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1. Introduction

Let be a real non-integer number with (regular) continued fraction expansion

(1) = 0 +
1

1 +
1

2 +
...

= [ 0; 1 2 . . .]

where 0 ∈ Z is such that − 0 ∈ [0 1), and ∈ N for ≥ 1. As is well-known,
the regular continued fraction (RCF) expansion of is finite if and only if ∈ Q. In
this case there are two possible expansions, otherwise the expansion is unique.

Apart from the RCF expansion there are very many other continued frac-
tion expansions: the continued fraction expansion to the nearest integer, Nakada’s
α-expansions, Bosma’s optimal expansion. . . in fact too many to mention (see [6]
and [3] for some background information).

One particular expansion, which attracted no attention whatsoever, and which is
quite different from the continued fraction expansions mentioned above, is Denjoy’s
canonical continued fraction expansion(see [2], or [1], p. 275–6 for the original pa-
per by Denjoy). In [2], Denjoy stated that every real number has continued fraction
expansions of the form

(2) = [ 0; 1 2 . . .]

where 0 ∈ Z is such that − 0 ≥ 0, and the digits are either 0 or 1. Such a
continued fraction expansion of is called acanonical continued fraction(CCF) ex-
pansionof . Since

(3) +
1

0 +
1

= +
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Denjoy noted that the RCF expansion (1) can be changed into a CCF expansion (2).
In this note we will prove Denjoy’s claims, and also obtain the ergodic system

underlying Denjoy’s CCF expansion.

2. Insertions

Denjoy’s remark (3) can be ‘translated’ into two ‘operations’ (called insertions of
type , where = 1, 2) on the digits of any continued fraction expansion. They are
based on the following two equations. If ,∈ Z, ≥ 2, andξ ≥ 0, then

+
1
+ ξ

= +
1

1 +
1

0 +
1
− 1 + ξ

and

+
1
+ ξ

= − 1 +
1

0 +
1

1 +
1
+ ξ

In the first case we inserted 1/(1 + 1/(0+)) into + 1/( + ξ), while in the second case
1/(0 + 1/(1+)) was inserted.

Now let ∈ R\Z, with RCF expansion (1), and let0 ∈ Z be such that − 0 ≥
0. Setting = 0 − 0, in case > 0 we can apply the second insertion to (1) just
before 1. Doing so, we get

= [ 0− 1; 0 1 1 2 . . .]

as a continued fraction expansion of . Repeating this procedure − 1 times we find

= [ 0 − ; (0 1) 1 2 . . .]

where (0 1) is an abbreviation for the string 0, 1, . . . , 0, 1 of 0’s and 1’s of length
2 . For = 0 this string is empty, i.e., we have

= [ 0 − 0; (0 1)0 1 2 . . .] = [ 0; 1 2 . . .]

(This would be the case if0 = 0; note that 0 > 0 is impossible since 0 = ⌊ ⌋.)
Next let ≥ 1 be the first index for which > 1. Applying the first insertion before

yields

= [ 0; (0 1) 1−1 1 0 − 1 +1 . . .]
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where 1 is an abbreviation for the string 1. . . 1 consisting of 1’s, which is empty
if = 0. Repeating this procedure − 2 times we find

= [ 0; (0 1) 1−1 (1 0) −1 1 +1 . . .]

Note that we would have obtained the same result if the secondinsertion was used
− 1 times ‘behind’ .

Repeating this procedure, we find for any0 ∈ Z with 0 ≤ the following CCF
expansion of :

(1) = [ 0; (0 1) 0− 0 (1 0) 1−1 1 (1 0) 2−1 1 (1 0) 3−1 1 . . .]

In this expansion, never two consecutive digits will both equal 0. It follows from (1),
that if is irrational, then any CCF expansion of is infinite and unique once 0 is
given. In case is rational, any CCF expansion of is finite. However, with 0 given,
two possible CCF expansions exist in this case.

Note that the first RCF digits1 . . . of yield 1+· · ·+ CCF digits equal
to 1 and 1 + · · · + − CCF digits equal to 0. Let be the number of 0’s among
the first CCF digits 1 . . . of , i.e., = #{1 ≤ ≤ : = 0}, and let be
the number of 1’s. Then due to Khintchine’s classical result(see [7]), that for almost
all (with respect to Lebesgue measureλ):

lim
→∞

1∑

=1

=∞

we deduce that

lim
→∞

= lim
→∞

∑

=1 −
∑

=1

= 1 (a.e.)

So in spite of the fact that the CCF expansion of∈ R \ Z always has more 1’s
than 0’s, we see that for almost all there are asymptoticallyas many 0’s as 1’s. We
conclude this section by noting that the CCF expansion of an∈ Z is

(4′) = [ 0; (0 1) − 0 ]

for any 0 ∈ Z with 0 ≤ .

