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1. Introduction

In this paper, we consider some delations between a Heegaard splitting
and the torus decomposition of a Haken manifold. The first result of this
paper is:

Theorem 1. Let M be a Haken manifold without boundary or with incom-
pressible toral boundary. Suppose that M admits a Heegaard splitting of genus
£(>2). Then M is decomposed into at most 3^-3 components by the torus decom-
position. Moreover, if M is decomposed into 3#-3 components, then each component
is simple i.e. every incompressible torus in it is boundary parallel.

For the definition of a Heegaard splitting, and the torus decomposition of
a 3-manifold with boundary in this context, see section 2.

The classical Haken's theorem ([H], [J]) shows that a Heegaard genus g
3-manifold is decomposed into at most g components by the prime decomposi-
tion. Theorem 1 is an analogy to this fact.

REMARK. We note that the above estimation is best possible. In section
8, we will show that for each g( > 2) there are infinitely many Haken manifolds
with Heegaard splittings of genus g, each of which is decomposed into 3^-3
components by the torus decomposition.

The key of the proof of Theorem 1 is Proposition 4.1, which is an analogy
to the Haken's theorem.

Proposition 4.1. Let M be a Haken manifold as in Theorem 1, and 3 be
a union of tori which gives the torus decomposition of M. If the number of the
components of 3 is greater than or equal to 3 -̂4, then there is a component T of
3 such that T is ambient isotopic to T' which intersects the genus g Heegaard surface
in a circle.

Let M be a Haken manifold as in Theorem 1. We say that M is full if it
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is decomposed into 3g-3 components by the torus decomposition. In section
7, we will investigate the structure of full Haken manifolds from the viewpoint

of torus decomposition.

Theorem 2 (cf. [Ko 2, Theorem]). Let M be a full Haken manifold, and
M=ML U ••• U M3£_3 be the torus decomposition of M. Then:

(i) If FrM Mi consists of a torus, then M{ admits a Seίfert fibration,

(ii) £-1 components of {M,}, say M,, •••, Mg-l9 are homeomorphic to the ex-
teriors of two bridge links,

(iii) Mgy •••, M3^_3 admit Seίfert fibrations,

(iv) Suppose that MfΓlMyΦφ, where i<g. Then j>g, and My admits a
Seifert fibration such that a regular fiber of My in Mt Π My is identified with a

meridian loop of M,.

Theorems 1,2 together with the arguments in [C] implies:

Corollary 1. Let L be a tunnel number n link in a closed 3-manifold. Sup-

pose that the exterior of L is a Haken manifold with incompressible boundary. Then,

the exterior is decomposed into at most 3n components by the torus decomposition.

Moreover, if it is decomposed into 3n components, then the components satisfies the

conclusions of Theorems 1,2.

Bonahon-Siebenmann [B-S] showed that a classical link has a cannonical
splitting by a system of tori and a system of 2-sρheres each of which intersects

the link in two or four points. The idea for the proof of this fact is to consider

the prime and torus decomposition of the 2-fold covering space of the link.

Theorem 1 together with this fact, the Haken's theorem, and a theorem of

Birman-Hilden [B-H] implies:

Corollary 2. Suppose that L is an n(>2) bridge link. Then, L is decom-

posed into at most 3(n—2) pieces by the above splitting.

The bulk of this work was done while I was a member of the Mathematical

Science Research Institute, Berkeley. I would like to express my thanks for the

generous hospitality of the institute. I thank to Andrew Casson for teaching

me the results in [C-G], and several useful conversations. I also thank to

Kanzi Morimoto for pointing out errors in the original paper of this work.

2. Preliminaries

Thorughout this paper, we will work in the piecewise linear category. For
the definitions of irreducible manifold, incompressible surface, parallel surface we

refer to [He]. For the definitions of essential surface, Q-ίncompressible surface,

Haken manifold, Seίfert fibered manifold, exceptional fiber, and orbit manifold we
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refer to [J].

Let M be a Haken manifold as in Theorem 1. Then, by [J], there is a

maximal, perfectly embedded Seifert fibered manifold Σ, which is called a

characteristic Seifert pair for M. Then FrMΣ consists of tori in Int M. If

some components of them are parallel in M, then we eliminate one of them

from the system of tori. If a component of the system is parallel to a boundary

component of M, then we eliminate it from the system. By performing these

eliminations finitely many times, we get a system of tori 3 in M which are

mutually non parallel, and each component of which is not parallel to a boundary

component of M. In this paper, we call the decomposition of M by 2, the

torus decomposition of M. Then, by corresponding each component of M-3 to

a vertex, and each component of 3 a edge, we get a graph GM. We call GM the

characteristic graph for M.

Let S be a closed surface of genus g. A genus g compression body C is a

3-manifold obtained from Sx[0, 1] by attaching 2-handles along mutually dis-

joint simple loops on Sx {!}, and then attaching some 3-handles to it (cf. [Bo]).

Let 90C be the boundary component of C which corresponds to S X {0}. We

note that a handlebody (:cube with handles) H is a compression body such that

QH=dQH. Let M be a compact 3-manifold. (Q, C2: F) is a genus g generalized

Heegaard splitting (or simply a Heegaard splitting) of M if each Cf is a genus g

compression body, M=C1\JC29 and C1nC2=9oC1=90C2==.F (cf. [C-G]). The
minimal genus of all Heegaard splittings of M is called the Heegaard genus of M.

The next theorem follows from the fact that every 3-manifold admits a

triangulation (cf. [He]).

Theorem 2.1. Every compact ^-manifold admits a Heegaard splitting.

Now, we will see some fundamental properties of compression bodies.

Lemma 2.2 ([Bo, corollary B.3]). Let C be an irreducible compression body,

and D be an essential disk properly embedded in C. Then, D cuts C into a (possibly,

disconnected) compression body C' such that 90C"—Z>c90C.

Lemma 2.3 ([C-G]). Let S be an incompressible, Q-incompressible surface

properly embedded in an irreducible compression body C. Then, S is either a disk,

or an annulus A, where one component of QA is contained in QQC, and the other

component is contained in a distinct component of QC.

3. Incompressible surfaces and isotopies of type A

The problems concerning the relations between a Heegaard surface and an

incompressible surface in a 3-manifolds were considered by several authors

([C-G, H, J, Ko 1, Ko 2, Mo, O]). In this section, we will show that the tech-

niques used there, say hierarchy for a 2-manifold, isotopy of type A, •••, can be



176 T. KOBAYASHI

applied to generalized Heegaard splittings. We note that the first half of this
section is a combination of the results by Casson-Gordon ([C-G]), and Ochiai
([O]), which are based on the argument by Jaco for the proof of the Haken's
theorem ([J]). And the last half is a broad generalization of results in [Ko 1,
Ko2].

Let S be a (possibly disconnected) compact 2-manifold. A properly embed-
ded arc a in S is inessential if there exists an arc b( C 35) such that a U b bounds
a disk in S. a is essential if it is not inessential. A partial hierarchy (cf. [J,
Chapter IV]) for S is a finite sequence (5(0), α0), ••-, (S(m\ am), where 5(0)=5, a{

is an essential arc in 5(l>), and 5(/+1) is obtained from 5(0 by cutting along at. A
partial hierarchy for S, (5(0), 00), •••, (S(m\ am) is a hierarchy if each component
of 5(w+1) is a disk. It is an almost hierarchy if each component of 5(wl+1) is a
disk, or an annulus such that one boundary component is a component of 35.
An essential arc a in S is of type 1 if a joins distinct components of 35, a is of
type 2 if a joins one component of 35, and a separates the component of 5 con-
taining #, and a is of type 3 if a joins one component of 35, and a does not
separate the component of 5 containing a. Let <Jί be a system of mutually
disjoint, essential arcs in 5. We say that an element a of Jl is a d-arc related to
Jl if a is of tyep 1, and there is a component C of 35 such that a is the only
element of JL which meets C.

Throughout this section, M denotes a compact 3-manifold, 5 denotes a
closed or bounded, incompressible, 3-incompressible surface properly embedded
in M.

Let (Q, C2: -F) be a Heegaard splitting of M. Then, the proof of the next
lemma is left to the reader.

Lemma 3.1. There esists an incompressible, d-incompressible surface S'
such that 5' is homeomorphίc to S, each component of S' Π C, (/=!, 2) is incom-
pressible in Ci, and dS'=dS. Moreover, if M is irreducible, then S' is ambient
ίsotopic to S rel 3.

We suppose that 5(cM) satisfies the conclusion of Lemma 3.1. Let 5, —
5Π Cχi=l, 2). Then, by Lemma 2.3, there is an almost hierarchy (5(ι0), α0), •••,
(S[m\ am) for 5j and a sequence of isotopies of type A which realizes the almost
hierarchy i.e. if 5(0)=5, and 5(ί) is the image of 5(''~1} after the ί-th isotopy of
type A ([J, Chapter II]) at a^l9 then 5(0 Π C1=5i°. We may suppose that a{ Π
aj=Φ(i^j) So, we can consider a1 U ••• U am

 are arcs properly embedded in 5X.
Let Ap(Q<p<m) be the system of arcs {ί̂ , •••, ap} in 5j.

Lemma 3.2. Let M, (Q, C2: F), 5, 5t , Ap be as above. Suppose that there
are i,p(i<p<m) such that af is a d-arc related to Ap, and there exits a disk com-
ponent D of S2 such that a{ is the only arc in Ap which meets 3D. Then S is rel
Q ambient isotopic to S' such that the number of the components of S' Π F is less
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than that of S (Ί F. Moreover, if SΊ consists of disks, then S' Π Cl also consists of
disks.

Proof. See [O, Lemma 1]. The arguments there work in this situation.

Lemma 3.2 assures that we can prove the theorems in [J, Ko 1, Ko 2, Mo,
O] for generalized Heegaard splittings without changing proofs. And, we can
prove more theorems by using the same argument (cf. [C-G]).

In the rest of this section, we suppose that M is a Haken manifold without
boundary, or with incompressible toral boundary, {Tly •••, J1/} be a system of
mutually disjoint, non-parallel incompressible tori in Λf, and let 3=Tλ\J ••• U

T,.
By moving 3 by an ambient isotopy, we may suppose that each component

of 31=3 Π Cl is a disk, and each component of 32=3Γ\ C2 is incompressible in

C2. Then, by Lemmas 2.3, 3.1, we have a hierarchy (3(

2\ #o)> •"> (32

m\ am) fc>Γ

32 and a sequence of isotopies of type A which realizes the hierarchy. We note
that if we perform an isotopy of type A at a{ then it produces a band b{ which
connects component(s) of 3(0 Π C\. We say that i, is of type 1, 2, or 3 if a{ is of
type 1, 2, or 3 respectively. Let Ap (0<p<m) be the system of essential arcs

M, —, «/} on 32.

Figure 3.1

Lemma 3.3. If some a^ is of type 2, then 3 is ambient isotopic to 3' such
that each component of 3f Π Cl is a disk, and the number of the components is less

than thatof3f\Cl.

Proof. Let T be the component of 32 containing α, . Then #t separates
T into a punctured torus and a planar surface P. Then, by the induction on the
number of the components of 3P, we can show that some a^ (cP) is a rf-arc
related to Am. Hence, by Lemma 3.2, we have the conclusion of Lemma 3.3.
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Lemma 3.4. Let C be a component of d32,
 and #,- be the first arc which

meets C i.e. a{ ΓΊ CΦφ, aj Π C=φ(j<i). If a{ is not of type 3, then 3 is ambient
isotopic to 3' as in Lemma 3.3.

