|

) <

The University of Osaka
Institutional Knowledge Archive

Title Structures of full Haken manifolds

Author(s) |Kobayashi, Tsuyoshi

Osaka Journal of Mathematics. 1987, 24(1), p.

Citation 173-215

Version Type|VoR

URL https://doi.org/10.18910/10175

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Kobayashi, T.
Osaka J. Math.
24 (1987), 173-215

STRUCTURES OF FULL HAKEN MANIFOLDS

TsuvosHt KOBAYASHI*

(Received November 26, 1985)

1. Introduction

In this paper, we consider some %elations between a Heegaard splitting
and the torus decomposition of a Haken manifold. The first result of this
paper is:

Theorem 1. Let M be a Haken manifold without boundary or with incom-
pressible toral boundary. Suppose that M admits a Heegaard splitting of genus
&(=2). Then M is decomposed into at most 3g-3 components by the torus decom-
position. Moreover, if M is decomposed into 3g-3 components, then each component
is simple i.e. every incompressible torus in it is boundary parallel.

For the definition of a Heegaard splitting, and the torus decomposition of
a 3-manifold with boundary in this context, see section 2.

The classical Haken’s theorem ([H], [J]) shows that a Heegaard genus g
3-manifold is decomposed into at most g components by the prime decomposi-
tion. Theorem 1 is an analogy to this fact.

ReMARK. We note that the above estimation is best possible. In section
8, we will show that for each g(>2) there are infinitely many Haken manifolds
with Heegaard splittings of genus g, each of which is decomposed into 3g-3
components by the torus decomposition.

The key of the proof of Theorem 1 is Proposition 4.1, which is an analogy
to the Haken’s theorem.

Proposition 4.1. Let M be a Haken manifold as in Theorem 1, and 9 be
a union of tori which gives the torus decomposition of M. If the number of the
components of I is greater than or equal to 3g-4, then there is a component T of
9 such that T is ambient isotopic to T’ which intersects the genus g Heegaard surface
in a circle.

Let M be a Haken manifold as in Theorem 1. We say that M is full if it
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is decomposed into 3g-3 components by the torus decomposition. In section
7, we will investigate the structure of full Haken manifolds from the viewpoint
of torus decomposition.

Theorem 2 (cf. [Ko 2, Theorem)). Let M be a full Haken manifold, and
M=DM,U ---UM,,_; be the torus decomposition of M. Then:

(1) If Fry M; consists of a torus, then M; admits a Seifert fibration,

(i) g-1 components of {M}, say M, --+, M,_,, are homeomorphic to the ex-
teriors of two bridge links,

(i) M,, -+, Ms,_; admit Seifert fibrations,

(iv) Suppose that M;N\M;=* ¢, where i<g. Then j>g, and M; admits a
Seifert fibration such that a regular fiber of M; in M;N\M; is identified with a
meridian loop of M.

Theorems 1,2 together with the arguments in [C] implies:

Corollary 1. Let L be a tunnel number n link in a closed 3-manifold. Sup-
pose that the exterior of L is a Haken manifold with incompressible boundary. Then,
the exterior is decomposed into at most 3n components by the torus decomposition.
Moreover, if it is decomposed into 3n components, then the components satisfies the
conclusions of Theorems 1,2.

Bonahon-Siebenmann [B-S] showed that a classical link has a cannonical
splitting by a system of tori and a system of 2-spheres each of which intersects
the link in two or four points. The idea for the proof of this fact is to consider
the prime and torus decomposition of the 2-fold covering space of the link.
Theorem 1 together with this fact, the Haken’s theorem, and a theorem of
Birman-Hilden [B-H] implies:

Corollary 2. Suppose that L is an n(>2) bridge link. Then, L is decom-
Dposed into at most 3(n—?2) pieces by the above splitting.

The bulk of this work was done while I was a member of the Mathematical
Science Research Institute, Berkeley. I would like to express my thanks for the
generous hospitality of the institute. I thank to Andrew Casson for teaching
me the results in [C-G], and several useful conversations. I also thank to
Kanzi Morimoto for pointing out errors in the original paper of this work.

2. Preliminaries

Thorughout this paper, we will work in the piecewise linear category. For
the definitions of irreducible manifold, incompressible surface, parallel surface we
refer to [He]. For the definitions of essential surface, 0-incompressible surface,
Haken manifold, Seifert fibered manifold, exceptional fiber, and orbit manifold we
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refer to [J].

Let M be a Haken manifold as in Theorem 1. Then, by [J], there is a
maximal, perfectly embedded Seifert fibered manifold ¥, which is called a
characteristic Seifert pair for M. Then Fr,> consists of tori in Int M. If
some components of them are parallel in M, then we eliminate one of them
from the system of tori. If a component of the system is parallel to a boundary
component of M, then we eliminate it from the system. By performing these
eliminations finitely many times, we get a system of tori < in M which are
mutually non parallel, and each component of which is not parallel to a boundary
component of M. In this paper, we call the decomposition of M by I, the
torus decomposition of M. 'Then, by corresponding each component of M-< to
a vertex, and each component of I a edge, we get a graph G,,. We call G, the
characteristic graph for M.

Let S be a closed surface of genus g. A genus g compression body C is a
3-manifold obtained from S [0, 1] by attaching 2-handles along mutually dis-
joint simple loops on S X {1}, and then attaching some 3-handles to it (cf. [Bo]).
Let 9,C be the boundary component of C which corresponds to Sx {0}. We
note that a handlebody (:cube with handles) H is a compression body such that
0H=0,H. Let M be a compact 3-manifold. (C,, C,: F)is a genus g generalized
Heegaard splitting (or simply a Heegaard splitting) of M if each C; is a genus g
compression body, M=C;UC,, and C,N C,=8,C,=08,C,=F (cf. [C-G]). The
minimal genus of all Heegaard splittings of M is called the Heegaard genus of M.

The next theorem follows from the fact that every 3-manifold admits a
triangulation (cf. [He]).

Theorem 2.1. Every compact 3-manifold admits a Heegaard splitting.

Now, we will see some fundamental properties of compression bodies.

Lemma 2.2 ([Bo, corollary B.3]). Let C be an irreducible compression body,
and D be an essential disk properly embedded in C. Then, D cuts C into a (possibly,
disconnected) compression body C' such that 0,C’'—D C9,C.

Lemma 2.3 ([C-G]). Let S be an incompressible, d-incompressible surface
properly embedded in an irreducible compression body C. Then, S is either a disk,
or an annulus A, where one component of A is contained in 0,C, and the other
component is contained in a distinct component of 0C.

3. Incompressible surfaces and isotopies of type A

The problems concerning the relations between a Heegaard surface and an
incompressible surface in a 3-manifolds were considered by several authors
([C-G, H, ], Ko 1, Ko 2, Mo, O]). In this section, we will show that the tech-
niques used there, say hierarchy for a 2-manifold, isotopy of type A, +:-, can be
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applied to generalized Heegaard splittings. We note that the first half of this
section is a combination of the results by Casson-Gordon ([C-G]), and Ochiai
([O]), which are based on the argument by Jaco for the proof of the Haken’s
theorem ([J]). And the last half is a broad generalization of results in [Ko 1,
Ko 2].

Let S be a (possibly disconnected) compact 2-manifold. A properly embed-
ded arc a in S is inessential if there exists an arc 5(CdS) such that a Ub bounds
a disk in S. a is essential if it is not inessential. A partial hierarchy (cf. [],
Chapter IV]) for S is a finite sequence (S, @), *--, (S™, a,,), where S©=S, g;
is an essential arc in S®, and S¢*V is obtained from S® by cutting along ;. A
partial hierarchy for S, (S©, a), «++, (S™, a,,) is a hierarchy if each component
of S™*V is a disk. It is an almost hierarchy if each component of S™*V is a
disk, or an annulus such that one boundary component is a component of 3.
An essential arc a in S is of type 1 if a joins distinct components of 38, a is of
type 2 if a joins one component of 8S, and a separates the component of S con-
taining @, and a is of type 3 if a joins one component of 85, and a does not
separate the component of S containing a. Let i be a system of mutually
disjoint, essential arcs in S. We say that an element a of A is a d-arc related to
A if a is of tyep 1, and there is a component C of 3S such that a is the only
element of (4 which meets C.

Throughout this section, M denotes a compact 3-manifold, S denotes a
closed or bounded, incompressible, 8-incompressible surface properly embedded
in M.

Let (Cy, C,: F) be a Heegaard splitting of M. Then, the proof of the next
lemma is left to the reader.

Lemma 3.1. There esists an incompressible, 0-incompressible surface S’
such that S’ is homeomorphic to S, each component of S'NC; (i=1, 2) is incom-
pressible in C;, and 0S'=08S. Moreover, if M is irreducible, then S’ is ambient
1sotopic to S rel .

We suppose that S(C M) satisfies the conclusion of Lemma 3.1. Let S;=
SN Ci(i=1,2). Then, by Lemma 2.3, there is an almost hierarchy (S{”, a,), -+,
(S{™, a,,) for S; and a sequence of isotopies of type A which realizes the almost
hierarchy i.e. if S®=.S, and S® is the image of S¢? after the i-th isotopy of
type A ([J, Chapter II]) at a;_,, then S® N C;=S{’. We may suppose that a; N
a;=¢(i=%j). So, we can consider @, U ::- Ua,, are arcs properly embedded in S;.
Let 4,(0< p<m) be the system of arcs {a, *:*, a,} in S,.

Lemma 3.2. Let M, (C,, C,: F), S, S;, A, be as above. Suppose that there
are i, p (1< p<m) such that a; is a d-arc related to A,, and there exits a disk com-
ponent D of S, such that a; is the only arc in A, which meets 0D. Then S is rel
0 ambient isotopic to S’ such that the number of the components of S'NF is less
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than that of SNF. Moreover, if S, consists of disks, then S’ N C, also consists of
disks.

Proof. See [O, Lemma 1]. The arguments there work in this situation.

Lemma 3.2 assures that we can prove the theorems in [J, Ko 1, Ko 2, Mo,
O] for generalized Heegaard splittings without changing proofs. And, we can
prove more theorems by using the same argument (cf. [C-G]).

In the rest of this section, we suppose that M is a Haken manifold without
boundary, or with incompressible toral boundary, {73, --+, T} be a system of
mutually disjoint, non-parallel incompressible tori in M, and let I=T,U---U
T,.

By moving I by an ambient isotopy, we may suppose that each component
of ,=9NC, is a disk, and each component of ,= 9N C, is incompressible in
C,. Then, by Lemmas 2.3, 3.1, we have a hierarchy (9%, a,), **-, (5™, a,,) for
9, and a sequence of isotopies of type A which realizes the hierarchy. We note
that if we perform an isotopy of type A at a; then it produces a band b; which
connects component(s) of IO N C;. We say that b; is of type 1, 2, or 3 if g; is of
type 1, 2, or 3 respectively. Let 4, (0< p<m) be the system of essential arcs
{a}, *++, a,} on I,

~. -

G

~

~

Figure 3.1

Lemma 3.3. If some a; is of type 2, then I is ambient isotopic to I’ such
that each component of 4' N\ C, is a disk, and the number of the components is less

than that of SN C,.

