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Abstract

In this paper, we explore the knowledge transferability in recent vision-and-language mod-
els. Recently, transferring knowledge from pre-trained vision-and-language models to handle
a new task has become a common idea in solving tasks related to both visual and linguis-
tic data. However, the knowledge transfer strategy of current vision-and-language models is
not always effective. On the one hand, some knowledge may not be helpful for knowledge
transfer. On the other hand, harmful knowledge, such as social bias, may be involved in the
pre-trained models. For both cases, the knowledge transferability in vision-and-language mod-
els is limited, as these models may not surely solve new tasks with their knowledge and may
provide unfair performance to different social groups. To explore the limitations of the current
knowledge transfer strategy, analyze the reason, and further improve the models’ performance
in solving vision-and-language tasks, I choose the exploration of knowledge transferability in
vision-and-language tasks as my PhD topic and make an exhaustive analysis on this topic. First,
we explored the knowledge transferability between 12 vision-and-language tasks to verify that
some knowledge in one task may not always be helpful for other tasks. We then explore the
knowledge transferability from large-scale pre-trained models to a new detection task related
to emotions and artwork, and we confirm that large-scale pre-trained models may still not have
enough knowledge to solve a task in a specific field. At last, we explore how the harmful knowl-
edge in deep generative models, such as Stable Diffusion, can affect knowledge transferability.
Our experiments show a possible way to utilize knowledge from such deep generative models

if we can apply proper control to filter out harmful knowledge from these models.
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Chapter 1

Introduction

Vision-and-language models are considered a foundation for artificial general intelligence,
as they are designed to solve tasks that people usually face (problems with multiple modalities,
such as image and text) and do how people usually do: solve problems by seeing, reading,
and thinking. Such models are required to understand not only the two different modalities
(i.e., images and texts) but also the relations between them. Although training vision-and-
language models requires related image-and-text pairs, which means the data collection is more
expensive and laborious, many efforts have been made in collecting both training data and
evaluation data in related vision-and-language tasks such as visual question answering [2—6],
multi-modal verification [7-9], and referring expression [10-13]. Research on these tasks also
helps with some real-world challenges, such as blind people assistant [14, 15] and text-guided
object detector [16,17]. These tasks can hardly be solved by models that can only deal with one
modality.

Further breakthroughs have been made for solving more challenging tasks, such as zero-
shot image-text retrieval [18, 19] and image generation [20-22]. These models not only solve
existing problems but also create new applications, such as virtual try-On [23,24].

Recently, researchers have been seeking more and more data for training vision-and-language
models, as the recent trend shows that these models can solve more complex tasks if they are

trained on more data [18,25-27]. However, annotating and constructing training data for one
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certain task is expensive in both time and cost. To handle this, researchers have proposed many
methodologies and smarter training strategies (e.g., meta-learning [28-30] and self-supervised
pre-training [18,31-34]) to reduce the training data requirement. Among them, the knowledge
transferring strategy is the basic but surely effective one, which (1) first prepares a model that
has learned knowledge from other datasets and (2) transfers the model to a certain target task via
the fine-tuning or adapting process. This strategy is successful in solving vision-and-language
tasks, as the pre-trained models may have learned basic knowledge that may help the models
quickly adapt to the target tasks. Some recent work [18,19] even shows the possibility that, if a
model learns enough knowledge, it may be able to solve certain tasks even without the adapting
process.

However, the knowledge transferring strategy of current vision-and-language models is not
always effective. On the one hand, some knowledge may not be helpful to some tasks. A
pioneer work in vision-and-language tasks [35], as well as some recent works conducted on
vision-only tasks [36,37], have shown that tasks may not always help other tasks in getting a
better performance. Besides, the experiments show some limitations of the knowledge transfer,
as some tasks different from the training data may not get help from the pre-training. On the
other hand, many recent studies [38—40] on fairness also show that models have learned and can
even amplify social bias when solving target tasks, which brings risks to the further utilization
of models and limits the benefits of recent improvements fairly towards every person. In each
of the two cases, given the effort of collecting knowledge, vision-and-language models are still
facing challenges in real-world applications, as their performance on challenging tasks is still
unknown, and they may not benefit all humans fairly.

To explore the limitations of the current knowledge transfer strategy, analyze the reason, and
further improve the models’ performance in solving vision-and-language tasks, I mainly work
on three topics in my PhD research, including (1) knowledge transferability between different
vision-and-language tasks, (2) knowledge transferability toward tasks with specific knowledge,
and (3) the effect of harmful knowledge transfer toward future models.

In the rest of this thesis, I will introduce my work on each of the topics, as shown in Fig-

Graduate School of Information Science and Technology, Osaka University
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Figure 1.1: The overview of the thesis. We explore (D the knowledge transferability between
vision-and-language tasks, 2) knowledge transferability from pre-trained models to a challeng-
ing task: emotional stimuli detection, and ) how harmful knowledge (such as social bias) in

deep generative models affects future models.

ure 1.1. In Chapter 2, I will introduce the explorations of how vision-and-language tasks can
help each other. We conduct an exhaustive analysis based on hundreds of cross-experiments on
twelve vision-and-language tasks categorized into four groups. We further evaluate four factors
that may affect the knowledge transferability, which are the random seeds, the data scale, the
training stage, and the dataset similarity.

In Chapter 3, we explore how recent large pre-trained models (e.g., VIIBERT [31] and
CLIP [18]) can be directly applied to challenging tasks. We first propose a task and annotate
an evaluation dataset to detect the artwork regions that provoke certain emotions, and this task
requires both knowledge of artwork and emotions. We then evaluate eight baseline models on
this task, including a weakly-supervised model that we proposed for this task. Furthermore, we
explore how the recent deep generative model, Stable Diffusion [22], can understand emotional
stimuli.

In Chapter 4, we explore how social bias, a kind of harmful knowledge, can affect future
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models. Recent studies [38—40] show that deep generative models (e.g., Stable Diffusion [22])
can generate biased images without intention. However, the generated images are increasing on
the internet and may become training data for future models. To explore how deep generative
models will affect future models, we conduct simulation experiments of dataset contamination
by replacing the original image with the generated images. We then evaluate both the bias
changes and model performance changes to evaluate how the future models are affected by the
deep generative models. Furthermore, we make an analysis during the experiments and point
out some factors that may affect the bias changes of data contamination.

In conclusion, my PhD research focuses on knowledge transferability in vision-and-language

tasks in three different situations. The contributions could be summarized as follows.

1. We explore the knowledge transferability between twelve vision-and-language tasks. Our
experiments indicate that knowledge from different tasks can not always help each other
to improve performance. Task similarity, dataset size, pre-training stage, and other factors

will affect the transferability.

2. We explore the knowledge transferability from large pre-trained vision-and-language mod-
els (e.g., CLIP [18]) toward a challenging task: detecting regions in the artwork that evoke
human emotions. Our experiments show that it is still hard for these models to solve this
task, which indicates that although large pre-trained models are considered to learn plenty

of knowledge, they still have their limitations in challenging tasks.

3.  We explore the effect of harmful knowledge related to social bias in deep generative mod-
els toward future vision-and-language models. Our experiments confirm the existence of
social bias in deep generative models. However, our experiments also show that such
deep generative models do not only cause bias amplification but also other kinds of bias
changes, such as bias mitigation. Such results show the possibility that the knowledge in
deep generative models could be helpful to other vision-and-language tasks if we apply

proper control to filter out harmful knowledge from these models.
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Chapter 2

Knowledge Transferability in

Vision-and-Language Tasks

2.1 Overview

Is learning more knowledge always better for vision-and-language models? In this chapter, we
study knowledge transferability in multi-modal tasks. The current tendency in machine learning
is to assume that by joining multiple datasets from different tasks, their overall performance
improves. However, we show that not all the knowledge transfers well or has a positive impact
on related tasks, even when they share a common goal. We conduct an exhaustive analysis
based on hundreds of cross-experiments on 12 vision-and-language tasks categorized into 4
groups. While tasks in the same group are prone to improve each other, results show that this
is not always the case. In addition, other factors, such as dataset size or the pre-training stage,
may have a great impact on how well the knowledge is transferred.

The more data for learning, the better seems to be the current motto in machine learning,
as large language models get exceptional results on previously unseen tasks by being trained
on hundreds of millions of samples crawled from the Internet [41-44]. Following the path led

by natural language processing research, the computer vision community is gradually adopting
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Figure 2.1: We explore the transferability among 12 vision-and-language tasks in 4 different
groups: visual question answering (VQA), image retrieval (IR), referring expression (RE), and
multi-modal verification (MV). Here, we illustrate the transferability among 5 tasks. Different

tasks have different effects (positive or negative) on the other tasks.

Transformer-based models trained on web-scale datasets to achieve high performance in zero-
shot settings [18,45]. This is conducted by leveraging huge amounts of image-caption pairs
available online to let the models learn the correspondences between the language semantics
and the visual appearance of objects.

The problem with using hundreds of millions of samples for training is that the analysis,
maintenance, processing, and particularly understanding of the data is beyond human means.
With rising concerns about large models encoding and perpetuating harmful representations
towards historically discriminated groups [46,47], how data is handled acquires a crucial role.
Knowing which data is being used, why, and for what means is now more important than ever.

We try to answer whether more data is always better by systematically analyzing the trans-
ferability within vision-and-language, which is the subset of tasks that require both visual and

language understanding to be solved. For example, image captioning [48] or visual question

Graduate School of Information Science and Technology, Osaka University
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answering [3]. In the last decade, dozens of high-quality vision-and-language datasets were
collected, cleaned, and used as de facto benchmarks for human-like reasoning [49, 50]. Now,
some of these datasets created with diverse motivations and purposes are coming together to
train large vision-and-language models [31, 32].

While some tasks can improve their performance when a model is trained in a multi-dataset
and multi-task protocol [35], it is still unclear to what extent and whether all vision-and-
language tasks can benefit from this. Our goal is to shed light on this question and explore
the transferability of knowledge within vision-and-language tasks in a similar way as [36, 37]
do for vision-only datasets. Specifically, we conduct hundreds of cross-experiments in which
the performance of a target task trained under a dozen different initializations from different
pre-trained source tasks are compared.

Following [35], we divide vision-and-language tasks into 4 groups: visual question answer-
ing (VQA), image retrieval (IR), referring expression (RE), and multi-modal verification (MV),
and we study both intra- and inter-group transferability. As illustrated in Figure 2.1, our results
indicate that there is not yet a magic formula to consistently improve performance on all the
datasets by transferring knowledge between tasks. In other words, while some target tasks ben-
efit from a specific source task pre-training, others get harmed. Even within target tasks that
are similar in terms of datasets and goals, different behavior is observed when the same source
knowledge is transferred. Conversely, similar behaviors happen when different knowledge is
transferred. This leads to the conclusion that more data is not always necessarily better for
higher performance since it depends on the training dataset’s goal, nature, and size.

From the experiments, we acquired several insights about the transferability of knowledge
between vision-and-language models, which are summarized as follows:

* Tasks in the same group are more likely to help each other to improve performance.
However, negative results show that tasks with shared goals do not always contribute
positively to one another. This indicates that having a shared goal is favorable, but not
enough.

* In the inter-group experiments, we find that the RE tasks tend to have a positive effect on
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most of the tasks in other groups, while the MV group tends to receive a positive effect
from other groups.

* While the best improvement is often given when knowledge is transferred within the
same group, the worst results are concentrated on specific tasks, particularly GQA [6].
We study why and how this happens.

*  We detect that different random seeds strongly affect the numeric performance of each
task, sometimes even more than the transfer learning itself. This urges to report of vision-
and-language results on multiple random configurations.

*  We explore the effect of the data scale of the source task by down-sampling a large-
scale task. The results show increasing performance on all of the smaller-scale tasks,
which indicates that the dataset size is an important but not always a positive factor in
knowledge transferability.

*  We also explore how different stages of training affect the performance of the target tasks.
We discover that in some cases, transferring knowledge at the early stages of pre-training
can benefit the target task. When the model learns too much, the performance on the
target task drops.

* Finally, we analyze the similarity between the 12 tasks’ datasets and explore how the
similarity between these datasets relates to knowledge transferability. We discover that
tasks with different datasets can help each other, while tasks with similar datasets can
bring negative effects. These results show that the dataset similarity may not strongly

affect the vision-and-language tasks.

2.2 Related work

Knowledge transferability focuses on how a model that learns knowledge from source tasks can
adapt to a new task. Existing research on this topic includes transfer learning [45, 54], multi-
task learning [55, 56], and meta-learning [30, 57]. Ideally, the more knowledge a model learns,

the better performance it has. However, in practice, models are affected by several phenomena,
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Table 2.1: Dataset statistics for the 12 tasks used in our experiments. From the left, the first and
second columns are the number of samples in the train and validation (Train +Val) set and test
set, respectively. The third column is the metric to evaluate the corresponding task. The fourth
column is the name of the test set. The fifth column is the number of images in the train and
validation set. The last column is the source dataset from which the images of the corresponding

task come from.

Train + Val samples Test samples Evaluation metric Evaluation set Train + Val image Image source

VQA v2 [3] 542,104 447,793  Accuracy test-dev 98,861 MSCOCO [48]
VG QA [5] 1,294,255 5,000 Accuracy validation 92,147 MSCOCO [48] + YFCC100M [51]
GQA [6] 962,928 12,578  Accuracy test-dev 69,868 Visual Genome [5]
COCO IR [48] 487,600 1,000 Recall@5 test 99,435 MSCOCO [48]
Flickr30K IR [52] 140,485 1,000 Recall@5 test 29,077 Flickr30K [53]
NLVR2 [8] 86,373 6,967 Accuracy test-P 29,808 NLVR?2 [8]
SNLI-VE [9] 512,396 17,901  Accuracy test 95,522 Flickr30K [53]
Visual7w [10] 93,813 57,265 Accuracy test 16,415 MSCOCO [48]
GuessWhat [11] 100,398 23,785 Accuracy test 51,291 MSCOCO [48]
refCOCO [12] 96,221 10,752 Accuracy test 14,481 MSCOCO [48]
refCOCO+ [12] 95,852 10,615  Accuracy test 14,479 MSCOCO [48]
refCOCOg [13] 65,514 9,602  Accuracy test 17,903 MSCOCO [48]

such as catastrophic forgetting [58,59], that limit their performance. Our work is mainly related

to the following two topics:

2.2.1 Transferability analysis

Transferability analysis studies how well the knowledge from a source task benefits a target
task. Zamir et al. [36] proposed a method to analyze and utilize the transferability among 24
vision-only tasks on a single indoor scenes dataset. They pre-trained models in the source tasks,
transferred them to the target tasks, and calculated the transferability by evaluating how well
the model performed in the target task. Following this idea, Mensink et al. [37] studied the
transferability between 20 real-world vision-only tasks. They analyzed three main factors: the

image domain similarity between source and target tasks, the task type, and the data size.
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While studies in [36, 37] were conducted on vision-only tasks, we aim to explore multi-
modality transferability in the vision-and-language domain. The particularity of multi-modal
datasets is that knowledge needs to be transferred not only across tasks but also between modal-

ities, which adds an extra layer of difficulty to the problem.

2.2.2 Paradigm of solving vision-and-language tasks

The most popular paradigm of knowledge transfer is to pre-train a model on a large dataset and
transfer it to a downstream task [31,32,60-67]. For example, Lu et al. [31] proposed a BERT-
based vision-and-language model, and pre-trained it with three self-supervised tasks to learn
knowledge from Google’s Conceptual Captions dataset [68]. Following this work, many con-
tributions were made in applying better text modeling [65], better visual feature extraction [66],
and contrastive learning [18,32]. Besides, there has been some work analyzing the knowledge
transferability in specific tasks such as video question answering [69].

Recently, CLIP [18] has shown a remarkable capacity to understand both vision and lan-
guage data, by applying a specific image-text contrastive learning strategy. In this model, im-
ages and texts are processed by separate image encoder and text encoder, and the model is
trained to match the image feature and text feature that belong to one pair. The specific design
of CLIP makes it good for making zero-shot scenarios of vision-and-language tasks. Following
CLIP, many studies explore how to utilize CLIP to improve models’ performance in existing
vision-and-language tasks. Song et al. [70] explored the possibility of using the CLIP model
directly for the vision-and-language tasks in the scenario of few-shot learning. Tsimpoukelli
et al. [71] and Shen et al. [72] explored the possibility of utilizing CLIP’s visual encoder and
text encoder to extract more useful features for vision-and-language tasks. Li et al. [73] applied
CLIP’s image-text contrastive learning strategy to the pre-training process of large vision-and-
language models and explored how the training strategy benefits the pre-training model.