Proof. If <2, is of type 2, then by Lemma 3.3, we have the conclusion. If
a{ is of type 1, then a{ is a rf-arc related to Af. Hence, by Lemma 3.2, we have
the conclusion.

Lemma 3.5. Let T be a component of 3 and let T2=TΓ\C2. Suppose
that TTϊ Cl consists of more than one disks, and that there are two arcs aiy aj which
are of type 3 and meet a component C of QT2. Then 3 is ambient isotopic to 3f as
in Lemma 3.3.

Proof. Let D be the component of ΓΠCΊ such that dD=C, and let
Γ'=cl(Γ—D). Then, α, Utf, (c7") cuts T' into a disk, or into a disk and an
annulus. Let D' be the component of T' cut along tf,Ufl; , which is a disk.
Let P be the component of T2 cut along a{ U ajt which corresponds to D'. Then,
we see that some ak (cP) is a rf-arc related to Am. Hence, by Lemma 3.2, we
have the conclusion.

REMARK. Suppose that Tf}Cλ consists of a disk. Then T2 contains just
two arcs aiy #,-, which are of type 3.

Figure 3.2

Lemma 3.6. Suppose that there are three arcs #,-, ajy ak which are of type 1
such that each of them meets a component C of d32. Then 3 is ambient isotopic to
3' as in Lemma 3.3.

Proof. Let T be the component of 3 containing Λ, U #> U aky and let T2~
TΓ\C2. Since T2 contains an arc of type 1, dT2 consists of more than one
component. By Lemmas 3.4, 3.5, we may suppose that, for each component
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of 3Γ2, there is only one arc of type 3 which meets the component. Let A be

the union of all type 3 arcs on T2. Then A cuts T2 into annuli B19 •••, Bs (s>2).
We may suppose that #, , and a} are contained in B19 and i<j. Since a} is an

essential arc in 3(

2

j\ #t is a d-arc related to .4,-. Hence, by Lemma 3.2, we
have the conclusion.

Before stating Lemma 3.7, we prepare some terminologies. A link L is a
finite union of circles embedded in the 3-sρhere S3. If L consists of one com-

ponent, then it is called a knot. The exterior, Q(L), of the link L is the closure
of the complement of a regular neighborhood of L. A meridian loop of L is a

non-trivial loop in 9Q(L) which bounds a disk in the regular neighborhood of

L. L is a two bridge link (or knot), if it can be represented as a union of two

trivial tangles with two strings ([R]). Then, the next lemma follows from the
definition easily.

Lemma 3.7. Let V be an orientable genus two handlebody. Suppose that

there are pairwise disjoint annuli Aly A2 in QV, and paίrwise disjoint disks Dly D2

properly embedded in V such that D± U D2 cuts V into a Z-cell, D{ Π A{ is an essential

arc in Aiy AiΓ\Dj=φ (i,j=l, 2, iφ/). Suppose that I is a simple loop in c\(QV—
(A1(JA2)) which separates it into two disks with two holes, and that N is the 3-
manifold obtained from V by attaching a 2-handle along L Then N is homeomorphic

to the exterior of a two bridge link, or a Mo bridge knot, where the core of A{ is a
meridian loop.

Proposition 3.8. Suppose that 3 gives the torus decomposition of M, and
the number of the components of 3ι is minimal among all systems of tori which are
ambient isotopίc to 3, and each of uόhich intersects Cλ in disks. If four disks Dly

Z)2, Z)3, Z)4 of 3ι are mutually parallel in Cly then there is a component T of 3

such that ΓΓ) CΊ=.D, (*=1, 2, 3, or 4).

Proof. We suppose that D^ D2, Z>3, Z)4 are in Cl in this order, and call
the direction in which Dl (Z>4 resp.) is settled 'left' ('right' resp.). Let bjn be the
n-th band which is attached to D1\JD2(JD3\JZ>4. Assume that the conclusion
of the proposition does not hold. By Lemma 3.4, b^ is of type 3. Hence,

bj^ is attached to the left side of Dly or the right side of Z>4 to produce an es-
sential annulus Aλ in Cλ. We may suppose that bjι is attached to D^

If bj2 is attached to Dλ (A19 correctly speaking), then, by Lemmas 3.2, 3.3,

3.5, bj2 is of type 1, and is attached to the left side of D^ Then, we can ex-
change the order of the isotopies of type A so that (jι+l)-th isotopy is performed

on aj2. We note that <z/2 is a rf-arc related to {α0, •••, α^-i, aj2}. But, by Lemma
3.2, this contradicts the minimality assumption of 3. Hence, δ/2 is not at-

tached to Z>j.

Then, we divide the proof into two cases.
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Case 1. bj2 is attached to D2.

In this case, bj2 is of type 3, and produces an annulus A2 which is parallel to
Av Assume that b Jz is attached to Dl or D2. Then, by the argument as above,

we see that i/3 is of type 1, and is attached between Dλ and D2 ('.Aλ and A2).
Then bj3, together with Aλ and A2y produces a disk with two holes P properly
embedded in Cj. A component of 3P bounds a disk D in F. Let T' be the
component of 2(y3+1) containing P. Then 3D bounds a disk Dr on T'. Let
T"=(T-D') \JD. Since M is irreducible, T" is ambient isotopic to T'. Let

2'=(3(/s+D_Γ/)U71//. Then, 2' is ambient isotopic to 2" such that each
component of 2" (Ί CΊ is a disk, and the number of the components of 2" Π CΊ
is less than that of 2ΓI CΊ, a contradiction. Hence, i/3 is not attached to Dl or D2.

Assume that bj3 is attached to Z>3. Then, δ/3 is of type 3, and produces an

annulus A3 which is parallel to A2. Then, there are two annuli A', A" in F

such that (Int A U Int A") Π (Al \j'A2\jA3)=φ, a component of dA' is a com-
ponent of dAl9 the other component of dA' is a component of QA2 and is also a
component of 3^4", and the other component of dA" is a component of dA3.

Let M' (M" resp.) be the closure of the component of M— 2(/3+1), which con-

tains A' (A" resp.). It is possible that M'=M". By the minimality of 2 we

see that A (A" resp.) is an essential annulus in M' (M" resp.). Then, by [J],
M' (M" resp.) admits a Seifert fibration such that A' (A" resp.) is a union of
fibers. Hence, a Seifert fibration on M' can be extended to M' U M" through a
component of 3M'n3M". But, this contradicts the definition of the torus
decomposition.

Hence, έ/3 is of type 3, and is attached to the right side of Z>4 to produce an
incompressible annulus A4. By the argument as above, we see that δ/4 is of
type 3, and is attached to the right side of D3 to produce an incompressible

annulus A3 in CΊ, which is parallel to A±. By the argument as above, we see

that bjs is attached between A2 and A3 to produce a disk with two holes P'. Let

3P'=/! U /2 U /3. We suppose that 12 (13 resp.) is a component of dA2 (QA3 resp.).

Since bj2 and bj4 are of type 3, there is a disk component D' of 2(;5+1) Π C2 such
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that QD'=llf dP' bounds a disk with two holes P" in F. Let a be an arc

properly embedded in P", which joins /2 and /3, and let b be a regular

neighborhood of a in P". We can consider that b is a band which is attached
to P'. Let T" be a twice punctured torus obtained from P' by attahcing b
and isotoping it slightly so that T" is properly embedded in Q. We note
that one boundary component of dT" is /x. Let /4 be the other component of

QT". Since /x U /4 bounds an annulus A1 in F, /4 bounds a disk Z)" in C2 such

that Int Z)"Π2(y5+1)=:φ. Let V be the closure of the component of Q-Γ"
which contains A1. Let J5 be the product region between D' and D" in C2.

Then, by Lemma 3.7, N=V'\JB is homeomorphic to the exterior of a two

bridge knot, where the core of A{ (i—2, 3) corresponds to a meridian loop. By

[R], we see that N is simple. Let Mr be the closure of the component of M—
2^5+1> which contains N, and A2= FrM/ΛΓ. Then, ^42 is an annulus properly

embedded in M''. Let T* be the component of 2(;5+1) which contains dA2.

Then &42 separates T* into two annuli ^f (=P' U £>')> and ^4?, where Af\jA2

=9N. Let ΛΓ'

Figure 3.4

Then, we claim that (ΛΓ, ^42) is homeomorphic to (Z)2X S1, axS1) as a pair,
where Z)2 is a disk, and or is an arc in 9Z>2. Assume that dN is compressible in
N. Then ΛΓ is homeomorphic to the exterior of a trivial knot, a solid torus.

Then, (N, A2) is homeomorphic to (D2xS\axS1) as a pair. Then, let 3*=
(gc/B+D—r*) u (.42LM?). 3(ys+1) is ambient isotopic to 3*, and 2* is ambient

isotopic to 2' such that each component of 2' (Ί Q is a disk and the number of

the components of 2' Π C1 is less than that of 2Γ) C1? a contradiction. Hence,
dN is incompressible in TV i.e. N is homeomorphic to the exterior of a non-

trivial two bridge knot. Assume that (Nf, A2) is not homeomorphic to (D2χS1

9

axS1). Then A2 is an essential annulus in M'. Hence, by [J], M' admits a
Seifert fibration such that A2 is a union of fibers. Then Λf admits a Seifert

fibration such that a fiber in 9Λf is a meridian loop. But, since two bridge
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knots whose exterior admit Seifert fibrations are (2, 2n+l) torus knots, this is

impossible. Hence, (N', A2) is homeomorphic to (D2 X S1, a X S1).

Let 3=(3U^- T*) U (A2 U A f ) . Then, by the above claim, 3 is ambient

isotopic to 3(ys+1) and 2Π ̂ =((3^^ ΠCΊ)—P')U T". Hence, we may sup-
pose that iy6=cl(71//—P'). Then, bj7 is attached between ^ and Z)4, and, by
using the same arguments as above, we see that the closure of the component M"

of M—2(;s+1) containing the region between Dλ and Z)4 is homeomorphic to the
exterior of a two bridge knot. Clearly, Λf'cΛf". Since the exterior of a two

bridge knot is simple, we see that QM' and QM" are parallel in M, a contradic-
tion.

Hence, in Case 1, we have the conclusion of Proposition 3.8.

Case 2. i/2 is attached to D4.

In this case, 6/2 is attached to the right side of D4. Then, by the arguments
in Case 1, we see that iy3, and δ/4 are of type 3, &/3 is attached to the left side of

D2 (or the right side of D3), and i/4 is attached to the right side of Z>3 (or the

left side of D2). Hence, we have the conclusion of Proposition 3.8 by Case 1.
Since i/2 is of type 3, it is not attached to Z)3, and this completes the proof

of Proposition 3.8.

Recall that 3 is a union of mutually disjoint, non-parallel incompressible
tori in M such that each component of 31=3Γ\ C1 is a disk, and each component

of 22— 2lΊ C2 is incompressible in C2. Then, there is a hierarchy (2(

2

0), tf0)> "*>
(3im\ am) for 32 and a sequence of isotopies of type A which realizes the hier-
archy i.e. if 3ω is the image of 3(i~l} after the^-th isotopy, then 3ω Π C2=3£>).