Proof. Let T be the component of I, containing @;. Then a; separates
T into a punctured torus and a planar surface P. Then, by the induction on the
number of the components of 0P, we can show that some a; (CP) is a d-arc
related to 4,. Hence, by Lemma 3.2, we have the conclusion of Lemma 3.3.
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Lemma 3.4. Let C be a component of 09, and a; be the first arc which
meets Ci.e. a;NC+ o, a;,NC=p(j<<t). If a; is not of type 3, then I is ambient
isotopic to I’ as in Lemma 3.3.

Proof. If a; is of type 2, then by Lemma 3.3, we have the conclusion. If
a; is of type 1, then g, is a d-arc related to 4;. Hence, by Lemma 3.2, we have
the conclusion.

Lemma 3.5. Let T be a component of 9 and let T,=TNC, Suppose
that T N C, consists of more than one disks, and that there are two arcs a;, a; which

are of type 3 and meet a component C of 0T,. Then I is ambient isotopic to I’ as
in Lemma 3.3.

Proof. Let D be the component of TN C, such that 8D=C, and let
T'=c(T—D). Then, a;Ua; (CT') cuts T’ into a disk, or into a disk and an
annulus. Let D’ be the component of 7" cut along @;Uaj, which is a disk.
Let P be the component of T, cut along a; U a;, which corresponds to D'. Then,
we see that some a, (CP) is a d-arc related to 4,. Hence, by Lemma 3.2, we
have the conclusion.

REMARK. Suppose that TN C; consists of a disk. Then 7, contains just
two arcs a;, a;, which are of type 3.

Figure 3.2

Lemma 3.6. Suppose that there are three arcs a;, a;, a, which are of type 1
such that each of them meets a component C of 09,. Then < is ambient isotopic to
9’ as in Lemma 3.3.

Proof. Let T be the component of J containing a; Ua;Ua,, and let T,=
TNC, Since T, contains an arc of type 1, 87, consists of more than one
component. By Lemmas 3.4, 3.5, we may suppose that, for each component
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of 9T, there is only one arc of type 3 which meets the component. Let 4 be
the union of all type 3 arcs on 7,. Then 4 cuts T,into annuli B, -+, B, (s=2).
We may suppose that a;, and a; are contained in B, and i<j. Since q; is an
essential arc in 9¢, a; is a d-arc related to 4;. Hence, by Lemma 3.2, we
have the conclusion.

Before stating Lemma 3.7, we prepare some terminologies. A link L is a
finite union of circles embedded in the 3-sphere S3. If L consists of one com-
ponent, then it is called a knot. The exterior, Q(L), of the link L is the closure
of the complement of a regular neighborhood of L. A meridian loop of L is a
non-trivial loop in 8Q(L) which bounds a disk in the regular neighborhood of
L. L is a two bridge link (or knot), if it can be represented as a union of two
trivial tangles with two strings ([R]). Then, the next lemma follows from the
definition easily.

Lemma 3.7. Let V be an orientable genus two handlebody. Suppose that
there are pairwise disjoint annuli A,, A, in 0V, and pairwise disjoint disks D,, D,
properly embedded in V such that D,U D, cuts V into a 3-cell, D; N A; is an essential
arcin A;, A;ND;=¢ (i,j=1, 2,i%j). Suppose that I is a simple loop in cl(0V —
(4,U A4,)) which separates it into two disks with two holes, and that N is the 3-
manifold obtained from V by attaching a 2-handle along I. Then N is homeomorphic
to the exterior of a two bridge link, or a two bridge knot, where the core of A; is a
meridian loop.

Proposition 3.8. Suppose that I gives the torus decomposition of M, and
the number of the components of I, is minimal among all systems of tori which are
ambient isotopic to I, and each of which intersects C, in disks. If four disks D,
D,, D,, D, of 9, are mutually parallel in C,, then there is a component T of I
such that TN Cy=D,(i=1, 2, 3, or 4).

Proof. We suppose that D,, D,, D;, D, are in C; in this order, and call
the direction in which D, (D, resp.) is settled ‘left’ (‘right’ resp.). Let b; be the
n-th band which is attached to D,UD,UD;UD,. Assume that the conclusion
of the proposition does not hold. By Lemma 3.4, b; is of type 3. Hence,
b;, is attached to the left side of D,, or the right side of D, to produce an es-
sential annulus 4, in C;. We may suppose that b; is attached to D,.

If b;, is attached to D, (4,, correctly speaking), then, by Lemmas 3.2, 3.3,
3.5, bj, is of type 1, and is attached to the left side of D,. Then, we can ex-
change the order of the isotopies of type A so that (j,+1)-th isotopy is performed
on aj,. We note that aj, is a d-arc related to {ay, ***, aj,_;, a;,}. But, by Lemma
3.2, this contradicts the minimality assumption of <. Hence, b;, is not at-
tached to D,.

Then, we divide the proof into two cases.
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Case 1. bj, is attached to D,.

In this case, bj, is of type 3, and produces an annulus 4, which is parallel to
A,. Assume that b;, is attached to D, or D,. Then, by the argument as above,
we see that b;, is of type 1, and is attached between D, and D, (:4, and 4,).
Then b;,, together with 4, and A4,, produces a disk with two holes P properly
embedded in C;. A component of 9P bounds a disk D in F. Let 7" be the
component of UV containing P. Then 9D bounds a disk D’ on T'. Let
T”=(T—D’')UD. Since M is irreducible, 7" is ambient isotopic to T". Let
9'=(gY%*™—T"YUT”. Then, 9’ is ambient isotopic to I” such that each
component of 9N C, is a disk, and the number of the components of "N C,
is less than that of N Cy, a contradiction. Hence, b;, is not attached to D, or D,.

Assume that b, is attached to D;.  Then, b;, is of type 3, and produces an
annulus A4, which is parallel to A4,. Then, there are two annuli 4’, 4” in F
such that (Int 4’ U Int 4”)N(4,UA4,U 43)=¢, a component of 94’ is a com-
ponent of 84,, the other component of 34’ is a component of 84, and is also a
component of 94", and the other component of 34" is a component of 9A4;.
Let M’ (M” resp.) be the closure of the component of M— g9, which con-
tains 4’ (4" resp.). It is possible that M'=M". By the minimality of I we
see that A’ (A" resp.) is an essential annulus in M’ (M" resp.). Then, by [J],
M’ (M" resp.) admits a Seifert fibration such that A’ (4" resp.) is a union of
fibers. Hence, a Seifert fibration on M’ can be extended to M’ U M” through a
component of M’ NAM”. But, this contradicts the definition of the torus
decomposition.

Hence, b;, is of type 3, and is attached to the right side of D, to produce an
incompressible annulus 4,. By the argument as above, we see that b;, is of
type 3, and is attached to the right side of D; to produce an incompressible
annulus 4; in C,, which is parallel to 4,. By the argument as above, we see
that b;_ is attached between 4, and 4, to produce a disk with two holes P’. Let
0P'=L,ULUlL. We suppose that [, (I; resp.) is a component of 94, (04; resp.).
Since bj, and b;, are of type 3, there is a disk component D’ of gY* N C, such

Figure 3.3
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that 8D'=I],. 0P’ bounds a disk with two holes P” in F. Let a be an arc
properly embedded in P”, which joins /, and /;, and let & be a regular
neighborhood of 4 in P”. We can consider that b is a band which is attached
to P'. Let T” be a twice punctured torus obtained from P’ by attahcing &
and isotoping it slightly so that 7" is properly embedded in C,. We note
that one boundary component of 87" is /;. Let [, be the other component of
0T”. Since /; U/, bounds an annulus A! in F, [, bounds a disk D” in C, such
that Int DN gY*=¢. Let V' be the closure of the component of C;—71"
which contains A'. Let B be the product region between D’ and D” in C,.
Then, by Lemma 3.7, N=V’'U B is homeomorphic to the exterior of a two
bridge knot, where the core of 4; (=2, 3) corresponds to a meridian loop. By
[R], we see that N is simple. Let M’ be the closure of the component of M—
9Yst™) which contains N, and 4?=Fr,, N. Then, A? is an annulus properly
embedded in M’'. Let T* be the component of Y*Y which contains 942
Then 0A4* separates T* into two annuli 4¥ (=P’ UD’), and 4%, where AFU A4*
=0N. Let N'=cl(M'—N).

AZ

Figure 3.4

Then, we claim that (N’, 4,) is homeomorphic to (D*X S, ax S*) as a pair,
where D? is a disk, and @ is an arc in 0D Assume that OV is compressible in
N. Then N is homeomorphic to the exterior of a trivial knot, a solid torus.
Then, (N, 4%) is homeomorphic to (D*X S*, X S') as a pair. Then, let T*=
(GUsth—T*)U (42U A¥). 9Y* is ambient isotopic to I*, and G* is ambient
isotopic to 4’ such that each component of "N C; is a disk and the number of
the components of I’ N C, is less than that of 4N C,, a contradiction. Hence,
ON is incompressible in N i.e. N is homeomorphic to the exterior of a non-
trivial two bridge knot. Assume that (IN’, 4%) is not homeomorphic to (D?*x S?,
axS"). Then A?is an essential annulus in M’. Hence, by [J], M’ admits a
Seifert fibration such that A4* is a union of fibers. Then N admits a Seifert
fibration such that a fiber in dN is a meridian loop. But, since two bridge
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knots whose exterior admit Seifert fibrations are (2, 2z+1) torus knots, this is
impossible. Hence, (N’, 4% is homeomorphic to (D?x S, ax S?).

Let 9=(9Ys™ —T*)U(4*U A¥). Then, by the above claim, g is ambient
isotopic to ZY*) and IN C,=((Y*"NC,)—P')UT”. Hence, we may sup-
pose that b =cl(T”—P’). Then, b;, is attached between D, and D,, and, by
using the same arguments as above, we see that the closure of the component M”
of M—gUs*™ containing the region between D, and D, is homeomorphic to the
exterior of a two bridge knot. Clearly, M'CM”. Since the exterior of a two
bridge knot is simple, we see that dM' and dM"’ are parallel in M, a contradic-
tion.

Hence, in Case 1, we have the conclusion of Proposition 3.8.

Case 2. b, is attached to D,.

In this case, b;, is attached to the right side of D,. 'Then, by the arguments
in Case 1, we see that b;,, and b;, are of type 3, b;, is attached to the left side of
D, (or the right side of Dj), and b;, is attached to the right side of D; (or the
left side of D,). Hence, we have the conclusion of Proposition 3.8 by Case 1.

Since b;, is of type 3, it is not attached to Dj, and this completes the proof
of Proposition 3.8.

