistics to be the cri-
terion, which measures the change in within-clusters dispersion (WCSS) of
original data with that expected under null data that does not contain sub-
groups (Tibshirani et al. 2002). In our case, we focus on the change in
between-clusters dispersion (BCSS). The calculation of the gap statistics for
a candidate d is as follows:

Step 1 For the original data matrix X, calculate B̂CSS, that is, the objective
functions Eq. (2.5) obtained by applying the proposed method on X.

Step 2 GenerateM permuted data matrices X(1), . . . ,X(M) by independently
permuting observations in each feature.

Step 3 For each X(m) (m = 1, . . . ,M), calculate B̂CSSm, i.e., the objective
functions Eq. (2.5) obtained by applying the proposed method on X(m).

Step 4 Calculate the gap statistics for the candidate d by

Gap(d) = log(B̂CSS)− 1

M

M∑
m=1

log(B̂CSSm).

The candidate d with the largest gap statistics is selected. In our experiments,
the “within standard deviation” trick is used to avoid trivial choices and
obtain a reasonable subset of features. It should be noted that although the
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gap statistics was initially proposed to estimate the number of clusters, it has
been widely used by Witten & Tibshirani (2010), Dey et al. (2020), Chang
et al. (2018) for other tuning parameters of clustering problem.

For the weights (if needed), in order to apply the proposed method to
Ncut, based on the relationship between WKKM and Ncut (Dhillon et al.
2004), we construct the weights for the proposed method such that if all
features are selected, SKKM coincides with Ncut. The specific procedure is
provided in Section A.3.1 of Appendix A.

2.5 Theoretical results

2.5.1 Notations and assumptions

Let X be a compact metric data space, X ⊂ Rp, and let P be a probability
measure, the support of which is X . Denote by {X1, . . . , Xn} a random
sample in X , where Xi’s are independent random vectors and identically
distributed following P. For any x, x̃ ∈ X with j-th component given by
xj, x̃j, the inner product is ⟨x, x̃⟩2 =

∑p
j=1 xjx̃j and the norm is given by

∥x∥2 =
√∑p

j=1 x
2
j .

The function h : X × X → R is a reproducing kernel. Let H be the
corresponding reproducing kernel Hilbert space (RKHS). On the spaceH, the
inner product is denoted by ⟨·, ·⟩H, which defines a norm ∥·∥H, that is, for any
g ∈ H, ∥g∥H =

√
⟨g, g⟩H. In our method, we define the mapping ψ : X → H

by ψ(x) = h(·, x) for any x ∈ X , and we have h(x, x̃) = ⟨ψ(x), ψ(x̃)⟩H for
any x, x̃ ∈ X . Assume that h is bounded by h(x, x̃) ≤ cU for any x, x̃ ∈ X
and EX∼P[h(X,X)] <∞.

Moreover, we write µ = {µ1, . . . , µk}, where µl ∈ H is the l-th cluster
center (l = 1, . . . , k) in H. We use µ ∈ Hk to express µl ∈ H for all
l = 1, . . . , k. We assume the indicator ξ = (ξ1, . . . , ξp) ∈ {0, 1}p. Then, for
any such ξ, we define hξ : X × X → R by hξ(x, x̃) = h(x ◦ ξ, x̃ ◦ ξ). The
corresponding RKHS is denoted by Hξ. We further define ψξ : X → Hξ by
ψξ(x) = h(· ◦ ξ, x ◦ ξ), and we write the corresponding sample average µ̂ξ

0

and population mean µξ
0 to be

µ̂ξ
0 =

1

n

n∑
i=1

ψξ(Xi) and µξ
0 = EX∼P[ψ

ξ(X)].

Throughout the theoretical analysis, we suppose the number of clusters
k ≥ 2 and the number of relevant features d0 to be 1 ≤ d0 < p, both of
which are fixed. Moreover, for the sake of notation simplicity, we focus on

25



Chapter 2. Sparse kernel k-means clustering

the unweighted version of the proposed method, that is, we fix wi = 1 for
all i = 1, . . . , n. We can easily extend the proof for the general weighted
case. To facilitate the derivation, we focus on kernel function, associated
with which, the RKHS satisfies the following assumption:

Assumption 2.1. For any η, η̃ ∈ {0, 1}p, if the support of η is included in
the support of η̃, that is, {j = 1, . . . , p | ηj = 1} ⊂ {j = 1, . . . , p | η̃j = 1},
then we have Hη ⊂ Hη̃.

It implies that for any η ∈ {0, 1}p, we have Hη ⊂ H. In addition, since
the exponential kernel with the form of h(x, x̃) = exp(⟨x, x̃⟩2) satisfies this
assumption, then in our analysis, we will take this special case of kernel
functions as an example. We provide some preliminaries about exponential
kernel in Section 2.7.1.

Furthermore, let 1p = (1, . . . , 1) be the all-one vector in Rp. Define

D(µ, µ̃) = max

{
max

l′=1,...,k
min

l=1,...,k
∥µl − µ̃l′∥H, max

l=1,...,k
min

l′=1,...,k
∥µl − µ̃l′∥H

}
,

and write Θ∗ = {ξ ∈ {0, 1}p | ξj = 1,∀j = 1, . . . , d0} and ξ∗∗ = (1d0 ,0p−d0).

2.5.2 Reformulation

Firstly, we reformulate the proposed method (SKKM) given in Eq. (2.4)
to be a maximization problem with respect to µ and ξ. Consider the cor-
respondence between cluster centers µ = {µ1, . . . , µk} and partition C =
{C1, . . . , Ck}:

(1) For a fixed partition C, cluster centers µ are given by µl =
∑

Xi∈Cl
ψξ(Xi)/

|Cl|;

(2) For fixed cluster centers µ, the partition C is given by Cl = C̃l\
⋃

l′<l C̃l′ ,

where C̃l = {Xi | ∥ψξ(Xi)− µl∥H ≤ ∥ψξ(Xi)− µl′∥H, ∀l′ ̸= l}.

Therefore, it allows us to rewrite SKKM as a maximization problem with
respect to µ and ξ. Specifically, define L̃

(SKKM)
n (·, ·) : Hk×{0, 1}p → R to be

L̃(SKKM)
n (µ, ξ) =

1

n

n∑
i=1

{
∥ψξ(Xi)− µ̂ξ

0∥2H − min
l=1,...,k

∥ψξ(Xi)− µl∥2H
}
.

The SKKM with respect to µ = {µ1, . . . , µk} and ξ ∈ {0, 1}p is given by

max
ξ∈{0,1}p

µl∈Hξ, ∀l=1,...,k

L̃(SKKM)
n (µ, ξ) s.t. ∥ξ∥0 ≤ d,

(2.7)
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where d = 1, . . . , p is a user-specified number of active features1. We denote
the maximizer of Eq. (2.7) by (µ̃, ξ̃).

Secondly, since Eq. (2.7) is a constrained optimization problem, we further
transform it to be an unconstrained problem with a penalty term. Let λn > 0
be a constant relying on n. We define L̂n(·, ·) : Hk × {0, 1}p → R,

L̂n(µ, ξ) =
1

n

n∑
i=1

{
∥ψξ(Xi)− µ̂ξ

0∥2H − min
l=1,...,k

∥ψξ(Xi)− µl∥2H
}
− λn∥ξ∥0.

(2.8)

The penalized version of the SKKM can be given by

max
ξ∈{0,1}p

µl∈Hξ,∀l=1,...,k

L̂n(µ, ξ), (2.9)

and then the estimator of cluster centers and indicator is given by

(µ̂, ξ̂) = argmax
ξ∈{0,1}p

µl∈Hξ,∀l=1,...,k

L̂n(µ, ξ). (2.10)

Proposition 2.1. The optimization problems of Eq. (2.7) and Eq. (2.9) are
equivalent, if there exists λn > 0 such that

λn ≥ max
∥ξ∥0>d

L̃
(SKKM)
n (µ̃ξ, ξ)− L̃(SKKM)

n (µ̃, ξ̃)

∥ξ∥0 − d

and λn ≤ min
∥ξ∥0<d

L̃
(SKKM)
n (µ̃, ξ̃)− L̃(SKKM)

n (µ̃ξ, ξ)

d− ∥ξ∥0
,

(2.11)

where µ̃ξ = argmax
µ∈Hξ

k

L̃
(SKKM)
n (µ, ξ) for any fixed ξ ∈ {0, 1}p.

Proof. The proof is provided in Section 2.7.2.

On one hand, for the penalized version with λn, we can always ensure
that there exists some d = 1, . . . , p such that the constrained version with d
is equivalent to the penalized version. On the other hand, for the constrained
version with d, it is equivalent to some penalized version if the associated λn
satisfying Eq. (2.11) exists.

1In contrast, d0 is a fixed value representing the true number of relevant features in the
theoretical analysis.
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Remark 2.2. The existence of λn can be ensured under certain conditions
for specific values of d. When d is exactly the true value d0, or when d
is chosen to be an empirical estimator d̃n that depends on the sample and
approaches to the true value d0 as n → ∞, then any λn with lim

n→∞
λn = 0

and lim
n→∞

λn
√
n = ∞ satisfies the condition (2.11). More precisely, for such

a sequence of λn, the probability that the condition (2.11) holds converges to
one. As an example of empirical d̃n, we can consider the following estimator:

d̃n = min{t ∈ {1, . . . , p} | Q̃n(t) > max
s=1,...,p

Q̃n(s)− γn}, (2.12)

where Q̃n(t) = max
{
L̃
(SKKM)
n (µ, ξ) | ξ ∈ {0, 1}p, ∥ξ∥0 ≤ t,µ ∈ Hξ

k

}
, and {γn}n∈N

is a sequence with lim
n→∞

γn = 0 and lim
n→∞

γn
√
n =∞. We can ensure that this

estimator d̃n converges to the true value d0 in probability. We leave more
discussions and proofs in Section 2.7.7 for the sake of space.

Consequently, Proposition 2.1 allows us to focus on the penalized version
of SKKM (Eq. (2.9)), and analyze properties of its maximizer (µ̂, ξ̂).

2.5.3 Main results

Our aim in this section is to analyze the convergence of the estimated cluster
centers and indicator (µ̂, ξ̂) given in Eq.(2.10) based on the penalized version
of SKKM.

First, as a counterpart of L̂n in the population level, we define L(·, ·) :
Hk × {0, 1}p → R,

L(µ, ξ) = EX∼P

[
∥ψξ(X)− µξ

0∥2H − min
l=1,...,k

∥ψξ(X)− µl∥2H
]
. (2.13)

As a counterpart of (µ̂, ξ̂), the optimal solution in the population level is
given by

(µ∗, ξ∗) ∈ argmax
ξ∈{0,1}p

µl∈Hξ,∀l=1,...,k

L(µ, ξ). (2.14)

In addition, we define the population mean in H by µ0 = EX∼P[ψ(X)]. Then,
the optimal cluster centers given by kernel k-means using all features can be
expressed as

µ∗∗ = argmax
µ∈Hk

L(µ,1p). (2.15)
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Condition 2.1 (Irrelevance). The µ∗∗ = {µ∗∗
1 , . . . , µ

∗∗
k } is unique and each

µ∗∗
l : X → R (l = 1, . . . , k) satisfies that µ∗∗

l (x) only relies on x1, . . . , xd0.
That is, for any x, x̃ ∈ X , if xj = x̃j for all j = 1, . . . , d0, then µ∗∗

l (x) =
µ∗∗
l (x̃).

Condition 2.2 (Independence). The random vector X1 following the dis-
tribution P satisfies the independence (X11, . . . , X1d0) ⊥⊥ (X1(d0+1), . . . , X1p).
Moreover, the random variables X1(d0+1), . . . , X1p following non-degenerated
distributions Pd0+1, . . . ,Pp are independent.

Condition 2.3 (Normalization). Suppose that for any ξ ∈ Θ∗, it holds that

EX∼PEX̃∼P
[
h(X ◦ ξ∗∗, X̃ ◦ ξ∗∗)

]
≤ EX∼PEX̃∼P

[
h(X ◦ ξ, X̃ ◦ ξ)

]
,

where X̃ is a random vector independent to X.

Condition 2.4 (Optimality). Suppose that for any ξ /∈ Θ∗, it holds that

L(µ∗∗, ξ∗∗) > sup{L(µ, ξ) | ξ ∈ {0, 1}p, ξ /∈ Θ∗;µl ∈ Hξ, ∀l = 1, . . . , k}.

The above conditions provide a sparse cluster structure with d0 relevant
features and p− d0 noise features. The Conditions 2.1 and 2.2 are to specify
d0 relevant features and p− d0 noise features. The Conditions 2.3 and Con-
dition 2.4 are technical conditions for the following Proposition 2.2, which
specifies maximizers of L(·, ·). Based on these conditions, we can naturally
regard µ∗∗ and ξ∗∗ as the “true” cluster centers and “true” indicator vector.

Proposition 2.2. Under Conditions 2.1-2.4, any maximizer (µ∗, ξ∗) of L(µ, ξ)
satisfies

µ∗ = µ∗∗ and ξ∗ ∈ Θ∗.

Moreover, (µ∗∗, ξ∗∗) is one of maximizers of L(µ, ξ). In addition, when h is
the exponential kernel, (µ∗∗, ξ∗∗) is the unique maximizer of L(µ, ξ).

Proof. The proof is provided in Section 2.7.3.

Theorem 2.1. Under Conditions 2.1-2.4, and assume lim
n→∞

λn = 0, then

(i) For any ϵ̃ > 0, we have lim
n→∞

Pr
(
L(µ∗, ξ∗)− L(µ̂, ξ̂) > ϵ̃

)
= 0;

(ii) For any ϵ > 0, we have lim
n→∞

Pr
(
D(µ̂,µ∗) > ϵ or ξ̂ /∈ Θ∗

)
= 0.

Proof. The proof is provided in Section 2.7.4.
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Theorem 2.2. Let (µ̃, ξ̃) be the maximizer of Eq. (2.7) with constraint
∥ξ∥0 ≤ d0, and

∇+
n (d0) = max

∥ξ∥0>d0

L̃
(SKKM)
n (µ̃ξ, ξ)− L̃(SKKM)

n (µ̃, ξ̃)

∥ξ∥0 − d0
, (2.16)

where µ̃ξ = argmax
µ∈Hξ

k

L̃
(SKKM)
n (µ, ξ). Under Conditions 2.1-2.4, and assume

lim
n→∞

λn = 0 and lim
n→∞

Pr(λn > ∇+
n (d0)) = 1, then for any ϵ > 0, we have

lim
n→∞

Pr
(
D(µ̂,µ∗∗) > ϵ or ξ̂ ̸= ξ∗∗

)
= 0.

Proof. The proof is provided in Section 2.7.5.

Corollary 2.1. Under Conditions 2.1-2.4, and assume lim
n→∞

λn = 0 and

lim
n→∞

λn
√
n =∞, then for any ϵ > 0, we have

lim
n→∞

Pr
(
D(µ̂,µ∗∗) > ϵ or ξ̂ ̸= ξ∗∗

)
= 0.

Proof. This is an immediate result of Theorem 2.2 and Lemma 2.6.

We explain the above results briefly. First, Proposition 2.2 shows that
in the population level, the optimal cluster centers must be µ∗∗, and the
optimal indicator must belong to Θ∗, which implies that the optimizer of
L(·, ·) could be multiple. Then, Theorem 2.1 provides the convergence in
probability of (µ̂, ξ̂) to one of such optimizers. Moreover, under assumptions
of λn, Theorem 2.2 guarantees that (µ̂, ξ̂) indeed converges in probability
to the (µ∗∗, ξ∗∗). Since µ∗∗ is the “true” cluster centers and ξ∗∗ indicates
the “true” relevant features, the convergence means the consistency of both
clustering and feature selection.

We finally give some discussions on λn. First, Theorem 2.1 only requires
that λn tends to 0, which guarantees that all relevant features can be selected.
Second, Theorem 2.2 also requires that λn is slower than the order of ∇+

n (d0),
which guarantees that all noise features would not be selected. Moreover,
Corollary 2.1 shows that if λn tends to 0 slower than O(1/

√
n), then the

consistency of feature selection can be guaranteed.
In addition, when h is the exponential kernel, since Proposition 2.2 shows

that (µ∗∗, ξ∗∗) is the unique maximizer of L(·, ·), then the requirement that
λn tends to 0 is enough to guarantee the consistency of (µ̂, ξ̂) to (µ∗∗, ξ∗∗),
which implies the consistency of both clustering and feature selection.
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Figure 2.3: An example showing how the optimal value of objective function
in Eq. (2.7) varies with the number of active features d. The x-axis is d and

the y-axis is Q̃n(d). The averaged Q̃n(d) and one standard deviation of 10
repetitions are drawn. The red dot is the true value d0 = 30. The gray
dashed line is to express max

s=1,...,p
Q̃n(s)−γn, and here is given by the averaged

value of Q̃n(p) minus its standard deviation.

Example 2.2. For the constrained optimization problem Eq.(2.7), we in-
troduce an empirical choice for d, that is, d̃n given in Eq.(2.12), which
converges in probability to the true value d0. We provide the formal proof
in Section 2.7.7. Here, we explain the motivation of the empirical d̃n by
an additional example showing how the optimal value of objective function
L̃
(SKKM)
n varies with d. Suppose that the total number of features is p = 100

and the true number of relevant features is d0 = 30. All n = 1000 data
points xi are independently drawn from the same Gaussian mixture distri-
bution: 0.5N (a, diag(σ2)) + 0.5N (−a, diag(σ2)), where aj ∼ U [0.75, 1.25] if
j = 1, . . . , d0, and aj = 0 if j = d0 + 1, . . . , p, and σj ∼ U [0.75, 1.25] for all
j = 1, . . . , p. For each d = 1, . . . , p, we run SKKM to obtain optimal value
of objective function and denote it by Q̃n(d). We calculate the average and
standard deviation of 10 repetitions, and summarize the result in Figure 2.3,
where the x-axis is d and the y-axis is Q̃n(d). The red dot is the true value

d0 = 30. The gray dashed line is to express max
s=1,...,p

Q̃n(s) − γn, and here is

given by the averaged value of Q̃n(p) minus its standard deviation. Hence, it

can be seen that Q̃n(d) increases when d ≤ d0, and becomes flat when d ≥ d0.
The gray dashed line selects d̃n = 29, which is very closed to d0 = 30.
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2.6 Experiments

In this section, we evaluate the proposed method (SKKM) via numerical
experiments on various datasets. The performance of the unweighted and
weighted versions will be discussed separately. The specific structure of this
section is as follows: (a) We first use a microarray dataset as an example
to illustrate the advantage of the proposed method in Section 2.6.1. (b)
Some benchmark datasets are used to compare the clustering performance
of the proposed method and some existing methods in Section 2.6.2. (c)
We further analyze the performance of feature selection on synthetic data in
Section 2.6.3. (d) The consistency property is illustrated by simulations in
Section 2.6.4. (e) The influence of tuning parameters is discussed based on
the real data-based simulations in Section 2.6.5. (f) From Section 2.6.1 to
Section 2.6.5, only the unweighted version of the proposed method (SKKM)
is discussed. We evaluate the performance of the weighted version in Sec-
tion 2.6.6.

Through this section, we use the Clustering Error Rate (CER) as the
clustering performance index. Denote C∗ to be the true partition of data
points. The CER of the estimated partition Ĉ is defined as

CER(Ĉ, C∗) = 1(
n
2

)∑
i>i′

∣∣1Ĉ(i,i′) − 1C∗(i,i′)

∣∣,
where 1C(i,i′) = 1 if the i-th and i′-th data points are assigned to the same
cluster according to the partition C, 0 otherwise. Moreover, we consider
sparse k-means (Witten & Tibshirani 2010), IF-PCA (Jin & Wang 2016) and
Sparse MinMax k-means (Dey et al. 2020) as peer methods, and k-means and
weighted kernel k-means as benchmark methods for comparisons.

2.6.1 Case study

Microarray datasets are typical examples of high dimensional data where
p >> n. They often consist of several thousand gene-expression levels but
very few samples, which makes it difficult to analyze the underlying cluster
structure (Jin & Wang 2016, Dey et al. 2020). We consider the Lymphoma
dataset, which consists of 4026 gene expressions, collected over 62 samples.
Out of the 62 samples, 42 are Diffuse Large B-Cell Lymphoma (DLBCL), 9
are Follicular Lymphoma (FL), and 11 are Chronic Lymphocytic Leukemia
(CLL) cell samples. We use this dataset to illustrate the efficacy of the
proposed sparse kernel k-means clustering (SKKM), in comparison with other
peer algorithms. We run each algorithm 10 times and report the average
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CERs in Table 2.1. It can be seen that the proposed method outperforms
others. For visualization purposes, we performed the dimension reduction via
PCA on the the feature selected by the proposed method, and illustrate the
clustering results in Figure 2.4. It shows the superior clustering performance
of the proposed method (SKKM). Figure 2.5 shows the feature weights and
feature indicators against the corresponding features for each method. It can
be easily seen that Sparse k-means clustering and Sparse MinMax k-means
clustering do not assign zero weights to all the features, while the proposed
method as well as IF-PCA assigns zero indicators to many of the features, and
the proposed method (SKKM) derives the smallest set of selected features,
which leads to the best performance.

Table 2.1: Average CERs on Lymphoma dataset

Dataset IF-PCA Sparse k-means Sparse MinMax k-means SKKM

Lymphoma 0.065 0.296 0.244 0.026
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Figure 2.4: The results of clustering on Lymphoma dataset of different meth-
ods. The x-axis and y-axis are the first two principle components of PCA.
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Figure 2.5: The results of selected features for the Lymphoma dataset of
different methods. The x-axis is the index of each feature. The y-axis is the
feature weight for Sparse k-means clustering and Sparse MinMax k-means
clustering, while the feature indicator for IF-PCA and SKKM (proposed).

2.6.2 Comparison with existing methods via real-world
data

In this section, we apply the proposed method (SKKM) to real-world datasets,
and compare the performance of clustering with some existing methods for
high-dimensional clustering, including IF-PCA (Jin & Wang 2016), Sparse
k-means clustering (Witten & Tibshirani 2010) as well as one of its special
application Sparse MinMax k-means clustering (Dey et al. 2020), classical
kernel k-means clustering as well as k-means clustering. We consider UCI
data and gene microarray data, both of which are benchmark sets for high-
dimensional clustering2.

The result of the comparison is summarized in Table 2.2. The reported
values are averaged CERs of 10 repetitions. The numbers in parentheses
represent the performance rankings of different clustering algorithms for a
certain dataset. In the last row, we report the average rank of all algo-
rithms. We also report the average numbers of selected features of different
algorithms in Table 2.3. In the last row, we report the average ratio of se-
lected features of all algorithms. It can be seen that in general, the proposed
method (SKKM) achieves the comparably lowest classification error rates

2The first five UCI datasets are evaluated by Dey et al. (2020) as benchmark sets.
The datasets Glass, Breast, Vehicle and Control can be found from https://archive.

ics.uci.edu/ml/index.php. The Trace can be found from http://www.cs.ucr.edu/

~eamonn/time_series_data/. The Trace and Control are time series datasets.
The last five high-dimensional gene microarray datasets are used by Jin &Wang (2016) and
Dey et al. (2020), all of which can be found from https://www.stat.cmu.edu/~jiashun/

Research/software/GenomicsData/.
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(CERs) and thus obtains the highest average rank among the other sparse
clustering algorithms, which illustrates the comparable performance of the
proposed method to other peer methods.

Table 2.2: Comparison of CERs of different algorithms for the real-world
datasets

Dataset k n× p k-means
Kernel
k-means

IF-PCA
Sparse
k-means

Sparse MinMax
k-means

SKKM
(proposed)

Glass 6 214×9 0.328 (1) 0.346 (4) 0.351 (5) 0.328 (1) 0.374 (6) 0.335 (3)
Breast 2 699×9 0.080 (2) 0.087 (5) 0.133 (6) 0.082 (3) 0.047 (1) 0.085 (4)
Vehicle 4 846×18 0.402 (5) 0.387 (4) 0.382 (3) 0.348 (1) 0.548 (6) 0.349 (2)
Trace 4 200×275 0.251 (4) 0.250 (1) 0.495 (6) 0.250 (1) 0.445 (5) 0.250 (1)
Control 6 600×60 0.156 (2) 0.168 (3) 0.295 (6) 0.147 (1) 0.200 (4) 0.168 (3)
Brain 5 42×5597 0.375 (6) 0.241 (5) 0.119 (1) 0.190 (3) 0.238 (4) 0.175 (2)
Colon 2 62×2000 0.508 (6) 0.505 (3) 0.403 (2) 0.506 (5) 0.145 (1) 0.505 (3)
Leukemia 2 72×3571 0.394 (3) 0.412 (6) 0.069 (2) 0.407 (5) 0.028 (1) 0.394 (3)
Lymphoma 3 62×4026 0.297 (5) 0.029 (2) 0.065 (3) 0.297 (5) 0.244 (4) 0.026 (1)
SRBCT 4 63×2308 0.371 (5) 0.388 (6) 0.318 (1) 0.358 (3) 0.333 (2) 0.359 (4)

Avg. rank 3.9 3.9 3.5 2.8 3.4 2.6

Table 2.3: Comparison of numbers of selected features for the real-world
datasets

Dataset p IF-PCA Sparse k-means Sparse MinMax k-means SKKM (proposed)

Glass 9 4 9 9 7
Breast 9 5 9 9 8
Vehicle 18 4 18 18 14
Trace 275 105 275 275 165
Control 60 26 60 60 60
Brain 5597 429 5597 5597 17
Colon 2000 25 2000 663 28
Leukemia 3571 213 3571 765 37
Lymphoma 4026 44 4026 1432 39
SRBCT 2308 54 2308 716 21

Avg. ratio 22% 100% 72% 41%

2.6.3 Discussion on feature selection

In this section, we analyze the effect of feature selection of the proposed
method (SKKM) on synthetic datasets. These synthetic datasets consist of
low-dimensional ground truth relevant features and many noise features. The
following types of noise features are considered: (a) Independent normal noise
feature. (b) Correlated normal noise feature. The covariance matrix is set to
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be (ρ|s−t|/3)p−d
s,t=1, where ρ follows a uniform distribution, i.e., ρ ∼ U [0.1, 0.9].

