
Title Computing the Convex Frontier for Large-Scale
Data Envelopment Analysis

Author(s) 庄, 乾偉

Citation 大阪大学, 2025, 博士論文

Version Type VoR

URL https://doi.org/10.18910/101750

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Computing the Convex Frontier for Large-Scale

Data Envelopment Analysis

Submitted to

Graduate School of Information Science and Technology

Osaka University

January 2025

Qianwei ZHUANG

This page intentionally left blank.

Abstract

Data Envelopment Analysis (DEA) is a widely used analytical tool that leverages

linear programming (LP) to classify or benchmark decision-making units (DMUs)

by establishing a convex frontier. Each DMU is represented as a point in Rd, where d

denotes the dimensionality. In DEA, lower values are preferred for input dimensions,

while higher values are favored for output dimensions. The DEA frontier is defined

as the oriented boundary of a polytope formed by extreme points.

Effective identification of this frontier is critical, particularly in large-scale con-

texts where the number of DMUs (n) is substantial. However, this process is compu-

tationally expensive, requiring the solution of numerous LP problems, each involving

a large number of variables, which leads to significant time and memory challenges.

This study proposes methods to improve the computational performance of DEA

frontier identification. First, we introduce a sequential categorization scheme that

organizes extreme DEA points into initial blocks, enabling the early establishment

of the frontier without processing the entire dataset. Next, we propose a novel refer-

ence set selection technique that minimizes the number of decision variables in the

LP problems to the size of the dimension, thereby substantially reducing computa-

tional costs. Finally, we present an adaptive search and accumulation strategy that

minimizes dependency on LP solutions, avoiding redundant computations. Regard-

ing the number of dimension-sized LPs to be solved, these approaches collectively

achieve a sublinear time complexity, ensuring computational efficiency superior to

O(n).

Rigorous proofs are provided for each proposed method. Experimental results

demonstrate the scalability and robustness of the techniques, yielding substantial

reductions in computational time and memory requirements while maintaining ac-

curate frontier identification.

Keywords: Convex analysis; Algorithmic geometry; High-performance computing;

Large-scale linear programming

i

This page intentionally left blank.

List of Publications

Journal Papers

1. Zhuang Q, Morita H. Accelerating the Identification of Efficient Frontier for Large-

Scale Data Envelopment Analysis. JORSJ Vol. 68, No. 2.

2. Zhuang Q, Khezrimotlagh D, Morita H. Accelerating Large-Scale DEA Computation

using Sequential Categorization and Dynamic Reference Set Selection. INFOR:

Information Systems and Operational Research. 2024 Sep 19.

Conferences

1. Presentation: ”Reducing LPs and Variables in Large-Scale DEA Computation Through

an Adaptive Shortest-Distance Search Scheme” at the INFORMS Annual Meeting,

October 2024, US.

2. Presentation: ”Accelerating Large-Scale Data Envelopment Analysis with a Parti-

tion and Sequence Computation Scheme” at the International Conference of DEA45,

September 2023, UK.

3. Presentation: “Computing the convex hull in high dimensions by solving small-size

quadratic optimization problems”, Kansai Branch Young Researchers’ Workshop,

Operations Research Society of Japan.

4. Presentation: “Identifying Inefficient DMUs Without Solving Linear Programming

for Large-Scale DEA Computation” at the 2024 Autumn Research Presentation

Meeting of the Operations Research Society of Japan.

5. Presentation: ”Streamlined DEA Computation Methods for Large-Scale DEA Prob-

lems” at the 98th Research Meeting of the Japan OR Society Evaluation OR Re-

search Group.

6. Presentation: ”An Approximate Method for Large-Scale DEA Problems” at the

2022 Autumn Research Presentation Meeting of the Operations Research Society of

Japan.

7. Presentation: ”Streamlined DEA Computation in the Big Data Context” at the

2022 Spring Research Presentation Meeting of the Operations Research Society of

Japan.

iii

This page intentionally left blank.

Contents

Abstract i

List of Publications iii

1 Introduction 1

1.1 Literature Review . 3

1.2 Structure of This Study . 4

2 Foundation Knowledge 6

2.1 Notation and Assumptions . 6

2.2 The convex hull problem . 7

2.3 The DEA frontier . 8

2.4 Computation Challenges . 13

3 Advances in Large-Scale DEA 16

3.1 Existing Results . 16

3.2 Build Hull . 19

4 Sequential Categorization 22

4.1 Mannual Distinct Weights . 22

4.2 Sequential Categorization . 26

4.3 Categorization Validation . 29

5 Dimension-Wise Reference Selection 34

5.1 The Selection Technique . 34

5.2 Enhanced Build Hull . 38

5.3 Empirical Experiments . 42

v

Table of Contents

6 Adaptive Shortest-Distance Search 45

6.1 Search Strategy . 45

6.2 Proposed Approach . 46

6.3 Empirical Experiments . 54

7 Conclusions and Discussions 60

A Appendix 63

A.1 Obtaining Frame Points using Arbitary Weights 63

A.2 Invariance of Constraints Under Data Transformation 64

vi

List of Figures

2.1 Convex Boundary . 9

2.2 Exterior and Interior . 12

2.3 Shortest-Distance (SD) Matching . 14

3.1 Domination . 17

3.2 BH Implementation . 20

4.1 Determining Manual Weights . 25

4.2 Frame Points Distribution n = 100, 000 32

5.1 Dimension-Wise Selection . 36

5.2 Comparison with Existing Techniques 38

5.3 Time Comparison between BH and Small-Size BH 43

6.1 Establishing coordinate system for point c 46

6.2 Implementation for point c . 50

6.3 Implementation for point f . 52

6.4 Case of Exteriors i.e., point i . 53

6.5 Time Comparison (seconds) . 56

6.6 Domination Respect to K . 59

vii

List of Tables

2.1 A 1+1 Dimension Instance Sample 12

4.1 Initial Combination Matrix . 27

4.2 Combination Matrix after Excluding B0 27

4.3 Combination Matrix after Excluding B0 and B1 28

4.4 Example of Scale Impact (original data) 28

4.5 Example of Scale Impact (normalized data) 29

4.6 Blocks Gathered Frame Points . 29

4.7 Number of Points in B0 . 30

4.8 Number of Points in F . 31

5.1 Calculation Results of the Illustrative Example 37

5.2 Time (seconds) Comparison . 42

5.3 Number of LPs: (k = 1)/(k = 1, . . .) 44

6.1 Running Time (seconds) . 55

6.2 Number of LPs and Corresponding Variable Counts 56

6.3 Identified Non-frame Points (%) . 57

6.4 Identified Frame Points (%) . 58

viii

List of Algorithms

3.1 DEA Dominator . 17

3.2 Build Hull . 19

4.1 Sequential Categorization . 26

5.1 Small-Size BH . 39

5.2 Parallel BH with Sequential Blocks 41

6.1 Shortest-Distance Adaptive Formulation 48

ix

This page intentionally left blank.

Chapter 1

Introduction

Data Envelopment Analysis (DEA), introduced by Charnes et al. [6], is a widely ap-

plied data-driven analytical tool for the evaluation of decision-making units (DMUs),

with multiple inputs (m) and outputs (s) [14]. Charnes et al. [6]’s foundational study

established linear programming (LP) formulations for DEA and proposed a compu-

tational method for processing DEA data. In the standard procedure, one LP is

formulated and solved for each DMU. For a dataset consisting of n DMUs, the LPs

must be solved n times, with each LP containing decision variables necessary to

classify all DMUs.

Each DMU is represented as a point in Rd, where the dimension d is defined

as m + s. The classification and evaluation of a DMU are based on its geometric

position within Rd relative to the oriented boundary of a d-dimensional polyhedral

region, commonly referred to as the DEA frontier. The DEA frontier is constructed

through constrained linear operations on the data and tightly envelops the region.

It is characterized by points that exhibit extreme properties of weighted dimensions,

adhering to the principle of minimizing inputs while maximizing outputs. In essence,

DEA integrates the requirements of dimensions.

This study focuses on identifying the set of extreme points in arbitrary dimen-

sions that define the complete DEA frontier in large-scale contexts, where n is con-

sidered large. These extreme points form a subset of the convex hull—the smallest

convex set that encloses all points. The convex hull is a foundational concept in

mathematics and computational geometry [4, 28, 43, 39, 23], which is extensively

utilized across various fields, including machine learning [34, 46], quantum comput-

ing [37], computer graphics [40], image processing [25], and computational biology

[45, 41]. Notably, the convex hull problem imposes no specific requirements on

dimensions, and advanced computational frameworks have been well studied [2].

The rapid advancement of information technology has facilitated access to large-

scale datasets across various fields, where dimensional requirements are often spec-

CHAPTER 1. INTRODUCTION

ified. However, this convenience introduces new challenges, particularly when ap-

plying convex analysis through DEA, which increasingly demands high-speed com-

putation to meet the requirements of certain scenarios.

One such example is the emerging streaming data environment [16]. Consider

a practical real-time classification model designed to detect credit card fraud. A

fraudster in possession of an invalid card aims to maximize their benefit while min-

imizing the risk of detection. They are aware that exceeding certain thresholds in

specific transaction dimensions could reveal fraudulent activities. For instance, an

unusually large transaction might trigger a red flag, prompting the credit card com-

pany to investigate potential fraud. Other indicators include transaction frequency,

types of items purchased, and the relationship between transaction times and phys-

ical distances. A sophisticated fraudster, understanding these risks, would likely

stay within safe boundaries for each dimension while still attempting to maximize

their gain. Consequently, suspicious behavior may arise from extreme combinations

of these dimensions.

As charges are processed in real-time, large-scale data streams into the credit

card company at high speeds. Each new transaction corresponds to a data point

within a polyhedral hull defined by all previous transactions. In Dulá [18], it was

shown that the boundary of these hulls is equivalent to a variable-returns-to-scale

(VRS) DEA frontier. Transactions deep within the hull are less likely to be flagged,

while those near or on the frontier, or those that redefine it, are more likely to raise

suspicion. To detect potential fraud, the company must rapidly verify transactions

by identifying and updating the frontier in real-time as new data arrives. The key

challenge is processing these transactions quickly enough to ensure timely detection

of suspicious activities, making the expedited identification of the VRS boundary

essential.

In addition to credit card fraud detection, DEA analysis is widely used across

various fields that generate large-scale datasets, including transportation and logis-

tics, energy planning, healthcare and medicine, as well as retail and e-commerce.

For example, the evaluation of high-frequency data from market activities—such as

stock markets [30, 31], e-commerce transactions [7, 15], and livestreaming commerce

[8]—remains an active research area. These evaluations often require analyzing large

numbers of DMUs. Furthermore, organizations have accumulated vast amounts of

time series data over the years, generating significant scholarly interest in analyzing

these datasets [44, 47]. Moreover, the challenges posed by big data have led to the

adoption and further development of advanced DEA models, such as network DEA

[24, 42], stochastic DEA [36], and slacks-based DEA [32], among others.

Nevertheless, as the number of DMUs n increases, applying DEA analysis be-

comes computationally intensive and time-consuming. As a result, addressing the

2

1.1. LITERATURE REVIEW

computational challenges of DEA in large-scale contexts has received significant

interest from scholars over the years.

1.1 Literature Review

As noted, DEA analysis relies on its established frontier, which is determined by

extreme points. The process of identifying these extreme points is commonly referred

to as the frame problem [20, 19], where the frame is the minimal subset of DEA

points that collectively define the DEA frontier.

Ali [1] pioneered a method for detecting the DEA frontier, laying a foundational

framework for subsequent advancements. Building on this, Barr et al. [5] introduced

a parallel processing approach that significantly improved the computational perfor-

mance of Ali’s method, enabling faster processing of large datasets. Dulá et al. [21]

further contributed by developing algorithms that utilize LP solutions to identify

the DEA frame, which defines the DEA frontier. While these methods rely on solv-

ing LPs, the process can still be computationally intensive for large-scale contexts.

To address this limitation, Dulá et al. [22] proposed preprocessing techniques based

solely on arithmetic operations such as sorting, inner products, and translation.

These preprocessors streamline computations without the need to solve LPs.

Building on earlier investigations, Dulá [19] introduced the Build Hull (BH)

model, a pivotal advancement in large-scale DEA methodology. The BH model

constructs the DEA frontier iteratively using only DMUs contributing to the con-

struction of the DEA frame, making it highly practical and resource-conserving.

Extending this foundation, Khezrimotlagh et al. [27] enhanced the Barr et al. [5]

model by incorporating concepts from the BH model, further improving its perfor-

mance and scalability. Similarly, Jie [26] refined the BH model by integrating a

parallel computation scheme. This approach leverages parallel processing, achiev-

ing faster computation times as the number of CPU workers (computation cores)

increases.

While models like BH focus on constructing the entire DEA frame, alternative

methods have emerged that apply DEA without the need to construct the com-

plete DEA frame. Chen et al. [9] proposed a small-size LP model based on the

Karush-Kuhn-Tucker (KKT) conditions [29]. This method is particularly useful in

scenarios with a high density of frontier units, as it significantly reduces compu-

tational demands by focusing only on decision variables associated with relevant

DMUs. Subsequent advancements in this direction were made by Chen et al. [10]

and Chu et al. [12]. These innovations have become essential in DEA analysis,

offering streamlined solutions for analyzing massive datasets.

In addition to these purely algorithmic approaches, recent advancements have

3

CHAPTER 1. INTRODUCTION

integrated machine learning techniques. For instance, Nemirko et al. [35] employed

machine learning algorithms to classify points relative to the convex hull of a poly-

hedron, addressing the classification problem of identifying interior, boundary, or

exterior points. Their method, implemented as a parallel algorithm, also calculates

the distance of target points from the convex hull, effectively solving LP problems

in parallel. Similarly, Muren et al. [33] proposed the angle-index synthesis method,

which combines angular and indexed measures for prescoring DMUs. They used

Monte Carlo simulations to assess their algorithm’s performance on an exception-

ally large dataset, consisting of one billion DMUs. These approaches underscore the

increasing convergence of DEA methodologies with machine learning and simula-

tion techniques, opening the door to innovative solutions for large-scale challenges

in DEA analysis.

1.2 Structure of This Study

Dulá [19]’s method is widely recognized as the preferred approach in situations

with limited computational resources. Building on this foundation, the objective

of this study is to accelerate the identification of the DEA frame in such resource-

constrained environments. Drawing inspiration from the techniques of Chen et al.

[10] and Chu et al. [12], we introduce a novel shortest-distance-based reference set

selection method to reduce the number of variables in the LPs of the BH procedure.

This enables the identification of the DEA frame by solving LPs of minimal size

(approximately equal to the dimension size). Building on this technique, we pro-

pose an enhanced version of the BH procedure, termed the small-size BH. To further

improve computational performance, we introduce novel DEA preprocessing strate-

gies that use arithmetic-based data preprocessing to eliminate the need for solving

LPs during frame construction. Notably, our approach is purely algorithmic and

does not rely on machine learning or statistical learning methods. We also provide

theoretical proofs to support the proposed techniques.

The remainder of this study is organized as follows:

• Chapter 2 introduces the notations, terminology, and key assumptions in

DEA, with a specific emphasis on the VRS assumption. It also discusses the

application of DEA analysis and the computational challenges encountered in

large-scale contexts.

• Chapter 3 emphasizes the importance of pre-identifying DEA frame points

and reviews existing approaches for this task. The BH procedure is presented

in detail.

• Chapter 4 introduces a sequential categorization method to establish a sys-

4

1.2. STRUCTURE OF THIS STUDY

tematic evaluation order for the BH procedure, potentially eliminating the

need for LP solutions.

• Chapter 5 presents a novel reference set selection method that enables a

small-size BH procedure, further enhancing the VRS frame construction.