Recall that & is a union of mutually disjoint, non-parallel incompressible
tori in M such that each component of §,=9N C, is a disk, and each component
of 9,=9N C, is incompressible in C,. Then, there is a hierarchy (95", a), -+,
(48, a,,) for I, and a sequence of isotopies of type A which realizes the hier-
archy i.e. if 9 is the image of 9~V after the j-th isotopy, then 9 N C,= I
Let A,, -+, A, be a system of disks which defines the sequence of isotopies of
type A with A;NA;=¢(i=%j). Then, I N A;=a;, A; N F=d; an arc such that
0a,=08d;, a;Ud;=0A,;. Let Al be a dual disk of A; (see the fourth paragraph of
[O, 462p.], or Figure 3.5), where A/N (49 N C))=a}, AN F=d} an arc such

Figure 3.5
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that 8ai=0d}, ai Ud;=0A, and AN Aj=¢(i#j). We may suppose that dp, ---,
d, and di, -+, d5 are in general position i.e. for each pair (z,5) (0<z,j<m) d;
and d7 intersects transversely in their interiors. We say that the band b; goes
through b;, if j>1, and diNd;=+¢.

Figure 3.6

Then, we define the complexity of the system of disks A, ::+, A,, which
realizes the hierarchy (95", ), **+, (25", a,,) with A; N A;=¢(¢=7) as follows:

(o A)=284N( U d)).
c(Ag +*+y A,) denotes the number of times when the bands &, -+, b, go

through themselves.
Then, we have:

Lemma 3.9. Let D be a component of I, and b;, be the n-th band which
is attached to D. Suppose that b;, (k>1) is of type 1, and b;, does not go through
b, for each I(<k). Then, I is ambient isotopic to I’ as in Lemma 3.3.

Proof. Since b;, does not go through 4;, we can change the order of
the isotopies such that the (j,4-1)-th isotopy is performed at a;,. a;, is a d-arc
related to {ay, -, a; _;, a;}. Hence, by Lemma 3.2, we have the conclusion
of Lemma 3.9.

Lemma 3.10. We consider the submanifold FN\ 99=0895" in F. Suppose
that there exists a rectangle R in F such that Int RN 99 =¢, two opposite edges of
R are contained in dj(j<<i) with b; is of type 1, one edge of R is contained in the
boundary of a band b,(j<<k<7), and the last edge of R is contained in a component
C of FN 9 such that C bounds a disk component D of I°. Then, there exists a
system of disks Ay, +--, A,, in M such that A,NA,=¢ (p=*q), By, *+, A, realizes
the hierarchy (9%, ay), +++, (5™, a,,) and c(By, +++, Bp)<c(Dgy ***5 Ap)-
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Figure 3.7

Proof. Let D* be the frontier of a small regular neighborhood of D in C,
which intersects R. Then, D* is a disk properly embedded in C, such that D*
N8I =¢, and D¥* N R=08D* N R consists of an arc. We get a disk A¥ which
defines an isotopy of type A at a,, by joining A, and D* with a band which lie
in a neighborhood of the arc d;. Let df=A¥NF, and b¥ be the band which is
attached to I® N C| as the result of the isotopy of type A at q; along A¥. Then,
by isotoping A¥ in a neighborhood of R as in Figure 3.8 we get A, which
defines an isotopy of type A at a, such that #(d,Nd})<#(d,Nd}) (I<k), and
#(d,Nd))<#(d.Nd,), where d,=K,NF. Then, we easily see that there is a
system of disks A,,,, +*+, A,,, which define isotopies of type A at a4, +**, 4, and
C(AO) ooy Mgy Zln Kk+1’ ey Zm)<C(A0, ey Am)

Figure 3.8



STRUCTURES OF FULL HAKEN MANIFOLDS 185

This completes the proof of Lemma 3.10.

4. Find an incompressible torus which intersects the Heegaard
surface in a circle

Let M be a Haken manifold which is closed or with incompressible toral
boundary, (C,, C,; F) be a genus g Heegaard splitting of M, and I be a union
of tori which gives the torus decomposition of M. The purpose of this section
is to show:

Proposition 4.1. If the number of the components of I is greater than or
equal to 3g-4, then there exists a component T of I such that T is ambient isotopic
to a torus which intersects F in a circle.

We note that if we omit the assumption on the number of the components
of 9, then the conclusion of Proposition 4.1 does not hold in general. We
will give such examples in Example 4.5.

We may suppose that each component of £,=9NC, is a disk, and the
number of the components of N C, is minimal among all systems of tori which
are ambient isotopic to I and each of which intersects C, in disks. Then, by
section 3, there is a hierarchy (9%, a,), -+, (I5™, a,,) for T,=9I N C,, and a seq-
uence of isotopies of type A which realizes the hierarchy. Let 99, A;(¢=1, ---,
m), Al, d;, d’ be as in section 3. Let I'=9" /=9 N Cy(i=1,2). Then
Ap, oo+, Ay defines a hierarchy for 9{, and a sequence of isotopies of type A
which realizes the hierarchy. Then, we have:

Lemma 4.2. c(A,, -, Ay)=c(Am, +++, A}). Moreover, we can take dual
disks (Ay, -+, AY) of (Am, +++, AY) and a sequence of isotopies of type A so that
A?'ZA;.

Proof. We will prove Lemma 4.2 in the case when m=1. The proof of
the general case will follow easily by using the same argument. Suppose that

Figure 4.1
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the band b, goes through &, # times i.e. b, N Aj consists of z arcs. Then, we can
take a dual disk of A{ such that d{’ Ndj§ consists of # points (Figure 4.1). Hence,
c(Ag Ap)=c(Al, A7). Tt is clear tht that we can take an isotopy of type A at A}
so that AY=A,.

Lemma 4.3. 09, (=09,) contains at most 3g-5 parallel classes in F.

Proof. We prove Lemma 4.3 in the case when C) is a handlebody i.e.
8C,=F. The proof in the general case is essentially the same. Since F can
contain 3g-3 mutually non parallel simple closed curves, it is enough to show:

(*) Two components of C, cut along I, is not simply connected, or there
is a non-simply connected component V of C, cut along g, such that X(V'NF)
<-2.

Assume that all components of C,— 9, are simply connected. Then, if we
perform the first isotopy of type A at a4, then, by section 3, it produces an
incompressible annulus 4 in C,. But 4 can be pushed into a component of
C,— 49, a contradiction. Hence, at least one component of C;— 9, is not simply
connected. Suppose that just one component V'’ of C,— g, is not simply con-
nected. Let V=cl V'. Assume that X(V'NF)>—2. Then, since V is not
simply connected, we see that V is a solid torus, and VN F is a once punctured
torus. Let D be the component of &, such that DCdV. Then, the first band
b, is attached to D to produce an incompressible annulus 4 in V. 'We note that
94 bounds an annulus 4* in VNF. Let M’ be the closure of the component
of M—9® which contains 4*. By the minimality of I, we see that 4* is an
essential annulus in M’. Hence, by [J], M’ admits a Seifert fibration such that
A* is a union of fibers. Let D’ be the component of I, to which b, is attached.
Assume that D'=D. Then, by the minimality of &, and Lemmas 3.2, 3.3, we
see that b, is of type 3, and it produces a once punctured torus 7" properly
embedded in C,. Since V is a solid torus, we see that 7’ is compressible in

Figure 4.2
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C,, a contradiction. Hence, D'==D. Then, b, produces an incompressible an-
nulus 4’ properly embedded in C;. Then, we can span an annulus 4** between
the core of A and the core of A’ in C,. Let M” be the closure of the com-
ponents of M— 9® which contains A**. Then, by the minimality of I, we see
that A** is an essential annulus in M”. By [J], M” admits a Seifert fibration
such that A** is a union of regular fibers. Hence, a Seifert fibration on M’
extends to M through the component of 9® which contains A4, a contradiction.
This completes the proof of Lemma 4.3.

Lemma 4.4. Suppose that there exist three components D,, D, D, of 9,
which are mutually parallel in C,, and no component of I intersects C, in one disk.
We may suppose that D,, D,, D, are in C, in this order, and define the direction
‘left’ and ‘right’ as in the proof of Proposition 3.8. Let b;_be the n-th band which
is attached to D,UD,UD,. Then, if needed by exchanging the suffix, we have :

(1) bj, (=1, 2) is attached to the left side of D; to produce an essential an-
nulus A;, and A, and A, are parallel in C,,

(i) bj, is attached to the right side of D,

(i) If M, is the closure of the component of M— Y™ which contains the
region between D, and D, then M, is homeomorphic to the exterior of a two bridge
knot, where the core of A,(i=2, 3) is a meridian loop, and

(iv) If M, is the closure of the component of M— V2™ which contains the
product region between A, and A,, then M, admits a Seifert fibration such that A;
(j=2, 3) is a union of fibers.

The proof of Lemma 4.4 is done by using the same case by case argument
as in the proof of Proposition 3.8. So, we will omit it.

Proof of Proposition 4.1.

Assume that the conclusion does not hold. We suppose that each com-
ponent of INC, is a disk, and ¢,(9) denotes the number of the components.
Then we define a complexity for a pair (<, (A, ***, An)) by (6,(D), c(Ags *++5 Ay))
with lexicographic order. Then, we suppose that (I, ¢(A,, -+, A,,)) is minimal
with respect to this order.

Since each component of I intersects C; in more than one component,
9, consists of at least 6g-8 components. If no three components of I, are
mutually parallel in C,, then, by Lemma 4.3, we see that <, consists of at most
6g-10 components, a contradiction. On the other hand, if four components of
9, are mutually parallel in C), then, by Proposition 3.8, we see that the con-
clusion holds. Hence, we need to analyze mutually parallel three components
for the proof of Proposition 4.1.

Suppose that two components D, D, of 9, are mutually parallel in C,.
Let b;, be the i-th band which is attached to D,UD, We call the direction
to which D, (D, resp.) is settled ‘left’ (‘right’ resp.). By Lemmas 3.2, 3.3, we
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see that b;, is of type 3, and we may suppose that b; is attached to the left side
of D, to produce an essential annulus properly embedded in C,. By the argu-
ment in the proof of Proposition 3.8, we see that b;, is attached to D, to produce
an essential annulus. We say that the pair D,, D, is of type* in {(I%"), A;} if
b;, is attached to the right side of D,.

Let Dy, D, be of type*. Then, we claim that ; and b;, are attached be-
tween the right side of D, and the left side of D,. By Lemma 3.9, we see that
b,, is attached between the right side of D, and the left side of D,. By the proof
of Proposition 3.8, we see that b;, is attached between D, and D,. Assume that
bj, is attached between the left side of D, and the right side of D,. Then, it is
clear that no band goes through ;. By Lemma 3.9, we see that b;, goes through
b;j,. On the other hand, by the proof of Proposition 3.8, we have a band &;,
which is attached between the right side of D, and the left side of D,. Since b;,
goes through b;,, we see that b, goes through b, U -+ Ubj,_, less times than b;,.
And we can move I'=9"*D by an isotopy to " such that 9" N C, is obtained
from 9N C, by attaching bands &, b,, -+, bj,_,, b7,, bj, 11, ***, b,. But this con-
tradicts the minimality of ¢(A,, **+, A,), and we establish the claim.