Let Δ0, •••, Δw be a system of disks which defines the sequence of isotopies of
type A with Δt Π Δj=φ(ί=$=j). Then, £?£° Π Δt =tft , Δ, (Ί F=dt an arc such that
dai=ddh di U di=dΔi. Let Δ{ be a dual disk of Δt (see the fourth paragraph of

[O, 462p.], or Figure 3.5), where Δ{ Π(3(t'+1) Π Q)—α<, ΔίΠίWf an arc such

Figure 3.5
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that daί=dd'i, af

{ U df

{=9ΔJ, and Δί Γi Δ'j=φ(i*j). We may suppose that d0, •••,
Jw and rfo, •••, dm are in general position i.e. for each pair (i,j) (Q<i,j<m) d{

and dj intersects transversely in their interiors. We say that the band bj goes

through biy ifj>i, and d'{

Figure 3.6

Then, we define the complexity of the system of disks Δ0, •••, Δm which

realizes the hierarchy (3?\ OQ), •••, (3(

2

m\ am) with Δ, Γi Δ, =φ(/φ/) as follows:

£(Δ0, •••, Δw) denotes the number of times when the bands i0, * ,6W go
through themselves.

Then, we have :

Lemma 3.9. Let D be a component of 3lt and bjn be the n-th band which
is attached to D. Suppose that bjk (k> 1) is of type 1, and bjk does not go through
bj{ for each l(<k). Then, 3 is ambient isotopic to 3' as in Lemma 3.3.

Proof. Since bjk does not go through i/7, we can change the order of
the isotopies such that the (j\+l)-th isotopy is performed at α/Λ. ajk is a rf-arc
related to {a^ •••, aj^lf aj£. Hence, by Lemma 3.2, we have the conclusion
of Lemma 3.9.

Lemma 3.10. We consider the submanifold FΓ( 3(0=83£o in F. Suppose
that there exists a rectangle R in F such that Int R Π 3(i) = φ, two opposite edges of
R are contained in dj(j<i) with bj is of type 1, one edge of R is contained in the
boundary of a band bk(j<k<i), and the last edge of R is contained in a component
C of FΠ 3(I) such that C bounds a disk component D of 2 °̂. Then, there exists a
system of disks Δ0, ••-, Δw in M such that Δ^ΓlΔ^φ (/>Φ?), Δ0, •••, Άm realizes

the hierarchy (3(

2°\ a0), -, (3f\ am) and ̂ (Δ0, -, Δ J<c(Δ0, -, ΔM).
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Figure 3.7

Proof. Let Z)* be the frontier of a small regular neighborhood of D in C2

which intersects R. Then, Z)* is a disk properly embedded in C2 such that Z>*

Π d3P=φ, and D* Π R=dD* Π # consists of an arc. We get a disk Δf which
defines an isotopy of type A at ak, by joining Δ* and Z)* with a band which lie
in a neighborhood of the arc d j . Let rff =Δ? Π .F, and if be the band which is

attached to 3(k) Π Cx as the result of the isotopy of type A at ak along Δf. Then,
by isotoping Δ* in a neighborhood of R as in Figure 3.8 we get ΔΛ which

defines an isotopy of type A at ak such that #(<7*Γlίi/)<;#(^*Γlέ//) (l<k), and
rfy), where J^^Δ^n^ Then, we easily see that there is a

system of disks ΔΛ w, which define isotopies of type A at ak+ly • *yam, and

Figure 3.8
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This completes the proof of Lemma 3.10.

4. Find an incompressible torus which intersects the Heegaard
surface in a circle

Let M be a Haken manifold which is closed or with incompressible toral
boundary, (Cly C2; F) be a genus g Heegaard splitting of M, and 2 be a union
of tori which gives the torus decomposition of M. The purpose of this section
is to show:

Proposition 4.1. If the number of the components of 3 is greater than or
equal to 3̂ -4, then there exists a component T of 3 such that T is ambient isotopic
to a torus which intersects F in a circle.

We note that if we omit the assumption on the number of the components
of 2, then the conclusion of Proposition 4.1 does not hold in general. We
will give such examples in Example 4.5.

We may suppose that each component of 31=3Γ(C1 is a disk, and the
number of the components of 2ίΊ Q is minimal among all systems of tori which
are ambient isotopic to 3 and each of which intersects Cl in disks. Then, by
section 3, there is a hierarchy (2(

2

0), 00), ••-, (2 °̂, am) for 32=3(1 C2, and a seq-
uence of isotopies of type A which realizes the hierarchy. Let 2(t), Δ, (/=l, •••,
m\ Δί, diy d'i be as in section 3. Let 3'=3(m+1\ 3'i = 3f Π Cf (/=l, 2). Then
Δί^, •••, Δo defines a hierarchy for 2ί, and a sequence of isotopies of type A
which realizes the hierarchy. Then, we have:

Lemma 4.2. £(Δ0, •••, Δm)=c(Δ'm, •••, Δo). Moreover, we can take dual
disks (Am, •••, ΔoO of (Δ^, •••, Δo) and a sequence of isotopies of type A so that
Δ<'=Δt,

Proof. We will prove Lemma 4.2 in the case when m= 1. The proof of
the general case will follow easily by using the same argument. Suppose that

Figure 4.1
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the band b1 goes through b0 n times i.e. bλ Γl Δo consists of n arcs. Then, we can

take a dual disk of Δί such that d{' Π d'Q consists of n points (Figure 4.1). Hence,

£(Δ0> A1)=c(Δί, Δί). It is clear tht that we can take an isotopy of type A at Δ{

SO that Δ" = Δf.

Lemma 4.3. (=d32) contains at most 3̂ -5 parallel classes in F.

Proof. We prove Lemma 4.3 in the case when Cl is a handlebody i.e.
dC1=F. The proof in the general case is essentially the same. Since F can

contain 3#-3 mutually non parallel simple closed curves, it is enough to show:
(*) Two components of Cl cut along 3ι is not simply connected, or there

is a non-simply connected component V of C1 cut along 3ι such that

Assume that all components of C1—31 are simply connected. Then, if we
perform the first isotopy of type A at #0, then, by section 3, it produces an

incompressible annulus A in Q. But A can be pushed into a component of

Q— 21? a contradiction. Hence, at least one component of C1—31 is not simply
connected. Suppose that just one component V of Cl— 2X is not simply con-
nected. Let V=d V. Assume that X(F(ΊF)>— -2. Then, since V is not
simply connected, we see that V is a solid torus, and V Π F is a once punctured
torus. Let D be the component of 3λ such that DddV. Then, the first band

AO is attached to D to produce an incompressible annulus A in V. We note that
QA bounds an annulus A* in VΓ\F. Let M' be the closure of the component

of M— 2(1) which contains A*. By the minimality of 3, we see that A* is an
essential annulus in M'. Hence, by [J], M' admits a Seifert fibration such that

A* is a union of fibers. Let D' be the component of 2X to which bλ is attached.

Assume that D'=D. Then, by the minimality of 2, and Lemmas 3.2, 3.3, we
see that bl is of type 3, and it produces a once punctured torus T' properly

embedded in Cx. Since V is a solid torus, we see that T' is compressible in

Figure 4.2
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CΊ, a contradiction. Hence, Z)'ΦZλ Then, bλ produces an incompressible an-

nulus A' properly embedded in Q. Then, we can span an annulus -4** between

the core of A and the core of A' in Cj. Let M" be the closure of the com-

ponents of M—2(2) which contains ^ϊ**. Then, by the minimality of 2, we see

that ^4** is an essential annulus in Mn'. By [J], M" admits a Seifert fibration

such that ^4** is a union of regular fibers. Hence, a Seifert fibration on M'

extends to Mff through the component of 2(2) which contains A, a contradiction.

This completes the proof of Lemma 4.3.

Lemma 4.4. Suppose that there exist three components D^ D2y D3 of 3λ

which are mutually parallel in Clf and no component of 3 intersects Cλ in one disk.

We may suppose that Dly D2ί D3 are in Cλ in this order, and define the direction

'left' and 'right' as in the proof of Proposition 3.8. Let bjn be the n-ih band which

is attached to D1\JDZ\JD3. Then, if needed by exchanging the suffix, We have:

(i) bj. (/=!, 2) is attached to the left side of Z>, to produce an essential an-

nulus Ait and A1 and A2 are parallel in Cly

(ii) bj3 is attached to the right side of Z>3,

(iii) If Ml is the closure of the component of M—3('*+1) which contains the

region between D2 and D3, then M} is homeomorphίc to the exterior of a two bridge

knot, where the core of Ai(i= 2, 3) is a meridian loop, and

(iv) If M2 is the closure of the component of M—3(J*+1) which contains the

product region between Al and A2, then M2 admits a Seifert fibration such that Aj

(j=2y 3) is a union of fibers.

The proof of Lemma 4.4 is done by using the same case by case argument

as in the proof of Proposition 3.8. So, we will omit it.

Proof of Proposition 4.1.

Assume that the conclusion does not hold. We suppose that each com-

ponent of 2ΠCΊ is a disk, and ^(2) denotes the number of the components.

Then we define a complexity for a pair (2, (Δ0, •••, ΔJ) by (^(2), £(Δ0, •••, ΔJ)

with lexicographic order. Then, we suppose that (2, £(Δ0, •••, Δw)) is minimal
with respect to this order.

Since each component of 2 intersects CΊ in more than one component,

3ι consists of at least όg-S components. If no three components of 3ι are

mutually parallel in C19 then, by Lemma 4.3, we see that 3l consists of at most

όg-lO components, a contradiction. On the other hand, if four components of

3ι are mutually parallel in C19 then, by Proposition 3.8, we see that the con-

clusion holds. Hence, we need to analyze mutually parallel three components

for the proof of Proposition 4.1.

Suppose that two components Dί9 D2 of 2X are mutually parallel in Q.

Let bj. be the ί-th band which is attached to Z^UZ^ We call the direction
to which D! (D2 resp.) is settled 'left* ('right' resp.). By Lemmas 3.2, 3.3, we
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see that bjι is of type 3, and we may suppose that b^ is attached to the left side
of Dl to produce an essential annulus properly embedded in Cλ. By the argu-

ment in the proof of Proposition 3.8, we see that bj2 is attached to D2 to produce

an essential annulus. We say that the pair Dly D2 is of type* in {(32°), Δ,} if
bj2 is attached to the right side of D2.

Let Dίy D2 be of type*. Then, we claim that bj3 and ό/4 are attached be-

tween the right side of D1 and the left side of D2. By Lemma 3.9, we see that

bJ3 is attached between the right side of Dx and the left side of D2. By the proof

of Proposition 3.8, we see that δ/4 is attached between Dl and D2. Assume that

bj^ is attached between the left side of Dλ and the right side of D2. Then, it is

clear that no band goes through δ/4. By Lemma 3.9, we see that δ/4 goes through

bj3. On the other hand, by the proof of Proposition 3.8, we have a band b^

which is attached between the right side of Dl and the left side of D2. Since δy4

goes through δ, 3, we see that bj4 goes through bλ\J ••• U#/4_ι less times than b^.