In general, our work is similar to CLIP in that we are also concerned about how downstream

tasks can benefit from the pre-training. However, CLIP is different from us as we primarily
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focus on how the related tasks can help each other, while CLIP focuses more on how to train a
model from an unrelated general dataset.

Our work is also close to multi-task vision-and-language learning [35, 74—76]. Nguyen et
al. [75] proposed a multi-task learning model with three vision-and-language tasks by choosing
the best layers for each task. In [35], a training strategy to prevent learning too much knowledge
from converged tasks is proposed, resulting in a model trained on 12 vision-and-language tasks.
Following this idea, Hu et al. [76] designed a unified transformer that can learn from either
vision or text data. This model enables multi-task learning among vision-only, text-only, and
vision-and-language tasks, and thus extends the knowledge that the vision-and-language model
can learn.

None of the above work conducts a formal analysis of how the different tasks affect each
other. Conversely, we thoroughly explore knowledge transferability among vision-and-language
tasks and uncover insights that may be useful when applying knowledge transfer methods to

vision-and-language.

2.2.3 Vision-and-language tasks

This chapter mainly explores knowledge transferability in four types of tasks: visual question
answering [3,5,6], image retrieval [48,52], referring expressions [10—13], and multi-modal ver-
ification [8,9]. There are many other types of vision-and-language tasks, such as image caption-
ing [48,77], text-to-image generation [20,22, 78], and visual language navigation [79, 80]. Fur-
thermore, there are also other interesting tasks related to other modalities, such as video [81-83],
and voice [84]. Evaluating more tasks could provide more insights about knowledge transfer-
ability, but we only focus on four types of tasks, following [35], that take both image and text

as input.
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2.3 Vision-and-language tasks in this work

Visual question answering (VQA). Given an image and a related question, VQA requires
a model to select an answer from several candidates. The setting of VQA aims to not only
explore the model’s capacity to understand both visual and linguistic data but also the capacity
of knowledge reasoning, which is also known as a *“visual Turing challenge" [85]. As the
example shown in Figure 2.1, when the VQA task gives a question “What’s the color of the
cow?" that relates to the given image, the model not only needs to understand both the image
and question but also needs to check the color of the cow to give a proper answer "brown" to
the given question. Beginning with the idea of the *“visual Turing challenge," Malinowski et
al.propose the classic “questing-to-image" formula and firstly release a small-scale (about 12K
question-answer pairs) but workable dataset DAQUAR [85] for both training and evaluation.
To solve the data-scale problem, Ren et al.generate question-answer pairs based on the COCO
caption dateset [86] to construct the dataset COCOQA [86], which enlarges the scale of training
data to about 82K question-answer pairs. To further make a reliable dataset, large annotation
projects [2, 3, 5] on visual question answering are launched and result in currently the most
widely used datasets VQA v2 [3] and Visual Genome QA (VG QA) [5].

When the standard visual question answering task shows the possibility for a model to an-
swer visual questions, many studies start to explore the visual question answering models. For
example, Hudson et al.propose a dataset GQA [6] that requires the model to focus more on
the relations between visual contents. There are also studies that try to use visual question
answering models to solve real-world challenges such as blind people caring [14].

In this chapter, our exploration involves the following three VQA tasks: VQA v2 [3], VG
QA [5], and GQA [6].

* VQA v2 is a classic visual question answering task towards solving multi-modal prob-
lems. It contains 204 K images from MSCOCO [48] with 614 K human-annotated natural
language question-answer (QA) pairs. In the evaluation process, models are required to

predict one answer from all answer candidates around the whole dataset, i.e., each ques-
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tion has thousands of answer candidates.

* Visual Genome QA (VG QA) has a similar target as VQA v2, but has a larger dataset
with 108K images, 1.7M QA pairs, as well as 5.4 M region descriptions and 2.3 M object
relationships, which provide rich evidence for the analysis of visual question answering.
Similar to VQA v2, this task requires the models to predict one answer from all answer
candidates around the whole dataset.

* GOQA is more concerned with the models’ capacity on visual reasoning. It contains a
dataset with 113/ images and 22M QA pairs, which leverage the scene graph informa-
tion from VG QA [5] to generate more challenging questions that need multiple reasoning
steps to arrive at the answer. During the evaluation process, GQA also requires the models

to predict one answer from all answer candidates around the whole dataset.

Image retrieval (IR). Given a caption, image retrieval requires the model to select the most
representative image from a pool of images. The target of image retrieval is challenging as
the images and sentences may be highly related to each other. Furthermore, image retrieval
is also challenging when the task scale increases, as the time complexity of calculating the
image-sentence matching score is about O(n?). As shown in Figure 2.1, given the text of “A
woman leads a cow.", the model should find the related image as shown in the top-left part. The
challenge of this task is, although the image and sentence in one pair clearly match each other,
many of the images and the sentences are very similar. The similarity between image-sentence
pairs makes it difficult to distinguish the correct image by the given sentence. In the area of
image retrieval, COCO IR [48] and Flickr30K IR [52] are the two of the most widely used
datasets, which are both for exploring models’ capacity to retrieve correct images. In recent
years, many valuable challenges have been proposed in the formula of image retrieval, such as
artwork retrieval [87] and food retrieval [88].

In this chapter, our exploration involves the following two IR tasks: COCO IR [48] and
Flickr30K IR [52].

« COCO IR in an image retrieval task based on the COCO caption dataset [48]. In this
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task, there are 123K images with 567K related human-annotated captions. To evalu-
ate models’ performance, COCO IR provides three accuracy scores with different recall
scales: the accuracy on top one retrieval (Recall@1), the accuracy on top five retrievals
(Recall@5), and the accuracy on top ten retrievals (Recall@10). In this chapter, we use
Recall@35 as the main metric for the evaluation.

* Flickr30K IR is an image retrieval task based on Flickr30K dataset [52]. It has 31K
images with 146/ human-annotated captions. Similar to COCO IR, Flickr30K IR uses
Recall@1, Recall@5, and Recall@10 to evaluate the models’ performance. In this chap-

ter, we also use Recall@5 as the main evaluation metric.

Referring expressions (RE). Referring expression concerns the relation between linguistic
expressions (i.e., texts) and visual contents (i.e., objects), which can be divided into two direc-
tions: 1) detecting visual contents based on the expressions, or 2) generating expressions by
the given visual contents. In this chapter, we mainly focus on the first direction of referring
expression. Given a text and an image, referring expressions require the model to detect the
corresponding region in the image described by the text. In contrast to image retrieval, refer-
ring expressions do not focus on retrieving one image from a group. Instead, it focuses on
detecting the related region from one image. Thus, compared to image retrieval, the referring
expression takes more concern about the specific objects in one image. As the example shown
in Figure 2.1, instead of the text about the whole image (e.g., “A woman leads a cow."), texts
such as “woman in white" and “brown cow" are given as the targets, which are related to certain
objects. Referring expression is used to be a classic natural language processing task that has
been studied since the 1970s [89]. From that time, researchers kept interested in how models
can work as humans to link the texts and the visual contents and added more challenges, such
as applying real-world images [12, 13], enriching object categories [11], and more difficulty in
visual reasoning [10].

In this chapter, our exploration involves the following RE tasks: Visual7w [10], GuessWhat
[11], and RefCOCO(+/g) [12,13].
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Visual7w is a referring expression task based on the Visual 7w dataset [10]. In this task,
there are 25 K images with 151 K region-text pairs. The evaluation method is the accuracy
of if a model predicts a region that has an Intersection over Union (IoU) score higher than
50%.

GuessWhat is a referring expression task based on the GuessWhat dataset [11]. In this
dataset, there are 66 K images with 137 K region-text pairs. The same as Visual7w, Guess-
What evaluates models’ performance by the object prediction accuracy with IoU> 50%.
RefCOCO(+/g) [12,13] are three similar referring expression tasks that leverage the im-
age and object information from the COCO dataset [48]. Among these tasks, refCOCO
and refCOCO+ are collected by ReferitGame [12], which is an interactive game between
two players as one player expresses an object and the other player points it out. The
refCOCO+ is more challenging than refCOCO as it restricts the player to not using loca-
tion words during the game. While refCOCOg [13] collects its data in a non-interactive
setting, which asks annotators to express the given object directly. In general, refCOCO
has 19K images with 131K expressions, refCOCO+ has 19K images with 130K expres-
sions, and refCOCOg has 25K images with 90K expressions. The same as the above
referring expression tasks, refCOCO(+/g) evaluates models’ performance by the object

prediction accuracy with IoU> 50%.

Multi-modal verification (MV). Given one or more images and a referred text, multi-modal

verification requires the model to decide whether the text is correct or not. Different from the

rest of the three groups of tasks, multi-modal verification tasks usually have a very limited

number of answers, e.g., NLVR2 [8] only has two candidate answers, and SNLI-VE [9] only

has three candidate answers. However, multi-modal verification is challenging in the view

that it requires more visual reasoning capacity to verify if the text and image conflict. As the

example shown in Figure 2.1, multi-modal verification requires the model to judge if “a woman

leads a horse" in the image. The verification is considered challenging as understanding “a

woman" and “a horse" cannot directly lead to the correct answer. The idea of recent multi-
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modal verification studies, such as CLEVR [90] and [7], are motivated by the progress of visual
question answering, which shows the evidence that deep learning models are capable of making
knowledge reasoning. The results of these two tasks are encouraging and further motivating the
tasks of NLVR2 [8] and SNLI-VE [9], which are currently the most widely studied multi-modal
verification tasks.

In this chapter, our exploration involves the following two MV tasks: NLVR2 [8] and SNLI-
VE [9].

* NLVR2 [8] is a multi-modal verification task that requires models to verify if one sen-
tence is true in both two images, i.e., the task takes one text and two images as the input
and requires the models to give a binary answer (true or false). This specific design is
to verify if the model can make reasoning across not only the modality but also different
data in the same modality. The dataset of this task contains 103 K" real-world images with
93 K human-annotated texts. The evaluation process involves calculating the accuracy of
the models’ binary predictions.

* SNLI-VE [9] is another multi-modal verification task to verify if a hypothesis (text) is ac-
curate (entailment), partly accurate (neutral), or wrong (contradiction) to a given premise
(image). The dataset of this task contains 31/ images with 548 K texts, and the evalua-

tion metric is the accuracy of the triplet classification.

2.4 Methodology

We study how the knowledge from a source task affects a target task. Formally, we define the
problem as follows:

Given a set 7 of vision-and-language tasks, we pick out a source task s € T and a target
task ¢ € 7. We train a direct model m, by training a model m with the target task ¢t. We also
train a one-hop model ms_,; by pre-training m with s, and then with £. As shown in Figure 2.2,
the performances of a pair of models (m;, ms_,;) are compared for all possible combinations

of s and ¢t in 7. Tasks are categorized into groups according to their main goal, so tasks with
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Figure 2.2: Analysis of transferability relationships between tasks. In Step 1, we train 12
vision-and-language tasks independently. In Step 2, we use the models from Step 1 and fine-
tune them on each of the other tasks. In Step 3, we form a transferability relation table for the
12 vision-and-language tasks in four groups: visual question answering (VQA), image retrieval

(IR), multi-modal verification (MV), and referring expressions (RE).

similar goals are assigned to the same group.

2.4.1 Tasks selection

As introduced in Section 2.3, we study 12 vision-and-language tasks categorized into four
groups. The feature of each task is listed in Table 2.1. Please note that the number of sam-

ples and images in the Train + Val set is the number after the cleaning in Section 2.5.

2.4.2 Model

We follow the model structure in [35], consisting of a unified multi-modal encoder based on
VIIBERT [31] with 12 different task-specific heads for corresponding tasks. The training goal
is:

arg min L (4g, (¢, (V2: 5t))), (2.1)

eVt

where V; and S; are the image and text in the dataset of task ¢, and 6, and 6, are the parameters

of the encoder ¢ and the task ¢’s head v, respectively. L, is the loss of the task ¢.

Graduate School of Information Science and Technology, Osaka University



Chapter 2 Knowledge Transferability in Vision-and-Language Tasks 18

Table 2.2: Results of direct model m; in the 12 tasks.

10 different random seeds | avg =+ std max min

VQA v2 70.3 £ 0.56 70.71 69.18

VG QA (Val) 33.5+0.48 34.17 32.86

GQA 58.1 £0.53 58.65 57.10

COCO IR 90.4 £0.77 91.02 89.12

Flickr30K IR 86.5 £ 0.87 87.24 84.80

NLVR2 73.4+0.50 74.11 72.34

Task
SNLI-VE 75.3+£0.16 75.64 75.04
Visual 7w 80.4 +0.19 80.63 80.04

GuessWhat 62.3 £0.17 62.68 62.14

refCOCO 77.7£0.30 78.15 77.13

refCOCO+ 69.1 £0.57 69.68 67.81

refCOCOg 71.6 £ 0.63 72.50 70.50

2.4.3 Workflow

The workflow, as shown in Figure 2.2, is split into three steps: 1) task-specific pre-training, 2)
transfer learning, and 3) collection of scores.

Task-specific pre-training. We pre-train each of the 12 tasks independently, i.e., each task s € T
is trained by its corresponding dataset and does not see any dataset from other tasks. We collect
the trained models mg from each task as the pre-trained models, which learned task-specific
knowledge from the source task. We also evaluate each direct model m; as baselines for non-
transferred knowledge.

Transfer learning. We fine-tune, again, each pre-trained model m,. Given m, and the target
task ¢, we get a final model m,_,; by fine-tuning m with all of the training samples in task ¢.
Collection of scores. We categorize tasks into groups and evaluate all direct models m; and

one-hop models m_,, for all possible task pairs. Results are discussed in Section 2.5.2.
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2.5 Experiments on ViIBERT

Datasets. We use the same set of datasets as [35], including the training and test sets of the 12
tasks. The overlapping samples from the different tasks were removed from the training sets to
prevent leaking data from the test set into the training set. Note that the original test sets were
not changed during this cleaning process. For training and validation sets, VQA v2, VG QA,
COCO IR, and NLVR2 have about 100,000 images; GQA and GuessWhat have about 60,000
images; Flickr30K IR and SNLI-VE have about 30,000 images; and refCOCO, refCOCO+.
refCOCOg and Visual7w have about 15,000 images.

Experimental settings. We follow most of the settings in [35]. We modify the batch size to
1/4 to fit the training in our server.! Pre-trained models m, are trained for 6 epochs, which is
enough for convergence. To ensure models m_,; learn task-specific knowledge well, we use the
models with the best performance in the validation set, except for VG QA, which is evaluated
on the validation set, and thus the model at the 6th epoch is used. All of the models are seen
converged in their corresponding tasks. We train every model with three different random seeds
and report results by their mean and standard deviation.

Evaluation metrics. We use accuracy for tasks in the VQA group and the MV group. For the IR
group, we use Recall@5. For the RE group, we follow [12,13,35] and compute the score based

on the intersection over union (IOU) between the ground truth and the prediction.

2.5.1 Random seed

Preliminary results showed large variations in performance when models are trained under dif-
ferent random initializations, as also shown in [91]. Thus, before proceeding with the trans-
ferability experiments, we first explore the instability of vision-and-language tasks and their
sensibility to random seeds. We train each direct model, m; for all ¢t € T, 10 times with differ-
ent random seeds. The results are shown in Figure 2.3. Although most of the tasks present a gap

larger than 1% between the maximum and the minimum score, most of the scores in each task

"'We use a single server with 4 16GB NVIDIA P100 GPUs.
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Figure 2.3: Box plots of the 12 tasks trained with 10 random seeds showing a big gap between

the best and the worst scores.

are concentrated in a small region. More details are shown in the box plots in Table 2.2. Nine
tasks have a gap larger than 1%. Among them, Flickr30K IR is the one that fluctuates the most,
with a gap of 2.44% and a standard deviation of 0.87. This reveals that experiments on a single
run may not be reliable enough to extract conclusions about model performance. In general, we
found that the random seed has a big impact on the evaluation of vision-and-language tasks. To

ensure our results are reliable, we run each experiment three times.