Hence, bj, and b;, are attached between the right side of D, and the left
side of D, to produce a twice punctured tori Q properly embedded in C,. Then,
0Q consists of pairwise parallel simple loops in F, and 8Q bounds two disks
Di, D} which are the components of If. Since b;,, and b;, are attached between
the right side of D, and the left side of D,, we see:

(*) The pair Df, Dj is of type* in {(I{"*'"9, ap,_;), An_i}.

Let {E,, -+, E;} ({E1, ---, E}/} resp.) be the parallel classes of the disks in
9, (49} resp.) in C, (C, resp.). We may suppose that {E,, -+, E;} ({E1, +--, E{/}
resp.) is the subset of {E,, -+, E,} ({E{, -+, E}} resp.) each element of which
contains a pair of disks which is of type*. Then, by (¥), there is a cor-
respondence : {E,, «--, E}—{E{, -, E{/}. Since no four components of I}
are mutually parallel in C,, 4r is 1-1. By Lemma 4.2, and (*), we see that +r is
onto. Hence, g=¢’, and we may suppose that {r(E;)=FE/(i=1, --+,q). We note
that each E,(E’ resp.) (1=1, ---, g) contains two, or three components of <, (9}
resp.), and, by Lemma 4.4, we see that each E;(j>g) contains at most two com-
ponents of I, (<} resp.). Then, each E;(i=1, -+, g) is one of the following four
types.

Type a. Both E;, E’ contain exactly two components.

Type b. Both E;, E! contain three components.

Type c. E; contains exactly two components, and E} contains three com-
ponents.

Type d. E; contains three components, and E} contains exactly two com-
ponents.

By Lemma 4.2, we may suppose that:
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(**) #{E:|E; is of type ¢} >4{E; | E; is of type d}
In the following, for the proof of Proposition 4.1, we investigate type b, ¢
parallel classes intimately.

Type b. Suppose that D,, D,, D, (D}, Dj, D} resp.) belong to the parallel
class E,(E?} resp.), where the pair D,, Dy(Dj, Dj resp.) is of type*. We call the
direction in which D,, D3(Dj, D} resp.) is settled ‘left’ (‘right’ resp.). We may
suppose that D,(Dj resp.) is settled in the left side of D,(Dj resp.). Let b, be
the z-th band which is attached to D,UD,UD,. Then, by Lemma 4.4, we may
suppose that b;,(i=1, 2, 3) is attached to D, to preduce an essential annulus 4;,
where A4, and A4, are parallel in C;. Then 94,U 04, bounds pairwise disjoint
annuli 4%, A%in F. Then, there are three annuli 4{, A4, A} in Y%+ N C, such
that A4/ is obtained from D! by attaching a type 3 band, 84" is a union of a
component of 04{ and a component of 345, and one component of 94% is a
component of 845. Then, there is an annulus 433 4") in F such that Int 4°N

Figure 4.3

(41U A%)=¢, and 9A4%is a union of a component of 841 and a component of 045.
By the fourth paragraph in the proof of Proposition 4.1, we may suppose that b;,
and b;, are attached between the right side of D, and the left side of D,. Then,
b;, is of type 1, and is attached to D,.

Assertion 1. b;, is attached to the right side of D;.

Proof. Assume that b;, is attached to the left side of D,. If b;, does not
go through b;, or b;, then b, does not go through b;. Hence, by Lemma
3.9, we can decrease ¢,(), a contradiction. If b;, goes through b;, or b;,
then we can find a rectangle which satisfies the assumption of Lemma 3.10.
See Figure 4.4. Hence, we can decrease c(A,, +:+, A,,) without changing ¢,(9),
a contradiction.

Let D(+*D,) be the component of <, to which &;, is attached.
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Figure 4.4

Assertion 2. There is no component of <, which is parallel to D,.

Proof. Assume that a component D; of I, is parallel to D,. Let b,
(=1, 2, --*) be the 7-th band which is attached to D,U D,. By the argument in
the proof of Proposition 3.8, we may suppose that &, (b, resp.) is attached to D,
(Ds resp.) to produce an essential annulus 4,(4s resp.). Since b;, is attached to
D,, we see that D,, D; is not of type*. Hence 4, and A; are parallel in C;. We
call the direction to which D,(D; resp.) is settled ‘right’ (‘left’ resp.). Assume
that b;_ is attached to the right side of D,. Let M,(M, resp.) be the closure of
the component of M— J%:*D corresponding to the product region between 4,
and A4,(4, and 4; resp.). It is possible that M;=M,. By the minimality of I,
and [J], we see that M,(M, resp.) admits a Seifert fibration such that 4,(4, resp.)
is a union of fibers. Hence, a Seifert fibration on M, extends to M, through the
component of M, containing A4,, a contradiction.

Assume that bj is attached to the left side of D,. Then, there is a type 1
band &,(k,<<s<j;) which is attached to the left side of D, and through which
bj, goes. Then, we can find a rectangle which satisfies the assumption of
Lemma 3.10. See Figure 4.5. Hence, we can decrease c(4A,, -+, A,,) without
changing ¢,(<), a contradiction.

D, D, D,

Figure 4.5

Type c. Suppose that D,, D,(D1{, D3, D} resp.) belong to the parallel class
E;(E! resp.), where the pair {D{, D3} is of type*. We call the direction in which
D,, Di{(D,, Dj resp.) is settled ‘left’ (‘right’ resp.). We may suppose that D} is
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settled in the right side of Dj. Let &;, be the i-th band which is attached to
D,UD,. Then, we may suppose that b;(1=1, 2) is atached to D; to produce an
essential annulus 4;. Then, 9Y*Y N C, contains three annuli 44, 4}, A4, where
Al(z=1, 2, 3) is obtained from D/ by attaching a type 3 band, and A4} and 4} are
parallel in C,. Then, 045U0344% bounds pairwise disjoint annuli 4, 4% in F.
Let D;, D,(#D,, D,) be the components of I, such that there are type 3 bands

A

D; Al Al Az A? D, Al Ay A A
Figure 4.6

which are attached to D,, and D, to produce annuli 4, and A4,, where a com-
ponent of 04;(84, resp.) is a component of 8A4'(9A4? resp.). Since no com-
ponent of < intersects C, in a disk, we see that D;=+=D,. Then, by using the
arguments in the proof of Assertion 2, we can show:

Assertion 3. There is no component of I; which is parallel to D, or D,.

Then, we continue the proof of Proposition 4.1. Recall that {E,, -+, E;}
({E1, -+, Ej} resp.) is the set of parallel classes of I,(<} resp.) each element of
which contains a pair of type* disks, and Jr(E;)=E/. We may suppose that
{E,, -+, E,} (r<q) is the subset of {E), --+, E;}, each element of which is of type
c. Then, by Assertion 3, for each E;(i=1, -++, r), there are two elements E,
E .y (1()%=m(i)), each of which contains exactly one component of I;, and, hence,

1(z), m(?)>q. Let C= U {E1y, E,»}. Since, for each element D of I, there
i=1

are two type 1 bands which are attached to D (Lemma 3.6), C contains at least »
elements.

We may suppose that {E;|r<j<r+s(s>0)} is the subset of {E,, ---, E;},
each element of which is of type b. By Assertion 2, for each E;(r<i<r+s),
there is an element E,; which contains exactly one component of I, and, hence,
n(f)>q. Suppose that E,;EC. Let D, be the component of &;, which belongs
to E;, and is not a component of the type* pair. Let T; be the component of I
which contains D;. Then, T;N C; consists of more than two components, and
at least two components of 7, N C,; belong to C. Hence, if we eliminate D, from
9,, then we still have at least 6g-8 components By applying this elimination
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from 9, for each E;(r<i<r-+s) with E, ;) EC, we get a subset 9 of I, such that
# 9D>6g-8. '

Then, suppose that E,;&C (r<i<r+s). Let D, be as above. Suppose
that there exists j(r<<j<r-s) such that j=7, and E,;=E,(). By Lemma 3.6,
we can have at most one j as above for each . Let 7, be the component of I
which contains D;,. Then, T, intersects C, in more than two components.
Then, we eliminate D, from 9. By applying this elimination from 9 for each
pair 7, j as above, we get a subset 9’ of 9 such that § 9’ >6g-8.

We may suppose that {E;|r+s<j<r-+s-+2(t=>0)} is the subset of {E|, ---,
E,; which consists of type d elements. By (**), we have t<r. Hence, if the
number of elements of C'={E,, -:-, E;} UCU {E,,+n, ***s Esy+0} 1s %, then the
number of the elements of 9’ which belong to C’ is at most 2u. We note that
if i>r4s+t, then E; contains at most two components. By Lemma 4.3, we
have p<3g-5. Hence, we have # 9'<6g-10. But this contradicts the inequality
in the last paragraph.

This completes the proof of Proposition 4.1.

Let T; be a component of g which intersects C, in a disk D. Let b;, be
the first band which is attached to D. Let T be the image of T, in U1V,
Then 4;=TNC;(i=1, 2) is an essential annulus in C;. We say that T is bad
if 4;(:=1, 2) cuts C; into a genus 1 compression body, and a genus g com-
pression body. T is good if it is not bad.

Proposition 4.1." If the number of the components of I is greater than or
equal to 3g-4, and g>2, then there is a component T of I such that T is ambient
wsotopic to T' which intersects C, in a disk, and is good.

Proof. Let Ty, -+, T}, be the components of I such that each 7 intersects
C,in a disk. Assume that all T}, -+, T, are bad. Let D,=T;NC, (=1, +-, k).

Assertion 1. There is no component of &, which is parallel to D;.

Proof. Assume that there is a component D of I, which is parallel to some
D;. Let b; be the first band which is attached to D. D; cuts C, into a genus 1
compression body V, and a genus g-1 (>1) compression body. Then, we have:

VND=¢.

Proof. Assume that this is not true. Then JY*Y N C, contains pairwise
parallel annuli 4;, 4, such that A4, is obtained from D; by attaching a type 3
band, and A4, is obtained from D by attaching b;. Since V' is a genus 1 compres-
sion body, there is an annulus 4 in F such that AN (4,U 4,)=ANA4,=04=04,.
Hence, we have a contradiction as in the proof of Lemma 4.3.

By using the same argument we can show:
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b; is attached to D to the side opposite to the side in which D; is settled.

Then, by Lemma 3.9, we see that there is a component T of g such that
TNCy=D, and T is good, a contradiction.

Let 9’ be a subset of ;,, which is obtained in the proof of Proposition
4.1.

