

Title	Towards Vision-based Arbitrary-view Gait Recognition
Author(s)	Alsherfawi Aljazaerly, Mohamad Ammar
Citation	大阪大学, 2025, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/101752
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、 https://www.library.osaka-u.ac.jp/thesis/#closed 大阪大学の博士論文について

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (Mohamad Ammar Alsherfawi Alajazaerly)	
Title	Towards Vision-based Arbitrary-view Gait Recognition (自由視点歩容映像認識に向けて)

Abstract of Thesis

Vision-based gait recognition is a growing domain in biometrics that utilizes walking patterns for non-intrusive identification and analysis. Cameras capture the unique gait patterns of individuals at a distance and from various viewing angles, making them suitable for surveillance and forensic applications. The applicability of gait recognition systems is limited by their robustness to diverse viewing conditions. To this end, multiple multi-view gait recognition datasets have been used to train vision deep neural networks for gait recognition. However, most of these works rely on fixed-view datasets and focus on identification.

Motivated by the need for more robust and adaptable solutions, this research explores innovative methodologies to enhance recognition accuracy. We divide the multi-view gait recognition problem into two sub-problems: sparse-view gait recognition and arbitrary-view gait recognition. Sparse-view gait recognition is the evaluation of gait recognition systems on limited view angles. In contrast, arbitrary-view gait recognition is the evaluation of gait recognition systems from any viewpoint. The sparse-view gait recognition problem is the most common evaluation scenario in literature, while the arbitrary-view gait recognition problem is the most challenging evaluation scenario.

For the sparse-view gait recognition problem, we propose effective sampling strategies for training deep neural networks, enabling the effective utilization of sparse-view datasets. Moreover, design a lightweight convolutional architecture optimized for efficient appearance-based gait verification. Moreover, we develop a light end-to-end trainable multi-task framework for model-based gait recognition that jointly estimates soft biometrics, hard biometrics, and 3D human models of walking subjects from sparse views. The light system is capable of real-time inference and can be deployed in online gait recognition systems.

For the arbitrary-view gait recognition problem, we introduce a novel framework that combines appearance-based and model-based approaches to estimate arbitrary view transformations for novel view synthesis. The synthesis allows for expanding sparse-view datasets and recovering performance on unavailable views. Our approach enhances silhouette generation quality and facilitates improved cross-view gait recognition, further extending the applicability of the system to real-world scenarios.

Together, these contributions advance the field by addressing limitations in current methodologies, improving recognition accuracy, and broadening the operational scope of gait recognition systems. This thesis lays a foundation for further exploration in multi-view and real-time biometric systems, enabling broader surveillance and forensic applications adoption.

論文審査の結果の要旨及び担当者

氏名 (<i>Mohamad Ammar ALSHERFAWI ALJAZAERLY</i>)		
	(職)	氏名
論文審査担当者	主査 教授	八木 康史
	副査 教授	中島 悠太
	副査 准教授	大倉 史生

論文審査の結果の要旨

歩容映像からの歩容認証は、遠隔から認証できる唯一の生体認証技術として重要な研究分野です。本人に知られることなく、遠隔や異なる向きから個人識別ができる一方で、人の歩く向きや場所を制御できないことから、歩行向きの違いに頑健なアルゴリズム開発の必要性がある。そのため、様々な歩行向きの歩容データセットを用いて、歩容認証のための深層学習モデルを訓練することで、歩行向きの違いに対する頑健性を高めてきた。しかし、既存の歩容データセットは有限の歩行向きのため、限界がある。

本論文は、このようなマルチビュー歩容認証を実現するための新たな方法論を探求するものである。論文では、マルチビュー歩容認証の問題を、スペースビュー歩容認証と任意ビュー歩容認証の2つの問題に分けて提案している。スペースビュー歩容認証では、深層学習モデルを訓練するための効果的なサンプリング戦略を提案し、スペースビューデータセットを効果的に活用できるようにしている。任意ビューの歩行認識問題では、アピアランスベースとモデルベースのアプローチを組み合わせて、新しいビュー合成のための任意ビュー変換を推定する新しいフレームワークを提案している。このアプローチは、シルエット生成の品質を向上させ、クロスビュー歩容認証の性能向上を実現している。

これらの貢献により、従来の手法の視野制限に対し、認識精度を向上させ、歩行認識システムの運用範囲を広げており、実利用場面の拡大が期待できる。

よって、博士（情報科学）の学位論文として価値のあるものと認める。