2.5.2 Results by group

For the transferability experiments, we collected results from 12 direct models m, and 132
one-hop models m,_,; and present them herein in Tables 2.3. We used the results of m; (Row
“direct model m,”) as the baseline. We relied on a color scheme to illustrate the comparative
performance of the transferred models mg_,;: deep green for the best scores of each column,
i.e., the best results of each task in transfer learning, and deep orange for the worst results.
For the rest of the entries of the tables, light green and light orange indicated better and worse

performance than the baseline, i.e., positive or negative transfer of the knowledge.

Visual question answering group. Columns 1-3 (VQA v2, VG QA (Val), and GQA) in Table
2.3 show the results in the VQA group. VQA v2 and GQA benefit from each other, but they
do not improve the VG QA performance. In fact, GQA has the worst effect on VG QA among
the 12 tasks. VG QA achieves its best performance with the help of refCOCOg, indicating
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that even though it is commonly seen as a VQA task, it may be closer to the RE group. When
tasks in the VQA group are the target tasks, the source tasks have a consistent effect on each of
them, e.g., COCO IR gives the best effect to VQA v2, while giving a negative effect to both VG
QA and GQA. In contrast, GuessWhat gives the worst effect on GQA, while giving a positive
effect on VQA v2. More specifically, VQA v2 and VG QA show contrary behavior: VQA
v2 obtains a positive effect from all of the tasks outside the VQA group, while only refCOCO
and refCOCO+ give VG QA a positive effect. This indicates that although VQA, VG QA, and
GQA have the same type of training goal, their underlying knowledge may be very different,
and thus receive different contributions from the same source task. Finally, even though tasks
in the VQA group are the largest in terms of training samples when they act as the source task,
they tend to have a negative impact on the other group tasks (Row 1-3 in Tables 2.3), indicating

that large training sets are not a guarantee for a better transfer.

Image retrieval group. Columns 4-5 (COCO IR and Flickr30K IR) in Table 2.3 summarize
the performance of the IR group. Both tasks in this group help each other. Also, as source
tasks, they show similar behavior, with a tendency to improve other tasks. However, the results
in this group show the largest variance. On one hand, as target tasks, only the VQA group
has a consistently negative impact on Flickr30K IR. On the other hand, the standard deviation
scores in COCO IR and Flicker30K IR are usually larger than in other groups. The standard
deviation scores of Mcoco R Flickr30K IR @Nd MEck30k IRscoco 1r tend to be larger than tasks in

other groups.

Multi-modal verification group. Columns 6—7 (NLVR2 and SNLI-VE) in Table 2.3 list the
performance of the MV group. Except for GQA, most of the source tasks have a positive effect
on the two MV tasks. NLVR2 and SNLI-VE also improve each other, but the effect is not
larger than the ones from COCO IR and refCOCO+. This may be in part because NLVR2 and
SNLI-VE are considerably different: NLVR2 is a binary classification task that verifies if a

comment describes a fact among multiple images, while SNLI-VE is a ternary classification
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Table 2.3: Knowledge transferability results per group. Results of 170w -5 cotumn (TOWS 2—
13, green or red color) are compared with the direct model m copymyn (row 1, blue color) and
assigned green (when the average score is higher than m oymn, i-e., positive transfer) or red
(when the average score is lower than m. ymn, i.€., negative transfer). Deep green/red shows

the best/worst score in each column.

Target Task ¢

avg + std

VQA v2 VG QA (Val) GQA COCOIR | Flickr30K IR NLVR2 SNLI-VE Visual7w | GuessWhat | refCOCO | refCOCO+ | refCOCOg
direct model m, 69.6 £ 0.71 33.7£0.74 | 57.5+0.59 | 89.2 +£0.16 853 +£048 | 728 +0.48 | 753 +£0.11 80.1 £0.13 | 62.3 £0.08 | 77.3 £ 0.19 | 68.5£0.72 70.8 £0.35
VQA v2 - 335+055 582+021|89.0+143 84.8+£1.04|73.7+0.60 754+023 7954051 60.8+0.62 76.8+062 67.7+1.12 70.5+0.12
VG QA 70.0 £0.33 - 57.54+0.57 | 90.0 £ 0.11 843 £0.77 | 72.1 £0.69 75.7+0.05 79.9+0.91 60.9+0.66 76.9+0.57 68.0+0.81 70.8+0.33
GQA 69.7+0.16  33.0%0.76 - 889+ 1.17 829+£146|721+0.76 753+0.67 79.0+£0.12 60.7+026 76.7+032 6724022 70.040.42
COCOIR |[70.5+£0.56 33.6+0.52 57.4+049 - 86.8+£1.56|753+£024 76.1+£0.11 79.5+034 62.0+036 77.4+£059 69.4+033 72.0+025
Flickr30K IR | 70.3 £0.32 334 +0.69 57.6 £ 0.35 | 90.1 £ 1.30 -| 74.0£0.65 758+0.22 79.8+0.17 623 +£0.16 77.3+£0.18 68.7+0.22 71.3+£0.23
Source NLVR2 69.9+0.34 3341035 575+043|89.7+1.16 84.8+1.09 - 7594006 7944027 620+0.17 77.1 040 6844040 70.9+0.10
task s SNLI-VE 69.9 £0.68 333+051 57.3£032]89.2+£0.51 85.5 £ 1.80 | 73.9 £0.24 - 792+£060 612+040 76.8+043 67.2+£041 704 £0.65
Visual7w | 70.2£0.25 33.5+£094 57.7+£0.57 | 89.8 4045 85.6+1.06|73.9+0.71 76.1 +0.26 - 63.04£036 78.1+0.39 69.4+006 72.8+0.30
GuessWhat | 69.7 & 0.61 335+0.06 56.9+0.33|89.5+045 851+2.09|732+031 7594034 80.8+0.05 - 7814013 69.1£0.13 72.2+0.06
refCOCO | 702+£0.22  33.74+029 574021 |90.1+083 854+1.33|73.7+028 76.0+0.33 80.3+£0.03 62.6%0.29 - 69.5+£023 724+029
refCOCO+ | 70.1 £0.44 333 4+0.05 57.2+041 | 88.8+1.93 849+227 | 744+022 76.1+0.14 804 +£0.17 6254029 77.8+0.35 - 73.0£0.19

refCOCOg | 69.7+£0.30 34.0+£046 5744107 | 89.1+2.19 849+124|741+0.59 757+020 8054035 628+0.15 783 +£0.14 69.7+0.35

task that verifies how well a comment describes an image. Another reason may be because
of the data distributions: NLVR2’s images are from ILSVRC 2014 [92], while SNLI-VE’s are
from Flickr30K [53].

Referring expressions group. Columns 8—12 (Visual7w, GuessWhat, refCOCO, refCOCO+,
and refCOCOg) in Table 2.3 lists the scores of the RE group. All the tasks in this group benefit
from transferred knowledge in the same group. The improvements within this group, especially
among refCOCO, refCOCO+, and refCOCOg, are larger than those from tasks in other groups.

However, all tasks in the VQA and the MV groups have a negative effect on the RE group
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(except mnrvro—refcocog). RE tasks also receive the worst effect from the GQA task. Tasks
in this group usually have a positive outcome on the tasks in other groups, according to rows
8—12 in Table 2.3. This may be because of the nature of the group: RE tasks aim to find image

regions given a text, which can be helpful to VQA, IR, and MV.

2.5.3 Main observations

Observation 1. Intra-group analysis: tasks in the same group tend to improve each other,
but not always. Tasks in the IR, MV, and RE groups help other tasks in the same group
to get better performance. However, tasks in the VQA group show different behavior:
only half of the intra-class relationships are positive. This indicates that: 1) the defined
task groups based on shared goals may be superficial and not a good representation of the
internal type of knowledge in each task, and 2) having a shared goal may be favorable,

but it is not enough for successfully transferring knowledge between tasks.

Observation 2. Inter-group analysis: some groups are more prone to help, while others
do disservice. For example, while tasks in the RE group usually give a positive effect
on most of the tasks that are in other groups, tasks in the VQA group produce no benefit
to the tasks in the RE group, and only one task in the MV group (NLVR2) give slightly
positive effect to a task in the RE group (refCOCOg). This indicates that the knowledge
in certain groups, such as RE, may be more general, and thus easier to transfer, than

task-specific knowledge from other, e.g., VQA, groups.

Observation 3. Benefits in knowledge transferability are not reciprocal. For example,
VQA v2 receives a positive effect from all of the other 11 tasks, but it contributes neg-
atively to most of these tasks, except GQA, NLVR2, and SNLI-VE. The same happens
between the MV and RE groups. RE consistently improves the MV group, including the
best effect on SNLI-VE from refCOCO+. However, the MV group harms all the tasks in

the RE group except mnivr2—reicocog- This is consistent with the observations in [35].
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Figure 2.4: Accuracy of seven tasks pre-trained with a smaller set of GQA (reduced GQA), the
full set of GQA (full GQA), and without pre-training (direct).

Observation 4. The best effect tends to come within the group, while the worst effect is
usually from GQA. The best results for each task usually are from a source task in the
same group, which reinforces the idea that tasks with the same target tend to benefit each
other more (Observation 1). The worst results, however, are usually caused by GQA.
Many reasons may cause this, such as the difference in the data scale between GQA
and the rest of the tasks, or the knowledge for solving GQA may be too specific. To
better understand the phenomena, we conduct additional experiments in Section 2.5.4

and Section 2.5.5.

2.5.4 Data scale

Next, we investigate the effect of the data scale on the transferability of knowledge. As dis-
cussed in Section 2.5.3, GQA pre-training tends to harm many of the rest tasks. We speculate
that one of the reasons may be because GQA has a much larger training set than the other tasks.

To investigate this hypothesis, we use GQA as the source task and downsample its training set
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Figure 2.5: Accuracy on refCOCO (M) and NLVR?2 (e) fine-tuned with mgoa after different

epochs of pre-training. As a reference, the accuracy of GQA (4) is also shown.

from 962, 928 to 96, 221, which is close to the scale of seven tasks: refCOCO, refCOCO+,
refCOCOg, Visual7W, GuessWhat, NLVR2, and Flickr30K IR. We pre-train models with the
reduced and full GQA training sets. The full GQA model and the reduced GQA model are then
trained again on the seven tasks above in the same way as in Section 2.4.3. We also compare
them against their direct models.

Figure 2.4 shows the accuracy of these seven tasks pre-trained on the reduced GQA, the full
GQA, and the direct models. All models pre-trained on the reduced GQA get better performance
than those pre-trained on the full GQA, which indicates that the data scale is a crucial factor
in the transferability. When comparing the models derived from the reduced GQA with the
direct models, the reduced models improve the performance for four of seven tasks (NLVR2,
refCOCO, refCOCO+, and refCOCOg), showing that GQA can also contribute positively as a
source task. The results show some similar phenomena to [93], as the large data scale may not

necessarily generate better results.
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2.5.5 Training epoch

We finally explore the relationship between the number of training epochs of the source task
and the success of the knowledge transferred in the target task. We conjecture that, for a target
task that receives a negative effect from a source task, the more a model learns from the source
task, the worse the model performs on the target task. To verify this, we use GQA as the source
task, which tends to give the most negative effect to the other tasks. Furthermore, we choose
refCOCO and NLVR2 as the target tasks, which get the worst performance from GQA. We get
six pre-trained mgq,, models, where the number of epochs is e = {1,--- ,6}. The higher the
epoch, the more knowledge from GQA mgq, learns. We transfer these models to refCOCO and
NLVR2.

The results are illustrated in Figure 2.5. The blue B and red e are the scores for refCOCO
and NLVR2, respectively, which for visibility are shown as the difference with respect to the
direct model, i.e.a = Accé%A _,+ — Accgga, where ACC(G%A _,; 1s the accuracy of model pre-
trained with GQA for e epochs and fine-tuned with task ¢; Accé% A_s; 18 the model that has no
training on GQA, i.e.the direct model; and ¢ is either refCOCO and NLVR2. For comparison,
we also show the GQA accuracy (Acc(G% A green 4). Both tasks get lower scores than the direct
model when using a model trained on GQA for more than four epochs. In the case of refCOCO,
it gets an inferior performance in all training epochs. In contrast, NLVR?2 is improved by more

than 1% from GQA pre-trained for two epochs, showing that the knowledge from GQA does

not always have a negative effect.

2.5.6 Data domain similarity

Data domain distance We explore how the similarity of the data domain affects the transferabil-
ity between vision-and-language tasks. On the one hand, some tasks take images from the same
image dataset, e.g., images in VQA 2.0, COCO IR, Visual7W, and GuessWhat are all from
the MSCOCO [94] dataset. On the other hand, some tasks (e.g., refCOCO, refCOCO+, and

refCOCOg) have similar text data. Intuitively, two tasks with similar data domains may face
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Figure 2.6: Domain distance between 12 vision-and-language tasks. We calculate the distances
of the vision-and-language feature (i.e., fused feature), text feature, and visual feature. Each
of the blocks shows the domain distance of D, —s column- Please note that the distance of
Diow = column a0d Dyowy -5 column May not be the same, as 2.2 is finding the closest source task

sample for each target task sample.

smaller domain shifts when fine-tuning and thus tend to have a higher probability of helping

each other. To explore this, we randomly take 1,000 samples from the training set of each task,
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use VIiIBERT [31] to extract the features from the samples, and calculate the domain distance

as Mensink et al. [37] did:
1 .
D(tls) = g >_(min d(f... f..)). (2.2)

where d() is the Euclidean distance, z, and z; are the samples from source task s and ¢, respec-
tively. Please note that VIIBERT [31] is not pre-trained on any of the 12 tasks.

In contrast to the analysis of vision-only tasks in [37], vision-and-language tasks concerning
the visual and text data, as well as the hidden relation between both data. Thus, our domain
distance exploration involves the analysis of the vision feature, text feature, and fused vision-
and-language feature, respectively. The results are illustrated in Figure 2.6.

In general, on the one hand, some tasks are close to other tasks from the data domain view,
e.g., refCOCO, refCOCO+, and refCOCOg are closed the each other in all three figures. The
closed distance of these three tasks is because of the same image origination and the similar text
collection process. Since refCOCO, refCOCO+, and refCOCQOg are in the same data scale, the
closed distance of the data domain becomes one of the factors that these three tasks can help
each the get better performance.

Figure 2.6¢ illustrates that Flickr30K IR has a larger distance as the target task compared
with other tasks. This indicates that the data from other tasks are more different from Flickr30K
IR, and the transfer learning toward Flickr30K IR may bring fewer benefits. As shown in
Columns 4-5 in Table 2.3, GuessWhat and NLVR2, the largest and the second largest distance
toward Flickr30K IR, while having the same data scale as Flickr30K IR, show the negative
effect on Flickr30K IR.

However, the domain distance is not as strong a decisive factor as the data scale. Figure
2.6¢ illustrates that GQA is not much different from most of the other tasks. Instead, GQA has
the top-5 closest data domain to NLVR2, Visual7W, GuessWhat, refCOCO, refCOCO+, and
refCOCOg. However, GQA causes the worst results for these tasks. This fact indicates that the
data scale may have a more decisive effect on knowledge transferability.

Appearance distribution Furthermore, we explore the data domain distribution in the embedding
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feature space, namely, the appearance distribution of all 12 tasks. The analysis is based on the
sample feature in the last experiments, i.e., we randomly take 1, 000 samples from the training
set of each task and use ViIBERT [31] to extract the features from the samples. To make a better
visualization of the distribution, we use t-SNE to plot the samples into 2D figures, as shown in
Figures 2.7 and 2.8.

Figure 2.7 illustrates the data appearance distribution of all 12 tasks. We find that in many
cases, a sample from one task may be closer to the samples in another task, even though the
two tasks have different data origination refer to Table 2.1 (e.g., although NLVR2 (the brown
squares) and VQA 2.0 (the blue dots) have different data origination, their samples are closed
to each other). This indicates that the 12 tasks have close appearance distribution, and they are
very similar to each other.