Assertion 2. 9'D{D,, ---, D;}

Proof. Assume that D;&9)’. Then, by definition, there is a component
of g, which is parallel to D;, contradicting Assertion 1.

Let 7" be a component of & such that 7' T;(i=1, --+, k). Then, by the
proof of Proposition 4.1, we see that 9’ contains at least two components of
T'NC, Hence, 9’ contains at least 6g-8-k components. On the other hand,
by the estimation in the last paragraph in the proof of Proposition 4.1, and As-
sertions 1, 2, we see that 9’ contains at most 6g-10-k components, a contradic-
tion.

This completes the proof of Proposition 4.1’

ExampLE 4.5. We will show that there are infinitely many Haken manifolds
with Heegaard splitting of genus two, each of which is decomposed into two
pieces by the torus decomposition, and the torus which give the torus decompo-
sition does not intersect any genus two Heegaard surface in a circle.

Let M, be the exterior of a hyperbolic two bridge knot (for example, figure
eight knot [T2]), M, be a Seifert fibered manifold whose orbit manifold is a
Mobius band with two exceptional fibers, and M be a closed 3-manifold ob-
tained from M, and M, by identifying their boundaries by a homeomorphism such
that a meridian loop on 9M, is identified with a fiber in dM,. Then, by
[Ko 2, Theorem], we see that M admits a genus two Heegaard splitting. It is
clear that M,U M, gives the torus decomposition of M. Let T=0M,=0M,
(cM).

Assume that T intersects a genus two Heegaard surface in a circle. Then,
by the argument in [Ko 2, Case 2.2.1], we see that M, admits a Seifert fibra-
tion with orbit manifold a disk and two exceptional fibers. But this contradicts
the uniqueness of the torus decomposition.

5. Closing boundary of a Haken manifold

Let C;(i=1, 2) be a compression body, {4}, ---, Aj} (p=>1) be a system of
mutually disjoint annuli in 8,C;, and g: cl(8,C,— .Lj A})—cl(8,C,— .LiJ A% be a
homeomorphism such that g(04})=04%(i=1, ---, p)‘— 1 Then N=C,U E‘: is a com-
pact 3-manifold with boundary. Suppose that N is a Haken nianifold with
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incompressible toral boundary. In this section, we will investigate the generic

structure of the manifold N'=C,U C;, where g’: cl(3,C,— .G AH—cl(8,C,— Q
A?) is an extension of g. & ic2 e
For the proof of the next lemma, see [J, Chapter VI].

Lemma 5.1. Let S be a Seifert fibered manifold with boundary. If S is
not homeomorphic to D*x S', S'x S'x [0, 1], or the twisted [0, 1] bundle over the
Klein bottle, then Seifert fibrations on S are unique up to ambient isotopy of S.
Moreover, if S is the twisted [0, 1] bundle over the Klein bottle, then S can admit
exactly two different Seifert fibrations up to ambient isotopy of S such that one is
with orbit manifold a disk and two exceptional fibers of index 2, and the other is with
orbit manifold a Mobius band and no exceptional fibers.

Lemma 5.2. Let C;, A%, g, N be as above. Suppose that N is decomposed
into q(>1) components by the torus decomposition. Let I be the system of tori which
gives the torus decomposition, and 3, be the closure of the component of N— I which

contains A1U A}. Then, there is a homeomorphism g’ : c1(9,C,— _liJz A})—cl(0,C,
— .L_jz A?) such that :

(1) g’ is an extension of g,
(i) N'=C,UC, is a Haken manifold which is closed, or with incompressible
8/

toral boundary. If 3 does not admit a Seifert fibration with orbit manifold an
annulus and one exceptional fiber such that Ai, A% are unions of fibers, or with
orbit manifold a disk with two holes and no exceptional fibers such that A}, A3
are unions of fibers, then the image of I in N' gives the torus decomposition of
N'. Hence, N' is decomposed into q components by the torus decomposition,

(i) If = admits a Seifert fibration with orbit manifold an annulus and one
exceptional fiber such that A}, A% are unions of fibers, then the image of I—T in N’
gives the torus decomposition of N', where T=Fr, =. Hence, N' is decomposed
into g—1 components, and

(iv) If = admits a Seifert fibration with orbit manifold a disk with two
holes and no exceptional fibers such that A1, A} are unions of fibers, then the image
of I—T' in N' gives the torus decomposition of N', where T' is a component of
Fry, =. Hence, N' is decomposed into g—1 components.

Proof. First, we consider the rel 84] isotopy classes of homeomorphisms
h: Al—A% with h|yi=gl4. Let p;: [0, 1]x R—Ai(i=1, 2) be the universal
cover of A}, where the covering translations are generated by (x, y)—(x, y+1).
Let % be a lift of % to the universal cover. We may suppose that (0, 0)=(0, 0).
Then, rel 041 isotopy class of % is determined by & (€Z) with % (1, 0)=(1, &).
We fix a homeomorphism 4,(EEZ) such that k,|,,0=g|a4}, and &(1, 0)=(1, &).



STRUCTURES OF FuLL HAKEN MANIFOLDS 195

Let g,=g Uh,: cl (3,C,— L”J Al)—cl (3,Co— QZA?).

Suppose that 3 admits a hyperbolic structure ([T1]), then by Thurston’s
hyperbolic Dehn surgery theory ([T2]), we see that if we take & sufficiently
large, then g, satisfies the conclusions (i), (ii).

Hence, suppose that 3 admits a Seifert fibration. Let /(C0N) be a com-
ponent of 841 with an orientation, m(C9N) be a simple loop p,([0, 1]x {0}) U p,
([0, 1]1x {0} ) with an orientation. Let [[], [m] be the homology class represented
by I, m. Then {[/], [m]} is a generator of the first homology group of the torus

1UA4i(coN). Let I,(cAiUA4j) be a fiber of = with an orientation. Then
[L]=a[l]+b][m], where a,bEZ, (a, b)=1. Let N,_,=C1EJ C,, and =, be the image

of 3 in N,. Then, N, is homeomorphic to the manifoldz which is obtained from
N and D*x S by identifying 4i U A} and 9(D?x S*) by a homeomorphism such
that 0D?x {pt.} is identified with a loop representing &[I]4[m].

Suppose that 3 does not admit a Seifert fibration such that A}, A} are
unions of fibers. Then b0, and the algebraic intersection number of &[I]+[m]

and a[l]4-b[m] is det (8 2)21)8 —a. If we take & sufficiently large, then we can
a

make the absolute value of the intersection number greater than two. Then =,
admits a Seifert fibration such that one boundary component of 3, is exchanged
to an exceptional fiber with index greater than two. By Lemma 5.1, it is easily
checked that Seifert fibrations on 3, are unique up to ambient isotopies of X,
and each component of 93, is incompressible. Hence, g, satisfies the conclusions
(1), (ii)-

Suppose that 3 admits a Seifert fibration such that Ai, A} are unions of
fibers. Then, 3, admits a Seifert fibration such that one boundary component
of 3 is exchanged to a regular fiber. If 3, is not homeomorphic to D*x S,
S'x S'x [0, 1], or the twisted [0, 1] bundle over the Klein bottle, then, by Lem-
ma 5.1, we see that [N, is a Haken manifold and the image of & in N, gives the
torus decomposition of NN, for each &. Hence, g, satisfies the conclusions (i), (ii).

Let =’ be the union of the closure of the components of N—9, each
component of which intersects 3. 3/ denotes the image of 3’ in N,.

Suppose that =, is the twisted [0, 1] bundle over the Klein bottle. Then,
. is not a piece of the torus decomposition of N’, if and only if a Seifert fibra-
tion on 3, extends to a Seifet fibration on 3, US/. But, it is easily seen that for
almost all &, any Seifert fibrations on 3, do not extend to X%, UZ,. Hence, we
have the conclusions (i), (ii).

Suppose that Z,=D*x S'. Then, = admits a Seifert fibration with orbit
manifold an annulus and one exceptional fiber. Let N'=cl(N—ZX), T;=N'NZ,
L(c T)) be a fiber of 3, with an orientation. Let m’(C T;) be a non-trivial simple
loop which bounds a disk in =, /'(CT;) be a non trivial simple loop which
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intersects m’ transversely in a point. Then, [[]]=a,[m'14+b,[lI')eH\(T}; Z) (ay, b,
€Z, |b|>1, (a,, b;)=1). Then N, is homeomorphic to the manifold obtained
from N’ and D? x S by identifying T} and 8(D?X S*) by a homeomorphism which
takes a loop representing [m']+&by(a,[m']+b,[I'])=(1+Ea, b,) [m']+Eb[I'] to a
loop dD?x {pt.}. If =’ is hyperbolic, then, for sufficiently large &, the image of
9—T, in N, gives the torus decomposition of N,. Suppose that %’ admits a
Seifert fibration. Let L(C T,) be an oriented fiber of a Seifert fibration on ='.

Then, [5]=a,[m1+5,[1'] (& b EZ, (@ b)=1), where det (% 2)—a,b,—ay b+
2

0. Since, det ((l—i—Ea, b) 81;1>=b2+8b1(a1 b,—ay b,), we can
a 2

fibration on 3} to 3/UZ, with creating a new exceptional fiber, for sufficiently

large &. Then, by the argument as above, we see that N, is a Haken manifold
and the image of I—7) in N, gives the torus decomposition of N,. Hence, we
have the conclusion (iii).

Suppose that 3,=S'x S'x[0,1]. Then = admits a Seifert fibration with
orbit manifold a disk with two holes and no exceptional fibers i.e. = is home-
omorphic to (disk with two holes) x S*. Suppose that =’ does not admit a Seifert
fibration i.e. one component of 3’ does not admit a Seifert fibration, then the
image of 9—T" gives a torus decomposition of N, for each &, where 7" is a com-
ponent of Fr,S. Suppose that =’ admits a Seifert fibration, then, by Lemma
5.1, it is easily seen that any Seifert fibrations on 3/ do not extend to = U =, for
almost all &. Hence, the image of 9—T" gives the torus decomposition of N,,
and we have the conclusion (iv).

This completes the proof of Lemma 5.2.