(c) Independent χ2(5) noise feature. The details of all synthetic datasets
are provided in Section A.2 of Appendix A. Since the ground truth relevant
feature is already known for synthetic datasets, we use F1score of whether
relevant features are selected or not as the criterion. For sparse k-means
clustering and sparse MinMax k-means clustering, the jth feature is selected
if its weight wj > 0. For the sake of space economy, we denote the sparse k-
means clustering by SKM and denote the sparse MinMax k-means clustering
by SMMKM for short notations.

The results are summarized in Table 2.4. The reported values are the
averaged F1scores of 20 repetitions, as well as corresponding standard de-
viations. In addition, we also report the corresponding precision and recall
values. It can be seen that for the proposed sparse kernel k-means clustering
outperforms in identifying all the relevant features and thus leads to higher
Precision, Recall and F1score values. However, the sparse k-means clustering
identifies only a subset of the relevant features to be important.

2.6.4 Consistency analysis

In this section, we show the consistency of feature selection as the sample
size n→∞ through some numerical simulation. In this section, we consider
the simple Gaussian mixture distribution with k = 2 classes, and the number
of all features and the number of relevant features are fixed to be p = 200
and d = 50, respectively. Specifically, the simulation data matrix Xn×p is
generated in the following way. For the i-th observation, the cluster (C1

or C2) to which it belongs is specified by the Bernoulli distribution with
expectation equal to 0.5, and the element xij is sampled from N (µij, σ

2
j ).

The µij is specified as follow: (1) for any i ∈ C1 j ≤ d, we take µij from the
uniform distribution U [0.75, 1.25]; (2) for any i ∈ C2 j ≤ d, we take µij from
the uniform distribution U [−1.25,−0.75]; (3) for all i and any j > d, we take
µij = 0.

Figure 2.6 illustrates the trend of F1scores (as well as Precision and Re-
call) of whether relevant features are selected or not as the sample size n
increases. With each sample size, we report the average value of 20 repeti-
tions. Figure 2.7 shows the frequency of each feature being selected within 20
simulations. To save space, we take three relevant features and three noise
features as examples. It can be seen that as n → ∞, F1score (as well as
Precision and Recall) of feature selection tends to 1, which means that the
estimator ξ̂ is consistent. Moreover, the frequency of being selected of rele-
vant features is close to 1, while that of noise features is close 0 as n → ∞,
which means that the relevant features could be almost recognized as n→∞.
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Figure 2.6: The results of consistency of feature selection.
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Figure 2.7: The results of the consistency of feature selection. The x-axis
is the sample size, and the y-axis is the frequency of being selected over 20
repetitions. The left panel illustrates the trend of three relevant features.
The right panel illustrates the trend of three noise features.
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Furthermore, we compare the performance of feature selection with Sparse
k-means clustering under large sample size (n = 1000). We show the estima-
tors of the feature indicator ξj of our method over 20 repetitions in Figure 2.8,
where all 50 relevant features and 50 noise features are illustrated in the top
and bottom rows, respectively. For comparison, we also show the estimators
of feature weight wj of sparse k-means clustering in the left column. It can
be seen that the proposed method assigns exact zero to noise features and
exact one to relevant features, while Sparse k-means clustering has a larger
variability in assigning weights to relevant features and leaves many noise
features to be selected.
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Figure 2.8: The results of feature weights wj assigned by sparse k-means
clustering and feature indicators ξj assigned by SKKM (proposed) with large
sample size (n = 1000). The x-axis represents the index of feature, and the
y-axis represents the box plots of wj and ξj. The top row illustrates the result
of relevant features. The bottom row illustrates the result of noise features.

2.6.5 Sensitivity of tuning parameters

In this section, we analyze the influence of tuning parameters, including the
number of selected features and the bandwidth of the kernel function. For the
choice of the bandwidth, although the median heuristic is applied, it is still
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important to investigate how different bandwidths affect the performance of
the proposed method. We consider the bandwidth ν20 derived by median
heuristic (Eq. (2.6)), as well as {0.01ν20 , 0.1ν20 , 10ν20 , 100ν20}. Through this
section, we consider the simulation based on real-world data. The benchmark
UCI dataset Glass is used. Since it contains nine features, we artificially add
100 white noise features to get the full data matrix with n = 214 and p = 109.

Figure 2.9 illustrates the trend of CERs as the number of selected features
and the bandwidth vary, respectively. The reported lines are the averaged
values of 10 repetitions. It can be seen that when a small set of features
(seven features suggested by gap statistics in this example) are selected,
the clustering result is the best. On one hand, when the size of selected
features is excessively small, due to the lack of information, the error of
clustering would increase. On the other hand, when more irrelevant features
are selected, the clustering performance would also be reduced. Moreover,
when the bandwidth ν2 of kernel function is excessively small, the clustering
performance of the proposed method would be significantly reduced, while a
larger bandwidth ν2 is a relatively safe choice.
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Figure 2.9: The influence of the tuning parameters. The left panel is about
the number of selected features. The right panel is about the inverse of
bandwidth 1

ν2
(logarithm) of the kernel function.

2.6.6 Performance of the weighted version

In this section, we discuss the performance of the weighted version of the
proposed method. To distinguish with unweighted version, through this sec-
tion we denote the weighted version of the proposed method by SWKKM.
To specify the weights wi of observations, we consider the specific technology
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used in weighted kernel k-means clustering that coincides with the normal-
ized cut. More details are provided in the Section A.3.1 of Appendix A.

Table 2.5: Averaged CERs of different methods on ORL dataset.

Dataset k-means Weighted kernel k-means IF-PCA Sparse k-means SWKKM

ORL 0.304 0.231 0.253 0.242 0.075

We similarly give an example to illustrate the performance of the proposed
method (SWKKM). This case is a real-world dataset ORL, which is a face
image dataset. The ORL data consists of 40 images (n = 40) and 1024 pixel
values (p = 1024). Each of 4 distinct subjects (k = 4) has ten images that
were taken at different times, varying the lighting, facial expressions and
facial details. We run each algorithm 10 times and report the average value
of CERs in Table 2.5, and similarly use PCA as the visualization technique to
illustrate the clustering result of each algorithm in Figure 2.10. It can be seen
that the proposed method (SWKKM) has lower CER and thus outperforms
other peer algorithms in clustering.

We apply the proposed method (SWKKM) on real-world datasets to com-
pare with peer methods. All ten datasets are from an open-source feature se-
lection repository called scikit-feature3. We report the average CERs of each
algorithm in Table 2.6. It can be seen that the proposed method (SWKKM)
has lower CERs than other methods on more than half of real-world datasets,
and thus gets the highest rank, which confirms the better performance of the
proposed method.

More experiments results of evaluating the performance of the weighted
version (SWKKM) on synthetic datasets are provided in Section A.3.2 of
Appendix A.

3The scikit-feature repository is an open-source feature selection repository in
Python developed at Arizona State University: https://jundongl.github.io/

scikit-feature/datasets.html.
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Figure 2.10: The results of clustering on the ORL dataset of different meth-
ods. The x-axis and y-axis are the first two principle components on PCA.

Table 2.6: Comparison of CERs of different algorithms for the real-world
datasets.

Dataset k n× p k-means
Weighted kernel

k-means
IF-PCA

Sparse
k-means

SWKKM
(proposed)

Lung discrete 7 73×325 0.149 (5) 0.140 (4) 0.136 (3) 0.083 (1) 0.121 (2)
GLIOMA 4 50×4434 0.275 (4) 0.276 (5) 0.174 (1) 0.269 (3) 0.255 (2)
Lsolet 5 300×617 0.195 (4) 0.160 (3) 0.207 (5) 0.150 (2) 0.125 (1)
Leukemia 2 72×7070 0.437 (5) 0.409 (3) 0.306 (2) 0.419 (4) 0.243 (1)
Lung 4 197×3312 0.241 (5) 0.104 (2) 0.179 (4) 0.128 (3) 0.069 (1)
Lymphoma 4 76×4026 0.264 (3) 0.296 (5) 0.270 (4) 0.221 (2) 0.197 (1)
ORL 4 40×1024 0.304 (5) 0.231 (2) 0.253 (4) 0.242 (3) 0.075 (1)
TOX171 4 171×5748 0.350 (3) 0.350 (4) 0.239 (1) 0.380 (5) 0.293 (2)
WarpAR10P 10 130×2400 0.192 (5) 0.186 (4) 0.093 (1) 0.180 (3) 0.171 (2)
Yale 15 165×1024 0.119 (5) 0.117 (4) 0.068 (1) 0.099 (3) 0.085 (2)

Avg. Rank 4.4 3.6 2.6 2.9 1.5
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2.7 Proofs

2.7.1 Preliminaries

We provide more details of exponential kernel. Through the theoretical anal-
ysis, we focus on the form h(x, x̃) = exp(⟨x, x̃⟩2) for any x, x̃ ∈ X , where
⟨x, x̃⟩2 =

∑p
j=1 xjx̃j, and xj and x̃j are j-th component of x and x̃, re-

spectively. According to Lemma 4.8 of Steinwart & Christmann (2008), by
expanding the exponential function exp(·) into its Taylor series at 0, we write
the kernel function as

h(x, x̃) = exp

(
p∑

j=1

xjx̃j

)
=

∞∑
t=0

1

t!

(
p∑

j=1

xjx̃j

)t

=
∑

s1,...,sp≥0

1∏p
j=1 sj!

p∏
j=1

x
sj
j x̃

sj
j .

Let s = (s1, . . . , sp) ∈ Np
0 be a multiple index and N0 be the set of non-

negative integers. The RKHS H is given by

H =

{
g(x) =

∑
s

cs

p∏
j=1

x
sj
j

∣∣∣∣∣ ∑
s

c2s

p∏
j=1

sj! <∞

}
,

where cs is a constant for a given index s in Np
0. The inner product ⟨·, ·⟩H is

given by

⟨g, g̃⟩H =
∑
s

cs · c̃s ·
p∏

j=1

sj!

for any g(x) =
∑
s

cs
∏p

j=1 x
sj
j and g̃(x) =

∑
s

c̃s
∏p

j=1 x
sj
j . The norm ∥ · ∥H is

given by ∥g∥H =
√
⟨g, g⟩H. The kernel h has the reproducing property that

⟨g, h(·, x)⟩H = g(x) for any g ∈ H and x ∈ X .
Moreover, the mapping ψ : X → H defined by ψ(x) = h(·, x) has the

expression as follows, and thus h(x, x̃) = ⟨ψ(x̃), ψ(x)⟩H.

ψ(x) =

 1√∏p
j=1 sj!

p∏
j=1

x
sj
j


s1,...,sp≥0

. (2.17)

Furthermore, for any η ∈ {0, 1}p, the sparse counterpart of H is given by

Hη =

g(x) =∑
s

cs
∏

j:ηj=1

x
sj
j

∏
j:ηj=0

1(sj = 0)

∣∣∣∣∣∣
∑
s

c2s
∏

j:ηj=1

sj!
∏

j:ηj=0

1(sj = 0) <∞

 .
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As introduced in Section 2.5, the exponential kernel satisfies Assumption 2.1.

Lemma 2.1. Suppose that h is the exponential kernel with the form h(x, x̃) =
exp(⟨x, x̃⟩2), and the associated RKHS of it is H. Let ψ : X → H be ψ(x) =
h(·, x). For any η, η̃ ∈ {0, 1}p, if the support of η is included in the support
of η̃, that is, {j = 1, . . . , p | ηj = 1} ⊂ {j = 1, . . . , p | η̃j = 1}, then we have

(i) Hη ⊂ Hη̃;

(ii) ⟨g, ψη(x)⟩H = ⟨g, ψη̃(x)⟩H = g(x), for any g ∈ Hη, x ∈ X .

Proof. (i) For any g ∈ Hη, there exists a sequence of constants cs indexed
by s and satisfying ∑

s

c2s
∏

j:ηj=1

sj!
∏

j:ηj=0

1(sj = 0) <∞,

such that g : X → R has the form of

g(x) =
∑
s

cs
∏

j:ηj=1

x
sj
j

∏
j:ηj=0

1(sj = 0).

For any index s, if we take c̃s = cs
∏

j:η̃j=1,ηj=0

1(sj = 0), then we have

∑
s

c̃2s
∏

j:η̃j=1

sj!
∏

j:η̃j=0

1(sj = 0)

=
∑
s

c2s
∏

j:η̃j=1,ηj=0

1(sj = 0)
∏

j:η̃j=1

sj!
∏

j:η̃j=0

1(sj = 0)

=
∑
s

c2s
∏

j:η̃j=1,ηj=1

sj!
∏

j:ηj=0

1(sj = 0)

=
∑
s

c2s
∏

j:ηj=1

sj!
∏

j:ηj=0

1(sj = 0) <∞,

where the last equality is because {j : ηj = 1} ⊂ {j : η̃j = 1}. Therefore, the
function g̃ : X → R given by

g̃(x) =
∑
s

c̃s
∏

j:η̃j=1

x
sj
j

∏
j:η̃j=0

1(sj = 0)
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is an element of Hη̃. Moreover, since

g̃(x) =
∑
s

cs
∏

j:η̃j=1,ηj=0

1(sj = 0)
∏

j:η̃j=1

x
sj
j

∏
j:η̃j=0

1(sj = 0)

=
∑
s

cs
∏

j:η̃j=1,ηj=1

x
sj
j

∏
j:ηj=0

1(sj = 0)

=
∑
s

cs
∏

j:ηj=1

x
sj
j

∏
j:ηj=0

1(sj = 0) = g(x),

we have g is an element of Hη̃.
(ii) For any g ∈ Hη, according to the definition of ψη(x) = hη(·, x) and

the reproducing property, we have ⟨g, ψη(x)⟩H = g(x). Similarly, since g is
also an element of Hη̃, it still holds that ⟨g, ψη̃(x)⟩H = g(x).

Next, we briefly explain how Assumption 2.1 facilitates our analysis.
Specifically, let us consider any arbitrary reproducing kernel h : X ×X →

R and its RKHS H, which is equipped with an inner product ⟨·, ·⟩H and a
norm given by ∥g∥H =

√
⟨g, g⟩H. The mapping ψ : X → H is defined by

ψ(x) = h(·, x) for any x ∈ X . Then, for any ξ ∈ {0, 1}p, we can construct a
new kernel hξ : X ×X → R by hξ(x, x̃) = h(x ◦ ξ, x̃ ◦ ξ). The corresponding
RKHS is denoted by Hξ, which is equipped with the inner product ⟨·, ·⟩Hξ

and a norm given by ∥g∥Hξ =
√
⟨g, g⟩Hξ . We define a mapping ψξ : X → Hξ

by ψξ(x) = h(· ◦ ξ, x ◦ ξ) for any x ∈ X .
To analyze the consistency of SKKM, we also consider the reformula-

tion Eq. (2.7) about cluster centers and feature indicator. For any arbitrary
reproducing kernel h, a more accurate version of Eq. (2.7) is

max
ξ∈{0,1}p

µξ
l ∈H

ξ,∀l=1,...,k

1

n

n∑
i=1

{
∥ψξ(Xi)− µ̂ξ

0∥2Hξ − min
l=1,...,k

∥ψξ(Xi)− µξ
l ∥

2
Hξ

}
s.t. ∥ξ∥0 ≤ d,

where we use the notation µξ
l to express the l-th cluster center only for

showing the connection to Eq.(2.4). The µξ
l ∈ Hξ means that the search

region depends on ξ. Hence, to find the optimal solution, we need to consider⋃
ξHξ, while Hξ ⊂ H does not necessarily hold4 for all ξ ∈ {0, 1}p. This

makes the analysis more complicated.
Fortunately, if h satisfies Assumption 2.1 (E.g.: h is the exponential ker-

nel), then we have Hξ ⊂ H hold for all ξ ∈ {0, 1}p. It allows us to use
the inner product ⟨·, ·⟩H and norm ∥ · ∥H on any Hξ, which leads to the
reformulation Eq. (2.7) as well as Eq. (2.9).

4For example, if h(x, x̃) = exp(−∥x − x̃∥22) is a Gaussian kernel, then for ξ = 0p, we
have for any x̃ ∈ X , the function h(· ◦ 0p, x̃ ◦ 0p) : X → R is a constant function in H0,
while it is not included in H. It means that H0 is not a subset of H.
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2.7.2 Proof of Proposition 2.1

In this section, we prove Proposition 2.1 about the equivalence between the
optimization problems Eq. (2.7) and Eq. (2.9).

Recall that Eq. (2.7) is a constrained problem with ∥ξ∥0 ≤ d, where
d = 1, . . . , p is the tuning parameter, and the maximizer is denoted by (µ̃, ξ̃).
Eq. (2.9) is an unconstrained problem with a penalty term λn∥ξ∥0, where
λn > 0 is the tuning parameter, and the maximizer is denoted by (µ̂, ξ̂).
Therefore, it suffices to prove: (i) For any λn, there exists a d such that
(µ̂, ξ̂) is a maximizer of Eq. (2.7); (ii) For any d, there exists a λn such that
(µ̃, ξ̃) is a maximizer of Eq. (2.9).

(i) For any λn, since (µ̂, ξ̂) maximizes L̂n(µ, ξ) = L̃
(SKKM)
n (µ, ξ)−λn∥ξ∥0,

we take dλn = ∥ξ̂∥0. Then, for any (µ, ξ) satisfying ∥ξ∥0 ≤ dλn , we have

L̃(SKKM)
n (µ, ξ)− λn∥ξ∥0 ≤ L̃(SKKM)

n (µ̂, ξ̂)− λn∥ξ̂∥0
and λn∥ξ∥0 ≤ λn∥ξ̂∥0.

It follows that L̃
(SKKM)
n (µ, ξ) ≤ L̃

(SKKM)
n (µ̂, ξ̂), which means that (µ̂, ξ̂) is

also a maximizer of Eq. (2.7) with d = dλn .

(ii) For any d, the (µ̃, ξ̃) maximizes L̃
(SKKM)
n (µ, ξ) with the constraint

∥ξ∥0 ≤ d. Here, we suppose ∥ξ̃∥0 = d, otherwise, we can instead consider

maximizing L̃
(SKKM)
n (µ, ξ) with the constraint ∥ξ∥0 ≤ ∥ξ̃∥0. If there exists

λn satisfying Eq. (2.11), then L̂n(µ, ξ) with such λn is maximized by (µ̂, ξ̂).

If (µ̃, ξ̃) is not a maximizer of L̂n(µ, ξ) with such λn, there must be

L̃(SKKM)
n (µ̃, ξ̃)− λn∥ξ̃∥0 < L̃(SKKM)

n (µ̂, ξ̂)− λn∥ξ̂∥0.

When ∥ξ̂∥0 = d, it means that L̃
(SKKM)
n (µ̃, ξ̃) < L̃

(SKKM)
n (µ̂, ξ̂), which is a

contradiction. When ∥ξ̂∥0 < d, it means that

L̃
(SKKM)
n (µ̃, ξ̃)− L̃(SKKM)

n (µ̂, ξ̂)

d− ∥ξ̂∥0
< λn,

which contradicts to upper bound of Eq. (2.11). When ∥ξ̂∥0 > d, it means
that

L̃
(SKKM)
n (µ̂, ξ̂)− L̃(SKKM)

n (µ̃, ξ̃)

∥ξ̂∥0 − d
> λn,

which contradicts to lower bound of Eq. (2.11). Therefore, (µ̃, ξ̃) is indeed a

maximizer of L̂n(µ, ξ) with λn satisfying Eq. (2.11).
We complete the proof.
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2.7.3 Proof of Proposition 2.2

In this section, we prove Proposition 2.2 about the optimal solution (µ∗, ξ∗)
of L(µ, ξ) under settings and conditions given in Section 2.5.

Recall that the maximizer of L(µ,1p) denoted by µ∗∗ = {µ∗∗
1 , . . . , µ

∗∗
k }

(Eq.(2.15)) can be viewed as the optimal cluster centers given by kernel
k-means using all features. Each µ∗∗

l only relies on x1, . . . , xd0 under Con-
dition 2.1. Since µ∗∗

l ∈ H, if h is the exponential kernel, then we can write
µ∗∗
l : X → R to be

µ∗∗
l (x) =

∑
s

c∗∗l,s ·
d0∏
j=1

x
sj
j ·

p∏
j=d0+1

1(sj = 0),

where c∗∗l,s is a given constant associated with µ∗∗
l and indexed by s. Moreover,

recall that Θ∗ = {ξ ∈ {0, 1}p | ξj = 1,∀j = 1, . . . , d0} and ξ∗∗ = (1d0 ,0p−d0).
It also follows that µ∗∗

l ∈ Hξ∗∗ for any l = 1, . . . , k.
Our first aim is to prove µ∗ = µ∗∗ and ξ∗ ∈ Θ∗. Since the search region for

maximizer of L(µ, ξ) is {(µ, ξ) | ξ ∈ {0, 1}p, µl ∈ Hξ,∀l = 1, . . . , k}, it can
be divided into two parts by ξ belonging to Θ∗ or not. Under Condition 2.4,
we know that the maximal value of L(µ, ξ) would not be obtained if ξ /∈ Θ∗.
It follows that the maximizer (µ∗, ξ∗) must satisfy ξ∗ ∈ Θ∗. Therefore, it
suffices to prove: Given ξ∗ ∈ Θ∗, L(µ, ξ∗) is only maximized by µ = µ∗∗,
which is Lemma 2.2.

Our second aim is to prove (µ∗∗, ξ∗∗) is one of maximizers of L(µ, ξ).
Based on Lemma 2.2, it suffices to prove: Given µ∗ = µ∗∗, L(µ∗, ξ) can be
maximized by ξ = ξ∗∗, which is Lemma 2.3.

Our third aim is to prove that when h is the exponential kernel, (µ∗∗, ξ∗∗)
is the unique maximizer of L(µ, ξ), which is an immediate result of Lemma 2.2
and the second part of Lemma 2.3.

Lemma 2.2. Given ξ∗ ∈ Θ∗, we have

µ∗∗ = argmax
µl∈Hξ∗ ,∀l=1,...,k

L(µ, ξ∗).

Proof. At first, according to the definition of µ∗∗, the result holds for ξ∗ = 1p.
It suffices to consider ξ∗ ∈ Θ∗ with the form of (1d′ ,0p−d′) for some fixed
d′ ∈ {d0, d0 + 1, . . . , p− 1}.

Since the search region relies on ξ∗, we should find µ = {µ1, . . . , µk} that
maximizes L(µ, ξ∗) with restricting each µl ∈ Hξ∗ . Here we note that because
the support of ξ∗∗ is included in the support of ξ∗, then Assumption 2.1 gives
Hξ∗∗ ⊂ Hξ∗ ⊂ H.
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According to Eq.(2.13), the L(µ, ξ∗) is given by

L(µ, ξ∗) =

∫
X
∥ψξ∗(x)− µξ∗

0 ∥2H dP(x)−
∫
X

min
l=1,...,k

∥ψξ∗(x)− µl∥2H dP(x),

where the first term is a constant unrelated to µ. Thus, maximizing L(µ, ξ∗)
is equivalent to minimizing

∫
X min

l=1,...,k
∥ψξ∗(x)−µl∥2H dP(x). It suffices to prove

µ∗∗ = argmin
µ1,...,µk∈Hξ∗

∫
X

min
l=1,...,k

∥ψξ∗(x)− µl∥2H dP(x).

If µ∗∗ is not the solution, then there exists a different ν = {ν1, . . . , νk}
with each νl ∈ Hξ∗ such that∫

X
min

l=1,...,k
∥ψξ∗(x)− νl∥2H dP(x) <

∫
X

min
l=1,...,k

∥ψξ∗(x)− µ∗∗
l ∥2H dP(x). (2.18)

On the other hand, µ∗∗ uniquely maximizes L(µ,1p), where

L(µ,1p) =

∫
X
∥ψ(x)− µ0∥2H dP(x)−

∫
X

min
l=1,...,k

∥ψ(x)− µl∥2H dP(x).