• Chapter 6 extends the work from the previous chapter by further reducing

both the size and number of LPs required for constructing the VRS frame,

employing an adaptive method to generate virtual points for identifying non-

dominated, non-frame points.

• Chapter 7 concludes the study by summarizing the key findings and con-

tributions. It also discusses potential directions for future research, offering

insights into possible improvements, extensions, and adaptations of the meth-

ods introduced to advance DEA in large-scale contexts.

The techniques developed in this study are also applicable to the convex hull

problem, although some adaptations may be required.

5

Chapter 2

Foundation Knowledge

This chapter begins by introducing the notation and terminology used throughout

the study. It then provides an introduction of the convex hull problem, followed by

a discussion of the convex frontier in DEA and several commonly used definitions in

the field. The focus then shifts to the critical DEA assumption of variable returns-

to-scale (VRS), with an illustration of the computational challenges involved in

applying it to large-scale contexts.

2.1 Notation and Assumptions

The set R represents all real numbers, and Rd denotes the space of d-dimensional

real-valued vectors, where d ∈ N0, the set of non-negative integers.

A DEA dataset comprises n decision-making units (DMUs), indexed by j =

1, . . . , n. Each DMU j is described by d dimensions, d ∈ N0 \ {0}, where d = m+ s,

including:

• m-inputs, represented as xj = (x1j, . . . , xmj)
T ∈ Rm,

• s-outputs, represented as yj = (y1j, . . . , ysj)
T ∈ Rs,

where both inputs and outputs satisfy xj ̸= 0, xj ≥ 0, yj ̸= 0, and yj ≥ 0.

In the DEA context, smaller values are more desirable for input dimensions, while

larger values are more desirable for output dimensions, in accordance with practical

requirements.

To align the requirements across dimensions, we define the DEA point for DMU

j as:

aj =

(
−xj

yj

)
∈ Rd, j = 1, . . . , n,

where the i-th coordinate of aj is denoted as aij, i = 1, . . . , d. This formulation

ensures that all dimensions adhere to a smaller is better principle. The magnitude

2.2. THE CONVEX HULL PROBLEM

of aj is quantified using the Euclidean norm:

∥aj∥ =

√√√√ d∑
i=1

a2ij.

Let matrices

X =

xT
1
...

xT
n

 =
(
X1, . . . , Xm

)
and Y =

yT
1
...

yT
n

 =
(
Y1, . . . , Ys

)
.

denote the input data and output data of all DMUs, respectively.

Let A denote the entire set of DEA points, A = {a1, . . . ,an}, where |A| is the
number of elements in A. Let IA = {1, . . . , n} be the corresponding index set to the

corresponding elements in A. Let S be a subset of A, such that S ⊆ A. IS ∪ {j} is
equivalent to S ∪ {aj}.

The DEA data are assumed to be reduced, which means that for any two distinct

points j1 ̸= j2, the relationship aj1 ̸= k · aj2 holds for all k ∈ R. In other words,

there are no duplicate points in A, and no two points are scalar multiples of each

other.

The inner product of two vectors η and z of the same dimension is denoted by

⟨η, z⟩. The set H(η, ξ) = {z | z ∈ Rd, ⟨η, z⟩+ ξ = 0} corresponds to a hyperplane

in Rd with an orthogonal vector η and a level value of −ξ. This hyperplane separates
two subsets (corresponding to two half-spaces) of interest:

• H++(η, ξ) = {z | z ∈ Rd, ⟨η, z⟩+ ξ > 0},
• H−(η, ξ) = {z | z ∈ Rd, ⟨η, z⟩+ ξ ≤ 0}.

We define A++
(η,ξ) = {aj ∈ A | aj ∈ H++(η, ξ)} and A−

(η,ξ) = {aj ∈ A | aj ∈
H−(η, ξ)}.

This study is closely related to the convex hull problem in computational ge-

ometry. To establish a foundational understanding for this research, we start by

introducing the convex hull problem.

2.2 The convex hull problem

Identifying the vertices of the polytope in Rd that define the convex hull is a fun-

damental and intriguing computational problem. These vertices correspond to the

extreme points of the set.

Definition 2.1 (Extreme Points). Given a finite set A = {a1, . . . ,an} of n unique

7

CHAPTER 2. FOUNDATION KNOWLEDGE

points in Rd, the point aj is an extreme point of A if it cannot be represented as a

convex combination of the points from the set A \ aj. [38]

The extreme points represent the convex hull in the sense that if E is the set of

extreme points of A, then ConvE = ConvA.

A key basic operation that is used to define and compute the convex hull is to

determine the Euclidean distance of a point z ∈ Rd to ConvA. This function is

represented as d(z,A), and its square can be computed via the quadratic program

(QP) represented by Model 2.1:

d(z,A)2 = min
λj≥0

∥∥∥∥∥z −∑
j∈IA

λjaj

∥∥∥∥∥
2

s.t.
∑
j∈IA

λj = 1

(2.1)

Note that z ∈ ConvA if and only if d(z,A) = 0. It is clear that if we have

available the set E , then d(z,A) = d(z, E), and one can use E for the calculation

instead. We note that the extreme points are the smallest subset E ⊆ A such that

d(z,A) = d(z, E) for all z ∈ Rd. An intuitive understanding of the convex hull

formed by the extreme points can be gained from Figure 2.1a, where the extreme

points define the piecewise boundary enclosing all the points in A.

The fact that the extreme points are the smallest subset has a very practical im-

portance in applications that use the convex hull as input, and require computations

to be performed on each element of E .

In the convex hull problem, there is no specific requirement for each dimension,

and the entire polyhedral boundary is constructed. However, in certain tasks where

prior knowledge about the dimensions exists, it becomes necessary to identify an

oriented polyhedral boundary rather than the complete boundary. In this study, we

focus on identifying this oriented boundary, which corresponds to a DEA frontier,

as illustrated in Figure 2.1b.

2.3 The DEA frontier

In DEA, a convex frontier of A is formulated by the set of extreme points in Rd

such that the relationship between inputs and outputs is theoretically admissible in

the context of the economic assumptions [6]. A DEA dataset defines four standard

convex frontiers: constant (CRS), variable (VRS), increasing (IRS), and decreasing

returns-to-scale (DRS).

For each returns-to-scale assumption, any subset S generates the following four

8

2.3. THE DEA FRONTIER

(a) (b)

Figure 2.1: Convex Boundary

envelopment hulls:

γCRS
S =

{
z

∣∣∣∣∣ z ∈ Rd, z ≤
∑
j∈IS

λjaj, s.t. λj ≥ 0, ∀j ∈ IS

}
,

γ
{V RS,IRS,DRS}
S =

{
z

∣∣∣∣∣ z ∈ Rd, z ≤
∑
j∈IS

λjaj,

s.t.

λj ≥ 0, ∀j ∈ IS ,∑
j∈IS

λj = 1 (for VRS),∑
j∈IS

λj ≤ 1 (for IRS),∑
j∈IS

λj ≥ 1 (for DRS)


.

Following Dulá [19], we present the following definitions:

Definition 2.2 (DEA Hulls). We define the four polyhedral sets associated with S
as the DEA hulls of the points in S. The points in S are referred to as the generators

of the hulls.

The polyhedral set γCRS
S is called the CRS hull of S, and similarly for the other

types. The set γCRS
S is a cone, while the other three sets are more intricate. They

usually consist of multiple extreme points, and their recession cone includes all d

negative unit directions (i.e., their ”slacks”). This indicates that these sets have full

dimension. Finally, these sets are convex.

When S = A, these DEA hulls are referred to as full DEA hulls, corresponding

9

CHAPTER 2. FOUNDATION KNOWLEDGE

to the familiar CRS, VRS, IRS, and DRS frontier in DEA. If S ⊂ A (a strict

subset) and the DEA hull is not a full DEA hull, it is called a partial DEA hull. It

is important to note that if S ⊂ A, then for any of the four return-to-scale types,

we have:

γS ⊆ γA.

In all four cases, the shape of the DEA hulls is entirely determined by the data

points. Since these are finitely generated polyhedral sets, their minimal description

requires identifying their extreme elements.

Definition 2.3 (DEA Frames). We define a DEA frame F as the smallest subset

of A necessary to describe a full DEA hull (or frontier). γF = γA.

It is evident that F ⊆ E . The extreme points defining the DEA frontier are a

subset of the extreme points that define the convex hull.

Similarly, if S ⊂ F and the frame is not a full DEA frame, it is called a partial

DEA frame. For any of the four return-to-scale types, we also have:

γS ⊆ γF , where S ⊂ A.

A DEA dataset can have up to four distinct frames, one for each returns-to-scale

type. These correspond to extreme rays in the CRS case and extreme points in the

VRS, IRS, and DRS cases. Further details of these results can be found in Dulá

et al. [17].

The DEA frames used to construct the frontier are crucial for tasks such as

classification, benchmarking, and related analyses. For example, the VRS frame

represents the partial piece-wise convex boundary, as presented in Figure 2.1b. It

enables the assessment of whether a streamed-in DEA point lies outside the VRS

hull. Point p, where p /∈ IA, is located in the upper-left region of this oriented

boundary, and ap /∈ γV RS
F .

2.3.1 The Role of VRS Frame

Among the four DEA assumptions, identifying a VRS frame provides concrete ad-

vantages:

1. The CRS frame is a subset of the VRS frame, and the VRS frame is the

union of the IRS and DRS frames. This relationship allows the CRS, IRS, and

DRS frames to be extracted directly from the VRS frame without the need to

consider the entire dataset.

2. The VRS frame elements correspond to the extreme points. Knowing the VRS

10

2.3. THE DEA FRONTIER

frame ensures a complete classification of DMUs, as non-extreme boundary

points are rare.

3. A VRS frame is independent of the DEA orientation or slack-based measures,

providing greater flexibility in exploring different DEA LP formulations. The

same frame can be used across multiple formulations. Computational results

have demonstrated the practical benefits of this frame-based approach.

In the later sections, any reference to the DEA frame specifically refers to the

VRS frame, which is the primary focus of this study.

2.3.2 Classification using the DEA Frontier

Let u be the vector of all ones, with its dimension determined by the context. Dulá

[19] developed Model 2.2 and its dual Model 2.3 which can be used for multiple

purposes such as classification. Indeed, the optimal result of Model 2.3 can be

directly obtained when Model 2.2 is solved.

Assuming a reference set R, where R ⊆ A, for a point al /∈ R, the following

definition applies:

Definition 2.4 (Exterior and Interior). A point al is classified as an exterior with

respect to the VRS hull of R if α∗
l > 0. Otherwise, it is referred to as an interior

when α∗
l = 0.

Points on DEA frame are exclusively found among exteriors. This is because,

when α∗
l = 0, the inequality constraint of Model 2.2 implies

∑
j∈IR λ∗

ljaj ≥ al. Thus,

al ∈ γV RS
F , meaning that al does not contribute to the construction of the VRS frame

of R, and hence not to F . Conversely, if α∗
l > 0, we have

∑
j∈IR λ∗

ljaj < al.

αl = min
α,λlj≥0

α

s.t. ∑
j∈IR

λljaj + uα ≥ al,∑
j∈IR

λlj = 1.

(2.2)

Let π∗
l , ξ

∗
l represent the optimal solution to Model 2.3. The corresponding non-

trivial hyperplane H(π∗
l , ξ

∗
l) separates the VRS hull from an exterior al.

- If α∗
l > 0, al resides in the half-space defined by H++(π∗

l , ξ
∗
l).

- If α∗
l = 0, al lies within the half-space defined by H−(π∗

l , ξ
∗
l).

11

CHAPTER 2. FOUNDATION KNOWLEDGE

Figure 2.2: Exterior and Interior

We present a 1+1 dimensional DEA dataset with 9 DMUs, as shown in Table

2.1, for illustration purpose in the next sections.

Table 2.1: A 1+1 Dimension Instance Sample

DMU a b c d e f g h i

x 72 16 48 4 19 14 58 8 63
y 124 68 92 8 80 54 31 28 123

An intuitive illustration of interiors and exteriors is shown in Figure 2.2. As-

suming R = {aa,ab,ac,ad,af ,ah}. When e, i, and g streams come in, we conclude

that e and i are exterior points, located in the upper-left region relative to the frame

of R, while g is an interior point. The classification of a point as exterior or interior

is actually determined by the VRS frontier of R, which is defined by its frame a, b,

and d.

αl = max
πl≥0,ξl

⟨πl,al⟩+ ξl

s.t.

⟨πl,aj⟩+ ξl ≤ 0, ∀j ∈ IR,
⟨πl,u⟩ ≤ 1.

(2.3)

2.3.3 Benchmarking using the DEA Frontier

Frontier-based benchmarking is a critical topic in DEA. Consider the example in

Table 2.1, it is clear the full frame is composed by the points a, e, b, i, and d. The

input-oriented radial efficiency θl for DMU l is determined by solving the LP repre-

12

2.4. COMPUTATION CHALLENGES

sented by Model (2.4), with the reference set R conventionally defined as the entire

set of DMUs A (i.e., R ← A):

θl = min
λ≥0

θ

s.t. ∑
j∈IR

λljxj ≤ θxl,∑
j∈IR

λljyj ≥ yl,∑
j∈IR

λlj = 1.

(2.4)

The optimal result indicates that DMU l is either efficient (θ∗l = 1) or inefficient

(θ∗l < 1). The set of efficient DMUs, that is, the best-practices from an input-output

perspective, denoted as B, is a subset of A, B ⊆ A. It is clear that γF = γB = γA.

Notably, Model (2.4) yields the same result when F or B is used as the reference

set instead of A [1], i.e., R ← F or R ← B. This means that we can use only the

DEA frame as the benchmark for evaluating each DMU l in Model (2.4). Below, we

provide an illustration demonstrating how the VRS frame serves as the benchmark

for the evaluation of DMUs in DEA.

In the provided two-dimensional example, the piece-wise efficient frontier is

formed by the segments connecting d → b, b → e, e → i, and i → a, as shown

in Figure 2.3. DMUs c, f , and g are inefficient. Using Model 2.4, each DMU is

matched to the facet that is closest to itself, and their efficiency scores are calcu-

lated based on this relevant facet. For example, DMU c is matched to the facet

e → i (its benchmark facet), which has the shortest distance to it, resulting in an

efficiency score of θ∗c = 0.65 using Model 2.4. According to the input-oriented pro-

jection assumption, this indicates that DMU c could become efficient by reducing

its input usage to 65% of its current level while maintaining the same output.

From Figure 2.3, we see intuitively that efficient DMUs are those located on the

upper-left boundary of the distribution of the DEA points. They exhibit extreme

features in either input, output, or weighted combinations of input and output. This

observation holds in dimensions higher than this two-dimensional example.

2.4 Computation Challenges

In this study, all results are derived under the VRS assumption [3]. The VRS

assumption generally leads to a higher number of extreme points compared to other

13

CHAPTER 2. FOUNDATION KNOWLEDGE

Figure 2.3: Shortest-Distance (SD) Matching

scale assumptions. The proposed approaches can be extended to the other three

assumptions, although specific adaptations would be required.

As the size of the reference set |R| increases, the number of associated variables

in the models grows correspondingly, resulting in a sharp rise in computational costs.

This escalation is reflected in both increased time consumption and higher memory

requirements for running DEA models with a larger number of variables.

However, since only the extreme points of the frame are relevant for classification

or benchmarking purpose in DEA, as previously mentioned, we can potentially re-

duce the computational burden by eliminating variables associated with non-frame

points. Therefore, it is advantageous to identify the DEA frame before solving any

of the DEA models, i.e., Model 2.4, particularly for large-scale samples where n is

substantial.

Summary

This chapter lays the foundation for understanding the key concepts and assump-

tions underpinning DEA, specifically within the context of datasets comprising n

DMUs, each described by d dimensions, which is composed of m inputs and s out-

puts. A thorough introduction is provided to DEA assumptions: CRS, VRS, IRS

and DRS. Additionally, the discussion introduces key components such as DEA hulls

and frames, emphasizing their crucial role in simplifying computational processes

and making large-scale DEA analysis more feasible and efficient.