And we can move ζl'=3(m+1) by an isotopy to 3" such that 2" fϊ Q is obtained
from 3Γi Cl by attaching bands bQ, bly —, bJ4_ly bf^y bj^+lί • ••, bm. But this con-

tradicts the minimality of £(Δ0, •••, Δm), and we establish the claim.

Hence, bj3 and bj4 are attached between the right side of Dl and the left

side of D2 to produce a twice punctured tori Q properly embedded in Q. Then,

QQ consists of pairwise parallel simple loops in F, and dQ bounds two disks

Z>ί, D2 which are the components of 3'2. Since δ/3, and έ,4 are attached between
the right side of D1 and the left side of D2, we see:

(*) The pair D{, D2 is of type* in {(3ί"+1-°, αί,.,), Δί-, }.
Let {E19 " ,EP} ({E{, •••, E'p} resp.) be the parallel classes of the disks in

3ι (3ί resp.) in Q (C2 resp.). We may suppose that {El9 ~ ,Eq} ({E{, •••, Eft

resp.) is the subset of {El9 •••,£"/} ({£"(, •••,£'?} resp.) each element of which
contains a pair of disks which is of type*. Then, by (*), there is a cor-

respondence -xjr: {El9 •• ,£'ί}->{£lί, •• •,£"£/}. Since no four components of 32

are mutually parallel in C2, ψ is 1-1. By Lemma 4.2, and (*), we see that ψ is

onto. Hence, q=q', and we may suppose that '\]r(Ei)=E/

i(i^l9 •••, q). We note
that each E^EΊ resp.) (i=l, •••, q) contains two, or three components of 31(3'2
resp.), and, by Lemma 4.4, we see that each Ej(j>q) contains at most two com-

ponents of 3ι(32 resp.). Then, each E{ (i=l, •••, q) is one of the following four

types.

Type a. Both Eh E\ contain exactly two components.

Type b. Both Eh E\ contain three components.
Type c. E{ contains exactly two components, and E'i contains three com-

ponents.
Type d. Ej contains three components, and E\ contains exactly two com-

ponents.

By Lemma 4.2, we may suppose that:
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(**)
In the following, for the proof of Proposition 4.1, we investigate type ό, c

parallel classes intimately.

Type b. Suppose that D19 D2f D3 (D{, D2, D'3 resp.) belong to the parallel

class Ei(E'i resp.), where the pair Z)2, D3(D2) D3 resp.) is of type*. We call the

direction in which D2, D2(D3y D3 resp.) is settled 'left' ('right' resp.). We may
suppose that D^Dί resp.) is settled in the left side of D2(D2 resp.). Let bj. be
the z-th band which is attached to D1 U D2 U D3. Then, by Lemma 4.4, we may
suppose that bji(i=l, 2, 3) is attached to Ό{ to produce an essential annulus Aiy

where A1 and A2 are parallel in Cλ. Then QAlU QA2 bounds pairwise disjoint
annuli A1, A2 in F. Then, there are three annuli A{, A2, A'3 in 3υ*+1} Π C2 such
that A'i is obtained from Z>ί by attaching a type 3 band, QA1 is a union of a

component of QA{ and a component of QA'2, and one component of QA2 is a

component of dA'3. Then, there is an annulus A\^pAl) in F such that Int A3 Π

Figure 4.3

)=φ, and 3-43 is a union of a component of dA{ and a component of QA2.
By the fourth paragraph in the proof of Proposition 4.1, we may suppose that 6y4

and bj5 are attached between the right side of D2 and the left side of D3. Then,

bjβ is of type 1, and is attached to Dλ.

Assertion 1. bjβ is attached to the right side of Dλ.

Proof. Assume that bjβ is attached to the left side of Dγ. If b} 6 does not
go through έ/4 or i; 5, then bJ6 does not go through δ^. Hence, by Lemma

3.9, we can decrease £ι(3), a contradiction. If bjβ goes through ό/4 or όy5,

then we can find a rectangle which satisfies the assumption of Lemma 3.10.

See Figure 4.4. Hence, we can decrease c(Δ0, •••, Δw) without changing
a contradiction.

Let D^^D^ be the component of 3λ to which bj is attached.
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Figure 4.4

Assertion 2. There is no component of 3} which is parallel to D4.

Proof. Assume that a component Z>5 of 3ι is parallel to D4. Let bki

(ί=l, 2, •••) be the z'-th band which is attached to Z>4 U D5. By the argument in
the proof of Proposition 3.8, we may suppose that bk (bk2 resp.) is attached to Z>4

(Z>5 resp.) to produce an essential annulus A4(A$ resp.). Since δ/6 is attached to
Z>4, we see that D4, D5 is not of type*. Hence A4 and A5 are parallel in Cx. We

call the direction to which D4(D5 resp.) is settled 'right' (left' resp.). Assume
that bj6 is attached to the right side of Z>4. Let Ml(M2 resp.) be the closure of
the component of M—3<*2+1) corresponding to the product region between A1

and A2(A4 and A5 resp.). It is possible that M1=M2. By the minimality of 3,
and [J], we see that Mί(M2 resp.) admits a Seifert fibration such that A^A4 resp.)

is a union of fibers. Hence, a Seifert fibration on Ml extends to M2 through the
component of QM1 containing A4ί a contradiction.

Assume that δ,6 is attached to the left side of Z)4. Then, there is a type 1
band bs(k2<s<j3) which is attached to the left side of Z)5, and through which
bjβ goes. Then, we can find a rectangle which satisfies the assumption of

Lemma 3.10. See Figure 4.5. Hence, we can decrease £(Δ0, •••, Δw) without
changing ^(3), a contradiction.

Zλ

Figure 4.5

Type c. Suppose that Dl9 D2(D{y D'2, D$ resp.) belong to the parallel class

Ei(E'i resp.), where the pair {D{> D2} is of type*. We call the direction in which

D19DΊ(D2,D2 resp.) is settled 'left' ('right' resp.). We may suppose that Z>3 is
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settled in the right side of D2. Let bj. be the i-th band which is attached to

D1U D2. Then, we may suppose that &/,.(*= 1, 2) is atached to Z>, to produce an
essential annulus Af. Then, 3(J2+1) Π C2 contains three annuli A{, A'2, A3, where
A'i(ί=\, 2, 3) is obtained from D\ by attaching a type 3 band, and A2 and A3 are

parallel in C2. Then, dA'2 U dA3 bounds pairwise disjoint annuli A1, A2 in F.

Let Z)3, D4(=t=Dly D2) be the components of 3ίy such that there are type 3 bands

A2

A{ A2A
l

which are attached to Z>3, and Z>4 to produce annuli A3y and A4y where a com-

ponent of QA3(dA4 resp.) is a component of θ^^θ l̂2 resp.). Since no com-

ponent of 3 intersects Cl in a disk, we see that Z)3Φ.D4. Then, by using the
arguments in the proof of Assertion 2, we can show:

Assertion 3. There is no component of 3ι which is parallel to D3 or Z>4.

Then, we continue the proof of Proposition 4.1. Recall that {£Ί, •••, Eq}

({E{y •••, Eg} resp.) is the set of parallel classes of 3ι(32 resp.) each element of
which contains a pair of type* disks, and \lr(Ei)=E/

i. We may suppose that
{EΊ, •••, Er} (r<q) is the subset of {E19 •••, Eq}, each element of which is of type

c. Then, by Assertion 3, for each !?,•(*= 1, •••, r), there are two elements !?/(,-),

Em(i) (l(ί)^Ftn(i))^ each of which contains exactly one component of 3^ and, hence,

/(ί), m(i)>q. Let C= U {El(i), Em(»}. Since, for each element D of 319 there
ί = l

are two type 1 bands which are attached to D (Lemma 3.6), C contains at least r
elements.

We may suppose that {Ej\r<j<r+s(s>0)} is the subset of {Ely •• ,£'ί},

each element of which is of type b. By Assertion 2, for each Ei(r<i<r-}-s),

there is an element EHu) which contains exactly one component of 3ι, and, hence,

n(i)>q. Suppose that En(i)^C. Let Dλ be the component of 2ι, which belongs
to Eiy and is not a component of the type* pair. Let Tλ be the component of 3
which contains Dv Then, Tλ Π Cl consists of more than two components, and

at least two components of Tl Π C1 belong to C. Hence, if we eliminate Z>x from

£?!, then we still have at least 6 -̂8 components By applying this elimination



192 T. KOBAYASHI

from 3ι for each Ei(r<ί<rJ

Γs) with En(i^C, we get a subset 3) of 2j such that

Then, suppose that En(i^C(r<i<r+s). Let Dλ be as above. Suppose
that there exists j (r<j<r+s) such that j =f=ί, and En(i^=^En(j). By Lemma 3.6,
we can have at most one/ as above for each L Let Tλ be the component of 3
which contains Z)x. Then, Tl intersects Cl in more than two components.
Then, we eliminate D1 from 3). By applying this elimination from 3) for each
pair i,j as above, we get a subset 3)' of .0 such that # ίD'>6g'$.

We may suppose that {£/|r+$</^r+H-*(*2>0)} is the subset of {Ely •••,
£"0} which consists of type d elements. By (**), we have t<r. Hence, if the

number of elements of C'={E^ ••-, Eq} \JC\J {£„(,+$, •••, £"n(r+s)} is uy then the
number of the elements of 3)' which belong to C' is at most 2u. We note that
if ί>r-\-s-\-t, then JE, contains at most two components. By Lemma 4.3, we
have p< 3g-5. Hence, we have # <D'<()g-lΰ. But this contradicts the inequality

in the last paragraph.
This completes the proof of Proposition 4.1.

Let Tλ be a component of 3 which intersects Cx in a disk D. Let b ̂  be
the first band which is attached to D. Let T be the image of TL in 2(/1+1).
Then -4, =Γn Cf (ί=l, 2) is an essential annulus in Cf . We say that 7\ is bad
if Ai(i= 1, 2) cuts Q into a genus 1 compression body, and a genus. £ com-

pression body. TΊ is £00d if it is not bad.

Proposition 4.1.' If the number of the components of 3 is greater than or
equal to 3̂ -4, and g>2, then there is a component T of 3 such that T is ambient
isotopic to T' which intersects Cl in a disk, and is good.

Proof. Let 7 ,̂ •••, Tk be the components of 3 such that each J1,- intersects
<?! in a disk. Assume that all Tly ,Tk are bad. Let Di=T{ Π CΊ (i=l, — , k).

Assertion 1. There is no component of 3λ which is parallel to Z>, .

Proof. Assume that there is a component D of 3λ which is parallel to some
J5, . Let bj be the first band which is attached to D. DI cuts Q into a genus 1
compression body F, and a genus g-1 (>1) compression body. Then, we have:

Proof. Assume that this is not true. Then 3(i+1) Π Ct contains pairwise
parallel annuli Al9 A2 such that Al is obtained from Z)t by attaching a type 3
band, and A2 is obtained from D by attaching bj. Since V is a genus 1 compres-
sion body, there is an annulus AmF such that A Π (Al U A2)=A Π Al=dA=dAl.
Hence, we have a contradiction as in the proof of Lemma 4.3.

By using the same argument we can show:
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bj is attached to D to the side opposite to the side in which Z), is settled.
Then, by Lemma 3.9, we see that there is a component T of 3 such that

TΓ[Cl=D9 and T is good, a contradiction.
Let 3)' be a subset of 3ly which is obtained in the proof of Proposition

4.1.