The similarity of data distribution not only appears in the vision-and-language feature (Fig-
ure 2.7c) but also in the vision-only feature (Figure 2.7a) and text-only feature (Figure 2.7b).
This indicates that the 12 tasks are similar to each other from both the image and text domains.

Figure 2.8 further shows the appearance distribution of vision-and-language features for
each task group. On the one hand, tasks in the VQA group and RE group have similar ap-
pearance distribution to other tasks in the same group, which indicates that tasks in these task
groups are similar from the data domain view. On the other hand, tasks in the IR group and
MV group have different appearance distribution from each other tasks, which indicate that
the data of these tasks are different from each other and the knowledge from one task may not
be much help to the other task. However, we can still observe from Table 2.3 that COCO IR
and Flickr30K IR help each other to get the best performance, and NLVR2 and SNLI-VE help
each other to improve. These results show that task similarity may be more decisive than data
domain similarity in improving the model performance, i.e., task similarity affects knowledge

transferability more than data domain similarity.
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2.5.7 Visual results

Figure 2.9 shows predictions on refCOCO with the direct model M fcoco, one-hop model
MrefCOCO+—refcOCO, ONe-hop model mgoa—srefcoco, and the ground truth. The IOU between the
prediction and the ground truth is shown under the respective image. Whereas refCOCO+ helps
to find more accurate regions and to obtain higher IOU, GQA misleads the task to smaller or
even wrong regions. For example, in the image in the middle, although the direct model finds
the region with the right person, refCOCO+ helps to find a more accurate region, but GQA
predicts the wrong person. The same behavior can be observed in the last two images.

Figure 2.10 shows examples of the GQA validation set with the direct model mgg 4, one-hop
model mvyqa v2—Goa, and one-hop model Mmgyesswhat—Goa. We show the confidence of prediction
for the ground truth class (Conf. of GT) under each example. VQA v2 gives the most positive
effect to GQA, while GuessWhat gives the most negative effect. For example, in the second and
third images from the left, GuessWhat induces wrong answers, whereas, in the last two images,
VQA v2 helps to find the correct answers and improve the prediction with respect to the direct

model.

2.6 Experiments on ViLT

In this section, we introduce our experiments on ViLT [33], which is also widely applied
to multiple vision-and-language tasks (VQA v2 [3], COCO IR [48], Flickr30K IR [52], and
NLVR?2 [8]). To explore more tasks, we follow the instructions of ViLT and expand the model
to support VG QA [5] and SNLI-VE [9]. Since ViLT directly uses the whole image (instead of
the regions of the image) as the visual input, this model is not able to do referring expressions
tasks. In general, we conduct a knowledge transferability exploration based on VILT with six

different vision-and-language tasks in three types:
* VQA: VQA v2 [3] and VG QA [5]

e JR: COCO IR [48] and Flickr30K IR [52]
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Table 2.4: Knowledge transferability results in ViLT model. Results of m,.0u — cotumn (tow 2-7,
green or red color) are compared with the direct model m .pjym»n (row 1, blue color) and assigned
green (when the average score is higher than m.m,) Or red (when the average score is lower

than mcoumn)- Deep green/red shows the best/worst score in each column.

Target task ¢
ViLT
VQA v2 | VG QA (Val) | COCO IR | Flickr30K IR | NLVR2 | SNLI-VE

direct model m, 71.32 35.10 93.10 88.80 76.55 72.58
VQA v2 - 35.20 90.60 78.82 73.29 73.06
VG QA 69.48 - 89.24 76.26 70.34 72.29
Source | COCO IR 71.10 34.99 - 79.74 72.31 72.94
task s | Flickr30K IR ~ 69.93 34.79 89.14 - 73.59 73.28
NLVR2 70.87 34.66 89.46 78.20 - 72.67

SNLI-VE 65.97 33.25 85.46 74.60 63.46 -

* MV: NLVR?2 [8] and SNLI-VE [9]

We follow the same experimental setting of ViLT ? to fine-tune the model on each task and
make the experiments with the same methodology in Section 2.4, i.e., train direct models m;
and one-hop models m,_,;, then compare their performance. We also use the same evaluation

data and metrics as listed in Table 2.1.

2.6.1 Main observations

The experimental results are listed in Table 2.4. We have the following observations from these

results:

Observation 1. Most of the tasks tend to get bad effects from other tasks. Compared to
the performance of direct model m;, the performance of one-hop models mg _, ; in VQA

v2, COCO IR, Flickr30K, and NLVR2 show significant decreases (more than 3%). These

Zhttps://paperswithcode.com/method/vilt
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decreases may related to the catastrophic forgetting since ViLT is trained on more datasets
than ViIBERT. The result may indicate that catastrophic forgetting is one of the factors to

affect knowledge transferability.

Observation 2. VG QA and SNLI-VE get help from some tasks to get better perfor-
mance. These results indicate that the knowledge from other vision-and-language tasks
still may benefit models in solving some target tasks, even though catastrophic forgetting

mitigates benefits.

Observation 3. SNLI-VE tends to get benefits from other tasks while having bad ef-
fects on them. This observation is similar to ViIBERT’s results in Observation 3 in
section 2.5.3, which indicates that the benefits of knowledge transferability are not recip-
rocal. The phenomenon may also indicate that the knowledge in SNLI-VE is different

from other tasks, but other tasks may involve the knowledge for solving SNLI-VE.

2.7 Limitations and future work

More complex transfer scenarios. In this chapter, we mainly focus on one-to-one transfer learn-
ing as it is the most widely used strategy in knowledge transferability. In our future work, we
would like to make comprehensive explorations on other knowledge transfer strategies (e.g.,
more-to-more knowledge transfer scenario) in our future work.

Optimal transfer point. From our experiments, we observe that although GQA usually brings
negative effects to other tasks, modifying the training setting of GQA during the pre-training
step (e.g., decreasing the data scale of the GQA dataset or the training epochs of GQA) could
make GQA a positive transfer to other tasks. These results may indicate that there is an optimal
transfer point of knowledge transfer when the model learns just enough knowledge from the
source task s but does not overfit. However, finding the optimal transfer point is a challenging
task as the verification of the performance of model m; _, ; needs another round of training and

evaluation. We consider finding the optimal transfer point as one of our future work.
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Explorations on large-scale pre-training models. Large-scale pre-training models, such as CLIP
and BLIP-2, may contain rich and valuable knowledge that can bring more benefits to vision-
and-language tasks. We are aware that it is important to involve the exploration based on these
large-scale pre-training models. Actually, recent studies show that studies [95,96] show that the
knowledge from large-scale datasets is sensitive and easily suffers from catastrophic forgetting
during the finetuning process. Since we focus more on the knowledge transferability between
vision-and-language tasks, we would like to set the exploration of knowledge transferability

from pre-text tasks or noisy but large-scale datasets as our future work.

2.8 Summary

We studied the knowledge transferability among 12 vision-and-language tasks. We confirmed
that different tasks have different effects on each other, and the selection of tasks for knowledge
transfer should be made carefully. Furthermore, we observed some interesting insights about
knowledge transferability, e.g., the tasks in the image retrieval and referring expressions groups
tend to have a positive impact on other tasks, while the tasks in the visual question answering
and multi-modal verification group give a negative contribution. The scale of datasets, training
epochs, data domain similarity, and the difference in their goals may cause this divergence.

In general, this chapter sheds light on the knowledge transferability of vision-and-language
tasks, including those factors such as data scale and training epoch that may affect the trans-
ferability. We hope our work can bring inspiration to the fields of knowledge transferability in
vision-and-language tasks, especially for the topic of seeking knowledge from similar tasks for

positive transfer.
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Figure 2.7: Appearance distribution of all 12 vision-and-language tasks. In this figure, different
tasks get different colors while tasks within the same task group share the same shape of mark-

€r8.
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Figure 2.8: Appearance distribution within four vision-and-language task groups. In this figure,

different tasks get different colors and different shapes of markers.
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[ catcher } [blue jacket, purple gloves} [ girl facing camera } { guy behind the catcher } [ man with yellow tie }

o e
= ¥y K
10U: 0.620,0.753, 0.451 10U: 0.535,0.679, 0.056 10U: 0.680, 0.766, 0.000 10U: 0.722,0.773, 0.000 10U: 0.510, 0.616, 0.003
{ comp monitor J [ umbrella above guy J [ man °2a'r"?;‘afa°'"9 J [ case with a 500n it in front J [ woman w pumpkin }

I0U: 0.575, 0.680, 0.000 I0U: 0.572,0.794,0.313 I0U: 0.843, 0.523, 0.032 IOU: 0.663, 0.724, 0.000

[ train on left J [ bottom left tray } [ stove } [ top book J [ chunk below knife }

10U: 0.617, 0.697, 0.390 10U: 0.703, 0.874, 0.378 1OU: 0.703,0.874, 0.378 10U: 0.534,0.781, 0.051 10U: 0.526, 0.774, 0.499

[——J ground truth [ |direct model [__|refCOCO+ as source task [___] GQA as source task

Figure 2.9: Example of the results on refCOCO. With the caption on top of the image, different
models find different regions on the image. It is easy to see that refCOCO+ helps refCOCO to

get a more accurate prediction, while GQA misleading refCOCO to some wrong regions.
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Which kind of fruit is on the Is the drapery different in color What kind of place is shown? Was wood used to make that Is there either any blanket or
table? than the wall? P ) dishwasher? lamp in the picture?

Ground truth: orange Ground truth: yes Ground truth: runway Ground truth: yes Ground truth: yes

Answer: orange, orange, orange  Answer: yes, yes, no Answer: runway, runway, terminal ~ Answer: no, yes, no Answer: no, yes, no
Conf. of GT: 0.86, 0.99, 0.72 Conf. of GT: 0.88, 0.99, 0.01 Conf. of GT: 0.76, 0.95, 0.00 Conf. of GT: 0.29, 0.73, 0.00 Conf. of GT: 0.32, 0.71, 0.00

V_\lhat kind of ffjrmture s to_ the Is there an open window in the What is the man that is to the Does the cow appear to be Does the cow appear to be
right of the chimney the mirror N N N N
is on? photo? right of the helmet carrying? lying? lying?

-
Ground truth: chair Ground truth: yes Ground truth: snowboard Ground truth: yes Ground truth: motorcycle
Answer: chair, chair, chair Answer: yes, yes, no Answer: snowboard, snowboard, ski  Answer: no, yes, no Answer: bike, motorcycle, bike
Conf. of GT: 0.76, 0.82, 0.38 Conf. of GT: 0.83, 0.85, 0.23 Conf. of GT: 0.71, 0.98, 0.06 Conf. of GT: 0.00, 0.77, 0.00 Conf. of GT: 0.34, 0.90, 0.00

[ Which kind of fruit is on the } [ Which kind of fruit is on the J

What is the color of the bus? What kind of vehicle is on the What is the color of the shorts
table? table? )

road? the man is wearing?

Ground truth: rocky Ground truth: yes Ground truth: yellow Ground truth: bus Ground truth: gray

Answer: rocky, rocky, rocky Answer: yes, yes, no Answer: yellow, yellow, green Answer: car, bus, car Answer: green, gray, khaki
Conf. of GT: 0.93, 0.94,0.73 Conf. of GT: 0.65, 0.99, 0.00 Conf. of GT: 0.98, 0.99, 0.00 Conf. of GT: 0.48, 0.96, 0.07 Conf. of GT: 0.16, 0.81, 0.00
direct model VQA v2 as source task GueesWhat as source task

Figure 2.10: Example of the results on GQA. With the question on top of the image, different
models predict the answer based on the image. The predictions from mgqga, Mvoa v2—Goa, and
MGuessWhat—GQa» as well as the confidence score of the ground truth class (Conf. of GT), are
shown under the examples, respectively. It is easy to see that VQA v2 helps GQA to get a
more accurate prediction, while GuessWhat misleads GQA to get a low confidence score in the

ground truth class.
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Chapter 3

Detecting Emotional Stimuli in Artworks

3.1 Overview

We introduce an emotional stimuli detection task that targets extracting emotional regions that
evoke people’s emotions (i.e., emotional stimuli) in artworks. This task offers new challenges
to the community because of the diversity of artwork styles and the subjectivity of emotions,
which can be a suitable testbed for benchmarking the capability of the current neural networks
to deal with human emotion. For this task, we construct a dataset called APOLO for quantifying
emotional stimuli detection performance in artworks by crowd-sourcing pixel-level annotation
of emotional stimuli. APOLO contains 6,781 emotional stimuli in 4,718 artworks for validation
and testing. We also evaluate eight baseline methods, including a dedicated one, to show the
difficulties of the task and the limitations of the current techniques through qualitative and
quantitative experiments. Our data and code are available in https://github.com/Tianwei3989/
apolo.

Analyzing artworks in machine learning is a challenging task. Compared to photographs,
artworks do not only depict real-world concepts, such as humans, animals, and natural scenes,
but also represent humane contents, such as feelings, attitudes, and faiths. The richness in
the representations and the diversity of styles make artworks the ideal testbed to study new

challenges related to human emotion understanding in machine learning.
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Amusement
The man reminds me
of a video game.

Fear
A human surrounded by
bear looking forms leaves|
me uneasy.

The bears look calm and
relaxed next to the man
in a pretty landscape.

Amusement Fear

Figure 3.1: A model detects emotional regions that evoke people’s emotions (namely, emotional
stimuli) from the given artwork. The utterances on the right side may be used as hints to spot

emotional stimuli.

In recent years, many efforts have been paid to the field of artwork analysis [4, 87, 97—
104], aiming to improve models’ understanding of artworks and further extend models’ capacity
to support digital humanities, with tasks such as attribute identification [97, 101-104], object
detection [99, 100] or artwork understanding through language [4, 87, 98]. Thanks to these
studies, recent models have developed a reliable capacity to understand objective contents (e.g.,
objects, attributes, descriptions) from the artworks. However, only a few studies [1, 105] are
focusing on a more subjective and personal analysis, such as the relationship between artwork
and emotions.

ArtEmis [1], as well as its extension ArtEmis V2.0 [105], are two datasets collected for
studying of the relationship between artworks and emotions. The main focus is on the gener-
ation of emotional captions that can accurately capture the emotional influence of an artwork.

However, a more in-depth analysis to uncover why and how emotions are evoked from the
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artworks is still not explored. In other words, ArtEmis and ArtEmis 2 show that models can
generate emotional captions, but it is still unknown how the emotions are evoked from those
artworks.

Artworks can easily elicit people’s emotions, yet this elicitation process is complex and
underexplored [106—-109]. The appraisal theory toward artworks and emotions [106] says the
emotion-evoking process is related to the viewer’s analysis process: The emotions are evoked
during the viewer’s analysis process through the whole artwork. Thus, different analyses may
lead to different emotions. For example, given the artwork in Figure 3.1, people may feel
different emotions when the analysis concentrates on different visual concepts in the context of
the artwork: if a viewer focuses on the distorted style of the person, a feeling of amusement may
be evoked, while the bear-like brown figures may be linked with fear. Learning such processes
could make models acquire knowledge about how human emotions are evoked and may improve
models’ capacity to utilize emotional stimuli. Such merits could be helpful for tasks related to
emotions (e.g., visual emotion recognition [110-114]) and tasks potentially involving emotion
analysis (e.g., image generation [20,22]).

According to these observations, we propose a new task for emotional stimuli detection in
artworks, in which a model is required to detect emotional stimuli from a given artwork, as
shown in Figure 3.1. The task, which explores a machine’s capacity to understand emotions
and artworks, has two major challenges: First, differently from photorealistic images, artworks
are painted with a certain style. For example, in Western art, Realism is one of the styles that
may look more like a real photo, while Impressionism typically shows prominent brush strokes.
Different styles lead to very different appearances of the same object. This style variation
makes it harder to learn visual content (e.g., objects) from artworks than photos [97, 100, 115].
Second, emotions are subjective. Different people may have different emotions evoked by the
same artwork [1,105]. This subjectivity makes the task unique, as an artwork can have multiple
emotional stimuli for different emotions.

For this task, we construct a benchmark dataset, coined APOLO (Artwork Provoked emQOtion

EvaLuatiOn), to evaluate models in both qualitative and quantitative ways. We build APOLO
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amusement awe contentment excitement

"The sheaves of wheat in the field look to be ready for
harvest by the single person at right."