Since the first term of L(µ,1p) is a constant, it implies that µ∗∗ uniquely
minimizes

∫
X min

l=1,...,k
∥ψ(x)− µl∥2H dP(x). Then, we have∫

X
min

l=1,...,k
∥ψ(x)− µ∗∗

l ∥2H dP(x) <
∫
X

min
l=1,...,k

∥ψ(x)− νl∥2H dP(x). (2.19)

Combining Eq.(2.18) and Eq.(2.19), we have∫
X

min
l=1,...,k

∥ψ(x)− µ∗∗
l ∥2H − min

l=1,...,k
∥ψξ∗(x)− µ∗∗

l ∥2H dP(x)

<

∫
X

min
l=1,...,k

∥ψ(x)− νl∥2H − min
l=1,...,k

∥ψξ∗(x)− νl∥2H dP(x).
(2.20)

For the left hand of Eq.(2.20), for any x ∈ X , we denote lx = argmin
l=1,...,k

∥ψ(x)−

µ∗∗
l ∥2H, then we have

min
l=1,...,k

∥ψ(x)− µ∗∗
l ∥2H − min

l=1,...,k
∥ψξ∗(x)− µ∗∗

l ∥2H

= ∥ψ(x)− µ∗∗
lx ∥

2
H − min

l=1,...,k
∥ψξ∗(x)− µ∗∗

l ∥2H

≥ ∥ψ(x)− µ∗∗
lx ∥

2
H − ∥ψξ∗(x)− µ∗∗

lx ∥
2
H

=

[
⟨ψ(x), ψ(x)⟩H − ⟨ψξ∗(x), ψξ∗(x)⟩H

]
− 2 ·

[
⟨µ∗∗

lx , ψ(x)⟩H − ⟨µ
∗∗
lx , ψ

ξ∗(x)⟩H
]

=

[
h(x, x)− h(x ◦ ξ∗, x ◦ ξ∗)

]
− 2 ·

[
µ∗∗
lx (x)− µ

∗∗
lx (x)

]
= h(x, x)− h(x ◦ ξ∗, x ◦ ξ∗).
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The third equality is because µ∗∗
lx
∈ Hξ∗∗ ⊂ Hξ∗ ⊂ H, then according to

Assumption 2.1 we get the result.
For the right hand Eq.(2.20), for any x ∈ X , we denote l′x = argmin

l=1,...,k
∥ψξ∗(x)−

νl∥2H, then we have

min
l=1,...,k

∥ψ(x)− νl∥2H − min
l=1,...,k

∥ψξ∗(x)− νl∥2H

= min
l=1,...,k

∥ψ(x)− νl∥2H − ∥ψξ∗(x)− νl′x∥
2
H

≤ ∥ψ(x)− νl′x∥
2
H − ∥ψξ∗(x)− νl′x∥

2
H

=

[
⟨ψ(x), ψ(x)⟩H − ⟨ψξ∗(x), ψξ∗(x)⟩H

]
− 2 ·

[
⟨νl′x , ψ(x)⟩H − ⟨νl′x , ψ

ξ∗(x)⟩H
]

=

[
h(x, x)− h(x ◦ ξ∗, x ◦ ξ∗)

]
− 2 ·

[
νl′x(x)− νl′x(x)

]
= h(x, x)− h(x ◦ ξ∗, x ◦ ξ∗),

where the third equality is because νl′x ∈ Hξ∗ ⊂ H.
Combining two bounds leads to h(x, x) − h(x ◦ ξ∗, x ◦ ξ∗) < h(x, x) −

h(x ◦ ξ∗, x ◦ ξ∗) for any x ∈ X , which is a contradiction. We complete the
proof.

Lemma 2.3. Given µ∗ = µ∗∗, we have for each ξ ∈ Θ∗,

L(µ∗, ξ∗∗) ≥ L(µ∗, ξ).

In addition, when h is the exponential kernel, then L(µ∗, ξ∗∗) > L(µ∗, ξ).

Proof. We only consider ζ with the form of (1d′ ,0p−d′) for some fixed d′ ∈
{d0 + 1, . . . , p}, which can be easily extended to other cases.

First, according to the definition of L, we have

L(µ∗, ξ∗∗)− L(µ∗, ζ)

=

[∫
X
∥ψξ∗∗(x)− µξ∗∗

0 ∥2H − min
l=1,...,k

∥ψξ∗∗(x)− µ∗
l ∥2H dP(x)

]
−
[∫

X
∥ψζ(x)− µζ

0∥2H − min
l=1,...,k

∥ψζ(x)− µ∗
l ∥2H dP(x)

]
=

∫
X
∥ψξ∗∗(x)− µξ∗∗

0 ∥2H − ∥ψζ(x)− µζ
0∥2H dP(x)︸ ︷︷ ︸

(I)

−
∫
X

min
l=1,...,k

∥ψξ∗∗(x)− µ∗
l ∥2H − min

l=1,...,k
∥ψζ(x)− µ∗

l ∥2H dP(x)︸ ︷︷ ︸
(II)

.
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For (I), according to the definitions of µξ∗∗

0 and µζ
0 , we have

(I) =

∫
X
⟨ψξ∗∗(x), ψξ∗∗(x)⟩H − ⟨ψζ(x), ψζ(x)⟩H dP(x)

− 2 ·
∫
X
⟨µξ∗∗

0 , ψξ∗∗(x)⟩H − ⟨µζ
0 , ψ

ζ(x)⟩H dP(x)

+

∫
X
⟨µξ∗∗

0 , µξ∗∗

0 ⟩H − ⟨µ
ζ
0 , µ

ζ
0⟩H dP(x)

=

∫
X
h(x ◦ ξ∗∗, x ◦ ξ∗∗)− h(x ◦ ζ, x ◦ ζ) dP(x)

− 2 ·
(
∥µξ∗∗

0 ∥2H − ∥µ
ζ
0∥2H

)
+

(
∥µξ∗∗

0 ∥2H − ∥µ
ζ
0∥2H

)
= EX∼P

[
h(X ◦ ξ∗∗, X ◦ ξ∗∗)− h(X ◦ ζ, X ◦ ζ)

]
− EX∼PEX̃∼P

[
h(X ◦ ξ∗∗, X̃ ◦ ξ∗∗)− h(X ◦ ζ, X̃ ◦ ζ)

]
.

For (II), since for all l = 1, . . . , k, µ∗
l ∈ Hξ∗∗ ⊂ Hζ, then for any x ∈ X ,

we have ⟨µ∗
l , ψ

ξ∗∗(x)⟩H = µ∗
l (x) and ⟨µ∗

l , ψ
ζ(x)⟩H = µ∗

l (x). For a fixed x ∈ X ,
if we denote lx = argmin

l=1,...,k
∥ψξ∗∗(x)− µ∗

l ∥2H, then

min
l=1,...,k

∥ψξ∗∗(x)− µ∗
l ∥2H − min

l=1,...,k
∥ψζ(x)− µ∗

l ∥2H

= ∥ψξ∗∗(x)− µ∗
lx∥

2
H − min

l=1,...,k
∥ψζ(x)− µ∗

l ∥2H

≥ ∥ψξ∗∗(x)− µ∗
lx∥

2
H − ∥ψζ(x)− µ∗

lx∥
2
H

=

[
⟨ψξ∗∗(x), ψξ∗∗(x)⟩H − ⟨ψζ(x), ψζ(x)⟩H

]
− 2 ·

[
⟨µ∗

lx , ψ
ξ∗∗(x)⟩H − ⟨µ∗

lx , ψ
ζ(x)⟩H

]
=

[
h(x ◦ ξ∗∗, x ◦ ξ∗∗)− h(x ◦ ζ, x ◦ ζ)

]
− 2 ·

[
µ∗
lx(x)− µ

∗
lx(x)

]
= h(x ◦ ξ∗∗, x ◦ ξ∗∗)− h(x ◦ ζ, x ◦ ζ).
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Similarly, if we denote l′x = argmin
l=1,...,k

∥ψζ(x)− µ∗
l ∥2H, then

min
l=1,...,k

∥ψξ∗∗(x)− µ∗
l ∥2H − min

l=1,...,k
∥ψζ(x)− µ∗

l ∥2H

= min
l=1,...,k

∥ψξ∗∗(x)− µ∗
l ∥2H − ∥ψζ(x)− µ∗

l′x
∥2H

≤ ∥ψξ∗∗(x)− µ∗
l′x
∥2H − ∥ψζ(x)− µ∗

l′x
∥2H

=

[
⟨ψξ∗∗(x), ψξ∗∗(x)⟩H − ⟨ψζ(x), ψζ(x)⟩H

]
− 2 ·

[
⟨µ∗

l′x
, ψξ∗∗(x)⟩H − ⟨µ∗

l′x
, ψζ(x)⟩H

]
=

[
h(x ◦ ξ∗∗, x ◦ ξ∗∗)− h(x ◦ ζ, x ◦ ζ)

]
− 2 ·

[
µ∗
l′x
(x)− µ∗

l′x
(x)

]
= h(x ◦ ξ∗∗, x ◦ ξ∗∗)− h(x ◦ ζ, x ◦ ζ).
It follows that

(II) =

∫
X
h(x ◦ ξ∗∗, x ◦ ξ∗∗)− h(x ◦ ζ, x ◦ ζ) dP(x)

= EX∼P

[
h(X ◦ ξ∗∗, X ◦ ξ∗∗)− h(X ◦ ζ, X ◦ ζ)

]
.

Therefore, combining (I) and (II) leads to

L(µ∗, ξ∗∗)− L(µ∗, ζ) = (I)− (II)

= −EX∼PEX̃∼P

[
h(X ◦ ξ∗∗, X̃ ◦ ξ∗∗)− h(X ◦ ζ, X̃ ◦ ζ)

]
.

Finally, under Condition 2.3, we obtain L(µ∗, ξ∗∗)− L(µ∗, ζ) ≥ 0. We com-
plete the proof of the first part.

Next, when h is exponential kernel, we have

EX∼PEX̃∼P
[
h(X ◦ ξ∗∗, X̃ ◦ ξ∗∗)

]
=

∫
X

∫
X
h(x ◦ ξ∗∗, x̃ ◦ ξ∗∗) dP(x̃) dP(x)

=

∫
X

∫
X
exp

(
d0∑
j=1

xjx̃j

)
dP(x̃) dP(x)

and

EX∼PEX̃∼P
[
h(X ◦ ζ, X̃ ◦ ζ)

]
=

∫
X

∫
X
h(x ◦ ζ, x̃ ◦ ζ) dP(x̃) dP(x)

=

∫
X

∫
X
exp

(
d′∑
j=1

xjx̃j

)
dP(x̃) dP(x)

=

∫
X

∫
X
exp

(
d0∑
j=1

xjx̃j

)
·

d′∏
j=d0+1

exp(xjx̃j) dP(x̃) dP(x).
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Using Jensen’s inequality, we have for any j = d0 + 1, . . . , d′,

EXj∼Pj
EX̃j∼Pj

[
exp(XjX̃j)

]
≥ exp

(
EXj∼Pj

EX̃j∼Pj

[
XjX̃j

])
= exp

((
EXj∼Pj

[Xj]
)2) ≥ 1,

where the equality holds only if Pj is a degenerated distribution. Thus, by
using Condition 2.2, we have the following holds for any non-degenerated
distribution:

EX∼PEX̃∼P
[
h(X ◦ ξ∗∗, X̃ ◦ ξ∗∗)

]
< EX∼PEX̃∼P

[
h(X ◦ ζ, X̃ ◦ ζ)

]
.

which implies that L(µ∗, ξ∗∗)− L(µ∗, ζ) > 0. We complete the proof.
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2.7.4 Proof of Theorem 2.1

In this section, we prove Theorem 2.1 about the convergence in probability
of (µ̂, ξ̂) under settings and conditions given in Section 2.5.

(i) Recall that ξ∗∗ = (1d0 ,0p−d0) ∈ Θ∗ and µ∗∗
l ∈ Hξ∗∗ for any l = 1, . . . , k.

According to Proposition 2.2 and the definition of (µ̂, ξ̂), we have

L(µ∗, ξ∗)− L(µ̂, ξ̂)
= L(µ∗∗, ξ∗∗)− L(µ̂, ξ̂)
= L(µ∗∗, ξ∗∗)− L̂n(µ

∗∗, ξ∗∗) + L̂n(µ
∗∗, ξ∗∗)− L̂n(µ̂, ξ̂) + L̂n(µ̂, ξ̂)− L(µ̂, ξ̂)

≤ 2 · sup
ξ∈{0,1}p

µl∈Hξ,∀l=1,...,k

∣∣∣L̂n(µ, ξ)− L(µ, ξ)
∣∣∣ .

By using Lemma 2.4, for any ϵ̃ > 0, there exists N1 ∈ N+ such that for any
n ≥ N1, it holds that

Pr
(
L(µ∗, ξ∗)− L(µ̂, ξ̂) ≤ ϵ̃

)
≥ 1− 4 exp

(
−
[
(ϵ̃/2− pλn)

√
n− C1

C2

]2)
,

where C1 and C2 are constants given by Eq. (2.25). Moreover, since lim
n→∞

λn =

0, then for any δ̃ > 0 satisfying ϵ̃/2− pδ̃ > 0, there exists N2 ∈ N such that
λn < δ̃ for n ≥ N2. It follows that for any n ≥ max{N1, N2}, we have

Pr
(
L(µ∗, ξ∗)− L(µ̂, ξ̂) ≤ ϵ̃

)
≥ 1− 4 exp

−[(ϵ̃/2− pδ̃)√n− C1

C2

]2 .

Therefore, lim
n→∞

Pr
(
L(µ∗, ξ∗)− L(µ̂, ξ̂) > ϵ̃

)
= 0.

(ii) First, for a fixed optimal indicator ξ∗ ∈ Θ∗, we prove that µ∗ is
identifiable. By the definition of µ∗, that is,

µ∗ = argmax
µ∈Hξ∗

k

L(µ, ξ∗),

then by taking r > 0 such that µ∗ ∈ B(µ∗, r), we have

µ∗ = argmax
µ∈B(µ∗,r)

L(µ, ξ∗),

where B(µ∗, r) ⊂ Hξ∗

k is a closed ball centered at µ∗ and with radius r. On
the other hand, Lemma 4.4 of Levrard (2015) ensures that there existsM > 0
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and ν∗ ∈ B(0,M + r)\Bo(µ∗, r), such that

L(ν∗, ξ∗) = sup
µ∈Hξ∗

k \Bo(µ∗,r)

L(µ, ξ∗),

where B(0,M+r) ⊂ Hξ∗

k is centered at 0 and with radiusM+r, and Bo(µ∗, r)
is the interior of B(µ∗, r). In other words, away from µ∗, there is no sequence
of µ such that L(µ, ξ∗) tends to L(µ∗, ξ∗). Therefore, we have for any ϵ > 0

L(µ∗, ξ∗) > sup{L(µ, ξ∗) | D(µ,µ∗) > ϵ; µl ∈ Hξ∗ ,∀l = 1, . . . , k}. (2.21)

Secondly, for a fixed ζ belonging to Θ∗ but not an optimal indicator,
similar to the proof of Lemma 2.2, we can obtain that µ∗ uniquely maxi-
mizes L(µ, ζ) about µ and L(µ∗, ζ) < L(µ∗, ξ∗). Also, similar to the above
analysis, we can obtain the identifiablity of µ∗ for such ζ.

Finally, combining Condition 2.4 leads to the identifiability of (µ∗, ξ∗) in
the following sense: For any ϵ > 0,

L(µ∗, ξ∗) > sup
{
L(µ, ξ) | D(µ,µ∗) > ϵ or ξ /∈ Θ∗; µl ∈ Hξ,∀l

}
.

That is, for any ϵ > 0, there exists ϵ̃ > 0 depending on ϵ, such that
L(µ∗, ξ∗) > L(µ, ξ) + ϵ̃ holds for any (µ, ξ) satisfying D(µ,µ∗) > ϵ or
ξ /∈ Θ∗. It implies that the event {D(µ̂,µ∗) > ϵ or ξ̂ /∈ Θ∗} is included in
the event {L(µ∗, ξ∗) > L(µ̂, ξ̂) + ϵ̃}, and thus

Pr
(
D(µ̂,µ∗) > ϵ or ξ̂ /∈ Θ∗

)
≤ Pr

(
L(µ∗, ξ∗) > L(µ̂, ξ̂) + ϵ̃

)
.

Based on (i), for this given ϵ̃, we have lim
n→∞

Pr
(
L(µ∗, ξ∗)− L(µ̂, ξ̂) > ϵ̃

)
= 0.

It follows that lim
n→∞

Pr
(
D(µ̂,µ∗) > ϵ or ξ̂ /∈ Θ∗

)
= 0.

2.7.5 Proof of Theorem 2.2

In this section, we prove Theorem 2.2 about the convergence in probability
of (µ̂, ξ̂) to (µ∗∗, ξ∗∗) under assumptions on λn.

For any n ∈ N+, (µ̂, ξ̂) maximizes L̂n(µ, ξ), which means L̂n(µ̂, ξ̂) ≥
L̂n(µ̃, ξ̃). If ∥ξ̂∥0 > d0, then we have

L̃
(SKKM)
n (µ̂, ξ̂)− L̃(SKKM)

n (µ̃, ξ̃)

∥ξ̂∥0 − ∥ξ̃∥0
≥ λn.
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Moreover, since ∥ξ̃∥0 = d0, then by the definition of ∇+
n (d0) (Eq.(2.16)), we

have

L̃
(SKKM)
n (µ̂, ξ̂)− L̃(SKKM)

n (µ̃, ξ̃)

∥ξ̂∥0 − ∥ξ̃∥0
≤ ∇+

n (d0).

It implies that Pr
(
∥ξ̂∥0 > d0

)
≤ Pr (λn ≤ ∇+

n (d0)). Therefore, by the as-

sumption lim
n→∞

Pr(λn > ∇+
n (d0)) = 1, we obtain

lim
n→∞

Pr
(
∥ξ̂∥0 > d0

)
= 0. (2.22)

According to (ii) of Theorem 2.1, we know for any ϵ > 0, δ > 0, there
exists N1 ∈ N such that for n ≥ N1, it holds that

Pr
(
D(µ̂,µ∗) ≤ ϵ and ξ̂ ∈ Θ∗

)
≥ 1− δ

2
. (2.23)

According to Eq.(2.22), there exists N2 ∈ N such that for n ≥ N2, it holds

that Pr
(
∥ξ̂∥0 > d0

)
< δ/2, which follows that

Pr
(
D(µ̂,µ∗) ≤ ϵ and ξ̂ ∈ Θ∗ and ∥ξ̂∥0 > d0

)
<
δ

2
. (2.24)

Because

Pr
(
D(µ̂,µ∗) ≤ ϵ and ξ̂ ∈ Θ∗

)
= Pr

(
D(µ̂,µ∗) ≤ ϵ and ξ̂ ∈ Θ∗ and ∥ξ̂∥0 > d0

)
+ Pr

(
D(µ̂,µ∗) ≤ ϵ and ξ̂ ∈ Θ∗ and ∥ξ̂∥0 = d0

)
,

then by combining Eq.(2.23) and Eq.(2.24), for any n > max{N1, N2}, we
have

Pr
(
D(µ̂,µ∗) ≤ ϵ and ξ̂ ∈ Θ∗ and ∥ξ̂∥0 = d0

)
> 1− δ,

which completes the proof.
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2.7.6 Some Lemmas and proofs

Lemma 2.4. For any ϵ̃ > 0, there exists N ∈ N+ such that for any n ≥ N ,

Pr

 sup
ξ∈{0,1}p

µl∈Hξ,∀l=1,...,k

∣∣∣L̂n(µ, ξ)− L(µ, ξ)
∣∣∣ > ϵ̃

 ≤ 4 exp

(
−
[
(ϵ̃− pλn)

√
n− C1

C2

]2)
,

where

C1 = 4k(2p+1 + 1)cU and C2 = (6
√
2 + 36cU)cU . (2.25)

Proof. We first define two function classes on X be

Gk =
{
∥ψξ(·)− µξ

0∥2H − min
l=1,...,k

∥ψξ(·)− µl∥2H
∣∣∣∣

ξ ∈ {0, 1}p, µl ∈ Hξ, ∥µl∥2H ≤ cU ,∀l = 1, . . . , k

}

G =

{
∥ψξ(·)− µξ

0∥2H − ∥ψξ(·)− µ∥2H
∣∣∣∣ ξ ∈ {0, 1}p, µ ∈ Hξ, ∥µ∥2H ≤ cU

}
,

where µξ
0 = EX∼P[ψ

ξ(X)]. Recall ψξ(x) = h(· ◦ ξ, x ◦ ξ), then we have
∥ψξ(x)∥2H ≤ cU for any x ∈ X . For the sample {X1, . . . , Xn}, denote the

empirical Rademacher complexity by R̂. Then, for any function gk ∈ Gk :
X → R, according to Theorem 3.3 in Mohri et al. (2018) and Theorem 12 of
Bartlett & Mendelson (2002) that R̂(Gk) ≤ k · R̂(G), the following holds for
any δ1 ∈ (0, 1):

Pr

(
EX∼P[gk(X)]− 1

n

n∑
i=1

gk(Xi) ≤ 2kR̂(G) + 6cU

√
log(2/δ1)

2n

)
> 1− δ1.

(2.26)

We next derive the upper bound of R̂(G). Let ϵ = {ϵi}ni=1 be independent
random variables that take the value ±1 with equal probability 1

2
, then the
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empirical Rademacher complexity of G is given by

R̂(G) = Eϵ

[
sup
g∈G

1

n

n∑
i=1

ϵig(Xi)

]

= Eϵ

 sup
ξ∈{0,1}p
∥µ∥2H≤cU

1

n

n∑
i=1

ϵi

(
∥ψξ(Xi)− µξ

0∥2H − ∥ψξ(Xi)− µ∥2H
)

= Eϵ

 sup
ξ∈{0,1}p
∥µ∥2H≤cU

1

n

n∑
i=1

ϵi

(
∥µξ

0∥2H − ∥µ∥2H − 2⟨ψξ(Xi), µ
ξ
0⟩H + 2⟨ψξ(Xi), µ⟩H

)
≤ Eϵ

 sup
ξ∈{0,1}p
∥µ∥2H≤cU

1

n

n∑
i=1

ϵi∥µξ
0∥2H

+ Eϵ

 sup
ξ∈{0,1}p
∥µ∥2H≤cU

1

n

n∑
i=1

ϵi∥µ∥2H


+ 2 · Eϵ

 sup
ξ∈{0,1}p
∥µ∥2H≤cU

∣∣∣∣∣ 1n
n∑

i=1

ϵi⟨ψξ(Xi), µ
ξ
0⟩H

∣∣∣∣∣


+ 2 · Eϵ

 sup
ξ∈{0,1}p
∥µ∥2H≤cU

∣∣∣∣∣ 1n
n∑

i=1

ϵi⟨ψξ(Xi), µ⟩H

∣∣∣∣∣
 .

For the second term, we have

Eϵ

 sup
ξ∈{0,1}p
∥µ∥2H≤cU

1

n

n∑
i=1

ϵi∥µ∥2H


≤ 1

n
Eϵ

[∣∣∣∣∣
n∑

i=1

ϵi

∣∣∣∣∣ · sup
∥µ∥2H≤cU

∥µ∥2H

]
≤ cU

n
Eϵ

[∣∣∣∣∣
n∑

i=1

ϵi

∣∣∣∣∣
]

≤ cU
n
·

{
n∑

i,i′=1

Eϵ[ϵiϵi′ ]

}1/2

=
cU
n
·
√
n =

cU√
n
.
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For the fourth term, we have

2 · Eϵ

 sup
ξ∈{0,1}p
∥µ∥2H≤cU

∣∣∣∣∣ 1n
n∑

i=1

ϵi⟨ψξ(Xi), µ⟩H

∣∣∣∣∣
 =

2

n
Eϵ

 sup
ξ∈{0,1}p
∥µ∥2H≤cU

∣∣∣∣∣
〈 n∑

i=1

ϵiψ
ξ(Xi), µ

〉
H

∣∣∣∣∣


≤ 2

n
Eϵ

 sup
ξ∈{0,1}p
∥µ∥2H≤cU

∥µ∥H ·
∥∥∥∥ n∑

i=1

ϵiψ
ξ(Xi)

∥∥∥∥
H

 ≤ 2
√
cU
n

Eϵ

[
sup

ξ∈{0,1}p

∥∥∥∥ n∑
i=1

ϵiψ
ξ(Xi)

∥∥∥∥
H

]

≤
2
√
cU
n

Eϵ

 ∑
ξ∈{0,1}p

∥∥∥∥ n∑
i=1

ϵiψ
ξ(Xi)

∥∥∥∥
H

 =
2
√
cU
n

∑
ξ∈{0,1}p

Eϵ

[∥∥∥∥ n∑
i=1

ϵiψ
ξ(Xi)

∥∥∥∥
H

]

≤
2
√
cU
n

∑
ξ∈{0,1}p

{
Eϵ

[∥∥∥∥ n∑
i=1

ϵiψ
ξ(Xi)

∥∥∥∥2
H

]}1/2

=
2
√
cU
n

∑
ξ∈{0,1}p

{
Eϵ

[
n∑

i,i′=1

ϵiϵi′h
ξ(Xi, Xi′)

]}1/2

≤
2
√
cU
n

∑
ξ∈{0,1}p

{
cU

n∑
i,i′=1

Eϵ [ϵiϵi′ ]

}1/2

=
2p+1cU
n

{
n∑

i,i′=1

Eϵ [ϵiϵi′ ]

}1/2

≤ 2p+1cU
n

·
√
n =

2p+1cU√
n

.

Because for any ξ ∈ {0, 1}p, we have µξ
0 ∈ H and

∥µξ
0∥2H =

〈∫
X
ψξ(x) dP(x),

∫
X
ψξ(x̃) dP(x̃)

〉
H
= EXEX̃ [h(X ◦ ξ, X̃ ◦ ξ)] ≤ cU ,

then for the first term and third term, we can similarly get

Eϵ

 sup
ξ∈{0,1}p
∥µ∥2H≤cU

1

n

n∑
i=1

ϵi∥µξ
0∥2H

 ≤ 1

n
Eϵ

[∣∣∣∣∣
n∑

i=1

ϵi

∣∣∣∣∣ · sup
ξ∈{0,1}p

∥µξ
0∥2H

]

≤ cU
n
·
√
n =

cU√
n
,
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and

2 · Eϵ

 sup
ξ∈{0,1}p
∥µ∥2H≤cU

∣∣∣∣∣ 1n
n∑

i=1

ϵi⟨ψξ(Xi), µ
ξ
0⟩H

∣∣∣∣∣
 ≤ 2

n
Eϵ

[
sup

ξ∈{0,1}p
∥µξ

0∥H ·
∥∥∥∥ n∑

i=1

ϵiψ
ξ(Xi)

∥∥∥∥
H

]

≤
2
√
cU
n

Eϵ

[
sup

ξ∈{0,1}p

∥∥∥∥ n∑
i=1

ϵiψ
ξ(Xi)

∥∥∥∥
H

]

≤ 2p+1cU√
n

.