The VRS assumption is specifically adopted in this study for its flexibility, as

it accommodates a broader spectrum of DEA formulations and applications. Fur-

thermore, the study utilizes Model 2.2 and Model 2.3 in varying capacities across

the proposed computational frameworks. These models are strategically applied in

14

2.4. COMPUTATION CHALLENGES

different analytical contexts, showcasing their adaptability and robustness in solving

diverse problems within DEA. This chapter sets the stage for a deeper exploration

of the computational techniques developed throughout this study.

15

Chapter 3

Advances in Large-Scale DEA

As discussed, since only the DEA frame is essential for benchmarking in DEA, iden-

tifying the boundary points that define the DEA frame prior to applying Model 2.4 is

highly beneficial. This is particularly critical in large-scale scenarios where the num-

ber of DMUs, n, is substantial, as pre-identification helps reducing computational

burden and streamlines the analysis process.

In this chapter, we provide an detailed overview of the major existing methods

developed for this purpose, highlighting their theoretical foundations, practical im-

plementation, and relative strengths in addressing the challenges posed by large-scale

datasets.

3.1 Existing Results

3.1.1 Discarding Non-frame Points

Before DEA computation, eliminating non-frame points from A helps minimize the

set of candidate points that establishes DEA frame, F . DEA Dominator [22] is one

such method that directly uses dimension comparison to discard non-frame points,

without the need of LP solutions.

For illustration purposes, we refer to the following definitions and conclusions

[13, 22, 27]:

Definition 3.1 (Domination). Point j dominates point l if and only if: aj ≥ al.

Definition 3.2 (Frame Points). Point l ∈ IF if and only if it is dominated neither

by any other existing points nor by any virtual points j′, where aj′ =
∑

j ̸=l λjaj,∑
j ̸=l λj = 1, and λj ≥ 0,∀j.

From Definition 3.2, we conclude that point l /∈ IF if it is dominated. Further-

more, we can conclude that every point l /∈ IF is dominated. This can be easily

3.1. EXISTING RESULTS

proved by referring to Model 2.2.

Let the set D denote the set of points that are dominated. The DEA Dominator

can be described by Algorithm 3.1.

Algorithm 3.1 identifies non-frame points using DEA domination. It has the

potential to identify a large subset of dominated points. However, it relies solely

on existing points to establish DEA domination. For those non-frame points where

their relevant dominating point does not exist among the given set of points, it fails

to identify them.

Algorithm 3.1 DEA Dominator

1: Initialize D ← ∅
2: for each l ∈ IA do
3: for each j ∈ IA \ {l} do
4: if aj ≥ al then ▷ the domination criterion
5: D ← D ∪ {al}
6: break
7: end if
8: end for
9: end for
10: return D

For instance, in Figure 3.1a, point g is dominated by existing points f, b, e and

any virtual points within the polygonal area of gyggxeb. And g can be identified

as non-frame point through Dominator. Conversely, in Figure 3.1b, point c is dom-

inated by virtual points j′ within the triangular area of cyccx. However, there is

no existing point that dominates c. As a result, the Dominator method fails to

discriminate point c.

(a) (b)

Figure 3.1: Domination

17

CHAPTER 3. ADVANCES IN LARGE-SCALE DEA

3.1.2 Identifying Frame Points

Several lemmas are useful for arithmetically detecting frame points by leveraging

the extreme features of DMUs’ dimensions, without the need to solve an LP. These

lemmas are as follows:

Lemma 3.1. If point l is the unique point that satisfies

l = argmax
j∈IA

aij,

then l ∈ IF , for i = 1, . . . , d.

Lemma 3.1 [1] can identify at most d frame points by leveraging the extreme

features from each dimension. In addition, frame points also exhibit extreme features

of the weighted sum of dimensions. Assume an arbitrary weight vector π ∈ Rd
≥0 and

π ̸= 0. We have the following result:

Lemma 3.2. If point l is the unique point that satisfies

l = argmax
j∈IA
⟨π,aj⟩,

then l ∈ IF .

Relevant results using LP optimal solutions (i.e., Model 2.3) are discussed in

existing studies [19, 12]. We provide a formal proof involving of arbitrary weights

in Appendix A.1 under the DEA model assumptions.

Apart from leveraging the extreme features of dimensions to identify frame

points, there are also lemmas based on the output/input ratio, which is expected to

be higher under a production context.

Lemma 3.3. If point l is the unique point that satisfies

l = argmax
j∈IA

∑s
r=1 yrj∑m
i=1 xij

,

then l ∈ IF .

Lemma 3.3 [1] can potentially identify one additional frame point. Assume weight

vectors w = (w1, . . . , wm)
T ∈ Rm

>0 and v = (v1, . . . , vs)
T ∈ Rs

>0. Similarly, we can

leverage a weighted output/input ratio [discussed in 11], as described in Lemma 3.4:

Lemma 3.4. If point l is the unique point that satisfies

l = argmax
j∈IA

⟨v,yj⟩
⟨w,xj⟩

,

18

3.2. BUILD HULL

then l ∈ IF .

Lemmas 3.2 and 3.4 incorporate arbitrary weights, making it possible to identify

as many frame points as needed when appropriate weights are selected. This is

particularly helpful for establishing the VRS frame.

3.2 Build Hull

Dulá [19] developed the Build Hull (BH) framework, which constructs the DEA

frame F step by step, retaining only frame points as references in Model 2.2. The BH

procedure is described in Algorithm 3.2, where T represents a temporary workspace

array.

Algorithm 3.2 Build Hull

1: Initialize S ⊂ F ▷ using the mentioned lemmas
2: T ← A
3: T ← T \ S
4: while T ̸= ∅ do
5: select al ∈ T
6: R ← S
7: α∗

l ,π
∗
l ← solve Model 2.2 and Model 2.3 for l

8: if α∗
l > 0 then

9: l∗ = argmaxj∈IT ⟨π∗
l ,aj⟩ ▷ in case of a tie, set l∗ to one extreme point

10: S ← S ∪ {al∗}
11: T ← T \ {al,al∗}
12: else
13: T ← T \ {al}
14: end if
15: end while
16: F ← S ▷ the frame is established
17: return F

To explain the BH procedure, let us consider the instance dataset presented in

Table 2.1, and the possible implementation procedure depicted in Figure 3.2.

Firstly, to apply BH to this example, without loss of generality, assume a sub-

sample S is initialized by Lemma 3.1 and Lemma 3.3, including frame points a, b,

and d. In other words, a = argmax x, e = argmax y, and b = argmax x
y
. The par-

tial frame is formed with the subsample S = {aa,ab,ad}, as shown in Figure 3.2a.

Then, the remaining points g, i, e, h, c, and f are evaluated one after another using

Model 2.2 and Model 2.3. Note that the selection order of points for evaluation is

random.

For example, without loss of generality, assume that g is selected in the first

iteration and we obtain α∗
g = 0, which indicates point g is an interior. Point i is

19

CHAPTER 3. ADVANCES IN LARGE-SCALE DEA

(a) (b)

(c) (d)

(e) (f)

Figure 3.2: BH Implementation

20

3.2. BUILD HULL

randomly selected in the next iteration. Then, it is evaluated and identified as an

exterior in relation to the partial frame formed by S, that is, α∗
i > 0, as shown in

Figure 3.2b. We obtain π∗
i from Model 2.3. Since e satisfies e = argmaxj⟨π∗

i ,aj⟩, it
is identified as a frame point, and S is updated, i.e., S ← S ∪{ae}. Next, in Figure

3.2c, point i is still exterior in relation to the VRS frame of the current S, and since

i = argmaxj⟨π∗
i ,aj⟩, it is identified as a frame point, and S is updated again, i.e.,

S ← S ∪ {ai}. In the next iterations, points h, c, and f are concluded as interior

points, so no action is taken. Finally, the VRS frame is established as F ← S.

Summary

This chapter firstly covers techniques for eliminating non-frame points, such as the

DEA Dominator method, which identifies dominated points. However, this method

has limitations, particularly when dealing with non-frame points not dominated by

any existing points.

Additionally, this chapter introduces several lemmas for identifying frame points,

such as those based on extreme attributes, weighted sums, and output/input ratios.

These methods provide streamlined, arithmetic-based tools for selecting boundary

points without needing to solve LPs, crucial for large-scale DEA computation.

The famous BH framework is also reviewed in detail, which offers a sequential

approach to constructing the DEA frame. This method combines identified frame

points with iterative evaluations to classify other points. The integration of the

discussed lemmas makes the BH algorithm effective in minimizing computational

complexity. Practical examples and illustrations showcase the method’s implemen-

tation.

Overall, this chapter provides an in-depth look at techniques for constructing

DEA frame, establishing the foundation for the methodologies developed in the

remainder of this study.

21

Chapter 4

Sequential Categorization

BH procedure demonstrates that frame points are identified only when an exterior

to the partial frame is detected, as illustrated in Figures 3.2b and 3.2c. When an

exterior is identified, the current partial frame is updated by incorporating a new

extreme point, while the interior does not contribute to the update. This observation

reveals an important insight: only exterior point contributes to the construction of

the DEA frame F . Therefore, instead of selecting points stochastically during the

BH procedure, it is crucial to establish a systematic order for evaluating exterior

points to swiftly build the VRS frame at an early stage.

Consider the example in Table 2.1, where the initial partial frame is S =

{aa,ab,ad}. Let us assume there is a method that determines the evaluation or-

der of the remaining points, as shown in Figure 3.2: i, e, h, c, f, g. After the first

three iterations, the updated set becomes S = {aa,ab,ad,ae,ai}, at which point

the update of S has converged. Consequently, F is constructed as F ← S, making

it unnecessary to evaluate the remaining points.

This chapter introduces the method that establishes a systematic order for the

BH procedure.

4.1 Mannual Distinct Weights

Zhuang et al. [48] proposed a method for manually formulating the positive weights.

For a set of points with m inputs and s outputs, one can construct at most 2m − 1

proper subsets of inputs and 2s − 1 proper subsets of outputs. Let Υ(I) and Υ(O)

denote the set of proper input subsets and proper output subsets, respectively.

For example, consider the case where m = 3. The set of inputs is {x1, x2, x3}.
Note here xi denote the i-th input. In this scenario, the complete set of combinations

4.1. MANNUAL DISTINCT WEIGHTS

yields:

Υ(I) = {{x1}, {x2}, {x3}, {x1, x2}, {x1, x3}, {x2, x3}, {x1, x2, x3}},

resulting in a total of |Υ(I)| = 7.

Assume that Ip and Oq are one of the proper input subsets and proper output

subsets, where p = 1, . . . , |Υ(I)| and q = 1, . . . , |Υ(O)|. A bijection f : Υ(I) →W

is defined such that each subset Ip ∈ Υ(I) maps to a unique weight vector in W .

For each subset Ip ∈ Υ(I), the corresponding weight vector w(Ip) is defined as:

w(Ip) =
(
w1 · 1(x1∈Ip), . . . , wi · 1(xi∈Ip), . . . , wm · 1(xm∈Ip)

)T
,

where wi > 0 for i = 1, . . . ,m, and 1(xi∈Ip) is an indicator function that is 1 if xi ∈ Ip

and 0 otherwise.

Taking m = 3 as an example, the following explicit mapping is obtained:

f({x1}) = (w1, 0, 0)

f({x2}) = (0, w2, 0)

f({x3}) = (0, 0, w3)

f({x1, x2}) = (w1, w2, 0)

f({x1, x3}) = (w1, 0, w3)

f({x2, x3}) = (0, w2, w3)

f({x1, x2, x3}) = (w1, w2, w3)

The bijection f maps each subset of inputs to a unique weight vector in W .

Thus, for m = 3, the following is obtained:

W =
(
. . . ,w(Ip), . . .

)
=

w1 0 0 w1 w1 0 w1

0 w2 0 w2 0 w2 w2

0 0 w3 0 w3 w3 w3


Similarly, a bijection for outputs, g : Υ(O)→ V , can be established.

Furthermore, the values of wi and vr can be manually assigned any positive

values, which implies that an infinite number of distinct weight vectors can be for-

mulated and utilized. This flexibility allows us to apply Lemma 3.4 and Lemma

3.2 to identify a large portion of frame points, denoted as S. However, achieving

S = F solely with manually selected weights is challenging. To identify the remain-

ing points in F \ S, Model 2.2 and Model 2.3 are still needed. This established S
can be used as a initial reference set when implementing BH.

23

CHAPTER 4. SEQUENTIAL CATEGORIZATION

4.1.1 Selection of Dimension Combinations

When the values of m and s are large, the number of dimension combinations can

become substantial. For instance, if m = 10 and s = 10, the total number of

combinations is

(210 − 1)× (210 − 1) = 1, 046, 529,

assuming all possible combinations are considered.

To address this issue, instead of generating every possible combination, a selective

approach is suggested that constructs Υ(I) using specific combinations
(
m
i

)
, where

i = 1, . . . ,m. This method ensures that each input has an equal chance of being

included in the subsets. For example, Υ(I) can be formed using
(

m
m−1

)
, which

includes combinations of m− 1 inputs. When m = 4, the following holds:

Υ(I) = {{x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}},

where each input is selected three (m− 1) times. Alternatively, using
(

m
⌈m/2⌉

)
gener-

ates the maximum number of combinations, as
(

m
⌈m/2⌉

)
≥
(
m
i

)
for i = 1, . . . ,m. For

m = 4, the following holds:

Υ(I) = {{x1, x2}, {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, {x3, x4}}.

Similarly, Υ(O) can be constructed based on any of the combinations
(
s
r

)
, where

r = 1, . . . , s. This selective approach ensures that each input and output is selected

equally.

Points that exhibit extreme features involving more dimensions are considered

to be more geometrically centralized on the VRS frame than those involving fewer

dimensions. For instance, in Figure 4.1a, point e = argmax{y−x} is more centrally

located than a = argmax{y} and d = argmax{x}. A more centralized frame point

spans a larger VRS hull (e.g., the blue rectangular area in Figure 4.1a), potentially

enveloping more points as interiors. This is helpful for classification when using

Models 2.2 and 2.3. In contrast, a frame point involving fewer dimensions is more

marginalized, and the VRS hull it generates wraps fewer points. For instance, in

Figure 4.1a, no points lie within the orange and black rectangular areas, as points

a and d are located at the extremities of the frame.

Therefore, among all the input combinations corresponding to
(
m
i

)
, i = 1, . . . ,m,

and output combinations corresponding to
(
s
r

)
, r = 1, . . . , s, it is advisable to choose

those that incorporate more dimensions in each column of the combination matrices.

For instance, using input combinations of
(

m
m−1

)
and output combinations of

(
s

s−1

)
results in m × s columns, each including m + s − 2 dimensions. In contrast, using

input combinations of
(
m
1

)
and output combinations of

(
s
1

)
results in m× s columns,

24

4.1. MANNUAL DISTINCT WEIGHTS

each containing only two dimensions.

(a) Centralization (b) Relative Magnitude

Figure 4.1: Determining Manual Weights

4.1.2 Selection of Weight Values

A selective approach using
(
m
i

)
and

(
s
r

)
combinations helps prevent the combination

explosion problem. However, reducing the number of input-output combinations

may lead to fewer frame points being identified. To address this, the weights can

be manually adjusted to increase the likelihood of identifying more frame points by

applying Lemma 3.2 and Lemma 3.4 (as shown in Figure 4.1).

There are, in fact, infinite weight options available, but different weight choices

can yield the same frame points. For instance, in Figure 4.1b, the weight combina-

tions (v, w) = (1.00, 1.00) and (1.00, 0.98) both identify point e, while (1.00, 0.90)

identifies point i. Therefore, it is not necessary to test all weight combinations.