Assertion 2. 3)' Z> {Dl9 - , Dk}

Proof. Assume that D^ίD'. Then, by definition, there is a component

of 3ι which is parallel to Z>, , contradicting Assertion 1.

Let T be a component of 3 such that Γ'Φ7χ*=l, •••, k). Then, by the
proof of Proposition 4.1, we see that 3)' contains at least two components of
T'Π CV Hence, 3)' contains at least 6g-8-k components. On the other hand,
by the estimation in the last paragraph in the proof of Proposition 4.1, and As-

sertions 1, 2, we see that 3)' contains at most 6g-lQ-k components, a contradic-

tion.

This completes the proof of Proposition 4.1'.

EXAMPLE 4.5. We will show that there are infinitely many Haken manifolds
with Heegaard splitting of genus two, each of which is decomposed into two

pieces by the torus decomposition, and the torus which give the torus decompo-
sition does not intersect any genus two Heegaard surface in a circle.

Let Ml be the exterior of a hyperbolic two bridge knot (for example, figure
eight knot [T2]), M2 be a Seifert fibered manifold whose orbit manifold is a
Mϋbius band with two exceptional fibers, and M be a closed 3-manifold ob-
tained from M! and M2 by identifying their boundaries by a homeomorphism such
that a meridian loop on QMλ is identified with a fiber in 9M2. Then, by
[Ko 2, Theorem], we see that M admits a genus two Heegaard splitting. It is
clear that M1\JM2 gives the torus decomposition of M. Let T=dM1=dM2

(CM).
Assume that T intersects a genus two Heegaard surface in a circle. Then,

by the argument in [Ko 2, Case 2.2.1], we see that M2 admits a Seifert fibra-
tion with orbit manifold a disk and two exceptional fibers. But this contradicts
the uniqueness of the torus decomposition.

5. Closing boundary of a Haken manifold

Let Ci(ι=l, 2) be a compression body, {A{, •••, Ap} (p>l) be a system of

mutually disjoint annuli in 9QCi9 and g: clfθoQ— U ^4})->cl(90C2— U A}) be a
ί=l ι=l

homeomorphism such that g (QA\)=dA2i(i= 1, , p). Then N= Cl U C2 is a com-

pact 3-manifold with boundary. Suppose that N is a Haken manifold with
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incompressible toral boundary. In this section, we will investigate the generic

structure of the manifold N'=C1\J C2, where g': cUd^— U A])-*cl(dQC2— U
/I2\ r *' *=2 '=2Ai) is an extension of g.

For the proof of the next lemma, see [J, Chapter VI].

Lemma 5.1. Let S be a Seifert fibered manifold with boundary. If S is

not homeomorphic to D2xS\ SlxSlx[Q, 1], or the twisted [0,1] bundle over the
Klein bottle, then Seifert fibrations on S are unique up to ambient isotopy of S.
Moreover, if S is the twisted [0, 1] bundle over the Klein bottle, then S can admit
exactly two different Seifert fibrations up to ambient isotopy of S such that one is

with orbit manifold a disk and two exceptional fibers of index 2, and the other is with
orbit manifold a Mϋbius band and no exceptional fibers.

Lemma 5.2. Let Cίy A{, g, N be as above. Suppose that N is decomposed

into ?(>!) components by the torus decomposition. Let 3 be the system of tori which
gives the torus decomposition, and Σ be the closure of the component of N—3 which

p

contains A\\jAl. Then, there is a homeomorphism g': cl(90CΊ-- U A})-
P ί=2

— U -4?) such that:

(i) g' is an extension of g,
(ϋ) ΛΓ^CΊUCa is a Haken manifold which is closed, or with incompressible

toral boundary. If Σ does not admit a Seifert fibration with orbit manifold an
annulus and one exceptional fiber such that A\, A\ are unions of fibers, or with
orbit manifold a disk with two holes and no exceptional fibers such that A\, A\
are unions of fibers, then the image of 3 in N' gives the torus decomposition of

N'. Hence, N' is decomposed into q components by the torus decomposition,

(iii) If Σ admits a Seifert fibration with orbit manifold an annulus and one
exceptional fiber such that A\,A\ are unions of fibers, then the image of 3— T in N'
gives the torus decomposition of N', where Γ=FrMΣ. Hence, N' is decomposed
into q— 1 components, and

(iv) If Σ admits a Seifert fibration with orbit manifold a disk with two
holes and no exceptional fibers such that A\, A\ are unions of fibers, then the image
of 3— T' in N' gives the torus decomposition of N', where T' is a component of

FτM Σ. Hence, Nr is decomposed into q—\ components.

Proof. First, we consider the rel QA{ isotopy classes of homeomorphisms

h: A\-*A\ with h\9Aι=g\9A\. Let />,-: [0, ΐ\χR-*Aί(i=l,2) be the universal

cover of A[y where the covering translations are generated by (x,y)-+(x, J+l).
Let A be a lift of h to the universal cover. We may suppose that A(0, 0)—(0, 0).
Then, rel dA\ isotopy class of h is determined by 8 (eZ) with K(l, 0)=(1, 8).

We fix a homeomorphism A8(£^Z) such that hz\^A\=g\*A\> and J5§(1, 0)=(1, £).
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ci (θoCΊ— y ^5)->ci (90c2— y A2

{).

Suppose that Σ admits a hyperbolic structure ([Tl]), then by Thurston's
hyperbolic Dehn surgery theory ([T2]), we see that if we take 6 sufficiently
large, then^g satisfies the conclusions (i), (ii).

Hence, suppose that Σ admits a Seifert fibration. Let /(c9JV) be a com-
ponent of QA\ with an orientation, m(c.QN) be a simple loop ̂ ([0, 1] X {0}) \Jp2

([0, 1] X {0}) with an orientation. Let [/], [m] be the homology class represented
by I, m. Then {[/], [m]} is a generator of the first homology group of the torus

Al\jAl(c:dN). Let l^dAlUAl) be a fiber of Σ with an orientation. Then

], where a,b^Z, (a, b) = l. Let N^=Cλ U C2, and Σε be the image

of Σ in N9. Then, Ns is homeomorphic to the manifold which is obtained from

N and D2 X S1 by identifying A{\jAl and 3(D2 X S1) by a homeomorphism such

that diyχ {pt} is identified with a loop representing £[/]+[wι].
Suppose that Σ does not admit a Seifert fibration such that A\, A\ are

unions of fibers. Then iΦO, and the algebraic intersection number of β [/] + [#*]
ίB \\

and #[/]+i[W) is det ( )=b£—a. If we take 6 sufficiently large, then we can
\# b/

make the absolute value of the intersection number greater than two. Then Σ8

admits a Seifert fibration such that one boundary component of Σ is exchanged

to an exceptional fiber with index greater than two. By Lemma 5.1, it is easily

checked that Seifert fibrations on Σg are unique up to ambient isotopies of Σε,
and each component of 9Σ8 is incompressible. Hence, £ε satisfies the conclusions

(i), (ϋ).
Suppose that Σ admits a Seifert fibration such that A\y Al are unions of

fibers. Then, Σ8 admits a Seifert fibration such that one boundary component

of Σ is exchanged to a regular fiber. If Σε is not homeomorphic to D2xS1,

S1xS1X [0, 1], or the twisted [0, 1] bundle over the Klein bottle, then, by Lem-
ma 5.1, we see that ΛΓε is a Haken manifold and the image of 3 in N9 gives the

torus decomposition of N99 for each 8. Hence, ge satisfies the conclusions (i), (ii).

Let Σ' be the union of the closure of the components of N—3, each
component of which intersects Σ. Σε denotes the image of Σ' in N9.

Suppose that Σβ is the twisted [0, 1] bundle over the Klein bottle. Then,
Σ8 is not a piece of the torus decomposition of N'9 if and only if a Seifert fibra-

tion on Σg extends to a Seifet fibration on Σε U Σg. But, it is easily seen that for

almost all £, any Seifert fibrations on Σε do not extend to Σ ε UΣg. Hence, we
have the conclusions (i), (ii).

Suppose that Σβ=jD2X*Srl. Then, Σ admits a Seifert fibration with orbit

manifold an annulus and one exceptional fiber. Let Λ^^cl (AT—Σ), Tl=Nf Π Σ,
/X(CTj) be a fiber of Σ with an orientation. Let m'(c:T^ be a non-trivial simple
loop which bounds a disk in Σ0, /'(cTΊ) be a non trivial simple loop which
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intersects m' transversely in a point. Then, [/J=α1[w']+δ1[/
/]eH1(T1; Z) (al9 b±

eZ, |δj >1, (flj, &!)—!). Then N9 is homeomorphic to the manifold obtained

from N' and D*X S1 by identifying ϊ\ and 9(D2X S1) by a homeomorphism which

takes a loop representing [m']-Kδι(0ιM+δ,[/'])=(! +£#ι&ι) [m']+εbl[Γ] to a
loop ΘZ^X {pt}. If Σ' is hyperbolic, then, for sufficiently large 8, the image of
3— 7\ in ΛΓ8 gives the torus decomposition of JVt. Suppose that Σ' admits a
Seifert fibration. Let /2(c7\) be an oriented fiber of a Seifert fibration on 2'.

Then, [l2]=a2[m']+b2[Γ] (<%, 62eZ, (α,2 δ2)-l), where det (ΛI M-^^-^&iΦ

0. Since, det ((1+6a* b^ εb2γ]=b2+εbl(alb2-a2bl\ we can'extend the Seifert
\ a2 b2'

fibration on Σ£ to Σ£ U Σβ with creating a new exceptional fiber, for sufficiently
large 6. Then, by the argument as above, we see that N9 is a Haken manifold
and the image of 3— Tλ in Ne gives the torus decomposition of ΛΓβ. Hence, we
have the conclusion (iii).

Suppose that Σt=S1xS1x[0, 1]. Then Σ admits a Seifert fibration with
orbit manifold a disk with two holes and no exceptional fibers i.e. Σ is home-
omorphic to (disk with two holes) X S1. Suppose that Σ' does not admit a Seifert
fibration i.e. one component of 2' does not admit a Seifert fibration, then the

image of 3— T' gives a torus decomposition of Nt for each £, where T' is a com-
ponent of FrM2. Suppose that Σ' admits a Seifert fibration, then, by Lemma
5.1, it is easily seen that any Seifert fib rations on Σ£ do not extend to Σ£ U Σ8 for
almost all G. Hence, the image of 3— T' gives the torus decomposition of -/Vβ,

and we have the conclusion (iv).

This completes the proof of Lemma 5.2.