Therefore, we have

R̂(G) ≤ 2(2p+1 + 1)cU√
n

. (2.27)

Combining Eq. (2.26) and Eq. (2.27), and using the symmetry, we have for
any δ1 ∈ (0, 1),

Pr

( ∣∣∣∣∣EX∼P[gk(X)]− 1

n

n∑
i=1

gk(Xi)

∣∣∣∣∣ ≤ 4k(2p+1 + 1)cU√
n

+ 12cU

√
log(2/δ1)

2n

)
> 1− δ1.

(2.28)

Secondly, we derive the bound for ∥µξ
0 − µ̂

ξ
0∥2H. Recall that for a given ξ,

the µξ
0 = EX [ψ

ξ(X)] is the population mean and the µ̂ξ
0 =

1
n

∑n
i=1 ψ

ξ(Xi) is
the sample average. Since we have

∥µξ
0 − µ̂

ξ
0∥H =

∥∥∥∥∥ 1n
n∑

i=1

{
ψξ(Xi)− EX [ψ

ξ(X)]
}∥∥∥∥∥

H

,

and for any i = 1, . . . , n,

∥ψξ(Xi)∥∞ = sup
x∈X
∥hξ(x,Xi)∥H ≤ cU ,

then according to Corollary 6.15 of Steinwart & Christmann (2008), for any
τ > 0, it holds that

Pr

(
∥µξ

0 − µ̂
ξ
0∥H ≤ cU

√
2τ

n
+ cU

1

n
+

4cUτ

3n

)
> 1− exp(−τ).
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Since for 1/n ≤ τ ≤ n, it holds that

cU

√
2τ

n
+ cU

1

n
+

4cUτ

3n

= cU

√
τ

n

(√
2 +

1√
τn

+
4

3

√
τ

n

)
≤ cU

√
τ

n

(√
2 + 1 +

4

3

)
≤ 6cU

√
τ

n

then have

Pr

(
∥µξ

0 − µ̂
ξ
0∥H ≤ 6cU

√
τ

n

)
> 1− exp(−τ).

It is equivalent to: For any δ2 ∈ (e−n, e−1/n), it holds that

Pr

(
∥µξ

0 − µ̂
ξ
0∥H ≤ 6cU

√
log(1/δ2)

n

)
> 1− δ2.

It also means that

Pr

(
∥µξ

0 − µ̂
ξ
0∥2H ≤ 36c2U

log(1/δ2)

n

)
> 1− δ2. (2.29)

Finally, we derive the uniform bound for
∣∣∣L̂n(µ, ξ)− L(µ, ξ)

∣∣∣. Since for any

(µ, ξ),∣∣∣L̂n(µ, ξ)− L(µ, ξ)
∣∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

gk(Xi)− EX [gk(X)]− ∥µξ
0 − µ̂

ξ
0∥2H − λn∥ξ∥0

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

gk(Xi)− EX [gk(X)]

∣∣∣∣∣+ ∥µξ
0 − µ̂

ξ
0∥2H + pλn,

then for any δ ∈ (2e−n, 2e−1/n), by combining Eq. (2.28) and Eq. (2.29) with
δ1 = δ2 = δ/2, we have

Pr

(∣∣∣L̂n(µ, ξ)− L(µ, ξ)
∣∣∣ ≤ 4k(2p+1 + 1)cU√

n
+ 12cU

√
log(4/δ)

2n
+ 36c2U

log(2/δ)

n
+ pλn

)
> 1− δ.
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Because log(2/δ) < n for δ ∈ (2e−n, 2e−1/n), we have log(2/δ)/n ≤
√

log(2/δ)/n ≤√
log(4/δ)/n. It follows that

Pr

(∣∣∣L̂n(µ, ξ)− L(µ, ξ)
∣∣∣ ≤ C1 + C2

√
log(4/δ)√
n

+ pλn

)
> 1− δ,

where

C1 = 4k(2p+1 + 1)cU and C2 = (6
√
2 + 36cU)cU .

Consequently, for any ϵ̃ > 0, there exists N ∈ N+ such that for any n ≥ N ,
it holds that

2e−n < 4 exp

(
−
[
(ϵ̃− pλn)

√
n− C1

C2

]2)
< 2e−

1
n ,

and then we have

Pr
(∣∣∣L̂n(µ, ξ)− L(µ, ξ)

∣∣∣ ≤ ϵ̃
)
> 1− 4 exp

(
−
[
(ϵ̃− pλn)

√
n− C1

C2

]2)
,

which completes the proof.

Lemma 2.5. For any δ ∈ (2e−n, 2e−1/n), we have

Pr

 sup
ξ∈{0,1}p
µ∈Hξ

∣∣∣L̃(SKKM)
n (µ, ξ)− L(µ, ξ)

∣∣∣ ≤ C1 + C2

√
log(4/δ)√
n

 > 1− δ,

where

C1 = 4k(2p+1 + 1)cU and C2 = (6
√
2 + 36cU)cU .

Proof. Since L̂n(µ, ξ) = L̃
(SKKM)
n (µ, ξ)+λn∥ξ∥0, by taking λn = 0 and using

the same proof of Lemma 2.4, we immediately complete the proof.

Lemma 2.6. Under Conditions 2.1-2.4, for ∇+
n (d0) defined in Eq.(2.16), we

have ∇+
n (d0) = OP (1/

√
n).

Proof. Recall that

(µ̃, ξ̃) = argmax
ξ∈{0,1}p,∥ξ∥0≤d0

µ∈Hξ
k

L̃(SKKM)
n (µ, ξ).
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At first, we note that

∇+
n (d0) ≤ max

∥ξ∥0>d0

{
L̃(SKKM)
n (µ̃ξ, ξ)− L̃(SKKM)

n (µ̃, ξ̃)
}
,

then, it suffices to prove: For any ξ ∈ {0, 1}p with ∥ξ∥0 > d0, the following
holds

L̃(SKKM)
n (µ̃ξ, ξ)− L̃(SKKM)

n (µ̃, ξ̃) = OP (1/
√
n). (2.30)

Next, we consider some fixed ξ ∈ {0, 1}p with ∥ξ∥0 = t, where t ∈
{d0 + 1, · · · , p}. Since

L̃(SKKM)
n (µ̃ξ, ξ)− L̃(SKKM)

n (µ̃, ξ̃)

= L̃(SKKM)
n (µ̃ξ, ξ)− L(µ∗∗, ξ∗∗)︸ ︷︷ ︸

(I)

+L(µ∗∗, ξ∗∗)− L̃(SKKM)
n (µ̃, ξ̃)︸ ︷︷ ︸

(II)

,

we will bound the two parts respectively. Because

(I) = L̃(SKKM)
n (µ̃ξ, ξ)− L(µ∗∗, ξ∗∗)

=
[
L̃(SKKM)
n (µ̃ξ, ξ)− L(µ̃ξ, ξ)

]
+
[
L(µ̃ξ, ξ)− L(µ∗∗, ξ∗∗)

]
≤ sup

η∈{0,1}p
ν∈Hη

k

∣∣∣L̃(SKKM)
n (ν,η)− L(ν,η)

∣∣∣+ 0,

and

(II) = L(µ∗∗, ξ∗∗)− L̃(SKKM)
n (µ̃, ξ̃)

=
[
L(µ∗∗, ξ∗∗)− L̃(SKKM)

n (µ∗∗, ξ∗∗)
]
+
[
L̃(SKKM)
n (µ∗∗, ξ∗∗)− L̃(SKKM)

n (µ̃, ξ̃)
]

≤ sup
η∈{0,1}p
ν∈Hη

k

∣∣∣L̃(SKKM)
n (ν,η)− L(ν,η)

∣∣∣+ 0,

then we have

L̃(SKKM)
n (µ̃ξ, ξ)− L̃(SKKM)

n (µ̃, ξ̃) ≤ 2 · sup
η∈{0,1}p
ν∈Hη

k

∣∣∣L̃(SKKM)
n (ν,η)− L(ν,η)

∣∣∣ .
Finally, by using Lemma 2.5, we have for any δ ∈ (2e−n, 2e−1/n), there

exist C1, C2 given in Lemma 2.5 such that

Pr

(∣∣∣L̃(SKKM)
n (µ̃ξ, ξ)− L̃(SKKM)

n (µ̃, ξ̃)
∣∣∣ ≤ 2C1 + 2C2

√
log(4/δ)√

n

)
> 1− δ,

which completes the proof.
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2.7.7 Supplementary for Remark 2.2

In Remark 2.2, we claim that when d is exactly the true value d0, or cho-
sen by an empirical value d̃n, the probability that the condition Eq. (2.11)
holds converges to 1 for any λn with lim

n→∞
λn = 0 and lim

n→∞
λn
√
n = ∞. We

here provide formal proofs for the two cases. Specifically, Proposition 2.3 is
for the case of d = d0, and the case of d = d̃n is the immediate result of
Proposition 2.4, which shows that d̃n converges in probability to d0.

Proposition 2.3. Let (µ̃, ξ̃) be the maximizer of Eq. (2.7) with constraint

∥ξ∥0 ≤ d0, and for a fixed ξ, we let µ̃ξ = argmax
µ∈Hξ

k

L̃
(SKKM)
n (µ, ξ), and

∇+
n (d0) = max

∥ξ∥0>d0

L̃
(SKKM)
n (µ̃ξ, ξ)− L̃(SKKM)

n (µ̃, ξ̃)

∥ξ∥0 − d0

∇−
n (d0) = min

∥ξ∥0<d0

L̃
(SKKM)
n (µ̃, ξ̃)− L̃(SKKM)

n (µ̃ξ, ξ)

d0 − ∥ξ∥0
.

Under Conditions 2.1-2.4, for any λn with lim
n→∞

λn = 0 and lim
n→∞

λn
√
n =∞,

the following holds:

lim
n→∞

Pr
(
∇+

n (d0) ≤ λn ≤ ∇−
n (d0)

)
= 1.

Proof. At first, we give the following facts about ∇+
n (d0) and ∇−

n (d0):

(i) ∇+
n (d0) = OP (1/

√
n);

(ii) There exists a positive constant q such that

lim
n→∞

Pr

(
∇−

n (d0) ≥
q

2d0

)
= 1.

Since (i) is given by Lemma 2.5, we only prove (ii). As a counterpart of

Q̃n(t), we define for any t = 1, . . . , p,

Q(t) = max
{
L(µ, ξ) | ξ ∈ {0, 1}p, ∥ξ∥0 ≤ t,µ ∈ Hξ

k

}
.

Then, by Condition 2.4, we have Q(d0 − 1) < Q(d0), and then we can define

q = Q(d0)−Q(d0 − 1) > 0. (2.31)
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To prove (ii), we note that for a fixed n ∈ N+,

∇−
n (d0) ≥

1

d0
· min
∥ξ∥0<d0

{
L̃(SKKM)
n (µ̃, ξ̃)− L̃(SKKM)

n (µ̃ξ, ξ)
}

=
1

d0
·
{
L̃(SKKM)
n (µ̃, ξ̃)− max

∥ξ∥0<d0
L̃(SKKM)
n (µ̃ξ, ξ)

}
=

1

d0
·
{
Q̃n(d0)−max

t<d0
Q̃n(t)

}
,

where the last equality is according to definitions Q̃n(t). Moreover, since

Q̃n(t) ≤ Q̃n(t+ 1) for any t = 1, . . . , p− 1, then we have

∇−
n (d0) ≥

1

d0
·
{
Q̃n(d0)− Q̃n(d0 − 1)

}
. (2.32)

Because

Q̃n(d0)− Q̃n(d0 − 1)

=
[
Q̃n(d0)−Q(d0)

]
+ [Q(d0)−Q(d0 − 1)] +

[
Q(d0 − 1)− Q̃n(d0 − 1)

]
=
[
Q̃n(d0)−Q(d0)

]
+ q +

[
Q(d0 − 1)− Q̃n(d0 − 1)

]
,

we turn to find lower bounds for the first and third terms, respectively. By
the definition of (µ∗∗, ξ∗∗) and writing (ν̃, η̃) to be

(ν̃, η̃) = argmax
∥ξ∥0≤d0−1, µ∈Hξ

k

L̃n(µ, ξ),

we have the followings hold:

Q̃n(d0)−Q(d0) = L̃n(µ̃, ξ̃)− max
∥ξ∥0≤d0, µ∈Hξ

k

L(µ, ξ) ≥ L̃n(µ
∗∗, ξ∗∗)− L(µ∗∗, ξ∗∗),

and

Q(d0 − 1)− Q̃n(d0 − 1) = max
∥ξ∥0≤d0−1, µ∈Hξ

k

L(µ, ξ)− L̃n(ν̃, η̃) ≥ L(ν̃, η̃)− L̃n(ν̃, η̃).

Then, by using Lemma 2.5, we have for any δ ∈ (2e−n, 2e−1/n), there exists
Mδ > 0 such that

Pr

(
L̃n(µ

∗∗, ξ∗∗)− L(µ∗∗, ξ∗∗) ≥ −Mδ√
n

)
> 1− δ

2

and Pr

(
L(ν̃, η̃)− L̃n(ν̃, η̃) ≥ −

Mδ√
n

)
> 1− δ

2
.
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It follows that

Pr

(
Q̃n(d0)−Q(d0) ≥ −

Mδ√
n

and Q(d0 − 1)− Q̃n(d0 − 1) ≥ −Mδ√
n

)
> 1− δ.

Then we have

Pr

(
Q̃n(d0)− Q̃n(d0 − 1) ≥ q − 2Mδ√

n

)
> 1− δ.

Consequently, for any δ ∈ (0, 1), we take N ∈ N+ satisfying 2e−N < δ <
2e−1/N and 2Mδ/

√
N < q/2, then for any n ≥ N , we have q−2Mδ/

√
n ≥ q/2,

which follows that

Pr
(
Q̃n(d0)− Q̃n(d0 − 1) ≥ q

2

)
> 1− δ.

Therefore, by combining Eq.(2.32), we complete the proof of (ii).
Second, based on the facts (i) and (ii), and the assumptions of λn, we

prove the final result. For any δ ∈ (0, 1), according to (i) and lim
n→∞

λn
√
n =

∞, we have there exists M ′
δ > 0 and N1 ∈ N+ such that for any n ≥ N1,

Pr

(
∇+

n (d0) ≤
M ′

δ√
n

)
> 1− δ

2
and λn >

M ′
δ√
n
,

which means

Pr
(
∇+

n (d0) ≤ λn
)
> 1− δ

2
.

According to (ii) and lim
n→∞

λn = 0, we have there exists N2 ∈ N+ such that

for any n ≥ N2,

Pr
(
∇−

n (d0) ≥
q

2d

)
> 1− δ

2
and λn <

q

2d
,

which means

Pr
(
∇−

n (d0) ≥ λn
)
> 1− δ

2
.

Therefore, for any n ≥ max{N1, N2}, we have

Pr
(
∇+

n (d0) > λn or ∇−
n (d0) < λn

)
≤ δ,

which means

Pr
(
∇+

n (d0) ≤ λn and ∇−
n (d0) ≥ λn

)
> 1− δ.

We complete the proof.
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Proposition 2.4. For d̃n defined by Eq.(2.12), that is,

d̃n = min{t ∈ {1, . . . , p} | Q̃n(t) > max
s=1,...,p

Q̃n(s)− γn},

where lim
n→∞

γn = 0 and lim
n→∞

γn
√
n =∞, under Conditions 2.1-2.4, we have

lim
n→∞

Pr
(
d̃n ̸= d0

)
= 0.

Proof. At first, we note that Q̃n(t) ≤ Q̃n(t+1) for any t = 1, . . . , p−1, which
implies that max

s=1,...,p
Q̃n(s) = Q̃n(p). We next turn to prove:

(i) lim
n→∞

Pr
(
d̃n > d0

)
= 0;

(ii) lim
n→∞

Pr
(
d̃n < d0

)
= 0.

(i) For any n ∈ N+, if d̃n > d0, then Q̃n(d0) ≤ max
s=1,...,p

Q̃n(s) − γn, which
means

Q̃n(p)− Q̃n(d0) ≥ γn.

According to the proof of Lemma 2.6, we have for any δ ∈ (0, 1), there exists
Mδ > 0 and N1 ∈ N+ satisfying 2e−N1 < δ < 2e−1/N1 , such that for any
n ≥ N1,

Pr

(
Q̃n(p)− Q̃n(d0) ≤

Mδ√
n

)
> 1− δ.

Moreover, because lim
n→∞

γn
√
n =∞, then there exists N2 ∈ N+ such that for

any n ≥ N2, we have γn > Mδ/
√
n. Consequently, for any n ≥ max{N1, N2},

we have

Pr
(
Q̃n(p)− Q̃n(d) < γn

)
> 1− δ.

It follows that

Pr
(
d̃n > d0

)
≤ Pr

(
Q̃n(p)− Q̃n(d0) ≥ γn

)
≤ δ,

which completes the proof of (i).

(ii) For any n ∈ N+, if d̃n < d0, then Q̃n(d̃n) ≤ Q̃n(d0). By the definition
of d̃n, we have

max
s=1,...,p

Q̃n(s) ≥ Q̃n(d0) ≥ Q̃n(d̃n) > max
s=1,...,p

Q̃n(s)− γn,
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which means that

0 ≤ Q̃n(d0)− Q̃n(d̃n) ≤ γn.

On the other hand, d̃n < d0 implies d̃n ≤ d0−1, which follows that Q̃n(d̃n) ≤
Q̃n(d0 − 1). Then we have

0 ≤ Q̃n(d0)− Q̃n(d0 − 1) ≤ Q̃n(d0)− Q̃n(d̃n) ≤ γn.

According to the proof of Proposition 2.3 (the claim (ii)), we have for any
δ ∈ (0, 1), there exists N1 ∈ N+ such that for any n ≥ N1,

Pr
(
Q̃n(d0)− Q̃n(d0 − 1) ≥ q

2

)
> 1− δ.

Moreover, because lim
n→∞

γn = 0, then there exists N2 ∈ N+, such that for any

n ≥ N2, we have γn < q/2. Consequently, for any n ≥ max{N1, N2}, we
have

Pr
(
Q̃n(d0)− Q̃n(d0 − 1) > γn

)
> 1− δ.

It follows that

Pr
(
d̃n < d0

)
≤ Pr

(
Q̃n(d0)− Q̃n(d0 − 1) ≤ γn

)
≤ δ,

which completes the proof of (ii).
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Regularized k-POD clustering

3.1 Background

In this chapter, we focus on the situation when the data matrix is incomplete
and includes missingness. The problem of missing data is ubiquitous in real-
world applications for imperfect data collection processes. However, the issue
of clustering for missing data, especially the k-means clustering for missing
data receives far less attention. This problem occurs in many fields like
astronomy (Wagstaff 2004, Almeida & Prieto 2013, Lithio & Maitra 2018),
biology and medical science (Kiselev et al. 2017, Kim et al. 2019, Qi et al.
2020), where researchers need to divide plenty of astronomy signal or cells
of patients into different groups, while the obtained original data is often
incomplete or contaminated.

The main challenge is that the classical k-means clustering requires the
data matrix to be complete, and thus directly conducting it on an incom-
plete data matrix is infeasible. The traditional approach is to pre-process
the incomplete data matrix by complete-case analysis or multiple imputa-
tion to construct a new complete data matrix for conducting k-means clus-
tering (Little & Rubin 2019). The complete-case analysis deletes all data
points including missingness, which is also called the whole-data strategy in
Hathaway & Bezdek (2001). If the missingness of each entry is completely
at random, it is equivalent to conducting k-means clustering on a smaller
dataset. However, when the missing proportion is large or the data dimen-
sion is high, there are few or even no such complete data points, and the
complete-case analysis is no longer applicable in practice. Multiple imputa-
tion, such as mice (Van Buuren & Groothuis-Oudshoorn 2011) and Amelia
(Honaker et al. 2011), predicts the missing entries of every data point based
on its observed entries. It is equivalent to conducting k-means clustering
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on an approximated dataset. However, it relies on reasonable assumptions
of data distributions and missingness mechanisms, which are of critical im-
portance for accurate imputation (See Le Morvan et al. (2021) and Audigier
& Niang (2023) for more discussion), and the computation cost is relatively
high, especially for high-dimensional data. It should be noted that these
pre-process steps are not only specific for the k-means clustering.

Alternatively, the k-POD clustering proposed by Chi et al. (2016) is a nat-
ural extension for k-means clustering to missing data and can be applicable
for even large missingness proportions and high-dimensional data. However,
the estimated cluster centers by k-POD clustering are generally biased, es-
pecially due to the existence of noise features in the high-dimensional space.
This makes the corresponding clustering results unreliable. Therefore, our
purpose in this chapter is to improve this method so that we can reduce the
bias of estimated cluster centers and improve the performance of clustering.

3.1.1 Preliminaries for k-POD clustering

We first give some notations1. Write X = (xij)n×p ∈ Rn×p for the data matrix
with n data points X1, . . . , Xn in Rp. Through this chapter, we encode the
k cluster centers {µ1, . . . , µk} by a matrix M = (µlj)k×p ∈ Rk×p, where the
l-th row Ml represents the l-th cluster center µl. The membership between
data points and cluster centers is denoted by a binary matrix U = (uil)n×k ∈
{0, 1}n×k, where uil = 1 if and only if i-th data point Xi is assigned to l-th
cluster. Since one data point is assigned to a unique cluster, it must satisfy
that U1k = 1n, where 1 is the all-one vector. For a complete data matrix X,
the k-means clustering can be expressed as

min
U,M
∥X− UM∥2F , (3.1)

where ∥ · ∥F is the Frobenius norm of a matrix, calculated as (
∑

i,j a
2
ij)

1/2

for A = (aij). If there exist missing entries in X, the loss function cannot
be directly calculated. Denoting all observed positions in X by a set Ω ⊂
{1, . . . , n} × {1, . . . , p}, the k-POD clustering introduces a mapping P onto
the set Ω to replace the missing entries with zero. That is, PΩ : Rn×p → Rn×p,
and (PΩ(X))ij = xij if (i, j) ∈ Ω, 0 otherwise. Then, the k-POD clustering
is given by

min
U,M
∥PΩ(X− UM)∥2F . (3.2)

1Through this chapter, we use ∥x∥ to express l2 norm of x ∈ Rp.
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The optimization procedure consists of filling in missing entries by the corre-
sponding cluster means and conducting k-means clustering on the new data
matrix alternatively. It should be noted that Wang et al. (2019) indepen-
dently proposed the following:

min
Y,U,M

∥Y − UM∥2F such that Y ∈ Rn×p : PΩ(Y) = PΩ(X). (3.3)

Since the optimal solution of Eq. (3.3) should satisfy PΩc(Y) = PΩc(UM),
where Ωc is the complement of Ω, it is actually identical to the solution
of Eq. (3.2). Moreover, Lithio & Maitra (2018) proposed a variant of k-
POD clustering, which substitutes the Lloyd’s algorithm (Lloyd 1982) used
in (Chi et al. 2016) by the Hartigan-Wong algorithm (Hartigan &Wong 1979)
and shows comparable performance. Aschenbruck et al. (2023) proposed an
adaptation of k-POD clustering based on substituting the k-means clustering
to its extension k-prototypes algorithm, which is suitable for mixed type data
with missingness.

However, the k-POD clustering is not consistent even under the missing
completely at random mechanism (Terada & Guan 2024). The estimated
cluster centers of the k-POD clustering and k-means clustering converge to
different solutions as n → ∞. The direct reason for the bias simply comes
from the difference between loss functions of k-means and k-POD. Specifi-
cally, all positions of X are used by k-means, while only observed positions,
i.e., (i, j) ∈ Ω, are included by k-POD, and thus in general, one can hardly
expect the same solutions based on these two different loss functions. We
give two examples to illustrate this problem.

Example 3.1 (p = 2). Suppose that the original complete data points (grey
dots in Figure 3.1, n = 104) are generated from a Gaussian mixture model in
R2 with two equal components centered at (0, 2) and (0,−2). When there is
no missingness, the k-means clustering gives estimated cluster centers (black
cross in left panel) being almost (0, 2) and (0,−2). However, if all xij are
missing completely at random with the missing probability being 2/3 for xi1
and 1/3 for xi2 and thus about 30% entries are missing, then the k-POD
clustering on the incomplete data matrix gives estimated cluster centers (red
triangles in central penal) by around (0.7, 2) and (−0.7,−2), which are biased
to the result of k-means clustering. Moreover, the resulting cluster boundary
of k-POD clustering (red dotted line) is also skewed, compared with that
of k-means clustering, which means a biased partition of the data space in
the sense that even if a new data point is complete, it could be incorrectly
classified.

In Example 3.1, the bias of k-POD estimator occurs in the feature of the
horizontal axis. It is actually a noise feature because there is no difference
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Figure 3.1: The estimated cluster centers of different methods for Exam-
ple 3.1. The two axes represent two dimensions of data space. The grey dots
are original complete data points. Colored points are estimated cluster cen-
ters. Lines are cluster boundaries associated with estimated cluster centers.

between the true cluster centers in this feature. This phenomenon also exists
for the high-dimensional data, where it is common that only a few features
are relevant to the true cluster structure and others are noise features.