What matters is the relative magnitude of the weights. In other words, the more

distinct the weights are from one another, the higher the likelihood of identifying

different frame points.

Considering both the relative size of weights and convenience of implementation,

the weights can be set as wi = w,∀i, vr = v,∀r, where w and v are selected from a set

of weights
{

k
K
| k = 1, . . . , K

}
, K = ξ

d
. Here, ξ is a hyperparameter and is supposed

to be a multiple of the value of d. For instance, when m = 5 and s = 5, setting

ξ = 10 · (m+s) = 100 results in K = 10 and weights = {0.1, 0.2, . . . , 1.0}, leading to

a total of 91 (v, w) combinations (excluding cases where v = w, except for (1.0, 1.0)).

Notably, K decreases as d increases, indicating that fewer manual weights are needed

for higher-dimensional cases. This determination of manual weights is based on the

rationale that higher dimensions correspond to more potential combinations and

thus more frame points. Consequently, the need for manually formulating weight

values diminishes with higher dimensions.

25

CHAPTER 4. SEQUENTIAL CATEGORIZATION

4.2 Sequential Categorization

Distinct manual weight vectors are useful for identifying a subset of frame points,

S. However, it is challenging to achieve S = F in a single attempt. To address

this, a procedure is proposed that iteratively leverages the generated weight vectors,

resulting in sequentially categorized blocks of points. Regarding the obtained blocks,

points with smaller block indices have a higher probability of being frame points.

To facilitate the repeated use of the generated weights, the combination matrices

are calculated before the categorization process. Let X ′
n×|Υ(I)| denote the matrix

of weighted inputs, where X ′ = XW , and X ′
i represents the i-th column of X ′.

Similarly, let Y ′
n×|Υ(O)| denote the matrix of weighted outputs, where Y ′ = Y V ,

and Y ′
j is the j-th column of Y ′.

The combination matrices C1
n×(|Υ(I)|×|Υ(O)|) and C2

n×(|Υ(I)|×|Υ(O)|) are computed,

where the number of columns is |Υ(I)| × |Υ(O)|. These matrices are calculated as:

C1
i,j = X ′

i + Y ′
j , C2

i,j = X ′
i ⊘ Y ′

j .

The categorization process is described in Algorithm 4.1, where matrix CT con-

tains the rows corresponding to the temporal work-array set T . The operation

argmax(CT) identifies the set of point indices that yield the maximum value for

each column.

Algorithm 4.1 Sequential Categorization

1: T ← A, k ← 0 ▷ k records the block index
2: while T ≠ ∅ do
3: Bk ← argmax(C1

T) ∪ argmax(C2
T)

4: k ← k + 1
5: T ← T \ Bk
6: end while
7: return B0, . . . ,BK

Using Algorithm 4.1, a finite number (K) of sequential blocks B0, . . . ,BK are

obtained. These blocks share the characteristic that each point lies on the VRS

frame of the points in the current and subsequent blocks, i.e., B0 ⊆ F . This property
can be easily deduced by referring to Lemmas 3.2 and 3.4.

4.2.1 How Algorithm 4.1 Works

Table 4.1 presents the combination matrix using the data from Table 2.1. To estab-

lish C1
T , the values (v, w) = (1.00, 1.00), (1.00, 0.10), (0.10, 1.00) are set for illustra-

tion convenience. Since there is only 1 input and 1 output in this case, C2
T leverages

the ratio form and thus requires only 1 column. Both C1
T and C2

T are presented

26

4.2. SEQUENTIAL CATEGORIZATION

together in Table 4.1.

Table 4.1: Initial Combination Matrix

points y/x y − x y − 0.1x 0.1y − x
a 1.72 52 116.8 -59.6
b 4.25 52 66.4 -9.2
c 1.92 44 87.2 -38.8
d 2.00 4 7.6 -3.2
e 4.21 61 78.1 -11.0
f 3.86 40 52.6 -8.6
g 0.53 -27 25.2 -54.9
h 3.50 20 27.2 -5.2
i 1.95 60 116.7 -50.7

Let us assume the data in Table 4.1. We have B0 = {aa,ab,ad,ae} where

a = argmax{y − 0.1x},
b = argmax{y/x},
d = argmax{0.1y − x},
e = argmax{y − x}.

After obtaining B0 and excluding it from T , we get B1 = {af ,ah,ai} from Table

4.2 where

f = argmax{y/x},
h = argmax{0.1y − x},
i = argmax{y − x} and argmax{y − 0.1x}.

Next, we have B2 = {ac} from Table 4.3 since c holds the maximum values of

all columns. Finally, B3 = {ag}.

Table 4.2: Combination Matrix after Excluding B0

points y/x y − x y − 0.1x 0.1y − x
c 1.92 44 87.2 -38.8
f 3.86 40 52.6 -8.6
g 0.53 -27 25.2 -54.9
h 3.50 20 27.2 -5.2
i 1.95 60 116.7 -50.7

From the above example, four sequential blocks B0,B1,B2,B3 are obtained by

recursively leveraging Lemmas 3.2 and 3.4, with all frame points gathered in B0 and
B1. As expected, frame points are likely to be concentrated in the initial blocks, as

27

CHAPTER 4. SEQUENTIAL CATEGORIZATION

Table 4.3: Combination Matrix after Excluding B0 and B1

points y/x y − x y − 0.1x 0.1y − x
c 1.92 44 87.2 -38.8
g 0.53 -27 25.2 -54.9

each block of points lies on the VRS frame of those in the current and subsequent

blocks.

4.2.2 Data Transformation

In real-world applications, the scale of inputs and outputs can vary significantly.

For example, some columns in C1 and C2 may be primarily affected by inputs and

outputs with values ranging from [1000, 10000], while others may range from [1, 10],

resulting in the same frame point. In the sample provided in Table 4.4, the maximum

values (bolded) for the columns y1 − x1, y1 − (x1 + x2), and y1 − (x1 + x2 + x3) all

correspond to the frame point 1. These columns are primarily influenced by x1,

whose scale is much larger than x2 and x3.

To better utilize the combination matrices and achieve a greater number of dis-

tinct frame points, the unit-invariant property of DEA can be applied by normalizing

the data. This process involves transforming the input and output values as follows:

x′
il =

xil

max{xij | j = 1, . . . , n}
, i = 1, . . . ,m, l = 1, . . . , n, (4)

y′rl =
yrl

max{yrj | j = 1, . . . , n}
, r = 1, . . . , s, l = 1, . . . , n. (5)

This transformation does not affect the evaluation results of the DEA model. A

formal proof of this invariance is provided in Appendix A.2.

Table 4.4 illustrates the impact of scale in the original data. After applying the

normalization process, Table 4.5 demonstrates that columns y
′
1 − x

′
1, y

′
1 − (x

′
1 + x

′
2),

and y
′
1 − (x

′
1 + x

′
2 + x

′
3) yield three distinct frame points: 1, 2, and 6.

Table 4.4: Example of Scale Impact (original data)

points x1 x2 x3 y1 θ∗ y1 − x1 y1 − (x1 + x2) y1 − (x1 + x2 + x3)
1 40.93 0.62 0.71 1.00 1.00 -39.93 -40.54 -41.25
2 42.07 0.51 0.57 1.00 1.00 -41.07 -41.58 -42.15
3 89.50 0.80 0.90 1.00 0.57 -88.50 -89.29 -90.19
4 68.81 0.81 0.46 1.00 0.74 -67.81 -68.63 -69.08
5 42.42 0.74 0.29 1.00 1.00 -41.42 -42.16 -42.45
6 97.92 0.07 0.37 1.00 1.00 -96.92 -96.99 -97.36

28

4.3. CATEGORIZATION VALIDATION

Table 4.5: Example of Scale Impact (normalized data)

points x′
1 x′

2 x′
3 y′1 θ∗ y′1 − x′

1 y′1 − (x′
1 + x′

2) y′1 − (x′
1 + x′

2 + x′
3)

1 0.42 0.76 0.79 1.00 1.00 0.58 -0.17 -0.96
2 0.43 0.63 0.63 1.00 1.00 0.57 -0.06 -0.69
3 0.91 0.98 1.00 1.00 0.57 0.09 -0.89 -1.89
4 0.70 1.00 0.51 1.00 0.74 0.30 -0.70 -1.21
5 0.43 0.91 0.33 1.00 1.00 0.57 -0.34 -0.67
6 1.00 0.08 0.41 1.00 1.00 0.00 -0.08 -0.49

4.3 Categorization Validation

A total of 80 simulated samples are employed for empirical validation of the catego-

rization effect. These samples are generated from a uniform distribution over the in-

terval [10, 100], rounded to 10 decimal places. Input-output (m&s) pairs are selected

from the set {2&2, 3&3, 4&4, 5&5}, and cardinality from {10000, 25000, 50000, 100000},
with densities varying between 10% and 25%. For each combination of dimension

and cardinality, 5 samples are generated.

Table 4.6: Blocks Gathered Frame Points

m&s n
Sample index

1 2 3 4 5
2 & 2 10000 21/175 25/177 22/150 27/172 18/182

25000 34/250 56/271 72/259 109/267 37/225
50000 47/414 72/367 85/388 113/377 90/356
100000 118/599 129/603 103/777 159/627 192/500

3 & 3 10000 24/127 21/116 24/100 23/104 21/109
25000 24/168 33/136 32/229 39/218 31/195
50000 48/339 72/263 64/208 46/284 68/193
100000 68/301 73/310 88/481 80/437 73/433

4 & 4 10000 27/90 23/89 17/85 24/98 22/58
25000 44/168 46/127 38/135 25/120 40/141
50000 55/208 58/204 62/176 50/142 58/218
100000 91/357 96/347 68/250 92/313 101/273

5 & 5 10000 24/65 26/65 29/56 35/77 22/50
25000 44/99 40/101 40/109 49/128 43/129
50000 67/141 79/189 72/163 55/141 62/126
100000 108/311 125/291 113/312 104/254 87/186

As previously analyzed, the frame points are likely to be concentrated in the

initial blocks. According to the lemmas and the categorization scheme, each block

of points lies on the VRS frame of points in both the current and subsequent blocks,

with B0 being a subset of F . Table 4.7 provides a summary of the number of frame

points contained within B0. In this study, Υ(I) and Υ(O) are constructed based

on the combinations of
(

m
m−1

)
and

(
s

s−1

)
, respectively. The values in the column

29

CHAPTER 4. SEQUENTIAL CATEGORIZATION

“No. combinations” are calculated as |Υ(I)| × |Υ(O)| × 2 = m × s × 2, where two

combination matrices, C1 and C2, are created.

As shown in Table 4.7, all values exceed the d+ 1 (maximum) number of points

suggested by Ali [1]. For instance, in the sample labeled 10000 2&2 1, 147 frame

points are identified, which is significantly larger than the expected value of d+1 = 5.

These frame points are determined by using 8 created combinations and varying

the 91 pairs of w and v. Moreover, the trend in Table 4.7 indicates that |B0|
increases as the dimension grows, owing to the greater number of possible dimension

combinations and the corresponding increase in the number of extreme points that

can be identified.

Table 4.7: Number of Points in B0

m&s n No. Combinations
Sample Index

1 2 3 4 5
2 & 2 10000 8 147 111 232 153 216

25000 272 159 152 68 229
50000 280 283 227 322 302
100000 244 305 341 179 277

3 & 3 10000 18 215 205 247 250 324
25000 300 278 295 306 344
50000 393 302 310 356 415
100000 529 474 340 583 411

4 & 4 10000 32 257 191 300 287 275
25000 384 445 235 542 437
50000 490 556 596 387 566
100000 609 715 548 604 493

5 & 5 10000 50 409 359 355 396 327
25000 440 356 375 467 528
50000 626 452 713 620 628
100000 581 549 582 727 779

Table 4.6 shows the blocks in which the frame points are concentrated. For

the sample 10000 2&2 1, the notation ‘21/175’ means that the frame points are

concentrated in the first 21 blocks out of a total of 175 blocks, as determined by the

proposed categorization scheme. All other samples exhibit similar results, confirming

the effectiveness of the categorization method. This suggests that it is not necessary

to process all blocks to construct the VRS frame, which enables further reduction

in the time required to build F . Table 4.8 shows the number of points included in

F for each sample.

When executing the BH procedure in the sequential order of blocks, the initial

blocks are expected to contribute more extreme points due to the concentration

effect. Figure 4.2 shows samples with 100,000 points. The horizontal axis of each

subplot represents the block index, while the vertical axis indicates the number of

30

4.3. CATEGORIZATION VALIDATION

Table 4.8: Number of Points in F

m&s n
Sample Index

1 2 3 4 5
2 & 2 10000 1017 1021 1233 1713 1122

25000 2521 2520 2544 2728 2802
50000 5015 5010 5063 9342 7477
100000 9952 9958 14087 10531 23437

3 & 3 10000 1101 1113 1186 1532 2315
25000 2619 2635 2826 3035 4174
50000 5146 5180 7000 5223 11382
100000 10181 10230 12695 14559 13471

4 & 4 10000 1272 1252 1494 1378 2101
25000 2959 2920 3473 4288 3549
50000 5467 5639 7236 9234 9031
100000 10583 10642 12204 12692 12029

5 & 5 10000 1560 1629 1991 2160 2417
25000 3322 3253 4060 4030 4221
50000 6235 6025 7552 10832 11379
100000 11525 11329 12565 20787 16533

frame points identified from the relevant blocks. For clarity, only the first 16 blocks

of samples with indices 1, 3, and 5 are shown.

As observed in Figure 4.2, block B0 contributes the most frame points, and this

number decreases as the block index increases, eventually reaching zero after pro-

cessing the first few blocks (e.g., the first 21 blocks for the sample 10000 2&2 1).

This trend is consistent across all 80 samples, validating the effectiveness of system-

atically evaluating points to enable the early construction of the VRS frame.

Summary

In this chapter, we introduce the method that establishes a systematic order of

selecting DEA points for the construction of DEA frontier using the BH procedure.

The first section describes a method for manually constructing distinct weights

for a set of points with m inputs and s outputs. For each set of inputs and outputs,

when all possible proper subsets are identified, with the number of subsets being

2m − 1 for inputs and 2s − 1 for outputs. A bijection is then defined between the

proper input subsets and a set of weight vectors, where each subset maps to a unique

weight vector. The selection of dimension combinations and values of the manual

weights are then discussed. The weights can be manually assigned any positive

values, allowing for an infinite number of distinct weight vectors. This flexibility

facilitates the identification of a large portion of frame points, though achieving a

complete set requires further methods.

31

CHAPTER 4. SEQUENTIAL CATEGORIZATION

Figure 4.2: Frame Points Distribution n = 100, 000

32

4.3. CATEGORIZATION VALIDATION

The second section outlines a sequential categorization process for gathering

frame points, through iteratively using manual weight vectors. Combination matri-

ces, C1 and C2, are generated from weighted inputs and outputs, and the catego-

rization algorithm sequentially yields point blocks, with frame points concentrated

in the initial blocks. A normalization procedure is proposed to eliminate the scale

effect of inputs and outputs. Theoretical guarantees for the method are provided,

and its effectiveness is demonstrated through an example using both the original

and normalized data.

The third section presents the empirical validation. It shows the distribution

of frame points across different blocks, implying that the initial blocks effectively

concentrate all frame points, thus enabling a reduction in the number of blocks

required to construct the VRS frame.

33

Chapter 5

Dimension-Wise Reference

Selection

The systematic computation order of BH accelerates the construction of the DEA

frame by sequentially gathering frame points. However, solving LPs with a large

number of variables continues to be time consuming. Specifically, in LPs represented

by Model 2.2 and Model 2.3, each point is matched only to the facets defined by

the reference frame points closest to it, and only the variables associated with these

frame points are necessary for the corresponding LPs.