"The farmer is making a lot of progress sorting his hay"

"The blending of both characters with
black makes it look like they are
wearing one giant shirt."

"The woman and her child are both

"the lady is looking gorgeous with her
being bathed by rays of sunlight" "

outlook’

e

anger disgust fear sadness
"The subject looks like she is
exhausted or grieving, | can feel her
emotions."

"The man in this image is in chains with a "The angry man is bullying the "The tree looks so bony that it could be the
pained and angry look on his face." other man." skeleton of a fish"

>, SRS

Figure 3.2: Some samples in our dataset. The words and regions in green are the chosen noun
phrases and the annotated emotional stimuli, respectively. If one artwork-emotion pair contains
multiple utterances, the corresponding regions are then combined. We annotate regions for eight

emotions from ArtEmis, except "something else."

on top of the ArtEmis dataset [1], which, for each artwork, includes emotion labels annotated
by multiple annotators, and utterances (sentences) that explain why emotions are provoked. To
further understand the stimuli that provoke emotions, APOLO includes pixel-level emotional
stimuli annotations on the images of the test set. As a result, we collect 6, 781 emotional stimuli
for 4, 718 artworks and 8 emotions. Our exhaustive control quality checks ensure the samples
are balanced and reliable. To the best of our knowledge, this is the first dataset that offers
pixel-level annotations of emotional stimuli in artworks.

Additionally, we explore multiple models for emotional stimuli detection, borrowed from
related tasks, including object detection, referring expression, and saliency map detection. We
also introduce a dedicated weakly supervised model as a baseline, which predicts emotional

stimuli regions for each emotion without using region-level annotations for training. Our com-

Graduate School of Information Science and Technology, Osaka University



Chapter 3 Detecting Emotional Stimuli in Artworks 42

prehensive experiments on APOLO show that the evaluated models can detect emotional stimuli
even when not trained with region annotations. However, the emotional stimuli detection task
is still challenging and with plenty of room for improvement. In addition, we explore how a
text-to-image generative model, Stable Diffusion [22], handles emotions in the input prompts,
observing that it fails to connect the emotional words in the input with the emotional stimuli in

the generated images. We hope our work will help overcome this limitation in the future.

3.2 Related work

Visual emotion analysis Given an input image, visual emotion analysis aims to recognize emo-
tions, analyze the emotional stimuli, and apply the recognized emotions to real-world appli-
cations (e.g., psychological health [116, 117] and opinion mining [118, 119]) to improve the
ability of emotional intelligence [120]. Most of the recent studies [110—114] use emotional
stimuli to improve emotion recognition, but only a few efforts have been made to analyze how
well the models detect such stimuli. To the best of our knowledge, only two datasets: Emotion-
ROI [121] and EMOd [122] provide pixel-level annotations for evaluating emotional stimuli
detection. However, they are both relatively small, offering 1,980 and 1,019 labeled images,
respectively, consisting of social media images from the Internet.

Data scarcity is one of the main challenges in emotional stimuli detection. To overcome this
problem, we propose two solutions: 1) transferring models from related tasks, and 2) designing
a weakly supervised learning model that does not require costly pixel-level annotations for
training. For evaluation, we collect a dataset with emotional stimuli annotations.

Artwork analysis Much effort has been dedicated to solving art-related problems with ma-
chine learning techniques, including style identification [97,123], object detection [97,99,100],
instance-level recognition [124], or artwork description [87,98,125]. Concerning emotion anal-
ysis, some datasets [1,97, 105, 126], including ArtEmis, contain labels with the emotion (e.g.,
amusement and fear) that each artwork evokes. Nevertheless, the same artwork can evoke mul-

tiple emotions according to different regions of the image, a fact that has been unexplored in
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Table 3.1: Summary of datasets for emotional stimuli detection. The source column indicates
whether the images are from the social internet or artworks, while the ME (Multi-emotion)

column indicates whether an image has annotations for multiple emotions.

Samples Images Source  Emotions ME

EmotionROI [121] 1,980 1,980 social 6 No
EMOd [122] 1,019 1,019 social 2+1 No
APOLO 6,781 4,178 artwork 8 Yes

current datasets. APOLO introduces a new challenge by investigating the connection between

artworks and emotion at the pixel level.

3.3 Emotional stimuli detection

Our task aims to explore how a model can find the cues of the emotion elicitation process from
the artwork, i.e., the emotional stimuli. In general, we explore two separate scenarios: 1) emo-
tional stimuli detection without reference (i.e., utterances) and 2) emotional stimuli detection
with reference. Ideally, a model should find emotional stimuli without reference, like humans.
However, such models are rare since only a few studies are aimed at emotional stimuli detec-
tion. We thus also explore whether recent multimodal models can detect emotional stimuli by
using the references.

Formally, let a, e € £, and u denote an artwork, its emotion label, and the utterance, which
can be a set of sentences, in ArtEmis, where £ is the set of the emotions. Then, D, denote the
training set of ArtEmis [1], where D, contains triples (a, e, u). D, and D, denote the validation
and test sets of APOLO, where both contain triples (a, e, u). As we presume that an artwork
can evoke potentially any emotion depending on where the viewer focuses their attention, the
emotional stimuli detection task can be formulated as a segmentation task given artwork a and

emotion e € £, in which a model f, predicts segment s that evoke emotion € as

§:fe(a)v (31)
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Data selection Annotation Quality control

Phrase-region selection Region annotation Aggregation

Utterances H Phrase H
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annotation) (clean)

Figure 3.3: The workflow of APOLO dataset curation. In general, APOLO is extended from

(test set)

Emotions

the ArtEmis dataset. We collect the annotation from Artemis’s test set and further annotate the

pixel-level emotional stimuli map from the artworks.

where 5 is the predicted segment.
This task can be extremely challenging as no cue is provided for specifying the regions that
are involved given emotion e. We thus formulate a variant with reference by u, in which w is

given to a model as an auxiliary cue for emotional stimuli detection, i.e.,

s = fe(a,u). (3.2)

In both scenarios (emotional stimuli detection with and without reference), we can use D,
for training a model, but ground-truth segments are not available. D, and D, are solely used for

validation and testing.

3.4 APOLO Dataset Curation

APOLO is a benchmark dataset for evaluating, both quantitatively and qualitatively, emotional
stimuli detection in artworks. We utilize the test samples in ArtEmis [1], with 39, 850 explana-
tory utterances and emotional responses related to 8, 003 artworks from WikiArt.! ArtEmis is

annotated with nine emotions: amusement, anger, awe, contentment, disgust, excitement, fear,

Thttps://www.wikiart.org/

Graduate School of Information Science and Technology, Osaka University



Chapter 3 Detecting Emotional Stimuli in Artworks 45

sadness, and something else. As shown in Figure 3.2, the utterances are explanations of why
a certain emotion is evoked by the artwork, which is usually related to its emotional stimuli.
We observe that the utterances potentially align with the viewers’ analysis processes and are
related to a certain emotion that is specified by the emotion label and evoked by the artwork.
Furthermore, the utterances tend to describe certain regions, which leads to a certain emotion,
in the artwork. These features may help models to learn how humans perceive emotion from or
associate emotion with such regions.

Toward this end, we construct a pixel-level emotional stimuli dataset, APOLO, by asking
91 annotators in Amazon Mechanical Turk 2 to identify the visual concepts that involve the
utterances and to annotate the visual concepts at the pixel level, as shown in Figure 3.2. We
show its details in Table 3.1.

We only collect validation and test sets by randomly sampling ArtEmis’s annotation, con-
sidering 1) the evaluation could be applied to recent large models (e.g., CLIP [18]) that are hard

to train and 2) the cost of pixel-level annotation.

3.4.1 Data selection

To curate our annotations from ArtEmis, we annotate paintings from the first eight emotions
from ArtEmis’ nine emotions, i.e., the emotions of amusement, anger, awe, contentment, dis-
gust, excitement, fear, and sadness. We filter out samples with something else label, as we
found from the associated utterance that their interpretation of the emotion is not trivial and
annotators may not capture the clear ideas from them. For each of the other eight emotion la-
bels, we randomly choose about 1, 200 artwork-utterance pairs from the ArtEmis test set, except
for emotion anger, which only contains 672 artwork-utterance pairs. Overall, we select 9, 599

samples.

Zhttps://www.mturk.com/
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{ 1) Phrase-region selection J [ 2) Region annotation } [ 3) Aggregation J

Emotion: Awe

Utterance: The palm trees have grown
so tall they are towering over
the beach.

Emotion: Awe

Emotion: Awe
Utterance: The palm trees blowing in palm trees
the wind looks peaceful.

Figure 3.4: In our annotation process, workers should annotate the following three steps: 1)
phrase-region selection, 2) region annotation, and 3) aggregation. We randomly check the sub-

missions at every step to ensure the annotation quality.

3.4.2 Annotation process

As the aim is to annotate emotional stimuli, which are regions that can evoke a certain emotion,
we design an annotation process focused on identifying the regions that correspond to specific
phrases in the utterances, as these phrases are strongly tied to the emotions. The general anno-
tation process is shown in Figure 3.4, and it consists of three steps: 1) phrase-region selection,
2) region annotation, and 3) aggregation.

Phrase-region selection The annotation interface is shown in Figure 3.5. In the first step,
we aim to gather the cues of the emotion elicitation process from the utterances, i.e., to col-

lect phrases in the utterances that correspond to the emotional stimuli and their corresponding
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In this task, please read the text and point out the corresponding regions in the painting.
Please watch the following video tutorial and read through the examples carefully.

(To whom have the experience in our previous art project: This time you only need to point out the regions, no need to draw
them.)

Video tutorial and instructions (click to hide/open)

TEXT

The palm trees have grown so tall they are towering over the beach

The palm trees have grown so tall they are towering over the beach

WHOLE_IMAGE NOTHING_TO_LABEL

Click on the words above, DO NOT type words by yourself

Clean text-box | (Click on the words above, DO NOT type words by yourself.)

Manage labels

trees (Delete)
[}

St | Pecs il vt s

Labels X

Q
B e

OOXQQ-I-'CDde Subet

Figure 3.5: Annotation interface of phrase-region selection. On this page, an annotator should
first read the utterance and artwork and then point out the location of the region. The blue,

yellow, and orange blocks in the “TEXT” section are the buttons for annotators to select.

location on the artwork.

To identify such phrases, we show annotators a single utterance u together with an artwork
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Figure 3.6: Emotion distribution of APOLO.
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Figure 3.7: Stimuli occupation distribution of APOLO. The x-axis is the ratio of annotated

pixels to the whole image, i.e., the occupation of the stimuli.

a. Note that by design, ArtEmis utterances u explicitly describe the emotion generated by the
artwork a. Then, we ask them to find all the noun phrases in w that explicitly mention visual
concepts in a. We denote the set of identified phrases in u by W,,, where w € W, is a phrase
(e.g., the “trees”). Specifically, we provide annotators two additional options, the whole artwork

and the nothing to label (as the yellow and orange buttons in Figure 3.5), since some utterances
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may only talk about the whole image or nothing related to the artwork. If there is at least one
phrase in the utterances that corresponds to the emotional stimuli, the annotators are then asked
to locate the region in the artwork by spotting at least one point that lies in the region of the
visual concepts by clicking on the artwork in our annotation interface. The set of points for
phrase w is denoted by P, where p € P, is in R?. To ensure that all phrases in the utterance
and visual concepts are found, and also to reduce the subjectivity of annotation, we ask three
annotators per triplet (a, e, u) and aggregate annotations by removing duplicates to form W,
and P, for all w € W,,. By this step, we collect two types of annotations: 1) the noun phrases
that are related to both the artworks and the evoked emotions (the colored phrases in Figure 3.4),
and 2) the locations of the region that the noun phrases (the colored x’s in Figure 3.4).

Region annotation In this step, we aim to identify the regions related to the emotion elicita-
tion process, i.e., to draw pixel-level annotations according to the utterances. We collect these
annotations based on the locations in the previous step. We show a, u, w, and P,, to an annotator
and ask them to draw on top of a all pixels that fall into the visual concepts identified by w € W,
and P,, obtaining a segment s,,, which is a set of pixels. By this step, we collect pixel-level
annotations of the regions for each of the noun phrase (the colored regions in Figure 3.4).

Aggregation Next, we aggregate phrase-wise region annotations s,, belonging to the same a
and emotion e. For all w that is associated with a and e, i.e., w € W = {w € Wy/|(d/, €', ) €

D,a = d,e = €'}, we obtain the aggregated emotional stimulus s by
s = U Su- (3.3)

In this step, we finally collect the region annotations for each emotion. Some examples of a, u
and s are shown in Figure 3.2. As aresult, we obtain 7, 512 emotional stimuli in 5, 160 artworks.

The data structure is shown in Table 3.2.

3.4.3 Quality control

We apply quality controls both during and after the annotation process. During the annotation

process, we randomly check 10% of the annotations in every round of submission and reject the
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Table 3.2: Data structure of our evaluation set

painting emotion map_id
a.y.-jackson_indian-home-1927 sadness 000000
aaron-siskind_new-york-24-1988 anger 000001
abdullah-suriosubroto_bamboo-forest contentment 000002
abdullah-suriosubroto_mountain-view excitement 000003
abraham-manievich_moscow-iii excitement 000004
abraham-manievich_moscow-iii sadness 000005

dishonest ones (e.g., phrase w € W is wrong, region s,, is wrong, etc.). After the annotation
process, we manually check all the annotations with special attention to the following three
cases: 1) when the whole artwork is annotated as a region, 2) when the annotation is low-
quality (e.g., only draw the contour) or wrong (e.g., draw wrong regions), and 3) when no region
(denoted void) is annotated in the artwork. We found 1, 211 of whole artwork, 33 low-quality,
and 87 void annotations. We remove all of them from our dataset. Finally, to ensure that the
dataset is balanced and the whole artwork annotations are not over-represented, we randomly

remove 600 whole artwork annotations to form our APOLO dataset.

3.4.4 Evaluation dataset analysis

APOLO consists of 6, 781 emotional stimuli for 4, 718 artworks. We split it into validation and
test sets with approximately 20% and 80% of the samples, respectively. The artworks in the
validation and the test sets are disjoint. Figure 3.6 shows the distribution of emotion label e in
APOLO. We remark that seven out of eight emotions have more than 500 samples, while the
number of anger samples is smaller due to the fewer samples in the original ArtEmis dataset.
The distributions of the validation and test sets are similar to that of the entire dataset.

We also calculate the distribution of the ratio of pixels in s over a, i.e., |s|/|a|, where | - |

gives the number of pixels in the region s or artwork a. Figure 3.7 shows the distribution. Many
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[ w1 It's a very simple painting and makes me look at the
horse and rider and feel content.
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Figure 3.8: The overview of emotional stimuli map generation for baselines with reference.

regions (46.94%) are small (|s|/|a| < 0.375), and less regions (24.01%) are large (|s|/|a| >
0.625). From this, our evaluation dataset tends to have regions that focus on local concepts.
The distributions of |s|/|a| for the validation and test sets are also similar to the entire dataset.
Similar to ArtEmis, one artwork may contain a variated number (from one to eight) of emotions,

and one artwork-emotion pair may contain a variated number of utterances.

3.5 Baselines

To better comprehend the challenges of the emotional stimuli detection task, we propose and

evaluate several baselines.

3.5.1 Baselines with reference

In the with-reference variant, utterance v provides abundant information about what a model
should look for, which reduces the task close to visual grounding, like refCOCO [12] and ref-
COCOg [13]. Our strategy is first to find regions relevant to v with utterance-region similarities
and to weight the regions with the similarity to obtain a emotional stimuli map with pixel-level

scores for e. This process is shown in Figure 3.8. Prediction s can be generated by thresholding
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the map.

We employ VIIBERT [31] and 12-in-1 [35] as baselines, where 12-in-1 may have a variety
of knowledge as it is trained over 12 vision-and-language tasks, while ViIBERT is pre-trained
on a large-scale dataset GCC [68]. To adapt to our task, VIIBERT and 12-in-1 models are fine-
tuned with refCOCO. These models give the probability of each region proposal given u, which
can be interpreted as an utterance-region similarity score. CLIP+VinVL is a combination of
CLIP [18] and VinVL [66]. CLIP [18] is renowned for its zero-shot capacity to solve vision-
and-language tasks. We can first use VinVL to find region proposals and use CLIP to compute
the utterance-region similarity with .