Example 3.2 (p = 100). Consider the case of p = 100 with only the first
two features being relevant to the true cluster structure. Suppose that the
original complete data points generated from a Gaussian mixture model in
R100 with four equal components centered at (2, 2, 0, . . . , 0), (2,−2, 0, . . . , 0),
(−2, 2, 0, . . . , 0) and (−2,−2, 0, . . . , 0). Assume that each xij is missing com-
pletely at random with the missing probability being 0.3. We illustrate the l2
norm of estimated cluster centers in each features of different methods (i.e.,
the norm of j-th column of M denoted by ∥M(j)∥) in Figure 3.2 (top pan-
els), and show the corresponding clustering results of different methods in
Figure 3.2 (bottom panels), where only the first two features are used to illus-
trate data points. It can be seen that the k-POD estimators in noise features
are significantly biased to zero, even though the k-means estimators (con-
ducting on the no-missing data) are almost true. Moreover, the estimators
in the first two features are also biased in this example. Therefore, the bias of
estimated cluster centers of k-POD makes the corresponding clustering result
almost fail.

3.1.2 Our contribution

In this chapter, we propose regularized k-POD clustering for high-dimensional
missing data. Specifically, we introduce a regularization function of cluster
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Figure 3.2: The results of Example 3.2. Top panels: The l2 norm of esti-
mated cluster centers in each features, i.e., ∥M(j)∥ of different methods. The
horizontal axis represents the index of feature j and the vertical axis is the
estimated value of ∥M(j)∥ (j = 1, . . . , p). Bottom panels: The clustering
results of different methods. The two axes are the first two features. The
color of each point represents the estimated cluster it is assigned to.
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centers to the loss of k-POD clustering, which shrinks cluster centers feature-
wisely. This offers a significant advantage of reducing the bias of estimated
cluster centers, in the case when noise features exist that have no contri-
bution to the true cluster structure, which is common in high-dimensional
space.

For the above two examples, since the bias of k-POD clustering occurs in
the noise features, the shrinkage of estimated cluster centers in these features
helps to reduce the bias. Specifically, for Example 3.1, the right panel of
Figure 3.1 shows the result of the proposed method, where the estimated
cluster centers (green circles) are closer to the result of k-means clustering
(black cross in left panel) and the corresponding cluster boundary (green
dashed line) is less skewed thus implies more reliable partition of data space.
For Example 3.2, the right column of Figure 3.2 shows the result of the
proposed method, where the estimated cluster centers are almost zero in
noise features and are close to the true values in relevant features, and the
corresponding clustering result is also more reliable.

In addition, we propose an optimization algorithm for the regularized k-
POD clustering based on the majorization-minimization algorithm, which is
an iteration between an imputation step and a clustering step. The experi-
ments on synthetic datasets verify the reduction of bias and improvement of
performance on clustering, and applications on real-world high-dimensional
datasets also show better performance of the proposed method.

3.2 Proposed method

Suppose that the data matrix X = (xij)n×p is column-wised centered, that
is, 1

n

∑n
i=1 xij = 0 for all j = 1, . . . , p. The j-th column of X is denoted by

X(j) ∈ Rn (j = 1, . . . , p). The set of observed positions of X is denoted by Ω.
Suppose that the number of clusters k ≥ 2 is fixed.

We define the loss function of regularized k-POD clustering with respect
to membership U ∈ {0, 1}n×k, U1k = 1n, and cluster centers M ∈ Rk×p to be

L̂n(U,M) = ∥PΩ(X− UM)∥2F + λ · J(M). (3.4)

The first term is the loss of the k-POD clustering, and J(M) is a regular-
ization function with respect to M. To shrink the estimated cluster centers
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feature-wisely, we consider two types of J(M):

The l0 penalty : J0(M) =

p∑
j=1

1(∥M(j)∥ > 0)

The group lasso penalty : J1(M) =

p∑
j=1

wj∥M(j)∥,

where M(j) = (µ1j, . . . , µkj)
T denotes the j-th column of cluster centers M

with µlj being the j-th component of the l-th cluster center (l = 1, . . . , k).
The function 1(·) is the indicator function and wj is the weight for M(j). Both
types of J(·) are column-wised, which means that all elements of M(j), that
is {µ1j, . . . , µkj} would be shrunk together. The l0 type J0(·) constrains the
number of non-zero columns of M, while the group lasso type J1(·) constrains
the weighted sum of l2 norms of M in each feature. Therefore, with suitable
regularization parameter λ, the estimated cluster centers M̂ would be sparse
in columns. The sparsity is further analyzed in Section 3.4.

In addition, the group lasso type contains weights. We note that in the
framework of group lasso regression, a common choice for wj is based on the
square root of the size of j-th group (Yuan & Lin 2006, Yang & Zou 2015),
which means a uniform weight wj =

√
k in our case. However, as in the

above examples, the bias of the k-POD estimator in each feature is different,
which implies that the adaptive weights are more reasonable. Specifically, in
this paper, we consider the weights based on the k-POD estimator M̃, that
is, wj = 1/∥M̃(j)∥. If the estimated cluster centers of the k-POD clustering
in a feature are relatively concentrated, the corresponding weight would be
relatively large, which makes the group lasso estimator in the corresponding
feature more likely to be zero.

It should be noted that when the data matrix X is complete and Ω =
{1, . . . , n}×{1, . . . , p}, the loss of the proposed method is equivalent to that
of the regularized k-means clustering (Sun et al. 2012, Raymaekers & Zamar
2022). Therefore, the proposed method can also be viewed as an extension
of the regularized k-means clustering to missing data.

3.3 Optimization

3.3.1 Algorithms

We apply the majorization-minimization algorithm (MM algorithm) (Hunter
& Lange 2004) to minimize the proposed loss function Eq. (3.4). The MM
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algorithm constructs a majorization function g(θ | θ(t)) for the original objec-
tive function L(θ) at the current value θ(t), t ∈ N. The majorization means
that the domination condition g(θ | θ(t)) ≥ L(θ) and the tangency condi-
tion g(θ(t) | θ(t)) = L(θ(t)) are satisfied. Then update θ(t+1) by minimizing
g(θ | θ(t)) instead of L(θ), which also guarantees L(θ(t+1)) ≤ L(θ(t)).

Our goal is to minimize L̂n(U,M) of Eq. (3.4) with respect to (U,M). We
define the following function at current value (U(t),M(t)), t ∈ N:

g(U,M | U(t),M(t)) = ∥PΩ(X− UM)∥2F + λ · J(M) + ∥PΩc(UM− U(t)M(t))∥2F ,

where Ωc is the complement set of Ω. Because of the non-negativity of ∥ · ∥2F ,
the function g(U,M | U(t),M(t)) is a majorization function of L̂n(U,M) in the
sense that

g(U,M | U(t),M(t)) ≥ L̂n(U,M) (domination condition)

g(U(t),M(t) | U(t),M(t)) = L̂n(U
(t),M(t)) (tangency condition)

are both satisfied. If we use the notation X̂ = PΩ(X) + PΩc(U(t)M(t)), then

we have g(U,M | U(t),M(t)) = ∥X̂ − UM∥2F + λ · J(M). Notice that the

matrix X̂ is complete, then g(U,M | U(t),M(t)) is actually the loss function

of regularized k-means clustering on the data matrix X̂. We then minimize
the majorization function g(U,M | U(t),M(t)) to update (U(t+1),M(t+1)).

Therefore, we propose Algorithm 3.1 for regularized k-POD clustering.
Specifically, given current U(t) and M(t), t ∈ N, the (t+1)-th iteration consists
of two steps. Step 1 imputes missing entries of X by the corresponding entries
of multiplication matrix of current U(t) and M(t), so that we can get a new
complete data matrix X̂(t+1). Step 2 updates U(t+1) and M(t+1) by applying
regularized k-means clustering on the imputed data matrix X̂(t+1), the details
of which is discussed later. Repeat the iteration until the loss (Eq. (3.4))
converges. Note that Algorithm 3.1 is a general framework for any type of
J(·), and the difference in results comes from Step 2.

The convergence of Algorithm 3.1 to a local minima is guaranteed by the
downhill trend

L̂n(U
(t+1),M(t+1)) ≤ L̂n(U

(t),M(t))

for any t ∈ N. This is the immediate consequence of the domination condi-
tion, tangency condition, and the definition of (U(t+1),M(t+1)), which implies
that

g(U(t+1),M(t+1) | U(t),M(t)) ≤ g(U(t),M(t) | U(t),M(t)).
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Algorithm 3.1 Regularized k-POD clustering

Input: incomplete data matrix X, set of observed positions Ω, number of
clusters k.
Parameters: regularization parameter λ, weights {wj}
Initialize U(0) and M(0)

while Loss function (3.4) does not converge do

1: Impute X̂(t+1) = PΩ(X) + PΩc(U(t)M(t))

2: Update U(t+1) and M(t+1) by applying Algorithm 3.2 on X̂(t+1)

end while

Output: U(t+1) and M(t+1)

According to our numerical experiments, the necessary number of iterations
to convergence of the proposed method is generally comparable with that of
the k-POD clustering.

Next, we introduce more details of Step 2 of Algorithm 3.1, where we
apply regularized k-means clustering on imputed data matrix X̂(t+1). For the
simplification of notations, we here omit the superscript (t + 1) and focus

on the general imputed complete data matrix X̂. The goal of Step 2 of
Algorithm 3.1 is to solve

min
U,M
∥X̂− UM∥2F + λ · J(M), (3.5)

with respect to U ∈ {0, 1}n×k, U1k = 1n and M ∈ Rk×p. Since it is not
necessarily convex, an alternatively iterative procedure similar to Lloyd’s
algorithm (Lloyd 1982) for classical k-means clustering can be used. There-
fore, we propose Algorithm 3.2 for this problem, which updates U and M
separately. Specifically, given current M(r), r ∈ N, the membership U(r+1) is
determined by the distance between data points Xi and cluster centers M

(r)
l ,

that is, u
(r+1)
il∗ = 1 if l∗ = argmin1≤l≤k ∥X̂i−M

(r)
l ∥2, 0 otherwise. Then, given

U(r+1), updating M(r+1) depends on the types of J(·).
For J = J0, the l0 type, applying the KKT condition immediately leads

to an explicit solution given by Eq. (3.8) that is a truncated version of the
cluster means associated with current membership U(r+1). For J = J1, the
group lasso type, since it is hard to derive an explicit expression, we apply the
MM algorithm again to get M(r+1). Denote by f(M) the objective function
in Eq. (3.5) with U = U(r+1) fixed and J = J1, that is,

f(M) = ∥X̂− U(r+1)M∥2F + λ

p∑
j=1

wj∥M(j)∥. (3.6)
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At current M(r), we define the following function:

h(M | M(r)) = ∥X̂− U(r+1)M∥2F + λ

p∑
j=1

wj

(
∥M(j)∥2

2∥M(r)
(j)∥

+
1

2
∥M(r)

(j)∥

)
. (3.7)

It can be proved that h(M | M(r)) is a majorization of f(M) at M(r). More-
over, the solution of minimizing h(M | M(r)) is explicit and given by Eq.
(3.9), which can be viewed as a ridge version of the cluster means associated
with the given membership U(r+1). We thus use this solution as the update
M(r+1).

Algorithm 3.2 Regularized k-means clustering

Input: complete data matrix X̂, number of clusters k.
Parameters: regularization parameter λ, weights {wj}
Initialize M(0)

while Loss function (3.5) does not converge do
a: Given M(r), update U(r+1) by: for any i = 1, . . . , n

u
(r+1)
il∗ =

{
1 if l∗ = argmin1≤l≤k ∥X̂i −M

(r)
l ∥2

0 else

b: Given U(r+1), update M(r+1) by: for any j = 1, . . . , p

(J = J0) M
(r+1)
(j) =

{
V(j) if ∥X̂(j)∥2 > ∥X̂(j) − U(r+1)V(j)∥2 + nλ
0 else

(3.8)

where V(j) =
(
U(r+1),TU(r+1)

)−1
U(r+1),T X̂(j)

(J = J1) M
(r+1)
(j) =

(
U(r+1),TU(r+1) +

λwj

2∥M(r)
(j)∥
· Ik

)−1

U(r+1),T X̂(j) (3.9)

end while

Output: U(r+1) and M(r+1)

We give the following remarks for the update of M(r+1) when J = J1 and
leave the technical details of Algorithm 3.2 in Section B.1 of Appendix B.

Remark 3.1. The standard way to get M(r+1) by MM algorithm is to do an-
other iteration, that is, minimize h(M | M(rs)) on a sequence {M(r0),M(r1), . . . ,M(rs)}
about s ∈ N until convergence, which largely increases the computational cost.
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However, the multiple iteration for s is not necessary, since an update M(r+1)

that reduces f(M) is enough. Therefore, we can directly define h(M | M(r))
based on current M(r), and take the solution of minimizing h(M | M(r)) to
be the update M(r+1). The optimality as well as majorization immediately
implies f(M(r+1)) ≤ f(M(r)). In this way, we can decrease the number of
embedded loops and speed up the whole algorithm.

Remark 3.2. The minimization problem for f(M) can be viewed as a group

lasso regression of X̂ on U(r+1). Some existing literature that also considers
MM algorithm uses the majorization based on a quadratic upper bound of
∥X̂− U(r+1)M∥2F (e.g.: Yang & Zou (2015)). Instead, we here use the upper
bound of the penalty term λ

∑p
j=1wj∥M(j)∥ based on the basic inequality.

According to comparisons provided in Appendix B, the performance of these
two methods is quite similar. Refer to Section B.1.3 of Appendix B for more
details.

Finally, we analyze the computation complexity of the proposed algo-
rithm. In Step 1 of Algorithm 3.1, imputing missing entries requires a com-
plexity of O(nkp+ np(1− q)), where q is the proportion of observed entries.
In Step 2, updating U and M has the same complexity as the classical k-
means clustering, i.e., O(nkpτ), where τ is the total number of iterations in
Algorithm 3.2. Therefore, the asymptotic complexity of each iteration of the
proposed algorithm is nearly O(nkpτ).

3.3.2 Initialization

Although the proposed algorithm has the guarantee to converge to some
local minima, the multiple initialization should be considered, since the loss
function of the proposed method is not necessarily convex with respect to
U and M. In this paper, we consider two strategies to generate random
initialization of (U(0),M(0)).

The first strategy is based on the complete cases, which is referred to as
comp. Specifically, we apply k-means++ clustering (Arthur & Vassilvitskii
2007) on the submatrix of X that only includes complete rows to obtain
initial cluster centers M(0). Then, the initial membership U(0) is based on
the Euclidean distances between data points and initial cluster centers. It
should be noted that only the observed features are used to calculate the
distance.

The second strategy is based on imputation, which is referred to as impt.
Specifically, we pre-impute the incomplete data matrix X by column-wised
sample means without considering missing entries. Then, we randomly sam-
ple k rows from the pre-imputed data matrix as the initial cluster centers
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M(0). The initial membership U(0) is based on the Euclidean distances be-
tween data points and initial cluster centers. It should be noted that if there
are duplicated rows in M(0), some small noise is added to it to ensure k unique
cluster centers.

Remark 3.3. The two strategies use unique k random points to be initial k
cluster centers and initialize membership based on them. According to our ex-
periments, the empirical choice for the number of initialization is at least 100
to get more stable results. In the case of high-dimension or a large proportion
of missingness, to reduce the computation cost, the sparse initialization (Ray-
maekers & Zamar 2022) can be used as an alternative. For example, based
on the estimator by k-POD clustering, we can get several sparse submatrices
of it by remaining columns with leading l1 norms and letting others be zero,
and then use these sparse submatrices to be initial cluster centers. Refer to
Section B.3.2 of Appendix B for more details.

3.3.3 Selection of tuning parameters

To select the tuning parameter, that is, the regularization parameter λ, we
consider two kinds of criteria.

The first criterion is the instability of clustering (Wang 2010), which can
be viewed as the cross-validation in the field of clustering. The main idea is
that a good value for the tuning parameter should yield a stable clustering
in response to minor disruption to the sample. The instability of a clustering
algorithm ψ with tuning parameter λ is defined as

s(ψ;λ) = E [D (ψ(X′;λ),ψ(X′′;λ))] ,

where X′ and X′′ are two independent samples from the same distribution,
and ψ(X′;λ) and ψ(X′′;λ) are two clustering trained on X′ and X′′, respec-
tively. The notation D(·, ·) is the distance between two clusterings, which is
given by the probability of the disagreement between them, that is,

D(ψ1, ψ2) = P
[
1(ψ1(X) = ψ1(X̃)) + 1(ψ2(X) = ψ2(X̃)) = 1

]
,

where X and X̃ are two random variables independently sampled from the
same distribution, ψ1 and ψ2 are two clusterings, and ψ(x) indicates the
cluster that x is assigned to.

In our case, the ψ is our clustering method that is based on cluster
centers M, and by using the sample X′ (or X′′) and tuning parameter λ,

the ψ(X′;λ) (or ψ(X′′;λ)) is the estimated cluster centers M̂′ (or M̂′′). The
ψ1 (or ψ2) is the predicted cluster labels for some new data points based
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on M̂′ (or M̂′′). The D(ψ1, ψ2) is usually calculated by the disagreement of
the two results of prediction. Specifically, for a given λ, the instability s(λ)
is calculated by repeating the following steps for B times, where the b-th
repetition (b = 1, . . . , B) consists of:

Step 1 Randomly divide the original sample X with sample size n into three
subsets X′,X′′, X̃, where X′ and X′′ have m data points, and X̃ has
n− 2m data points;

Step 2 Conduct the proposed clustering method with λ on X′ and X′′ to obtain
two estimators of cluster centers M̂′ and M̂′′, respectively;

Step 3 Predict cluster labels for data points in X̃, based on M̂′ and M̂′′, re-
spectively, and denote the two prediction results by ψ1 and ψ2;

Step 4 Calculate the disagreement between two prediction results D(ψ1, ψ2)
and denote it by Db.

Finally, the instability is given by s(λ) = 1
B

∑B
b=1Db. In addition, when the

sample size n is small, the random division would make training sets too
small. The bootstrap sampling can be an alternative to generate training
and validation sets (Fang & Wang 2012).

The second criterion is the BIC index. Inspired by Raymaekers & Zamar
(2022), Hofmeyr (2020), we use the following formulation:

BIC(λ) = ∥PΩ(X− ÛM̂)∥2F + log(n) · k · d, (3.10)

where Û and M̂ are estimators based on λ and d =
∑p

j=1 1(∥M̂(j)∥ > 0) is the
number of non-zero columns. The first term corresponds to the log-likelihood
according to Fraley & Raftery (2002), while the second term is the degree of
freedom, for which we use the number of independent parameters kd since
the membership can be determined by cluster centers. We leave the technical
details of derivation in Section B.2 of Appendix B.

For a set of values for λ, we select the best one with the smallest instability
or BIC.

3.4 Theoretical properties

In this section, we further analyze some properties of the proposed method.
We first introduce a binary matrix R = (rij)n×p ∈ {0, 1}n×p to indicate
whether (i, j)-th entry is observed, that is, rij = 1 if (i, j) is observed, 0
otherwise. Then the incomplete data matrix can be expressed by X ◦ R,
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where ◦ is the entry-wised multiplication. It is actually equivalent to the
notation PΩ(X) of Eq. (3.4), because both of them substitute missingness by
0. The same as before that Ml denotes the l-th row of matrix M, we write
Ri for the i-th row of matrix R. Recall that the i-th data point Xi is also
the i-th row of data matrix X. Then the loss function of regularized k-POD
clustering can be rewritten as

L̂n(M) =
n∑

i=1

min
l=1,...,k

∥Xi ◦ Ri −Ml ◦ Ri∥2 + λ · J(M). (3.11)

We note that this expression regards the loss as a function only with respect
to M.

Write M̂ for the minimizer of Eq. (3.11). Then, we can define the corre-
sponding partition of the sample {X1, . . . , Xn} in the following way. We first
define a subset of the sample by

Sl = {Xi | ∥Xi ◦ Ri − M̂l ◦ Ri∥ ≤ ∥Xi ◦ Ri − M̂l′ ◦ Ri∥,∀l′ ̸= l}.

Since it is possible that Sl ∩ Sl′ ̸= ∅ for some l, l′ ∈ {1, . . . , k}, then
{S1, . . . , Sk} is not a partition of {Xi}ni=1. We instead define a sequence
of subsets

Ĉl = Sl \

(⋃
l′<l

Sl′

)
.

Then Ĉ = {Ĉ1, . . . , Ĉk} forms a partition of the sample {X1, . . . , Xn}. Asso-
ciated with Ĉ, we define the corresponding membership matrix Û by

ûil = 1(Xi ∈ Ĉl), ∀i = 1, . . . , n, l = 1, . . . , k.

Write q̂j for the proportion of observed entries in the j-th feature, and
write M̄(j) = (µ̄1j, . . . , µ̄kj)

T and σ̄2
j for the sample mean and variance in the

j-th feature ignoring missing entries, that is,

q̂j =
1

n

n∑
i=1

rij µ̄lj =
1∑n

i=1 ûilrij

n∑
i=1

ûilrijxij σ̄2
j =

1∑n
i=1 rij

n∑
i=1

rijx
2
ij.

Moreover, define the within-cluster sum-of-square associated with Ĉ in the
j-th feature to be

WCSSj(Ĉ) =
1

n

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl)rij(xij − µ̄lj)
2.
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Let Q̂j be the minimal value of the function Qj with respect to M(j), which
is given by

Qj(M(j)) =
1

n

n∑
i=1

min
l=1,...,k

rij(xij − µlj)
2.

The following proposition shows the sparsity of the estimated cluster centers
M̂ with different types of J(·), the proof of which is provided in Section 3.7.

Proposition 3.1. (a) For J(·) = J0(·), if

q̂jσ̄
2
j −WCSSj(Ĉ) ≤

λ

n
,

then M̂(j) = (0, 0, . . . , 0)T . Otherwise, M̂(j) ̸= (0, 0, . . . , 0)T and has the l-th
component µ̂lj, l = 1, . . . , k, satisfying:

µ̂lj = µ̄lj.

(b) For J(·) = J1(·) with weights {wj}pj=1, if√
q̂jσ̄2

j − Q̂j <
λwj

2n
,

then M̂(j) = (0, 0, . . . , 0)T . Otherwise, M̂(j) ̸= (0, 0, . . . , 0)T and has the l-th
component µ̂lj, l = 1, . . . , k, satisfying:

µ̂lj =

(
1 +

λwj

2 · ∥M̂(j)∥ ·
∑n

i=1 ûilrij

)−1

· µ̄lj.

Remark 3.4. For J = J0, those features in which the gap between total
variance and WCSS is larger than a uniform threshold would be selected, and
cluster centers in selected features are equal to the sample means. For J = J1,
the sparsity of cluster centers is determined by the weights, and cluster centers
in selected features are a shrunk version of the sample means. Moreover, if
there is no missing, this result coincides with that of regularized k-means
clustering derived by Raymaekers & Zamar (2022) and Levrard (2018).

3.5 Experiments

In this section, we empirically evaluate the performance of the proposed
method. The incomplete datasets used in this section are constructed by ar-
tificially setting missing on original complete datasets. The structure of this
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section is as follows: (a) We describe the experimental setup in Section 3.5.1,
including the generation of original complete data and the missingness mech-
anisms. (b) Focusing on the proposed method, we compare the effects of
different strategies of initialization in Section 3.5.2. (c) We compare the ef-
fects of different criteria on the tuning parameter in Section 3.5.3. (d) The
comparisons with other methods are summarized in Section 3.5.4.

3.5.1 Experimental setup

Complete data

For the original complete datasets, we consider synthetic datasets on which
the k-means clustering performs well in the absence of missing data. The
Gaussian mixture model of k components with equal weight 1

k
and the same

diagonal covariance matrix Σ is used, where the mean vector of l-th compo-
nent is denoted by µl ∈ Rp, l = 1, . . . , k. Specifically, the synthetic complete
data points Xi ∈ Rp, i = 1, . . . , n, are generated as follows. For each i, we
first uniformly sample zi from {1, . . . , k} as the true cluster label. Then Xi

is generated from a Gaussian distribution N (µl,Σ) if zi = l.
Through this section, we fix the sample size n = 3000 and the number of

clusters k = 4, and the following µl’s are used:
µT
1

µT
2

µT
3

µT
4

 =


a1T

d/2 a1T
d/2 0T

p−d

a1T
d/2 −a1T

d/2 0T
p−d

−a1T
d/2 a1T

d/2 0T
p−d

−a1T
d/2 −a1T

d/2 0T
p−d

 .

Since each µl consists of d informative values and p− d zeros and the covari-
ance matrix is diagonal, for complete data matrix X, the first d features are
relevant to cluster structure, while the other p−d features are noise features.
To make most peer methods applicable for comparison, through this section,
we consider two cases of features:

• p = 10 and d = 2, where a = 2 and Σ = diag(1, 1, 4, . . . , 4)

• p = 100 and d = 10, where a = 1 or a = 0.8 and Σ = diag(1, . . . , 1, 2, . . . , 2).

Missingness mechanism

The mechanism of missingness is the cause of the missing values. There are
three main types: missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR) (Little & Rubin 2019). The
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MCAR requires that the missingness of X is independent with X itself, and
the MAR requires that the missingness is only dependent on the observed
part of X. Otherwise, it is called MNAR. To match different missingness
mechanisms, through this section, we consider four types of procedures for
generating missingness and leave more details of settings in Section B.3.1 of
Appendix B.

• MCAR: The missing probability is set to be a constant. For any i =
1, . . . , n and j = 1, . . . , p,

P(xij is missing) = τ.

Different τ is to meet the total proportion of missingness from 10% to
50%.

• MAR: We fix the first column of X to be observed and the missingness
of the other p − 1 columns is dependent on the first column. For any
i = 1, . . . , n and j = 2, . . . , p,

P(xij is missing) =
1

1 + exp(−ψ1(xi1 − ψ2))
.

Different (ψ1, ψ2) are selected to meet the total proportion of missing-
ness from 10% to 30%.

• MNAR1 (Self-masked (Sportisse et al. 2020)): The missing probability
is determined by the value of the data itself. For any i = 1, . . . , n and
j = 1, . . . , p,

P(xij is missing) =
1

1 + exp(−ϕ1(xij − ϕ2))
.