In this chapter, a novel reference set selection method is introduced, applied

prior to solving any of the models discussed earlier. Unlike existing selection tech-

niques, this method enhances the likelihood of identifying the most relevant facet for

each point, facilitating the small-size BH approach presented here. This approach

significantly improves the performance of the BH computation, reducing both time

consumption and memory requirements.

5.1 The Selection Technique

5.1.1 Geometric Insights

When point l is under evaluation in Model 2.4, at most d relevant benchmarks

(frame points) are necessary to determine its efficiency result [9, 10, 12]. This can

be intuitively observed from Figure 2.3. The model matched c to its closest facet ei.

Only e and i provided the benchmarking role for c, using their convex combination,

while other points on the frame did not contribute to the evaluation of c.

In Figure 3.2b, using Model 2.2 and Model 2.3, similarly, each point is assessed

only in relation to its closest facet. For instance, when i is under evaluation, the

optimal results π∗
i and ξ∗i correspond to the parameters of the line where segment

ab lies. The operation argmaxj∈IA⟨π∗
i ,aj⟩ translates the line towards the upper-

5.1. THE SELECTION TECHNIQUE

left direction, identifying the extreme point e. Similarly, the interior point f in

Figure 3.2c is evaluated in relation to the facet formed by a and b.

During the BH process, each point is matched to its closest facet, which is formed

by at most d frame points. For each point, solving Model 2.2 and Model 2.3 us-

ing the subset of S that forms the relevant facet as the reference set, rather than

all points in S, reduces the number of variables involved in these LPs. This, in

turn, decreases both memory requirements and computation time, thereby acceler-

ating frame construction. Hence, it is helpful to develop a method for selecting the

appropriate subset of reference points specifically for each point to be evaluated.

5.1.2 The Selection Method

Assume S ⊂ F . Let dl,j = ∥al − aj∥2 =
√∑

i(ail − aij)2 denote the Euclidean

distance between points l and j, where j ∈ IS and l /∈ IS . For each l ̸= j, define

Di
l = {dl,j | aij ≥ ail, j ∈ IS}, i = 1, . . . , d. Then, define Rk

l =
⋃d

i=1 mink(Di
l),

where the operation mink(·) obtains the points corresponding to the first k minimum

values in Di
l .

The subset Rk
l is selected as the reference set for point l in Model 2.2 and

Model 2.3, with Rk
l ⊆ S. The size of Rk

l is at most k · d. Generally, for point

l, there is at least one frame point in its reference set Rk
l that is better than l in

each dimension. Rk
l is expected to include points that form the relevant facet of the

current partial frame to determine whether point l is an exterior or interior point.

Figure 5.1 provides an illustrative example of this selection technique.

Without loss of generality, let S = {aa,ab,ad} in Figure 5.1. Set k = 1, and let

us first consider point c as an example. In Figure 5.1a, concerning the input, point

b has the smallest distance to c among {a, b}. Then point b is selected into R1
c . For

the output, only point a in S has a larger output value than c in Figure 5.1b, and

it is selected into R1
c . Therefore, R1

c = {aa,ab}. In Figure 5.1, the selected facet

for point c is represented by the segment ab, and it is the exact facet matched to

point c. Solving Model 2.2 and Model 2.3 using R1
c as the reference set, we obtain

α∗
c = 0, which correctly concludes that point c is an interior. Similarly, we obtain

R1
i = {aa,ab} for point i, and solving Model 2.2 and Model 2.3 using R1

i , we obtain

α∗
i > 0. Accordingly, a frame point e = argmaxj∈IA⟨π∗

i ,aj⟩ is obtained.

Next, let us consider the interior point g as an example in Figure 5.1c. In the

output dimension, frame points a and b in S have larger output values than g, and

b is selected into R1
g as it is closer to g. Regarding the input, point b again has the

smallest distance to g among the other candidate a. Thus, R1
g = {ab}, and we have

α∗
g = 0 from Model 2.2 and Model 2.3 using R1

g, successfully identifying point g as

an interior.

35

CHAPTER 5. DIMENSION-WISE REFERENCE SELECTION

Consider special cases involving frame points in each Di
l , i = 1, . . . , d that share

the same distance to point l. In this scenario, we suggest selecting the frame point

with the larger value of the input-output ratio
∑s

r=1 y
′
r·/
∑m

i=1 x
′
i·, this is in line with

the philosophy of Lemma 3.3.

(a) (b)

(c)

Figure 5.1: Dimension-Wise Selection

5.1.3 Improvements over Existing Techniques

To increase the likelihood of selecting the correct points as references, Chen et al.

[10] propose the use of Equation 5.1 to construct a reference set of size d. Specifi-

cally, they calculate the angle between the projection direction of a point l and the

direction to all other points on the current frame. Then, point l, where l /∈ IS ,
selects the top points j with the smallest angle ϕl,j to it as its initial reference set:

ϕl,j = arccos

(
(−xl,0) · (xj − xl,yj − yl)

T

|(−xl,0)| · |(xj − xl,yj − yl)|

)
, ∀j ∈ IS . (5.1)

36

5.1. THE SELECTION TECHNIQUE

Instead of using Equation 5.1, Chu et al. [12] propose an alternative method for

selecting the initial reference set, as represented by Equation 5.2:

δl,j =

√√√√∣∣(xj − xl,yj − yl)
∣∣2 − ((−xl,0) · (xj − xl,yj − yl)

T
)2

|(−xl,0)|2
, ∀j ∈ IS . (5.2)

Here, δl,j denotes the vertical Euclidean distance from point j to the projection

direction of point l. In this approach, the top k · d points that are closest to the

projection line of point l are included in the initial reference set for l.

To implement both Equation 5.1 and Equation 5.2, the data needs to be stan-

dardized using the data transformation techniques represented by Equation 4 and

Equation 5.

Table 5.1: Calculation Results of the Illustrative Example

point x y ϕl,j δl,j
a 72 124 2.21 32
b 16 68 0.64 24
d 4 8 1.09 84
e 19 80 0.39 12

To demonstrate the difference between our new technique and those proposed

by Chen et al. [10] and Chu et al. [12], we use the example shown in Table 2.1.

Consider point i as the target point for reference selection, using Equation 5.1 and

Equation 5.2. The calculated values of ϕi,j (j = a, b, d, e) and δi,j (j = a, b, d, e)

are presented in the fourth and fifth columns of Table 5.1, respectively. Assuming

that two points need to be included in the initial reference set, both the methods by

Chen et al. [10] and Chu et al. [12] select points b and e, while our technique selects

points a and e.

Figure 5.2 visually demonstrates the differences between our proposed technique

and the existing techniques. According to Chen et al. [10]’s technique, the directions

ce and cb have the smallest angles with respect to point c’s projection direction,

leading to the selection of {ab,ae} as the reference set. Similarly, Chu et al. [12]’s

technique identifies points b and e as having smaller vertical distances to point c’s

projection direction. Consequently, point a, which is crucial for forming the closest

facet to point c, is excluded from the initial reference set. Using points b and e as

references in Model 2.2 and Model 2.3 incorrectly classifies the interior point c as an

exterior point, potentially leading to the solution of more LPs in the BH process.

In contrast, our new technique selects points closest to the current point in each

dimension, successfully identifying {aa,ae} as the reference set.

In an d-dimensional space, the closest VRS facet for point l is formed by at most

d points. Our technique separately considers the relative magnitude of each dimen-

37

CHAPTER 5. DIMENSION-WISE REFERENCE SELECTION

Figure 5.2: Comparison with Existing Techniques

sion between the current point and the points in the current subsample, selecting

the closest point for each dimension. This approach is more likely to identify the

correct reference points in arbitrary dimension. It is worth noting, however, that our

technique does not provide a theoretical guarantee of selecting the correct points as

the dimensionality increases and the structure of the facet becomes more complex.

5.2 Enhanced Build Hull

Based on the new selection technique, we propose a small-size BH procedure as

outlined in Algorithm 5.1.

In line 2, S is initialized using the lemmas in Section 3.1.2. The algorithm then

selects l /∈ IS . For each point l, the evaluation is first performed using Model 2.2

and Model 2.3 with the smallest (≤ d) reference set R1
l . If the exterior condition

α∗
l > 0 holds, a corresponding frame point j∗ is identified, and S is updated by

adding j∗, i.e., S ← S ∪ {aj∗}. The point l is then reevaluated with a larger

reference set R2
l selected from the updated S. The rationale for increasing the size

of Rk
l is twofold: first, the newly discovered extreme point j∗ should be incorporated

into Rk
l , updating the reference facet for point l as shown in Figure 3.2b to Figure

3.2c; second, since α∗
l > 0 may be obtained even if point l is interior, but Rk

l does

not include the effective reference points, a larger Rk
l is necessary to confirm the

status of point l. By starting with the smallest Rk
l and dynamically increasing its

size only when a point is identified as exterior, the model is solved with the fewest

variables, thus minimizing computational effort. The procedure outlined in lines 9

to 16 converges as established in Theorem 5.1, with the proof provided.

By removing irrelevant variables in Model 2.2 and Model 2.3 through a dynamic

38

5.2. ENHANCED BUILD HULL

Algorithm 5.1 Small-Size BH

1: Initialize S ⊂ F
2: T ← A
3: T ← T \ S
4: while T ̸= ∅ do
5: select l ∈ A
6: k ← 1 ▷ k corresponds to size of selected reference set
7: R ← Rk

l =
⋃d

i mink(Di
l)

8: α∗
l ,π

∗
l ← solve Model 2.2 and Model 2.3 for l

9: while α∗
l > 0 do

10: l∗ = argmaxj∈A⟨π∗
l ,aj⟩ ▷ in case of a tie, set l∗ to one extreme point

11: S ← S ∪ {al∗}
12: T \ {a∗

l }
13: k ← k + 1
14: R ← Rk

l

15: α∗
l ,π

∗
l ← solve Model 2.2 and Model 2.3 for l

16: end while
17: T \ {al}
18: end while
19: F ← S ▷ the frame is established
20: return F

dimension-wise reference set selection procedure, this small-size BH procedure sub-

stantially decreases memory usage, without requiring a high memory as in the orig-

inal BH. Hence, it becomes possible to enhance BH further by transitioning from

a purely sequential computation to a parallel computation scheme to fully leverage

the computation cores of a CPU.

Theorem 5.1. Given any random reference sample Rl ⊂ A for a point l, where

l /∈ IRl
, the value of α∗

l converges to 0 in the procedure outlined in lines 9 to 16.

Proof of Theorem 5.1. For each l ∈ IA, we initialize a reference set Rl such that

l /∈ IRl
and Rl ⊂ A. The procedure’s convergence requires the condition α∗

l = 0 be

satisfied. Denoting α∗
l at iteration k as α

∗(k)
l (k = 1, 2, . . .), we aim to prove that α∗

l

decreases with each iteration and converges to 0. At iteration k, the reference set

Rl is updated as:

R(k+1)
l = R(k)

l ∪ {aj∗},

where j∗ is uniquely selected as:

j∗ = argmax
j∈IA
⟨π∗(k)

l ,aj⟩.

Since α
∗(k)
l > 0, the hyperplane defined by H(π∗(k)

l , ξ
∗(k)
l) separates A into two

39

CHAPTER 5. DIMENSION-WISE REFERENCE SELECTION

subsets:

A++

π
∗(k)
l ,ξ

∗(k)
l

and A−
π

∗(k)
l ,ξ

∗(k)
l

,

where al ∈ A++

π
∗(k)
l ,ξ

∗(k)
l

. The choice of j∗ ensures:

aj∗ ∈ A++

π
∗(k)
l ,ξ

∗(k)
l

, and ⟨π∗(k)
l ,aj∗⟩ > ⟨π∗(k)

l ,al⟩.

From Model 2.3, we have:

α
∗(k)
j∗ ≥ ⟨π

∗(k)
l ,aj∗⟩+ ξ

∗(k)
l > α

∗(k)
l > 0.

Similarly, referring to Model 2.2, it follows:

aj∗ >
∑

j∈I
R(k)

l

λ
∗(k)
lj aj.

The updated value of α
∗(k+1)
l is given by:

α
∗(k+1)
l = min

λ≥0

uT

al −

 ∑
j∈I

R(k)
l

λljaj + λlj∗aj∗



 ,

where
∑

j∈I
R(k+1)

l

λlj = 1. Hence, we have:

α
∗(k+1)
l < uT

al −
∑

j∈I
R(k)

l

λ
∗(k)
lj aj

 = α
∗(k)
l .

implying:

α
∗(k+1)
l < α

∗(k)
l .

By induction, α
∗(k)
l decreases with each iteration and converges to 0 as k →∞:

lim
k→∞

α
∗(k)
l = 0.

This confirms that the procedure described in lines 9 to 16 is convergent.

The proof of Theorem 5.1 can also be obtained through other ways. For instance,

since A++

π
∗(k)
l ,ξ

∗(k)
l

is a finite set and |R(k+1)
l | = |R(k)

l |+1, the loop can iterate at most

|A++

π
∗(k)
l ,ξ

∗(k)
l

| times before al ∈ γV RS
Rl

. At this stage:

α
∗(k)
l = 0, when al ∈ γV RS

Rl
.

40

5.2. ENHANCED BUILD HULL

Parallel Small-Size BH

We can further enhance the small-size BH using parallel computation with the cat-

egorized blocks B0, . . . ,BK , where frame points are gathered in initial blocks. This

systematic computation increases the likelihood of detecting exteriors early in the

BH process, resulting in a faster construction of the VRS frame.

Algorithm 5.2 Parallel BH with Sequential Blocks

1: Initialize S ⊂ F
2: T ← A
3: T ← T \ S
4: while T ̸= ∅ do
5: for B in B1, . . . ,BK do
6: parallel for l in B
7: if l /∈ IS then
8: k ← 1
9: R ← Rk

l =
⋃d

i mink(Di
l)

10: α∗
l ,π

∗
l ← solve Model 2.2 and Model 2.3 for l

11: while α∗
l > 0 do

12: l∗ = argmaxj∈IA⟨π
∗
l ,aj⟩

13: S ← S ∪ {al∗}
14: k ← k + 1
15: R ← Rk

l

16: α∗
l ,π

∗
l ← solve Model 2.2 and Model 2.3 for l

17: end while
18: end if
19: T ← T \ {al,al∗}
20: end for
21: end while
22: F ← S
23: return F

Since points within the same block lie on the VRS frame of points in both the

current and subsequent blocks, and are obtained using distinct positive weights (in-

dicating they lie in different locations of the current partial VRS frame), calculations

for points within the same block can be performed in parallel. This allows for the

ongoing construction of the VRS frame in multiple locations. Algorithm 5.2 outlines

the procedure to achieve these objectives.

Identified extreme points can originate from the current block or subsequent

blocks. Therefore, line 7 checks whether the current point l is already included in

S. If it is, no action is taken in the current iteration, meaning that lines 9 to 17 are

skipped. The updating of S may converge after processing the initial few blocks, at

which point all frame points have been gathered. This allows for skipping lines 11

to 16 for all points in subsequent blocks, so they can be evaluated using Model 2.2

and Model 2.3 with the smallest R(1)
l in line 10. As a result, the computation cost

41

CHAPTER 5. DIMENSION-WISE REFERENCE SELECTION

becomes negligible.

5.3 Empirical Experiments

We use a computer with an Intel Core i7-12700K CPU @3.60 GHz, 32.0 GB of

memory, and Linux 20.04. The algorithm is implemented in Python 3. Note that

the following results are obtained without parallel computation, to make a fair com-

parison with BH.

5.3.1 Time Comparison

Table 5.2 presents the CPU time for both BH and small-size BH, using a single

CPU worker. For example, in the first sample of 10,000 DMUs with 2 inputs and

2 outputs, referred to as sample 10000 2&2 1, small-size BH takes only 65 seconds,

while BH takes 268 seconds, as shown in Table 5.2 in the format ‘65 (268)’. Note

here the same initial subsample S = B0 is used for both BH and small-size BH.