For the statement of Lemma 5.3, we define a terminology. Let C be a

genus £(>!) compression body, and JL={A^ " ,-4J (m>\) be a system of
mutually disjoint annuli in 30C. We say that A1 is simple lϋith respect to Jl if
there is a disk D properly embedded in C such that D cuts C into a solid torus

V and a genus g—1 compression body with QDΓ[Ai=φ(i=l, •••, m)> AiddV,
Ai Π W= φ (i=2, •••, m), and (Γ, Λ) is homeomorphic to (^X [0, 1], Aλx {0})
as a pair. Then, we have:

Lemma 5.3. Let Ci} Aj (ί=l, 2,j=l, •••,/>), g, N, Σ be as in Lemma 5.2.
Suppose that A\ is simple with respect to {A\, — ,-4J}, and Σ admits a Seifert
fibration such that A\ (i=l, 2) is a union of fibers. Then, there is an embedding g':

cl (θoCj— U ^4})->90C2 such that:
J = l

(i) N'=Cί U C2 is homeomorphic to N, and
g'

(ii) If Σ' is the component of the torus decomposition of N' which contains

A\, then Σ' does not admit a Seifert fibration such that A\ is a union of fibers.
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Proof. By definition, there is a disk D in C1 such that Z> cuts Cj into a
solid torus Vy and a compression body Cί, where A\dQVy and (F, A\) is home-
omorphic to (A\X [0, 1], ,4}x {0}) as a pair. Let £ be the restriction of g to
dQCl—(dV\J U -4}). We consider g an embedding from a subsurface of 30Cί

to 80C2. Then N"=C{ U C2 is homeomorphic to Λ7". Let T be the component
g

of 9ΛΓ" which contains A\y D' be the copy of D in J1. By Lemma 5.1, there is
a simple loop / on T such that / is not isotopic to a regular fiber of any Seifert
fibration on Σ' We may suppose that / intersects Dr in an arc. Let N(l) be a

regular neighborhood of / in ΛT, Af=N(l)ft T, and Cl'=d\jN(l). Then,
there is a homeomorphism h: (Cly A\)-+(CΊ'y A') such that h\A*=idAι (l<j<m).

Let Cί=cl(N"—CΊ'). Then, there is a homeomorphism h'ι C2-»C2, and an

embedding g: cl(90CΓ-(^' U U A}))->Q0C'2 such that C{' U C2' is homeomorphic
y=2 j

to ΛΓ". Then, g'=h'°g°h\ P satisfies the conclusion of Lemma 5.3.
Cl (C/0C/1— U •«.})

y=ι

This completes the proof of Lemma 5.3.

The next lemma will be needed for the proof of Theorem 1.

Lemma 5.4. Let A be an essential annulus in a genus g compression body C
such that dAddQC. Then, A cuts C into two compression bodies C'y C/f such
that genus (C')-\-genus (C")=g+ly or A cuts C into a genus g compression body
C. Moreover, if A', A" denote the image of A in C'y C" (or C)y then one of
A'y A"y say A'y is simple with respect to A1 (or {A1

 y A"}) in C' (or C).

This can be proved by using the same argument as in [Ko 2, Lemma 3.2]

together with Lemmas 3.2, 3.3. So we will omit the proof.

6. Proof of Theorem 1

Let 3 be the union of tori which give the torus decomposition of My and
(Cly C2; F) be a genus g Heegaard splitting of M. We may suppose that each

component of 3ΠQ is a disk and the number of the component of 3Γ\C1

is minimal among all systems of tori which are ambient isotopic to 3, and
intersect Q in disks. Let c(M) be the first Betti number of the characteristic
graph GM. Then, we order (gyc(M)) lexicographically. The proof will be

done by the induction on (gy c(M)). Let ΛΓbe a Haken manifold as in Theorem
1, and cS be the union of tori which gives the torus decompositoin of N. Then,
n(N) denotes the number of the components of N—<S.

As we see later (section 8), we can construct a Haken manifold with genus
g Heegaard splitting and decomposed into 3̂ -3 components by the torus decom-
position. Hence, we may suppose that 3 contains at least 3̂ -4 components.

As the first step of the induction, we will show:
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Lemma 6.1. Let M, g be as in Theorem 1. Suppose that g=2. Then,

M is decomposed into at most 3 components by the torus decomposition. Moreover,

if M is decomposed into 3 components, then GM is MλM My where M, (t=l, 3)
is a simple Seifert fibered manifold, and M2 is homeomorphic to the exterior of a
two bridge link.

REMARK. By [Ko 2, Lemma 4.3], we see that M2 is simple.

Proof. This can be proved by using the arguments in [Ko 1, Ko 2]. We
do not think it worth to repeat the argument here, and, hence, we will only
state how the logic proceeds.

By using the argument in [Ko 1], we see that if M contains a non-separating
incompressible torus, then M is decomposed into at most 2 components by the
torus decomposition. Hence, we may suppose that each component of 3 sepa-
rates M. By the argument in [Ko 2, section 6, Case 2], we can show that 3
consists of two tori JΊ, T2. Then, by [Ko 2, section 6, Case 3], we see that

ΓjU T2 can be isotoped so that T{ Π Cy (i,j=l, 2) consists of an annulus which
separates Cy. Then, by seeing the position of the annulus, we have the con-
clusion of Lemma 6.1.

In the rest of this section, we suppose that g>2. By Proposition 4.1', there
is a component Tλ of 3 such that Tλ Π C1 consists of a disk D19 which is good.
Then, as in section 3, let 3f=3nC,(i=l, 2), (3<?\ <%), -, (3(

2

m\ am) be a hier-
archy for 22, which is realized by a sequence of isotopies of type A, 2(0) — 2, and

2(I) (z>l) be the image of 2('~1) after the isotopy of type A at a^. Let k be
the number such that akΓi D^φ, alΓ[Dl=φ(0<l<k). Let T{ be the image of

T! in 2(*+1), and A,= T{ Π C, (ί= 1, 2). Then, A{ is an essential annulus in Ct.
First, suppose that Tλ separates M. Then, by Lemma 5.4, A{ cuts C, into

two compression bodies C), C?, where genus (C} )+genus (C?)=£+l. A{
denotes the copy of At in 90Cί. We may suppose that cl (30C{— A{) and cl (QQCJ

2

—AJ

2)(j=l,2) are identified in M. Let £y==genus(C{)=:genus(C^) (j=l, 2).
Let M19 M2 be the 3-manifold obtained from M by cutting along T{. Then, M,

(i=l, 2) has a decomposition M, =Cί U C|, where A, : cl (90C{— ̂ 4ί)->cl (80C2 —
*ί

A2) is a homeomorphism induced from the Heegaard splitting of M. By Lemma
5.4, we have essentially two cases.

Casel. ^}(c90Cί), and ̂ i(c90Ci) are simple.

In this case, by Lemmas 5.2. (ii), 5.3, we see that there is a homeomorphism
h'i\ 80Cl-*90Ci(i=l, 2) such that M'i = C( U Cl is a Haken manifold and decom-

posed into the same number of the components as M{ by the torus decomposi-

tion. Then by the assumption of the induction, we have :
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n(M) =

Suppose that the equality holds. Let Σ, (ι=l, 2) be the closure of the com-

ponent of M— 3(k+1) such that Γ(cΣ,, and Σ, cMf . Let Σί be the image of
Σ, in M'i. Then, by the assumption of the induction, we see that Σί is simple.
If Σί is hyperbolic, then Σ, is also hyperbolic, and, hence, simple ([Tl]). If Σ;

admits a Seifert fibration, then, by the proof of Lemma 5.2, we see that Σ£
admits a Seifert fibration with at least one exceptional fiber. Then, by [J, ISSp.j,

Σ; admits a Seifert fibration with orbit manifold a disk and two exceptional fibers,
or with orbit manifold an annulus and one exceptional fiber. Hence, Σ, admits

a Seifert fibration with orbit manifold an annulus and one exceptional fiber, or

with orbit manifold a disk with two holes and no exceptional fibers, and we see

that Σ, is simple. Then, by Lemma 5.2 (ii), we see that the closure of each
component of M— 3 is simple.

Case 2. -4ι(c80Cι), and -4J(c9βCj) are simple.

Let Σ, be as in Case 1. Suppose that Σ2 is hyperbolic, or does not admit a

Seifert fibration such that A*(i=ly 2) is a union of fibers. Then the arguments

in the proof of Case 1 holds, and we see that M satisfies the conclusions of

Theorem 1. Hence, suppose that Σ2 admits a Seifert fibration such that A] is a
union of fibers. Then, by the definition of the torus decomposition, we see that

ΣI does not admit a Seifert fibration such that A] is a union of fibers. We can

attach a solid torus to C)(ι'=l,2) along the annulus A] as in Figure 6.1 to
produce a genus gl compression body €}. Let h': 90Cί~>90C2 be a homeomor-

C\
Figure 6.1
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phism which is an extension of hly and let M'=C\ U C\. Then, M' is homeomor-

phic to M1U £3,3, where S3t3 is a Seifert fibered manifold with orbit manifold a

disk and two exceptional fibers of index 3, and A] is a union of fibers. By

Lemma 5.1, we easily see that any Seifert fibrations on S3 3 do not extend to 2^

Hence, n(M')=n(M)+l.
By Lemma 5.2, there is a homeomorphism h'2: 90Cι->90C| which is an

extension of h2l and M2=Cl\jC% is a Haken manifold with n(M2)>n(M2)—1.

Hence, by the assumption of the induction, we have:

n(M) = n(Mί)+n(M2)^n(Mί)+n(M2)<ί(3gι-3)+(3g2-3) = 3̂ -3 .

Then n(M'2)=n(M2)— 1 and, by Lemma 5.2 (iii), (iv), we see that Σ2 is
simple. Hence, by the argument as in Case 1, we see that the closure of each

component of M— 2 is simple.
Now, suppose that Tλ does not separate M. Then, Ai(i=l, 2) cuts C, into

a compression body C*. Let A], A] be the copies of At in 90C'. Let M' be

the 3-manifold obtained from M by cutting along Γj. Then, M' has a decom-

position M'^CΊUCί, where h: cl(90Cί-(^} U^?))->cl(90C2-(^U^l)) is a

homeomorphism induced from the Heegaard splitting. We may suppose that

=dA2(i=lj 2). Then, we have essentially two cases.

Case 3. ^4}(c90Cί), and A2

2(dd0C2) are simple.

In this case, by applying Lemma 5.2 twice and Lemma 5.3 once, if needed,

for h or A"1, we see that there is a homoemorphism A': d0Cί-^dQC2 such that

M'=C{\JC'2 is a Haken manifold with n(M')=n(M). Clearly, c(M')<c(M).

Hence, by the assumption of the induction, we see that n(M)<3g-3. And, if

the equality holds, then, by the argument as in Case 1, the closure of each com-

ponent of M—2 is simple.

Case 4. ^4ι(c90Cί), and ^42(c90C2) are simple.

Let 2f'(ί=l, 2) be the component of M' cut along the image of 2(Λ) such

that A{ U^lcθΣ1'. If Σ2 does not admit a Seifert fibration such that A*9 A\ are
unions of fibers, then, by the argument in Case 3, we see that Theorem 1 holds.
Hence, suppose that 22 admits a Seifert fibration such that Al, A\ are unions of

fibers. Then, we attach a solid torus to Cί(ι=l,2) along the annulus A] to
produce a genus g compression body C, as in Figure 6.1. Then, there is a
homeomorphism h': cl (θoQ—yί?)-»cl (9ϋC2—A\\ which is an extension of A',

and M//=C1\JC2 is homeomorphic to M' U 533, where S33 is as in Case 2.
A/

 β AlUAl '
By the assumption on Σ2 and Lemma 5.1, we see that -any Seifert fibrations on
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S3t3 do not extend to Σ1. Hence, n(M")=n(M)+\=n(M)+\. By Lemma 5.2,
we see that there is a homeomorphism h"\ QoQ-̂ oQ which is an extension of hr

such that M" '=€, U C2 is a Haken manifold, and n(M" ')=n(M")> or n(M" ')=

n(M")-\. Clearly, c(M" ')=c(M")=c(M')<c(M). Suppose that n(Mhr/)=
n(M"). Then, by the assumption of the induction, we have n(M" ')=n(M')+l
< 3g-3. Hence, n(M) < 3 -̂4, a contradiction. Suppose that n(M"')==n(M")—
1. Then, n(M)=n(M" ')< 3^-3. If the equality holds, then, by the argument
as in Case 1, we see that the closure of each component of M—3 is simple.