Emotional stimuli map generation Let R denote the set of regions obtained from any of the
above methods, and sim(r,u) be the utterance-region similarity between » € R and u. We

aggregate all regions in [? to generate an emotional stimuli map M, for u by
M, = Z sim(r, u)m,., (3.4)
reR
where m,. is a map that represents r by giving 1 if a pixel in m,. is in 7 and 0 otherwise. As an
artwork a can be associated with multiple utterances for the same emotion, we aggregate all of
them to obtain emotional stimuli map M, for e as
M=) M, (3.5)
UEUae

where U, = {v/|(v/,d/,€¢') € D,d’ = a, ¢’ = e}. Thresholding is applied to M..

3.5.2 Baselines without reference
Object detection

One naive idea for the without-reference task is to spot salient regions in some senses and give
the regions as emotional stimuli regardless of given emotion e. Object detection can give such
regions [127]. We adopt the region proposal networks in FasterRCNN [128] and VinVL [66].

VinVL’s region proposal network may offer better performance as it can additionally detect
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Figure 3.9: The overview of WESD. WESD predicts an emotional stimuli map for each emo-
tion, and we access a certain map when the emotion (e.g., contentment) is given. For training,

we use pseudo ground truth from CLIP+VinVL since APOLO does not have training data.

some attributes (e.g., blue and calm) that may exhibit stronger ties with some emotions. We
aggregate proposals with top-K confidence to form § for any e € £ (i.e., f.(a) = fo(a) even
for e # €’). To obtain segment prediction s, we follow the same procedure as emotional stimuli
map generation in the previous section, but we use 1/|r| in place of sim(r, u) as this task does

not allow to use u, so we cannot compute sim(r, u).

CASNet and CASNet 11

CASNet [122] is a learning-based model for saliency detection, which generates a saliency map
for a given image. The model is trained on a dataset called EMOd, which contains images that
evoke some emotions and human fixations. With this dataset, CASNet learns to find regions
that draw human attention. The work [122] showed, based on their analysis over EMOd, that
humans tend to focus on emotional objects than neutral objects, where emotional and neutral
objects are annotated by annotators. Therefore, CASNet also tends to focus on emotional ob-
jects. For our task, we apply thresholding to the saliency map to obtain 5. Again, prediction s

is the same for all e. We also evaluate CASNet II [129], an extension of CASNet with atrous
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spatial pyramid pooling [130].

Weakly-supervised emotional stimuli detecter

As the baselines for the without-reference task so far are not designed for this task and are
ignorant of emotion label e, we design a dedicated model, abbreviated as WESD (Weakly-
supervised Emotional Stimuli Detection), using utterances in ArtEmis [1] for weakly-supervised
training.

An overview of WESD is shown in Figure 3.9. It first uses a visual encoder, such as ResNet
variants [131], that gives patch-wise visual features. The visual features of respective patches of
artwork a are then fed into a binary classifier for each e to predict if the patch contains emotional
stimuli for emotion e. Let v; be a feature vector for patch « € K, where K is the total number

of patches in one artwork. Classifier g. for emotion e predicts a score as

Jei = ge(vi) € [0, 1]. (3.6)

Specifically, g. predict 3.; by the feature of both the certain patch and the whole artwork, as

ge(v;) = F, (vi + F, <% Z%)) , (3.7)
k

where F,(-) is a fully-connected layer for embedding the whole artwork and F(-) is a fully-
connected layer to predict J.;. WESD contains multiple F.(-)’s and each of F,(-) is related to a
certain emotion e (e.g., contentment).

For training, ground-truth emotional stimulus s in APOLO can give direct supervision over
Yei; however, APOLO is only for validation and testing. We instead use a pseudo ground truth.
We utilize CLIP+VinVL for the with-reference task to generate an emotional stimuli map M.,
which can be derived from the ArtEmis training set. This means that the predictions based on
utterances are used to distill the knowledge about the emotional stimuli into f, for the without-
reference (without-utterance) task. Emotion label e is only for identifying the map that has

pseudo ground truth.
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For this, we first divide M, into the same patches as v;’s and compute the mean within each

patch to obtain a soft label ;. The binary cross-entropy loss BCE(-, -) is used for training, i.e.,
L= BCE(Q&‘, yei)- (38)

For inference, WESD takes artwork a as the only input. The classifiers for all e € &
predict the score 7.;, which is then summarized into g, € [0, 1]%**5 where B,, and B, are the
numbers of patches in the horizontal and vertical axes, respectively. The map g, is then resized
to the same size as a to obtain predicted emotional stimuli map Y.. Predicted segment S can be

obtained by thresholding over Y.

3.6 Experiments

Metrics For evaluation, we borrow the ideas from previous works to employ bounding box [121]
and segmentation [122] scenarios, where the former only requires to roughly locate emotional
stimuli, while the latter requires their precise shapes. The bounding box [121] evaluation fo-
cuses on both stimuli and their background (e.g., the emotion of awe in Figure 3.1), as it assumes
that emotions are evoked not only by the stimuli but also by the background. While the seg-
mentation [122] evaluation focuses on the stimuli (e.g., the human and the bears in Figure 3.1)
themselves, as it assumes that the stimuli are more important than other regions to evoke the
certain emotions. We use both methods as both of them could be related to the emotion elicita-
tion process. For both scenarios, we calculate the precision with intersection over union (IoU)
threshold 6 (Pr@#), as in [12,13,31,35,132, 133]. We evaluate models with Pr@25 and Pr@50.

For baselines that output bounding boxes (i.e., FasterRCNN and VinVL), we collectively
treat them as a single region (though they can be disconnected) for evaluation in the segmen-
tation scenario. In contrast, for baselines that give segments by thresholding, we generate a
bounding box for each connected component for the bounding box scenario.

Implementation details Our baselines in most cases use the default setting in the original

paper. As for CLIP, we use the ResNet-50 variant throughout our experiments. For WESD, we
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Table 3.3: Results of the evaluation on eight baseline models as well as a lower-bound baseline
(i.e., the Entire artwork). From the left, Task tells that if a baseline model makes predictions
with references (i.e., emotion tags or utterances). Region proposal shows if and which region
proposal network is used by the certain baseline model. 7ext input shows the text input for
generating emotional stimuli maps. Multiple maps is v when the model can output multiple
emotional stimuli maps for different emotions. For results in both Bounding box and Segmen-

tation, we bold the best score and take an underline to the second-best result.

Bounding box Segmentation
Task Baseline Region proposal Input text Multiple map

Pr@25 Pr@50 Pr@25 Pr@50
1 Entire artwork - - - 8237 63.81 68.61  37.70
2 FasterRCNN  FasterRCNN - - 84.03  66.40 7443 43.67
3 wlo VinVL VinVL - - 84.43  67.54 75.10  43.94
4 reference CASNet - - - 84.84 66.02 7640 44.15
5 CASNet IT - - - 84.84 63.59 76.24  40.18
6 WESD - - v 84.30  66.66 75.89  44.97
7 ViIBERT FasterRCNN emotion v 82.17  63.08 72.14  39.64
8 12-in-1 FasterRCNN emotion v 72.51  50.71 6390 31.87
9 w/ CLIP + VinVL VinVL emotion v 81.97  63.00 71.29  40.05
10 reference VilBERT FasterRCNN utterance v 84.10 65.41 7526  42.18
11 12-in-1 FasterRCNN utterance v 80.52  59.16 72.52  37.99
12 CLIP + VinVL VinVL utterance v 8331 64.99 72.58  40.08

resize artworks to 224 x 224 pixels. Bi-linear interpolation is used to resize ¢, to Y,. We train
the model for 20 epochs with batch size 128, learning rate 2 x 10~%, and decay 0.01. The model
is optimized with AdamW [134]. For ViIBERT [31] and 12-in-1 [35], we follow the procedure
in the respective papers to fine-tune the models on refCOCO [12]. All training processes were
done on a Quadro RTX 8000 GPU, which took about 20 hours for WESD.

All baselines require a suitable threshold to obtain segment prediction 5. We use the APOLO
validation set to find the best one on it with IToU@50 and apply it for evaluation.

Baseline variants For the baselines with reference, which take utterances as input, we can

instead use the emotion label (e.g., excitement), so that the models can find regions that can be
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Artwork Ground truth VinVL WESD

Figure 3.10: Examples of bounding box region detection. VinVL tends to distinguish objects

exhaustively from the artwork, while WESD tends to find regions instead of certain objects.

associated with (or that the models learned to associate with) the word.
In addition to the baselines in Section 3.5, we evaluate the case where the entire artwork is

predicted as S.

3.6.1 Quantitative analysis

The scores of all baselines for both with-reference and without-reference tasks are summarized
in Table 3.3. We list our findings as follows.

Artworks have something in common with natural images with respect to emotion.
For the without-reference task, VinVL, CASNet, and WESD work well. CASNet is the best
among these three models in terms of Pr@25 in both bounding box and segmentation scenarios.
It also hits the second-best in Pr@50 of segmentation. Although marginal, the superiority of
CASNet may imply that EMOd [122] used for training the model in a fully supervised manner
has something in common with APOLO. This is intriguing as regions in images that seem to

be in very different domains (i.e., natural images and paintings in various artistic styles) share
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Artwor Ground truth CASNet WESD

Figure 3.11: Examples of segmentation region detection. Compared to CASNet, WESD tends

to find more related regions.

some characteristics. This insight may elicit further exploration of the connection between
natural images and paintings, like studying the types of paintings for which a model learned
from EMOd works.

Emotional stimuli are highly correlated with objects and attributes. The scores of re-
gion proposals by both FasterRCNN and VinVL are still comparable to CASNet and WESD.
For the metrics that require precise localization (i.e., Pr@50) and segmentation, the gap seems
slightly larger. We would say that emotional stimuli highly coincide with some objects. This
is reasonable because the utterances (e.g., in Figure 3.1) mention some objects. A comparison
between FasterRCNN and VinVL suggests the correlation between VinVL attributes [66] and
emotion, which again makes much sense.

The domain of the utterances may be different from the text in typical vision-and-
language tasks. Interestingly, the scores of the with-reference task are mostly lower than those
of the without-reference task. This is counterintuitive as the utterances should give beneficial
information to identify the emotional stimuli. One possible rationalization is the domain gap.

The utterances in ArtEmis [1, 105] come with subjective statements (e.g., “... bear looking
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forms leaves me uneasy.” in the second utterance in Figure 3.1), which is not likely in typical
vision-and-language tasks. This observation can be supported by the fact that the use of the
emotion labels, which is very different from typical text, as input to the vision-and-language
models worsens the performance (Lines 7-9 versus Lines 10-12 in Table 3.3). Additionally, the
worst scores of 12-in-1 also can also support this because the 12-in-1 model is fine-tuned to 12
vision-and-language tasks and may lose the generalization capability for unseen tasks.

WESD achieved better performance than CLIP+VinVL. Regardless of the worse per-
formance of CLIP+VinVL, WESD hit a higher performance than it, although WESD is trained
from CLIP+VinVL. A possible explanation is that, despite the lower performance of CLIP+VinVL
for individual artworks, there are some characteristics shared in the dataset, and WESD may

capture them through training.

3.6.2 Qualitative analysis

Qualitative examples are shown in Figures 3.10 and 3.11 for the bounding box and segmentation
scenarios, respectively. Figure 3.10 shows baselines with the top-2 scores, i.e., VinVL and
WESD, where VinVL'’s bounding boxes are merged when they overlap. Since WESD makes
bounding boxes that contain each connected segment of emotional stimuli, it tends to cover a
large area. VinVL generates many small bounding boxes around objects, which coincide with
the ground-truth bounding boxes.

Figure 3.11 compares WESD against CASNet. We find that CASNet tends to predict re-
gions near the center of the image as emotional stimuli. This tendency is not surprising as the
model is supervised by fixations from eye trackers and the image center seems to have a salient
component. Meanwhile, WESD tends to find more relevant regions than CASNet, at least for
these examples (though because the difference in the scores between WESD and CASNet is
small, the trend is not consistent for the APOLO test set.

In general, detecting emotional stimuli in artworks is still challenging as none of the three

models perfectly spot the emotional stimuli in both Figure 3.10 and 3.11.
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amusement awe contentment excitement

disgust

awe: Nice depiction of scenery.

contentment: The bucolic setting is soothing
and induces contentment. Pictures of nature
relax me. The branch with the string hanging
down looks like a tool that is used to make this
place special.

sadness: It is dark and looks froeboding. It
looks like it is either deserted or like someone
lives there and does not have much money.

amusement awe contentment excitement

- S

disgust fear sadness

amusement: | like the little boy is playing with
the dog that makes me happy.

awe: males me feel like going back to simpler
timeThe choice in framing is beautifully done.

contentment: family and one member is playing
with a dogThe children playing with a dog. The
grandmother preparing food. The Father
bringing in firewood. The cozy looking house.

Figure 3.12: Examples of WESD’s prediction on eight different emotions. The texts on the left
are the utterances from ArtEmis [1], which are not used during the prediction. The regions on
the right are the predicted regions that evoke the corresponding emotions. The emotion tag on

the right has an underline if this emotion appears on the left, i.e., has an annotation in ArtEmis.

3.6.3 Emotion-wise analysis on stimuli detector

In this section, we analyze how well WESD predicts emotional stimuli maps for each emotion in
one artwork. Specifically, we use the artworks in the test set of ArtEmis for this experiment, and
we ask WESD to predict the emotional stimuli map for all of the emotions. We only evaluate
WESD as it is the only baseline model that is able to predict emotional stimuli maps for each

emotion and does not need utterances as the reference. Some results are shown in Figure 3.12.
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Through our experiments, we have the following observations:

* Predictions focus on similar regions. Although the WESD’s predictions for each emo-
tion are different, most of them focus on similar regions (e.g., the house and the pool
in the first example and the people in the second example) in one artwork. The results
could be reasonable as some regions in the artwork may play an essential role in evoking

multiple emotions. We observe that such regions are also involved in the utterances.

* Awe and contentment tend to involve more regions. Compared with other emotions,
awe and contentment usually involve more regions, such as the whole sky in the first
example, and the building and tree in the second example. These results may be related to
the factor that the emotions of awe and contentment are usually evoked by wider sceneries

in the artwork.

3.7 Emotional stimuli and deep generative models

We consider emotional stimuli detection a task that may benefit in training future deep gener-
ative models in generating emotional artworks (e.g., set as on loss function.) In recent years,
deep generative models, such as DALLE-2 [20] and Stable Diffusion [22], have demonstrated
remarkable capabilities in producing high-quality images to users’ requirements. Such capaci-
ties also make these models popular in the artwork field, such as artwork generation [135] and
editing [136].

In this section, we explore how much a popular deep generative model, Stable Diffu-
sion [22], can handle emotions when generating artwork, and if our task and models can help
improve its performance. To explore this, we randomly select 20 artists with one of his/her
artwork in APOLO dataset. Then, we make prompts by “The painting of [artwork name] by
[artist name], produce [emotion].” We use Stable Diffusion v1.5 [22] to generate artworks
for all combinations of 20 artworks and eight emotions, resulting in 160 generated artworks.

Recently, DAAM [137] found that the aggregation of the cross-attention maps from Stable Dif-
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The painting of &
Landscapeby |+
Maxime Maufra, & .. " <. .
produce Awe

The painting of
Havana Harbor by
Willard Metcalf,
produce Exitement

The painting of
The Bathing Hut.
Afternoon, July

29, 1876 by

James Ensor

produce Disgust

The painting of
View of venice
1895 by
Giovanni Boldini, [
produce Sadness |

Artwork

Figure 3.13: Examples of Stable Diffusion generated emotional artworks, the internal attention
maps (DAAM), and WESD’s predictions. The texts on the left are the prompts for Stable
Diffusion. WESD could be useful for Stable Diffusion to generate emotional artwork by guiding

the model to emphasize the emotional stimuli.

fusion can reveal the interpretation process of the model from prompts to images, i.e., reveal

which parts of the image are related to a word in the prompt. We use DAAM to extract the
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internal attention map of [emotion], which may indicate how Stable Diffusion interprets the
emotion to the generated artwork.