Table 5.2: Time (seconds) Comparison

m&s n
Sample Index

1 2 3 4 5
2 & 2 10000 65 (268) 66 (272) 70 (305) 78 (333) 67 (289)

25000 193 (2144) 189 (1953) 190 (2069) 193 (2062) 197 (2099)
50000 433 (8950) 427 (9477) 428 (9379) 553 (11941) 495 (10978)
100000 1164 (48152) 1201 (51122) 1420 (59117) 1231 (51977) 2099 (88590)

3 & 3 10000 92 (409) 93 (390) 91 (396) 99 (428) 115 (494)
25000 284 (3140) 272 (3017) 277 (3106) 285 (3124) 340 (3666)
50000 682 (15302) 645 (13705) 740 (16533) 665 (13661) 941 (20025)
100000 1731 (77519) 1806 (75569) 2047 (91561) 2138 (90284) 1997 (84662)

4 & 4 10000 127 (546) 129 (571) 143 (588) 136 (599) 162 (726)
25000 405 (4413) 385 (4183) 408 (4299) 462 (4854) 411 (4292)
50000 911 (18778) 966 (20837) 1086 (22847) 1236 (25567) 1243 (27273)
100000 2564 (106209) 2559 (109143) 2769 (117406) 2684 (120188) 2833 (120982)

5 & 5 10000 193 (861) 207 (863) 212 (944) 218 (979) 244 (1085)
25000 557 (5815) 528 (5478) 587 (6042) 580 (6366) 671 (7503)
50000 1417 (29602) 1395 (28795) 1474 (32769) 1942 (42379) 1911 (40582)
100000 3812 (156750) 3639 (150466) 4001 (173128) 5737 (240040) 4577 (195303)

Furthermore, Table 5.2 shows that as the samples’ cardinality (n) and dimension

increase, there is a noticeable reduction in computation time. Figure 5.3 illustrates

this trend of decreasing time. It highlights that the time performance of small-size

BH is considerably less sensitive than that of BH with respect to the portion of F ,
cardinality, and dimension. As the portion of F (calculated by F/A) increases, the
computation time for both small-size BH and BH also rises. However, the increase

in computation time for BH is much greater than that for small-size BH. This trend

is similarly observed with respect to cardinality and dimension, as shown in Figure

5.3.

42

5.3. EMPIRICAL EXPERIMENTS

Figure 5.3: Time Comparison between BH and Small-Size BH

5.3.2 LP Statistics

The time reduction arises from solving small-size LPs using the subset Rk
l selected

from S. Table 5.3 summarizes the number of smallest-size LPs (k = 1) and the total

number of LPs (k = 1, . . .) involved across all samples using our new technique.

In the sample 10000 2&2 1, a total of 10,775 LPs (k = 1, . . .) are computed, of

which 8,872 LPs are solved using the smallest size (≤ d). This indicates that 88.72%

of non-frame DMUs obtained their status (interior) with minimal computational

cost. Similar results are observed across other samples, confirming the effectiveness

of our proposed reference set selection technique.

Table 5.3 also suggests a positive correlation between the total number of LPs

(k = 1, . . .) required during small-size BH and the dimensions m&s. Consequently,

computation time increases, as depicted in Figure 5.2 with respect to dimensions.

However, the increase in time is negligible compared to the full BH.

Summary

In this chapter, we propose a novel reference set selection method and validate its

effectiveness through empirical experiments.

The first section presents the geometric insights behind the development of our

selection method, followed by a detailed description of the technique. To demon-

strate its effectiveness, we compare our approach with existing methods for small-size

LP problems. This selection procedure is intended to be applied before solving any

of the LP models discussed in this study.

The second section introduces the enhanced BH procedure, incorporating our

43

CHAPTER 5. DIMENSION-WISE REFERENCE SELECTION

Table 5.3: Number of LPs: (k = 1)/(k = 1, . . .)

m&s n
Sample Index

1 2 3 4 5
2 & 2 10000 8872/10775 8870/10850 8695/10772 8199/11495 8818/10675

25000 22329/26882 22338/27026 22312/27014 22056/27356 22044/27246
50000 44774/54091 44773/54029 44668/54071 40513/57253 42335/55872
100000 89628/108340 89733/107932 85489/111021 89016/109143 75784/118983

3 & 3 10000 8636/11092 8620/11196 8627/11036 8251/11377 7522/12203
25000 21841/28310 21822/27906 21826/27855 21525/28070 20362/30174
50000 44161/55824 44147/55674 42058/59292 43886/56804 38012/62409
100000 88681/110890 88425/112085 85968/116912 84514/116991 85637/114156

4 & 4 10000 8330/11762 8395/11756 8070/12132 8156/12150 7466/13372
25000 21180/29897 21286/29400 20805/30109 19893/31753 20606/30196
50000 43177/58051 42893/59501 41326/61526 39160/65513 39524/66102
100000 87405/115781 87287/116334 85042/121457 85399/117590 85305/122673

5 & 5 10000 7855/12783 7736/13477 7457/13566 7347/13676 7034/14563
25000 20521/31514 20647/30977 19702/32988 19938/31884 19482/34967
50000 41659/64040 42029/62636 40422/65023 37206/72700 36937/68600
100000 84854/124330 85235/123014 84033/125576 76023/138939 79984/132648

dimension-wise reference selection technique. We also provide a theoretical proof of

the convergence of the proposed algorithm. With the small-size selection procedure

in place, the BH method can be more easily extended to a parallel computation

scheme, and a computational framework is designed to support this.

The third section empirically validates the effectiveness of the proposed methods.

The majority of points are classified correctly by solving the minimal-size LPs,

resulting in a significant reduction in computation time compared to the conventional

BH method.

44

Chapter 6

Adaptive Shortest-Distance Search

In the previous chapter, we introduced a straightforward method to effectively reduce

the size of LPs that need to be solved.

Beyond minimizing the size of the LPs required for computing the VRS frame,

we can also reduce the number of LPs that need to be solved. The DEA Dominator,

described in Section 3.1.1, provides an arithmetic approach to identify non-frame

points through dimension comparison, thereby eliminating the need to solve LPs.

However, certain non-frame points may not be dominated by any existing points

(i.e., point c in Figure 3.1b), which limits the applicability of the direct dimension

comparison. To resolve this issue, building upon the shortest distance approach

introduced in Chapter 5, we propose a method for adaptively constructing virtual

points for non-frame points. The frame points identified during this process can

also function as the reference set for Models 2.2 and 2.3, thereby accelerating the

construction of the VRS frame.

6.1 Search Strategy

For each l /∈ IS and al ∈ ΥVRS
S , there exists a virtual point j′ such that aj′ =∑

j∈IS λjaj, where
∑

j∈IS λj = 1 and aj′ ≥ al. According to Definition 3.2, point

l is dominated by the virtual point j′ and does not belong to the set F . Since

virtual dominating points can be convex combinations of frame points closest to the

current point l, we propose Strategy 1 to identify frame points as candidates for

constructing virtual dominating points for each non-frame point l:

Strategy 1: Consider a subset of frame points S. For each point l (where

l /∈ IS), select the points from S that are closest to point l, and construct the

dominating point j′ such that aj′ ≥ al.

After formulating point j′ using the selected candidate points, we propose Strat-

egy 2 to assign positive weights and identify frame points:

CHAPTER 6. ADAPTIVE SHORTEST-DISTANCE SEARCH

Strategy 2: Given the formulation of point j′, we derive πl = aj′ − al ≥
0. Additional frame points can then possibly be identified by selecting j∗ ←
argmaxj∈IA⟨πl,aj⟩.

Based on these proposed strategies, we next introduce the corresponding algo-

rithm to discriminate non-frame points using virtual domination and detect frame

points through the derived positive weights.

6.2 Proposed Approach

First, assume that we have obtained a subset of frame points S using the lemmas

from Section 3.1.2. For each point l, where l ∈ IA \ IS , we calculate al
j = aj − al

for j ∈ IS , representing the domination scores of point j over point l. It is evident

that if there exists al
j ≥ 0 for some j ∈ IS , then point l is dominated by point j,

indicating that point l is non-frame. This scenario corresponds to real domination.

Geometrically, the transformation al
j = aj − al establishes a coordinate system

letting al
l = 0 be the origion, keeping the relative position of all other points un-

changed, i.e., c is at the origion in Figure 6.1. Define point −j as the virtual point,

whose transformed dimensions are opposite of the transformed dimensions of j, that

is, al
−j = −al

j. For instance, point −b can be obtained as the reflection of point b

with respect to the origin c. The purpose of this reflection is to identify the frame

point closest to the reflected point, such as point a which is nearest to −b. This

identified frame points are then used to construct j′ that dominates l.

Figure 6.1: Establishing coordinate system for point c

Note that the proposed transformation keeps the relatie position of points un-

changed. Following the previous chapter, let dl,j represent the Euclidean distance

between point l and point j, where j ∈ IS and define Dl = {dl,j | j ∈ IS}. The

operation min(Dl) selects the point corresponding to the minimum value in Dl. Sim-

ilarly, let D be the set of points that are dominated under either the real or virtual

scenario.

46

6.2. PROPOSED APPROACH

Based on these preparations, we now propose the following procedure described

by Algorithm 6.1.

In line 7, k records the current iteration step and is initialized to 1 for each point

l. In line 8, we first select from S the point j1 that is closest to point l, following

Strategy 1. Point j# is a virtual point initialized as point j1. The set Rl is the set

of reference points selected from S for point l, which is initialized by Rl ← {ajk=1
}.

It is worth noting that line 11 can be considered a refined version of the Dom-

inator approach. The key difference is that we only need to compare point l with

the current point j#, whereas Dominator requires comparing point l with all points

in A.

Next, let’s see how the Algorithm 6.1 works using the instance dataset presented

in Table 2.1.

6.2.1 The Dominated Scenario

In line 11, if al
j#
≥ 0, it implies that aj# ≥ al, indicating that point l is dominated by

the current point j#. Point l is determined to be non-frame (according to Definition

3.2 and its corresponding corollaries) and is assigned to the set D. At the same

time, a positive weight vector πl is formulated, and a frame point not yet included

in S might be detected using j∗ ← argmaxj∈IA⟨πl,aj⟩, after which the subset of

frame points is updated by S ← S ∪ {aj∗}. This is the scenario of real domination.

For example, assume point g is being processed and the initial partial frontier

is S ← {aa,ab,ad}. Point j# is initialized as point b, as it is the closest to point

g among a, b, d. We conclude that point g is non-frame because it is dominated by

point b. Using πg ← ag
b , we have e ← argmaxj∈IA⟨πg,aj⟩, meaning that point

e is found on the frame, and S is updated by S ← S ∪ {ae}, which becomes

{aa,ab,ad,ae}.

When the selected point j does not dominate l, we implement lines 17 to 27,

where K is the hyperparameter that limits the maximum number of iterations, and

can be set to any desired value. In this study, we recommend setting K as a multiple

of d. In line 19, we first find the point jk by jk ← min(D−j#), which is closest to the

virtual point −j#, then update the current j# by accumulation: al
j#
← al

j#
+ al

jk
.

Rl is updated using Rl ← Rl ∪ {ajk}. Next, if al
j#
≥ 0 (aj# ≥ al), point l is

assigned to D. At the same time, a frame point j∗ might be identified, and S is

updated accordingly. The while loop is then terminated at this point. If al
j#
≥ 0

is not satisfied and the number of iterations k is less than K, the same procedure

of updating j# by finding the point closest to the current −j# is repeated until

al
j#
≥ 0 is satisfied or k = K.

The procedure outlined in lines 17 to 27 iteratively constructs a virtual dominat-

47

CHAPTER 6. ADAPTIVE SHORTEST-DISTANCE SEARCH

Algorithm 6.1 Shortest-Distance Adaptive Formulation

1: Initialize S ⊂ F
2: T ← A
3: T ← T \ S
4: D ← ∅
5: while T ≠ ∅ do
6: select l ∈ IT
7: k ← 1 ▷ k records iteration steps
8: jk ← min(Dl)
9: j# ← jk

10: Rl ← {ajk}
11: if al

j#
≥ 0 then

12: D ← D ∪ {al}
13: πl ← al

j#

14: j∗ ← argmaxj∈IA⟨πl,aj⟩
15: S ← S ∪ {aj∗}
16: else if al

j#
̸≥ 0 then

17: while k ≤ K do
18: k ← k + 1
19: jk ← min(D−j#)
20: al

j#
← al

j#
+ al

jk

21: Rl ← Rl ∪ {ajk}
22: if al

j#
≥ 0 then

23: D ← D ∪ {al}
24: πl ← al

j#

25: j∗ ← argmaxj∈IA⟨πl,aj⟩
26: S ← S ∪ {aj∗}
27: break
28: end if
29: end while
30: else if k = K and al

j#
̸≥ 0 then

31: α∗
l ,π

∗
l ← compute Model 2.2 and Model 2.3 with R ← Rl

32: while α∗
l > 0 do

33: j∗ ← argmaxj∈IA⟨π∗
l ,aj⟩

34: S ← S ∪ {aj∗}
35: Rl ← Rl ∪ {aj∗}
36: α∗

l ,π
∗
l ← compute Model 2.2 and Model 2.3 with R ← Rl

37: end while
38: end if
39: T ← T \ {al,al∗}
40: end while
41: F ← S

48

6.2. PROPOSED APPROACH

ing point using an adaptive search scheme guided by the shortest distance principle

outlined in Strategy 1. For any point satisfying the condition in line 22 and be-

ing assigned to the set D, it is dominated and explicitly non-frame. This result is

formalized in Theorem 6.1, with the proof provided.

Theorem 6.1. Any point l assigned to the set D is clearly non-frame.

Proof of Theorem 6.1. Let l be a given point in D. The combined representation

of points in the reference set Rl is expressed as:

al
j# =

∑
k

ajk =
∑
k

ajk − al · k.

When al
j#
≥ 0, it follows that: ∑

k

ajk ≥ al · k,

which implies: ∑
k ajk

k
≥ al.

Define a virtual point j′ with:

aj′ =

∑
k ajk

k
.

This representation of aj′ is a convex combination of points in the reference set Rl.

Since Rl ⊆ S, we deduce:

aj′ ∈ ΥV RS
S ,

where ΥV RS
S represents the convex hull generated by the points in S. More generally,

aj′ can be expressed as:

aj′ =
∑
j∈IS

λjaj,

where:

λj =
|{jk | jk = j}|

k
.

Here, λj represents the times of point j being selected into Rl. From the inequality

aj′ ≥ al, we conclude that point l is dominated by the virtual point j′. Consequently,

point l is non-frame.

The convergence of the procedure outlined in lines 32 to 37 can be established

by referencing Theorem 5.1.

49

CHAPTER 6. ADAPTIVE SHORTEST-DISTANCE SEARCH

Illustration Implementations

To intuitively understand how lines 17 to 27 work, let us assume that point c is

being processed, and the current set S ← {aa,ab,ad}. Without loss of generality,

this setup allows us to observe the mechanics of the algorithm. Figure 6.2 visually

presents the implementation details, showing how a virtual dominating point j′ is

formulated step by step during the adaptive searching process.

(a) (b)

(c) (d)

Figure 6.2: Implementation for point c

In the first iteration (k = 1) shown in Figure 6.2a, both a and b share the same

minimal distance to c. In this case, we select the unit with the larger input-output

ratio
∑

r yrj/
∑

i xij. So, we select j1 ← b, meaning b is chosen in the first iteration.

We set j# ← j1. Since ac
j#
≥ 0 is not satisfied at this point, in Figure 6.2b, we

first reflect j# through the origin (point c’s location) and find −j#. Next, a is the

closest to −j#, so we set j2 ← a. Then, j# is updated by ac
j#
← ac

j#
+ ac

j2
, which

is shown in Figure 6.2b.