2 02 .
extend the Seifert

For the statement of Lemma 5.3, we define a terminology. Let C be a
genus g(>1) compression body, and A={4,, --+, 4,} (m>1) be a system of
mutually disjoint annuli in 8,C. We say that A, is simple with respect to A if
there is a disk D properly embedded in C such that D cuts C into a solid torus
V and a genus g—1 compression body with 8D N A4;=¢ (i=1, -+, m), A,CoV,
A;NV=¢ (1=2, +--,m), and (V, 4,) is homeomorphic to (4,;x [0, 1], 4, {0})

as a pair. Then, we have:

Lemma 5.3. Let C;, 4} (i=1, 2,j=1, -, p), g, N, = be as in Lemma 5.2.
Suppose that A} is simple with respect to {Al, -+, A}}, and 3 admits a Seifert
fibration such that Ai(i=1, 2) is a union of fibers. Then, there is an embedding g’ :

ol (8,C,— Ql AY)—8,C, such that :
(i) N'=C,UC, is homeomorphic to N, and
g/

(i) If =’ is the component of the torus decomposition of N’ which contains
1, then 3" does not admit a Seifert fibration such that Ai is a union of fibers.
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Proof. By definition, there is a disk D in C) such that D cuts C, into a
solid torus ¥V, and a compression body C{, where 4] CaV, and (V, A4}) is home-
omorphic to (4ix [0, 1], Aix {0}) as a pair. Let § be the restriction of g to
60C1—(6VU2§&J§’A}-). We consider Z an embedding from a subsurface of 8,C{

to 9,C;. Then N”"=C1{ U C, is homeomorphic to N. Let T be the component

of 0N which contains Agf, D’ be the copy of D in T. By Lemma 5.1, there is
a simple loop / on T such that / is not isotopic to a regular fiber of any Seifert
fibration on X’. We may suppose that / intersects D’ in an arc. Let N(I) be a
regular neighborhood of ! in N”, A’=N()NT, and C{’=C{UN(l). Then,
there is a homeomorphism %: (C,, A1)—(C{’, A') such that k| s=id 3 (1<j<m).
Let Ci=cl(N”—C1{’). Then, there is a homeomorphism A': C4—C,, and an

embedding 3: cl(8,C5'—(4'U U A}))—>0,C% such that C{’ U C} is homeomorphic

/4 ’
to N”. Then, g'=h"ogoh| LB, .UlAl) satisfies the conclusion of Lemma 5.3.
i=

This completes the proof of Lemma 5.3.

The next lemma will be needed for the proof of Theorem 1.

Lemma 5.4. Let A be an essential annulus in a genus g compression body C
such that 0AC0,C. Then, A cuts C into two compression bodies C', C! such
that genus (C')+genus (C")=g+1, or A cuts C into a genus g compression body
C. Moreover, if A’, A” denote the image of A in C', C” (or C), then one of
A', A", say A', is simple with respect to A’ (or {4’, A"}) in C' (or C).

This can be proved by using the same argument as in [Ko 2, Lemma 3.2]
together with Lemmas 3.2, 3.3.  So we will omit the proof.

6. Proof of Theorem 1

Let 9 be the union of tori which give the torus decomposition of M, and
(Cy, Cy; F) be a genus g Heegaard splitting of M. We may suppose that each
compenent of 9N C, is a disk and the number of the component of INC,
is minimal among all systems of tori which are ambient isotopic to <, and
intersect C,; in disks. Let ¢(M) be the first Betti number of the characteristic
graph G,. Then, we order (g, c¢(M)) lexicographically. The proof will be
done by the induction on (g, ¢(M)). Let N be a Haken manifold as in Theorem
1, and & be the union of tori which gives the torus decompositoin of N. Then,
n(N) denotes the number of the components of N—S.

As we see later (section 8), we can construct a Haken manifold with genus
g Heegaard splitting and decomposed into 3g-3 components by the torus decom-
position. Hence, we may suppose that I contains at least 3g-4 components.

As the first step of the induction, we will show:
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Lemma 6.1. Let M, g be as in Theorem 1. Suppose that g=2. Then,
M is decomposed into at most 3 components by the torus decomposition. Moreover,
if M is decomposed into 3 components, then G, is _]f{l—ﬂ}z—]rgs, where M; (i=1, 3)
is a simple Seifert fibered manifold, and M, is homeomorphic to the exterior of a
two bridge link.

Remark. By [Ko 2, Lemma 4.3], we see that M, is simple.

Proof. This can be proved by using the arguments in [Ko 1, Ko 2]. We
do not think it worth to repeat the argument here, and, hence, we will only
state how the logic proceeds.

By using the argument in [Ko 1], we see that if M contains a non-separating
incompressible torus, then M is decomposed into at most 2 components by the
torus decomposition. Hence, we may suppose that each component of < sepa-
rates M. By the argument in [Ko 2, section 6, Case 2], we can show that 4
consists of two tori Ty, T,. Then, by [Ko 2, section 6, Case 3], we see that
T,UT; can be isotoped so that T;N C; (7, j=1, 2) consists of an annulus which
separates C;. 'Then, by seeing the position of the annulus, we have the con-
clusion of Lemma 6.1.

In the rest of this section, we suppose that g>2. By Proposition 4.1’, there
is a component T; of I such that T;N C, consists of a disk D,, which is good.
Then, as in section 3, let Z,=9N C;(i=1, 2), (5", a), **+, (5™, a,,) be a hier-
archy for ,, which is realized by a sequence of isotopies of type A, ¥ =Y, and
g® (i>1) be the image of %V after the isotopy of type A at a;_,. Let & be
the number such that a,N D%+ ¢, ;N D,=¢(0<I<k). Let T{ be the image of
T,in 9% and 4;=T{NCi(i=1,2). Then, 4; is an essential annulus in C;.

First, suppose that T; separates M. Then, by Lemma 5.4, 4; cuts C; into
two compression bodies C}i, C?, where genus(C})+-genus(CH=g+1. A}
denotes the copy of 4; in ,Ci. We may suppose that cl (8,C{—A{) and cl (8,C}
—Ai) (j=1, 2) are identified in M. Let g;=genus(C{)=genus(C}) (j=1, 2).
Let M,, M, be the 3-manifold obtained from M by cutting along 7{. Then, M;
(i=1, 2) has a decomposition M;=C} U Ci, where h;: cl (8,Ci—A})—>cl (8,Ci—

A}) is a homeomorphism induced from the Heegaard splitting of M. By Lemma
5.4, we have essentially two cases.

Case 1. Ai(C8,C1), and A3(<9,C3) are simple.

In this case, by Lemmas 5.2. (ii), 5.3, we see that there is a homeomorphism
hi: 9,Ci—0,Ci(i=1, 2) such that M}=C} %,J C} is a Haken manifold and decom-

posed into the same number of the components as M; by the torus decomposi-
tion. Then by the assumption of the induction, we have:
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(M) = n(M,)+n(M,) = n(M7)+n(M32) < (38,-3)+(3g-3) = 3g-3 .

Suppose that the equality holds. Let =,(i=1, 2) be the closure of the com-
ponent of M—G®* such that T{CZ3,;, and Z;CM;. Let =/ be the image of
3;in M}. 'Then, by the assumption of the induction, we see that 3/ is simple.
If 3 is hyperbolic, then =; is also hyperbolic, and, hence, simple ([T1]). If =}
admits a Seifert fibration, then, by the proof of Lemma 5.2, we see that 3/
admits a Seifert fibration with at least one exceptional fiber. Then, by [J, 155p.],
3} admits a Seifert fibration with orbit manifold a disk and two exceptional fibers,
or with orbit manifold an annulus and one exceptional fiber. Hence, 3; admits
a Seifert fibration with orbit manifold an annulus and one exceptional fiber, or
with orbit manifold a disk with two holes and no exceptional fibers, and we see
that ; is simple. Then, by Lemma 5.2 (ii), we see that the closure of each
component of M—4 is simple.

Case 2. Ai(c9,C1), and A3(C9,C}) are simple.

Let 3; be as in Case 1. Suppose that 3, is hyperbolic, or does not admit a
Seifert fibration such that 4%(i=1, 2) is a union of fibers. Then the arguments
in the proof of Case 1 holds, and we see that M satisfies the conclusions of
Theorem 1. Hence, suppose that 3, admits a Seifert fibration such that 4? is a
union of fibers. Then, by the definition of the torus decomposition, we see that
3, does not admit a Seifert fibration such that A} is a union of fibers. We can
attach a solid torus to Ci(i=1,2) along the annulus A4} as in Figure 6.1 to
produce a genus g, compression body Ci. Let &’": 8,Ci—08,C} be a homeomor-

Figure 6.1
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phism which is an extension of /,, and let M’=C} y Ci. Then, M’ is homeomor-
phic to M, U S, 3 where S;; is a Seifert fibered manifold with orbit manifold a
]

disk and two exceptional fibers of index 3, and A4} is a union of fibers. By
Lemma 5.1, we easily see that any Seifert fibrations on S; ; do not extend to 3,.
Hence, n(M'")=n(M)4-1.
By Lemma 5.2, there is a homeomorphism A%: 9,Ci—0,C; which is an
extension of #,, and Mi= fyC% is a Haken manifold with n(M?%)>n(M,)—1.
2

Hence, by the assumption of the induction, we have:
n(M) = n(M,)+n(M,) <n(M7)+n(M4$)<(3g,-3)+(3g.-3) = 3g-3 .

Then n(M3)=n(M,;)—1 and, by Lemma 5.2 (iii), (iv), we see that X, is
simple. Hence, by the argument as in Case 1, we see that the closure of each
component of M— 4 is simple.

Now, suppose that T does not separate M. Then, 4,(i=1, 2) cuts C; into
a compression body C/. Let 4}, A% be the copies of 4; in 8,C}. Let M’ be
the 3-manifold obtained from M by cutting along 7. Then, M’ has a decom-
position M'=C{EJC£, where h: cl (0,C1—(41U 43}))—cl (8,C,— (AU A43)) is a

homeomorphism induced from the Heegaard splitting. We may suppose that
h(dA})=0A45(i=1,2). Then, we have essentially two cases.

Case 3. Ai(C98,C1), and A5(C8,C}) are simple.

In this case, by applying Lemma 5.2 twice and Lemma 5.3 once, if needed,
for h or A7', we see that there is a homoemorphism 4’: 9,C{—8,C% such that
M'=C1{UC} is a Haken manifold with n(M')=n(M). Clearly, c(M')<c(M).

hl

Hence, by the assumption of the induction, we see that #(M)<3g-3. And, if
the equality holds, then, by the argument as in Case 1, the closure of each com-
ponent of M— 4 is simple.

Case 4. Ai(c9,C1), and A3(C9,C%) are simple.

Let 3i(7=1, 2) be the component of M’ cut along the image of g% such
that A{ UA{cd3’. If 3? does not admit a Seifert fibration such that 42, 4% are
unions of fibers, then, by the argument in Case 3, we see that Theorem 1 holds.
Hence, suppose that 3? admits a Seifert fibration such that A}, 43 are unions of
fibers. Then, we attach a solid torus to C{(i=1, 2) along the annulus 4} to
produce a genus g compression body C; as in Figure 6.1. Then, there is a
homeomorphism %': cl (8,C,—A%)—>cl (8,C,—A43), which is an extension of 4’,

and M”=C,UC, is homeomorphic to M’ U S;; where S;; is as in Case 2.
W ) AlU A} .
By the assumption on %? and Lemma 5.1, we see that any Seifert fibrations on
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S, 3 do not extend to 3'. Hence, n(M")=n(M')+1=n(M)+1. By Lemma 5.2,

we see that there is 2 homeomorphism #”: 3,C,—8,C, which is an extension of 4’

such that M” '=C, U C, is a Haken manifold, and n(M"” )=n(M"), or n(M"' )=
Il”

n(M")—1. Clearly, c(M”")=c(M")=c(M')<c(M). Suppose that n(M"")=

n(M"). Then, by the assumption of the induction, we have n(M" ")=n(M")+1

<3g-3. Hence, n(M)<3g-4, a contradiction. Suppose that n(M" ")=n(M")—

1. Then, n(M)=n(M"")< 3g-3. If the equality holds, then, by the argument

as in Case 1, we see that the closure of each component of M— 4 is simple.
This completes the proof of Theorem 1.