This completes the proof of Theorem 1.

7. Proof of Theorem 2

In this section, we will give a proof of Theorem 2. The proof is done by
using the induction on a complexity which is different from the complexity in
section 6. Let g, c(M) be as in section 6. Then, we order (c(M),g) lexicogra-
phically. Throughout this section, we will adopt this complexity. We note that
Lemma 6.1 gives the first step of the induction.

Let (Clf C2; F), 2, 2(Λ 3h 3
(i\ Tly Tί, and A,(i=l, 2) be as in section 6.

Recall that M=M1 U ••• U M3g_3 is the torus decomposition of M. Let M' be M
cut along Tί, C\ (i=l, 2) be C, cut along Ah A], -4?(c80C{) be the copies of At.
Then M' admits a decomposition M'=C{\JC2. We may suppose that QA{
(/=!, 2) and dAJ

2 are identified in M'. Let 2' be the image of 3(k)-T{ in M'.
3' gives the torus decomposition of M', M{ U ••• UM^-a, where each M{ is the
image of M{. Suppose that QM'S contains T\=A\\JA\, and QMΊ contains T\=
A\ U Al. We note that possibly Λf ί=M{.

Lemma 7.1. If A\, and A\ are simple with respect to {A\y Aϊ}y and
{A\, Al}> then M/ admits a Seifert fibration such that A] is a union of fibers.

Proof. We give a proof in the case when TΊ is non separating. The argu-
ments apply in the case when Tl is separating. Assume that M/ does not admit
a Seifert fibration as above. Let h': cl(d0Cl-(Al(jA2

1))-^cl(d0C2-(A1

2\jA2

2))
be the homeomorphism induced from the Heegaard sewing homeomorphism h:
9oCί

1->90C2. Then, by Lemma 5.2 (ii), h' can be extended to a homeomorphism
h"\ cl(90C1-^ι1)-^cl(9oC2-^^) such that the image of 3' in M//=C1\JC2 gives

the torus decomposition of M". Then, we attach to a solid torus to C, along
A] as in Figure 7.1, to get a genus g compression body CΓ Let hn'': θoCί7-*
30C27 be a homeomorphism which is an extension of λ", and let M" '=Cί' U C"'.

Then, M"x has a decomposition M" U £3,3, where /S^ is as in section 6.

Suppose that M's does not admit a Seifert fibration such that A] is a union
of fibers. Then, M"' is decomposed into 3̂ -2 components by the torus de-
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composition, contradicting Theorem 1.

Suppose that M's admits a Seifert fibration such that A] is a union of

fibers. Then, M"r is decomposed into 3̂ -3 components by the torus decom-
position, and M's U *S3i3 is a component of the decomposition. Clearly, M's U S3t3

is not simple, contradicting Theorem 1.

This completes the proof of Lemma 7.1.

We will give a proof of the following two assertions of Theorem 2.

(i) If FrMM, consists of a torus, then M, admits a Seifert fibration.
(iii) 2g-2 components of {M,} admit Seifert fibrations.

Proof of Theorem 2 (i), (iii).
By the proof of Theorem 1, we can construct a (possibly, disconnected)

Haken manifold M*, by closing boundary components of M', each component

of which has a complexity less than that of M. It is easily seen that if FrMM,
consists of a torus, then the frontier of the image of M, in M* also consists of

a torus, and if Mf admits a hyperbolic structure, then the image of Mi in M *
also admits a hyperbolic structure. Hence, by applying the assumption of the

induction, we see that (i), and (iii) hold.
This completes the proof of Theorem 2 (i), (iii).

We will prepare an example for the proof of Theorem 2 (ii), (iv).

EXAMPLE. Let Vi(ί=\y 2) be a genus two handlebody, and A'(c:dVi) be

the annulus as in Figure 7.2. Then, there exists a homeomorphism hλ: cl (QVl—

Aϊ)-+d(QV2—A'2} such that V^V^ is a Haken manifold, which is decom-
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V, ( '=,2)

Figure 7.2

posed into two components Nί9 N2 by the torus decomposition, where NΊ is

homeomorphic to S3t3 in section 6, and ΛΓ2 is homeomorphic to the exterior of

Whitehead link ([T2]), hence, N2 is hyperbolic.

Proof. Let A'(i=l,2) be the annulus properly embedded in V{ as in
Figure 7.1. Then, by [Ko2, Theorem], we see that there is a homeomorphism

hλ: cl(dV1-Aί)-^d(dV2-A2) such that htfA^QA? and the torus Al\jA*
gives the torus decomposition of V1U V2 into N19 and N2 as above.

hl

Proof of Theorem 2 (ii), (iv).
By Lemma 6.1, we see that the conclusions hold if g=2. Hence, we sup-

pose that g>2. Then, by Proposition 4.1' we can find a component 7Ί as in
section 6. Let TΊ, Aji(i,j=l, 2) be as in section 6. Then, we divide the proof
into several cases.

Case 1. A\j and A\ are simple annuli.

Let Ni(N2 resp.) be a regular neighborhood of A\ (A\ resp.) in C{(C2 resp.).

Then, cl ((JVj Π 9CΪ)—-4?) (cl ((N2 Π dCfi-Al) resp.) consists of two annuli. By
attachingN^N2 resp.) to C2(Cί resp.) along these annuli by the homeomorphism

induced from the Heegaard sewing map dQCι->90C2, we get a (possibly, dis-
connected) compression body C2

/(C{f resp.), and there is natural homeomor-

phism h"\ d0CΊ'-+d0C2' such that C(' UC S' is homeomorphic to M'. It is easily

seen that each component of M' has a complexity less than that of M and the
image of ζL(k} — Tl gives the torus decomposion of M'. Hence, by the assump-

tion of the induction, we have the conclusions of Theorem 2.

Case 2. A\, and A2 are simple annuli, and Tλ is non separating in M.

Let Vly V2, A'I, A2 be as in Example 1. Then, we get a genus £+1 com-
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Figure 7.3

pression body C{'(ί=l, 2) from C\ and F, by identifying A] and ^47-. We

denote the image of A] on 90C' ' by ^4}. Let A': cl (90Cί-(^l U .4?))->cl (ΘQC'2—

(^2 U ^41)) be the homeomorphism induced from the splitting M'=C{ U C2. Let

h": cl(90Cί/—A\)-*cl(dQC2'—A\) be a homeomorphism which is a union of A'
and hi in Example. Then M"=C{/ U C1^ is a Haken manifold and decomposed

into 3#-l components by the torus decomposition.

cv
Figure 7.4

We attach a solid torus to C"(i= 1, 2) along yί ί as in Figure 7.5 to get a genus

compression body C / / x . Let h"': 90CΓ be a homeomorphism
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which is an extension of h". Then, M"'=Cί"UC£" is a Haken manifold
*"'

which is obtained from M" by attaching S3t3 along their boundary components.
By Lemma 7.1, we see that M"' is decomposed into Zg components by the
torus decomposition. Hene, M"' is full. Clearly, M"' has a complexity less
than that of M. Then, by the assumption of the induction, we see that the
conclusions of Theorem 2 hold.

Figure 7.5

Case 3. A\y and A\ are simple annuli, and JΊ is separating in M.

In this case, -4f (ί=l, 2) separates Cf into two compression bodies C*,
C such that A{c.Qβ{. Suppose that genus(C )>2. Then, by the construc-
tion in Case 2, we get two full Haken manifolds Mi, and M£, each of which
has a complexity less than that of M. Hence, by the assumption of the induc-
tion, we have the conclusions of Theorem 2. Since T± is good, we have genus
(C})>1. Hence, the rest case that we should consider is:

(*) Case 3 with genus(C})=2.
Assume:
(**) every component of 3 which intersects Cl in a disk, and which is

good satisfies the above condition (*).
Then, we will proceed a long distance toward a contradiction, and that will

complete the proof.
Let Tly •••, Tp be the components of 3 each of which intersects Q in a

disk, and is good.

Assertion 1. No three components of 3λ are mutually parallel in Cλ.

Proof. Assume that three components Dl9 D2, D3 of 3l are mutually
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parallel in Cx. We may suppose that Dly D2, D3 are settled in Cl in this order,

and we call the direction to which D1 (Z>3 resp.) settled left (right resp.). Let

bj. be the i-th band which is attached to A U D 2 ( J D 3 . Then, by the argument
in the proof of Proposition 3.8, we may suppose that bji(i=l, 2, 3) is attached
to Df to produce an essential annulus Aiy such that Aλ and A2 are parallel in

Ci
Assume that bJ4 is attached between the right side of D2 and the left side of

Z)3. Let M be the closure of the component of Λί—2(y3+1) which contains the

product region between D2 and Z>3. Then, by the proof of Proposition 3.8, we
see that M is homeomorphic to the exterior of a two bridge knot. Then, by

exchanging the Heegaard sewing map h: θoCj-^oQ in MΓ\ θoQ, we may suppose

that M is homeomorphic to the exterior of figure eight knot. But, this contra-
dicts Theorem 2 (i).

Assume that bj4 is of type 3, and attached to Dλ. By the proof of Propo-
sition 3.8, we see that bJ4 is attached to the left side of Dlβ By the minimality

assumption on £?, we see that bj4 is of type 3. Let T be the component of 2

such that T(Ί C1=D1. Then, T satisfies the condition in Case 1, contradicting
the assumption (**).

Assume that bj4 is of type 3, and attached to D2. Let T be the component
of 3 such that T Γ\ Cl=D2. Since there exist two disks, Dly and Z)2, we see that
T is good. By the assumption (**), we see that D2 separates C1 into a genus one

compression body and the other component V. Since 3 gives the torus decom-

position of M, we see that Z)jC V. Then, by using the case by case argument as

in the proof of Proposition 3.8, we see that there is a component T of 3 such

that ΓΠ CI=AI and f is good. Since £>2, f does not satisfy (*), a contradic-
tion.

Assume that ό/4 is of type 3, and attached to D3. By assumption (**),
we see that D2 separates Cl into a genus one compression body V and the

other component. By (*), we see that Dl9 D2(Σ.V. But, since Al and A2 are

parallel, this contradicts the definition of the torus decomposition.
By the argument in the proof of Proposition 3.8, we see that no other pos-

sibility of the ways of attaching b;4 can occur, and this completes the proof of

Assertion 1.

Recall that Tl9 ,Tp are the components of 3 each of which intersects Q

in a disk, and is good. Let Di=TiΓ\Cl(i=ly •••,/>) and bki be the first band
which is attached to D{. We may suppose that k1<k2< -<kp. By (**), we

see that each Z)f separates Cl into a genus one compression body F$ and a genus

g— 1 compression body, and bk. is attached to the side of Z>t in which the genus
g—\ compression body is settled. Let Γ(/) be the image of T{ in 2(r).