After two iterations, ac
j#
← ac

j#
+ ac

jk
≥ 0 is established for c, where j1 ← b

50

6.2. PROPOSED APPROACH

and j2 ← a. The while loop is terminated by the break command as described

in line 27. This indicates that point c is dominated by the virtual point j′, with

aj′ ∈ ΥV RS
S , where aj′ =

∑
j=b,a λjaj with λa = |{jk | jk = a}|/k = 1/2, and

λb = |{jk | jk = b}|/k = 1/2. Therefore, point c is non-frame. Furthermore, we

have πc ← aj′ , and a frame point e ← argmaxj∈IA⟨πc,aj⟩ is identified, as shown

in Figure 6.2c. Finally, the partial frontier is updated as shown in Figure 6.2d.

The implementation of point c requires only two iterations to establish the virtual

dominating point, and the set S is updated to include {aa,ab,ad,ae}. Next, let us
examine the implementation for point f , which requires more iterations to establish

its corresponding dominating point. Figure 6.3 illustrates this process step by step.

In the first iteration shown in Figure 6.3a, we have j1 ← b, which is the closest to

f , and initialize j# as b. Next, we find −j#. In Figure 6.3b, b is again selected, since

it is the closest to −j#, so we set j2 ← b, and j# is updated by af
j#
← af

j#
+ af

j2
.

We then find −j# in Figure 6.3b. Since af
j#
≥ 0 is still not satisfied, in Figure

6.3c, we find j3 ← d, which is the closest to the current −j#. We repeat the

same updating process for j#, and in Figure 6.3d, we find j4 ← b. At this point,

af
j#
← af

j#
+ af

j4
≥ 0 is satisfied, meaning that the virtual dominating point j′ for

point f is established after four iterations. Then the while loop is terminated. The

points involved in this process are: b, b, d, and b. We then have aj′ =
∑

j=b,d λjaj,

where λb = |{jk | jk = b}|/k = 3/4 and λd = |{jk | jk = d}|/k = 1/4. Furthermore,

πf ← aj′ , and a frame point i ← argmaxj∈IA⟨πf ,aj⟩ is identified, as shown in

Figure 6.3e. Finally, the partial frontier is updated, as illustrated in Figure 6.3f.

Based on the implementation for points c and f , the effectiveness of lines 17 to

27 can be visually observed: By iteratively reflecting the current j# through the

origin to −j#, we identify the point closest to −j#, and then update j# using the

accumulation operation al
j#
← al

j#
+ al

jk
. As a result, j# remains confined to the

region near the origin and tends to move progressively closer to it.

6.2.2 The Undominated Scenario

As detailed, for any non-frame point l being processed, if the corresponding real

dominating point does not exist, a virtual dominating point can potentially be con-

structed using lines 17 to 27, provided K is set sufficiently large. However, when

point l is exterior to the convex hull of S, the condition al
j#
≥ 0 in line 11 will never

be satisfied, regardless of how large K is.

Consider the example provided in Table 2.1. Since the order in which points

enter the procedure outlined in the pseudocode is not predetermined, we can assume,

without loss of generality, that the partial frontier S is formed by points a, b, and d.

For instance, in Figure 6.4a, points i and e, as well as other points such as o, which

are positioned above the partial frontier, cannot have a virtual dominating point

51

CHAPTER 6. ADAPTIVE SHORTEST-DISTANCE SEARCH

(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Implementation for point f
52

6.2. PROPOSED APPROACH

(a) (b)

(c) (d)

Figure 6.4: Case of Exteriors i.e., point i

53

CHAPTER 6. ADAPTIVE SHORTEST-DISTANCE SEARCH

constructed, regardless of the number of iterations performed. In other words, the

status of these points cannot be determined even when k = K. In this situation, we

implement lines 31 to 36 to differentiate the current point and construct the frame

hull.

To understand how lines 31 to 36 work, let’s take point i as an example. After

executing lines 17 to 27, we obtain Ri ← {aa,ab} based on the shortest distance

search. Solving Model 2.2 and Model 2.3 with the reference set Ri, we find α∗
i > 0,

indicating that point i is exterior to S. We then identify e ← argmaxj∈IA⟨π∗
i ,aj⟩.

Thus, Ri is updated to {aa,ab,ae}, and S is updated to {aa,ab,ad,ae}, as depicted
in figure 6.4b.

Next, we solve Model 2.2 and Model 2.3 again, which results in α∗
i > 0 and we

identify i← argmaxj∈IA⟨π∗
i ,aj⟩. Consequently, S is updated to {aa,ab,ad,ae,ai},

as shown in figure 6.4c. Finally, solving Model 2.2 and Model 2.3 once more with

Ri ← {aa,ab,ae,ai} results in α∗
i = 0, terminating the while loop for point i.

Note that, in this process, unlike the BH approach, Model 2.2 and Model 2.3

incorporates variables corresponding solely to points in Ri, which is a subset of

S. This effectively excludes unnecessary variables. In large-scale DEA computa-

tions, especially when the dimensionality is significantly higher than the current

two-dimensional example, the composition of the convex hull becomes increasingly

complex, and S can become quite large. By establishing Rl for each exterior l such

that |Rl| ≪ |S|, we reduce the number of variables in Model 2.2 and Model 2.3,

thereby significantly decreasing both the memory requirements and computation

time needed to obtain results.

Moreover, since the partial frontier is dynamically updated—for example, after

processing point i, other exteriors like o become interiors of S. When these points

are processed later, the procedure outlined in lines 17 to 27 becomes valid for them,

allowing their corresponding dominating point to be formulated without the need

to solve any LPs.

For cases like point h, if S ← {aa,ab,ad}, no virtual dominating point can be

formulated when applying lines 17 to 27. When lines 31 to 37 are then implemented

with Rh ← {ab,ad}, the result is α∗
i = 0, which terminates the while loop, leaving

S unchanged at {aa,ab,ad}.

It is evident that after processing all points in A\S, the set F ← S is finalized,

as described in line 41.

6.3 Empirical Experiments

To validate the effectiveness of Algorithm 6.1, K is set to be d, and S is initialized

using Lemma 3.1 and Lemma 3.3. The computation environment is the same as in

54

6.3. EMPIRICAL EXPERIMENTS

Chapter 5, and the result is obtained using solely one worker of the CPU.

6.3.1 Running Time Analysis

Table 6.1 shows the computation time of this approach compared to the small-

size BH method from Zhuang et al. (2024), with both methods run using a single

CPU worker. For example, in the first sample of 10,000 points with 2 inputs and 2

outputs (sample 2&2 10000 1), this approach finishes in 24 seconds, while small-size

BH requires 65 seconds, which is represented in Table 6.1 as ’24 (65)’. Overall, the

time required by our method is about one-third that of small-size BH across all

simulated samples.

Figure 6.5 illustrates the trend in computation time of this approach, namely

adaptive formulation as density, cardinality, and dimensionality increase. As shown,

this method is less sensitive to these factors, with relatively stable time consumption

despite the growth in density, cardinality, and dimensionality.

Table 6.1: Running Time (seconds)

m&s n
Sample Index

1 2 3 4 5

2 & 2 10000 24 (65) 26 (66) 24 (70) 31 (78) 25 (67)

25000 70 (193) 67 (189) 65 (190) 74 (193) 68 (197)

50000 149 (433) 145 (427) 150 (428) 183 (553) 165 (495)

100000 339 (1164) 356 (1201) 414 (1420) 349 (1231) 563 (2099)

3 & 3 10000 46 (92) 36 (93) 37 (91) 38 (99) 41 (115)

25000 89 (284) 92 (272) 84 (277) 99 (285) 108 (340)

50000 185 (682) 191 (645) 225 (740) 212 (665) 257 (941)

100000 436 (1731) 445 (1806) 544 (2047) 575 (2138) 491 (1997)

4 & 4 10000 51 (127) 47 (129) 48 (143) 55 (136) 56 (162)

25000 130 (405) 124 (385) 145 (408) 141 (462) 137 (411)

50000 296 (911) 267 (966) 296 (1086) 315 (1236) 358 (1243)

100000 653 (2564) 679 (2559) 711 (2769) 657 (2684) 695 (2833)

5 & 5 10000 74 (193) 74 (207) 70 (212) 73 (218) 77 (244)

25000 179 (557) 160 (528) 183 (587) 188 (580) 195 (671)

50000 395 (1417) 378 (1395) 414 (1474) 465 (1942) 450 (1911)

100000 962 (3812) 923 (3639) 966 (4001) 1251 (5737) 1035 (4577)

The results highlight the efficiency of this approach in reducing computation time

by minimizing the necessity of solving LPs and decreasing the number of variables

when solving LPs is required. Table 6.2 presents the statistics on the number of LPs

solved and the corresponding variables across all simulated samples. For example,

55

CHAPTER 6. ADAPTIVE SHORTEST-DISTANCE SEARCH

Figure 6.5: Time Comparison (seconds)

in sample 2&2 10000 1, only 1499 LPs are solved, with variables associated with an

average of 5.05 relevant frame points, represented as ’1499 @5.05’ in Table 6.2.

Table 6.2: Number of LPs and Corresponding Variable Counts

m&s n
Sample Index

1 2 3 4 5
2 & 2 10000 1499 @5.05 1923 @4.85 1829 @4.98 3532 @5.69 1505 @5.21

25000 3998 @5.16 3949 @5.34 3829 @5.51 5327 @5.22 3972 @5.44
50000 7831 @5.25 6786 @5.51 8081 @5.47 16042 @5.91 11437 @6.23
100000 12762 @5.76 14348 @5.97 22655 @6.31 15502 @6.19 42462 @6.55

3 & 3 10000 5284 @4.81 3212 @5.35 3537 @5.39 3869 @5.54 5129 @6.71
25000 7215 @6.28 7024 @5.79 6075 @5.72 8714 @5.77 11737 @6.96
50000 11063 @5.9 11388 @5.99 19671 @6.93 14746 @6.37 26534 @7.32
100000 19723 @6.52 22459 @6.65 38356 @6.82 39871 @7.58 26067 @6.65

4 & 4 10000 4753 @6.59 4265 @6.75 4717 @7.07 5756 @6.88 6685 @7.58
25000 11401 @7 10272 @7 13451 @7.14 14240 @7.97 12236 @7.14
50000 21880 @6.85 18869 @7.42 23328 @7.62 28277 @8.18 32688 @8.28
100000 36624 @7.61 37746 @7.49 44427 @8.09 36431 @7.61 42995 @7.89

5 & 5 10000 7144 @7.73 7815 @8.22 7341 @8.38 7888 @8.28 8623 @8.56
25000 14976 @7.92 12605 @8.07 16423 @8.35 16458 @7.97 18160 @8.87
50000 27383 @8.37 25904 @8.11 29961 @8.78 38396 @9.58 34480 @8.99
100000 52374 @8.28 47904 @8.11 51873 @8.53 72778 @9.42 56659 @9.26

Using standard computation [6], for sample 2&2 10000 1, 10,000 LPs with over

10,000 variables would need to be solved. This improvement has significantly re-

duced the LP solutions necessity. Similar results are observed across all samples,

further confirming the effectiveness of our approach.

56

6.3. EMPIRICAL EXPERIMENTS

6.3.2 Classification Results

As demonstrated, the proposed approach exhibits significant performance improve-

ments in terms of time performance when compared to the latest small-size BH

approach. Table 6.3 summarizes the proportion of non-frame points, calculated as

|D|/|A|, identified using our designated arithmetic dominating point formulation

technique. Remarkably, 87.79% of non-frame points were successfully identified, re-

garding sample 2&2 10000 1, without the need to solve Model 2.2 and Model 2.3.

It is evident that the majority of non-frame points are identified through arith-

metic operations across all samples. The identified proportion tends to decline as

the dimensionality increases, while it rises with increased cardinality. This trend

suggests that our proposed approach can be particularly competitive in large-scale

computational contexts (e.g., with 1,000,000 points).

Table 6.3: Identified Non-frame Points (%)

m&s n
Sample Index

1 2 3 4 5
2&2 10000 87.79 86.91 85.69 81.17 87.39

25000 87.14 88.21 88.34 86.20 87.01
50000 87.45 88.57 87.44 79.58 84.12
100000 88.91 88.58 84.29 88.43 74.30

3&3 10000 68.12 79.09 75.78 74.66 73.30
25000 83.64 80.99 83.56 78.78 77.42
50000 84.88 83.72 80.78 83.22 74.22
100000 86.12 86.07 80.86 78.56 83.33

4&4 10000 70.36 74.67 73.75 68.41 67.26
25000 73.67 75.53 69.96 71.90 71.34
50000 72.71 78.20 73.86 73.36 70.52
100000 79.17 77.76 77.18 78.93 78.38

5&5 10000 59.46 61.42 62.77 59.77 58.03
25000 64.40 70.02 65.30 62.63 65.16
50000 68.37 68.79 68.06 65.16 63.91
100000 70.14 70.46 70.69 64.48 70.41

Table 6.4 shows that the proposed method effectively identifies frame points by

using positive weights when a non-frame point is identified arithmetically, with de-

tection rates ranging from 47.84% to 93.34% across various configurations. Higher

rates are observed in the cases of lower dimensions. Also, these detection rates

tend to improve with larger cardinality, particularly for configurations with 100,000

points. Variations exist among different samples, indicating that sample characteris-

tics can impact detection performance. Overall, the findings highlight the method’s

effectiveness while also pointing to challenges posed by increasing dimensionality.

57

CHAPTER 6. ADAPTIVE SHORTEST-DISTANCE SEARCH

Table 6.4: Identified Frame Points (%)

m&s n
Sample Index

1 2 3 4 5
2&2 10000 86.23 81.59 89.46 66.20 88.06

25000 93.34 89.76 88.44 78.46 91.57
50000 92.74 93.06 91.48 84.04 87.20
100000 93.29 93.70 89.65 91.02 81.60

3&3 10000 68.67 74.84 79.16 72.37 60.59
25000 72.31 81.06 79.75 69.39 56.00
50000 82.78 85.32 55.72 71.24 60.16
100000 88.27 83.78 56.38 75.85 80.66

4&4 10000 66.48 60.82 65.10 56.11 47.66
25000 67.81 75.36 48.60 60.13 65.28
50000 72.73 73.64 67.35 48.60 42.56
100000 72.62 76.47 55.31 71.56 55.19

5&5 10000 63.67 55.62 59.75 56.67 49.56
25000 71.06 72.06 57.29 61.18 51.43
50000 70.48 70.87 61.92 48.80 59.02
100000 63.45 70.07 60.78 47.84 63.51

The effect of K

As analyzed, allowing more iteration steps enables the establishment of additional

virtual dominations, thereby reducing the number of LPs that need to be solved.

This trend can be observed across all the samples used, and some results are pro-

vided to visually illustrate this in Figure 6.6. For example, in Figure 6.6, the x-axis

represents the value of K. An increasing trend in the proportion of virtual domina-

tions is evident as K increases, although this growth becomes less pronounced as K

continues to rise.

Since the operations outlined in lines 17 to 27 involve only arithmetic computa-

tions rather than solving LPs, higher values of K are expected to improve computa-

tional performance. However, because the distribution of points around the frame

is unknown prior to implementing the proposed procedure, the performance of lines

17 to 27 is output-sensitive. Despite this uncertainty, it is generally reasonable to

set a large K in practice to minimize the need for LP solutions.

Summary

In this chapter, we present an adaptive search and formulation strategy aimed at

arithmetically constructing virtual points to identify non-frame points that are not

dominated by any existing points. The key idea is to formulate a virtual dominating

point, which allows the identification of a non-frame point through dimension com-

58

6.3. EMPIRICAL EXPERIMENTS

Figure 6.6: Domination Respect to K

parison, as described in the DEA Dominator method. This approach not only helps

identify non-frame points but also enables the creation of a small-size reference set ,

as described in Chapter 5, which can be utilized for each point when solving Models

2.2 and 2.3.