7. Proof of Theorem 2

In this section, we will give a proof of Theorem 2. The proof is done by
using the induction on a complexity which is different from the complexity in
section 6. Let g, c(M) be as in section 6. Then, we order (c(M), g) lexicogra-
phically. Throughout this section, we will adopt this complexity. We note that
Lemma 6.1 gives the first step of the induction.

Let (Cy, Cy; F), 9, 99, I;, 99, Ty, T!, and A;(i=1, 2) be as in section 6.
Recall that M=M, U -+ U M, _, is the torus decomposition of M. Let M’ be M
cut along T, C’(i=1, 2) be C; cut along 4;, 4}, A3(C9,C?) be the copies of A4;.
Then M’ admits a decomposition M'=C{UC}%. We may suppose that 94]
(j=1, 2) and 04} are identified in M’. Let I’ be the image of 9®—T{ in M'.
9’ gives the torus decomposition of M’, M{U -+ UMj},_s, where each M7 is the
image of M;. Suppose that 0M? contains T1=A} U 43}, and 0M} contains Ti=

{U4j. We note that possibly Mi=Mj.

Lemma 7.1. If Ai, and A} are simple with respect to {Ai, A}, and
{4}, A3}, then M} admits a Seifert fibration such that A% is a union of fibers.

Proof. We give a proof in the case when T is non separating. The argu-
ments apply in the case when T is separating. Assume that M} does not admit
a Seifert fibration as above. Let A': cl (6,C,—(4iU 4}))—>cl (8,C,—(4: U 45))
be the homeomorphism induced from the Heegaard sewing homeomorphism #4:
0,C;—0,C,. Then, by Lemma 5.2 (ii), &’ can be extended to a homeomorphism
R’ cl(8,C,— A1)—cl(8,C,— A3) such that the image of 4’ in M"=C, HCZ gives

the torus decomposition of M”. Then, we attach to a solid torus to C; along

A} as in Figure 7.1, to get a genus g compression body C/’. Let &”’: 8,C{"—

9,C%’ be a homeomorphism which is an extension of 4", and let M”'=C{’ U C%’.
h/l /

Then, M” ' has a decomposition M” U S; 3, where S35 is as in section 6.

Suppose that M does not admit a Seifert fibration such that 4} is a union
of fibers. Then, M”’ is decomposed into 3g-2 components by the torus de-
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cy
Figure 7.1

composition, contradicting Theorem 1.

Suppose that M admits a Seifert fibration such that 4} is a union of
fibers. Then, M”’ is decomposed into 3g-3 components by the torus decom-
positicn, and M{U S; 3 is a component of the decomposition. Clearly, M;U S, ,
is not simple, contradicting Theorem 1.

This completes the proof of Lemma 7.1.

We will give a proof of the following two assertions of Theorem 2.
(1) If FryM; consists of a torus, then M; admits a Seifert fibration.
(iii) 2g-2 components of {M;} admit Seifert fibrations.

Proof of Theorem 2 (i), (iii).

By the proof of Theorem 1, we can construct a (possibly, disconnected)
Haken manifold M*, by closing boundary components of M’, each component
of which has a complexity less than that of M. It is easily seen that if Fr,M;
consists of a torus, then the frontier of the image of M; in M* also consists of
a torus, and if M; admits a hyperbolic structure, then the image of M; in M*
also admits a hyperbolic structure. Hence, by applying the assumption of the
induction, we see that (i), and (iii) hold.

This completes the proof of Theorem 2 (i), (iii).

We will prepare an example for the proof of Theorem 2 (ii), (iv).

ExampLE. Let V,(i=1, 2) be a genus two handlebody, and 4/(C0dV;) be
the annulus as in Figure 7.2. Then, there exists a homeomorphism 4,: cl (0V,—
Af)—>cl (8V,—A}) such that VUV, is a Haken manifold, which is decom-

hy
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1 (=1, 2)
Figure 7.2

posed into two components IN;, N, by the torus decomposition, where N is
homeomorphic to S; ;3 in section 6, and IV, is homeomorphic to the exterior of
Whitehead link ([T2]), hence, NV, is hyperbolic.

Proof. Let A‘(i=1,2) be the annulus properly embedded in V; as in
Figure 7.1. Then, by [Ko2, Theorem], we see that there is a homeomorphism
hy: cl (0V,—A1)—>cl (0V,—A45) such that ,(04")=0A4? and the torus A'U A4?
gives the torus decomposition of VILhJ V, into N;, and N, as above.

1

Proof of Theorem 2 (ii), (iv).

By Lemma 6.1, we see that the conclusions hold if g=2. Hence, we sup-
pose that g>2. Then, by Proposition 4.1’ we can find a component 7} as in
section 6. Let T1, A’(7,j=1, 2) be as in section 6. Then, we divide the proof
into several cases.

Case 1. 1, and A3 are simple annuli.

Let N,(V, resp.) be a regular neighborhood of 43(4; resp.) in C{(C}% resp.).
Then, cl (N;N08C])—A3%) (cl (N,N9C35)—A;3) resp.) consists of two annuli. By
attaching N, (N, resp.) to C5(C1{ resp.) along these annuli by the homeomorphism
induced from the Heegaard sewing map 0,C;—8,C, we get a (possibly, dis-
connected) compression body C3’(C7’ resp.), and there is natural homeomor-
phism #”: 8,C{’—8,C%’ such that C7’ ’l‘_/J,Cé’ is homeomorphic to M’. It is easily

seen that each component of M’ has a complexity less than that of M and the
image of 9® —T gives the torus decomposion of M'. Hence, by the assump-
tion of the induction, we have the conclusions of Theorem 2.

Case 2. Aji, and 4; are simple annuli, and 7 is non separating in M.

Let V), V,, A, A} be as in Example 1. Then, we get a genus g+1 com-
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Figure 7.3

pression body C?{’(i=1,2) from C! and V; by identifying 4% and A4;. We
dencte the image of 4} on 8,C%’ by A}. Let &': cl (8,C{—(A4iU A4}))—>cl (8,C5—
(4% U 45)) be the homeomorphism induced from the splitting M'=C4{U C3. Let
k' cl(9,C{'—Ai)—cl (8,C3’ —Aj) be a homeomorphism which is a union of 4’
and A&, in Example. Then M"=C{’ HC&’ is a Haken manifold and decomposed

into 3g-1 components by the torus decomposition.

\
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Figure 7.4

We attach a solid torus to C{/(i=1, 2) along A/ as in Figure 7.5 to get a genus
g+1 compression body C;’’. Let k”’: 8,C}{’’—0,C4’’ be a homeomorphism
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which is an extension of #”’. Then, M"'=C{’’ L’J/Cé’ ’ is a Haken manifold
h/

which is obtained from M by attaching S, ; along their boundary components.
By Lemma 7.1, we see that M”’ is decomposed into 3g components by the
torus decomposition. Hene, M”’’ is full. Clearly, M”"’ has a complexity less
than that of M. Then, by the assumption of the induction, we see that the
conclusions of Theorem 2 hold.

c
1
Figure 7.5

Case 3. Ai, and A} are simple annuli, and T is separating in M.

In this case, A;(i=1,2) separates C; into two compression bodies C},
C? such that 4{c9,C. Suppose that genus(C})>2. Then, by the construc-
tion in Case 2, we get two full Haken manifolds M}, and M}, each of which
has a complexity less than that of M. Hence, by the assumption of the induc-
tion, we have the conclusions of Theorem 2. Since T is good, we have genus
(CH)>1. Hence, the rest case that we should consider is:

(*) Case 3 with genus(C})=2.

Assume:

(**) every component of I which intersects C; in a disk, and which is
good satisfies the above condition (*).

Then, we will proceed a long distance toward a contradiction, and that will
complete the proof.

Let Ty, -+, T, be the components of 9 each of which intersects C; in a
disk, and is good.

Assertion 1. No three components of I, are mutually parallel in C,.

Prcof. Assume that three components D,, D, D, of 9, are mutually
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parallel in C,. We may suppose that D,, D,, D; are settled in C, in this order,
and we call the direction to which D, (D; resp.) settled left (right resp.). Let
bj, be the 7-th band which is attached to D,UD,UD,. Then, by the argument
in the proof of Proposition 3.8, we may suppose that b;(=1, 2, 3) is attached
to D; to produce an essential annulus 4;, such that 4, and A4, are parallel in
C,.

Assume that b;, is attached between the right side of D, and the left side of
D,. Let M be the closure of the component of M—J%*Y which contains the
product region between D, and D,. Then, by the proof of Proposition 3.8, we
see that M is homeomorphic to the exterior of a two bridge knot. Then, by
exchanging the Heegaard sewing map #: 8,C,—8,C, in M N 8,C,, we may suppose
that M is homeomorphic to the exterior of figure eight knot. But, this contra-
dicts Theorem 2 (i).

Assume that 3;, is of type 3, and attached to D,. By the proof of Propo-
sition 3.8, we see that b;, is attached to the left side gf D,. By the minimality
assumption on <, we see that b;, is of type 3. Let T be the component of
such that TN C,=D,. Then, T satisfies the condition in Case 1, contradicting
the assumption (**).

Assume that b;, is of type 3, and attached to D,. Let T be the component
of I such that TN C,=D,. Since there exist two disks, D, and D,, we see that
T is good. By the assumption (**), we see that D, separates C, into a genus one
compression body and the other component V. Since I gives the torus decom-
position of M, we see that D;C V. Then, by using the case by case argument as
in the proof of Proposition 3.8, we see that there is a component T of I such
that TN C,=D,, and T is good. Since g>2, T does not satisfy (*), a contradic-
tion.

Assume that b;, is of type 3, and attached to D;. By assumption (**),
we see that D, separates C, into a genus one compression body V'’ and the
other component. By (¥), we see that D, D,CV’. But, since 4, and A4, are
parallel, this contradicts the definition of the torus decomposition.

By the argument in the proof of Proposition 3.8, we see that no other pos-

sibility of the ways of attaching bj, can occur, and this completes the proof of
Assertion 1.

Recall that Ty, «+-, T, are the components of I each of which intersects C;
in a disk, and is good. Let D,=T;NC\(i=1, -+, p) and b,, be the first band
which is attached to D;. We may suppose that k,<<k,<---<<k,. By (**), we
see that each D; separates C, into a genus one compression body V; and a genus
g—1 compression body, and b, is attached to the side of D, in which the genus
g—1 compression body is settled. Let 7¢’ be the image of T} in I©.