3. On quadratic irrationalities and Hurwitzian numbers

An old and classical result states that a number is a quadratic irrationality (that
is, an irrational root of a polynomial of degree 2 with integer coefficients) if and only
if has an RCF expansion which is eventually periodic, i.e., is of the form

(1) = [ 0; 1 . . . +1 . . . + ] ≥ 0 ≥ 1
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where the bar indicates the period, see [4], [8] or [9] for various classical proofs of
this result. It follows from (1) that has an eventually periodic RCF expansion of the
form (1) if and only if has a CCF expansion of the form

= [ 0; (0 1) 0− 0 (1 0) 1−1 1 . . . (1 0) −1 1

(1 0) +1−1 1 . . . (1 0) + −1 1
︸ ︷︷ ︸

period

(1 0) +1−1 1 . . . (1 0) + −1 1
︸ ︷︷ ︸

period

. . .]

= [ 0; (0 1) 0− 0 (1 0) 1−1 1 . . . (1 0) −1 1 (1 0) +1−1 1 . . . (1 0) + −1 1]

where 0 ∈ Z is such that − 0 ≥ 0. Again the bar indicates the period. Thus we
see that is a quadratic irrationality if and only if the CCF expansion (1) of is
eventually periodic for every0 ∈ Z with 0 ≤ .

A nice generalization of the concept of eventually periodicexpansions are the so-
called Hurwitzian numbers. A number is called Hurwitzian if and only if has an
RCF expansion of the form

= [ 0; 1 . . . 1( ) . . . ( )]∞=0 ≥ 0 ≥ 1

where 0 is an integer, the ’s are positive integers, and1( ) . . . ( ) are poly-
nomials with rational coefficients which take positive integral values for = 0, 1. . .,
and at least one of these polynomials is non-constant, see [9]. A well-known example
of a Hurwitzian number is = [2;1 2 + 2 1]∞=0. Again it is immediate from (1)
that a number is Hurwitzian if for every0 ≤ the CCF expansion of is given
by

= [ 0; (0 1) 0− 0 (1 0) 1−1 1 . . . (1 0) −1 1

(1 0) 1( )−1 1 . . . (1 0) ( )−1 1]∞=0

4. Canonical continued fraction convergents

Let ∈ R, and let 0 ∈ Z be such that − 0 ≥ 0. Furthermore, let (1) (or (4′))
be a CCF expansion of . Finite truncation yields the sequenceof CCF convergents
( ) ≥0 of :

:= 0 +
1

1 +
1

2 +
... +

1

= [ 0; 1 2 . . . ] ≥ 0

The value of is computed using the rules 1/0 =∞ and 1/∞ = 0. For ≥ 2 this
implies that equals −2 when = 0. This means that can equal∞ (= 1/0).
In order to study the CCF convergents of , we define matrices , ,for ≥ 0
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by

0 :=

(
1 0

0 1

)

:=

(
0 1
1

)

:= 0 1 · · ·

Setting

:=

( )

it follows from = −1 that

=

(

−1

−1

)

whence ≥ 0, and are relatively prime, and

−1 = 0 0 = 0 = −1 + −2

−1 = 0 0 = 1 = −1 + −2

These recurrence relations show again that = 0, for some≥ 1, implies that =

−2 and = −2. In particular, if 0 − 0 > 0, then

1 = 3 = · · · = 2( 0− 0)−1 = 1

2 = 0 + 1 4 = 0 + 2 . . . 2( 0− 0) = 0

and

1 = 3 = · · · = 2( 0− 0)−1 = 0

2 = 4 = · · · = 2( 0− 0) = 1

Defining the Möbius-transformations :R∗ → R∗ by

( ) := −1 +

−1 +
≥ 1

we see by induction that

= (0) =

For the RCF expansion matrices similar to and can be defined. For ∈ R \ Z
with RCF expansion (1), setting

0 :=

(
1 0

0 1

)

:=

(
0 1
1

)

:= 0 1 · · ·



240 M. IOSIFESCU AND C. KRAAIKAMP

one has that

=

(

−1

−1

)

where > 0, and are relatively prime, and

= [ 0; 1 . . . ]

see [6]. Since

(
1 0

0 1

)

=

(
1 0

0 1

)((
0 1
1 0

)(
0 1
1 1

)) 0− 0

and

((
0 1
1 1

)(
0 1
1 0

)) −1

=

(
1 0
− 1 1

)

we conclude (see also (1)) that

( ) =

where ( ) = 0− 0 + 2( 1−1) + 1 +· · ·+ 2( −1) + 1, which implies that the sequence
(

/
)

≥0
of RCF convergents of is a subsequence of the sequence ( )≥0 of

CCF convergents of .
Now let +1 > 1 for some ≥ 1. Since ( )+2 = 0 for 1 ≤ ≤ +1 − 1, we

already saw that ( ) = ( )+2 = / for these values of . This also follows from
the fact that

( )+2 =

((
0 1
1 1

)(
0 1
1 0

))

=

(

−1

−1

)(
1 0

1

)

=

(
+ −1

+ −1

)

What can we say about ( )+2 −1 for 1≤ ≤ +1− 1? Since

( )+2 −1 = ( )+2

(
0 1
1 0

)−1

=

(
+ −1

+ −1

)

we see that ( )+2 −1 is a mediant convergent of , i.e.,

( )+2 −1 =
+ −1

+ −1
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Thus we see that the collection{ : ≥ −1} consists of the integers0 . . . 0, of
1/0, and of all RCF and mediant convergents of . Note that every RCF convergent
/ of appears +1 times as a CCF convergent of .