Different (ϕ1, ϕ2) are selected to meet the total proportion of missing-
ness from 10% to 30%.

• MNAR2 (Chi et al. 2016): In each column of X, entries in the bottom
10%, 20% and 30% quantiles are set to be missing.

Evaluation indexes

Since we focus on the estimation of cluster centers, we use the mean-squared
error (MSE) of the estimated cluster centers as the main index for evaluation.
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Specifically, denote M̂ to be the estimated cluster centers, and M∗ to be the
underlying true cluster centers. The MSE is defined as

MSE(M̂,M∗) =
k∑

l=1

min
l′=1,...,k

∥M̂l −M∗
l′∥2.

Since for the k-means clustering, M∗ is defined by the minimizer of the loss
function in the population level, it is often unknown. However, based on the
consistency of the k-means clustering, we can substitute it with the estimator
under a sufficiently large sample size. That is, we generate a complete dataset
with sample size N = 105 following the same distribution as the original
complete data, and apply the k-means clustering on it. The output cluster
centers would be used as the substitute of M∗.

Moreover, to compare the performance of clustering, we use the classifi-
cation error rate (CER) as the index for evaluation. Specifically, denote Û
to be the estimated membership matrix, of which the associated partition
of data points is denoted by Ĉ. Denote C∗ to be the true partition of data
points. The CER is defined as

CER(Ĉ, C∗) = 1(
n
2

)∑
i>i′

∣∣1Ĉ(i,i′) − 1C∗(i,i′)

∣∣,
where 1C(i,i′) = 1 if the i-th and i′-th data points are assigned to the same
cluster according to the partition C, 0 otherwise.

In addition, we further compare the influence of the estimated cluster
centers on predicting the partition of a validation dataset. Specifically, we
generate a validation dataset that is complete with sample size n0 = 400 and
follows the sample distribution as the original complete data, and calculate
the partition of it based on the estimated cluster centers. We use the classifi-
cation error rate of the predictive partition to the true partition as the index
for evaluation, and we call it predictive CER for short.

3.5.2 Effects of different initialization strategies

For both the k-POD clustering and the proposed method, we consider two
strategies for random initialization. One is based on complete data points
(comp for short), while another is based on imputation (impt for short).
Table 3.1 illustrates the averaged values of MSE (with standard deviation
in bracket) of different methods using different initialization strategies. Here
we only use the case of p = 10, since for p = 100, there is no complete
data point left. It can be seen that the impt strategy generally performs
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better than the comp strategy for both k-POD clustering and the proposed
method. Moreover, although the comp strategy can give smaller MSE for the
proposed method when there is 10% missing, it becomes less effective when
the missing proportion gets large because there are fewer available complete
data points for initialization.

Table 3.1: MSE (standard deviation in brackets) using different strategies
for random initialization

Missing
mechanism

Missing
proportion

k-POD Reg. k-POD (group lasso) Reg. k-POD (l0)

impt comp impt comp impt comp

MCAR 10% 1.994 (0.90) 2.454 (0.87) 0.118 (0.03) 0.094 (0.03) 0.038 (0.01) 0.025 (0.01)
20% 6.419 (2.11) 10.598 (4.17) 0.872 (0.57) 3.401 (3.73) 0.079 (0.03) 0.460 (1.25)
30% 16.665 (4.74) 21.647 (4.42) 1.853 (0.71) 8.943 (6.01) 0.097 (0.03) 5.830 (7.05)
40% 26.030 (4.24) 30.941 (5.81) 3.160 (0.88) 12.480 (8.39) 1.139 (2.46) 18.454 (11.26)

MAR 10% 2.631 (1.05) 11.928 (4.66) 0.364 (0.24) 2.715 (5.81) 0.203 (0.05) 13.310 (3.79)
20% 5.887 (1.83) 27.540 (4.80) 0.298 (0.07) 21.233 (8.44) 0.117 (0.04) 28.059 (4.35)
30% 6.835 (1.90) 28.343 (5.49) 0.484 (0.31) 13.322 (11.76) 0.115 (0.03) 28.778 (5.42)

MNAR1 10% 5.959 (0.65) 6.260 (0.75) 1.151 (0.10) 1.083 (0.10) 0.462 (0.05) 0.637 (0.75)
20% 15.740 (4.12) 17.191 (2.67) 3.932 (0.33) 3.706 (0.33) 0.283 (0.05) 8.979 (5.00)
30% 21.314 (3.29) 24.917 (4.58) 2.301 (0.35) 4.797 (5.94) 0.210 (0.07) 9.252 (7.50)

MNAR2 10% 6.481 (0.39) 6.696 (0.46) 2.006 (0.12) 1.942 (0.11) 0.691 (0.07) 0.676 (0.07)
20% 21.531 (1.02) 23.848 (2.03) 4.901 (0.24) 5.458 (1.31) 2.346 (0.15) 7.491 (4.78)
30% 47.923 (3.07) 52.439 (5.00) 24.829 (0.44) 24.975 (0.72) 9.733 (4.99) 21.930 (8.02)

In addition, we found that the l0 type of the proposed method is more
sensitive to the initialization than the group lasso type. We thus need more
random initialization points, which however increases computation cost. An
alternative for random initialization is the sparse initialization, which has
comparable performance and needs fewer initialization points. We provide
more details in Section B.3.2 of Appendix B.

3.5.3 Selection of regularization parameter

In this section, we compare the instability and BIC criteria for selecting the
regularization parameter. We take the case of p = 100, d = 10, and a = 1
as an example. We let the regularization parameter λ vary in a grid of
20 candidate values given by 10−3+(4s/19) for s = 0, 1, . . . , 19, and calculate
the corresponding values of instability and BIC criteria. For the instability
criterion, we use 30 repetitions of random division. Note that only the impt
strategy of initialization is used here.

Table 3.2 illustrates the averaged values of MSE (with the averaged num-
ber of active features in brackets) based on the λ selected by BIC and in-
stability. It can be seen that for both types of the proposed method, under
MCAR and MAR mechanisms, the λ selected by instability gives smaller
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MSE but larger/comparable number of active features than that selected by
BIC. Under MNAR mechanisms, the instability criterion performs much bet-
ter than the BIC criterion, especially for the l0 type of proposed method. The
main reason is that deriving the expression of BIC is based on the assumption
that missingness is independent to the complete data. However, the insta-
bility follows the spirit of cross-validation and is defined by the clustering
alignment. We provide more details of comparison in the case of p = 10 and
how the regularization parameter influences the performance of the proposed
method in Section B.3.3 of Appendix B.

Table 3.2: MSE (number of active features in brackets) of proposed method
using different criteria for selecting λ

Missing
mechanism

Missing
proportion

Reg. k-POD (group lasso) Reg. k-POD (l0)

Instability BIC Instability BIC

MCAR 10% 0.126 (47) 0.187 (14) 0.109 (10) 0.114 (10)
20% 0.206 (29) 0.458 (11) 0.156 (10) 0.161 (10)
30% 0.407 (29) 0.743 (12) 0.305 (10) 0.280 (10)
40% 1.934 (15) 1.918 (16) 2.675 (13) 10.412 (12)
50% 5.546 (20) 9.018 (13) 25.895 (22) 25.073 (23)

MAR 10% 0.150 (19) 0.175 (10) 0.131 (10) 0.152 (10)
20% 0.140 (18) 0.182 (10) 0.126 (10) 0.434 (16)
30% 0.204 (12) 0.228 (10) 0.166 (10) 0.164 (10)

MNAR1 10% 3.073 (98) 25.418 (100) 1.873 (10) 26.062 (100)
20% 3.109 (77) 33.044 (100) 1.738 (10) 33.559 (100)
30% 2.139 (85) 20.032 (100) 1.324 (10) 30.417 (100)

MNAR2 10% 4.696 (78) 29.490 (100) 2.693 (10) 31.177 (100)
20% 40.286 (100) 96.354 (100) 99.507 (100) 99.540 (100)

3.5.4 Comparison with other methods

In this section, we compare the proposed method with other methods on
synthetic incomplete datasets. We consider the following peer methods:

• Complete-case analysis. We delete all rows that includes missing and
then apply the classical k-means clustering to estimate the cluster cen-
ters. It should be noted that we only report the result of this method
for the case of p = 10 since there are almost no complete data points
left in the case of p = 100.

• Multiple imputation. We impute the missing entries via the popu-
lar mice model (Van Buuren & Groothuis-Oudshoorn 2011). The R

87



Chapter 3. Regularized k-POD clustering

package mice is used to get several complete data matrices after im-
putation. Then we pool the imputed data using element-wise mean to
combine the multiple imputations into a single dataset, on which the
classical k-means clustering is used to estimate the cluster centers.

• The k-POD clustering. To compare the effects of different initializa-
tion strategies, we use a modified version of the original R package
kpodclustr (Chi et al. 2016), and report the better result.

For both group lasso and l0 types of the proposed method, we consider two
strategies of random initialization (impt and comp) and two criteria for
selecting λ (instability and BIC), and then report the best result.

We apply these methods on all synthetic incomplete datasets to estimate
cluster centers M and membership matrix U, and then calculate the corre-
sponding MSE, CER and predictive CER. Table 3.3, Table 3.4 and Table 3.5
are results of different methods on different synthetic incomplete datasets,
respectively. We report the results of a = 0.8 for p = 100 here and leave that
of a = 1 in Section B.3.4 of Appendix B for the sake of space. The reported
values are averaged indexes of 30 repetitions with standard deviations in the
brackets. The bold font indicates the best results.

It can be seen that the proposed method outperforms other methods for
estimating cluster centers and clustering. Specifically, the l0 type of proposed
method performs better when p is small, the missingness proportion is small
and the mechanism is simple. The group lasso type of proposed method is
stable against large p, large missingness proportion and complicated mech-
anisms. The main reason is that the solution of the l0 type is based on a
truncated expression, while the solution of the group lasso type would adjust
the selected features as well, which improves the performance even though
the k-POD clustering performs poorly in some complicated cases.

It should be noted that in the case of p = 100 with MCAR mechanism
and missingness proportion larger than 40%, the proposed method is less
effective than the multiple imputation method Mice. It is because in this
case, the MAR assumption of Mice is satisfied, and moreover, the relevant
features are highly related, which makes the imputation of missing entries
by Mice more accurate. Moreover, the MNAR2 mechanism is hard for all
methods, which is because the missingness of each entry does not follow a
probabilistic model and the reasonable imputation is more challenging.

Furthermore, we compare the computation time of different methods.
Figure 3.3 illustrates the results in the case of p = 100 under MCAR mecha-
nism with 30% missingness, MARmechanism with 20% missingness, MNAR1
and MNAR2 mechanisms with 10% missingness. We can see that the com-
putation time of the proposed method is comparable to that of the k-POD
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clustering. However, the multiple imputation method Mice costs significantly
more time, which coincides with the results of Chi et al. (2016). In addition,
the l0 type of proposed method is more time-consuming than the group lasso
type. It is because in Step b of Algorithm 3.2 with l0 penalty, comparing the
variance and the within-cluster sum-of-squares is needed, which costs more
time.

Table 3.3: MSE (standard deviation in brackets) of different methods

Missing
mechanism

Missing
proportion

Complete-case
analysis

Mice k-POD
Reg. k-POD
(group lasso)

Reg. k-POD
(l0)

p = 10 MCAR 10% 1.733 (1.15) 1.129 (0.75) 1.994 (0.90) 0.094 (0.03) 0.025 (0.01)
20% 14.970 (5.08) 4.954 (2.24) 6.419 (2.11) 0.872 (0.57) 0.079 (0.03)
30% 30.986 (5.36) 9.447 (2.30) 16.665 (4.74) 1.853 (0.71) 0.097 (0.03)
40% 58.352 (12.80) 12.612 (2.23) 26.030 (4.24) 3.160 (0.88) 1.139 (2.46)
50% - 16.466 (2.20) 31.939 (5.47) 4.732 (0.77) 22.601 (6.93)

MAR 10% 33.430 (1.13) 0.767 (0.23) 2.631 (1.05) 0.364 (0.24) 0.203 (0.05)
20% 46.392 (1.60) 2.221 (1.53) 5.887 (1.83) 0.298 (0.07) 0.117 (0.04)
30% 52.864 (5.71) 3.138 (1.98) 6.835 (1.90) 0.484 (0.31) 0.115 (0.03)

MNAR1 10% 5.032 (0.76) 5.454 (0.85) 5.959 (0.65) 1.083 (0.10) 0.462 (0.05)
20% 19.881 (3.59) 17.046 (1.39) 15.740 (4.12) 3.706 (0.33) 0.283 (0.05)
30% 33.241 (6.39) 17.385 (1.50) 21.314 (3.29) 2.301 (0.35) 0.210 (0.07)

MNAR2 10% 6.329 (0.67) 6.276 (0.33) 6.481 (0.39) 1.942 (0.11) 0.676 (0.07)
20% 24.454 (2.49) 23.048 (2.41) 21.531 (1.02) 4.901 (0.24) 2.356 (0.15)
30% 55.481 (7.27) 45.937 (1.78) 47.923 (3.07) 24.829 (0.44) 9.733 (4.99)

p = 100 MCAR 10% - 1.916 (0.20) 2.558 (0.28) 0.153 (0.02) 0.134 (0.02)
20% - 2.239 (0.16) 4.612 (0.64) 0.162 (0.02) 0.153 (0.03)
30% - 2.768 (0.26) 15.475 (2.25) 0.434 (0.10) 7.948 (5.29)
40% - 3.742 (0.45) 25.168 (3.96) 6.938 (6.43) 26.469 (5.00)
50% - 5.957 (0.63) 36.216 (3.05) 23.472 (7.22) 36.284 (2.77)

MAR 10% - 1.948 (0.17) 2.483 (0.24) 0.197 (0.03) 0.168 (0.04)
20% - 2.181 (0.14) 6.130 (1.68) 0.246 (0.04) 0.185 (0.03)
30% - 2.657 (0.29) 11.834 (1.28) 0.340 (0.10) 6.495 (5.06)

MNAR1 10% - 26.022 (0.44) 26.514 (0.53) 3.261 (0.14) 4.963 (1.05)
20% - 33.406 (0.50) 35.853 (1.29) 2.853 (0.19) 6.562 (8.24)
30% - 26.842 (0.72) 39.057 (2.24) 2.095 (0.31) 40.053 (2.89)

MNAR2 10% - 32.759 (0.66) 33.161 (0.79) 4.880 (0.18) 16.871 (2.00)
20% - 104.249 (1.67) 109.296 (3.24) 97.496 (2.95) 109.614 (2.98)

3.6 Applications

In this section, we apply the proposed method to real-world datasets. We
first consider the artificial missingness on some real-world complete datasets
in Section 3.6.1. Then we evaluate the performance of the proposed method
on real-world incomplete datasets in Section 3.6.2.
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Table 3.4: CER (standard deviation in brackets) of different methods

Missing
mechanism

Missing
proportion

Mice k-POD
Reg. k-POD
(group lasso)

Reg. k-POD
(l0)

p = 10 MCAR 10% 0.136 (0.01) 0.148 (0.02) 0.123 (0.01) 0.123 (0.01)
20% 0.224 (0.02) 0.236 (0.02) 0.193 (0.01) 0.186 (0.01)
30% 0.281 (0.01) 0.302 (0.01) 0.250 (0.01) 0.241 (0.01)
40% 0.310 (0.01) 0.337 (0.01) 0.290 (0.01) 0.285 (0.01)
50% 0.334 (0.00) 0.349 (0.01) 0.315 (0.01) 0.345 (0.01)

MAR 10% 0.097 (0.01) 0.122 (0.01) 0.093 (0.01) 0.090 (0.00)
20% 0.139 (0.01) 0.166 (0.01) 0.125 (0.00) 0.124 (0.00)
30% 0.176 (0.01) 0.199 (0.01) 0.162 (0.01) 0.161 (0.00)

MNAR1 10% 0.178 (0.01) 0.176 (0.02) 0.151 (0.01) 0.149 (0.01)
20% 0.228 (0.00) 0.271 (0.02) 0.212 (0.01) 0.202 (0.01)
30% 0.300 (0.00) 0.312 (0.01) 0.255 (0.01) 0.251 (0.01)

MNAR2 10% 0.145 (0.00) 0.148 (0.01) 0.130 (0.00) 0.130 (0.00)
20% 0.257 (0.02) 0.236 (0.02) 0.242 (0.01) 0.210 (0.01)
30% 0.330 (0.00) 0.323 (0.01) 0.426 (0.03) 0.292 (0.03)

p = 100 MCAR 10% 0.109 (0.01) 0.118 (0.01) 0.094 (0.00) 0.089 (0.01)
20% 0.135 (0.01) 0.175 (0.02) 0.109 (0.01) 0.113 (0.00)
30% 0.165 (0.01) 0.288 (0.02) 0.138 (0.00) 0.245 (0.04)
40% 0.203 (0.01) 0.357 (0.01) 0.248 (0.05) 0.375 (0.03)
50% 0.249 (0.01) 0.376 (0.01) 0.359 (0.02) 0.376 (0.01)

MAR 10% 0.109 (0.01) 0.118 (0.01) 0.089 (0.01) 0.092 (0.01)
20% 0.131 (0.01) 0.192 (0.02) 0.116 (0.00) 0.122 (0.01)
30% 0.161 (0.01) 0.257 (0.01) 0.145 (0.01) 0.229 (0.04)

MNAR1 10% 0.129 (0.01) 0.132 (0.01) 0.098 (0.00) 0.104 (0.01)
20% 0.150 (0.01) 0.190 (0.02) 0.118 (0.01) 0.176 (0.07)
30% 0.175 (0.01) 0.300 (0.02) 0.145 (0.01) 0.311 (0.02)

MNAR2 10% 0.149 (0.01) 0.158 (0.01) 0.110 (0.01) 0.136 (0.01)
20% 0.238 (0.01) 0.294 (0.01) 0.304 (0.02) 0.313 (0.02)
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Figure 3.3: The box plot of computation time of different methods in the case
of p = 100. The group lasso and l0 types of proposed method are denoted by
rkpod g and rkpod 0 for short, respectively. The four panels from left to right
are MCAR with 30% missingness, MAR with 20% missingness, MNAR1 and
MNAR2 mechanisms with 10% missingness, respectively.

90



Chapter 3. Regularized k-POD clustering

Table 3.5: Predictive CER (standard deviations in brackets) of different
methods

Missing
mechanism

Missing
proportion

Complete-case
analysis

Mice k-POD
Reg. k-POD
(group lasso)

Reg. k-POD
(l0)

p = 10 MCAR 10% 0.075 (0.02) 0.065 (0.02) 0.081 (0.02) 0.042 (0.01) 0.042 (0.01)
20% 0.201 (0.04) 0.131 (0.03) 0.142 (0.03) 0.060 (0.02) 0.046 (0.01)
30% 0.278 (0.03) 0.183 (0.02) 0.218 (0.03) 0.075 (0.02) 0.043 (0.01)
40% 0.335 (0.03) 0.210 (0.02) 0.267 (0.02) 0.102 (0.02) 0.062 (0.04)
50% - 0.240 (0.02) 0.284 (0.02) 0.081 (0.03) 0.249 (0.04)

MAR 10% 0.074 (0.02) 0.076 (0.02) 0.094 (0.02) 0.048 (0.01) 0.047 (0.01)
20% 0.220 (0.03) 0.220 (0.01) 0.197 (0.04) 0.046 (0.01) 0.045 (0.01)
30% 0.274 (0.03) 0.228 (0.01) 0.240 (0.02) 0.050 (0.01) 0.045 (0.01)

MNAR1 10% 0.074 (0.02) 0.076 (0.02) 0.094 (0.02) 0.048 (0.01) 0.047 (0.01)
20% 0.220 (0.03) 0.220 (0.01) 0.197 (0.04) 0.046 (0.01) 0.045 (0.01)
30% 0.274 (0.03) 0.228 (0.01) 0.240 (0.02) 0.050 (0.01) 0.045 (0.01)

MNAR2 10% 0.065 (0.01) 0.060 (0.01) 0.073 (0.01) 0.048 (0.01) 0.048 (0.01)
20% 0.175 (0.03) 0.136 (0.05) 0.128 (0.02) 0.053 (0.01) 0.060 (0.01)
30% 0.323 (0.06) 0.203 (0.01) 0.247 (0.02) 0.248 (0.02) 0.124 (0.05)

p = 100 MCAR 10% - 0.087 (0.01) 0.100 (0.01) 0.071 (0.01) 0.071 (0.01)
20% - 0.091 (0.01) 0.127 (0.02) 0.072 (0.01) 0.074 (0.01)
30% - 0.097 (0.01) 0.228 (0.02) 0.066 (0.01) 0.162 (0.06)
40% - 0.112 (0.02) 0.313 (0.02) 0.154 (0.08) 0.328 (0.04)
50% - 0.142 (0.02) 0.353 (0.01) 0.314 (0.04) 0.356 (0.01)

MAR 10% - 0.091 (0.01) 0.094 (0.01) 0.068 (0.01) 0.068 (0.01)
20% - 0.090 (0.01) 0.141 (0.02) 0.069 (0.01) 0.069 (0.02)
30% - 0.097 (0.01) 0.202 (0.02) 0.070 (0.01) 0.154 (0.06)

MNAR1 10% - 0.108 (0.01) 0.118 (0.01) 0.080 (0.01) 0.089 (0.01)
20% - 0.110 (0.01) 0.146 (0.03) 0.079 (0.01) 0.135 (0.09)
30% - 0.110 (0.01) 0.250 (0.02) 0.083 (0.01) 0.262 (0.03)

MNAR2 10% - 0.124 (0.01) 0.143 (0.01) 0.089 (0.01) 0.116 (0.02)
20% - 0.231 (0.03) 0.317 (0.03) 0.316 (0.04) 0.323 (0.03)
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3.6.1 Real-world datasets with artificial missingness

Since we focus on the performance of estimating the cluster centers, the
ground truth can be obtained only when the dataset includes no missing-
ness. Therefore, we construct incomplete datasets in the same way as numer-
ical experiments, that is, we artificially set missingness on original complete
datasets.

We consider a microarray genomics dataset Lymphoma2. It consists of
4026 gene expressions (p = 4026), collected over 62 samples (n = 62). Out of
the 62 samples, 42 are Diffuse Large B-Cell Lymphoma (DLBCL), 9 are Fol-
licular Lymphoma (FL), and 11 are Chronic Lymphocytic Leukemia (CLL)
cell samples (k = 3). The original dataset is complete and includes no miss-
ingness. We consider the MCAR mechanism with missing proportion from
10% to 50%, the MAR mechanism with missing proportion from 10% to 30%,
and the MNAR1 and MNAR2 mechanisms with missing proportion from 10%
to 20%. The generation of missingness for MCAR and MNAR mechanisms
is similar to that of simulations. For the MAR mechanism, we fix the 40th
feature to be complete, which is one of the most influential features accord-
ing to analysis of existing literature, and the missingness of other features
depends on the values of the 40th feature.

In this case, since p is much larger than n, there is no complete data point
when artificial missingness is added, and the Complete-case analysis method
is no longer applicable. Moreover, we cannot use the multiple imputation
method, such as mice, because the computation time would be extremely
long and not acceptable in practice. Therefore, we only compare the proposed
method to the k-POD clustering.

To calculate the MSE for evaluation, the ground truth of cluster centers
M∗ is needed. According to existing literature (Sun et al. 2012, Jin & Wang
2016), for the Lymphoma dataset there exists a small subset of influential
features, with which the k-means clustering can give a better clustering result.
For example, the CER of classical k-means with all features is about 0.3,
while that with 44 influential features is 0.05, which means that M∗ is more
likely to be sparse. Therefore, we use the result of Jin & Wang (2016) as an
approximation of M∗.

Table 3.6 illustrates the results of MSE for estimated cluster centers and
CER for estimated membership of different methods. The reported values
are the average of 10 repetitions with standard deviations in brackets. It can
be seen that the proposed method, especially the group lasso type generally
outperforms the k-POD clustering on both MSE and CER in various settings.

2The dataset can be found from https://www.stat.cmu.edu/~jiashun/Research/

software/GenomicsData/Lymphoma/
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Figure 3.4 illustrates the norm of estimated cluster centers in each feature for
Lymphoma dataset under MCAR mechanism with 30% missing proportion.
It can be seen that the results of the proposed method are more sparse than
that of k-POD clustering. Moreover, since the l0 type of proposed method is
based on the hard threshold, there remain a lot of features, which leads to
similar clustering performance to k-POD clustering. The group lasso type
does not only select relevant features but also shrinks them, which leads to
better performance.