Assertion 2. For each 7(1<i<p), there is a component D(=+D;) of I,
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such that DC ¥V, and D and D; are parallel in C,.

Proof. Assume that there is no component of I, which is contained in
Vi—D;. Then, by applying the argument in the proof of Theorem 1 to Tj,
we can construct a genus g—1 manifold which is decomposed into at least 3g-5
components by the torus decomposition, a contradiction. Hence, we have a
component D of &, such that DCV;. Assume that D and D; are not parallel
in C,. Since V; is a genus one compression body, D cuts V; into a 3-cell.
Let b, be the first band which is attached to D. Since b, is of type 3, we see
that 7>k;. Let b, be the second band which is attached to D,.

Assume that 7>s (>k;). Then, by (**), we see that b, is attached to D; to
the side in which V; is settled. Then, T¢*PNC, is a once punctured torus,
and is compressible in Cj, a contradiction. Hence, s>7.

Then, g**Y N C, contains two annuli 4’, and A”, where A'(A” resp.) is
obtained from D(D; resp.) by attaching b, (b, resp.). Then, we can span an
annulus 4* between the core of 4’ and the core of 4” in C,. But, by Lemma
7.1, we see that this contradicts the definition of the torus decomposition.

This completes the proof of Assertion 2.

Assertion 3. 9, contains at most 3g-p-5 parallel classes.

Proof. By Assertion 2, we see that I, contains at most (3g-3)-p=3g-p-3
parallel classes. If needed, by exchanging the order of the isotopies of type

A we may suppose that b, is not attached to a disk contained in lPJ (V;—Dy).
i=1

Then, by the argument in the proof of Lemma 4.3 we see that I, contains at
most 3g-p-4 parallel classes. Assume that I, contains just 3g-p-4 parallel classes.
Then, 9, cuts C; into genus one compression bodies V7, .-+, V}; V, and some
3-cells, where ViC V,(i=1, -+, p), VN F'is a once punctured torus and b,C V. If
b, is attached to some D;, then we see that C, is a genus two compression body,
a contradiction. Hence, we may suppose that &, is not attached to a disk con-

tained in QI(V,-—D,-). Then, by the argument in the proof of Lemma 4.3, we

see that this contradicts the definition of the torus decomposition. Hence, <,
contains at most 3g-p-5 parallel classes.

Let {T}} ,<i<, be the components of I which intersects C; in a disk and
T;NnC,EV,U--- UV, By the definition of {T}},<;<, we see that T;(p<<i<q)
is bad, and there is no component of I; which is parallel to T; N C,(p<<i<q).
Hence, by Assertion 1, we see that &, contains at least 2(3g—4—2p—q)+2p-+q
=6g—8—2p—¢q components. On the other hand, by Assertions 1,3, we see that
9, contains at most 2(3g—p—5)—g=6¢g—10—2p—g components, a contradic-
tion.
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This completes the proof of Theorem 2.

8. Examples

In this section, we will show that, for each g(=>2), there exist infinitely
many closed Haken manifolds with genus g Heegaard splittings, and each of
which is decomposed into 3g-3 components by the torus decomposition. We
will give two constructions of such examples. It is easy to construct such ex-

amples with incompressible toral boundaries by using the arguments stated
below.

CONSTRUCTION 1.

ExampLE 1. Closed Haken manifold with a genus two Heegaard splitting,
which is decomposed into three components by the torus decomposition ([Ko2]).

Let V;(i=1, 2) be a genus two handlebody, 4}, A% be annuli properly em-
bedded in V; as in Figure 8.1. Let g: 3V,—3dV, be a homeomorphism such that
£2(04{)=04j(1=1,2). Then, T'=A4iU A} is a torus in the closed 3-manifold
N= Vllg V, and T'U T? cuts N into three components NN;, N,, and N,, where

N,, N; are homeomorphic to Sy ; in section 6, and N, is homeomorphic to the
exterior of a two bridge link ([Ko2, section 4]). Let g,: 0V,—0V,(n=1,2, )
be a homeomorphism such that g,(d4{)=04i(i=1, 2) and T*U T? cuts N,=V,U

&y
V, into three components, two of which are homeomorphic to S; 3, and the rest
one is homeomorphic to the exterior of (2, 2) torus link, where the core of 4}
is a meridian loop. Then, N, is a Haken manifold and the above decomposi-
tion is the torus decomposition of N, provided |z|>2. By the uniqueness of

the torus decomposition, we see that if |m| = |n|, then N,, is not homeomorphic
to N,.

Figure 8.1

ExamPLE 2. Closed Haken manifold with Heegaard splitting of genus three,
which is decomposed into six components by the torus decomposition.
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Figure 8.2

Let Vi(i=1, 2) be a genus two handlebody, 4}(C8V}) be the annulus as in
Figure 8.2, and A% A? be annuli properly embedded in V} as in Figure 8.2.
Let g: cl (aVi—Ai)—>cl (aV;—A}) be a homeomorphism such that g(84{)=04}
(j=2,3). Let T"=A{UAj. Then T*°UT? cuts N'= V}ILJVQ into three com-

ponents N1, N3, N}, where N] admits a Seifert fibration with orbit manifold an
annulus and one exceptional fiber of index 2 where A4} is a union of fibers, N is
homeomorphic to the exterior of a two bridge link ([Kol, section 4]), where the
core of Ai(j=2, 3) is a meridian loop, and N; is homeomorphic to S; 3 where A}
is a union of fibers. Let g,: cl (0Vi—Ai)—cl (dV}3—A4}) te a homeomorphism
such that g(04{)=044(j=2,3), and T?UT® cuts Ni,=V1} u V; into three

components, where two of them are homeomorphic to Ni, N} as above, and the
rest one is homeomorphic to the exterior of (2, 2z) torus link.

Let (V1, A}) be a copy of (V1, A1), and V3 be a copy of Vi. Then, by
Lemma 5.3, there is an embedding g;: cl (0Vi—A})—08V3 such that N&,=V7} Y

V3 is homeomorphic to N{,), and if N7 is the component of the torus decomposi-
tion of N, which intersects ON¢,, then N? does not admit a Seifert fibration
such that 43 is a union of fibers. Let Aj=cl (0V;—gi(0Vi—A43)). Then, by
attaching Vi to V3(V3 to V3 resp.) along Ai and A3(A4? and A} resp.) we get a
genus three handlebody V3 (V3 resp.) Let g: 8Vi—0V3 be a homeomorphism
which is a union of g, and g;~". Then NP=V3 L{J@V% is a closed Haken mani-

fold, and decomposed into six components by the torus decomposition.
ConsTRUCTION 2. We will give another construction of full Haken mani-

folds. First, we will prepare five ways of attaching handlebodies, each of which
is a fundamental block of the full Haken manifolds.

1. Let V be a genus two handlebody, 7, T be a pair of once punctured
tori embedded in 8V as in Figure 8.3. It is directly seen that if we attach a
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2-handle to ¥ along the annulus cl (3V—(7T'U T")), then we get the exterior of
Whitehead link.

2. Let V be a genus two handlebody, and T be a punctured torus embedded
in 9V, as in Figure 8.4. Let V' be a genus one handlebody, and D be a disk
embedded in 8V’. Let h: cl(0V—T)—cl(8V’'—D) be a homeomorphism which
takes the arc @ to . Then, by calculating the fundamental group, we see that
N=V£J V’ admits a Seifert fibration with orbit manifold a disk and two ex-

ceptional fibers of index three. Moreover, we may suppose that [ is a fiber of
the fibration.

Figure 8.4

3. Let V be a genus three handlebody, and 7, 7’ be a pair of punctured
tori embedded in 8V as in Figure 8.5. Let V' be a genus one handlebody,
and D, D' be a pair of disks in 9V’. Let h: cl(0V—(TUT"))—cl(8V'—
(DU D)) be a homeomorphism which takes the arc a to . Then, by calculat-
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Figure 8.5

ing the fundamental group, we see that N=V UV’ admits a Seifert fibration
h

with orbit manifold an annulus and one exceptional fiber of index two. More-
over, we may suppose that [ is a fiber of the fibration.

4. Let V be a genus two handlebody, and T, 7" be a pair of tori embedded
in @V as in Figure 8.6. Let N be a 3-manifold obtained from V by attaching a
2-handle along the annulus ¢l (0V—(T'U T”)). Then, N admits a Seifert fibration
with orbit manifold an annulus and one exceptional fiber of index two. More-
over, we may suppose that / is a fiber of the fibration.

Figure 8.6

5. Let V be a genus three handlebody, 7T, 7", 7" be a system of punctued
tori embedded in 8V as in Figure 8.7. Let V"’ be a 3-cell and D, D', D” be a
system of disks in 8V’. Let A: cl (@V—(TUT'U T"))—cl (6V'—(DUD’'UD"))
be a homeomorphism. Then, N=VL"J V' admits a Seifert fibration with orbit

manifold a disk with two holes and no exceptional fiber i.e. N is homeomorphic
to (disk with two holes)x S’. Moreover, we may suppose that / is a fiber of
the fibration.
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D’ D"

vV |24
Figure 8.7

By using the above fundamental blocks, we will give another description of
Example 2.

ExampLE 2. Let Ty(i=1, :++, 5) be a punctured torus properly embedded
in a genus three handlebody V; such that 7,U - U T cuts V] into six handlebo-

T, T, T;T, Ts

Figure 8.8
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dies 7, -+, VS, where (V, Ty), (V?, T;) are homeomorphic to (V, T) in the above
2, (V4 T, T,), (V5 T,, Ts) are homeomorphic to (V, T, T') in the above 1,
(V3, T,, Ts) is homeomorphic to (V, T, T') in the above 4, and (V*, T, T,) is
homeomorphic to (V, T’, T) in the above 3. By Figure 8.8, we see that such
Ty, +++, T; actually exist. Let D,, -+, D; be a system of disks properly embedded
in a genus three handlebody 7, as in Figure 8.8. Then, by the above construc-
tions 1, «--, 5, we see that there is a homeomorphism f: 8V,—8V, such that
f(0T;)=0D;(i=1, -+, 5) and M= V,L}J V, is a full Haken manifold such that the

system of tori (73U D;) U +-- U (T U D;) gives the torus decomposition.

ExampLE 3. genus four full Haken manifold whose characteristic graph is:

 E

By Figure 8.9 and the arguments as above, we see that the above example
actually exists.
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ExamrLE 4. genus three full Haken manifold whose characteristic graph is:

<

See Figure 8.10.

Figure 8.10

ExampLE 5. genus six full Haken manifold whose characteristic graph is:

< e >

See Figure 8.11.
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Figure 8.11

Remark. By using the same arguments, we can construct full Haken
manifolds such that the characteristic graphs have arbitrarily high first Betti
numbers.
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