Assertion 2. For each i(l<i<p)> there is a component Z)(φjD, ) °f 2ι
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such that DC Vh and D and D{ are parallel in Ci

Proof. Assume that there is no component of 3ι which is contained in
Vi—Di. Then, by applying the argument in the proof of Theorem 1 to Tiy

we can construct a genus g—l manifold which is decomposed into at least 3̂ -5

components by the torus decomposition, a contradiction. Hence, we have a

component D of 31 such that Z)cF,. Assume that D and Z), are not parallel

in Q. Since Vs is a genus one compression body, D cuts F, into a 3-cell.
Let br be the first band which is attached to D. Since br is of type 3, we see
that r>kι. Let bs be the second band which is attached to Z)t .

Assume that r>s (>&,). Then, by (**), we see that bs is attached to Df to
the side in which F, is settled. Then, jΓ^^ΓΊCΊ is a once punctured torus,
and is compressible in Cly a contradiction. Hence, s>r.

Then, 3(r+1) Π Cλ contains two annuli A', and A", where A'(A" resp.) is

obtained from D(D{ resp.) by attaching br(bk. resp.). Then, we can span an

annulus A* between the core of A' and the core of A!' in C^ But, by Lemma
7.1, we see that this contradicts the definition of the torus decomposition.

This completes the proof of Assertion 2.

Assertion 3. 2j contains at most 3g-p-5 parallel classes.

Proof. By Assertion 2, we see that 3ι contains at most (3£-3)-/>=3£-/>-3
parallel classes. If needed, by exchanging the order of the isotopies of type

A we may suppose that b0 is not attached to a disk contained in U (F"f — A)

Then, by the argument in the proof of Lemma 4.3 we see that 3ι contains at
most 3g-p-4 parallel classes. Assume that 3ι contains just 3g-p-4- parallel classes.

Then, 3ι cuts Cl into genus one compression bodies F"ί, •••, V'p V, and some

3-cells, where V/iC.Vi(i=l, •••,/>), V ΓiF is a once punctured torus and i0cF". If
bQ is attached to some Diy then we see that C\ is a genus two compression body,

a contradiction. Hence, we may suppose that όj is not attached to a disk con-

tained in U (Vi—Di). Then, by the argument in the proof of Lemma 4.3, we

see that this contradicts the definition of the torus decomposition. Hence, 3ι

contains at most 3g-p-5 parallel classes.

Let {Tt} p<i^q be the components of 3 which intersects Cx in a disk and

Ti Π QΦ ViU — UVp. By the definition of {Ti}̂ ,, we see that Ti(ρ<i<q)
is bad, and there is no component of 3λ which is parallel to TiΓiC1(p<i<q).

Hence, by Assertion 1, we see that 3λ contains at least 2(3#—4—2p—q)+2p+q
=6g—8—2p—q components. On the other hand, by Assertions 1,3, we see that
3ι contains at most 2(3#—p—5)—q=6g—10—2p—q components, a contradic-

tion.
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This completes the proof of Theorem 2.

8. Examples

In this section, we will show that, for each g(>2), there exist infinitely

many closed Haken manifolds with genus g Heegaard splittings, and each of

which is decomposed into 3#-3 components by the torus decomposition. We

will give two constructions of such examples. It is easy to construct such ex-

amples with incompressible toral boundaries by using the arguments stated
below.

CONSTRUCTION 1.

EXAMPLE 1. Closed Haken manifold with a genus two Heegaard splitting,

which is decomposed into three components by the torus decomposition ([Ko2]).

Let Vi(i=l, 2) be a genus two handlebody, A], A] be annuli properly em-

bedded in Vi as in Figure 8.1. Let£: 9F1->3F2be a homeomorphism such that

g(dAi)=dA2(ι=l, 2). Then, Ti=A{\jA2 is a torus in the closed 3-manifold

N= Vl U F2, and T1 U T2 cuts N into three components Nly N2, and N3y where

Nly N3 are homeomorphic to S3t3 in section 6, and ΛΓ2 is homeomorphic to the

exterior of a two bridge link ([Ko2, section 4]). Let gn: dVΊ-*dV2(n=l, 2, ••-)

be a homeomorphism such that gn(dA()=dA2(i= 1, 2) and T1 U T2 cuts Nn= Vl U
^n

V2 into three components, two of which are homeomorphic to 53>3, and the rest

one is homeomorphic to the exterior of (2, 2ri) torus link, where the core of A\

is a meridian loop. Then, Nn is a Haken manifold and the above decomposi-
tion is the torus decomposition of Nn provided \n\ >2. By the uniqueness of

the torus decomposition, we see that if \ m \ Φ \ n \ , then Nm is not homeomorphic
toΛΓM.

A] A]

EXAMPLE 2. Closed Haken manifold with Heegaard splitting of genus three,

which is decomposed into six components by the torus decomposition.



STRUCTURES or FULL HAKEN MANIFOLDS 209

V\

Al A\

n
Figure 8.2

Let V}(i=l, 2) be a genus two handlebody, A}(ddV}) be the annulus as in
Figure 8.2, and A*, A] be annuli properly embedded in V] as in Figure 8.2.
Let£: cl (QV\— A\)-*cl (8^2—^2) be a homeomorphism such that g(dA{)=QAi
(/=2, 3). Let T*=A{ ( j A ί . Then Γ2(J T3 cuts N1=V\ U V\ into three com-

ponents N{, Nly AΓJ, where N{ admits a Seifert fibration with orbit manifold an
annulus and one exceptional fiber of index 2 where A] is a union of fibers, Nl is
homeomorphic to the exterior of a two bridge link ([Kol, section 4]), where the
core of Aΐ(j=2, 3) is a meridian loop, and N\ is homeomorphic to S3t3 where A}
is a union of fibers. Let gn: cl (QV\— ̂ 4ί)-^cl (dVl—Al) be a homeomorphism
such that g(dAί)=dAJ

2(j=2ί 3), and Γ'UT3 cuts Λft^FlU FJ into three
εn

components, where two of them are homeomorphic to N{, ΛΓJ as above, and the
rest one is homeomorphic to the exterior of (2, 2n) torus link.

Let (VI Al) be a copy of (V\, A\\ and VI be a copy of V\. Then, by
Lemma 5.3, there is an embedding^: cl (QV\— A\}^QV2

2 such that Nf^==Vι U
gn

VI is homeomorphic to N\n^ and if N\ is the component of the torus decomposi-
tion of Nfn) which intersects 3ΛΓ(

2

n), then ΛΓ? does not admit a Seifert fibration
such that A\ is a union of fibers. Let Al=d(dVl—g'n(dV\—Al}). Then, by
attaching V\ to Fi(Fι to VI resp.) along ί̂} and Al (Al and ^4£ resp.) we get a
genus three handlebody V\(Vl resp.) Let ̂ 3): QVl-*QVl be a homeomorphism
which is a union of gn and ̂ ί"1. Then N(^=V\ U Ff is a closed Haken mani-

gP
fold, and decomposed into six components by the torus decomposition.

CONSTRUCTION 2. We will give another construction of full Haken mani-
folds. First, we will prepare five ways of attaching handlebodies, each of which
is a fundamental block of the full Haken manifolds.

1. Let V be a genus two handlebody, Γ, T' be a pair of once punctured
tori embedded in dV as in Figure 8.3. It is directly seen that if we attach a
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Figure 8.3

2-handle to V along the annulus d(dV— (T\J T')), then we get the exterior of
Whitehead link.

2. Let V be a genus two handlebody, and T be a punctured torus embedded
in Wl as in Figure 8.4. Let V be a genus one handlebody, and D be a disk
embedded in QV. Let h: d(dV—T)-*d(QV'—D) be a homeomorphism which
takes the arc a to b. Then, by calculating the fundamental group, we see that
N=V\JV admits a Seifert fibration with orbit manifold a disk and two ex-

ceptional fibers of index three,
the fibration.

Moreover, we may suppose that / is a fiber of

V
Figure 8.4

3. Let V be a genus three handlebody, and Γ, T' be a pair of punctured
tori embedded in QV as in Figure 8.5. Let V be a genus one handlebody,
and D, D' be a pair of disks in QV. Let h: cl (dV-(T\J T'))-*d (QV-
(D\JD')) be a homeomorphism which takes the arc a to b. Then, by calculat-
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T I

V

ing the fundamental group, we see that N=V\J V admits a Seifert fibration

with orbit manifold an annulus and one exceptional fiber of index two. More-
over, we may suppose that / is a fiber of the fibration.

4. Let V be a genus two handlebody, and Γ, Tf be a pair of tori embedded
in 9V as in Figure 8.6. Let N be a 3-manifold obtained from V by attaching a
2-handle along the annulus cl (QV— (T\J T')). Then, N admits a Seifert fibration
with orbit manifold an annulus and one exceptional fiber of index two. More-
over, we may suppose that / is a fiber of the fibration.

r /
Figure 8.6

5. Let V be a genus three handlebody, 71, T", T" be a system of punctued
tori embedded in QV as in Figure 8.7. Let V be a 3-cell and Z>, £>', D" be a
system of disks in dV. Let h: cl (dV-(T\J T (J Γ"))-*d (ΘV'-(D\jDf \JD"))
be a homeomorphism. Then, N=V\J V admits a Seifert fibration with orbit

h

manifold a disk with two holes and no exceptional fiber i.e. JV is homeomorphic
to (disk with two holes) X S1. Moreover, we may suppose that / is a fiber of
the fibration.
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V V

Figure 8.7

By using the above fundamental blocks, we will give another description of
Example 2.

EXAMPLE 2'. Let T{(i=l, •••, 5) be a punctured torus properly embedded
in a genus three handlebody Vλ such that Tτ U ••• U T5 cuts Vl into six handlebo-

Figure 8.8
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dies V\ —, V*, where (V\ TJ, (V*, Γ5) are homeomorphic to (V, T) in the above
2, (V2, Tly Γ2), (V5, T4, T5) are homeomorphic to (V, T, T) in the above 1,
(F3, Γ2, Γ3) is homeomorphic to (V, T, T) in the above 4, and (F4, Γ3, T4) is
homeomorphic to (Vy T', T) in the above 3. By Figure 8.8, we see that such
7Ί, •••, T5 actually exist. Let D19 •••, Z)5 be a system of disks properly embedded
in a genus three handlebody V2 as in Figure 8.8. Then, by the above construc-
tions 1, •••, 5, we see that there is a homeomorphism/: QV1-^dV2

 such that
f(dTi)=dDi(i=l, •••, 5) and M=Vl^V2 is a full Haken manifold such that the

system of tori (7\ (J A) U ••• U (T5 U A) gives the torus decomposition.

EXAMPLE 3. genus four full Haken manifold whose characteristic graph is:

1 i
By Figure 8.9 and the arguments as above, we see that the above example

actually exists.

Figure 8.9
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EXAMPLE 4. genus three full Haken manifold whose characteristic graph is:

See Figure 8.10.

Figure 8.10

EXAMPLE 5. genus six full Haken manifold whose characteristic graph is:

See Figure 8.11.

Figure 8.11

REMARK. By using the same arguments, we can construct full Haken
manifolds such that the characteristic graphs have arbitrarily high first Betti
numbers.
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