To validate the effectiveness of our approach, we conduct a series of empirical

experiments. The results demonstrate that the majority of non-frame points can

be identified without the need to solve LP problems. For those points that remain

unclassified and require LP solutions, the average number of variables involved is

close to the dimension of the DEA dataset, indicating a significant reduction in

computational complexity. Furthermore, the time required for solving these LPs is

substantially lower compared to the small-size LP approach introduced in the previ-

ous chapter, highlighting the performance gains achieved by our proposed method.

59

Chapter 7

Conclusions and Discussions

This study presents a series of existing and proposed methodologies designed to

enhance the computational efficiency of DEA frontier identification in large-scale

scenarios.

Chapter 2 establishes the theoretical foundation with a discussion of DEA, high-

lighting the importance of the DEA frontier. These concepts provide the basis for the

developments explored in subsequent chapters. Chapter 3 reviews existing methods

and results, offering a detailed analysis that serves as a baseline for the approaches

proposed in this study.

Chapter 4 introduces a weight-based categorization scheme to systematically or-

der the computation of DMUs, facilitating the early construction of DEA frames.

This approach iteratively gathers frame points by applying distinct weight vectors.

Empirical validation demonstrates the method’s effectiveness in reducing computa-

tional demands.

Building on research into small-scale linear programming (LP), Chapter 5 pro-

poses a novel dimension-wise reference set selection procedure. This geometric

method identifies reference DMUs from the nearest relevant facets for the DMU

under evaluation, reducing the number of LP formulations and supporting parallel

computation frameworks. Empirical results confirm that this approach significantly

lowers computation time while preserving accuracy, by solving LPs with the least

number of decision variables.

Inspired by the straightforward shortest-distance selection process in Chapter

5, Chapter 6 introduces an adaptive formulation scheme for constructing virtual

domination. The benefit of this adaptive formulation is that it identifies non-frame

points through direct dimensional comparisons, rather than LP solutions. When

LPs are necessary, the average number of variables corresponds to the dataset’s

dimensionality.

Each of the proposed methodologies offers distinct advantages for large-scale

DEA applications. Their integration with other methods holds potential for further

advancements, paving the way for even more robust and efficient DEA computational

frameworks.

Key Contributions

The key contributions of this study can be summarized as follows:

1. The study introduces a set of innovative techniques—including weight-based

categorization, shortest-distance-based selection, and adaptive formulation—that

significantly reduce computational complexity.

2. Each proposed procedure is supported by rigorous theoretical proofs, estab-

lishing the validity of the methodologies and providing a solid foundation for

further development and adaptation.

3. Beyond enhancing DEA frontier identification, the proposed techniques demon-

strate potential applicability to other computational challenges, such as solving

the convex hull problem.

Future Directions

There remain opportunities for further exploration:

1. Scalability in ultra-large datasets: Demonstrating the performance of these

methods in ultra-large datasets with millions of DEA points would be valuable

for real-world applications.

2. Investigation of DEA point distribution: The distribution of DEA points may

influence the behavior of the proposed procedures. Further exploration in this

area could lead to refinement and improved performance of the methods.

3. Integration with advanced models: Extending the proposed methods to other

DEA models, such as dynamic or network DEA, could broaden their applica-

bility.

4. Hybrid approaches: Combining the proposed methods with statistical learn-

ing techniques could open up new possibilities for handling highly complex

problems, especially in cases involving stochastic or uncertain data.

In conclusion, this study contributes to the advancement of large-scale compu-

tation by proposing scalable methods aimed at improving efficiency and reducing

resource consumption. While these methods effectively address computational chal-

lenges in DEA, they also offer potential for further exploration and refinement in the

61

CHAPTER 7. CONCLUSIONS AND DISCUSSIONS

field of high-performance computing. The approaches presented here may serve as

a starting point for developing more general techniques, with possible applications

extending to areas such as machine learning, computational geometry, optimization,

and other related fields.

62

Appendix A

Appendix

A.1 Obtaining Frame Points using ArbitaryWeights

From Model 2.4, the constraints are:∑
j∈IA

λjxj ≤ θlxl,∑
j∈IA

λjyj ≥ yl.

For arbitrary weights vr ≥ 0 and wi ≥ 0, the following holds:

wi

∑
j∈IA

λjxij ≤ wiθlxil, ∀i = 1, . . . ,m,

vr
∑
j∈IA

λjyrj ≥ vryrl, ∀r = 1, . . . , s.

By summing over all input and output dimensions, we derive:

s∑
r=1

vryrl − θl

m∑
i=1

wixil ≤
∑
j∈IA

λj

(
s∑

r=1

vryrj −
m∑
i=1

wixij

)
. (A.1)

If point l satisfies:

∆l =
s∑

r=1

vryrl −
m∑
i=1

wixil = max
j∈IA

{
s∑

r=1

vryrj −
m∑
i=1

wixij

}
,

then:

∆l ≥
∑

j∈IA\{l}

λj

(
s∑

r=1

vryrj −
m∑
i=1

wixij

)
+ λl∆l.

APPENDIX A. APPENDIX

Let πT = {π1, . . . , πm+s} = {wi, . . . , wm, vr, . . . , vs}, subject to:

s∑
r=1

vr +
m∑
i=1

wi > 0. (A.2)

To satisfy inequality (A.1) under condition (A.2), the only feasible solution is:

θ∗l = 1, λ∗
l = 1, λ∗

j = 0 ∀j ̸= l.

This indicates that point l is neither dominated by any existing point nor by any

virtual point. Thus, point l must lie on the VRS frame.

A.2 Invariance of Constraints Under Data Trans-

formation

The initial DEA constraints are:∑
j∈IA

λjxij ≤ θlxil, i = 1, 2, . . . ,m, (A.3)∑
j∈IA

λjyrj ≥ yrl, r = 1, 2, . . . , s. (A.4)

Applying the transformations:

x′
il =

xil

maxh∈IA xih

, y′rl =
yrl

maxh∈IA yrh
,

the constraints become: ∑
j∈IA

λjx
′
ij ≤ θlx

′
il, i = 1, 2, . . . ,m, (A.5)∑

j∈IA

λjy
′
rj ≥ y′rl, r = 1, 2, . . . , s. (A.6)

Substituting the transformations:

∑
j∈IA

λjxij

maxh∈IA xih

≤ θlxil

maxh∈IA xih

,
∑
j∈IA

λjyrj
maxh∈IA yrh

≥ yrl
maxh∈IA yrh

.

By dividing both sides by the corresponding maximum values, the transformed

constraints (A.5) and (A.6) are shown to be equivalent to the original constraints

(A.3) and (A.4). Thus, the transformations preserve the DEA constraints, ensuring

consistency between the original and transformed data evaluations.

64

Bibliography

[1] Agha Iqbal Ali. “Streamlined computation for data envelopment analysis”. In:

European journal of operational research 64.1 (1993), pp. 61–67.

[2] Randall Balestriero, Zichao Wang, and Richard G Baraniuk. “Deephull: Fast

convex hull approximation in high dimensions”. In: ICASSP 2022-2022 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE. 2022, pp. 3888–3892.

[3] Rajiv D Banker, Abraham Charnes, and William Wager Cooper. “Some mod-

els for estimating technical and scale inefficiencies in data envelopment anal-

ysis”. In: Management science 30.9 (1984), pp. 1078–1092.

[4] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. “The quickhull

algorithm for convex hulls”. In: ACM Transactions on Mathematical Software

(TOMS) 22.4 (1996), pp. 469–483.

[5] Richard S Barr and Matthew L Durchholz. “Parallel and hierarchical decom-

position approaches for solving large-scale data envelopment analysis models”.

In: Annals of Operations Research 73.0 (1997), pp. 339–372.

[6] Abraham Charnes, William W Cooper, and Edwardo Rhodes. “Measuring

the efficiency of decision making units”. In: European journal of operational

research 2.6 (1978), pp. 429–444.

[7] Chih Cheng Chen. “Measuring internet users’ online activity: An application

of the superefficiency data envelopment analysis model”. In: The Information

Society 31.4 (2015), pp. 315–345.

[8] Chun-Der Chen, Qun Zhao, and Jin-Long Wang. “How livestreaming increases

product sales: role of trust transfer and elaboration likelihood model”. In:

Behaviour & Information Technology 41.3 (2022), pp. 558–573.

[9] Wen-Chih Chen and Wei-Jen Cho. “A procedure for large-scale DEA compu-

tations”. In: Computers & Operations Research 36.6 (2009), pp. 1813–1824.

[10] Wen-Chih Chen and Sheng-Yung Lai. “Determining radial efficiency with a

large data set by solving small-size linear programs”. In: Annals of Operations

Research 250 (2017), pp. 147–166.

65

BIBLIOGRAPHY

[11] Yao Chen and Agha Iqbal Ali. “Output–input ratio analysis and DEA fron-

tier”. In: European Journal of Operational Research 142.3 (2002), pp. 476–

479.

[12] Junfei Chu et al. “A general computational framework and a hybrid algorithm

for large-scale data envelopment analysis”. In: European Journal of Opera-

tional Research 316.2 (2024), pp. 639–650.

[13] William W Cooper, Lawrence M Seiford, Kaoru Tone, et al. Data envelopment

analysis: a comprehensive text with models, applications, references and DEA-

solver software. Vol. 2. Springer, 2007.

[14] William W Cooper, Lawrence M Seiford, and Joe Zhu. “Handbook on data

envelopment analysis”. In: (2011).

[15] Debora Di Caprio and Francisco J Santos-Arteaga. “A novel perception-based

DEA method to evaluate alternatives in uncertain online environments”. In:

Computers & Industrial Engineering 131 (2019), pp. 327–343.

[16] JH Dulá and FJ López. “DEA with streaming data”. In: Omega 41.1 (2013),

pp. 41–47.

[17] JH Dulá and RM Thrall. “A computational framework for accelerating DEA”.

In: Journal of Productivity Analysis 16 (2001), pp. 63–78.

[18] José H Dulá. “A geometrical approach for generalizing the production pos-

sibility set in DEA”. In: Journal of the Operational Research Society 60.11

(2009), pp. 1546–1555.

[19] José H Dulá. “An algorithm for data envelopment analysis”. In: INFORMS

Journal on Computing 23.2 (2011), pp. 284–296.

[20] José H Dulá, Richard V Helgason, and Betty L Hickman. “Preprocessing

schemes and a solution method for the convex hull problem in multidimen-

sional space”. In: Computer Science and Operations Research. Elsevier, 1992,

pp. 59–70.

[21] José H Dulá and Francisco J López. “Algorithms for the frame of a finitely

generated unbounded polyhedron”. In: INFORMS Journal on Computing 18.1

(2006), pp. 97–110.

[22] José H Dulá and Francisco J López. “Preprocessing dea”. In: Computers &

Operations Research 36.4 (2009), pp. 1204–1220.

[23] Laura Escobar and Kiumars Kaveh. “Convex polytopes, algebraic geometry,

and combinatorics”. In: Notices of the American Mathematical Society 67.8

(2020).

66

BIBLIOGRAPHY

[24] Rolf Färe, Shawna Grosskopf, and Gerald Whittaker. “Network dea”. In:Mod-

eling data irregularities and structural complexities in data envelopment anal-

ysis (2007), pp. 209–240.

[25] MA Jayaram and Hasan Fleyeh. “Convex hulls in image processing: a scoping

review”. In: American Journal of Intelligent Systems 6.2 (2016), pp. 48–58.

[26] Tao Jie. “Parallel processing of the Build Hull algorithm to address the large-

scale DEA problem”. In: Annals of Operations Research 295.1 (2020), pp. 453–

481.

[27] Dariush Khezrimotlagh et al. “Data envelopment analysis and big data”. In:

European Journal of Operational Research 274.3 (2019), pp. 1047–1054.

[28] Christer Kiselman. “A semigroup of operators in convexity theory”. In: Trans-

actions of the American Mathematical Society 354.5 (2002), pp. 2035–2053.

[29] H. W. Kuhn and A. W. Tucker. “Nonlinear programming”. In: Proceedings of

the Second Berkeley Symposium on Mathematical Statistics and Probability.

University of California Press, 1951, pp. 481–492.

[30] Sungmook Lim, Kwang Wuk Oh, and Joe Zhu. “Use of DEA cross-efficiency

evaluation in portfolio selection: An application to Korean stock market”. In:

European journal of operational research 236.1 (2014), pp. 361–368.

[31] Ali Mohtashami and Bahram Mohammadkhani Ghiasvand. “Z-ERM DEA in-

tegrated approach for evaluation of banks & financial institutes in stock ex-

change”. In: Expert Systems with Applications 147 (2020), p. 113218.

[32] Hiroshi Morita, Koichiro Hirokawa, and Joe Zhu. “A slack-based measure of

efficiency in context-dependent data envelopment analysis”. In: Omega 33.4

(2005), pp. 357–362.

[33] Muren, Lining Hao, and Qingxian An. “Efficiency evaluation of very large-

scale samples:: Data envelopment analysis with angle-index synthesis”. In:

Computers and Operations Research (2024).

[34] AP Nemirko and JH Dulá. “Machine learning algorithm based on convex hull

analysis”. In: Procedia Computer Science 186 (2021), pp. 381–386.

[35] AP Nemirko and JH Dulá. “Machine learning algorithm based on convex hull

analysis”. In: Procedia Computer Science 186 (2021), pp. 381–386.

[36] Ole B Olesen and Niels Christian Petersen. “Stochastic data envelopment anal-

ysis—A review”. In: European journal of operational research 251.1 (2016),

pp. 2–21.

[37] Eleanor G Rieffel and Wolfgang H Polak. Quantum computing: A gentle in-

troduction. MIT press, 2011.

67

BIBLIOGRAPHY

[38] Hossein Sartipizadeh and Tyrone L Vincent. “Computing the approximate

convex hull in high dimensions”. In: arXiv preprint arXiv:1603.04422 (2016).

[39] Raimund Seidel. “Convex hull computations”. In: Handbook of discrete and

computational geometry. Chapman and Hall/CRC, 2017, pp. 687–703.

[40] Min Tang et al. “GPU accelerated convex hull computation”. In: Computers

& Graphics 36.5 (2012), pp. 498–506.

[41] Kun Tian, Xin Zhao, and Stephen S-T Yau. “Convex hull analysis of evolu-

tionary and phylogenetic relationships between biological groups”. In: Journal

of theoretical biology 456 (2018), pp. 34–40.

[42] Kaoru Tone and Miki Tsutsui. “Network DEA: A slacks-based measure ap-

proach”. In: European journal of operational research 197.1 (2009), pp. 243–

252.

[43] Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete

and computational geometry. CRC press, 2017.

[44] Yi Wu et al. “Efficiency estimation of urban metabolism via Emergy, DEA of

time-series”. In: Ecological Indicators 85 (2018), pp. 276–284.

[45] Zhengwei Yang and Fernand S Cohen. “Image registration and object recogni-

tion using affine invariants and convex hulls”. In: IEEE Transactions on Image

Processing 8.7 (1999), pp. 934–946.

[46] Roozbeh Yousefzadeh. “Deep learning generalization and the convex hull of

training sets”. In: arXiv preprint arXiv:2101.09849 (2021).

[47] Xuyao Zhang and Dayu Xu. “Assessing the eco-efficiency of complex forestry

enterprises using LCA/time-series DEA methodology”. In: Ecological Indica-

tors 142 (2022), p. 109166.

[48] Qianwei Zhuang, Dariush Khezrimotlagh, and Hiroshi Morita. “Accelerating

large-scale DEA computation using sequential categorization and dynamic ref-

erence set selection”. In: INFOR: Information Systems and Operational Re-

search (2024).

68