We show some results in Figure 3.13. From the generated images, we find that Stable
Diffusion can somehow generate artworks that can evoke certain emotions. However, from the
internal attention map, we find that attention maps related to [emotion] are seldom focused.
Instead, we observe that the attention sometimes focuses on the four corners of the artwork.
These observations may indicate that it is still hard for Stable Diffusion to handle the relation
between emotions and emotional stimuli. Compared to Stable Diffusion, WESD shows more
concentration on the regions that are more related to the given emotions. The results may show
a potential application of our work and WESD, to work as a guide and benefit Stable Diffusion

in focusing on the emotional stimuli and generating more emotional artworks.

3.8 Limitations and ethical concerns

Our task is based on the appraisal theory of artworks and emotions [106, 107]. Although this
theory is reliable, it is continuously developing. We tried to remove inconsistent samples when
constructing APOLO, as described in Section 3.4, but this may cause some domain gaps be-
tween our dataset and general artworks. Additionally, there are rising concerns about the ethical
considerations of emotion recognition. As emotions are subjective and personal, trying to pre-
dict them with a machine learning model may be intrusive. We agree that emotion prediction
could raise privacy issues and potential risks of model abuse. Being aware of this, we did our
best to address these concerns proactively. In our experiments, we handled data responsibly and
ensured that their use aligned with ethical standards. Additionally, we are planning to inform
users of the inherent risks associated with our dataset and ensure they utilize it responsibly.
Furthermore, we are prepared to take swift action, including freezing or deleting portions or
the entirety of the dataset, if we identify any significant risks associated with its use. Through
these measures, we hope to mitigate potential ethical risks and promote responsible usage of

our research findings.
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3.9 Summary

We introduced an emotional stimuli detection task that targets extracting regions from artworks
that evoke emotions. For this task, we build a dedicated dataset, coined APOLO, with 6, 781
emotional stimuli in 4, 718 artworks for evaluation. We also provide with APOLO several base-
line models to unveil the challenges in this task. Both qualitative and quantitative evaluations
demonstrated that baseline models do not achieve a satisfactory performance, implying inherent
difficulties in handling vague and abstract concepts of emotions. Furthermore, we explore how
a deep generative model, Stable Diffusion, can handle emotions and emotional stimuli. We find
that it is still hard for Stable Diffusion to understand and express emotions. We hope our work

can bring inspiration to the fields of artwork analysis and visual emotion analysis.
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Chapter 4

Would Deep Generative Models Amplify

Bias in Future Models?

4.1 Overview

We investigate the impact of deep generative models on potential social biases in upcoming
computer vision models. As the internet witnesses an increasing influx of Al-generated images,
concerns arise regarding inherent biases that may accompany them, potentially leading to the
dissemination of harmful content. This chapter explores whether a detrimental feedback loop,
resulting in bias amplification, would occur if generated images were used as the training data
for future models. We conduct simulations by progressively substituting original images in
COCO and CC3M datasets with images generated through Stable Diffusion. The modified
datasets are used to train OpenCLIP and image captioning models, which we evaluate in terms
of quality and bias. Contrary to expectations, our findings indicate that introducing generated
images during training does not uniformly amplify bias. Instead, instances of bias mitigation
across specific tasks are observed. We further explore the factors that may influence these
phenomena, such as artifacts in image generation (e.g., blurry faces) or pre-existing biases in

the original datasets.
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Figure 4.1: We investigate social biases in the training iterations of future models by simulating

scenarios where generated images progressively replace real images in the training data.

Emerging deep generative models, such as DALL-E 2 [20], Imagen [21], or Stable Diffu-
sion [22], have shown remarkable capabilities in producing high-quality images. Trained on
extensive datasets gathered from the internet [25-27, 68], these models can generate visually
compelling images based on user-customized text inputs or prompts, sparking a surge of enthu-
siasm for image generation across the online community. However, concerns regarding social
biases have been systematically identified [138], including gender bias [38—40, 139-145], eth-
nicity bias [38,39, 139, 144, 146], and geographical bias [38, 146—148]. In particular, previous
work [38, 139, 140, 145] has highlighted the tendency of deep generative models to produce bi-
ased images even when prompted with ostensibly neutral inputs, uncovering unfair associations
between specific social groups and certain attributes [39,40, 141, 142]. A common example is
the generation of images depicting occupations, such as doctors and nurses, which have been
shown to be strongly tied to gender and race.

Issues with bias tend to be attributed to the composition of the training data. Training images
are frequently scraped from the internet with minimal efforts to filter out problematic samples
and address representational disparities. Moreover, in the current context, generated images
are continuously shared online and mixed with real images, which means that future computer
vision models may inadvertently incorporate large portions of synthetically generated images

into their training processes. Coupled with the increasing concerns about the presence of social
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bias in deep generative models, this raises the following question: What consequences might
arise if images generated by biased models become increasingly involved in the training process
of future models?

To address this question, we conduct experiments focusing on vision-and-language (VL)
tasks within a scenario where generated images are progressively integrated into the train-
ing data, as shown in Figure 4.1. Specifically, we generate new images for COCO [94] and
CC3M! [68] datasets using Stable Diffusion [22], and we gradually replace the original im-
ages in the datasets with their generated counterparts. Our evaluation covers four types of
demographic bias — gender, ethnicity, age, and skin tone — across two tasks: image-text pre-
training and image captioning. For image-text pre-training, we evaluate the bias introduced
by OpenCLIP [149] on two downstream tasks, i.e.image retrieval [150, 151] and face attribute
recognition [152]. For image captioning, we evaluate the performance of ClipCap [77] and
Transformer [153] using bias metrics such as leakage (LIC) [154] and gender misprediction
(Error) [155, 156].

Our experiments show that the behaviors of the evaluated biases are inconsistent and vary as
we gradually replace original images with generated ones. In some cases, biases increase, while
in others, they decrease. To understand this phenomenon further, we hypothesize two potential
causes: 1) as existing datasets inherently contain biases [150, 151], if the bias introduced by
the generated images aligns with the pre-existing biases in the dataset, it may not aggravate
the existing bias, and 2) artifacts in Stable Diffusion’s generations, particularly concerning the
generation of human faces (e.g., blurred or poorly defined attributes), may lead models trained
on such data to avoid learning demographic features. Overall, the key contributions of this

chapter are:

1. We show that, under our experimental setup, generated images from current deep gener-
ative models do not consistently amplify bias. Our experiments reveal different levels of
bias for gender, ethnicity, age, and skin tone on both the COCO and CC3M datasets when

increasing the number of generated images.

'CC3M is also known as Google Conceptual Captions or GCC.
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2. Through a set of follow-up experiments, we explore the underlying reasons behind these
results, offering valuable insights into the dynamics between image generation models

and existing datasets.

3. We propose recommendations for handling biased generated images in the training pro-
cess of future models, contributing to the ongoing discourse on responsible and unbiased

Al development.

While bias is not consistently amplified in our experiments, we find the presence of bias
amplification in multiple instances concerning. Moreover, as our experiments are conducted
on moderate-scale datasets with about 3 million images, representing about 130 times less data
than the original CLIP [18], the impact of generated images on large-scale training remains
uncertain. We believe that, as a community, addressing bias and ensuring models are safe for
everyone should be a top priority. We hope our findings contribute to increased awareness
of fairness in computer vision and inspire the creation of models with unbiased and equitable

representations.

4.2 Related work

Bias in pre-trained vision-and-language models Pre-trained VL models are not only used
in downstream tasks through fine-tuning [32,35,66] but also in guiding model training [22,157,
158] and serving as evaluation metrics [157, 159, 160]. With the proliferation of VL. models,
there is an increasing awareness about the inherent biases present in them [150, 152, 161-163].
For example, Wolfe er al. [152] evaluated the proximity of neutral text (e.g., “a photo of
a person”) and an attributive text (e.g., “a photo of a white person”) in the CLIP embed-
ding space [18]. The differences between demographic groups served as indicators of bi-
ases in the models. Chuang et al. [163] and Garcia et al. [150] explored performance gaps
among demographic attributes (e.g., man and woman for gender, and 1ighter and darker for

skin tone) in downstream tasks, such as classification and image retrieval. Overall, previous
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work [150, 152,163, 164] has provided methodologies for detecting and evaluating bias in pre-
trained VL models, especially in relation to gender and ethnicity. We leverage these approaches
to anticipate potential bias in forthcoming datasets, particularly in scenarios where generated
images dominate a significant portion of the online image sources, which is a plausible but

underexplored scenario.

Synthetic data and pre-trained models Synthetically generated data is increasingly influ-
encing the pre-training and fine-tuning processes of VL models, whether intentionally or un-
intentionally. On the one hand, synthetic data is used as an additional training resource when
the original dataset is insufficient [135, 165, 166] or unreliable [167]. On the other hand, the
widespread dissemination of synthetic images on the internet can inadvertently contaminate
datasets [138]. Taori et al. [168] explored the data feedback loop and found that incorporating
generated data into subsequent model training rounds could exacerbate dataset biases. Further-
more, Hataya et al. [169] showed that models trained on large portions of synthetic data dropped
their performance. Building upon these insights, we study the repercussions of synthetic data

on social bias in VL models.

4.3 Dataset contamination process

VL models are trained on pairs of images and text. The process for collecting this type of
data typically begins with scraping the internet to gather a set of images X = {x}, where z is
an image. For smaller or moderately sized datasets [5, 52, 94], textual descriptions y for each
image z are manually generated by crowdsourcing or in-house annotators, resulting in the set
Y = {y}. However, for large-scale datasets [25-27,68], where generating specific annotations
is unfeasible, text accompanying the images in the original websites is used, often from the
ALT? text. Subsequently, some form of filtering is applied to remove inappropriate content.
Formally, let pz(z) and p(y) represent the distributions of collected images and corresponding

descriptions. All x € X and y € ) can be seen as samples from pz(z) and pr(y), respectively.

2ALT text refers to the text in the ALT attribute of HTML tags.
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The textual description y is derived from z ~ pz(z) through a framing process y = f(x), which
determines what aspects of x to describe.

Biases in the dataset-creation process are introduced from three main sources [170]. Firstly,
biases are inherited from the original population of images on the internet,’> in which con-
tent from specific demographic groups and geographical regions is overrepresented. Secondly,
additional biases are introduced by the image descriptions provided by annotators or website
authors, reflecting their stereotypes. Lastly, the filtering process itself can introduce additional
bias; for instance, in the CC3M dataset, entities appearing less than 100 times were filtered out,
potentially removing content from minority groups.

We define dataset contamination with generated images (hereafter referred to as dataset
contamination) as a dataset wherein part of its population is replaced with generated images.
That is, someone uploads to the internet images ' = ¢(y’) generated by a generative model
g with a prompt ¢/. In this process, we operate under two assumptions: (1) a mental image &
that people aim to achieve with a generative model also conforms to the distribution pz(z), and
(2) the image description process from the mental image = to a prompt ' has the same framing
and bias as f. Given these assumptions, we infer that " adheres to the distribution pr(y) as

y' = f(z) and T ~ pz(x). Therefore, the distribution pg(z) of generated images is given by:
po(r) = > proc(@ly)pr(y). (4.1)
Yy

where pr_.g(x|y) corresponds to the generative process ¢g(y). This means that we can generate
images from descriptions y € ) as described in [169]. Eventually, we create a dataset D(«) by

sampling images x with a prior « from:

D(a) = {z ~ (1 — a)pz(x) + apg(x)}. (4.2)

This process of dataset contamination allows us to evaluate the impact of the generative

model while keeping the other sources of bias consistent with the original dataset.

3If the scraping is random sampling, the population is identical to pz(z), but typically this is not the case

because of filtering.
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4.4 Bias evaluation tasks

The range of tasks in the scope of VL is extensive and diverse. For a survey, please refer
to [50,171]. In this work, we examine the effects of dataset contamination on two fundamental
tasks: image-text pre-training and image captioning. Next, we outline bias evaluation in each

of them.

4.4.1 Image-text pretraining

Image-text pertaining involves training a model to learn semantic correspondences between
visual appearance and text, such as associating the word “rabbit" with and image of a rabbit.
Models like CLIP [18] and its variants [19, 149, 172-174] are trained on large-scale image-
text pairs sourced from the internet. CLIP-like models are reported to exhibit social biases,
including gender [150, 152, 163, 164, 175], ethnicity [150, 152, 163], age [150, 152], and skin
tone [150], and are susceptible to additional biases introduced by dataset contamination. We use
OpenCLIP [149], an open-source variant, and assess its performance on text-to-image retrieval,

self-similarity, and person preference.

Text-to-image retrieval Following Garcia et al. [150], where CLIP was shown to perform
differently for different demographic attributes (e.g.images of men showed a higher recall at &
(R@FK) than images of women), we evaluate text-to-image retrieval performance. Text-to-image
retrieval consists on finding the corresponding image given an input text. We compute RQk
for different demographic attributes on PHASE [150] and COCO [94] datasets for OpenCLIP

models trained on datasets D(«).

Self-similarity Proposed by Wolfe et al. [152], self-similarity evaluates how images of an
attribute group are distributed in the embedding space. The core idea is that if a CLIP-like model
is trained on numerous images of a specific group with diverse descriptions in the contrastive
training process, its encoders will attempt to distribute these images within a larger volume in

the embedding space to differentiate them. Otherwise, images of an underrepresented group
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may occupy a smaller volume.
Formally, let £, C & denote the subset of the entire test set £, containing only samples of a

certain attribute group a. Self-similarity SS(&,) for group a is given by:
1
SS(&,) = ——— c(x, ), 4.3)
|‘€a|2 - |5a| ;

where |&,| gives the number of samples in &,, ¢(x, 2) denotes the cosine similarity between z
and 2’ in the embedding space,* and the summation is computed over all combinations of two
samples = and 2’ in &,. A higher self-similarity means images in &£, are concentrated in the
embedding space.

Different treatments of attribute groups appear in the difference of SS(&,)’s among a in
attribute A.> Self-similarity is defined over the learned embedding space, and the samples in
that space give different distributions for different datasets; therefore, self-similarity cannot be
compared across models. As we are interested in how broad the distribution for a € A are in

comparison with others in .4, we normalize self-similarity scores as:

SS(&a)

SS(E) = S ST

1. 4.4)

Person preference Another possible reflection of bias in the embedding space is whether a
neutral description of an image represents images of a specific attribute group, i.e., if a cer-
tain group is well-represented in a dataset, a neutral description may cover the attribute group.
Person preference [152] evaluates this skew by comparing the similarities among a neutral de-
scription (e.g., “a photo of a person”), a description with a specific attribute group (e.g., “a
photo of a white person”), and images of the group. Formally, let ¢y and ¢, denote the neutral
description and one attributed by a. The person preference score over &, is given by:

1
PP(&,) = A Z Te(z, tn) > c(z, ty)] 4.5)
a xe&z

“Letting ey denote the CLIP visual encoder, c(z,2') is defined as c(x,z’) = cos(ey(x), ey(z')) where cos

gives the cosine similarity.
SFor instance, the binarized gender attribute in PHASE [150] is given by A = {male, female}.
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where 1 is the indicator function, and we abuse notation c to represent the cosine similarity

between an image and a description, embedding them with appropriate encoders.

4.4.2 Image captioning

Image captioning is the task of generating descriptions for an input image. Descriptions gen-
erated by image captioning models [32,77] have been found to reproduce bias, especially con-
cerning gender and skin-tone [151, 154, 156]. We assess image captioning models trained on

data contamination in terms on caption quality, LIC, and gender misprediction.

Caption quality Several automatic metrics have been proposed for evaluating captions qual-
ity, including BLEU [176], ROUGE [177], METEOR [178], CIDEr [179], and SPICE [180],
which mainly involve a lexical comparison between the generated caption and the correspon-
dent ground-truth caption. Alternatively, CLIPScore [159] evaluates the fidelity of a generated
caption to the original image. In our experiments, we adopt BLEU-4, CIDEr, SPICE, and
CLIPScore.