Table 3.6: MSE and CER (standard deviations in brackets) of different meth-
ods for Lymphoma datasets

Missing
mechanism

Missing
proportion

MSE CER

k-POD
Reg. k-POD
(group lasso)

Reg. k-POD
(l0)

k-POD
Reg. k-POD
(group lasso)

Reg. k-POD
(l0)

MCAR 10% 2077.987 (88.49) 73.249 (0.54) 1565.534 (139.37) 0.290 (0.01) 0.135 (0.01) 0.284 (0.01)
20% 2193.763 (189.35) 72.843 (0.34) 1176.306 (246.66) 0.293 (0.01) 0.130 (0.01) 0.274 (0.06)
30% 2254.447 (154.07) 72.533 (0.06) 1196.070 (175.43) 0.290 (0.01) 0.123 (0.01) 0.276 (0.08)
40% 2299.094 (154.84) 73.615 (0.49) 1042.052 (193.14) 0.281 (0.02) 0.145 (0.01) 0.220 (0.12)
50% 2448.054 (216.05) 72.856 (0.27) 828.744 (121.03) 0.308 (0.02) 0.131 (0.01) 0.180 (0.11)

MAR 10% 2092.131 (8.36) 73.674 (0.31) 1625.762 (165.52) 0.278 (0.00) 0.156 (0.01) 0.296 (0.01)
20% 2182.586 (90.95) 73.252 (0.25) 1197.600 (254.64) 0.287 (0.01) 0.157 (0.02) 0.298 (0.01)
30% 2284.245 (153.49) 72.774 (0.13) 1563.565 (281.55) 0.309 (0.02) 0.177 (0.03) 0.312 (0.02)

MNAR1 10% 1677.725 (7.37) 75.813 (0.22) 976.441 (108.01) 0.285 (0.00) 0.163 (0.00) 0.258 (0.08)
20% 2209.57 (48.64) 73.421 (0.59) 1220.936 (157.73) 0.284 (0.01) 0.136 (0.02) 0.261 (0.08)

MNAR2 10% 1837.678 (0.00) 73.456 (0.00) 1050.854 (120.44) 0.300 (0.00) 0.156 (0.00) 0.274 (0.08)

0 1000 2000 3000 4000

0.
0

0.
5

1.
0

1.
5

2.
0

N
or

m
 o

f c
lu

st
er

 c
en

te
rs

ground truth

0 1000 2000 3000 4000

0.
0

0.
5

1.
0

1.
5

2.
0

N
or

m
 o

f c
lu

st
er

 c
en

te
rs

k-POD

0 1000 2000 3000 4000

0.
0

0.
5

1.
0

1.
5

2.
0

N
or

m
 o

f c
lu

st
er

 c
en

te
rs

Reg. k-POD
(group lasso)

0 1000 2000 3000 4000

0.
0

0.
5

1.
0

1.
5

2.
0

N
or

m
 o

f c
lu

st
er

 c
en

te
rs

Reg. k-POD
(l0)

Figure 3.4: The estimated cluster centers of different methods for Lymphoma
dataset under MCAR mechanism with 30% missing proportion. The x-axis
is the feature index. The y-axis is the norm of cluster centers in each feature.
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3.6.2 Real-world incomplete datasets

In this section, we evaluate the performance of the proposed method on
real-world incomplete datasets. Since the ground truth of cluster centers of
the complete dataset is unknown and cannot be approximated, we mainly
concern with the practical effects of clustering.

We consider two single-cell RNA sequence datasets:

• Usoskin dataset contains 622 neuronal cells (n = 622) that are di-
vided into four sensory subtypes (k = 4): peptidergic nociceptors,
non-peptidergic nociceptors, neurofilament containing and tyrosine hy-
droxylase containing. We here use a subset of this dataset and cor-
responding labels provided by Usoskin et al. (2015), which consists of
452 genes (p = 452). The total missing proportion is about 73%.

• Treutlein dataset contains 265 cells (n = 265) that are in different
states on the lineage from fibroblast to neuron, roughly including the
initial MEF state, induced state, intermediate state, early and terminal
neuron state. We here use a subset of this dataset and corresponding
assignment of states provided by Treutlein et al. (2016), which consists
of 396 genes (p = 396) and 7 types of states (k = 7). The total missing
proportion is about 44%.

For both datasets, since p and the missing proportion are large, there
is no complete data point left and thus the complete-case analysis method
is no longer applicable. Moreover, the multiple imputation method takes
extremely long time. Therefore, we consider the k-means clustering based
on simple zero imputation and the k-POD clustering as peer methods for
comparison.

Table 3.7 summarizes the averaged CER of 30 repetitions of different
methods with standard deviation in brackets, and shows that the group lasso
type of proposed method has the lowest CER and outperforms other methods
on both datasets. This coincides with the results of numerical experiments,
where the group lasso type of proposed method shows more stable and better
performance in more complicated cases (large p and complicated missingness
mechanism with a large proportion of missingness), because of the adjust-
ment on both noise and relevant features.

In addition, for Usoskin dataset, we provide the visualization of clustering
results in Figure 3.5 by using UMAP (Becht et al. 2019), where the shape
of points represents the ground truth label and the color represents the es-
timated label. It shows that the group lasso type of proposed method gives
a relatively more separated partition for 4 types of all 622 cells. For Treut-
lein dataset, we provide the estimated states from initial MEF to terminal
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neuron in Figure 3.6, where the y-axis represents the degree of identity of
a cell to the terminal neuron state, and the x-axis represents the cell index
ordered by the identity. The color of points represents the estimated state by
different methods. It shows that the proposed method distinguishes states
of the conversion more clearly, which corresponds to the rough distinction
including the initial MEF state, induced state, intermediate state, early and
terminal neuron state. However, other methods mix up the induced state
and intermediate state.

Table 3.7: CER (standard deviations in brackets) of different methods for
real-world incomplete datasets

Dataset Imputation k-POD Reg. k-POD (group lasso) Reg. k-POD (l0)

Usoskin 0.138 (0.00) 0.198 (0.05) 0.064 (0.01) 0.167 (0.03)
Treutlein 0.110 (0.00) 0.126 (0.02) 0.084 (0.01) 0.136 (0.02)
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Figure 3.5: The visualization of clustering results for cells in Usoskin dataset.
The shape of points represents the true label and the color represents the
estimated label.
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Figure 3.6: The conversion of estimated states for cells in Treulein datasets.
The y-axis represents the identity of a cell to the terminal neuron state, and
the x-axis represents the cell index ordered by the identity. The color of
points represents the estimated state.

3.7 Proofs

In this section, we prove Proposition 3.1.
(a) For J(·) = J0(·), estimating M̂ is equivalent to solving

min
M(j)

n∑
i=1

rij(xij − UiM(j))
2 + λ1(∥M(j)∥ > 0)

for each j = 1, . . . , p, where U is associated with M.
If the minimizer M̂(j) ̸= (0, 0, . . . , 0)T , then 1(∥M̂(j)∥ > 0) = 1 and the

optimality according to KKT condition implies that

0 = −2
n∑

i=1

rijÛ
T
i (xij − ÛiM̂(j)).

It follows that for all l = 1, . . . , k

µ̂lj =

∑n
i=1 ûilrijxij∑n
i=1 ûilrij

= µ̄lj.

If M̂(j) = (0, 0, . . . , 0)T , then 1(∥M̂(j)∥ > 0) = 0 and the optimality
according to KKT condition implies that for any V(j) ∈ Rk,

n∑
i=1

rij(xij − U
(v)
i V(j))

2 + λ ≥
n∑

i=1

rij(xij − ÛiM̂(j))
2,
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where U(v) is the membership matrix associated with V. Because

n∑
i=1

rij(xij − U
(v)
i V(j))

2 + λ ≤
n∑

i=1

rij(xij − ÛiV(j))
2 + λ

and

n∑
i=1

rij(xij − ÛiM̂(j))
2 =

n∑
i=1

rij(xij − Ûi · 0)2 =
n∑

i=1

rijx
2
ij,

when we take V(j) = M̄(j) = (µ̄1j, . . . , µ̄kj)
T , it follows that

n∑
i=1

rij(xij − ÛiM̄(j))
2 + λ ≥

n∑
i=1

rijx
2
ij.

Since the left hand is equivalent to n ·WCSSj(Ĉ), we have

λ ≥ n · q̂2j σ̄2
j − n ·WCSSj(Ĉ),

which completes the proof.

(b) For J(·) = J1(·) with weights {wj}pj=1, estimating M̂ is equivalent to
solving

min
M(j)

n∑
i=1

rij(xij − UiM(j))
2 + λwj∥M(j)∥

for each j = 1, . . . , p.

If the minimizer M̂(j) ̸= 0, then the optimality according to KKT condi-
tion implies that

0 = −2
n∑

i=1

rijÛ
T
i (xij − ÛiM̂(j)) + λwj

M̂(j)

∥M̂(j)∥

= −2ÛT
[
X(j) ◦ R(j) − (ÛM̂(j)) ◦ R(j)

]
+ λwj

M̂(j)

∥M̂(j)∥
.

It follows that ∥∥∥ÛT
[
X(j) ◦ R(j) − (ÛM̂(j)) ◦ R(j)

]∥∥∥ =
λwj

2
.
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Because ÛT
[
X(j) ◦ R(j) − (ÛM̂(j)) ◦ R(j)

]
is a vector in Rk, the l-th compo-

nent of which is

n∑
i=1

ûil

[
xijrij − (ÛiM̂(j)) · rij

]
=
∑
Xi∈Ĉl

[
xijrij − (ÛiM̂(j)) · rij

]
=
∑
Xi∈Ĉl

(xijrij − µ̂ljrij) ,

and

∑
Xi∈Ĉl

(xijrij − µ̂ljrij)

2

=

∑
Xi∈Ĉl

xijrij −

∑
Xi∈Ĉl

rij

 · µ̂lj

2

=

∑
Xi∈Ĉl

rij

2

·

[∑
Xi∈Ĉl

xijrij∑
Xi∈Ĉl

rij
− µ̂lj

]2
,

then

1

n2

∥∥∥ÛT
[
X(j) ◦ R(j) − (ÛM̂(j)) ◦ R(j)

]∥∥∥2 = k∑
l=1

 1

n

∑
Xi∈Ĉl

rij

2

·

[∑
Xi∈Ĉl

xijrij∑
Xi∈Ĉl

rij
− µ̂lj

]2
.

Since rij ∈ {0, 1} and Ĉl ⊂ {Xi}ni=1, then
∑

Xi∈Ĉl
rij ≤ n, and it follows that(

1
n

∑
Xi∈Ĉl

rij

)2
≤ 1

n

∑
Xi∈Ĉl

rij. Moreover, denote µ̄lj =
∑

Xi∈Ĉl
xijrij∑

Xi∈Ĉl
rij

, then
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we have

k∑
l=1

 1

n

∑
Xi∈Ĉl

rij

 · (µ̄lj − µ̂lj)
2

=
1

n

k∑
l=1

∑
Xi∈Ĉl

rij

 · (µ̄2
lj + µ̂2

lj − 2µ̄ljµ̂lj

)
=

1

n

k∑
l=1

(
n∑

i=1

1(Xi ∈ Ĉl, rij = 1)

)
·
(
µ̂2
lj − µ̄2

lj − 2µ̄ljµ̂lj + 2µ̄2
lj

)
=

1

n

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl, rij = 1)µ̂2
lj −

1

n

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl, rij = 1)µ̄2
lj

− 2

n

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl, rij = 1)µ̂ljxij +
2

n

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl, rij = 1)µ̄ljxij

=
1

n

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl, rij = 1)
[
(xij − µ̂lj)

2 − (xij − µ̄lj)
2]

=
1

n

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl)rij (xij − µ̂lj)
2 − 1

n

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl)rij (xij − µ̄lj)
2 .

We next bound the two parts. Denote V̂ = (νlj)k×p ∈ Rk×p to be the sparse

modification of M̂ with j-th column being zero, that is, V̂(j) = 0 and V̂(j′) =

M̂(j′) for any j′ ̸= j. Because M̂ minimizes L̂n(M) and the partition Ĉ =

{Ĉ1, . . . , Ĉk} is determined by M̂, it follows that

L̂n(M̂) =
n∑

i=1

min
l=1,...,k

∥Xi ◦ Ri − M̂l ◦ Ri∥2 + λ · J1(M̂)

=
n∑

i=1

k∑
l=1

1(Xi ∈ Ĉl)∥Xi ◦ Ri − M̂l ◦ Ri∥2 + λ · J1(M̂)

≤
n∑

i=1

k∑
l=1

1(Xi ∈ Ĉl)∥Xi ◦ Ri − V̂l ◦ Ri∥2 + λ · J1(M̂).

Considering the definition of group lasso penalty, that is, J1(M) =
∑p

j′=1wj′∥M(j′)∥,
we thus have J1(V̂) ≤ J1(M̂), because V̂ equals to M̂ expect for j-th column.
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It follows that

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl)∥Xi ◦ Ri − M̂l ◦ Ri∥2 ≤
n∑

i=1

k∑
l=1

1(Xi ∈ Ĉl)∥Xi ◦ Ri − V̂l ◦ Ri∥2

and in the j-th column,

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl)(xijrij − µ̂ljrij)
2 ≤

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl)(xijrij − ν̂ljrij)2

=
n∑

i=1

k∑
l=1

1(Xi ∈ Ĉl)(xijrij − 0)2

=
n∑

i=1

rijx
2
ij = nq̂jσ̄

2
j .

Therefore, the first term is bounded by q̂jσ̄
2
j .

For the second part, we have

1

n

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl)rij (xij − µ̄lj)
2 ≥ 1

n

n∑
i=1

min
l=1,...,k

rij(xij − µ̄lj)
2.

The right hand must be larger than the minimal value of function Qj, which
implies that

1

n

n∑
i=1

k∑
l=1

1(Xi ∈ Ĉl)rij (xij − µ̄lj)
2 ≥ Q̂j.

Combining the above all, we have

1

n2

∥∥∥ÛT
[
X(j) ◦ R(j) − (ÛM̂(j)) ◦ R(j)

]∥∥∥2 ≤ q̂jσ̄
2
j − Q̂j,

which implies that

λwj

2n
≤
√
q̂jσ̂2

j − Q̂j.

Therefore, if for any j,

λwj

2n
>
√
q̂jσ̄2

j − Q̂j,

then M̂(j) = 0, which completes the proof.
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Chapter 4

Discussions and future works

4.1 Discussions

In this thesis, we focused on improving the classical k-means clustering for
complex high-dimensional data, especially the data with non-linear cluster
structure and missing values. To this end, we proposed two novel clustering
methods based on k-means clustering. The superior performance of the pro-
posed methods verified the effectiveness of clustering high dimensional data
with non-linear cluster structure and missing values. As a consequence, we
make the traditional k-means clustering applicable for more complex data.

In Chapter 2, we proposed a novel sparse kernel k-means clustering to
extend the advantages of kernel k-means clustering to the high-dimensional
cases. The numerical experiments on synthetic and real-world datasets and
statistical analysis verified the practical efficacy and theoretical soundness
of the proposed method. We further illustrated the successful application of
the proposed method to the normalized cut.

There are still some limitations of the sparse kernel k-means clustering.
(1) The selection procedure of the proposed algorithm is based on simple
forward selection, which is vulnerable to the local solution and heavily relies
on a good initialization. (2) The implementation of the proposed method
considered the number of clusters k being fixed and the kernel function be-
ing Gaussian kernel. Whereas in practice, we often have little information
about the true cluster structure and need further efforts to determine an ap-
propriate k, and we also need to select suitable kernel functions for different
field data. In addition, as for the effects of potential influence factors, we
only discussed the bandwidth of the kernel function ν2 and the number of
selected features d, while others still remain unclear at present. (3) Since
the high computational cost of kernel-based methods is a well-known draw-
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back, relatively, the proposed method is slower than other linear clustering
methods.

In Chapter 3, we proposed the regularized k-POD clustering to reduce the
bias of the existing k-POD clustering method for high-dimensional missing
data. According to numerical experiments and real-world data applications,
we found that when there exist noise features that have no contribution to
cluster structure, the proposed method has less bias of estimated cluster
centers, which helps to give a more reasonable result of clustering than other
methods.

The main limitations of regularized k-POD clustering are as follows.
(1) For regularization functions, we only considered the l0 penalty and group
lasso penalty. Whereas, the study of Raymaekers & Zamar (2022) shows
that common l1 and l2 penalties also have effects on shrinking cluster centers
for complete data. Whether these penalties work well for missing data still
remains unclear at present. (2) To tune the regularization parameter, we con-
sidered the instability and BIC criteria, where we derived the Eq. (3.10) as
the counterpart of the traditional formulation of BIC for missing data. How-
ever, the likelihood part of Eq. (3.10) requires the MCAR mechanism, and
according to Hofmeyr (2020), the degree of freedom in clustering needs more
precise approximation than the simple number of independent parameters.
This makes the derived BIC perform poorly for some complex missingness
mechanisms. (3) Since the proposed method is aimed at high-dimensional
missing data with noise features, the effects of reducing bias would be poor
when the sparsity structure is not satisfied. In addition, the performance
of the proposed method is related to that of k-POD clustering. When the
missing proportion is large, the failure of k-POD clustering would lead to
poor results of the proposed method.

4.2 Future works

Due to the limitations of the proposed methods discussed above, the future
works following this thesis will focus on improving proposed methods, and
extending them to other related methods and fields of clustering for data
with non-linear cluster structure and missing values.

For data with non-linear cluster structure, we would like to improve the
current sparse k-means clustering method in two respects. (1) To get a better
local solution, we will consider effective initialization strategies, such as the
k-means++ (Arthur & Vassilvitskii 2007), which initializes k cluster centers
one by one by sampling them from the original data points. The probability
of each point being sampled is proportional to the nearest distance of it to
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the current cluster centers. In our case, the distance will be measured in
the RKHS H, and based on the initialized cluster centers, we can obtain
the initialized partition. (2) To speed up the proposed algorithm, since the
computational cost mainly comes from the construction of kernel matrix H,
then it would be helpful to use the low-rank approximation of kernel matrix,
especially when the sample size n is large. We will consider the Nyström
method (Williams & Seeger 2000), which gives an approximation of H by
calculating some blocks involving only a small subset of the sample. In
addition, when the data dimension is high, it is also helpful to speed up,
if we immigrate the obvious noise features by using the K-S testing before
applying the proposed method.

For missing data, the regularized k-POD clustering needs further im-
provement and investigations as follows. (1) To make the BIC criteria more
applicable for various missing data, it is necessary to derive formulations sim-
ilar to Eq. (3.10) for other missingness mechanisms. To do so, we will first
consider some specific MNAR mechanisms for data following the mixture dis-
tribution, such as the missingness only depending on the cluster membership.
According to Sportisse et al. (2024), by concatenating the data matrix with
the missing mask, the inference problem for model-based clustering under
MNAR can be transformed into that under MAR. We will consider the sim-
ilar idea to modify the likelihood part of BIC formulation. Also, the precise
approximation of the degree of freedom proposed by Hofmeyr (2020) will be
considered as well. (2) We would like to study the behavior of the proposed
method in the population level. Since the k-POD clustering is a natural
extension of k-means clustering to missing data, the proposed method can
be viewed as the counterpart of regularized k-means clustering in the case of
missingness. Moreover, the theoretical analysis for the limited sample and
population of the regularized k-means clustering has been provided by Lev-
rard (2018), and we found that their results for the limited sample coincide
with our results in Section 3.4, when there is no missingness. Therefore, we
will apply their framework and techniques to provide statistical guarantees
for the proposed method.

Finally, there are some potential and interesting topics for future work.
One topic is to apply our analysis to provide statistical guarantees for general
k-means clustering methods, since the consistency of feature selection is one
of the most important issues for high-dimensional data clustering. Another
topic is to study the properties of k-POD clustering for the limited sam-
ple and figure out the necessary conditions under which the bias of k-POD
clustering can be ignored.
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Appendix for Chapter 2

A.1 Discussion on Algorithm 2.2

In this section, we provide some experimental discussion on the proposed
algorithm for SKKM.

A.1.1 The number of iterations to convergence

The number of iterations to convergence is generally related to the complexity
of clustering a dataset. The immediate convergence may be the common
characteristic of the alternative algorithms for the simultaneous clustering
and feature selection issue.

We in this section discuss the influence of possible factors, in addition to
Figure 2.2, which illustrates the canonical trend of convergence. Specifically,
we consider two synthetic datasets that consist of low-dimensional relevant
features contributing to the true cluster structure, and several noise features.
Figure A.1 illustrates the true cluster structure in the low dimensional space.
We note that roughly speaking, the two moons dataset is easier to be clus-
tered while the chainlink dataset is more hard. Then we compare the numbers
of iterations to convergence of these two datasets with different sample sizes
(n), different proportions of relevant features (d/p) and different kernel func-
tions. The results are summarized in Table A.1. The reported values are the
average numbers of iterations to convergence among 20 repetitions, as well
as the standard deviations.

It can be seen that for each dataset, there is no significant difference
between different sample sizes, different proportions of relevant features and
different kernel functions. However, the difference between these two datasets
is relatively significant. Since these two datasets roughly represent different
difficulties of clustering problems, the limited comparison result implies that
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the number of iterations to convergence may increase when the clustering
problem itself is difficult. According to this conclusion, we could explain that
for the examples in Figure 2.2, the middle panel Colon dataset is relatively
complicated even as a supervised classification task, which thus needs more
iterations to convergence compared with other two examples.

Two moons Chainlink

Figure A.1: The underlying true cluster structures in the low dimensional
space.

Table A.1: The comparison of the number of iterations to convergence

Dataset
n d/p Kernel function

200 1000 0.3 0.1 Gaussian Laplacian

Two moons 3 (0) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
Chainlink 5.7 (2.5) 4.7 (2.1) 5.7 (2.5) 5.3 (2.4) 5.7 (2.5) 3.5 (0.7)

A.1.2 The run time to convergence

In this section, we discuss the run time, in addition to the above experiments
of the number of iterations. Specifically, we compare the run time under
different sample sizes, different numbers of dimensions and different kernel
functions. The results are illustrated in Figure A.2. The reported values are
the average run time and corresponding error bars of 20 receptions.

It can be seen that sample size and number of features significantly have
an influence on the run time while the kernel function being used shows little
effects. Moreover, the trend of left panel about sample size is quadratic-liked,
while right panel about the number of features is a linear trend. Therefore,
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Figure A.2: The effects of sample size, number of features and kernel func-
tions on the run time.

the experiment results are in good agreement with our complexity analysis,
which implies that the run time in practice may heavily rely on the size of the
dataset. In addition, according to the run time on real datasets in Table A.2,
a similar result is also observed.

Table A.2: Comparison of run time (seconds) for the real-world datasets

Dataset n× p IF-PCA Sparse k-means Sparse MinMax k-means Proposed

Glass 214× 9 0.08 0.06 1.73 0.15
Breast 699× 9 0.12 0.12 1.39 0.48
Vehicle 846× 18 0.23 0.25 3.99 3.23
Trace 200× 275 0.73 0.35 2.14 39.27
Control 600× 60 0.50 0.40 6.39 19.28
Brain 42× 5597 2.05 2.06 10.40 31.58
Colon 62× 2000 0.90 0.57 1.32 10.73
Leukemia 72× 3571 1.61 1.27 2.28 26.84
Lymphoma 62× 4026 1.63 0.58 3.44 46.61
SRBCT 63× 2308 1.07 0.91 3.51 10.68

A.2 Settings of synthetic datasets in Section 2.6.3

In Section 2.6.3, we discuss the performance of feature selection of the pro-
posed method (SKKM) based on some synthetic datasets. All synthetic
datasets consist of low-dimensional ground truth cluster structure and high-
dimensional noise features. The details are summarised in Table A.3. We
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use the R package mlbench1 to generate the ground truth distribution. For
data1 to data4, we generate Gaussian mixture distribution on R3 by the
function mlbench.simplex with arguments n = 200, d = 3. For data5 to
data8, we generate a shape distribution on R2 called Smiley by the function
mlbench.smiley with arguments n = 200, sd1 = 0.2, sd2 = 0.2.

Table A.3: Details of synthetic datasets used in Section 2.6.3

Dataset Ground truth Noise feature n× p

data1 Gaussian mixture independent Normal distribution 200× 13
data2 Gaussian mixture correlated Normal distribution 200× 13
data3 Gaussian mixture independent Normal distribution 200× 103
data4 Gaussian mixture independent χ2(5) distribution 200× 103
data5 Smiley independent Normal distribution 200× 12
data6 Smiley correlated Normal distribution 200× 12
data7 Smiley independent Normal distribution 200× 102
data8 Smiley independent χ2(5) distribution 200× 102

A.3 More details and results of weighted ver-

sion (SWKKM)

In this section, we introduce more details and experimental results about the
weighted version of the proposed method (SWKKM) in Section 2.6.6.

A.3.1 The construction of weights

As stated in Section 2.6.6, we mainly focus on the specific type of weighted
kernel k means that coincides with normalized cut (Ncut). The corresponding
weights and kernel function are given as follows. Denote the kernel function
used in Ncut by g : X ×X → R. For the sample {x1, . . . , xn}, we define the
empirical degree function of g by d̂n : X → R with

d̂n(x) =
1

n

n∑
i′=1

g(x, xi′).

When we let weights wi for each data point xi be

wi = d̂n(xi),

1https://cran.r-project.org/web/packages/mlbench/
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and use the kernel function h̃n : X × X → R with the form of

h̃n(x, y) =
g(x, y)

d̂n(x)d̂n(y)
,

then the weighted kernel k-means clustering using {wi} and h̃n coincides
with Ncut using kernel g. Based on this fact, in our experiments, we take the
function g to be Gaussian kernel and apply the corresponding {wi} and h̃n
to the proposed method (Eq. (2.5)). In other words, we successfully apply
the proposed method (SWKKM) to the normalized cut.

A.3.2 Experiments on synthetic datasets

In this section, we further evaluate the performance of both clustering and
feature selection of the proposed method (SWKKM) on synthetic datasets.
Ten artificial datasets are used, all consisting the ground truth relevant fea-
tures and noise features. The decision boundaries between the ground truth
clusters are all non-linearly separable. Similarly, the normal distribution
N (0, 1) as well as the χ2 distribution χ2(5) are considered to generate noise
features. The details of these synthetic datasets are summarized in Table A.4.
The reported results in Table A.5 are the averaged CERs of each algorithm.
We also report the F1score values of feature selection of each algorithm in
Table A.6. It can be seen that on all synthetic datasets with non-linear
cluster structures, the proposed method (SWKKM) outperforms other peer
algorithms in clustering according to its lowest CERs. Moreover, it also suc-
cessfully selects all relevant features according to the highest F1scores, while
the peer algorithms fail.