5. The Denjoy map Td

One way of finding the RCF expansion (1) of is by using the so-called Gauss-
map : [0 1)→ [0 1), defined by

( ) :=
1 −

⌊
1
⌋

∈ (0 1); (0) := 0

For ∈ R given by (1) or (4′), let 0 ∈ Z be such that − 0 ≥ 0. Settingξ = − 0,
it is clear that

ξ = [0; 1 2 . . .]

Similarly to the RCF case, this CCF expansion ofξ can easily be obtained from a
suitable map , which we call theDenjoy-map. Let : [0 ∞) → [0 ∞) be defined
by

( ) :=







1 − 1 ∈ (0 1]

1 − 0 ∈ (1 ∞)

0 = 0

Furthermore, setting

1 = 1(ξ) :=

{
1 ξ ∈ (0 1]
0 ξ ∈ (1 ∞)

and

= (ξ) := 1
( −1(ξ)

)
> 1

we find in case (ξ) 6= 0 for = 0, 1 . . . − 1, that

ξ =
1

1 + (ξ)
=

1

1 +
1

2 + 2(ξ)

= · · ·

=
1

1 +
1

2 +
... +

1
+ (ξ)
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There are several algorithms yielding the RCF convergents and mediants, see for in-
stance [3] or [5], where such algorithms together with the underlying ergodic systems
are described. In [5], for any ∈ [0 1), the RCF convergents and mediants of are
‘generated’ in the same order — but without the duplication of the RCF convergents
— as in the case of the CCF expansion of . The underlying map : [01] → [0 1]
in [5] is given by

( ) =







1− ∈
[

0
1
2

)

1− ∈
[

1
2

1

]

and ν is a σ-finite, infinite -invariant measure with density , given by

( ) =
1

for ∈ (0 1)

Moreover, Ito showed in [5] that the dynamical system ([0 1)ν) is ergodic.
It is easy to find by direct calculation that

( ) =







2( ) ∈
[

0
1
2

)

( ) ∈
[

1
2

1

]

i.e., can be seen as ajump transformationof . Due to this, the ergodic properties
of can easily be carried over to . Note that2 is used to avoid duplication of
RCF convergents. Of course, since

( ) = 2( −1)+1( ) for ∈
[

1
+ 1

1
)

∈ N

which follows from (1) or by direct calculation, the ergodicproperties of can also
be obtained from the ergodic properties of the RCF expansion.

We have the following result.

Theorem 1. The Denjoy-map has aσ-finite, infinite invariant measureµ with
density , given by

( ) =
1

1(0 1]( ) +
1

1 +
1(1 ∞)( ) ∈ [0 ∞)

and the dynamical system([0 ∞) µ) is ergodic.
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Proof. By Theorem 1.1 from [10], to prove that isµ-measure preserving, it
is enough to show that

µ
( −1( )

)
= µ( )

for every interval ⊂ [1 ∞). Let us first assume that ⊂ [0 1]. In this caseµ( ) =
log( / ) if = [ ], and

µ
( −1( )

)
=
∫ 1/( +1)

1/( +1)
+
∫ 1/

1/ 1 +

= log = µ( )

Next assume that ⊂ (1 ∞). In this case

µ( ) =
∫

1 +
= log

+ 1
+ 1

and

µ
( −1( )

)
=
∫ 1/( +1)

1/( +1)
= log

+ 1
+ 1

= µ( )

Let be a -invariant Borel set, i.e.,−1( ) = . In order to show that is
ergodic with respect to Lebesgue measureλ (and therefore also ergodic with respect to
µ, sinceλ and µ are equivalent), we should show that eitherλ( ) = 0 or λ( ) = 0,
where = [0∞) \ .

Setting 1 = ∩ [0 1], 2 = ∩ (1 ∞), we have

1 =
( −1( 1) ∩ [0 1]

)
∪ −1( 2)

and

2 = −1( 1) ∩ (1 ∞)

Then

−1( 1) = 1

i.e., 1 is an -invariant set. Since ([0 1) ν) is an ergodic dynamical system we
see that eitherν( 1) = 0 or ν([0 1) \ 1) = 0, which implies that eitherλ( 1) = 0 or
λ([0 1) \ 1) = 0. In caseλ( 1) = 0 we clearly haveλ( 2) = 0, henceλ( ) = 0. In
caseλ([0 1) \ 1) = 0, it follows from

( −1([0 1) \ 1)
)
∩ (1 ∞) = (1 ∞) \ 2 that

λ((1 ∞) \ 2) = 0, henceλ([0 ∞) \ ) = 0.
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