LIC To evaluate social bias amplification in image captioning models, Hirota et al. [154]
proposed LIC. This metric evaluates whether the generated captions are more biased than the
captions in the original trained dataset. For LIC, a set of captions is assumed to be biased
if a protected attribute can be predicted without being explicitly mentioned. Specifically, an
attribute classifier h,(y), which gives the likeliness of an attribute group a from a caption y, is
trained on a training set Cr = {(y, a) }, where a is the ground-truth attribute group. All attribute-
specific words® in the caption y are masked so that the prediction is not trivial. Then, given a
validation set Cy, again with all attribute-specific words being masked, the model’s leakage

score is computed as:

a/

1
LICy = il 3" ha(y)Llarg maxhy(y) = d] (4.6)
E
(y,a)ECE

5We use the same list of attribute-specific words as [154].
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LICy gives a higher value if the attribute group is correctly predicted with a higher confidence
value even for the masked captions in Cg, suggesting that the attribute group can be easily
predicted from captions.

The leakage score is also computed for the captions in the original dataset, i.e., LICp for
Y. The final amplification metric LIC is defined as the difference between the dataset and the

model leakage as:

LIC = LICy — LICp. 4.7)

Gender misprediction Another bias evaluation metric for image captioning is the Gender
missprediction or Error [155, 156], which measures gender mispredictions in the generated

captions as:
N
Error = — 4.8
Iror = -+, (4.8)

where M is the number of generated captions, and NV is the number of captions among the
M generated captions whose gender group is incorrectly predicted. Gender is considered in-
correctly predicted if it contains any words in the attribute-specific word list for the gender
opposite to the ground truth gender. For example, for the ground-truth group man, the gender
in the generated caption is considered correct if there are no words from the woman-specific

word list, such as girl.

4.5 Results on OpenCLIP

We train OpenCLIP [149] using various versions of the CC3M [68] dataset, each with different
levels of dataset contamination. For dataset contamination, we use Stable Diffusion v1.5 [22]
to generate images using the original captions as prompts. Due to the nature of the CC3M
dataset, where images are provided as URL links and many of these links have expired, we are
only able to retrieve 2, 772, 289 valid images for our training data. Consequently, we generate

images solely for the prompts corresponding to the available images. We randomly replace
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Figure 4.2: Image retrieval results on COCO 2014 test set and Flickr30k test set for different .

The performance of OpenCLIP remains consistent across different levels of dataset contamina-

tion.
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Figure 4.3: R@Q5 on CC3M using PHASE annotations for different . Bias is highlighted in gray
as the difference between groups. We observe different trends: bias mitigation in Figure 4.3a,

consistency in Figure 4.3b, amplification in Figure 4.3c, and no clear trend in Figure 4.3d.
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Figure 4.4: R@5 on COCO 2014 test set for different «. Bias is highlighted in gray as the

difference between groups. Both gender and skin tone bias show ambiguous trends.
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Figure 4.5: Self-similarity score of each group in the FairFace dataset for different . Bias is

highlighted in gray.
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Figure 4.6: Person preference score of each group in the FairFace dataset for different o. Bias
is highlighted in gray. None of the three figures show a clear tendency. Besides, the changes in

bias are relatively small compared with the person preference scores.
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20%, 40%, 60%, 80%, and 100% of original images with the images we generate, i.e.D(«) for
a = 0.0 (the original CC3M dataset), 0.2, 0.4, 0.6, 0.8, and 1. Evaluation is conducted on
five datasets, two for performance evaluation and three for bias evaluation. For performance
evaluation, we use the COCO 2014 1K test set [94] and the Flickr30k test set [53]. For bias
evaluation, we use the CC3M validation set using PHASE demographic annotations [150], the
COCO validation set using gender and skin-tone annotations [151], and the whole FairFace
dataset [181]. We run all experiments three times with different random seeds and report the

average.

4.5.1 OpenCLIP performance

We first evaluate the performance of OpenCLIP trained under our experimental settings on two
standard datasets: the COCO 2014 test set and the Flickr30K test set. We report text-to-image
retrieval performance as R@k with k£ = 1,5, 10. Results are shown in Figure 4.2, from which

we observe that:

* Image retrieval results remain relatively constant for all levels of dataset contamination,

from D(0.0) to D(1.0), in both datasets and for R@1, R@5, and R@10.

*  Our reported results on OpenCLIP are considerably lower than those of the original CLIP.
We attribute this difference to the disparity in the size of the training set. While our
training is conducted with less than 3 million image-text pairs, the original CLIP model

is trained on about 400 million samples.

In summary, the use of generated images for training OpenCLIP on the CC3M dataset ap-
pears to have minimal influence on the retrieval performance of its encoders. Next, we proceed

to evaluate the impact of dataset contamination on the bias metrics.
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4.5.2 Bias in OpenCLIP

As described in Section 4.4.1, text-to-image pertaining bias is evaluated on three metrics: text-

to-image retrieval, self-similarity, and person preference. For text-to-image retrieval, we report

results on the CC3M validation set with age, gender, skin-tone and ethnicity annotations from

PHASE [150] (Figure 4.3) and the COCO validation set with gender and skin-tone annotations

from [151] (Figure 4.4). For self-similarity and person preference, we report results on the

FairFace dataset (Figures 4.5 and 4.6). From these results, we find the following trends with

respect to bias:

Consistent bias amplification: We observe instances of consistent bias amplification, as
illustrated in Figure 4.3c, where the text-to-image performance gap between the different

age groups widens with increasing levels of dataset contamination.

Consistent bias mitigation: In Figures 4.3a and 4.5a, we observe instances of consistent
bias mitigation, where the gender gap is reduced for both text-to-image performance and
self-similarity metrics. The gap in self-similarity for the age attribute is also consistently
reduced, as shown in Figure 4.5b, indicating a bias mitigation effect with the increase of

the dataset contamination parameter c.

Unaffected bias: In some cases, bias remains unchanged. This is observed in Figure 4.3b,
where the gap in text-to-image retrieval performance between lighter and darker-skin tone

images remains constant for the different values of o from 0.0 to 1.0.

Ambiguous bias trends: Across most instances, we do not discern a clear bias trend.
In Figures 4.3a, 4.3d, 4.4b, 4.5¢c, 4.6a, and 4.6c, we find no consistent pattern of bias
changes, representing half of our experimental results. Unlike unaffected bias, the bias
in these six experiments fluctuates, showing alternating increases and decreases. For in-
stance, in Figure 4.6a, both the woman and man groups intermittently achieve the highest
person preference scores. This suggests that multiple factors contribute to bias changes:

some amplify bias, while others mitigate it, making bias changes unstable.
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Table 4.1: Captioning performance and bias metrics for ClipCap and Transformer.

ClipCap Transformer
Bias () Quality (1) Bias () Quality (1)
o LIC-Gender LIC-Skin Error BLEU-4 CIDEr SPICE CLIPScore LIC-Gender LIC-Skin Error BLEU-4 CIDEr SPICE CLIPScore
0 3.6 1.1 5.0 319 1050 204 76.4 3.6 22 11.0 28.3 92.0 182 72.8
0.2 3.8 1.9 4.7 31.8 105.1 204 76.8 7.6 1.6 12.1 28.4 92.1 18.0 73.1
0.4 5.1 1.6 4.8 31.5 1045 204 71.0 6.1 0.6 14.6 27.3 88.7 177 72.6
0.6 39 1.6 45 314 1041 203 772 53 2.0 10.7 26.5 88.0 174 73.1
0.8 4.1 2.0 4.6 30.7 1024 20.0 77.4 39 1.9 11.1 26.8 877 113 72.8
1.0 35 3.1 4.1 23.8 846 177 78.3 22 22 13.2 21.0 703 149 72.9

It is worth noting that the person preference scores show substantial variations in different
experiments, surpassing 0.9 in gender and age (Figures 4.6a and 4.6b), while dropping to 0.2
for ethnicity (Figure 4.6¢), despite the unclear trend of bias changes. This observation may be
attributed to potential challenges associated with the generation of facial images with Stable

Diffusion.

4.6 Results on image captioning

To analyze bias behavior in image captioning models trained with dataset contamination, we
consider two models: Transformer’ [153] and ClipCap [77]. Each model is trained on the
COCO 2014 train set [94] with different levels of dataset contamination, ranging from D(0.0)
to D(1.0). Evaluation is conducted in terms of caption quality and bias on the original COCO

validation set using gender and skin-tone annotations from [151].

4.6.1 Image captioning performance

Image captioning results are presented in Table 4.1. Observing the image quality metrics (i.e.,

BLEU-4, CIDEr, SPICE, and CLIPScore) we note the following:

"Transformer refers to a captioning model with a Transformer-based encoder-decoder where the encoder is

ViT-B16 [45], and the decoder is BERT-base [182].
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All lexical similarity-based metrics (i.e., BLUE-4, CIDEr, and SPICE) either experience
a gradual decrease or remain relatively stable from o« = 0, the original dataset, to 0.8.
However, there’s a significant drop between 0.8 and 1.0, suggesting that even a small

amount of real images is necessary to maintain captioning performance.

In contrast, the semantic similarity-based metric (i.e., CLIPScore) remains unaffected by
variations in dataset contamination, particularly evident in the case of the Transformer
model. While ClipCap slightly improves in CLIPScore, we hypothesize that it is because
of the use of CLIP in both image generation and image captioning processes. That is,
Stable Diffusion uses CLIP to obtain the text embedding for a caption, so the generated
image is strongly tied to it. Therefore, the training set D(«) with larger «v gives image-
caption pairs that are close to each other in the CLIP embedding space. ClipCap trained
with such a dataset thus only needs to learn the inverse process of the CLIP text encoder,
i.e., from an embedding to a caption, for these pairs, which can be easier than learning to
fill the gap between images to captions. Thus, ClipCap may easily generate captions that
match well with the corresponding images in the CLIP embedding space, consequently

increasing CLIPScore.

4.6.2 Bias metrics in image captioning

With regard to the bias metrics, which include LIC for gender (LIC-gender), LIC for skin-tone

(LIC-skin), and gender mispredictions (error), the results are also presented in Table 4.1. We

summarize our observations as follows:

No trend for gender bias: LIC scores for gender show no noticeable trend across differ-
ent values of o. In terms of gender mispredictions, similar to the LIC score, there is no
clear tendency across the contamination ratios. Under our settings, we cannot draw any

definitive conclusion about gender bias.

Skin-tone bias amplification: While LIC for skin-tone on Transformer appears stable,

on ClipCap it increases from 1.1 at « = 0 to 3.1 at &« = 1. This trend could be attributed
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to Stable Diffusion accentuating the skin-tone bias present in the original dataset. For
example, it has been found that, in the COCO dataset, indoor images tend to feature
white people while black people tend to appear indoors [151]. Similar contextual biases

have been observed in Stable Diffusion generations [38, 146].

4.7 Analysis

Through our experiments, we observe the existence of different trends in the biases as we pro-
gressively replace real images with generated ones. To comprehend the underlying reasons
behind this phenomenon, we explore potential factors based on our observations. We primarily
focus on two possible explanations: (1) the inherent biases present within the original training

datasets, and (2) the limitations of current deep generative models.

Inherent biases in original datasets Even though Stable Diffusion is known to produce bi-
ased images [38—40, 139-141, 146, 147], the original datasets, CC3M and COCO datasets, have
also been found to be strongly unbalanced [150, 151]. For example, the CC3M validation set
shows large gaps in perceived skin tone, with 3, 166 images of lighter v.s. 318 images of darker
skin-tone people, and perceived ethnicity, with 2,231 images of White people v.s. 16 images
of Middle Eastern people [150]. Similarly, the COCO validation set, has been annotated with
7,466 images of man v.s. 3,314 images of woman and 9, 873 images of lighter v.s. 1,096
images of darker skin-tone people [151]. If the disparities in representation within the original
datasets resemble the biases in the images generated by Stable Diffusion, it is plausible that the

biases remain unchanged as real images are progressively replaced with generated ones.

Failure of generation in Stable Diffusion Deep generative models like Stable Diffusion
present several limitations beyond bias concerns. One prominent issue is the tendency for
faces to become blurred when generating multiple people. Moreover, Stable Diffusion has been

shown to stereotype certain culturally-associated words [147]. When examining the generated
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Figure 4.7: Blurry faces in the generated images. When this happens, the attributes (e.g., gender

and age) on the faces are hard to distinguish and further used in the model’s training.

images in the training dataset, we find similar issues, as shown in Figures 4.7 and 4.8. These
issues can impact bias: blurred faces may diminish gender or age biases, while stereotyping
could potentially exacerbate ethnicity bias. This phenomenon could elucidate the gender bias
mitigation observed in Figures 4.3a and 4.5a. Overall, due to the complexity of how bias origi-
nates and propagates across tasks, there is no one-size-fits-all solution to explain its causes and

remedies.

4.8 Recommendations

From our experiments and analysis, we found that while images generated by Stable Diffusion
exhibit bias across different demographic attributes, their use for training does not consistently
amplify bias. This finding aligns with recent studies [19, 167, 183, 184] that use generated
data from deep generative models for training. These studies highlight the diversity of effects

that the generated data can have on model performance, potentially leading to performance
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Figure 4.8: Stereotyping in the generated images. The words in blue may cause Stable Diffusion

to generate stereotyped images.

improvements. Since the impact of generated data may depend on the original dataset and

target task, we propose the following recommendations:

* Bias-filtering preprocessing: Considering the possibility that bias in the original dataset
could be more pronounced than in deep generative models, we advocate for bias-filtering
preprocessing during data collection from the internet, regardless of whether generated

images are involved.

* Caution with generation issues: While generation issues like blurry faces may aid in
bias mitigation in some tasks, they could potentially lead to bias amplification in others.
Moreover, it is important not to regard generation issues as features, as they may be

resolved in future iterations of generative models.

4.9 Limitations

* Due to the scale of current vision-and-language datasets like LAION-400M [26] and

LAION-5B [27], our computational resources are insufficient for generating images and
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training models on such large datasets. Instead, our experiments are conducted using

COCO and CC3M datasets, limiting the scope of insights to be drawn.

* The use of Stable Diffusion for image generation may overlook potential findings that
could arise from other models with either more biased generations or better bias filtering

capabilities.

* Our bias evaluation is focused on gender, age, ethnicity, and skin tone. The study does
not explore all potential types of bias and leaves out the exploration of intersectional bias,

leaving room for further investigation into additional dimensions of bias and fairness.

4.10 Summary

We investigated the impact of synthetic images generated by Stable Diffusion on bias in fu-
ture models. We simulated a scenario where the generated images are progressively integrated
into future datasets and evaluated bias in two downstream tasks: image-text pertaining with
OpenCLIP and image captioning. Our findings revealed that the inclusion of generated im-
ages resulted in diverse effects on the downstream tasks, ranging from bias amplification to
bias mitigation. Further visualization and analysis provided potential explanations underlying
this phenomenon, including the inherent bias in the original datasets and the generation issues

associated with Stable Diffusion.
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Chapter 5

Conclusion

In this thesis, we explore the knowledge transferability in vision-and-language models and
its applications, aiming to explore the limitations of the current knowledge transfer strategy, an-
alyze the reason, and further improve the models’ performance in solving vision-and-language
tasks.

Through the experiments, we find that the current knowledge transfer strategy still has lim-
itations in utilizing existing knowledge, as some knowledge transfer may not be helpful in
solving certain tasks. Several factors, such as task similarity, training data scale, and training
epochs, may affect the result. Besides, we find that the large-scale pre-trained models such
as CLIP [18] still hard to solve the emotional stimuli detection task, which may indicate the
knowledge edge of these models. Our experiments on evaluating Stable Diffusion [22]’s capac-
ity in understand emotional stimuli also indicate that this model still has insufficient knowledge
in understanding how the emotions are related to the regions of the artworks. Furthermore, we
explore how harmful knowledge, such as social bias, in recent deep generative models can affect
future vision-and-language models. Our results show the existence of social bias in both deep
generative models and future vision-and-language models. However, we also find that the bias
in the future vision-and-language models is not always amplified by the deep generative mod-
els. The results may show a possible way of utilizing the knowledge in deep generative models:

if we can limit the transfer of biased knowledge from deep generative models, these models
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could be helpful in improving other tasks with their knowledge. We hope our work and our
insights through the experiments can bring inspiration to the fields of knowledge transferability

in vision-and-language tasks.
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