At last, we discuss more about data9. It consists of 200 sample points
(n = 200) and 120 features (p = 120). The sample is drawn from 10 different
clusters (k = 10) and each of them has 20 sample points. The first 20 features
are relevant to the ground truth structure (d = 20), while the remaining 100
features follow the standard normal distribution. The ground truth struc-
ture is generated in the following way. We draw 10 true cluster centers cl
uniformly along the surface of a unit sphere S19 = {x | ∥x∥2 = 1} ⊂ R20,
and assign ground truth labels Zi to each observation Xi uniformly. A point
assigned to cluster l is drawn from the von-Mises-Fisher distribution normal-
ized to lie on S19 with mean direction cl and κ = 30. That is,

c1, · · · , ck ∼ U(S19), Zi ∼ U{1, · · · , k}, Xi | Zi ∼ VMF (cZi
, κ).

Finally combined with the noise part, the data9 is generated. We run each
algorithm 10 times and report the average value of CERs in Table A.5. We
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Table A.4: Details of synthetic datasets used for SWKKM.

Dataset Ground truth Noise k n p d

data1 Two moons N (0, 1) 2 200 12 2
data2 Cassini N (0, 1) 3 300 12 2
data3 Atom N (0, 1) 2 200 13 3
data4 Chainlink N (0, 1) 2 200 13 3
data5 Two moons χ2(5) 2 200 12 2
data6 Cassini χ2(5) 3 300 12 2
data7 Atom χ2(5) 2 200 13 3
data8 Chainlink χ2(5) 2 200 13 3
data9 VMF N (0, 1) 10 200 120 20
data10 VMF χ2(5) 10 200 120 20

Table A.5: Averaged CERs of different methods on synthetic datasets.

Dataset k-means Weighted kernel k-means IF-PCA Sparse k-means SWKKM (proposed)

data1 0.279 0.500 0.095 0.333 0.058
data2 0.413 0.444 0.237 0.335 0.149
data3 0.499 0.499 0.375 0.499 0.274
data4 0.493 0.501 0.475 0.502 0.412
data5 0.502 0.500 0.500 0.498 0.082
data6 0.451 0.443 0.325 0.463 0.159
data7 0.500 0.500 0.460 0.497 0.267
data8 0.500 0.499 0.490 0.502 0.342
data9 0.243 0.178 0.107 0.179 0.008
data10 0.259 0.177 0.103 0.183 0.009

Table A.6: Averaged Precision, Recall and F1score indexes of different meth-
ods on synthetic datasets.

Dataset
Precision Recall F1score

IF-PCA SKM SWKKM IF-PCA SKM SWKKM IF-PCA SKM SWKKM

data1 0.278 0.167 1.000 0.590 1.000 1.000 0.368 0.286 1.000
data2 0.000 0.167 1.000 0.000 1.000 1.000 0.000 0.286 1.000
data3 0.367 0.231 1.000 1.000 1.000 1.000 0.530 0.375 1.000
data4 0.333 0.231 1.000 0.500 1.000 1.000 0.400 0.375 1.000
data5 0.750 0.167 1.000 1.000 1.000 1.000 0.857 0.286 1.000
data6 0.429 0.167 1.000 1.000 1.000 1.000 0.600 0.286 1.000
data7 0.000 0.231 1.000 0.000 1.000 1.000 0.000 0.375 1.000
data8 0.000 0.231 1.000 0.000 1.000 1.000 0.000 0.375 1.000
data9 0.144 0.167 1.000 0.267 1.000 1.000 0.187 0.286 1.000
data10 0.333 0.167 1.000 0.667 1.000 1.000 0.444 0.286 1.000
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also illustrate the clustering result of each algorithm using a visualization
technique (UMAP, (McInnes et al. 2018)) in Figure A.3. It can be seen that
the clustering result of the proposed method is most similar to the ground
truth, while other methods almost fail to obtain the true cluster structure.
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Figure A.3: The clustering results for data9 of different methods. The x-
axis and y-axis are the first two dimensions of UMAP. The color of points
represents which cluster the point belongs to.
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Appendix for Chapter 3

B.1 Details of Algorithm 3.2

In this section, we provide technical details of Algorithm 3.2 proposed in
Chapter 31.

B.1.1 Derivation of updating M(r+1) for J = J0

For J = J0, given U(r+1), the update M(r+1) is given by the solution of

min
M
∥X̂(j) − U(r+1)M∥2F + λ

p∑
j=1

1(∥M(j)∥ > 0).

Because ∥X̂(j) − U(r+1)M∥2F =
∑p

j=1 ∥X̂(j) − U(r+1)M(j)∥2, we can separately
solve the minimization problem in each feature, that is, for any j = 1, . . . , p,

min
M(j)

∥X̂(j) − U(r+1)M(j)∥2 + λ1(∥M(j)∥ > 0).

If the solution M̂(j) ̸= 0, then 1(∥M(j)∥ > 0) = 1 and the KKT condition
implies that

M̂(j) = (U(r+1),TU(r+1))−1U(r+1),T X̂(j).

If the solution M̂(j) = 0, then the corresponding value of objective function is

∥X̂(j)∥2, which should be smaller than the objective function at any non-zero
point. Therefore, there must be

∥X̂(j) − U(r+1)V(j)∥2 + λ ≥ ∥X̂(j)∥2,

where V(j) = (U(r+1),TU(r+1))−1U(r+1),T X̂(j).

1Throughout Appendix B, we use ∥ · ∥ to express the l2 norm ∥ · ∥2.
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B.1.2 Derivation of updating M(r+1) for J = J1

For J = J1, given U(r+1), the update M(r+1) is the solution of

min
M
∥X̂− U(r+1)M∥2F + λ

p∑
j=1

wj∥M(j)∥,

where the objective function is denoted by f(M) in Eq. (3.6). Since it is not
easy to derive an explicit solution, we instead apply the MM algorithm again
to obtain M(r+1). At any point M(rs) (s ∈ N), the function h in Eq. (3.7) is
given by

h(M | M(rs)) = ∥X̂− U(r+1)M∥2F + λ

p∑
j=1

wj

(
∥M(j)∥2

2∥M(rs)
(j) ∥

+
1

2
∥M(rs)

(j) ∥

)
.

Based on the basic equality, we have for each j = 1, . . . , p,

∥M(j)∥2

2∥M(rs)
(j) ∥

+
1

2
∥M(rs)

(j) ∥ ≥ ∥M(j)∥,

where the equality holds if and only if M
(rs)
(j) = M(j). It follows that

h(M | M(rs)) ≥ f(M) and h(M(rs) | M(rs)) = f(M(rs)),

which means that the domination condition and tangency condition are sat-
isfied and h(M | M(rs)) majorizes f(M) at any M(rs). Now we can apply
the MM algorithm in the following way. Starting from M(r0), the (s + 1)-th
iteration includes: (i) construct the majorization function h(M | M(rs)) with
current M(rs); (ii) update M(rs+1) by minimizing h(M | M(rs)), the solution of
which can be easily derived by KKT condition in each feature, that is, for
any j = 1, . . . , p,

M
(rs+1)
(j) =

(
U(r+1),TU(r+1) +

λwj

2∥M(rs)
(j) ∥

· Ik

)−1

U(r+1),T X̂(j).

This procedure ensures that f(M(rs+1)) ≤ f(M(rs)) for any s ∈ N. As dis-
cussed in Remark 3.1, there is no need to exactly minimize f(M). Instead,
reducing f(M) is enough. Therefore, to simplify the computation, we only
conduct once iteration about s, that is, we start from M(r0) = M(r) and
update the j-th column of M(r+1) by(

U(r+1),TU(r+1) +
λwj

2∥M(r)
(j)∥
· Ik

)−1

U(r+1),T X̂(j).
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B.1.3 Comparison with other method for J = J1

As explained in Remark 3.2, updating M(r+1) for J = J1 is equivalent to
the group lasso regression. Specifically, minimizing f(M) is equivalent to
minimizing fj(M(j)) for each j = 1, . . . , p, where

fj(M(j)) = ∥X̂(j) − U(r+1)M(j)∥22 + λwj∥M(j)∥.

It can be viewed as a regression model of response X̂(j) on design matrix
U(r+1) with a group lasso penalty ∥M(j)∥, where the number of groups is one.

For simplification of notations, we write y for X̂(j), write U for U(r+1) and
write β for M(j).

Following the method of Yang & Zou (2015), we can construct a ma-
jorization function h̃j(β | β(s)) for fj(β) at any point β(s) via quadratic
approximation of the first term of fj(β). Denote l(β) = ∥y−Uβ∥2. Because

l(β) ≤ l(β(s)) + (β − β(s))T∇l(β(s)) +
1

2
(β − β(s))TH(β − β(s)),

where ∇l(β(s)) = −2UT (y − Uβ(s)) and H = −2UTU, we can define

h̃j(β | β(s)) = l(β(s)) + (β − β(s))T ·
(
−2UT

)
· (y − Uβ(s)) +

γ

2
∥β − β(s)∥2 + λwj∥β∥,

where γ = 2maxl
∑n

i=1 uil is the largest size of clusters associated with U.

The minimizer of h̃j(β | β(s)) is thus give by

β(s+1) = β̃ ·
(
1− λwj/γ

∥β̃∥

)
+

,

where β̃ = β(s) + 2
γ
UT (y − Uβ(s)) is the gradient descent update of l(β) and

(·)+ = max(·, 0). Therefore, we propose Algorithm B.1 for J = J1 based on
the quadratic approximation.

Next, we compare Algorithm 3.2 and Algorithm B.1 via numerical exper-
iments on synthetic complete datasets. Figure B.1 illustrates regularization
paths of these two algorithms on datasets with p = 10 and p = 100, and Fig-
ure B.2 shows the convergence and computational time in the case of p = 100.
It can be seen that the paths of two algorithms are almost the same, while
Algorithm B.1 needs fewer iterations and thus less computational time.
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Algorithm B.1 Regularized k-means clustering using quadratic approxi-
mation

Input: complete data matrix X̂, number of clusters k.
Parameters: regularized parameter λ, weights {wj}
Initialize M(0)

while Loss function (3.5) does not converge do
a: Given M(r), update U(r+1) by: for any i = 1, . . . , n

u
(r+1)
il∗ =

{
1 if l∗ = argmin1≤l≤k ∥X̂i −M

(r)
l ∥2

0 else

b: Given U(r+1), update M(r+1) by: for any j = 1, . . . , p

M
(r+1)
(j) = Ṽ(j) ·

(
1− λwj/γ

∥Ṽ(j)∥

)
+

,

where Ṽ(j) = M
(r)
(j) +

2

γ
U(r+1),T ·

(
X̂(j) − U(r+1)M

(r)
(j)

)
γ = 2 ·max

[
diag

(
U(r+1),TU(r+1)

)]
end while

Output: U(r+1) and M(r+1)
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Figure B.1: Regularization paths of Algorithm 3.2 (top) and Algorithm B.1
(bottom). The x-axis is the log(λ) and the y-axis is ∥M(j)∥. The four columns
are for two relevant features in case of p = 10, three noise features in case of
p = 10, two relevant features in case of p = 100 and three noise features in
case of p = 100.
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Figure B.2: (a) Convergence of Algorithm 3.2 (solid) and Algorithm B.1
(dotted) in the case of p = 100. (b) Comparison of computational time, de-
noted by Alg.2 and Alg.3 for Algorithm 3.2 and Algorithm B.1, respectively.
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B.2 Derivation of BIC

In this section, we provide technical details of deriving the expression of BIC
given in Eq. (3.10). We first consider the classification likelihood (Fraley
& Raftery 2002) to formulate the k-means likelihood. Let {Xi}ni=1 be i.i.d.
sample, U = (uil)n×k ∈ {0, 1}n×k be the indicators of membership of {Xi}ni=1

and U1k = 1n. Denote by ϕp(· | Ml) the density function of Gaussian
distribution in Rp with mean vector Ml = (µl1, . . . , µlp) and covariance matrix
σ2Ip, where σ

2 is fixed. Write M = (µlj)k×p. The classification likelihood of
Xi is given by

l(Xi | U,M) =
k∏

l=1

[ϕp(Xi | Ml)]
uil

=
k∏

l=1

[
(2πσ2)−

p
2 exp

(
−
∑p

j=1(xij − µlj)
2

2σ2

)]uil

Now we consider the missing data. Assume that for Xi = (xi1, . . . , xip),
any element xij is missing completely at random (MCAR) and Xi would
be partially observed. As in Section 3.4, we use a binary random variable
rij to indicate whether xij is observed. That is, rij = 1 if xij is observed,
0 otherwise. Write Ri = (ri1, . . . , rip) ∈ {0, 1}p. The MCAR mechanism
means that Ri is independent with Xi. Because the covariance matrix is
σ2Ip, we have ϕp(Xi | Ml) =

∏p
j=1 ϕ(xij | µlj), where ϕ(· | µlj) is the density

function of Gaussian distribution in R with mean µlj and variance σ2. Then
the likelihood of Xi can be written as

l(Xi | U,M) =
k∏

l=1

[
p∏

j=1

ϕ(xij | µlj)

]uil

=
k∏

l=1

 ∏
j:rij=1

ϕ(xij | µlj) ·
∏

j:rij=0

ϕ(xij | µlj)

uil

=
k∏

l=1

 ∏
j:rij=1

ϕ(xij | µlj)

uil

·
k∏

l=1

 ∏
j:rij=0

ϕ(xij | µlj)

uil

.

The likelihood of partially observed part, denoted by Xobs
i , is thus equivalent

to the density of marginal distribution of {xij | rij = 1}, which is given by

l(Xobs
i | U,M,Ri) =

k∏
l=1

 ∏
j:rij=1

ϕ(xij | µlj)

uil

.
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Therefore, the likelihood of partially observed sample {Xobs
1 , . . . , Xobs

n } is
given by

ln(X
obs
1 , . . . , Xobs

n | R,U,M) =
n∏

i=1

k∏
l=1

[
(2πσ2)−

∥Ri∥
2 exp

(
−
∑p

j=1 rij(xij − µlj)
2

2σ2

)]uil

.

Then we have

BIC =
n∑

i=1

∥Ri∥ log(2πσ2) +
1

σ2

n∑
i=1

n∑
j=1

k∑
l=1

rijuil(xij − µlj)
2 + log(n) · df.

The first term is a fixed constant and the second term is equivalent to
∥PΩ(X− UM)∥2F , then we can write BIC to be

BIC = ∥PΩ(X− UM)∥2F + log(n) · df,

where df is the number of independent parameters, which is simply kd with
d =

∑p
j=1 1(∥M(j)∥ > 0). Note that df can be further approximated by using

the effective degree of freedom as discussed in Hofmeyr (2020).

B.3 Supplementary for numerical experiments

In this section, we provide more details and results of numerical experiments
for Section 3.5.

B.3.1 Settings of missingness mechanisms

Through the numerical experiments, we consider four types of procedures
for generating missingness. For MAR and MNAR1 mechanisms, different
parameters used to meet the total proportion of missingness are summarized
in Table B.1.

B.3.2 Comparison of random and non-random initial-
ization

For l0 type of proposed method, since it is sensitive to the initialization,
we here compare the random initialization and non-random initialization.
Specifically, we consider the sparse initialization, which is also used in Ray-
maekers & Zamar (2022). First, based on the estimated cluster centers of
k-POD clustering, we rank all p features in a decreasing order by the l2 norms
of k-POD estimator in each feature. Then by retaining only the leading 1%,
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Table B.1: Different parameters to meet total missing proportion

Dataset
Missing

Proportion
MAR MNAR1

ψ1 ψ2 ϕ1 ϕ2

p = 10 10% 1.80 3.0 1.5 3.0
20% 0.55 3.0 0.6 3.0
30% 0.25 3.0 0.3 3.0

p = 100, a = 0.8 10% 2.0 2.0 2.5 2.0
20% 0.8 2.0 0.9 2.0
30% 0.4 2.0 0.45 2.0

p = 100, a = 1 10% 2.5 2.0 2.5 2.0
20% 0.9 2.0 0.9 2.0
30% 0.45 2.0 0.45 2.0

2%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 100% features, we can get 10 sparse
versions of k-POD estimator. These 10 sparse estimators would serve as 10
initialization points for the proposed method. For the random initialization,
we use 100 initialization points.

Table B.2 illustrates the comparison results between random initialization
and sparse initialization. For the random initialization, since we consider two
strategies, only the best results are reported. For the sparse initialization,
when p = 10, we use the sequence {10%, 20%, . . . , 100%} to generate the
10 sparse initialization points. Moreover, for the dataset with p = 100, the
setting of d = 10 and a = 0.8 is used.

It can be seen that the sparse initialization generally provides comparable
results, especially in the case of p = 100, while it only uses 10 initial points
and needs less computational time. Therefore, the sparse initialization can
be used as a faster substitute for random initialization when the number of
features is large, as it requires fewer initialization points.

B.3.3 Sensitivity analysis of tuning parameter

We analyze the sensitivity of the regularization parameter based on the case
of p = 100. Figure B.3 illustrates the results of instability and BIC under
MCAR mechanism with missing proportion 30%, where the reported values
are the average of 10 repetitions. It can be seen that a suitable λ can reduce
the value of MSE and provide a reasonable set of features that contribute to
clustering. Moreover, the instability is more sensitive to λ than BIC.

We further report the comparison of the instability and BIC criteria for
selecting λ in the case of p = 10 in Table B.3. It can be seen that the
instability is stable in various settings, which is similar to the case of p = 100,
while BIC almost fails. The main reason is that there are only two relevant

118



Appendix B. Appendix for Chapter 3

Table B.2: Comparison of random initialization and sparse initialization for
l0 type of proposed method

Dataset
Missing

mechanism
Missing

proportion
MSE CER

random sparse random sparse

p = 10 MCAR 10% 0.025 (0.01) 0.110 (0.03) 0.123 (0.01) 0.124 (0.01)
20% 0.079 (0.03) 0.296 (0.07) 0.186 (0.01) 0.190 (0.00)
30% 0.097 (0.00) 0.557 (0.10) 0.241 (0.01) 0.242 (0.01)
40% 1.139 (2.46) 2.406 (5.38) 0.285 (0.01) 0.297 (0.03)
50% 22.601 (6.93) 4.466 (7.09) 0.345 (0.01) 0.353 (0.04)

p = 100 MCAR 10% 0.134 (0.02) 0.131 (0.02) 0.089 (0.01) 0.086 (0.00)
20% 0.153 (0.03) 0.149 (0.03) 0.113 (0.00) 0.108 (0.01)
30% 7.948 (5.29) 2.285 (3.65) 0.245 (0.04) 0.177 (0.04)
40% 26.469 (5.00) 18.428 (8.16) 0.375 (0.03) 0.303 (0.05)
50% 36.284 (2.77) 26.843 (4.60) 0.376 (0.01) 0.329 (0.01)

Usoskin MNAR 73% - - 0.167 (0.03) 0.133 (0.04)
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Figure B.3: Comparison of instability and BIC criteria for selecting λ. The
top and bottom rows are for group lasso and l0 types of proposed method,
respectively. The red dashed lines denote the choice of BIC, while the blue
dotted lines denote instability.
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features in this case, the decrease of active features has more influence on
increasing the loss than decreasing the degree of freedom.

Table B.3: MSE (number of active features in brackets) of proposed method
using different criteria for selecting λ (p = 10)

Missing
mechanism

Missing
proportion

group lasso l0

Instability BIC Instability BIC

MCAR 10% 0.118 (3) 1.508 (10) 0.038 (2) 1.324 (7)
20% 0.872 (6) 2.767 (10) 0.079 (2) 4.677 (9)
30% 1.853 (7) 8.467 (10) 0.097 (2) 16.547 (9)
40% 3.160 (7) 26.199 (10) 1.139 (2) 24.100 (8)
50% 4.732 (3) 30.416 (10) 22.601 (4) 31.611 (9)

MAR 10% 0.364 (3) 1.764 (10) 0.203 (2) 1.335 (5)
20% 0.298 (2) 5.501 (10) 0.117 (2) 5.022 (8)
30% 0.484 (2) 2.861 (8) 0.115 (2) 4.487 (5)

MNAR1 10% 1.151 (5) 5.100 (10) 0.462 (2) 5.576 (10)
20% 3.932 (2) 12.476 (10) 0.283 (2) 15.486 (10)
30% 2.301 (4) 21.715 (10) 0.210 (2) 21.032 (10)

MNAR2 10% 2.006 (3) 6.322 (10) 0.691 (2) 6.384 (10)
20% 4.901 (10) 21.431 (10) 2.346 (2) 21.598 (10)
30% 24.829 (3) 45.131 (10) 9.733 (2) 47.213 (10)

B.3.4 More results of comparable experiments

Finally, we report the result of comparing the performance of the proposed
method with other methods in the case p = 100 and a = 1, which is an easier
clustering task with more separable cluster centers. Table B.4, Table B.5
and Table B.6 illustrate the comparison of MSE, CER and predictive CER,
respectively.
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Table B.4: MSE (standard deviations in brackets) of different methods (p =
100 and a = 1)

Missing
mechanism

Missing
proportion

Mice k-POD
Reg. k-POD
(group lasso)

Reg. k-POD
(l0)

MCAR 10% 1.286 (0.09) 1.430 (0.09) 0.126 (0.02) 0.109 (0.02)
20% 1.462 (0.10) 1.870 (0.14) 0.206 (0.04) 0.156 (0.03)
30% 1.788 (0.11) 3.063 (0.49) 0.407 (0.10) 0.280 (0.08)
40% 2.272 (0.14) 19.121 (2.43) 1.918 (0.30) 2.675 (1.60)
50% 3.267 (0.23) 36.512 (3.54) 5.546 (2.91) 25.073 (4.03)

MAR 10% 1.338 (0.13) 1.516 (0.14) 0.150 (0.04) 0.131 (0.03)
20% 1.517 (0.11) 1.842 (0.16) 0.140 (0.03) 0.126 (0.02)
30% 1.771 (0.14) 3.117 (0.73) 0.204 (0.05) 0.164 (0.03)

MNAR1 10% 25.983 (0.58) 26.039 (0.52) 3.073 (0.16) 1.873 (0.13)
20% 32.579 (0.70) 33.187 (0.73) 3.109 (0.17) 1.738 (0.33)
30% 25.673 (0.56) 27.698 (0.83) 2.139 (0.20) 1.324 (0.37)

MNAR2 10% 31.768 (0.62) 31.161 (0.61) 4.696 (0.18) 2.693 (0.22)
20% 101.579 (0.97) 99.327 (1.280) 40.286 (0.04) 99.507 (1.31)

Table B.5: CER (standard deviations in brackets) of different methods (p =
100 and a = 1)

Missing
mechanism

Missing
proportion

Mice k-POD
Reg. k-POD
(group lasso)

Reg. k-POD
(l0)

MCAR 10% 0.044 (0.00) 0.046 (0.00) 0.050 (0.00) 0.049 (0.00)
20% 0.064 (0.00) 0.072 (0.00) 0.091 (0.00) 0.092 (0.00)
30% 0.092 (0.00) 0.124 (0.02) 0.147 (0.00) 0.147 (0.00)
40% 0.126 (0.00) 0.287 (0.02) 0.186 (0.00) 0.236 (0.02)
50% 0.170 (0.01) 0.364 (0.01) 0.259 (0.01) 0.356 (0.02)

MAR 10% 0.052 (0.00) 0.056 (0.01) 0.047 (0.00) 0.051 (0.00)
20% 0.063 (0.00) 0.074 (0.01) 0.063 (0.00) 0.064 (0.01)
30% 0.086 (0.01) 0.127 (0.02) 0.088 (0.00) 0.086 (0.01)

MNAR1 10% 0.063 (0.00) 0.058 (0.00) 0.053 (0.00) 0.056 (0.00)
20% 0.079 (0.00) 0.082 (0.01) 0.079 (0.01) 0.091 (0.01)
30% 0.102 (0.00) 0.150 (0.02) 0.139 (0.01) 0.152 (0.01)

MNAR1 10% 0.064 (0.00) 0.056 (0.00) 0.051 (0.01) 0.056 (0.00)
20% 0.124 (0.00) 0.117 (0.01) 0.746 (0.00) 0.149 (0.01)
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Table B.6: Predictive CER (standard deviations in brackets) of different
methods (p = 100 and a = 1)

Missing
mechanism

Missing
proportion

Mice k-POD
Reg. k-POD
(group lasso)

Reg. k-POD
(l0)

MCAR 10% 0.030 (0.01) 0.033 (0.01) 0.027 (0.01) 0.028 (0.01)
20% 0.030 (0.01) 0.035 (0.01) 0.026 (0.01) 0.027 (0.01)
30% 0.032 (0.01) 0.043 (0.01) 0.029 (0.01) 0.028 (0.01)
40% 0.032 (0.01) 0.190 (0.02) 0.027 (0.01) 0.043 (0.02)
50% 0.036 (0.01) 0.280 (0.02) 0.043 (0.03) 0.234 (0.04)

MAR 10% 0.030 (0.01) 0.031 (0.01) 0.024 (0.01) 0.023 (0.01)
20% 0.028 (0.01) 0.036 (0.01) 0.028 (0.01) 0.028 (0.01)
30% 0.032 (0.01) 0.042 (0.01) 0.025 (0.01) 0.024 (0.01)

MNAR1 10% 0.039 (0.01) 0.042 (0.01) 0.028 (0.01) 0.029 (0.01)
20% 0.040 (0.01) 0.045 (0.01) 0.034 (0.01) 0.035 (0.01)
30% 0.036 (0.01) 0.052 (0.01) 0.034 (0.01) 0.036 (0.01)

MNAR2 10% 0.046 (0.01) 0.046 (0.01) 0.033 (0.01) 0.037 (0.01)
20% 0.091 (0.01) 0.096 (0.02) 0.303 (0.02) 0.099 (0.02)
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